
S

Hochschule Darmstadt

– Fachbereiche Mathematik und
Naturwissenschaften & Informatik–

User Simulation in Task-Oriented Dialog
Systems based on Large Language Models via

In-Context Learning

Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

vorgelegt von

Ronny Horst

Matrikelnummer: 759803

Referent : Prof. Dr. Bettina Harriehausen-Mühlbauer

Korreferent : Prof. Dr. Jutta Groos

Ronny Horst: User Simulation in Task-Oriented Dialog Systems based on Large
Language Models via In-Context Learning, © 29. Dezember 2023

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch
nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Darmstadt, 29. Dezember 2023

Ronny Horst

A B S T R A C T

The growing importance of human-computer interaction and natural lan-
guage processing is highlighted by significant advances such as the intro-
duction of ChatGPT, a Large Language Model (LLM)-based dialogue sys-
tem. While open-domain dialogue systems focus on user engagement, task-
oriented dialogue systems (TODS) are designed to assist users with spe-
cific tasks within defined domains. However, the deployment of new TODS
faces challenges, particularly in ensuring dialogue quality through resource-
intensive human evaluation. Assessing the quality of TODS requires a nu-
anced understanding of user intent and the generation of contextually ap-
propriate responses. Automated evaluation mechanisms play a crucial role
in systematic testing prior to TODS deployment. Historically, two evaluation
methods have been used: dataset-based and interactive. While dataset-based
evaluation serves as a benchmark, it does not capture the dynamic nature
of TODS, limiting its adaptability to real-world user responses. In contrast,
the interactive evaluation involves a user simulator engaging in multi-turn
dialogues with TODS, mimicking authentic conversational scenarios. De-
spite closely simulating real-world usage, creating effective simulators can
be resource-intensive, with previous approaches relying on rules, heuristics,
or large amounts of annotated data showing limitations in adapting to unex-
plored domains or resource-constrained environments.

This research presents an end-to-end ICL-based User Simulator (US) for
TODS . Using LLMs, the proposed architecture can perform task-oriented
user simulation in an interactive end-to-end manner with minimal data re-
quirements. It addresses the need for user simulation for low-resource do-
mains by evaluating zero and few-shot ICL strategies within the MultiWOZ
domain against a pre-trained baseline US. In addition, an extended TELeR-
RESPONDeR taxonomy for nuanced prompt descriptions is presented to in-
crease the comparability of the proposed methods and to address the need
for a standard ICL notation. The proposed In-Context Learning User Simu-
lator (ICL-US) demonstrated proficient generation of lexically diverse user
responses that closely matched real user baselines as quantified by MTLD.
Although the ICL-US did not outperform the US baseline, it demonstrated
promising conversational capabilities with task-oriented dialogue systems,
highlighting the potential of ICL-based user simulation even in a zero-shot
setting and emphasizing the potential of the ICL-based approach.

Z U S A M M E N FA S S U N G

Die Bedeutung der Mensch-Computer-Interaktion und der Verarbeitung na-
türlicher Sprache gewinnt sowohl in der Forschung als auch in der Industrie
zunehmend an Bedeutung. Während bei domänenoffenen Dialogsystemen
das Engagement des Benutzers im Vordergrund steht, zielen aufgabenorien-
tierte Dialogsysteme darauf ab, den Benutzer bei bestimmten Aufgaben in
definierten Domänen zu unterstützen. Bei der Einführung neuer TODS er-
geben sich jedoch Herausforderungen, insbesondere bei der Sicherung der
Dialogqualität durch menschliche Bewertung. Die Bewertung der Qualität
von TODS erfordert ein nuanciertes Verständnis der Benutzerintention und
die Generierung kontextadäquater Antworten. Automatisierte Evaluations-
mechanismen spielen eine entscheidende Rolle bei systematischen Tests vor
der Bereitstellung von TODS. Typischerweise werden zwei Evaluierungsme-
thoden verwendet: Datensatzbasierte Evaluierung und interaktive Evaluie-
rung. Während die datensatzbasierte Evaluation als Benchmark dient, er-
fasst sie keine dynamischen Dialogsysteme, was ihre Anpassungsfähigkeit
an Benutzerreaktionen in einer realen Umgebung einschränkt. Im Gegen-
satz dazu beinhaltet die interaktive Evaluation einen Benutzersimulator, der
einen interaktiven Dialog mit einem Zielsystem führt. Die Erstellung leis-
tungsfähiger Simulatoren kann ressourcenintensiv sein. Frühere Ansätze,
die auf Regeln und Heuristiken basieren, erfordern einen hohen mensch-
lichen Aufwand, während modernere Simulatoren oft große Mengen an an-
notierten Daten benötigen. Die vorliegende Masterarbeit stellt einen End-
to-End In-Context Learning basierten Benutzersimulator für aufgabenori-
entierte Dialogsysteme vor. Mit Hilfe von LLMs kann die vorgeschlagene
Architektur eine aufgabenorientierte Benutzersimulation in einem interakti-
ven End-to-End-Stil mit minimalen Datenanforderungen durchführen. Da-
mit wird die Problematik von Benutzersimulationsdomänen mit geringen
Ressourcen adressiert. Das Potential des Simulators wurde durch die Evalu-
ierung von Zero- und Few-Shot-ICL-Strategien in der MultiWOZ-Domäne
im Vergleich zu einem vorab trainierten Baseline-US analysiert. Zusätzlich
wird eine erweiterte TELeR-RESPONDeR Taxonomie für nuancierte Prompt-
Annotation vorgestellt, um die Vergleichbarkeit der vorgeschlagenen Metho-
den zu erhöhen und den Bedarf an einem Standard in der ICL-Notation
zu adressieren. Der vorgeschlagene In-Context Learning Benutzersimulator
zeigte eine vielversprechende Generierung von lexikalisch vielfältigen Be-
nutzerantworten, die denen von echten Benutzerbaselines ähnlich sind, wie
sie von MTLD quantifiziert werden. Obwohl der ICL-US die Erfolgsraten
des Baseline-US nicht übertraf, zeigte er vielversprechende Konversationsfä-
higkeiten, was das Potenzial der ICL-basierten Benutzersimulation auch in
einem Zero-Shot-Szenario unterstreicht.

C O N T E N T S

i thesis

1 introduction 2

2 background 6

2.1 Task-Oriented Dialogue Systems 6

2.1.1 Pipeline Architecture . 7

2.1.2 End-to-End Architecture 10

2.1.3 Evaluation of TODSs . 11

2.2 User Simulation . 13

2.3 Large Language Models . 22

2.4 Related Work . 27

3 proposed icl-based user simulator 33

3.1 Data Set Selection . 34

3.2 Prompbuilding and Incontext-Learning 37

3.2.1 Proposed TELeR-RESPONDeR Taxonomy for Complex
Prompts . 38

3.2.2 Design of the Basic Prompt Elements for Zero- and
Few-Shot Strategies . 41

3.2.3 Zero-Shot and Few-Shot Setup 44

3.2.4 Reasoning, Planning and Ensemble Prompting Concepts 45

3.3 LLM Selection & Generation Decoding Strategies 49

3.4 Wizard of Oz Testing . 51

3.5 Modification Via Dialogue State Tracking Component 51

4 evaluation 53

4.1 Experimental Setup . 53

4.2 Evaluation Metrics . 57

4.2.1 Goal Fullfillment Evaluation Metrics 57

4.2.2 Lexical Diversity Metrics 58

4.3 Quantitative Evaluation Results 59

4.3.1 Quantitative Results Goal Fulfillment Performance . . . 59

4.3.2 Quantitative Diversity Evaluation Results 61

4.4 Qualitative Evaluation Results & Human Error Analysis 62

5 conclusion & future work 65

ii appendix

.1 Appendix A: Qualitative Analysis Examples 70

bibliography 78

L I S T O F F I G U R E S

Figure 2.1 Typical modular pipeline structure of task oriented
dialog systems as described in [104]. 7

Figure 2.2 An example of the output of an nlu unit from [9]. . . . 8

Figure 2.3 Example of the dialog state of a typical DST module
taken from [37]. 8

Figure 2.4 Pipeline NLG system taken from [63]. 9

Figure 2.5 Simple end-to-end Architecture, in this case interact-
ing with an User Simulator. 10

Figure 2.6 Different variations of the transformer architecture taken
from [61]. 23

Figure 2.7 The LLM family tree as depicted in [100]. 24

Figure 2.8 Architecture of the ICL-based User Simulator of Ter-
ragni et al. [85]. 28

Figure 2.9 Architecture of the ICL-based User Simulator of David-
son et al. [14]. 30

Figure 3.1 Proposed ICL-US end-to-end architecture. 34

Figure 3.2 A basic prompt and its typical elements 38

Figure 3.3 The detailled illustration from the four dimensions of
the TeLER-Taxonomy from Santu et al. [71] 39

Figure 3.4 Typical structure of a few-shot prompt and the shot
sampling strategy. 44

Figure 3.5 Flow chart of the embedding vector similarity search
concept. 46

Figure 3.6 Sketch of the zero shot chain of thought two stage
prompt design. 46

Figure 3.7 Sketch of the self-consistency process design. 47

Figure 3.8 Sketch of the prompt ensemble process design. 48

Figure 3.9 Sketch of the least to most prompting process design. . 49

Figure 3.10 Sketch of a modification in the basic ICL-based US
architecture adding DST component. 52

Figure 4.1 The modified ICL-US setup to enable automatic eval-
uation in the ConvLab-3 Framework. 54

Figure 4.2 Sketch of the conducted evaluation process. 55

L I S T O F TA B L E S

Table 3.1 Comparison of potential Task-oriented Datasets. 36

Table 3.2 Proposed instruction element designs increasing in
complexity. 42

Table 3.3 Demonstration Elements increasing in naturalness. . . 43

Table 3.4 Selected LLMs for manual prompting trials. 50

Table 4.1 Zero-Shot Success Evaluation Results. 59

Table 4.2 Role Success Evaluation Results. 60

Table 4.3 Few-Shot Success Evaluation results. 60

Table 4.4 Zero-Shot Diversity Evaluation Results. 61

Table 4.5 Role Diversity Eval Results. 62

Table 4.6 Few-Shot Diversity Evaluation Results. 62

Table .1 Example of Post-Processing and typical behavior of
the LLMs to complete the Dialog. 70

Table .2 Different designed roles for role prompting. 71

Table .3 TEleR-RESPONDeR Taxonomy applied to the evalu-
ated prompts inspired by Santu et al [71]. 72

Table .4 LLama2 Zero-shot setting Instruction 1: US halluci-
nates the role of the Assistant. 73

Table .5 LLama2 dialog 2. zero-shot instruction: Simulator
starts to repreat the same utterance. 74

Table .6 FLAN-T5 zero-shot instruction 0: Asking for Info not
mentioned in Goal and system side missclassification
tricking the US to believ the conversation is about to
end without fulfilling the User Goal. 75

Table .7 GPT-3.5 Few-Shot Similarity Json Goal: TODS not un-
derstanding the US intent several times to get the ad-
dress. Resulting in lower success metrics. 76

Table .8 GPT-3.5 Zero-Shot Instruction 5: TODS Template NLG
not working correctly prolonging dialog and Miss-
classifications. 77

Part I

T H E S I S

1
I N T R O D U C T I O N

The importance of human-computer interaction and natural language pro-
cessing is attracting increasing attention in both academic and industrial
communities. This trend has been accelerated by the groundbreaking pub-
lication of the LLM-based dialogue system chatgpt. In contrast to these
open-domain dialogue systems, where the focus is on user engagement, task-
oriented dialogue systems [104] aim at assisting the user to perform specific
tasks in a particular domain. Typically, TODS are domain specific and are
built on a structured ontology that defines the functionality of the TODS,
such as making a restaurant reservation or booking a seminar, which in turn
is valuable to real-world businesses.

However, a major obstacle to the release of new TODS is the labour-intensive
development to ensure dialogue quality, which typically involves several
stages and iterations of human evaluation before a system is deployed. The
quality of a TODS and its user experience depends largely on the under-
standing of user intentions and the generation of appropriate responses.
Therefore, automated evaluation of TODS plays an essential role in enabling
researchers and developers to test and evaluate the quality of TODS in a
controlled environment before deployment to real users.

Two main evaluation methods have been used in the past to assess the
quality of new TODS, namely dataset-based and interactive evaluation. The
most common approach in the literature is dataset-based evaluation, where
a TODS generates responses to annotated dialogue logs from an existing
dataset, such as the MUltiWOZ [6]. While this approach is typically used
as a benchmark, it fails to capture the main task of a TODS: the interac-
tive conversation with a user. Due to the fixed nature of the user utterances
in the benchmark data, the system may not adapt well to real users, who
may respond in a reasonable but unpredictable manner. A notable draw-
back associated with this type of evaluation is the potential occurrence of
a policy mismatch between the responses generated by the Task-Oriented
Dialogue (TOD) system and the expected benchmark user utterances.[11]
In such cases, even reasonable and coherent responses from the TOD sys-
tem may be penalised due to mismatch with the expected outputs defined
in the benchmark dataset. Furthermore, common TOD benchmark datasets
are constructed with predetermined dialogue schemas, which impose con-
straints on the domains and intents applicable to the evaluation of a new
TOD system with benchmark data. Consequently, the evaluation of TOD
systems developed for unexplored domains may not be possible using the
dataset-based approach.

introduction 3

The second interactive approach consists of a user simulator interacting with
the TODS in a multi-turn dialogue that mimics real conversations. This ap-
proach benefits from the ability of the US to adapt to the responses of the
TODS, thus reducing policy mismatches. While closer to the actual use of a
target TODS, the process of building an effective simulator can also be time
consuming and costly. Older approaches require a lot of human effort to cre-
ate rules and heuristics to generate user actions[19, 72], or like more recent
work, rely on annotated data to train or fine-tune a US, often using TOD
benchmark datasets [1, 11, 56]. This reliance on annotated datasets limits the
adaptability to unseen domains of the current line of USs in the literature.

Recent advances in large language models[57, 105] such as GPT-4 and their
emerging in-context learning capabilities are showing results in a variety of
tasks. These include tasks in the domain of dialogue systems such as intent
classification, dialogue state tracking, and natural language generation[28,
53, 80]. These models can be instructed to solve a complex task by provid-
ing textual input, typically consisting of instructions and/or demonstrations
that provide context to the LLM. These capabilities to solve tasks with little
data and no further training can be used to build US for the evaluation and
development of TODS. During the creation of this thesis, Terragni et al. [85]
and Davidson et al. [14] also recognised this research gap of using these ca-
pabilities for task-oriented user simulation, emphasising the importance and
necessity of low resource user simulation approaches.

In this thesis the following three research questions will be investigated:

• Can Large Language Models, with their emerging in-context learning
capabilities, effectively serve as user simulators in facilitating interac-
tive conversations with Task-Oriented Dialogue Systems (TODS)?

• How would an LLM-based user simulator be set up architecturally,
and what in-context learning strategies could be used to increase the
humaneness of the simulator?

• How can different prompting strategies be formally described to en-
sure reproducibility and allow meaningful comparisons to understand
the effectiveness of these strategies?

To answer these questions, a basic end-to-end ICL-based US architecture is
presented, as well as the proposal of further possible evaluation components.
As the key element of this user simulator approach is the prompt as input of
a basic LLM, several prompting techniques to align the user simulator to a
given user goal are applied to the task of user simulation. The basic architec-
ture allows an end-to-end dialogue with a TODS based on a user goal that
fits the domain in either logical or natural form and optional and/or an in-
struction that can be derived from a defined dialogue schema. Investigated
eprompting techniques include instruction tuning, role prompting, few shot

introduction 4

learning. In addition, possible applications of reasoning techniques and sub-
task decomposition are conceptualised. The performance of the proposed
US largely depends on the underlying LLM.

In addition, as the field of ICL has only recently emerged with the availabil-
ity of LLMs, there is still a lack of a common standard to enable meaningful
comparisons between ICL strategies based on benchmarks, as highlighted
by Santu et. al. who proposed the TELeR taxonomy. This taxonomy is an im-
portant contribution to building a common standard for describing prompts
for complex task solving. This thesis proposes an extension of the initliazed
taxonomy as suggested by the authors. The TELeR taxonomy has been ex-
tended by separating and adding dimensions that allow a more detailed
description of the prompts used in this work. The proposed extended taxon-
omy is called TEleR-RESPONDeR and is described in detail in chapter 3.

As mentioned above, several prompting techniques have been conceptu-
alised in this thesis. After designing several approaches, a selected subset of
prompting techniques is evaluated using the Convlab-3 framework by con-
ducting interactive conversations between a TODS and the proposed ICL-US
and a baseline. The performance of the proposed user simulator was mea-
sured by an automated evaluation of success and diversity metrics. Finally,
an error analysis was conducted to identify the limitations and common er-
rors of the proposed user simulator and the evaluation process itself.

This thesis makes the following contributions:

• An ent-to-end ICL-based user simulator architecture has been designed
and possible extensions are presented.

• The basic end-to-end architecture has been revised for use in the ConvLab-
3 evaluation framework.

• A selection of ICL strategies have been applied to the task of user
simulation.

• The existing TELeR-taxonomy was extended and applied to all strate-
gies to allow meaningful comparisons for future work.

• A selected set of strategies (Instruction, Role and Few-Shot Prompting)
were evaluated in detail through interactive conversations between a
TODS from the Convlab-3 framework and the proposed ICL-US, using
automatic measures as well as human error analysis.

The research questions were addressed through different methodologies,
such as the design of prompting strategies to address the task of task-oriented
user simulation based on a Wizard of OZ style development process. First,
a prompt design is conceptualised by analysing existing work of ICL of
complex tasks, then these insights were applied through direct interaction

introduction 5

with an LLM and the prompting technique, furthermore the known prob-
lems of related work were considered while conducting a literature analysis.
This approach allows the developer to directly verify the potential quality of
the designed prompt. After deliberate design and testing, a selected set of
strategies were evaluated in an interactive evaluation using a Task Oriented
Dialogue Systems framework [109] that provides TODS and evaluation ca-
pabilities. In addition, the target domain corresponds to a standard baseline
for task-oriented dialogue. Quantitative success and diversity metrics were
used to measure the performance in generated user utterances of the LLM,
comparing the contributions with existing user simulators and a baseline for
diversity of utterances.

The thesis is structured to provide a comprehensive exploration of task-
oriented dialogue systems, user simulation, and the integration of large lan-
guage models. Chapter 2 provides the foundation for the topic of TODS.
It covers pipeline and end-to-end architectures, evaluation methodologies,
with a focus on user simulation. It also describes large language models,
their different architectures, and their emerging in-context learning capabil-
ities. The chapter concludes with a detailed review of related work and its
influence on this thesis. Chapter 3 presents the core contribution of the thesis:
the In-Context Learning (ICL)-based user simulator. The chapter begins with
a review of the basic architecture, the rationale behind the dataset selection,
and the strategies for in-context learning. In addition, a detailed explanation
of the proposed extended taxonomy for complex tasks is given. The chapter
also includes a description of the design choices for zero-shot and few-shot
prompts. In addition, this section explores strategies for selecting and gen-
erating large language models, the Wizard of Oz test, and the integration
of a dialogue state tracking component. The following chapter explains the
evaluation framework, including the experimental setup and modifications
to the test framework, and presents the selected baselines and TODS for
the interactive dialogue. The following chapter provides an overview of the
evaluation metrics, followed by a detailed analysis of both the quantitative
results and the qualitative error analysis. The thesis concludes with a sum-
mary of key findings, an acknowledgement of limitations and suggestions
for future research. This structured approach ensures a systematic explo-
ration of the proposed in-context learning paradigm within the dynamic
landscape of task-oriented dialogue systems and conversational AI.

2
B A C K G R O U N D

This chapter is structured as follows. The first section presents general infor-
mation about dialogue systems and a detailed description of task-oriented
dialogue systems. After defining the characteristics of TODSs, different archi-
tectures of TODSs and their structures are presented. After that, evaluation
approaches for TODSs are described in detail, and then the topic of user sim-
ulation and the different approaches used so far are discussed. The second
section presents the necessary background information for understanding
the use of LLMs in the concept and evaluation chapter. Starting with a gen-
eral description of LLMs, an overview of the different architectures of LLMs
is given. We then focus on in-context learning and different sampling strate-
gies that influence the performance of LLMs. Finally, the most relevant re-
lated work is presented in detail, discussing their implications for this work
and what distinguishes my work from theirs.

2.1 task-oriented dialogue systems

A DS! (DS!), also known as a chat bot or conversational agent, is an interac-
tive software system that communicates with a human agent using natural
language [43]. Communication between a DS and its human counterpart is
usually structured into turns (one or more utterances by an agent), exchanges
(two alternating turns) and finally dialogues (multiple exchanges)[15, 43].

In the literature, DS are commonly divided into two broad categories, namely
TODSs! (TODSs!) and OODSs! (OODSs!), according to their application[35,
63, 104]. OODSs aim to maximise user engagement in open domain dia-
logues without a specific task to solve [35]. Most OODSs are designed to
emulate social interactions, so their communication is characterised by long
and unstructured dialogues consisting of a large number of exchanges be-
tween the system and the user agent.

In contrast, TODSs are designed to help a user solve specific tasks or goals in
one or more target domains as efficiently as possible [15, 35]. The dialogues
of TODSs are characterised by being shorter in length and following defined
structures [63]. The domain knowledge of the tasks is typically built on top
of predefined ontologies or schemas[35, 104]. The architectural designs of
TODSs can be classified into two categories: pipeline or modular and end-to-
end systems, which are described in the following subsections [3, 104].

2.1 task-oriented dialogue systems 7

2.1.1 Pipeline Architecture

Figure 2.1: Typical modular pipeline structure of task oriented dialog systems as
described in [104].

Figure 2.1 depicts the typical structure of pipeline based TODSs. The four
main components are:

• NLU! (NLU!): This module parses raw user utterances into predefined
semantic slots in combination with domain and user intent classifica-
tion.

• DST! (DST!): This module tracks dialogue states based on user turns
and conversation history.

• DPL! (DPL!): This module decides the next action of a dialogue agent
based on the dialogue states calibrated by the DST module.

• NLG! (NLG!): This module converts selected dialogue actions into a
natural language response.

For each module of the pipeline, more detailed information is provided in
the following subsections.

2.1.1.1 Natural Language Understanding (NLU)

The main goal of the NLU module is to identify slot-value pairs in the cur-
rent user utterance [16]. To achieve this goal, the NLU task is often defined
as a set of subtasks consisting of: (i) domain identification (for multi-domain
TODSs), (ii) intent identification, and (iii) slot identification [16]. The figure
2.3 shows an example of a possible output of an NLU module. Given a
textual utterance, the module performs slot-filling through intent extraction
and semantic analysis [43]. The subtasks address different levels of represen-
tation, domain and intent identification are based on the utterance level and
slot identification works on the word-level representation [9].

2.1 task-oriented dialogue systems 8

Figure 2.2: An example of the output of an nlu unit from [9].

Typically, the broader domain and finer-grained intent identification are ap-
proached as classification tasks [9]s Often these classifications are mapped
to core functionality of the TODS[47]s For example, in Figure 2.3 the NLU
module classified the restaurant domain and the find restaurant intent based
on the user utterance. This identified intent could be mapped to a system-
supported intent class, while this class could also fall within the restaurant
domain.

The identification of slots is interchangeably known as slot-filling or slot/en-
tity extraction [47, 63]. In contrast to intent or domain detection, slot-filling
is typically defined as a sequence labelling problem. Thus, each word of the
input sequence is assigned a label, resulting in a sequence of slot/concept
IDs for each word [9]. Slot filling can be more challenging as the model has
to predict multiple labels at the same time [63]. For example, in our case
in figure 2.3, the entities/slots in the hotel domain have 4 different values,
which are only extracted in the first exchange. In the third exchange the do-
main chains and a challenging reference to the conversation history is made
by the user.

2.1.1.2 Dialogue State Tracking (DST)

Figure 2.3: Example of the dialog state of a typical DST module taken from [37].

2.1 task-oriented dialogue systems 9

The DST aims to keep track of the user’s goal and related details in the
form of a belief state[16, 43, 63]. During each turn, the current belief state is
based on the entire dialogue history, the output of the previous nlu module
and previous belief states, i.e. it is an internal representation of the state of
the dialogue, hence the name DST[16].

The tracking of belief states is done using a predefined ontology, where slot-
value pairs represent the user’s goal [9, 16]. Formally defined, a belief state
st is drawn from a set S denoting the representation of the dialogue history
up to turn t [98]. Thus, similar to the NLU module, the DST module solves
a slot-filling problem [9].

Traditionally there has been a distinction between informable slots and re-
questable slots.[43] Informable slots are constraints provided by the user, e.g.
price range, and requestable slots can be requested by the user, e.g. phone
number. Informable slots can take special values like don’t care if the user is
indifferent and none if the user hasn’t specified a goal for the given slot[43].
For single domains, the belief state consists of slot-value pairs, and for multi-
domain TODSs this is extended to domain-slot-value pairs.

2.1.1.3 Dialogue Policy Learning (DPL)

The DLP is the second module of the Dialog Manager and controls the next
available system action based on the output of the DST module. [63] Given
the belief state st of the current round and an action space A = {a1, . . . , an},
the module performs a mapping function f : st → aiϵA or a request for
missing information to perform an action. [43, 63]

[9, 63]

2.1.1.4 Natural Language Generation (NLG)

Figure 2.4: Pipeline NLG system taken from [63].

2.1 task-oriented dialogue systems 10

The final component of the pipeline architecture is the NLG, which gen-
erates a final response from a structured representation of the dialogue act
generated by the dialogue manager into a natural language utterance [3, 23,
63]. For the NLU module itself, similar to the TODSs, there are two differ-
ent architectural choices. The first traditional design choice of NLG modules
follows a pipeline approach, as shown in 2.4, consisting of four components
[43, 63]. Starting with content discovery, the definition of the domain de-
pendent information base, followed by language dependent steps such as
ordering and structuring, sentence planning and finally surface realisation
[63]. End-to-end NLG architectures apply deep learning methods to improve
NLG performance and collapse the pipeline into a single module [63].

In the literature, various attributes are described to measure the quality of
NLG outputs and enhance the user experience.[9] To ensure robustness, the
generator should fully convey the semantics of a dialogue act for task com-
pletion.[104]. Furthermore, the generated utterance should be natural, spe-
cific and informative, in short, it should be comparable to a response from a
human assistant [63, 104].

2.1.2 End-to-End Architecture

Despite the good performance achieved, there are several drawbacks to the
pipeline architecture. As the pipeline architecture consists of several compo-
nents, each module has to be designed separately, which requires a lot of
manual work to generate costly annotated data for each module. In addi-
tion, the performance improvement of a single component does not always
translate to the whole TODS, exacerbating the problem of attributing nega-
tive and positive effects. In addition, the modular approach creates process
interdependence, as each input of one component is dependent on the out-
put of another component. Finally, if a module is not differentiable, errors
from the end are not able to be propagated back to each individual module,
making joint optimisation impossible. This is critical since the only signal in
real dialogue data is the user’s response [63].[16]

Figure 2.5: Simple end-to-end Architecture, in this case interacting with an User
Simulator.

2.1 task-oriented dialogue systems 11

The end-to-end architecture of TODSs addresses the aforementioned draw-
backs through two approaches, either through an end-to-end trainable pipeline
TODS with differentiable modules, or as an end-to-end trainable single mod-
ule TODS. The first approach can be viewed as a large differentiable system
where parameters can be optimised by back-propagation in an end-to-end
manner[63]. This approach still faces the problem that the knowledge re-
trieval itself is not differentiable[63]. The second, single module approach
creates a more domain independent system inspired by ODDS, where an-
swers are generated without intermediate results from a discrete action space
or by statistical means [16, 43, 63, 104].

2.1.3 Evaluation of TODSs

Most evaluation studies of TODS are built around the structured nature of
the interaction between the system agent and an external agent to accom-
plish a specific task [92, 104]. In addition, findings from real-world commu-
nication are extrapolated and applied to the field of human-machine dia-
logue [22]. The quality attributes of dialogue in the context of TODS are task
resolution, dialogue efficiency, and usability. [16, 22, 104] As task resolution
and dialogue efficiency are easier to quantify, the evaluation literature tends
to focus on them rather than the more subjective and therefore harder to
measure usability attribute [22].

2.1.3.1 Task Success Rate

Task resolution, also known as success resolution or goal completion, is used
to evaluate the success of the TODS in providing all the information re-
quested by the user in a correct manner, thus requiring mutual understand-
ing and expectations of the user [22, 63]. It can be quantified as a Boolean
indicating whether a task or a subset of tasks has been resolved [22].

One challenge of task resolution as a performance metric is determining
whether a user goal has been resolved. This challenge is exacerbated by the
possibility of multiple goals and goal changes during a dialogue. In general,
a dialogue ends when the user aborts it, but this does not imply that the
user goal has been achieved. Approaches to explicitly elicit verification by
the user through affirmative questions such as "has your request been re-
solved?" or structured slot-filling of structured definitions of user goals to
quantify this attribute have been wildly applied [22].

2.1.3.2 Task Completion Cost

Task completion costs are the resources required to complete a given task by
the TODS [63]. To quantify the task completion cost of a dialogue, the num-
ber of turns or elapsed time during the conversation is typically used, based

2.1 task-oriented dialogue systems 12

on the PARADISE framework. [22, 63, 92] Thus, the smaller the number of
turns during a dialogue, the higher the dialogue efficiency.

In contrast, some researchers view the term through the lens of reinforce-
ment learning, where dialogue length is related to the penalty for taking a
wrong action [22]. Despite the general agreement that a TODS should aim
to minimise dialogue costs, there is no established evidence that shorter di-
alogue is directly correlated with a higher user experience [22]. It could just
as well be a sign of lower user engagement [22].

The methods to evaluate a TODS and measure its dialogue quality attributes
can be divided into automatic, human and simulated evaluation [22, 104].
The automatic evaluation aims at quantifying various dialogue attributes
into mathematical metrics [104]. After the development of evaluation scripts,
no direct human intervention is required, thus no human evaluators are
needed, resulting in lower costs compared to human-based evaluation [104].
There is a well-defined set of automated metrics in the literature for the dif-
ferent components of a TODS [84].

2.1.3.3 Human Evaluation

The evaluation of a machine-generated dialogue still requires human judge-
ment for a more complete assessment of the conversation quality [104]. In
research, human evaluators are often recruited through crowdsourcing plat-
forms to perform indirect or direct evaluation [22, 104]. Indirect human eval-
uation focuses on annotating the simulated dialogue between a TODS and
a user simulator, and then rating or giving preference between different sys-
tems based on different metrics [104].

Direct human evaluation asks the human evaluator to interact directly with
the TODS to solve a specific task and then rate the usability of the TODS
[104]. The usability evaluation is often based on questionnaires [22]. In ad-
dition, the dialogues of the human evaluators can be measured along the
metrics of task resolution and task completion cost. Finally, evaluation can
also be based on real user interactions as a form of online or log-based eval-
uation if the TODS is already deployed and real user data is available [3, 63].

Although user-based evaluation comes closest to capturing real user inter-
action, it is time consuming and costly [3, 22]. In addition to the lack of a
human standard to use as a baseline, there is also a lack of reproducibil-
ity due to fatigue and learning effects, leading to limited value in making
relative comparisons between systems [3, 22]. As a consequence, simulation-
based approaches attempt to overcome the disadvantages of subjectivity and
reproducibility [3, 22].

2.2 user simulation 13

2.2 user simulation

Simulation-based methods aim to simulate a user, enabling dialogue simu-
lation between an artificial user and the TODS for evaluation and training
purposes [22, 104]. Simulation evaluation is an active area of research and is
widely used in dialogue system platforms such as PyDial [90] and Convlab
[50, 108, 109]. As user simulation is a focus of this thesis, a more detailed
description of this evaluation technique follows.

There are several advantages of simulation methods, such as the possibil-
ity of end-to-end evaluation, the availability of multi-turn interaction during
inference, reproducibility, and the generation of synthetic dialogue data for
evaluation data at minimal cost [104]. The main challenges in simulated eval-
uation are the construction of a user simulator that mimics the real user as
closely as possible, and the evaluation of the user simulator itself [104].

In general, user simulation has several use cases, such as large-scale auto-
matic evaluation of interactive systems without the involvement of real users
[3]. Gain insight into user behaviour and analyse system performance under
different conditions. Finally, the approach can generate synthetic data for
training machine learning models and can be used for reinforcement learn-
ing.

As user goals are limited in TODS, it is possible to use domain expertise
or the underlying domain ontology to build a user simulator based on spe-
cific tasks [104]. User goals are important for the TODS because one of their
main conversation quality attributes, the task success rate, depends on them.
As a consequence, user simulation relies on the definition of user goals that
a simulated user tries to achieve during a dialogue with the TODS [85]. A
user goal can be defined in various forms, structured as a list of tuples such
as (intent, domain, slot, value) or unstructured as natural language.

The agent can be based on models/algorithms/rules and general knowledge
about user behaviour and the target user group [3]. As a user simulator in
a conversational setup requires advanced natural language understanding
and generation capabilities like a TODS, its architecture is similar to that of
a TODS. Similarly to TODS, there are two broad categories of simulator ar-
chitectures, pipeline and end-to-end simulators, which have the same setup
as TODS in Figure 2.5 and Figure 2.1.

The components of a user simulator have the same attributes as a TODS,
except that there is an additional component for user modelling. User mod-
elling aims to capture the characteristics of real users. These characteristics

2.2 user simulation 14

may include goals, knowledge, preferences and personal characteristics [3].

One of the earliest approaches to user simulation is the N-gram model pro-
posed by Eckert et al. [19],where the next simulated user utterance is based
on the dialogue history. The calculation of the probability of the next utter-
ance is similar to that of language models, hence the name n-gram model.
As Eckert et al. use a strong simplifying assumption P(au|as), due to the
difficulty of obtaining said probabilities, so that the next user response au

depends solely on the previous system action as. This is why it is called a
bi-gram model.

The bi-gram models provide locally appropriate responses to system utter-
ances. However, they fail to provide consistent responses to one another
throughout the dialogue, leading to unrealistic user behaviour [3, 21]. Three
major limitations of bi-gram models contribute to unrealistic dialogues: first,
they do not impose constraints on the simulated user behaviour [3], second,
they do not consider user goals [3, 21], and finally, they only consider the
last system action. The first constraint was addressed in subsequent work
by Levin et al. [51]. There, the authors designed constraints on the dialogue
flow by manually estimating a selected set of simpler probabilities for "mean-
ingful" pairs of system and user actions, while setting all others to zero. For
example, responses to system greetings, constraining questions, and relax-
ation prompts.

To overcome the second limitation, several approaches have attempted to
explicitly incorporate the user goal into the modelling of the user state. Schef-
fler and Young [76] propose a graph-based model to ensure consistency of
dialogue goals, which was not addressed by Levin. Their proposal combines
deterministic rules for goal-dependent actions with probabilistic modelling
to guide simulated user behaviour. The graph of the model must be mapped
in advance, consisting of all possible paths the user can take during the con-
versation. The nodes of the graph are choice points, where some probabilistic
choice points have a probability that can be estimated from data. The other
nodes are deterministic choice points, which depend on the user’s goal, rep-
resented as a table consisting of slot-name, slot-value pairs and their status
variables.

Pietquin [68] combined the work of Levin et al. [51] and Scheffler and Young
[76] to avoid manual effort while ensuring consistency of dialogue goals.
The main principle was to condition the set of probabilities chosen by Levin
et al. [51] on an explicit representation of the user goal and dialogue histo-
ry/memory. The proposed user goal, similar to that in Scheffler and Young’s
[76] work, is represented as a sequence of slot-value pairs, where each goal
is also assigned a priority and generated randomly.

Another approach is the agenda-based user simulation introduced by Schatz-

2.2 user simulation 15

man et al. [72]. Here, a probability distribution over the user goal is assumed,
which can either be induced from data [73] or set manually [72] if no data
is available. The agenda-based user model is inspired by dialogue manage-
ment approaches and the user state st is factored into a user goal Gt and an
agenda At. The user goal aims to ensure consistent and goal-directed user
behaviour. The goal is a tuple Gt = (Ct, Rt), where Ct are domain-specific
constraints and Rt are information requests of the user.

The agenda is a stack-like structure of pending user actions needed to elicit
the information specified in the goal. The agenda is initiated by converting
goal constraints into information acts and goal requests into request acts,
and finally a bye act is added to the agenda to close the dialogue. The user
state is thus represented by st = (At, GT) and is dynamically updated. In
response to system utterances, new user acts are added to the agenda and
resolved acts are removed. The probabilities corresponding to the mainte-
nance of the agenda can be controlled by expert rules [72] or learned from
training data [74].

A more recent line of research is the use of sequence-to-sequence models
to create user simulators that can be trained in a fully data-driven manner
from dialogue corpora. These approaches have gained popularity due to the
availability of large annotated datasets and advances in machine learning
techniques. Furthermore, these models can accommodate longer dialogue
histories, which has been a limiting factor in previous work.

El Asri et al. [1] introduced a data-driven user simulator using an encoder-
decoder recurrent neural network (RNN) [83], both based on a long short-
term memory (LSTM) [31]. Similar to the agenda-based approach of Schatz-
mann et al. [72, 73], a goal G = (C, R) is initialised at the beginning of each
dialogue and remains fixed during the dialogue. At each turn t the encoder
RNN takes as input the sequence of contexts up to turn t (c1, . . . , ct) and re-
turns as vector vt an internal representation of this sequence. Each context ct

consists of four elements: the last machine action, the inconsistency between
system information and user goal, the constraint status, and the request sta-
tus. The decoder then receives vt as input and generates a sequence of user
intentions I1, . . . , Il , which are then transformed into user dialogue acts au

t+1,
referring to the current user goal and drawing uniformly among the remain-
ing constraints/requests.

To evaluate the model, El Asri et al. [1] train their model and the baselines
on the Dialogue State Tracking Challenge 2 (DSTC2) dataset [29]. For com-
parison, the authors chose an n-gram, an agenda-based user simulator, and
a sequence-to-one RNN, which takes the same input as the proposed model
but selects an output from predefined actions. On the DSTC2 validation
and test sets, the sequence-tp-one and sequence-to-sequence models signifi-
cantly outperformed the other models on the F-score. Furthermore, El Asri

2.2 user simulation 16

et al. validate the domain adaptability of the models by training them on
the DSTC2 and evaluating them on the Dialogue State Tracking Challenge
3 (DSTC3) dataset [30], which is an extended version of the DSTC2 with in-
creased constraints. The sequence-to-one and sequence-to-sequence models
also outperformed the other models in terms of F-score.

Gür et al. [25] propose a hierarchical user simulator (HUS) that does not
require feature extraction or a supervised signal for state tracking. This hier-
archical sequence-to-sequence model first encodes the initial user goal and
system turns into vector representations using RNNs, and initialised from
the user goal vector, a higher-level RNN encoder generates a dialogue his-
tory representation using system turn vectors as input at each time step. The
simulated user turns are then decoded from this dialogue history represen-
tation. This introduced HUS model will generate the same user turns given
the same inputs.

To account for the diversity of user responses, which is important for ro-
bustness evaluation of a system, Gür et al. [25] additionally propose varia-
tional HUS (VHUS). VHUS differs from HUS only in a variational sampling
step that is added before decoding to generate more diverse responses. A
key feature of their approach is a coarser level of representation of system
dialogue actions by replacing specific slot values with [Requested, DontCare,-
ValueInGoal, ValueContradictGoal, Other]. The value is Requested if the value
is requested by the system, ValueInGoal if the value appears in the user goal,
ValueContradictsGoal if the value contradicts the user goal, DontCare if the
user goal does not care about the value, or other Other. Based on the coarse
value, the actual value can be sampled either from the user goal, the system
turn, or from a knowledge base.

Lin et al. [55] propose a domain-independent transformer-based [91] user
simulator (TUS) that utilises the transformer architecture. TUS uses a feature-
based input representation similar to that used by El Asri et al. [1], except
that Lin et al. make it domain-independent. The transformer-based approach
allows the use of variable input sequence length depending on the slots men-
tioned by the system, and the relationship between different slots is captured
by self-attention. The output includes the domain that should be chosen for
the given turn and a list of one-hot vectors to determine the values of the
slots, using a coarse grained representation similar to Gür et al. [25].

One evaluation approach by Lin et al. [55]is to train a dialogue policy with
different USs, and then to access the quality of the resulting policy through
cross-model evaluation. In the cross-model evaluation, the resulting policies
are evaluated with all USs to demonstrate the generalisability of the policy
trained with a particular US. TUS, VHUS and the agenda-based US were
chosen as user simulators using the Convlab-2 framework [108] and the
MUltiWoZ 2.1 dataset [20]. TUS outperforms the data-driven VHUS and is

2.2 user simulation 17

comparable to the agenda-based US. VHUS was not able to adequately train
nor to evaluate a multi-domain policy, which was also observed in other ex-
periments by Takanobu et al. [84]. The authors suggest that this is due to
the design for a single domain, thus limiting the ability to generalise to a
multi-domain scenario. The human evaluation supports the findings of the
cross-evaluation that TUS can compete with the agenda-based US, although
the latter, unlike TUS, has carefully designed domain-dependent rules. Fur-
thermore, Lin et al. [55] tested the ability of TUS to handle unseen domains
in a zero-shot study using the leave-one-domain-out method to show that
TUS can handle new domains without feature modification or model re-
training, even with fewer training samples.

Crook and Martin [13] presented initial steps towards training an nl-to-nl
US without additional human annotation. They also investigated the effect
of adding dialogue context as an input to the proposed model. Crook and
Marin extend a basic encoder-decoder RNN with an additional dense layer
between the encoder-decoder for better representation of context, following
a proposed architecture for non-goal-driven dialogue systems [77]. The input
sequence of the encoder consists of the system prompt and returns a sum-
mary vector of fixed size. This summary vector is then fed into a decoder
which generates an output sequence, in this case the specific user utterance.

Crook and Martin [13] evaluate their model using an aggregate evaluation
approach inspired by language modelling. They compute the perplexity of
the evaluation set data against a language model trained on utterances gen-
erated by this simulated user model. The manual evaluation of naturalness
and discourse cohesion closely matched the human user data. This was also
consistent with the results of the LM complexity measure. The proposed seq-
to-seq models approximated the human distribution of completions, aborts,
abandoned goal changes and average dialogue length, thus matching the
general statistics observed in real user data and reproducing natural sound-
ing dialogues.

Kreyssig et al. [46] present the Neural User Simulator (NUS), which follows
a similar encoder-decoder RNN architecture and context representation as
El Asri et al. [1], but outputs a sequence of words instead of a dialogue
act. Furthermore, the proposed NUS allows for goal changes during the di-
alogue if the system indicates that the original goal is not achievable. The
behaviour of NUS is learned from a corpus and is able to generate a diverse
set of utterances in the same dialogue context, thus requiring less labelling
than USs that generate a response in semantic form.

Kreyssig et al. [46] evaluate their NUS in an indirect way by evaluating poli-
cies obtained by training with the NUS and ABUS [72]. They follow the
cross-model evaluation of [75] and extend it by testing with real users [42]
instead of using a direct evaluation with statistical metrics on the NUS. The

2.2 user simulation 18

cross-model evaluation focuses on reward and average success rate and the
human evaluation was performed on the best performing policy of NUS and
ABUS, NUS outperformed in both evaluation approaches.

Lin et al. [54] propose a generative transformer-based user simulator (Gen-
TUS), this model generates both semantic actions and natural language ut-
terances. GenTUS is based on an encoder-decoder structure using the PLM
BART [52], allowing it to optimise user policy and natural language gener-
ation together. This approach exploits the capabilities of pre-trained large
language models, which improves diverse and fluent language generation
and generalisation to new domains, but may also be vulnerable to halluci-
nation by the PLM. The encoder of GenTUS takes as input the last system
dialogue act, the previous three user dialogue acts, the user goal and the
turn number t. Subsequently, the decoder generates the next user dialogue
act and the natural language utterance as output. The approach uses the on-
tology to constrain the generation process to avoid false semantic actions.

Lin et al. perform their experiments on two corpora (MultiWoZ [20] and SGD
[48]) and the GenTUS model is inherited from Huggingface’s transformers
[99]. Their generalisation and transferability to a new ontology is tested by
training GenTUS on MultiWOZ and testing it not only on the MultiWOZ
test set but also on the SGD test set without any further fine-tuning and vice
versa. Their evaluation is based on direct and indirect evaluation of GenTUS.
The indirect evaluation aims to measure the NLG performance through au-
tomatic metrics such as: Slot Error Rate, Sacre-BLEU Score and Self-BLEU
Score as well as a human preference test to measure naturalness and informa-
tiveness. The indirect evaluation is performed by the cross-model evaluation
proposed by Schatzmann et al. [75] using the Convlab-2 framework [108]
with different agenda-based USs and the GenTUS.

Cheng et al. [11] propose an interactive evaluation framework for TODSs
by first building a goal-oriented user simulator based on PLMs, and then
using the simulator to interact with the DS to generate dialogues. Further-
more, they introduce a sentence-level and a session-level score to measure
sentence fluency and session coherence in the interactive evaluation, which
improves on the traditional evaluation. They address the fact that the current
TODS evaluation process relies on annotated user utterances in multi-turn
dialogue sessions without reference to the actual response generated by the
TODS, leading to a policy mismatch.

Goal state guided simulator, user utterance generation based on goal state
tracking RL methods to improve interaction performance between US and
DS. Emphasis on interactive scoring, BLEU not possible, therefore similar
score to Text Perplexits and BARTScore eval. Simulator b based on T5-small
instead of T5 base Score implementations GPT2 model fine tuned on Mul-
tiWoZ data for session level score BERT base model they evaluate different

2.2 user simulation 19

TODS with their US on MultiWoZ dataset.

Liu et al. [56] investigate whether PLMs can be used for US purposes and
how to effectively incorporate the user goal and its tracking in a flexible way,
and how to flexibly integrate goal state tracking into an end-to-end trainable
US for multiple domains. They propose a generative user simulator (GUS)
with GPT-2 based architecture and goal state tracking to address these issues.
They perform extensive experiments with mutliWoZ 2.1 and train different
DSsvial RL with GUS and other USs like ABUS and other ablation simula-
tors (TUS and VHUS) in cross-model evaluation, cropus-based evaluation
and human evaluation. GUS is superior in all three evaluation tasks.

Sun et al. [82] propose a metaphorical user simulator (MetaSim) that sim-
ulates the user’s analogical thinking to improve the realism and transfer-
ability of USs. MetaSim’s metaphorical feature is based on using historical
strategies as metaphors in an ongoing dialogue by referring to historical di-
alogues when encountering new objects. MetaSim consists of a preference
module that initiates different user goals and updates them during the di-
alogue, an NLU module that tracks the state of the dialogue, a metaphor
muddle that retrieves similar dialogue strategies related to the current state
of the dialogue, a policy module that simulates user satisfaction and predicts
the user action according to the context of retrieved strategies, and finally an
NLG module that generates the user utterance.

They validate their proposed method through automated and human exper-
iments on three benchmark datasets, MultiWoZ, ReDial and JDDC. The im-
plementation of MetaSim is based on the pre-trained T5 transformer model,
and adopts a unified data format that allows it to be generalised to multiple
tasks. They optimise each module on the dataset and connect them during
testing. Shi et al. [78]research different evaluation metrics for USs, and dif-
ferent ways to build USs at levels of dialogue manager and NLG + pros and
cons of each method. inisights on better user simulator building based on
compressive analysis. direct and indirect evaluation, human evaluation /rat-
ing on generated dialogs and direct interaction with the RL system trained
with different simulators. Automated metrics, perplexity, vocabulary size,
average utterance length and success rate. Blue only available with ground
truth. Human direct eval metrics, fluency, coherence, goal attainment, diver-
sity, total. Human indirect amazon mechanical turk rl systems trained with
different USs, solved ratio, satisfaction, efficiency, naturalness, rule-likeness.

Tesen et al. [89] propose a novel learning framework for developing DS
joint optimisation with a user simulaTor (JOUST). pre-training on complex
multi-domain datasets, two agents are able to interact using NL and fur-
ther create more diverse rich dialogues. RL optimises both agents to explore

2.2 user simulation 20

new better policies. transfer learning from one domain to another is facili-
tated. compare two reward designs, 1. task success at dialogue level 2. fine
grained reward operating at turn level. Contributions: Joint optimisation of
a fully text-totext DS with a matches US on complex multi-domain human-
to-human dialogues, extensive experiments exploring different types of re-
wards (showing that this framework with a learnable US improves overall
performance and reaches a new state of start performance on MultiWoz),
demonstration of transfer learning effectiveness on 2 tasks of practical use
in low-resource scenarios with in-depth analysis of the source of the impre-
cisions. Using MultiWoz Mehri et al 2019 combined eval metric info success
rate and bleu.Human eval DS success, US human-like, dialogue flow.

Another line of research has focused on simulating or generating entire con-
versations to generate training data. Mohapatra et al. [62] present a data gen-
eration strategy using PLMs such as GPT-2 [69] to simulate the interaction
between crowd workers by creating both a user bot and an agent bot. The
authors train their simulators using a smaller percentage of actual crowd-
generated conversations and their corresponding instructions. They show
that their simulated data can achieve improvements in low-resource settings
on two datasets (MultiWoz 1.0 [6] and the Persona chat dataset [103]).

Chen et al. [10] demonstrate that LLMs can be used to simulate task-oriented
dialogues in novel domains when provided with an API and user goals.
Furthermore, they show that simulations can formulate online, automatic
metrics that correlate with human evaluations. In an iterative setup, they
measure the quality of the simulation by checking the goal success rate, in-
corporating successful dialogues back into the training set, retraining, and
repeating the process. They observe that the quality of the models increases
with model quality, and that the success of the simulation task (which can
be automatically measured in fully synthetic dialogues) is a strong discrim-
inator between high and low quality dialogues, as well as assistance per-
formance. On the basis of this observation, they design an active learning
strategy to improve performance. The second part of their work focuses on
bootstrapping user and assistant models for previously unseen tasks. Thus,
the simulations bootstrap end-to-end models that reduce errors in previ-
ously unseen domains. One of the first approaches to effectively bootstrap
models without explicitly requiring domain-specific training, data, rule en-
gineering or humans in the loop.

Steindl et al. [80] evaluate whether new prompt-following LLMs can gen-
erate annotated synthetic dialogues for TODs training purposes. They gen-
erate data based on descriptions of dialogue goals. To confirm the quality of
their synthetic dialogues, they train a state-of-the-art TODS to compare it in
a low-resource setting with and without synthetic dialogues.

2.2 user simulation 21

The authors tested several Instruction Tuning Techniques through discrete
prompt engineering using GPT-3.5-turbo [65]. The final prompt consisted of:
a general task, basic dialogue rules, all possible domains, their slots and a
template on how to name them, a list of possible dialogue acts, a template
on how to mark annotations, how to proceed if no value is given for a slot,
and finally an annotated example dialogue. They tried to output directly in
Json format, but this did not work. They measured the similarity between
the original dialogue and the synthetic one.

Li et al. [53] study DIALOGue Simulation with In-Context Learnning (DI-
ALOGIC) utilizing LLMs. Starting with a seed of a few annotated dialogues,
DIALOGIC automatically selects in-context demonstrations and prompts as
inputs for GPT-3 to generate new dialogues and annotations in a contrallable
fashion. This approach aims to expand a small set of dialgue data with min-
imum or zero human involvement and parameter update as a cost-effient
and time saving alternative to crowdsourcing. Their experiments are based
on the MultiWOZ dataset and compare their synthetic data with data of real
humans from the dataset.

Leveraging the ICL capability of LLMs, the methodology Li et al. [53] can
simulate user and system side to generate annotated dialogs learning from a
minimal data base. Except for the effort of collecting the small seed dataset
and training and auxiliary model on it, the simulation process if free of hu-
man involvement or parameter udpate. It is claimed that a large and high
quality dataset such as MultiWOZ can be generated in a few hours. Sec-
ondly, they design a controllable dialogue generation strategy to overcome
the shortcomings of GPT-3 in terms of lack of reliability and interpretability.
In addition, they investigate effective representations and selection strategies
of ICL dialogue demonstrations to improve the ICL capabilities of LLMs.

They have positive results in challenging low-resource settings, where only
1% of the total training data set is used. Human evaluation indicates that
their simulated dialogues have comparable fluency, annotation accuracy and
more varied dialogue flows than human-generated dialogues.

There have been a number of recent attempts to build end-to-end trainable
TODS using end-to-end generative neural models. [3] The same approach
is viable for generating user responses as a sequence-to-sequence problem
based on dialogue history. Transformational natural language generation
models have been successfully applied to user simulation in several stud-
ies. [3] Recent work also takes advantage of advances in pre-trained LLMs
to apply them to the field of user simulation, as discussed above.

2.3 large language models 22

2.3 large language models

A LM! (LM!) is a computational model with natural language understand-
ing and generation capabilities [8]. The goal of LMs is to model the gener-
ative likelihood of word sequences in order to predict the probabilities of
future/missing tokens [105]. The research in language modelling that led to
the dominant type of LLMs today can be divided into four major stages of
development [105]:

1. SLM! (SLM!)

2. NLM! (NLM!)

3. PLM! (PLM!)

4. Large Language Model LLM! (LLM!)

In the 1980s and 1990s, SLMs were developed based on statistical learning
methods following the Markov assumption, e.g. predicting the next word
based on the last context [26, 105]. The most common SLM is the N-gram
model with a fixed context length of n. Despite the wide application of SLMs
in information retrieval and natural language processing, SLMs suffer from
the curse of dimensionality. Accurate estimation of higher order language
models is problematic due to the exponential number of transition probabil-
ities that need to be estimated [105].

The next stage in language modelling came with the development of NLMs,
which, as the name suggests, use neural networks to predict the likelihood
of a sequence of words by learning patterns and structures of language from
text corpora. This stage initiated the use of LMs for representation learning
beyond word sequence modelling, changing the field of NLP.

PLMs follow the proposal of context-aware word representations by first pre-
training a language model and then fine-tuning it for specific downstream
tasks. This learning paradigm of pre-training and fine-tuning was intro-
duced by ELMo and the highly parallelizable transformer architecture with
self-action mechanisms of BERT. These pre-trained context-aware word rep-
resentations improved the performance of NLP tasks through their general-
purpose semantic features. Many follow-up studies introduced PLMs based
on different Transformer-style architectures (GPT-2, BART) or pre-training
strategies.

Figure 2.6 shows the difference in transformer architectures, training ob-
jective and an input output example for the three prevalent classes of PLMs
[61]. Encoder-Decoder, auto-regressive or decoder-only Models and Masked

2.3 large language models 23

Figure 2.6: Different variations of the transformer architecture taken from [61].

language models or encoder-only models.

The basis of the PLM architectures was introduced by the transformer model
[91] and its encoder-decoder architecture, which consists of two stacks of
transformer blocks as encoder and decoder [94]. The encoder uses multi-
head self-attention layers to encode the input sequence to generate its la-
tent representations. The decoder performs cross-attention on the encoder’s
representations and autoregressively generates the target sequence. Thus,
given an input sequence x1, . . . , xn, the model generates a sequence of to-
kens y1, . . . , ym. Here the training goal is to maximise the log-likelihood of
log(P(y1, . . . , ym|x1, . . . , xn); Θτ), given a pair of sequences, where Θτ are the
parameters of the full encoder-decoder model [61].

Encoder-only or masked language models predict a "masked" word depend-
ing on all the other words in the sequence. During training, this can be done
by randomly replacing words with a special [MASK] token. This forces the
model to collect bidirectional information in order to predict the masked
word. The training objective, to find the original token at the masked po-
sitions, is formulated as ∑i milog(P(xi|x1, . . . , xi−1, xi+1, . . . , xn); Θτ), where
mi ∈ 0, 1 indicates whether xi is a masked word or not, and Θτ equals the
parameters of the encoder [61].

While encoder-only models are bidirectional, decoder-only or auto-regressive
models are unidirectional. They are trained to predict the next word xi given
all previous words x1, x2, . . . , xi−1 in a unidirectional way. The goal is to max-
imise the log-likelihood ∑i log(P(xi|x1, x2, . . . , xi−1); Θτ), where Θτ equals
the model parameters. The model parameters of a transformer decoder-only
architecture are multi-head self-attention modules. The stacking of multiple
transformer decoder layers with masked self-attention allows the model to
predict the next token based on all previous tokens in the sequence [61].

Scaling PLMs in model size or data size often results in improved model
capacity for downstream tasks. Studies have explored the performance lim-
its by training larger PLMs. Although scaling is mainly done in model size,

2.3 large language models 24

these scaled PLMs show surprising abilities, also called emergent abilities,
in solving a variety of complex tasks. This has led to the coining of the term
"large language model" for large PLMs, which are attracting increasing re-
search attention [94].

Figure 2.7 depicts the different PLMs and LLMs and their underlying ar-

Figure 2.7: The LLM family tree as depicted in [100].

chitectures, where due to its paralleliuability and capacity, the Transformer
architecture has become the predominant backbone for LLMs development
[94]. It clearly shows the dominance of decoder-only models, expecially after
2021, where the disruptive release of GPT-3 [65]initialized a surge in decoder-
only LLMs.

There are three major differences between PLMs and LLMs, the first being
the emerging capabilities mentioned above. The second difference relates to
the change in development and use, where unlike the smaller PLMs, the ap-
proach to accessing LLMs is usually through the prompting interface. There-
fore, people need to understand how LLMs work and format their tasks
accordingly to harness the power of LLMS. Finally, training LLMs requires
experience in large scale data processing and distributed parallelization of
training, blurring the traditional boundaries between research and engineer-
ing [94].

Despite the general skills that LLMs are equipped with after pre-training,

2.3 large language models 25

an increasing number of studies have shown that adapting LLM skills to
specific tasks can be beneficial. The two main approaches to adapting pre-
trained LLMs are alignment tuning and instruction tuning. While the former
approach focuses on aligning the behaviour of LLMs with human values and
preferences, the latter approach aims to enhance the capabilities of LLMs
[94].

Instruction tuning is the approach of fine-tuning the pre-trained LLM on
instruction-formatted data in the form of natural language. This is related to
multi-task data and supervised fine-tuning. The instruction tuning process
starts with the construction or collection of instruction formatted data, then
these formatted instances are used to fine-tune the LLM in a supervised fash-
ion.

As LLMs tend to produce harmful, incorrect or biased outputs, alignment
tuning aims to align these outputs with human values or preferences. Unlike
pre-training or instructional tuning, alignment tuning focuses on different
criteria that may also affect the general capabilities of LLMs, also known as
alignment tax. Common alignment criteria include helpfulness, honesty and
harmlessness. Subjective and qualitative evaluation through human feed-
back is used in reinforcement learning, as human-feedback reinforcement
learning, to adapt the LLM to the feedback by learning a reward model.

After pre-training or fine-tuning, one way to use LLMs is to design prompt-
ing strategies to solve different tasks. Some researchers have already coined
a new paradigm shift called "pre-train, prompt and predict"instead of "pre-
train, fine tune". [57], which emphasises the importance of prompting and
the ability to do without fine-tuning. This paradigm doesn’t adapt LLMs
to downstream tasks by fine-tuning, but instead reformulates downstream
tasks to look more like the tasks during the original LLM training by using a
textual prompt [61]. Thus, reformulating NLP tasks as text generation tasks
allows them to be solved directly by LLMs [61].

ICL! (ICL!) is a typical prompting method introduced in the GPT-3 paper
[5], where the LLM learns from an analogy based on textual input [18, 94].
This basic method can be further enhanced by reasoning techniques such
as chain of thought prompting [95] or planning techniques such as least to
most prompting [107]. As all these techniques are used in this thesis, a more
detailed description of these techniques is given.

ICL uses a formatted natural language prompt consisting of a task de-
scription and/or demonstration examples [94]. Templates combine the in-
struction, the demonstrations and finally an input instance to create the final
prompt, which is used to generate the desired output. By learning from the
given context of the demonstrations, ICL can improve performance on new

2.3 large language models 26

tasks without gradient updates [94].

Formally, given a set of candidate answers Y = {y1, . . . , ym} and a set of pos-
sible examples X = {x1, . . . , xn} , where Y could be a class of labels or a set of
free text phrases and X could be examples with known matching candidate
answers. Let Dk = { f (x1, y1), . . . f (xk, yk)} represent k demonstration exam-
ples and f the formatting function, I represent the task description I and let
xk+1 be a given a query input then the prediction ŷk+1 generated from LLMs
can be formulated as1: LLM(I, f (x1, y1), . . . f (xk, yk), f (xk + 1, __)) → ŷk+1
where the actual answer, if known, yk+1 is left blank, as it is to be predicted
by the LLM.

The demonstration design has a major influence on the performance of ICL
and is highly dependent on the demonstration design as shown in many
studies[58, 106]. The quality of the demonstration design is strongly in-
fluenced by the selection of the demonstrations, the order of the selected
demonstrations and the format of the demonstration prompt[18, 94].

In addition to well-designed demonstration examples, well-designed instruc-
tions are also important for inference performance [18]. Unlike demonstra-
tion examples, which are typically sampled from datasets, task instructions
often rely on manual human construction. However, existing work addresses
this reliance on human labour through automatic instruction generation [18].

The new paradigm of ICL has several advantages. First, because it is based
on natural language, it allows humans to communicate with LLMs through
an interpretable interface [18]. As a result, it facilitates the incorporation
of human knowledge into the LLM through demonstration and templates.
Secondly, ICL resembles the human decision making process by learning
from analogies. Finally, ICL is a training-free learning framework compared
to adaptation/fine-tuning of an LLM. Thus, it has reduced computational
costs and can be applied to large-scale real-world tasks [18].

Chain of Thought is an enhanced prompting technique designed to improve
the performance of LLMS on complex reasoning tasks, such as arithmetic
reasoning, common sense reasoning and symbolic reasoning [95]. There are
two main settings of how CoT is used within ICL, namely few-shot and zero-
shot settings. Few-shot CoT incorporates intermediate reasoning steps lead-
ing to the final output into each demonstration. For example, instead of (in-
put,ouput), a chain of thoughts is added (input,CoT,output) in the form of rea-
soning steps. There is much research on CoT prompt design, demonstration
choices, and extended CoT strategies using multiple reasoning paths, such
as self-consistency, which combines ensemble strategies with CoT prompt-

1 Originally ICL was defined to be a combination of task description and demonstration ex-
amples [5], whereby either component is dispensable. Following a possible usage of ICL
solely constisting of on component.where textual task description and/or demonstrations is
prompted in natural language as input to the llm

2.4 related work 27

ing. A limitation of few-shot CoT is the need for annotated CoT demonstra-
tions[105].

Unlike Few-Shot CoT, Zero-Shot CoT does not rely on annotated CoT datasets.
Zero-Shot CoT uses a multi-stage ICL that formats a prompt for each stage.
First proposed in [45], the LLM is prompted with a reasoning extraction
prompt simply by appending "Let’s think step by step", followed by an an-
swer extraction stage e.g. "Therefore, the answer is" to derive the final output.

2.4 related work

So far a detailed overview of simulation research in the area of task-oriented
dialogue was given. The research of simulation is closely related to the re-
search of TODS and if its a pipeline approach its individual components due
to its architectural setup and evaluation methods. Therefore, a brief excur-
sion into recent developments in DST and TODS, which also investigate the
ICL capabilities of LLMs, is presented.

Hu et al. [33] and Heck et al. [28] both investigate the possible use of ICL
for dialogue state tracking. Hu et al. reformulate DST as a text-to-SQL prob-
lem using a tabular description of the domain. Contribution 1: Reformulate
DST as a text-to-SQL task + tabular description of the ntology in the prompt
Codex, GPT-Neo Code Gen as LLms pre-trained with code. 2. dialogue state
in context representation instead of full convo history, more efficient and
better suited to domain changes. 3. few shot scenario similarity score as se-
lection strategy, trained to score for selecting matches based on dialogue
state changes.

Heck et al. [28] answer the question "Does ChatGPT solve the problem of zero-
shot DST?" by showing that the design of intuitive nl-prompts is sufficient
to achieve state-of-the-art performance with ChatGPT. Their investigative ap-
proach to zero-shot DST with ChatGPT decodes dialogue state updates with
a general-purpose model, without parameter updates, so they do not em-
ploy data analysis or cross-task transfer learning. Unlike Hu et al. they only
allow natural language explanations of what the model is supposed to do,
without allowing the provision of examples or formal task definitions.

Hudecek et. al. [36] use the ICL capabilities of LLMs to complete multi-turn
tasks and interact with external databases in the context of established TOD
benchmarks. Their proposed pipeline builds an initial prompt based on user
input and context examples, if available, and then uses this initial prompt to
generate the current dialogue state using an LLM state tracker. Based on this,
they retrieve database results and construct another prompt which is used
to generate the system utterance using an LLM as an NLG component. The

2.4 related work 28

state recognition is decomposed into a two-stage prompt, namely a domain
recognition prompt and a subsequent state tracking prompt.

During the writing of this thesis, two papers were published that build on
the same research idea and thus have a significant influence on the present
work. Both Terragni et al. [85] and Davidson et al. [14] presented a user sim-
ulation for task-oriented dialogue systems using large language models and
their in-context learning capabilities. Because of the similarity, a detailed de-
scription of these papers follows.

Terragni et al. [85] were the first researchers to use the ICL capabilities of
LLMs to build a user simulator. To generate diverse utterances, the pre-
sented User Simulator uses a few-shot ICL approach and is evaluated us-
ing goal-success metrics, diversity metrics, and manual qualitative analysis.
The underlying experimental setup is based on the Convlab-2 framework
[108], which provides models and evaluation tools for the development of
task-oriented dialogue systems and simulators. The evaluation is based on
the MultiWOZ 2.1 dataset [20] and the authors chose two variants of the
agenda-based user simulator by SChatzmann et al. [72] as a baseline, with
templated nlg and with data-driven nlg based on Wen et al. [96].

Figure 2.8 shows the architecture sketch of Terragni et al. [85]. A core

Figure 2.8: Architecture of the ICL-based User Simulator of Terragni et al. [85].

component is the prompt builder, which generates prompts consisting of
an optional instruction, a target user goal, limited demonstration examples

2.4 related work 29

(goal and associated dialogue), and the conversation history. The prompt is
then used by an LLM. The authors experimented with three different LLMs,
namely LLama [87], Flan-T5 [12] and GPT-3.5. A post-processing component
then extracts the user utterance from the output of the LLMs. The user simu-
lator includes an evaluation component that tracks goal fulfilment and eval-
uates system interaction. As a TODS, the authors used a pipeline-based task-
oriented dialogue system to interact with their prompt-based user simulator
in their experiments. The chosen TODS consists of a fine-tuned BERT [17]
NLU component, rule-based dialogue state tracking and policy learning, and
a template-based natural language generation component from Convlab-2
[108].

The work of Terragni et al. [85] is important because it lays the foundation
for ICL-based user simulation as a viable simulation option and identifies
its current limitations. An important contribution is the prompt tuning ex-
periments applied to the task of user simulation, e.g. instruction formatting,
shot-sampling strategies and demonstration formatting. In addition, the er-
ror analysis highlights the importance of adaptation in the form of instruc-
tion tuning, as Llama, a base model without further adaptation, performs
worse than the other LLMs that undergo instruction-based fine-tuning. Fur-
thermore, their error analysis showed that system-side NLU misclassifica-
tions and corresponding "wrong" system utterances can lead the LLM-based
simulator to prematurely terminate the dialogue. On the user side, Terragni
et al. [85] highlighted failures of the user simulator to mention all the require-
ments of the user goal and the occurrence of hallucinations and degenerated
text by the LLM.

As a pioneering approach to ICL-based user simulation, the work of Terragni
et al. [85]has implications for the present work. The architecture combines
an end-to-end user simulator with an evaluation component, making it pos-
sible to evaluate a TODS while simulating a user integrating a DST compo-
nent, implying the need for an evaluation component of the user simulator.
The prompt experiments can be used as a basis for extended experiments
with other LLMs and other ICL strategies. Finally, the results of the error in-
vestigation imply possible improvements for ICL-based user simulators for
future work.

This thesis differs from the work of Teraggni et al. [85] in the following re-
spects, firstly this work conceptualises a broader range of prompting strate-
gies in terms of instruction formatting, demonstration design and through
the implementation of reasoning, planning and ensemble strategies and a
broader range of LLMs. These strategies address the limitations of the simu-
lator in goal completion and hallicunation. In addition, the evaluation uses
a new version of ConvLab, namely ConvLab-3[109], as a framework. Finally,
a proposed DST component is conceptualised, which also uses an ICL-based
approach, making the evaluation easier to adapt to new domains.

2.4 related work 30

Davidson et al. [14] also proposed a user simulator using LLMs and their
ICL capabilities. Unlike previous work, they did not focus on maximising
the goal success rate, but instead aimed to achieve success rates similar to
those observed in human interaction with TODS systems and different utter-
ances. Using this approach, they were able to achieve effective results, partic-
ularly on single-intent conversational goals, while interacting with multiple
TODS and generating lexically and syntactically diverse output. In addition,
they created a dataset of interactions between the same TOD systems and
humans, providing a baseline for comparison between the user simulator
and crowdsourced workers. In addition to this baseline, they also used other
user simulators, namely MetaSim and Convlab2 TUS, for comparison.

Figure 2.9 illustrates the system design proposed by Davidson et al. [14].

Figure 2.9: Architecture of the ICL-based User Simulator of Davidson et al. [14].

It consists of a context accumulator that formats the demonstration exam-
ples, the current conversational goal prompt, and the dialogue history. The
experiments were conducted using the MultiWOZ 2.2 dataset[102]. The gen-
erated prompt is then used to query an LLM. The authors based their choice
of LLM on the open source Huggingface Transformers Hub [99] considering
GPTJ-6B [93], AlexaTM-20B [79] and GPTNeoX-20b [4] as well as the closed
source GPT-3 davinci [5] for their initial trials, but ultimately decided to use
GPTNeoX-20B for all subsequent experiments. Finally, Davidson et al. chose
different TODS as interlocutors (PPTOD [81] and SOLOIST [67]) for their

2.4 related work 31

user simulator component.

The work of Davidson et al. [14] argues for a focus on developing user
simulators with similar success rates to real users by using a human2bot
dataset, in contrast to previous work on user simulation that questions the
importance of maximising goal success. Their experiments and quantitative
evaluation show promising results for simpler goals consisting of fewer user
intents. For more complex user goals, their human evaluation shows limita-
tions due to premature dialogue termination, conversation loops, and LLM
hallucination, which is very similar to the human evaluation of Terragni et
al. [85].

In addition, Davidson et al. [14] point to potential improvements in prompt
design to address existing limitations, which have implications for this the-
sis and were therefore considered. For one, combining the generated user
utterance with the addressed subgoal or providing belief state information
of a DST for additional grounding addressing hallucination and premature
termination problems was considered. Finally, recasting the dialogue as a
chain-of-thought reasoning problem was proposed to take advantage of the
reasoning properties of LLMS.

The publication of the work of Terragni et al. [85] and Davidson et al. [14]
emphasises the gap in research of utilising LLMs emerging ICL capabilities
for task-oriented user simulation. These approaches demonstrate the poten-
tial for user simulation in a predominantly few-shot setting, evaluating the
approach on the multiwoz domain through automatic success and diversity
evaluation and a human qualitative analysis of common errors. Both high-
light the problematic nature of success metric evaluation as the interaction
is heavily influenced by the TODS conversing with the user simulator. They
identified common errors in the ICL-based approach, consisting of potential
hallucination and premature dialogue termination before the prompted user
goal is achieved.

The analysis of the work of Davidson et al.[14] and Terragni et al[85] showed
that the comparison of ICL-based user simulators relies heavily on the prompt-
ing method used and the underlying Large Language Model, which is dif-
ficult to describe objectively due to its unstructured natural language na-
ture. In order to increase the comparability of ICL-based user simulators
and different strategies, a taxonomy must be applied that allows a meaning-
ful comparison of the strategies used, even if the source code is not available.
Therefore, in an effort to address this research gap, the recently proposed
TEleR taxonomy [71] was analysed to be used to annotate the prompting
methods for this complex task.

To address the errors that occurred in both previous works, several prompt-
ing strategies were conceptualised that could address specific limitations

2.4 related work 32

that occurred in both dialogue systems, such as premature dialogue termi-
nation. In addition, the instruction-following capabilities of LLMs and the
zero-shot setting of ICL-based user simulation were not the focus of the pre-
vious work, which overwhelmingly focused on the application of few-shot
prompting. Therefore, this work focused on zero-shot prompting methods
and the potential use of reasoning and planning strategies to address the
aforementioned recurring errors. In order to compare the results of zero-shot
prompting, few-shot prompting was included in the evaluation.

3
P R O P O S E D I C L - B A S E D U S E R S I M U L AT O R

As seen in the background and related work chapters, task-oriented dialogue
systems are an active area of research. Recent advances in LLMs and their
ICL capabilities have also had an impact on this line of research, as several
researchers have attempted to apply ICL methods to the domain of task-
oriented dialogue systems and simulations. The first attempts of ICL-based
USs were published by Terragni et al. [85] and Davidson et al. [14] during
the creation of this work, which had an impact on design decisions and em-
phasises the novelty and active research interest of this topic.

The ICL-based approach was initiated by the lack of training data in a task-
oriented dialogue system and limited human resources to evaluate or im-
prove the quality of a given dialogue system. In this low-resource setting,
traditional user simulation approaches, which require either a large amount
of human configuration or data to be pre-trained/fine-tuned on, were not
applicable. Consequently, in addition to the research gap in ICL-based user
simulators, there is a practical need for user simulators with high domain
adaptability and low data requirements. The emerging capabilities of LLMs
and the increasing range of out-of-context learning techniques and related
research, which do not require further parameter updates, may therefore
represent an opportunity for the field of TODSs and TODUSs.

This chapter begins with a brief description of the proposed ICL-US by pre-
senting its basic design. Each component is then described in more detail,
explaining the purpose of each component and the considerations that influ-
enced the final design. We will first look at the data selection for the experi-
mental setup, which is the basis for example demonstrations in the prompt.
The core of the ICL-US, the prompt builder, and the corresponding concep-
tualised ICL strategies are then presented. This is followed by the model
selection and sampling generation strategies, which have a major influence
on the quality and diversity of the presented US. Post-processing is a logical
step that acts as a guide to help the US meet the user’s objectives by filter-
ing the generated output. In addition, the Wizard of OZ testing approach is
presented as a quick way to access immediate strategy value. Finally, an ad-
ditional component of the architecture is discussed that could be addressed
by future work.

The architecture of the proposed ICL-based user simulator is illustrated in
3.1 following an end-to-end design. The NLU and NLG components are in-
corporated via the LLM usage, where the dialogue is included in the prompt
yielding as a way of tracking the state of the dialogue and deciding on the

3.1 data set selection 34

Figure 3.1: Proposed ICL-US end-to-end architecture.

next action based on that context. The prompt is generated in the prompt
builder component, which creates the context for the LLM based on dif-
ferent ICL strategies and possible demonstration examples sampled from a
dataset, if available. A simple post-processing component filters out exces-
sively long user utterances and separates the output into sentences to ensure
that only user utterances are sent to the interlucator. This is a necessary step,
as LLMs tend to try to complete the whole dialogue even when instructed
to generate only the next user utterance; an example of generated and post-
processed output is shown in the appendix .1. Finally, due to the interactive
nature of this proposal, a target interlucator in the form of a TODS or a hu-
man is included in the architecture to receive simulated user utterances and
send system responses back to the US.

3.1 data set selection

The ICL capabilities of modern LLMs can be enhanced by presenting a series
of high-quality demonstrations, known as few-shot prompting, as discussed
in the Background chapter. A single demonstration is called a shot and con-
sists of an input and a desired output. Few-shot learning approaches use
multiple shots, hence the name. Therefore, in order to access ICL’s few-shot
methods, it is necessary to select a dataset from which to sample demonstra-
tions/shots.

3.1 data set selection 35

Datasets can be classified by their characteristics, which can be helpful in
understanding how different datasets can be used for a particular use case.
[86]. A proposed set of characteristics, inspired by Thakkar et al. [86] and Ni
et al. [63], are the following:

• Single or Multi turn

• Single Domain or Multi domain

• Data type (textual/spoken/multimodal)

• level of annotation

• language

• Data collection approach (H2H/H2M/M2M)

Unlike single-turn dialogues, multi-turn dialogues are dialogues that con-
sist of more than one question and one answer/response. Similarly, a single
domain dataset has only one target domain where the task orientated di-
alogue takes place as opposed to multi domain datasets where more than
one task domain is present. The data type in which the dialogue representa-
tion is given can vary as there are different TODS that can handle different
input types such as spoken input or images. Furthermore, the level of an-
notation of the datasets varies, some having additional annotations such as
dialogue state, e.g. through an additional dialogue state or dialogue act infor-
mation. Furthermore, the language availability attribute describes the target
language(s).

Finally, there are three different approaches to data collection that refer to the
actual collection of the data set, namely human-to-human (H2H), human-
to-maschine (H2M) or machine-to-machine (M2M). H2H is an approach
where real conversations between two people, typically crowd workers, are
instructed to carry out a dialogue. A well-established approach to H2H [6,
63, 86] is the Wizard of Oz (WOZ) technique introduced by Kelly et al. [44],
which was modified by Wen et al. [97] to be suitable for crowd-sourcing. via
the Amazon mechanical turk. In WOZ, two human interlocutors engage in a
dialogue, one acting as the system without the knowledge of the other, who
acts as the user. The H2M approach can be achieved through interaction be-
tween real users and a specific TODS, and finally the M2M approach refers
to simulation approaches where two machines interact with each other.

The table 3.1 presents popular TOD datasets. From the publicly available
datasets (see [63, 86] for a complete list), the following datasets were initially
considered as potential data sources for demonstration retrieval in the few-
shot experiments. Each dataset is multi-turn, multi-domain and represented
in natural language, which were the basic selection criteria. These criteria
should ensure that the demonstrations have a minimum level of complexity

3.1 data set selection 36

Dataset Name MultiWOZ[6] SGD[70] MetalWOZ[49] Taskmaster-1[7]

Data collection Method H2H M2M H2H H2H
Domains 7 17 47 6

Dialogs 8.438 16.142 37.884 6168

AVG Turns per Dialog 16 20 11 23

Unique Slots 25 214 NA NA

Table 3.1: Comparison of potential Task-oriented Datasets.

and format.

For each initially considered dataset, the collection method, the number of
domains, the number of dialogues in the training set, the average number
of turns per dialogue and the number of unique slots in the annotated user
goal were collected. These attributes and metadata make it easier to compare
their usefulness with respect to the requirements of this work. As both the
Taskmaster-1 and MetalWOZ datasets do not have any additional annota-
tions that would be useful for evaluating dialogue state tracking, they were
excluded from further investigation. The decision was therefore made to use
MultiWOZ and SGD.

On the one hand, SGD outperforms the MultiWOZ dataset in most of the
metrics over MultiWOZ, which increases the scale related challenges. Fur-
thermore, its evaluation sets contain many slots that are not in the training
set, thus helping to model the performance of unseen services. On the other
hand, SGD uses a M2M bootstrapping approach for data collection. Here,
dialogue simulators interact with a service configuration defined by the de-
velopers to generate dialogue sketches[2, 70]. These dialogue sketches are
then paraphrased using templates in a first step and paraphrased by crowd
workers in a second step. On the contrary, the MultiWOZ dataset follows
the WOZ technique and is generated by real users, therefore in this work
the MultiWOZ dataset is considered more appropriate as it is closer to real
user interaction. Consequently, the MultiWOZ dataset was chosen for the
rest of the work.

The wide use as a benchmark and popularity of the MultiWOZ dataset [6]
(also referred to as MultiWOZ 2.0) can be seen in its various improvements.
MultiWOZ 2.1 [20] reduced noise and combined the follow-up work of Lee
et al. [50] with the original dataset of user dialogue acts and multiple slot de-
scriptions per dialogue state slot. This was followed by MultiWOZ 2.2 [102]
where further corrections were made, the ontology was redefined and a slot
span annotation was added. Another version, MultiWOZ 2.3 [27], added
co-reference features and unfiy annotations of dialogue acts and dialogues.
Even after several updates, errors remained in the dataset, so another Mul-
tiWOZ 2.4 [101] was released, fixing incorrect and inconsistent annotations

3.2 prompbuilding and incontext-learning 37

and refining the annotations in the validation and test sets. Other researchers
added multilingualism to the dataset in MUlti2WOZ, while another paper
added multiple users to the dataset [40]. It is also included in the ConvLab
Framework1-3 [50, 108, 109], which is an evaluation framework for TODS/-
TODUS research and is also used in the implementation of the proposed US.

3.2 prompbuilding and incontext-learning

The key component of the ICL is the prompt design component as it enables
the proposed US to utilise the emergent abilities of an LLM. Before explor-
ing the different ICL strategies, a brief description of the basic prompt design
and the design principles followed are presented below. This is followed by a
more detailed description of the zero-shot prompting approach used, which
does not rely on contextual data. This is followed by the Few Shot prompting,
where demonstrations are presented and different formatting and sampling
strategies are described. Finally, the strategies for advanced reasoning and
planning prompting techniques are conceptualised for the task of user sim-
ulation.

Prompt engineering refers to the manual process of designing an appropri-
ate prompt. The design of a prompt determines how effectively it can elicit
the ability of a given LLM to successfully complete a task. There has been
a great deal of academic and practical research on this topic, analysing best
practice and the key components of a well-designed prompt. The prompt
design in this paper follows these recommendations and therefore uses a
combination (depending on the strategy used) of the four key elements:

1. Instruction, a specific task description or instruction the model shall
perform

2. Demonstrations, demonstrations of the task the shall perform

3. Context, additional context that can guide the model to better responses

4. Input Data, the input or question that is of interest

Figure 3.2 illustrates a basic prompt template containing the four key ele-
ments, although the order may vary and the presence of each element de-
pends on the prompting strategy chosen, which will be discussed in the
next sections. As mentioned above, there are a number of design recom-
mendations that take into account the design process as well as the specific
elements.

In general, prompt design is an iterative process that requires a lot of ex-
perimentation to achieve optimal results. Therefore, it is recommended to

3.2 prompbuilding and incontext-learning 38

Figure 3.2: A basic prompt and its typical elements

start simple and add more elements and context to the prompt. Another
option is to divide a complex task into simpler subtasks to avoid too much
complexity in the prompt design process at the beginning. Therefore, the
ICL strategies explored start with a simple prompt with minimal elements
and increase the complexity following these best prompt practices.

One design principle is to use a model-friendly format. Since LLMs are
pre-trained on specially constructed datasets, there are prompt formats that
can help the LLM better understand the [105] command. For example, the
OpenAI documentation [65] suggests the use of delimiters such as ### or
“‘“‘“‘, as shown in figure 3.2, to separate the elements of a prompt, which
enhances the LLM’s ability to execute the instruction. Furthermore, most ex-
isting LLMs perform tasks better when prompted in English, so it is useful
to use English instructions to solve complex tasks based on machine transla-
tion.

3.2.1 Proposed TELeR-RESPONDeR Taxonomy for Complex Prompts

To increase the comparability of the proposed prompts in general and in
relation to the existing work of Terragni et al. [85] and Davidson et al. [14]
the application of the TELeR taxonomy [71] was considered. This taxonomy
addresses design decisions for complex prompt tasks, allowing for a mean-
ingful comparison of the specific categories used in different studies. The
visualisation of the TELeR Prompt Taxonomy by Santu et al. [71] is shown
in Figure 3.3.

3.2 prompbuilding and incontext-learning 39

The taxonomy represents each prompt as a combination of Directive and

Figure 3.3: The detailled illustration from the four dimensions of the TeLER-
Taxonomy from Santu et al. [71]

Data. Santu et al. [71] assume, that the data is fixed for a given goal arguing
that the difference between two prompts originates from the directive alone.
Furthermore they categorize prompts alongside four dimensions:

1. Turn, number of turns while prompting LLMs to perform the task. Can
either be single or multi-turn.

2. Expression, style of the directive, can either be question-style or instruction-
style.

3. Level of Detail, ranging from 0-6 see figure 3.3 for a detailed descrip-
tion.

4. Role, describes if a role is defined or undefined.

In this thesis, the directive is interpreted as the instruction element of the
prompt template. Furthermore, the data referred to by Santu et al. [71] is
interpreted as the context element of the prompt template. In the case of
the interactive user simulation, the context itself changes with each itera-
tion, and thus the generation of the llm itself influences the next prompt
it receives in the form of the dialogue history contained in the context el-
ement. Consequently, in the present work, the data is not necessarily fixed
for a given goal, thus deviating from the proposed fixed attribute of the data.

As extensions are encouraged, I hereby present a modification of the TeLER
taxonomy called TeLER-RESPONDeR. This modification splits the last 3 lev-
els of detail into separate dimensions, as the properties of the levels are

3.2 prompbuilding and incontext-learning 40

independent of each other and do not need to be used together. For exam-
ple, you could use self-adjustment without specifying an output description,
and so on. The content of level four is divided into two dimensions: Demon-
strations and explicit Output Notation, as these attributes are very different
from each other. The additional attribute of retrieval-based techniques in
level five is modelled in the dimension Retrieval. Finally, the new attribute
self-justification in level 6 is also represented in a separate dimension Self-
justification. Finally,Reasoning, Planning and Ensemble prompts are not directly
addressed in the TELeR taxonomy, so in order to have a more complete
prompt taxonomy they are also included, resulting in an additional 7 dimen-
sions. This increases the complexity of the taxonomy, but at the same time
allows a more flexible and accurate prompt classification.

As we introduced 7 more dimensions to the TELeR taxonomy we modify the
acronym by the 7 factors, i.e: TELeR-RESPONDeR - Reasoning, Ensemble,
Self-Justufication, Planning, Output Notation, Demonstration and Retrieval.

An efficient notation for the 10-dimensional TELeR-RESPONDeR taxonomy
is also introduced to allow easy comparison of prompts. For dimensions that
can be expressed by integers, the following values are possible: T = 0, . . . , N
zero to N prompt turns, Le = 0, . . . , 3, D = 0, . . . , k demonstration or shots.
Except for the expression dimension, which can be either Q (question style)
or I (instruction style), 0 if none is given. All other dimensions can be ex-
pressed as Boolean, where 0(False) indicates that the dimensional feature is
not present and 1(True) indicates that it is present. E.g. T = 1, E = I, Le =

1, R1 = 0 − R2 = 0, E = 0, S = 0, P = 0, ON = 1, De = 1, R3 = 0 would be a
single turn, instruction style prompt with a simple one sentence instruction
expressing the high level goal with 1 demonstration and a specified output
definition. Some dimensions could also be specified through the technique
name, for example one could directly name the reasoning technique instead
of just checking if reasoning was used, but in order not to add to the com-
plexity of the notation the simple boolean approach will be used throughout
this thesis.

Below, the TELeR-RESPONDeR taxonomy is applied to the work of David-
son et al. [14] and Terragni et al. [85]. Davidson et al. [14] relied solely on
the demonstration element and the context element1 of the prompt build-
ing blocks in their final experiments. The first prompt experiments were not
published. Therefore it is T = N, E = 0, Le = 0, R = 0 − R = 0, E = 0, S =

0, P = 0, ON = 0, De = 2, R = 0 as 2 demonstrations are used per prompt
and a context consisting of a user goal and an open-ended prompt.

In contrast, Terragni et al. [85] published their initial prompt experiments
before deciding on a final prompt. These prompts differed in the number of

1 It could be argued that the user goal provided can be seen as an instruction, but in compar-
ison to Terragni et al. [85] a clear instruction was used. Therefore, this paper interprets it as
context.

3.2 prompbuilding and incontext-learning 41

demonstration examples De = 0, . . . , 6, the level of detail Le = 0, . . . , 2 and
the effect of adding a role R1 = 0, 1. The final prompt they used for their
evaluation is T >= 10, E = I, Le = 2, R1 = 1 − R2 = 0, E = 0, S = 0, P =

0, ON = 0, De = 2, R3 = 1. The dialogue was limited to a maximum of 20

turns, so T >= 10 due to alternating turns. They also used the instruction
style to describe the goal in a level 2 way. They chose to give two demonstra-
tion examples (De = 2) where the retrieval was either random or based on
Jaccard sampling (R3 = 1).

3.2.2 Design of the Basic Prompt Elements for Zero- and Few-Shot Strategies

Five different instruction element designs are described in the table 3.2, with
the complexity and detail of the prompts increasing from top to bottom. The
proposed formats address 4 dimensions of the TELeR-RESPONDeR taxon-
omy, the level of detail (Le = [0, 1, 2]), the self-justification (S = [0, 1]) and the
output notation (ON = [0, 1]). In addition, general design choices for the in-
struction element are that the directive is written as instruction-style(E = I),
that the goal is expressed clearly and without ambiguity, and that the in-
struction focuses only on what the LLMs should do rather than what they
should not do.

The level of detail in the designed instruction element formats starts from
as simple as possible to highly detailed traversing all levels of details of
the taxonomy. Starting with an instruction format, that consists solely on a
role description(Le = 0), followed by the next stage a simple one sentence
high-level goal description(Le = 1). Then the first detailed design, where the
task is described in a paragraph style form (Le = 2), is set up. After that
the next stage adds additional informatioen about the expected demonstra-
tions, context and input (Le3), which should describe the prompt structure
to the LLM for more clarity. Finally response constraints are introduced in
order to guide the model to generate a specific output notation (ON = True).

The design of the demonstration element is depicted in figure ?? and con-
sists of two components: the user goal and the pertaining conversation. This
building block can be repeated several times from 0, . . . , N building, if used,
k-shots. It addresses the demonstration dimension (De) of the taxonomy and
if a retrieval technique is used for shot selection also the retrieval dimension
(R3). Yet each demonstration i is sampled from an existing data set e.g. the
MultiWOZ dataset described in section 3.1. The conversation examples con-
sist of alternating turns between the system and the user.

As the format of the demonstration examples can influence the quality of

3.2 prompbuilding and incontext-learning 42

Instruction Element Design 1:

No Instruction.

Instruction Element Design 2:

One Sentence describing high-lvl goal.

Your task is to generate the next <role> utterance.

Instruction Element Design 3:

Multi-sentence instruction describing high-lvl goal and the sub tasks to achieve the goal.

Your task is to generate the next <role> utterance.

Fulfill all REQUIREMENTS in the given order. Stick to the sequence of subgoals
in the requirement and refer to one subgoal at a time. If the ASSISTANT responds
with an unexpected answer, try to rephrase your request until you are certain the
ASSISTANT understands you and provides all the correct answers.

Instruction Element Design 4:

Multi-sentence instruction describing high-lvl goal and the sub tasks to achieve the goal.
And the Output Notation the Model should follow.

Your task is to generate the next <role> utterance.

Fulfill all REQUIREMENTS in the given order. Stick to the sequence of subgoals
in the requirement and refer to one subgoal at a time. If the ASSISTANT responds
with an unexpected answer, try to rephrase your request until you are certain the
ASSISTANT understands you and provides all the correct answers.

A good output should be precise, contain diverse vocabulary and be one sentence
long. The conversation will be evaluated based on whether all information has been
addressed by the ASSISTANT. This should be ensured by your answers. Start your
answer with ’<role>: ’.

Instruction Element Design 5:

Multi-sentence instruction describing high-lvl goal and the sub tasks to achieve the goal.
An explicit statement to justify/explain the generated output. And the Output Notation the
Model should follow.

Your task is to generate the next <role> utterance.

Fulfill all REQUIREMENTS in the given order. Stick to the sequence of subgoals
in the requirement and refer to one subgoal at a time. If the ASSISTANT responds
with an unexpected answer, try to rephrase your request until you are certain the
ASSISTANT understands you and provides all the correct answers.

Provide justification for your generated user utterance/response in detail by ex-
plaining why your response contains certain information and discards other infor-
mation.

A good output should be precise, contain diverse vocabulary and be one sentence
long. The conversation will be evaluated based on whether all information has been
addressed by the ASSISTANT. This should be ensured by your answers. Start your
answer with ’<role>: ’.

Table 3.2: Proposed instruction element designs increasing in complexity.

3.2 prompbuilding and incontext-learning 43

Goal Format 1:

Dictionary Style / Json.

{ ’attraction’: { ’info’: { ’name’: ’cineworld cinema’ }, ’reqt’: {
’postcode’: ’?’, ’phone’: ’?’, ’area’: ’?’ } } }

Goal Format 2:

Textual paragraph style description.

You are excited about seeing local tourist attractions. You are looking for a particular
attraction. Its name is called cineworld cinema. Once you find an attraction, make
sure you get postcode, phone number, area.

Table 3.3: Demonstration Elements increasing in naturalness.

the generation of an LLM, two variations of user goal formatting are ex-
plored with increasing naturalness. The first is a logical data format, in this
case the json format, although other human-readable formats such as yaml
would also be possible. The second form, a natural language paragraph for-
mat, is used as a user goal representation. In addition to exploring the effect
of different demonstration formats, this approach explored the application
potential of different data sources for fewshot sampling. As such in some
situations only a json format would be available for prompting the LLM.

The context element is similar to the demonstration element, but only con-
sists of the first part, the user goal. This context defines the actual user sim-
ulator goal and its requirements. The formatting of the context goal corre-
sponds to the two variations of the user goal in the table 3.3. If the demon-
stration element is also used in the prompt, then the format of the context
element goal should be the same as the example goals to allow efficient
learning of the context.

Next the input prompt is described. As the User simulator interactively com-
municates with a TODS, the input itself changes based on the utterances
from the user simulator itself as well as the TODS. The input could end with
an empty utterance of the user, signaling the LLM to generate the next user
utterance or a new line. The proposed dialog initiation has to variants, one
where the user starts the conversation and one where the system starts the
conversation with a fixed utterance e.g. "How can I help you?". In the later
evaluation the fixed utterance was used. Another way of allowing the user
simulator to take on a specific persona is the role prompting approach. The
ICL-US has the advantage of a flexible role design that can be prepended
to the instruction, but other insertions would also be applicable. To explore
the possibilities of giving the user simulator a persona, four different roles
were designed for role prompting. These consisted of a tourist who is more
domain dependent, a user simulator and two different customers with con-

3.2 prompbuilding and incontext-learning 44

trasting personality descriptions. By providing a more detailed personality
description, the user simulator can be adapted to mimic a specific target
audience, which was taken into account in the evaluation of the proposed
simulator.

3.2.3 Zero-Shot and Few-Shot Setup

Following the principle of increasing prompting complexity, this thesis starts
with one of the simplest forms of ICL learning - Zero-Shot Prompting. As
the name suggests, in a zero-shot prompt there are no shots, so the prompt
relies solely on the knowledge base of the LLM and the remaining elements:
Instruction, Context and Input and their design. The design of these ele-
ments is described above and also increases in complexity.

The structure of the designed zero-shot prompt follows the basic structure
depicted in figure 3.2 without demonstrations. Delimiters are used for a
clear separation of each element. The exact order of the elements is fixed for
all Zero-shot prompting experiments later conducted in this work. Through
manual testing this ordering of elements appeared to be the most reliable
one. Another approach was to first introduce context, input and end with
the instruction element, yet this lead to more inconsistency in the utterance
generation.

The use of demonstration examples can increase the performance achieved
by prompting, so few-shot prompting is also applied to the TOD-US task
in order to have a broader scope of evaluation. The design of the few-shot
prompting approach is illustrated in Figure 3.4.The structure is similar to
that of zero-shot prompting, but the additional k-demonstration elements or
shots are incorporated into the prompt.

The information for the context and the demonstrations is taken from the

Figure 3.4: Typical structure of a few-shot prompt and the shot sampling strategy.

same dataset (see section 3.1). As described in 3.2.2, each demonstration con-

3.2 prompbuilding and incontext-learning 45

sists of a user goal and its dialogue. In contrast to the demonstrations, the
context consists of only one user goal gc without the demonstration dialogue,
as this is generated by the interactive simulation. Consequently there are tu-
ples of user goal and associated dialogue for the demonstration element and
a user goal for the context element. Therefore k + 1 user goals and k are di-
alogs to be sampled.

In this work, three two sampling strategies have been explored, starting
with Jaccard similarity sampling based on the logical goal description and
a vector-based similarity sampling based on the natural language goal de-
scription. Given the initial context goal gc of the target dialogue that the
interactive simulation aims at, similar demonstrations are sampled.

The first similarity-based sampling method computes the Jaccard similarity
following Liu et al. [54] between the domain and slot sets of the context user
goal gc and a demonstration user goal gd. Formally expressed, the Jaccard
similarity J(gc, gd) between the context goal gc and a potential demonstra-
tion goal gd can be defined by:

J(gc, gd) =
|Domaingc ∩ Domaingd|
|Domaingc ∪ Domaingd|

·
|slotgc ∩ slotgd|
|slotgc ∪ slotgd|

(3.1)

where Domaingi and Slotgi refer to the set of domains and slots of the goal
gi, and the cardinality of a set S is denoted by |S|. This Jaccard similarity is
computed for gc and each potential demonstration goal. When all similarity
scores have been computed, the most similar k samples can be drawn from
the dataset, where k is the chosen number of demonstration examples.

The second similarity search approach is based on the natural language user
goal. Figure 3.5 shows the process of this similarity search strategy. In a first
step, all textual goals are converted into embedding vector representations
using an encoder. These vector representations are then indexed by a vec-
tor library framework. The FAISS framework [41] is used to enable efficient
searching. This framework creates an index for each vector representation.
These indices are then used to sample the k most similar representations
that have the highest similarity score to the embedding of the context user
goal gc.

3.2.4 Reasoning, Planning and Ensemble Prompting Concepts

The prompting techniques used so far can give good results, but more so-
phisticated strategies could improve the performance of LLMs in complex
common sense tasks. In addition, reasoning and planning techniques are be-

3.2 prompbuilding and incontext-learning 46

Figure 3.5: Flow chart of the embedding vector similarity search concept.

ing investigated. As these techniques mimic real human behaviour, they are
expected to reduce the gap between user simulator and human responses.

The first reasoning technique investigated for application to the user simula-
tion task is zero-shot chain of thought. Chain of Thought prompting in gen-
eral provides benefits on Commensense Reasoning problems by encouraging
the LLM to generate a chain of thought. Since the Few-Shot CoT approach
requires chain-of-thought demonstrations that are not readily available for
the task of user simulation, only the Zero-Shot scenario was investigated.

The proposed zero-shot CoT design is illustrated in Figure 3.6. The design

Figure 3.6: Sketch of the zero shot chain of thought two stage prompt design.

involves two separate prompt stages, following the original zero-shot CoT

3.2 prompbuilding and incontext-learning 47

approach [45]. The first stage focuses on reasoning extraction by explicitly
encouraging the model to generate a chain of reasoning based on the contex-
tual information. This reasoning extraction can be achieved, for example, by
appending the words "Let’s think step by step" to a basic zero-shot prompt.
The example given is the most common way of extracting zero-shot reason-
ing, but other prompts have also been explored. The output of stage one is
used to obtain a self-augmented prompt by appending the chain of thought
to the input prompt itself.

The second stage is used in this case for user utterance extraction. Here the
self-augmented prompt is used to prompt the model a second time. Now the
LLM is asked to create the next user utterance based on the added chain of
thoughts, resulting in the next utterance of the US. This process is repeated
for each user turn until the conversation ends, so that the LLM is prompted
a total of two times for each user turn.

The next prompting method examined is self-consistency prompting, the
design for which is shown in Figure 3.7. Self-consistency is a modification of
chain-of-thought prompting that often results in a significant improvement
over the results of simple chain-of-thought prompting. The main idea is that
instead of generating one chain of reasoning, self-consistency generates mul-
tiple chains, with the aim of increasing the consistency of the output, as the
name suggests.

To sample a diverse set of reasoning paths, a requirement is that the LLM

Figure 3.7: Sketch of the self-consistency process design.

uses a non-deterministic decoding strategy, e.g. greedy decoding would re-
sult in the same reasoning path, so no sample of diverse outputs would be
generated. The decoding strategies and selection are described in more de-
tail in the section 3.3. In the proposed design, the same stage of a zero-shot

3.2 prompbuilding and incontext-learning 48

CoT prompt is used N times to sample multiple outputs, acting as a from of
self-ensemble on top of a single LLM. To extract the specific user utterance
of each reasoning chain, the second stage zero-shot CoT is applied to each
chain, resulting in a sample of N user utterances.

Finally, the most consistent user response among all generated user utter-
ances is selected. Since the original majority voting approach is not directly
applicable to the open-ended user simulation generation task, another rank-
ing scheme has to be applied. Therefore, a generalised self-consistency score
GSCSim(i) can be computed based on a similarity function for each gener-
ation i derived from the approach of Jain et al. [38]. The underlying self-
consistency assumption here is that the most frequent response is assumed
to be correct, in this case the prompt most similar to all other prompts may
be chosen.

A similar approach to self-consistent prompting is to use a prompt ensem-
ble instead of using the same prompt to generate multiple generations of
text. The prompt ensemble design is shown in figure 3.8. There, N different
prompt designs are used to generate N user utterances, and then, identical
to the selection process of the proposed self-consistency design, the best re-
sponse candidate is sampled by a generalised consistency score.

This prompt ensemble approach has the advantage that it does not rely on

Figure 3.8: Sketch of the prompt ensemble process design.

a single prompt to generate a diverse set of user utterances, making it less
dependent on the sophisticated design of a single ’perfect’ prompt. Instead,
multiple prompt design variations can be used as an ensemble, increasing
independence, as small changes in a prompt can sometimes drastically alter
the output generated.

The ensemble of prompts might be for example several variations of the
zero-shot experiments, so a wide range of complexity in prompt design is
included in the ensemble. In addition, all other proposed few-shot, reason-
ing and planning designs could have been added to the ensemble to keep
the input prompts diverse. The last advanced prompting technique explored
is called least to most prompting [107], which follows a planning approach.
The main idea in this strategy is to break down a complex problem into a
series of simpler sub-problems and then solve them one at a time. As the so-
lution of each sub-problem is facilitated by the answers to previously solved
problems, this technique is well suited to the sequential nature of interactive

3.3 llm selection & generation decoding strategies 49

user goal solving by the proposed simulator.

Figure 3.9 illustrates the design of the least to most prompting approach,

Figure 3.9: Sketch of the least to most prompting process design.

inspired by the original approach of Zhou et al. [107]. The designed process
consists of two sequential steps:

1. User Goal Decomposition. The target user goal is decomposed into
subgoals, the process of decomposition depends on the underlying
user goal format.

2. Sequential Subgoal Solving. Sequential solving of each subgoal dur-
ing the interactive dialogue between the US and the interlucator TODS.
The context of the target user goal starts with a subgoal. For each turn,
another subgoal is added to the context until all goals are included in
the context. At the same time, the user utterances addressing each sub-
goal in each turn of the dialogue are added to the conversation history.
The responses to each subgoal itself serve as a demonstration example.

The aim of this iterative addition of sub-goals would be to steer the simu-
lator to sequentially follow the requirements of the target user goal. As a
result, limitations such as premature dialogue termination could potentially
be reduced due to the reduced complexity of the user goal in the early con-
versation phase.

3.3 llm selection & generation decoding strategies

The choice of underlying LLM affects the natural language understanding
and generation capabilities of the user simulator. As described in the back-
ground chapter 2, there is a growing number of open source and proprietary
LLMs. The table 3.4 lists a selection of state-of-the-art LLMs with instruction-
tuned versions that were considered. Another aspect is the presence of in-
struction tuning, as it can increase the in-context learning behaviour, so

3.3 llm selection & generation decoding strategies 50

Model GPT − 3.5[65] Llama2[88] Mistral[39] Falcon[66] Flan − T5[12]

Architecture Category decoder-only decoder-only decoder-only decoder-only encoder-decoder

Publication date 2023 2023 2023 2023 2022

Availability proprietary open-source open-source open-source open-source

Table 3.4: Selected LLMs for manual prompting trials.

instruction-tuned versions of LLMs were selected over basic models.

As emergent, prompt-based learning capabilities have been demonstrated
primarily in decoder-only models, this type of architecture was chosen over
encoder or encoder-decoder models. For comparison, the FLANT5 model
was also tested. In addition, the approach of Terragni et al. [85] also in-
cluded this model and achieved acceptable results, so it was also considered,
although it is a decoder-only model.

Similar research for user simulators has yielded the best results with GPT3-5,
which includes the LLM property. In addition, most of the published prompt-
ing best practices refer to OpenAI models, so prompting tuning should be
particularly effective for this LLM as it is better documented.

Another important influence on the text generation quality of LLMs is the
choice of decoding strategy. Decoding refers to the process of selecting out-
put tokens to generate text without changing the values of trainable param-
eters. Different decoding methods may impose constraints or preferences
on the sampling process, such as repetition reduction or coherence enhance-
ment.

Decoding methods can be devided into two categories deterministic meth-
ods and stochastic methods. Deterministic techniques like greedy search and
beam search generate text by choosing the text predicted word with the
greatest probability as determined by the language model. As deterministic
methods often lead to model degeneration for instance generating unnatu-
ral text with repetitions. Moreover human language in general tends to be
less predictable and does not follow a distribution of high probability next
words [32]. As a consequence deterministic methods where not applied to
open text generation of user utterances in this work.

Stochastic Decoding methods address the issues of deterministic methods
by incorporating randomness also called sampling during the decoding pro-
cess. As these stochastic methods generate more human like texts, several
stochastic decoding methods were tested for the user utterance generation
task. The explored stochastic decoding methods include top-k sampling, nu-
clues sampling and contrastive search. Furthermore the influence of the tem-
perature setting of the LLM was inspected.

The choice to use stochastic decoding methods is a design choice that might

3.4 wizard of oz testing 51

lead to more diversity in the generated user utterances. Diverse and human
like user interaction is one aim of the proposed User simulator, yet the diver-
sity could lead to deviation of the user goal. As a result different decoding
strategies lead to a trad of between diversity and the success rate. In the
later evaluation a simple sampling was allowed to allow randomness and
thus more naturalness in the generated utterances.

3.4 wizard of oz testing

The Wizard of OZ style dialogue design is shown in Figure 3.1. In this simple
setup, the TODS is represented by a human in the loop, e.g. the promptengi-
neer who designed the prompts used. This approach allows rapid prototyp-
ing while simulating the quality of the dialogue through manual human eval-
uation. The replacement of the TODS element is a reduction in the complex-
ity of the architecture and helps to understand the capabilities of LLMs to
generate natural text utterances. naturalness of text generation. The prompt
engineer receives immediate feedback on changes made to the prompt tem-
plate being used and can investigate the influence of instructional design
decisions. As a result, this setup can be used prior to conducting large-scale
experiments or evaluations. In addition, because of the direct influence on
the flow of the conversation, the prompt engineer can directly address spe-
cific types of conversations and directly test edge cases, which can increase
the robustness of the US.

3.5 modification via dialogue state tracking component

The basic architecture of the ICL-based-US can be extended with a Dialogue
State Tracking component as shown in figure 3.10. This design serves a dual
purpose, but is not strictly necessary for the proposed ICL-US to generate
user utterances. Firstly, it is used to evaluate the success of the interactive
dialogue between the US and the TODS. One goal of the US is to evaluate
a given TODS, and although TODS often have their own DST component,
an external success evaluation built into the US increases the independence
of the TODS DST extractions. This avoids the case where a TODS evaluates
itself, so an additional external DST component allows a more neutral evalu-
ation. In addition, the dialogue state of the system side could be compared,
allowing direct feedback on misclassifications.

A second advantage of incorporating a DST component into the ICL-US
is the ability to include goal state tracking information in the prompt. This
can be used to address limitations known from related work, such as pre-
mature termination or hallucination. This could be used in many ways, such
as updating the user goal based on the current belief state, or splitting the
user goal into subgoals and only adding the subgoals when the previous

3.5 modification via dialogue state tracking component 52

Figure 3.10: Sketch of a modification in the basic ICL-based US architecture adding
DST component.

goal is completed. Furthermore, it could be used embedded in further plan-
ning and reasoning prompting techniques. LLM-based state tracking, even
in a zero-shot fashion, has already been tested in [28] and shows potential
for future research. Therefore, applying a different prompt design for state
tracking to the same LLM, as illustrated in Figure 3.10, could be a viable
option to further improve the proposed US.

4
E VA L U AT I O N

The evaluation of task-oriented human-computer interfaces is still an open
field of research. From the variety of evaluation methods, as seen in the re-
lated work chapter 2.4, mainly approaches like cross-model evaluation, auto-
matic evaluation and human evaluation are used to evaluate a proposed US.
As this thesis focuses on the use of an ICL/prompting approach, which has
significant variability due to its unstructured textual nature and variations,
a mixture of automatic and human evaluation was conducted to investigate
its performance. Consequently, both quantitative and qualitative evaluations
were carried out.

The structure of this chapter begins with the description of the experimental
setup, including the hardware used, the underlying framework, the architec-
tural modification models, and the data used in the evaluation process. This
is followed by a detailed presentation of the selected LLMs and the genera-
tion parameters used, the TODS and US baseline models, and the baseline
data. The metrics for the quantitative evaluation are then described, consist-
ing of dialogue success metrics and diversity metrics. This is followed by
the application of these metrics to a selected set of ICL strategies, including
Zero-Shot ICL strategies and a Few-Shot setup. The chapter concludes with
the results of the quantitative evaluation of ICL strategies and a qualitative
assessment of common errors in the simulation and evaluation process.

4.1 experimental setup

The experiments were conducted using ConvLab-3 [109]. The framework
provides data, models and an experimental toolkit for the evaluation and
development of TODS and TOD-US. As the third version of ConvLab is the
latest in the well-established ConvLab series, it was chosen over its prede-
cessors. As mentioned in the previous chapter, the in-context learning strate-
gies used were annotated with the proposed TELeR-RESPONDeR taxonomy
(see table .3) to increase the comparability of the prompts used in the ex-
periments. The actual text of the prompts was described in 3 and strategies.
Zero-shot prompting gradually increases the complexity of the prompt, then
role prompting is evaluated to test the possibility of adding a persona or role
to the simulator. Finally, a few-shot approach was tested with different re-
trieval strategies addressing natural language formats as well as classical
domain JSON-style goal description.

4.1 experimental setup 54

To enable the proposed end-to-end ICL-based US to be used in the Convlab-

Figure 4.1: The modified ICL-US setup to enable automatic evaluation in the
ConvLab-3 Framework.

3 framework, the basic architecture was modified as shown in Figure 4.1. The
basic end-to-end model was modified into a pipeline format with additional
NLU and policy components to be able to use the MutliWOZ evaluation
process of the ConvLab-3 framework. These additional components don’t
interfere with the User Utterance simulation and are only used to evaluate
the Goal Fullfilling metrics during the interactive evaluation process.

The NLU component consists of a Bert encoder-decoder PLM [17] fine-tuned
to the MultiWOZ 2.1. This component evaluates the generated user responses
and transforms them into dialogue acts, which are then evaluated by the
MultiWOZ evaluator class of the COnvlab framework. The user policy is
used to determine the termination of the dialogue and is equivalent to the
policy used in the baseline user simulator described below. As outlined in
the Eval architecture, two different external data sources are used. The first
is used to initialise the user goal, the second source is for the few-shot set-
ting and consists of the multiWOZ goal and conversation log files.

The evaluation process is shown in figure 4.2 and is broadly divided into two
phases, namely automatic quantitative evaluation and human qualitative er-
ror analysis. The values of all but one of the parameters are fixed in order
to study the effect of changing the value of a dimension under investigation.
The experiments are based on 100 unique user goals that define the task to
be solved by the US during the conversation. The different parameters and
the values chosen, as well as the user goal bases generated, are described
in detail in the following sections. The evaluation of the proposed ICL-US

4.1 experimental setup 55

Figure 4.2: Sketch of the conducted evaluation process.

is performed on the MulTiWOZ 2.1 dataset [20] available in ConvLab-3. In
addition to the dataset itself, the ConvLab-3 framework provides a goal gen-
erator that can be used to create structured MulTiWOZ 2.1 user goals. The
generator can create a dictionary style goal representation, which can then
be transformed into a textual goal representation using a template based ap-
proach. This allows new user goals to be created that follow the MultiWOZ
task design.

The MutliWOZ domain was used for two different purposes, firstly for the
ICL-US few shot set used as a source of demonstration examples as de-
scribed in 3.4, and secondly to initialise the user goal in each conversation.
For the evaluation process, a set of 200 user goals was generated, allowing
200 conversations to be run with the identical underlying task. This resulted
in 200 dictionary style goals and associated text style goals. A detailed de-
scription and example of the user goal formats can be found in 3.3. To de-
scribe the nature of the generated evaluation goals a list of meta data was
extracted:

• number of goals 100

• Average number of domains per goal 1.79

• Number of domains per goal ranging from 1 to 3

• Average number of information task per domain 2.89

• Average number of request task per domain 1.57

• Number of unique keys of information task 18 and 129 unique values.

4.1 experimental setup 56

• Number of unique keys of request task 16 and 1 unqiue value1

As base models for the ICL-US, five LLMS were considered as described
in chapter 3, yet due to incompatibilities with the evaluation framework
Convlab-3 and the transformers library version necessary for the Falcon and
Mistral LLMS only the following three models were utilized in the perfor-
mance evaluation:

• GPT-3.5: OpenAI GPT-3.5 Turbo Instruct [65].

• LLaMa2: the 7B fine-tuned for chat use cases variant of Meta’s auto-
regressive Llama2 .

• FLAN-T5: the instruction fine-tuned version of T5 called FLAN-T5 XL
with 3B parameters.

All experiments were run on a Google Compute Engine Machine Type g2-
standard-16 with 1 NVIDIA L4 GPU, 16 vCPUS, 24GB vRAM and 64GB
RAM. As LLMs have a high demand of GPU RAM this Hardware setup is a
limiting factor for the size variants of available LLMS as well as prompting
strategies such as ensemble prompting due to longer inference times. Due
to this restriction only LLMs variants of a 7 billion parameters scale where
utlized in this work.2

The dialogue system for interacting with the US follows a pipeline archi-
tecture. The first component of the TODs consists of a word-level DST that
obtains the belief state directly from the dialogue history. A pre-trained
checkpoint of the SetSUMBT[64] DST, which produces state-of-the-art belief
state tracking results on the MultiWOZ dataset. This is followed by a pol-
icy module based on the Dynamic Dialogue Policy Transformer (DDPT) [24]
trained on MultiWOZ 2.1, DDPT relies on information descriptions, the PLM
RoBERTa for embedding construction and the backbone follows the trans-
former encoder-decoder architecture. Finally, a template based NLG[109]
component was chosen to generate the system utterances.

For the evaluation of the ICL-based US, a baseline US of ConvLab-3 was set
up. The baseline US follows a pipeline based architecture. It uses a BERT[17]
fine-tuned to the MultiWOZ dataset for user goal tracking evaluation pur-
poses, thus using the same NLU unit as the modified ICL-based US. The
TUS[55] was then used as a guideline, followed by a template based NLG
[109] to generate the user utterance of the Baseline US. This baseline user
simulator was used on the MultiWOZ dataset fine-tuning models and as
such should be a good point of meaningful comparison for the proposed
ICL-based US model, which does not rely on fine-tuning.

1 The values of the request task are always represented as a ? marking that the values have
to be inquired by the user e.g. reqt: {’ adress’ : ’?’} of a given info :{’name’ ’: ’frankie and
bennys’}.

2 It is acknowledged that metholodogies like quantization schemes and harnessing the possi-
bility of lower precision can mitigate the hardware requirements.

4.2 evaluation metrics 57

Additionally, a baseline for the lexical diversity of the generated user ut-
terances was created. The baseline consists of sampled training data from
the MultiWOZ 2.1 dataset, as the utterances in the dataset are real human
responses. Consequently, the lexical diversity of a user simulator should ide-
ally be similar to that of the sampled dataset. The baseline was collected
by sampling 100 random dialogues 1000 times and measuring the average
metrics. The reported metrics are noted in each diversity metrics table.

4.2 evaluation metrics

To automatically evaluate the quality of the proposed ICL-US and the differ-
ent prompting strategies, two sets of metrics, namely success and diversity
metrics, were applied to the simulated conversations.

4.2.1 Goal Fullfillment Evaluation Metrics

Goal success or goal fulfilment metrics are the primary metrics used in re-
cent work to evaluate TOD-US. As mentioned in the background chapter ??,
these metrics are also used for automatic evaluation of TODS. These metrics
use the underlying user goal and the dialogue state at the end of the conver-
sation to quantify whether all the necessary information has been exchanged
according to the requirements described in the user goal.

Below is a detailed description of all the metrics used to assess task success
and task completion costs:

• The Task Success Rate (TSR), also known as Goal Success Rate (GSR),
scores the final dialogue based on the requirements defined in the orig-
inal user goal, if all booked and informed slosts are fulfilled the TSR is
1, if not then 0. TODO Alternative to this, partial TSR?

• The Completion Rate is similar to the TSR, but it ignores whether the
value in the final dialogue state exactly matches the value described in
the original user goal. So it is 1 if all booked slots in the user goal are
filled and 0 if it is not completely filled.

• The Information metrics is divided into three metrics and assesses
whether the system provides the requested information accurately. They
are based on True Positives (TP), which refer to correctly mentioned
slots, False Positives (FP), which are slots filled with invalid values
or only mentioned by the user, and False Negatives (FN), which are
slots filled with valid values but only mentioned by the system and
not present in the user goal.

– The Precision, describes the ratio of True Positives slots to all
slots that were during the conversation including slots that where
not matching the user goal. Answering the question how many

4.2 evaluation metrics 58

of filled slots are relevant to the user goal. Formally described by
Precision = TP

TP+FP

– The Recall, describes the ratio of TP to true positives and false
negatives. Answering the question How many slots according to
the slots of user goal were filled. Formally described by Recall =

TP
TP+FN

– The F1-Score combines precision and recall into a single metric
by computing the their harmonic mean. Formally described by
F1 = 2 · precision·recall

precision+recall

• turns per dialogue is also noted to address the efficiency of commu-
nication measured by the number of turns. This metric is divided into
two sub-metrics that account for successful dialogues and dialogues in
general.

– Dialogue Turns (DT) tracks the number of turns for each dia-
logue.

– Successful Dialog Turns (SDT) tracks the number of turns for
dialogues that have been marked successful 1 by the TSR metric.

4.2.2 Lexical Diversity Metrics

Synthetic user utterances can be formal, repetitive and less surprising, and
thus, in contrast to real human interaction, often lack lexical diversity. Lexi-
cal diversity refers to the range of different words used in a text, where more
diversity equates to a larger vocabulary [60]. The standard MultiWOZ met-
rics do not include an evaluation of the diversity of utterances, but non-task-
oriented dialogue typically measures diversity. However, others, including
this work, argue that the diversity of user utterances is an indicator of the
naturalness of a synthetic user utterance, which is an important aspect of
user simulation. Therefore, the diversity of generated utterances of the pro-
posed ICL-US is evaluated using the Wizard of Oz style user utterances of
the MultiWOZ dataset as a baseline, as mentioned above. The proposed set
of metrics to quantify the lexical and syntactical diversity of the proposed
ICL-US are:

• For the sake of a comprehensive analysis, traditional metrics such
as user utterance length, number of unique n-grams (uni-grams, bi-
grams and tri-grams) were included in the lexical diversity metrics. In
this study, the selected features not only contribute to the analysis, but
also serve as metadata, improving the interpretability of the results.

• Shannon Entropy (SE) is a quantifiable measure of information, ex-
pressed as a random variable, that quantifies the linguistic diversity
or predictability within user responses by estimating the average bit
required to transmit the selected tokens [59].

4.3 quantitative evaluation results 59

• Conditional Bigram Entropy (CE) is used in information theory to
quantify the uncertainty or randomness associated with the occurrence
of bigrams (pairs of consecutive elements) within a sequence, given
knowledge of the preceding element. A lower CE indicates greater pre-
dictability in predicting the second element given the first element [59].

• Mean Segmental TTR (MSTTR), is the mean of the ratio of unique
word types (TTR) to total words tokens, calculated on text segments of
50 words length.

• Measure of Textual Lexical Diversity (MTLD) is a modified version
of MSTTR, which is normalised to better handle different text lengths,
as TTR is known to be affected by the length of the target text. It has
been shown to be an effective measure of lexical diversity for shorter
texts, making it well suited to the evaluation of typically short user
utterances.

4.3 quantitative evaluation results

LLM Instr
Type

Compl
Rate

Succ
Rate

Book
Rate

Info
Prec

Info
Rec

Info
F1

Succ
DT

DT

BASE-US 0.61 0.40 0.55 0.53 0.78 0.59 26.0 26.76

FLANT-T5 Le=0 0.09 0.07 0.06 0.28 0.21 0.22 18 22.26

Le=1 0.06 0.04 0.13 0.21 0.18 0.18 7 23.42

Le=2 0.11 0.07 0.11 0.32 0.29 0.27 7.14 22.2

Le=2,ON 0.08 0.05 0.10 0.25 0.23 0.21 18.4 22.56

Le=2,JS,ON 0.09 0.07 0.16 0.26 0.22 0.22 13.14 21.66

Llama2 Le=0 0.10 0.08 0.03 0.33 0.26 0.27 22.52 24.68

Le=1 0.19 0.17 0.18 0.33 0.33 0.31 24.06 28.78

Le=2 0.20 0.18 0.14 0.31 0.35 0.31 19.00 27.68

Le=2,ON 0.20 0.19 0.15 0.33 0.35 0.34 21.36 27.18

Le=2,JS,ON 0.22 0.20 0.17 0.36 0.38 0.37 23.12 26.06

GPT-3.5 Le=0 0.2 0.17 0.06 0.49 0.45 0.43 19.52 22.68

Le=1 0.29 0.23 0.25 0.48 0.54 0.46 20.86 24.04

Le=2 0.29 0.27 0.21 0.45 0.51 0.45 19.92 22.42

Le=2,ON 0.3 0.25 0.20 0.45 0.55 0.47 21.36 25.18

Le=2,JS,ON 0.33 0.28 0.26 0.59 0.50 0.26 22.00 24.06

Table 4.1: Zero-Shot Success Evaluation Results.

4.3.1 Quantitative Results Goal Fulfillment Performance

Before discussing the results of the automatic evaluation, it should be noted
that the goal success metrics do not directly measure the performance of the
proposed user simulator and its strategies, but rather quantify the effective-
ness of the communication between TODS and US. In the evaluation setup,

4.3 quantitative evaluation results 60

LLM Rolee Compl
Rate

Succ
Rate

Book
Rate

Info
Prec

Info
Rec

Info
F1

Succ
DT

DT

BASE-US 0.61 0.40 0.55 0.53 0.78 0.59 26.0 26.76

GPT-3.5 Tourist 0.3 0.23 0.16 0.41 0.51 0.42 24.08 26.10

User Sim 0.32 0.24 0.27 0.48 0.53 0.48 19.33 24.06

Customer1 0.35 0.25 0.24 0.52 0.63 0.54 22.00 26.94

Customer2 0.32 0.22 0.18 0.48 0.56 0.47 25.18 26.90

Table 4.2: Role Success Evaluation Results.

LLM Strat &
Format

Compl
Rate

Succ
Rate

Book
Rate

Info
Prec

Info
Rec

Info
F1

Succ
DT

DT

BASE-US 0.61 0.40 0.55 0.53 0.78 0.59 26.0 26.76

GPT-3.5 Sim,NL 0.22 0.19 0.32 0.42 0.45 0.41 15.15 14.84

Sim, JSON 0.24 0.21 0.15 0.41 0.43 0.40 12.95 15.48

Jac, NL 0.21 0.18 0.30 0.40 0.44 0.42 14.5 15.20

Jac, JSON 0.23 0.22 0.14 0.40 0.42 0.41 12.52 15.23

Table 4.3: Few-Shot Success Evaluation results.

see Figure 4.1, the additional user goal evaluation component and the NLU
of the TODS are confounding factors to the results. This is underlined by the
fact that the US BASELINE, using a MultiWOZ template NLU, only com-
pleted less than half of the dialogues, successfully filling each slot correctly.
These difficult circumstances emphasise the difficulty of the User Simulator
on its own, but at the same time test it on a TODS that is difficult to com-
municate. As one of the goals of a user simulator is to ensure the quality of
the TODS before deployment, these circumstances seem to present a realistic
picture of a TODS that is not ready for deployment, thus revealing the true
capabilities of the proposed US. In section 4.4, an analysis of the low success
metrics is performed, revealing the true quality of the proposed ICL-based
US.

The chosen baseline user simulator clearly outperforms the proposed ICL-
US in terms of goal completion performance on every evaluated strategy
and LLM combination. However, the proposed ICL-US, when successful,
does so on average in a shorter dialogue as described by the average suc-
cess dialogue turns. The superior attributes of the baseline user simulator
can be attributed to the template TODS generation upon which the simula-
tor components have been tailored to communicate.

Among the prompt-based models, GPT-3.5 performs best, followed by FLAN-
T5 and finally LLama2. Due to the low performance in the Zero-Shot setting,
the following Role and Few-Shot experiments were carried out exclusively
with GPT as the user simulator LLM. The Zero-Shot setting results in higher
performance compared to the Few-Shot setting, which includes data from
the MultiWOZ training dataset. This can be seen in the lower average num-

4.3 quantitative evaluation results 61

ber of dialogue turns compared to the zero-shot setting, where GPT appears
to be more persistent in its communication. However, the average number
of dialogue turns is lower in the success setting than in the zero-shot setting,
which may be due to the shorter dialogues presented in the demonstrations,
as the human interaction does not include misunderstandings due to mis-
classification on the part of the system, and tends to be of a shorter nature,
which will be discussed in the 4.4 section.

The different Role prompting approaches (see .2) did not have much influ-
ence on the success scores, as the metrics tend to be relatively consistent.
The more domain-specific role of Tourist gives the lowest success scores, fol-
lowed by Customer 2, who was given shorter instructions, as an impatient
customer might have done.

4.3.2 Quantitative Diversity Evaluation Results

LLM Instr
Type

UUtt UUtt-
Length

Uni-
grams

Bi-
grams

Tri-
rams

SE CE MSTTR MTLD

BASE Set 672 12.60 682 2860 4450 7.27 2.74 0.76 60.88

BASE-US 1400 13.05 491 2103 3681 6.82 2.49 0.67 37.98

FLANT-T5 Le=0 1113 7.08 720 2334 3368 7.12 2.47 0.64 31.96

Le=1 1171 6.97 728 2460 3473 7.15 2.61 0.67 35.11

Le=2 1110 7.05 665 02281 3340 7.12 2.56 0.66 34.36

Le=2,ON 1128 7.05 666 2257 3309 7.05 2.56 0.65 34.31

Le=2,SJ,ON 1083 7.15 648 2156 3129 7.04 2.51 0.64 32.48

Llama2 Le=0 1453 21.22 841 2784 4531 7.01 2.38 0.63 41.04

Le=1 1439 22.05 853 3311 5351 7.41 2.4 0.64 42.90

Le=2 1384 20.92 740 2580 4043 6.9 2.08 0.62 38.25

Le=2,ON 1281 22.12 940 2780 5033 7.2 2.08 0.61 40.25

Le=2,SJ,ON 1384 23.92 999 3580 5543 7.3 2.28 0.65 41.25

GPT-3.5 Le=0 1134 9.82 747 2818 4271 7.32 2.65 0.725 48.05

Le=1 1202 13.57 868 3892 6520 7.42 2.94 0.79 51.68

Le=2 1121 11.055 705 2833 4540 7.2 2.7 0.69 41.57

Le=2,ON 1259 13.51 850 3643 6050 7.36 2.8 0.68 41.34

Le=2,SJ,ON 1203 17.41 1066 4416 7559 7.53 2.96 0.68 42.77

Table 4.4: Zero-Shot Diversity Evaluation Results.

Tables 4.4, 4.5, 4.6 present the results of the lexical diversity analysis for
the baseline user simulator and the evaluated prompting strategies and dif-
ferent LLMs. The prompt-based models have significantly higher unique
uni, bigram and trigram counts than the baseline US and the baseline set
itself, but these differences in the baseline set can be attributed to the lower
average dialogue turns compared to the evaluation runs in this automated

4.4 qualitative evaluation results & human error analysis 62

LLM Role UUtt UUtt-
Length

Uni-
grams

Bi-
grams

Tri-
rams

SE CE MSTTR MTLD

BASE Set 672 12.60 682 2860 4450 7.27 2.74 0.76 60.88

BASE-US 1400 13.05 491 2103 3681 6.82 2.49 0.67 37.98

GPT-3.5 Tourist 1305 16.68 1023 4501 7811 7.45 2.96 0.69 45.74

User Sim 1203 18.81 1044 4933 8790 07.53 3.05 0.68 42.54

Customer1 1347 17.07 949 4068 7203 7.4 2.90 0.67 41.24

Customer2 1345 15.09 1005 4171 7157 7.44 2.94 0.66 38.60

Table 4.5: Role Diversity Eval Results.

LLM Strat &
Format

UUtt UUtt-
Length

Uni-
grams

Bi-
grams

Tri-
rams

SE CE MSTTR MTLD

BASE Set 1347 12.60 917 4500 7674 7.32 2.95 0.76 60.96

BASE-US 1400 13.05 491 2103 3681 6.82 2.49 0.67 37.98

GPT-3.5 Sim,NL 742 10.95 630 2379 3623 7.34 2.62 0.74 57.45

Sim, JSON 774 10.34 750 2776 4093 7.53 2.74 0.759 58.15

Jac, NL 755 11.05 789 2677 3857 7.35 2.63 0.74 57.88

Jac, JSON 754 10.02 740 2799 4102 7.51 2.73 0.756 58.06

Table 4.6: Few-Shot Diversity Evaluation Results.

evaluation. Therefore, the focus is on the non-traditional diversity metrics,
which are included as a means of completion, as mentioned above.

By far the most meaningful metric is the MTLD for measuring the lexical
diversity of User Simulato utterances, as described by Davidson et al. [14].
Therefore, the focus of the description is primarily on the MTLD metric.
This metric should be relatively close to the baseline human conversation
dataset. The generation of GPT3.5, especially in the few-shot setting, replaces
the Baseline User Simulator in the SE, CE, MSTTR and MLTD dimensions,
which generates utterances based on a template mechanism. Thus, while
LLM’s target success rates are lower than those of the Baseline model, they
use a richer vocabulary, which is of paramount importance when testing
NLU components. Among the models tested, LLama2 generates the longest
average user utterances, followed by GPT-3.5 and Flan-T5. While GPT3.5
produces longer utterances in the more complex zero-shot instructions, it is
generally close to the baseline dataset.

4.4 qualitative evaluation results & human error analysis

As mentioned above, the evaluation process of user simulators is still an
open research question, so manual inspection is necessary to uncover issues
that arise during the automatic evaluation process. The manual inspection of
the results identified various issues from both the user and system perspec-
tives, resulting in lower success metrics. However, this qualitative analysis is
consistent with the findings of the automated diversity metrics. In particular,

4.4 qualitative evaluation results & human error analysis 63

GPT-3.5 has the most natural conversations. The following sections provide
a detailed examination of these identified issues with illustrative examples.
For the sake of clarity and organisation, the example conversations are in-
cluded in the Appendix .1.

TODS-NLU misclassifications can drastically reduce the success metrics mea-
sured in the evaluation process. This is due to the fact that the evaluation
measures the effectiveness of the conversation on both sides. The qualitative
evaluation made it clear that the chosen TODS had difficulty understanding
the intent of the user simulators. This is due to the fact that the user simula-
tor is used with the system without any further fine-tuning to adapt to the
user simulator’s communication style. Despite lowering the success metrics
of the conversation, this is extremely useful as it allows for the detection of
misclassifications by the system NLU. Depending on the misclassification,
this can lead to a premature termination of the dialogue, as in dialogue .6.
Another cause of dialogue termination can be if the system misclassifies re-
quests that are important for the user’s goal, as in dialogue .7, where the
system fails several times to understand the request for the address of a
restaurant. In addition to the processing of the user utterance as input, the
qualitative analysis showed that there are some problems in the system-side
NLG component, where instead of the slot value none was returned, as in
the dialogue example.

The user goal evaluation component in the evaluation setup to use the pro-
posed ICL-based US is another potential candidate for misclassification. The
NLU components that evaluate the status of user goal fulfilment commu-
nicate directly with the mutliwoz evaluator class in the convlab-3 frame-
work, updating the slot filling problematic. For example, if the user does
not request a particular slot, but the system mentions it, thus answering an
unanswered question, the LLM is unlikely to ask for this information again,
resulting in the goal being unfulfilled from the perspective of the evaluation
component. On the user simulator side, there is also the problem that not
all requirements in the user goal are mentioned. A prompt based US may
easily give up after a dialogue breakdown, leaving a subgoal unfulfilled that
deviates from the instruction to fulfil all tasks devised in the prompt. For
example, GPT-3.5 in the dialogue .7 does not attempt to retrieve the address
after several approaches leaving the goal unfulfilled. Occasionally the user
simulator generates hallucinations or degenerated text, especially LLama2

and FLant5 in a zero instruction setting with just a simple instruction. in
dialogue .5 LLama2 starts a conversational loop iterating over the same user
utterances, and in .4 it offers help to the assistant contrary to the prompted
instruction. The problem probably stems from the training data used for lan-
guage models (LLMs), where the focus is often on replicating the behaviour
of the assistant rather than faithfully capturing the behaviour of the user.

4.4 qualitative evaluation results & human error analysis 64

5
C O N C L U S I O N & F U T U R E W O R K

The growing importance of human-computer interaction and natural lan-
guage processing has attracted considerable attention across academic and
industrial domains. This surge gained further momentum with the semi-
nal publication of the LLM-based dialogue system ChatGPT. While open-
domain dialogue systems predominantly emphasise user engagement, TODS
have emerged with a distinct focus on assisting users in performing spe-
cific tasks within well-defined domains [104]. Typically, TODS are domain-
specific, based on structured ontologies that describe their functionalities,
such as facilitating restaurant bookings or seminar reservations - providing
tangible value to real-world businesses.

However, a significant barrier to the deployment of new TODS is the labour-
intensive development process required to ensure dialogue quality. This of-
ten involves multiple stages and iterations of human evaluation before a
system is ready for deployment. The quality of TODS and their user expe-
rience depends on the system’s ability to understand user intent and gener-
ate appropriate responses. Automated evaluation mechanisms for TODS are
therefore essential and play a crucial role in enabling researchers and devel-
opers to systematically test and evaluate the quality of TODS in controlled
environments before deploying them to real users.

Two primary evaluation methods, dataset-based and interactive, have been
used in the past to assess the quality of TODS. Dataset-based evaluation,
commonly used in the literature, involves generating responses using TODS
on annotated dialogue logs from existing datasets, such as MultiWOZ. Al-
though widely used as a benchmark, it does not capture the core task of
TODS - interactive conversations with users. The fixed nature of user utter-
ances in the benchmark data limits the adaptability of the system to real
users, resulting in potential policy mismatches. This drawback can penalise
reasonable responses due to mismatches with expected outcomes in the
benchmark dataset. In addition, TOD benchmark datasets are often domain-
constrained, hindering the evaluation of TOD systems in novel domains.

The second approach is interactive evaluation, where a user simulator en-
gages in a multi-turn dialogue with the TODS, simulating real conversa-
tions. Although closer to real-world use, building an effective simulator can
be time consuming and expensive. Previous approaches required human
effort to create rules and heuristics, or relied on annotated data, limiting
adaptability to unseen domains. The reliance on annotated datasets limits
the adaptability of current user simulators in the literature.

conclusion & future work 66

Recent advances in LLMs such as GPT-4 [105] highlight emerging in-context
learning capabilities, demonstrating effectiveness in dialogue system tasks
such as intent classification, dialogue state tracking, and natural language
generation [28, 53, 80]. These models efficiently perform complex tasks with
minimal data and no additional training by interpreting textual input, in-
cluding instructions and demonstrations. By exploiting this potential, LLMs
offer a viable solution to reduce the reliance on extensive data when creat-
ing US for the evaluation and development of TODS. While investigating the
possible application to the domain of US user simulation, Tarragni et al. [85]
and Davidson et al. [14] also identified this research gap, emphasising the
importance of exploring these capabilities for task-oriented user simulation
and their potential.

In this work, the application of these emerging in-context capabilities to the
task of interactive user simulation in the domain of TODS has been explored.
Therefore, a basic setup of an LLM-based user simulator, which is end-to-
end ICL-based, is proposed. Additional components that can enhance the
evaluation capabilities of TODS through the US are also conceptualised. Fur-
thermore, the architecture has been modified to allow the evaluation of the
user simulator itself through an interactive dialogue in the MultiWOZ do-
main using the Convlab-3 framework [109].

While examining the ICL approaches of Terragni et al. [85] and Davidson
et al. [14] and related work, a lack of comparability of the prompting tech-
niques used became apparent, and this impression was confirmed by the
recent proposal of the TELeR taxonomy for prompting techniques applied
to complex problems by Santu et al. [71]. This taxonomy was modified to
allow for a more fine-grained description of the ICL strategies studied, re-
sulting in the proposed TELeR-RESPONDeR taxonomy. This taxonomy was
applied to all the prompting strategies investigated, thus increasing compa-
rability.

To explore the potential use of LLMs’ reasoning and planning skills, and to
design and implement strategies based on zero-shot and few-shot prompt-
ing. A subset of these, namely Instruction Prompting, Role Prompting in a
Zero-Shot and Few-Shot setting were evaluated in an interactive dialogue
with a TODS. The performance of these interactions was measured by suc-
cess and diversity metrics using the MultiWOZ dataset [6] and the Convlab-
3 framework [109]. These results were compared to a diversity baseline ex-
tracted from the MultiWOZ human-to-human dataset and to the results of a
pre-trained pipeline based user simulator. Finally, a qualitative human anal-
ysis was performed.

The quantitative evaluation results regarding lexical diversity showed that
the proposed ICL-US is able to generate lexically diverse user responses that

conclusion & future work 67

closely match the baseline of real users as measured by MTLD. In contrast
to the diversity metrics, the success metrics were lower than the user simu-
lator baseline. As the qualitative analysis ensured that the diversity of gen-
erated utterances was not based on poorly grounded output, it nevertheless
revealed common occurrences that caused failed goal completions by the
user side of the interactive evaluation. These included, as described in the
evaluation chapter, premature dialogue termination, conversation loops and
llm hallucination. Furthermore, the analysis of the conversation revealed that
the performance of the additional components added for evaluation modi-
fication and above all the system-related misclassifications of the generated
user utterances lead to a drastic decrease in the goal success metrics, under-
lining the difficulty of evaluating the user simulator.

Despite not beating the baseline, the proposed simulator showed promis-
ing capabilities to interact with a TODS and follow a described user goal,
even in a zero-shot setting, which yielded significantly better results than
the few-shot setting. One reason for this could be that the dialogue in the
example demonstrations rarely had misclassifications, as both actors were
human, whereas misclassifications of the TODS used as interlucator were
common. The use of roles can influence response style, making this user
simulator strategy adaptable to different audiences. Furthermore, the evalu-
ation revealed that performance is highly dependent on the underlying LLM
and the prompting style chosen, and showed that different LLMs respond
differently to prompting strategies and text choices, and thus different post-
processing techniques may be essential.

As discussed by Davidson et al. [14], the task of a user simulator should be
to mimic a real human as closely as possible, rather than maximising goal
success metrics by communicating as effectively as possible with a TODS,
which may result in artificial communication. In the words of Davidson et al.
[14] "In designing a system to simulate real human interaction with a TOD
system, our goal is not to maximise the ability of the simulator to convey
information to the TOD system with which it interacts. Rather, we want to
build a simulator that communicates in a naturalistic way." This thesis sup-
ports this, claiming that more appropriate ways of evaluating user simula-
tors remain a gap in research and should be further explored in future work.

While this is a step forward in effectively simulating users in interactive
task-oriented conversations, the use of in-context learning for TOD user
simulation needs to be further explored. The infinite solution space of in-
context learning approaches leaves room for endless experimentation. Poten-
tial concepts of approaches addressing reasoning, planning, and ensemble-
based strategies, such as applying zero-shot chain of thought prompting,
self-consistency prompting, or least to most prompting to the task of user
response generation in an interactive dialogue have been designed. Manual
testing of these approaches in a Wizard of OS style manner showed promis-

conclusion & future work 68

ing results, but a more sophisticated evaluation is still pending and shouldbe
explored in future work.

As suggested to enhance the evaluation capabilities of the evaluator itself, as
well as possible use in the prompt itself, a dialogue state tracking component
would allow the user simulator to track the completion of the conversation,
thus allowing external evaluation of the conversation by the simulator when
conversing with a TODS. As LLMs have already been used to apply state
tracking [28] in a zero-shot manner, the same LLM for generating the out-
put could be used to solve the dst task with another prompt targeting the
dst task. Furthermore, the state update could be used to adjust the content
of the prompt given the current state detected by the dst component, thus
adjusting the complexity of the user goal by prompting only subgoals.

As the LLM can be used as a multi-purpose tool, additional user feedback
could be achieved by prompting the LLM in the architecture to rate the re-
sponse or dialogue, which could then be used later to apply active learning
approaches to the rated data, as recently explored by Hu et al. [34]. In ad-
dition to feedback, the flexibility of the prompt as a source of instruction
could enable other human behaviours, such as changing a goal during the
conversation. However, the sometimes valued unpredictable behaviour can
also lead to potentially inappropriate responses.

In this thesis, only a small selection of LLMs was considered for evalua-
tion, another important point of research is the testing of other LLMs, such
as the aforementioned FALCON [66] or Mistral[39] LLMS, which could not
be tested in the evaluation due to resource limitations and framework depen-
dencies. Finally, another influential aspect of user generation is the choice of
generation strategy, which was also discussed in the concept chapter. Con-
sequently, future work could also evaluate the different possible generation
strategies.

Part II

A P P E N D I X

.1 appendix a : qualitative analysis examples 70

.1 appendix a : qualitative analysis examples

Prompted:
Your task is to generate the next CUSTOMER utterance. Fulfill all RE-
QUIREMENTS in the given order. Stick to the order of the subgoals in the
requirement. Refer to one subgoal at a time. If the ASSISTANT responds
with an unexpected answer, try to rephrase your request until you are sure
the ASSISTANT understood you and gave you all the correct answers.
REQUIREMENTS: You are looking forward to trying local
restaurants... (List of requirements)

CONVERSATION HISTORY: ASSISTANT: How can I help you? CUSTOMER:
Yes, I’m looking for a particular restaurant called Frankie and
Bennys. ASSISTANT: Do you have a location preference?

Generated:
CUSTOMER: No, any location is fine. Now, I want to book a table for 2

people at 12:45 on Saturday at Frankie and Bennys.
ASSISTANT: Great! There is availability for 12:45 on Saturday. May I have
your name for the reservation?
CUSTOMER: Sure, it’s John.
ASSISTANT: Thank you. Your table for 2 at Frankie and Bennys on Satur-
day at 12:45 has been booked. Is there anything else I... (processed Sure, it’s
John.)

Processed:
No, any location is fine. Now, I want to book a table for 2 people at 12:45

on Saturday at Frankie and Bennys.

Table .1: Example of Post-Processing and typical behavior of the LLMs to complete
the Dialog.

.1 appendix a : qualitative analysis examples 71

Role 1:
You are a picky tourist who appreciates fine details and unique cultural
experiences.As a meticulous traveler, you seek personalized recommenda-
tions for activities that match your specific interests.

Role 2:
As an advanced user simulator, you are programmed to simulate complex
user behaviors and interactions. You are able to generate a variety of conver-
sation styles, asking detailed questions, expressing varying emotions, and
engaging in dialogues to assess the system’s responsiveness and adaptabil-
ity.
Role 3:
As a curious customer, you have a natural inclination to explore and learn
about new products and services. You enjoy asking detailed questions
about features, benefits, and user experiences.You seek informative and en-
gaging interactions that help you make well-informed decisions.

Role 4:
You are a stressed out customer, you have little patience and your answers
are short and clear. You just want to fulfill your tasks as fast as possible.
Wrong answers by the ASSISTANT are responded with keyword-like refor-
mulation of your previous response.

Table .2: Different designed roles for role prompting.

.1 appendix a : qualitative analysis examples 72

St
ra

te
gy

Pr
om

pt
Tu

rn
Ex

pr
es

si
on

Le
ve

l
D

et
ai

l
R

ol
e

R
ea

so
ni

ng
En

se
m

bl
e

Se
lf

-
Ju

st
ifi

ca
ti

on
Pl

an
ni

ng
O

ut
pu

t
N

ot
at

io
n

D
em

on
st

r
R

et
ri

ev
al

In
st

ru
ct

io
n

In
st

r 1
>=

1
5

I
0

0
0

0
0

0
0

0
0

In
st

r 2
>=

1
5

I
1

0
0

0
0

0
0

0
0

In
st

r 3
>=

1
5

I
2

0
0

0
0

0
0

0
0

In
st

r 4
>=

1
5

I
2

0
0

0
0

0
1

0
0

In
st

r 5
>=

1
5

I
2

0
0

0
1

0
1

0
0

R
ol

e
R

ol
e

+I
ns

tr
5

>=
1

5
I

2
0

0
0

1
0

1
0

0

Fe
w

Sh
ot

Fe
w

+
In

st
r3

>=
1

5
I

2
0

0
0

1
0

0
2

1

Ta
bl

e
.3

:T
El

eR
-R

ES
PO

N
D

eR
Ta

xo
no

m
y

ap
pl

ie
d

to
th

e
ev

al
ua

te
d

pr
om

pt
s

in
sp

ir
ed

by
Sa

nt
u

et
al

[7
1

].

.1 appendix a : qualitative analysis examples 73

REQUIREMENTS:
You are looking forward to trying local restaurants. The restaurant should
be in the expensive price range. The restaurant should be in the east. The
restaurant should serve Italian food. If there is no such restaurant, consider
one that serves gastropub food. Once you find a restaurant, make sure you
get the phone number and address. Once you find the restaurant, you want
to book a table for 8 people at 12:15 on Wednesday. You are excited about
seeing local tourist attractions. You are looking for a particular attraction.
Its name is called Cherry Hinton Hall and Grounds. Once you find an
attraction, make sure you get the postcode.

CONVERSATION HISTORY:
ASSISTANT: How can I help you?
CUSTOMER: Hi there! I’m planning a trip to the east of the city, and I’m
looking for a nice restaurant that serves Italian food. Do you have any rec-
ommendations?
ASSISTANT: I am sorry; there is none even in the east.
CUSTOMER: Sure, I’d be happy to help you find a nice restaurant in the
east that serves Italian food.
ASSISTANT: How many people will be?
CUSTOMER: Sure! I’m looking for a restaurant that can accommodate 8

people at 12:15 PM on Wednesday.
ASSISTANT: Would you like to try Pizza Hut Fen Ditton? The reference
number is 00000054. The day is Wednesday.
CUSTOMER: Sure, I’d be happy to help you find a nice restaurant in the
east that serves Italian food.

Table .4: LLama2 Zero-shot setting Instruction 1: US hallucinates the role of the
Assistant.

.1 appendix a : qualitative analysis examples 74

REQUIREMENTS:
You are looking for a place to stay. The hotel should be in the type of guest-
house. The hotel should have a star of 4. The hotel does not need to include
free parking. Once you find the hotel, you want to book it for 2 people
on Saturday for 2 nights. You are looking forward to trying local restau-
rants. The restaurant should be in the moderate price range. The restaurant
should serve Italian food. Once you find a restaurant, make sure you get
the address. Once you find the restaurant, you want to book a table for 7

people at 16:30 on the same day as the hotel booking.

CONVERSATION HISTORY:
ASSISTANT: How can I help you?
CUSTOMER: Hi there! I’m looking for a guesthouse with a star rating of
at least 4, and I want to book it for two people on Saturday for two nights.
ASSISTANT: The reference number is 00000000. It is indeed in the east.
You are welcome. Is there anything else I can help you with today?
CUSTOMER: I would like to know if you have any recommendations for
local Italian restaurants within walking distance of the guesthouse. Could
you also provide me with their addresses?
ASSISTANT: I am sorry but there are no restaurants that fit that criteria in
the east.
CUSTOMER: Hi there! I’m looking for a guesthouse with a star rating of
at least 4, and I want to book it for two people on Saturday for two nights.
ASSISTANT: It is a guesthouse.
CUSTOMER: Hi there! I’m looking for a guesthouse with a star rating of
at least 4, and I want to book it for two people on Saturday for two nights.
ASSISTANT: It does have 4 stars.
CUSTOMER: Hi there! I’m looking for a guesthouse with a star rating of
at least 4, and I want to book it for two people on Saturday for two nights.
... conversation continues

Table .5: LLama2 dialog 2. zero-shot instruction: Simulator starts to repreat the same
utterance.

.1 appendix a : qualitative analysis examples 75

REQUIREMENTS:
You are excited about seeing local tourist attractions. You are looking for a
particular attraction. Its name is called Cineworld Cinema. Once you find
an attraction, make sure you get the postcode, phone number, and area.

CONVERSATION HISTORY:
ASSISTANT: How can I help you?
CUSTOMER: I am looking for Cineworld Cinema.
ASSISTANT: I think a fun place to visit is Cineworld Cinema. That one is
located in the south.
CUSTOMER: That is good; I will get it then.
ASSISTANT: What about Cineworld Cinema? Its entrance fee is none.
CUSTOMER: Is it open on Sunday?
ASSISTANT: You are very welcome. Goodbye.
CUSTOMER: Yes, thank you.
ASSISTANT: Thank you for using our system!
CUSTOMER: That is good.
ASSISTANT: Thank you and enjoy your visit. Have a great day.
CUSTOMER: I will.
ASSISTANT: Where in town would you like to go?
CUSTOMER: That is all.

Table .6: FLAN-T5 zero-shot instruction 0: Asking for Info not mentioned in Goal
and system side missclassification tricking the US to believ the conversa-
tion is about to end without fulfilling the User Goal.

.1 appendix a : qualitative analysis examples 76

REQUIREMENTS:
{’train’: {’info’: {’day’: ’saturday’, ’departure’: ’cambridge’, ’destination’:
’leicester’, ’leaveAt’: ’09:15’}, ’reqt’: {’duration’: ’?’}}, ’restaurant’: {’info’:
{’area’: ’west’, ’food’: ’british’, ’pricerange’: ’moderate’}, ’reqt’: {’phone’: ’?’,
’address’: ’?’}}, ’domainordering′ : (′train′,′ restaurant′)}
CONVERSATION HISTORY:
ASSISTANT: How can I help you?
CUSTOMER: I’m looking for a train leaving from Cambridge to Leicester
on Saturday.
ASSISTANT: Can you tell me what day you would like to travel, please?
What time would you like to depart?
CUSTOMER: Can you please look for a train leaving after 09:15.
ASSISTANT: There are 10. That train leaves on Saturday. The fare is 30.24

pounds.
CUSTOMER: No thanks, can I get the train duration?
ASSISTANT: There are some wonderful swimming pools in that area.
CUSTOMER: I think you misunderstood. Can I get the train duration?
ASSISTANT: I’m happy to help, and I hope you enjoy your stay!
CUSTOMER: Can I get the train duration, please?
ASSISTANT: Thank you and goodbye.
CUSTOMER: No wait, I still need the train duration.
ASSISTANT: The travel will take 105 minutes.
CUSTOMER: Okay, thank you. Also, I would like to find a British restau-
rant in the west area. Do you have any suggestions?
ASSISTANT: I have 3 options for you! It is a moderate restaurant.
CUSTOMER: Ok, I think I’ll go with that. Can I please get the phone num-
ber and address for the restaurant?
ASSISTANT: 01223353110 is the restaurant phone number.
CUSTOMER: And the address?
ASSISTANT: 01223353110 is the restaurant phone number.
CUSTOMER: I’m sorry, can you repeat the address?
ASSISTANT: How about Graffiti? It is at 21-24 Northampton Street. It is
located in the west. It is in the west area.
CUSTOMER: No thanks, I think I’ll stick with the original restaurant you
suggested. Can you please give me the phone number and address?
ASSISTANT: Saint John’s Chop House looks like a good place. The number
of the restaurant is 01223353110. Did you need any further assistance today?
CUSTOMER: No thank you, that’s all for now.
ASSISTANT: You are very welcome. Goodbye.

Table .7: GPT-3.5 Few-Shot Similarity Json Goal: TODS not understanding the US
intent several times to get the address. Resulting in lower success metrics.

.1 appendix a : qualitative analysis examples 77

REQUIREMENTS:
You are looking for a place to stay. The hotel should be of type hotel. The
hotel should be in the north. The hotel should have a star rating of 4. If
there is no such hotel, consider one in the west area. Once you find a hotel,
make sure you get the phone number.

CONVERSATION HISTORY:
ASSISTANT: How can I help you?
CUSTOMER: It should be a type of hotel, in the north, and have 4 stars,
but if none are available, how about a west-ed hotel?
ASSISTANT: How about Huntingdon Marriott Hotel? Internet is available.
It is in the expensive price range.
CUSTOMER: Do I get the phone number of Huntingdon Marriott Hotel,
please?
ASSISTANT: It is in the west area. They have a 4-star rating.
CUSTOMER: Can I get the phone number for Huntingdon Marriott Hotel,
please?
ASSISTANT: It is rated 4 stars.
CUSTOMER: It is available in the expensive price range, in the west area,
and has a 4-star rating. What’s the phone number for Huntingdon Marriott
Hotel, please?
ASSISTANT: How about Huntingdon Marriott Hotel? It’s in the west. It’s
in the west.
CUSTOMER: Yes, I understand it’s in the west area, but can I get the phone
number for Huntingdon Marriott Hotel, please?
ASSISTANT: What area would you like to stay in?
CUSTOMER: The west area, please. What is the phone number for Hunt-
ingdon Marriott Hotel?
ASSISTANT: Ok, what day would you like to make the reservation on?
CUSTOMER: The phone number for Huntingdon Marriott Hotel, please?
ASSISTANT: The phone number of the hotel is none. Did you need any
further assistance today?
CUSTOMER: No, the phone number and address for Huntingdon Marriott
Hotel would be great, please.
ASSISTANT: It is in the west. Is there anything else I can help you with
today?
CUSTOMER: No, thank you.
ASSISTANT: Thank you for using our system!
CUSTOMER: Can you please provide me with the phone number and
address of Huntingdon Marriott Hotel?
ASSISTANT: It is a hotel. Would you like a guesthouse or a hotel?
CUSTOMER: I am looking for a hotel, preferably in the west area with
a 4-star rating. Can you provide me with the phone number and address,
please?
ASSISTANT: The phone number of the hotel is 01480446000. This is an
expensive hotel.
CUSTOMER:

Table .8: GPT-3.5 Zero-Shot Instruction 5: TODS Template NLG not working cor-
rectly prolonging dialog and Missclassifications.

B I B L I O G R A P H Y

[1] Layla El Asri, Jing He, and Kaheer Suleman. “A sequence-to-sequence
model for user simulation in spoken dialogue systems.” In: arXiv
preprint arXiv:1607.00070 (2016).

[2] Vevake Balaraman, Seyedmostafa Sheikhalishahi, and Bernardo Magnini.
“Recent neural methods on dialogue state tracking for task-oriented
dialogue systems: A survey.” In: Proceedings of the 22nd annual meeting
of the special interest group on discourse and dialogue. 2021, pp. 239–251.

[3] Krisztian Balog and ChengXiang Zhai. User Simulation for Evaluating
Information Access Systems. 2023. arXiv: 2306.08550 [cs.HC].

[4] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, et al. “Gpt-neox-20b: An open-source autoregressive language
model.” In: arXiv preprint arXiv:2204.06745 (2022).

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. “Language models are few-shot
learners.” In: Advances in neural information processing systems 33 (2020),
pp. 1877–1901.

[6] Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Inigo Casanueva,
Stefan Ultes, Osman Ramadan, and Milica Gašić. “Multiwoz–a large-
scale multi-domain wizard-of-oz dataset for task-oriented dialogue
modelling.” In: arXiv preprint arXiv:1810.00278 (2018).

[7] Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind
Neelakantan, Daniel Duckworth, Semih Yavuz, Ben Goodrich, Amit
Dubey, Andy Cedilnik, and Kyu-Young Kim. “Taskmaster-1: Toward
a realistic and diverse dialog dataset.” In: arXiv preprint arXiv:1909.05358
(2019).

[8] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao
Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al.
“A survey on evaluation of large language models.” In: arXiv preprint
arXiv:2307.03109 (2023).

[9] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. “A survey
on dialogue systems: Recent advances and new frontiers.” In: Acm
Sigkdd Explorations Newsletter 19.2 (2017), pp. 25–35.

[10] Moya Chen, Paul A Crook, and Stephen Roller. “Teaching models
new apis: Domain-agnostic simulators for task oriented dialogue.”
In: arXiv preprint arXiv:2110.06905 (2021).

https://arxiv.org/abs/2306.08550

bibliography 79

[11] Qinyuan Cheng, Linyang Li, Guofeng Quan, Feng Gao, Xiaofeng
Mou, and Xipeng Qiu. “Is MultiWOZ a Solved Task? An Interactive
TOD Evaluation Framework with User Simulator.” In: arXiv preprint
arXiv:2210.14529 (2022).

[12] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay,
William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Sid-
dhartha Brahma, et al. “Scaling instruction-finetuned language mod-
els.” In: arXiv preprint arXiv:2210.11416 (2022).

[13] Paul A Crook and Alex Marin. “Sequence to Sequence Modeling for
User Simulation in Dialog Systems.” In: Interspeech. 2017, pp. 1706–
1710.

[14] Sam Davidson, Salvatore Romeo, Raphael Shu, James Gung, Arshit
Gupta, Saab Mansour, and Yi Zhang. “User Simulation with Large
Language Models for Evaluating Task-Oriented Dialogue.” In: arXiv
preprint arXiv:2309.13233 (2023).

[15] Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, So-
phie Rosset, Eneko Agirre, and Mark Cieliebak. “Survey on evalua-
tion methods for dialogue systems.” In: Artificial Intelligence Review
54.1 (2020), pp. 755–810. doi: 10.1007/s10462-020-09866-x. url:
https://doi.org/10.1007%2Fs10462-020-09866-x.

[16] Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, So-
phie Rosset, Eneko Agirre, and Mark Cieliebak. “Survey on evalua-
tion methods for dialogue systems.” In: Artificial Intelligence Review
54 (2021), pp. 755–810.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language
understanding.” In: arXiv preprint arXiv:1810.04805 (2018).

[18] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao
Chang, Xu Sun, Jingjing Xu, and Zhifang Sui. “A survey for in-context
learning.” In: arXiv preprint arXiv:2301.00234 (2022).

[19] Wieland Eckert, Esther Levin, and Roberto Pieraccini. “User model-
ing for spoken dialogue system evaluation.” In: 1997 IEEE Workshop
on Automatic Speech Recognition and Understanding Proceedings. IEEE.
1997, pp. 80–87.

[20] Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar, Abhishek Sethi,
Peter Ku, Anuj Kumar Goyal, Sanchit Agarwal, Shuyang Gao, and
Dilek Hakkani-Tur. “MultiWOZ 2.1: A consolidated multi-domain di-
alogue dataset with state corrections and state tracking baselines.” In:
arXiv preprint arXiv:1907.01669 (2019).

[21] Aciel Eshky, Ben Allison, and Mark Steedman. “Generative goal-driven
user simulation for dialog management.” In: Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. 2012, pp. 71–81.

https://doi.org/10.1007/s10462-020-09866-x
https://doi.org/10.1007%2Fs10462-020-09866-x

bibliography 80

[22] Ryan Fellows, Hisham Ihshaish, Steve Battle, Ciaran Haines, Peter
Mayhew, and J Ignacio Deza. “Task-oriented Dialogue Systems: per-
formance vs. quality-optima, a review.” In: arXiv preprint arXiv:2112.11176
(2021).

[23] Jianfeng Gao, Chenyan Xiong, Paul Bennett, and Nick Craswell. Neu-
ral Approaches to Conversational Information Retrieval. 2022. arXiv: 2201.
05176 [cs.IR].

[24] Christian Geishauser, Carel van Niekerk, Nurul Lubis, Michael Heck,
Hsien-Chin Lin, Shutong Feng, and Milica Gašić. “Dynamic dialogue
policy for continual reinforcement learning.” In: arXiv preprint arXiv:2204.05928
(2022).

[25] Izzeddin Gür, Dilek Hakkani-Tür, Gokhan Tür, and Pararth Shah.
“User modeling for task oriented dialogues.” In: 2018 IEEE Spoken
Language Technology Workshop (SLT). IEEE. 2018, pp. 900–906.

[26] Muhammad Usman Hadi, R Qureshi, A Shah, M Irfan, A Zafar, MB
Shaikh, N Akhtar, J Wu, and S Mirjalili. “A survey on large language
models: Applications, challenges, limitations, and practical usage.”
In: TechRxiv (2023).

[27] Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin Lian, Chongxuan
Huang, Dazhen Wan, Wei Peng, and Minlie Huang. “Multiwoz 2.3:
A multi-domain task-oriented dialogue dataset enhanced with anno-
tation corrections and co-reference annotation.” In: Natural Language
Processing and Chinese Computing: 10th CCF International Conference,
NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part II
10. Springer. 2021, pp. 206–218.

[28] Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato Vukovic, Shu-
tong Feng, Christian Geishauser, Hsien-Chin Lin, Carel van Niekerk,
and Milica Gašić. “ChatGPT for Zero-shot Dialogue State Tracking:
A Solution or an Opportunity?” In: arXiv preprint arXiv:2306.01386
(2023).

[29] Matthew Henderson, Blaise Thomson, and Jason D Williams. “The
second dialog state tracking challenge.” In: Proceedings of the 15th an-
nual meeting of the special interest group on discourse and dialogue (SIG-
DIAL). 2014, pp. 263–272.

[30] Matthew Henderson, Blaise Thomson, and Jason D Williams. “The
third dialog state tracking challenge.” In: 2014 IEEE Spoken Language
Technology Workshop (SLT). IEEE. 2014, pp. 324–329.

[31] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory.” In: Neural computation 9.8 (1997), pp. 1735–1780.

[32] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. “The
curious case of neural text degeneration.” In: arXiv preprint arXiv:1904.09751
(2019).

https://arxiv.org/abs/2201.05176
https://arxiv.org/abs/2201.05176

bibliography 81

[33] Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, Noah A Smith,
and Mari Ostendorf. “In-context learning for few-shot dialogue state
tracking.” In: arXiv preprint arXiv:2203.08568 (2022).

[34] Zhiyuan Hu, Yue Feng, Anh Tuan Luu, Bryan Hooi, and Aldo Li-
pani. “Unlocking the Potential of User Feedback: Leveraging Large
Language Model as User Simulator to Enhance Dialogue System.” In:
arXiv preprint arXiv:2306.09821 (2023).

[35] Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. “Challenges in build-
ing intelligent open-domain dialog systems.” In: ACM Transactions on
Information Systems (TOIS) 38.3 (2020), pp. 1–32.

[36] Vojtěch Hudeček and Ondřej Dušek. “Are Large Language Models
All You Need for Task-Oriented Dialogue?” In: Proceedings of the 24th
Meeting of the Special Interest Group on Discourse and Dialogue. 2023,
pp. 216–228.

[37] Léo Jacqmin, Lina M Rojas-Barahona, and Benoit Favre. “" Do you
follow me?": A Survey of Recent Approaches in Dialogue State Track-
ing.” In: arXiv preprint arXiv:2207.14627 (2022).

[38] Siddhartha Jain, Xiaofei Ma, Anoop Deoras, and Bing Xiang. “Self-
consistency for open-ended generations.” In: arXiv preprint arXiv:2307.06857
(2023).

[39] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand,
Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. “Mistral
7B.” In: arXiv preprint arXiv:2310.06825 (2023).

[40] Yohan Jo, Xinyan Zhao, Arijit Biswas, Nikoletta Basiou, Vincent Au-
vray, Nikolaos Malandrakis, Angeliki Metallinou, and Alexandros
Potamianos. “Multi-User MultiWOZ: Task-Oriented Dialogues among
Multiple Users.” In: arXiv preprint arXiv:2310.20479 (2023).

[41] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similar-
ity search with GPUs.” In: IEEE Transactions on Big Data 7.3 (2019),
pp. 535–547.

[42] Filip Jurcıcek, Simon Keizer, Milica Gašic, Francois Mairesse, Blaise
Thomson, Kai Yu, and Steve Young. “Real user evaluation of spoken
dialogue systems using Amazon Mechanical Turk.” In: Proceedings of
INTERSPEECH. Vol. 11. 2011.

[43] Hannes Kath, Bengt Lüers, Thiago S Gouvêa, and Daniel Sonntag.
“Lost in Dialogue: A Review and Categorisation of Current Dialogue
System Approaches and Technical Solutions.” In: German Conference
on Artificial Intelligence (Künstliche Intelligenz). Springer. 2023, pp. 98–
113.

[44] John F Kelley. “An iterative design methodology for user-friendly nat-
ural language office information applications.” In: ACM Transactions
on Information Systems (TOIS) 2.1 (1984), pp. 26–41.

bibliography 82

[45] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. “Large language models are zero-shot reason-
ers.” In: Advances in neural information processing systems 35 (2022),
pp. 22199–22213.

[46] Florian Kreyssig, Inigo Casanueva, Pawel Budzianowski, and Mil-
ica Gasic. “Neural user simulation for corpus-based policy optimisa-
tion for spoken dialogue systems.” In: arXiv preprint arXiv:1805.06966
(2018).

[47] Stefan Larson and Kevin Leach. “A Survey of Intent Classification
and Slot-Filling Datasets for Task-Oriented Dialog.” In: arXiv preprint
arXiv:2207.13211 (2022).

[48] Harrison Lee, Raghav Gupta, Abhinav Rastogi, Yuan Cao, Bin Zhang,
and Yonghui Wu. “SGD-X: A Benchmark for Robust Generalization
in Schema-Guided Dialogue Systems.” In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 36. 10. 2022, pp. 10938–10946.

[49] S Lee, H Schulz, A Atkinson, J Gao, K Suleman, L El Asri, M Adada,
M Huang, S Sharma, W Tay, et al. “Multi-domain task-completion
dialog challenge.” In: Dialog system technology challenges 8.9 (2019).

[50] Sungjin Lee et al. “ConvLab: Multi-Domain End-to-End Dialog Sys-
tem Platform.” In: Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. 2019.

[51] Esther Levin, Roberto Pieraccini, and Wieland Eckert. “A stochastic
model of human-machine interaction for learning dialog strategies.”
In: IEEE Transactions on speech and audio processing 8.1 (2000), pp. 11–
23.

[52] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-
delrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettle-
moyer. “Bart: Denoising sequence-to-sequence pre-training for natu-
ral language generation, translation, and comprehension.” In: arXiv
preprint arXiv:1910.13461 (2019).

[53] Zekun Li, Wenhu Chen, Shiyang Li, Hong Wang, Jing Qian, and
Xifeng Yan. “Controllable Dialogue Simulation with In-Context Learn-
ing.” In: arXiv preprint arXiv:2210.04185 (2022).

[54] Hsien-Chin Lin, Christian Geishauser, Shutong Feng, Nurul Lubis,
Carel van Niekerk, Michael Heck, and Milica Gašić. “GenTUS: Simu-
lating user behaviour and language in task-oriented dialogues with
generative transformers.” In: arXiv preprint arXiv:2208.10817 (2022).

[55] Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van Niekerk, Chris-
tian Geishauser, Michael Heck, Shutong Feng, and Milica Gašić. “Domain-
independent user simulation with transformers for task-oriented dia-
logue systems.” In: arXiv preprint arXiv:2106.08838 (2021).

bibliography 83

[56] Hong Liu, Yucheng Cai, Zhijian Ou, Yi Huang, and Junlan Feng. “A
Generative User Simulator with GPT-based Architecture and Goal
State Tracking for Reinforced Multi-Domain Dialog Systems.” In: arXiv
preprint arXiv:2210.08692 (2022).

[57] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,
and Graham Neubig. “Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing.” In:
ACM Computing Surveys 55.9 (2023), pp. 1–35.

[58] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus
Stenetorp. “Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity.” In: arXiv preprint
arXiv:2104.08786 (2021).

[59] Christopher Manning and Hinrich Schutze. Foundations of statistical
natural language processing. MIT press, 1999.

[60] Philip M McCarthy and Scott Jarvis. “MTLD, vocd-D, and HD-D:
A validation study of sophisticated approaches to lexical diversity
assessment.” In: Behavior research methods 42.2 (2010), pp. 381–392.

[61] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh,
Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and
Dan Roth. “Recent advances in natural language processing via large
pre-trained language models: A survey.” In: ACM Computing Surveys
56.2 (2023), pp. 1–40.

[62] Biswesh Mohapatra, Gaurav Pandey, Danish Contractor, and Sachin-
dra Joshi. “Simulated Chats for Building Dialog Systems: Learning to
Generate Conversations from Instructions.” In: arXiv preprint arXiv:2010.10216
(2020).

[63] Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, and Erik Cambria.
“Recent advances in deep learning based dialogue systems: A system-
atic survey.” In: Artificial intelligence review 56.4 (2023), pp. 3055–3155.

[64] Carel van Niekerk, Andrey Malinin, Christian Geishauser, Michael
Heck, Hsien-chin Lin, Nurul Lubis, Shutong Feng, and Milica Gašić.
“Uncertainty measures in neural belief tracking and the effects on dia-
logue policy performance.” In: arXiv preprint arXiv:2109.04349 (2021).

[65] OpenAI. OpenAI GPT-3 API [gpt-3.5-turbo-instruct]. 2023. url: https:
//platform.openai.com/docs/models/gpt-3-5.

[66] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Co-
jocaru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebte-
sam Almazrouei, and Julien Launay. “The RefinedWeb dataset for
Falcon LLM: outperforming curated corpora with web data, and web
data only.” In: arXiv preprint arXiv:2306.01116 (2023).

[67] Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden,
and Jianfeng Gao. “Soloist: Few-shot task-oriented dialog with a sin-
gle pretrained auto-regressive model.” In: arXiv preprint arXiv:2005.05298
3 (2020).

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5

bibliography 84

[68] Olivier Pietquin. A framework for unsupervised learning of dialogue strate-
gies. Presses univ. de Louvain, 2005.

[69] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. “Language models are unsupervised multitask
learners.” In: OpenAI blog 1.8 (2019), p. 9.

[70] Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta,
and Pranav Khaitan. “Towards scalable multi-domain conversational
agents: The schema-guided dialogue dataset.” In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 34. 05. 2020, pp. 8689–
8696.

[71] Shubhra Kanti Karmaker Santu and Dongji Feng. “TELeR: A General
Taxonomy of LLM Prompts for Benchmarking Complex Tasks.” In:
arXiv preprint arXiv:2305.11430 (2023).

[72] Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and
Steve Young. “Agenda-based user simulation for bootstrapping a POMDP
dialogue system.” In: Human Language Technologies 2007: The Confer-
ence of the North American Chapter of the Association for Computational
Linguistics; Companion Volume, Short Papers. 2007, pp. 149–152.

[73] Jost Schatzmann, Blaise Thomson, and Steve Young. “Statistical user
simulation with a hidden agenda.” In: Proceedings of the 8th SIGdial
Workshop on Discourse and Dialogue. 2007, pp. 273–282.

[74] Jost Schatzmann and Steve Young. “The hidden agenda user simula-
tion model.” In: IEEE transactions on audio, speech, and language process-
ing 17.4 (2009), pp. 733–747.

[75] Jost Schatztnann, Matthew N Stuttle, Karl Weilhammer, and Steve
Young. “Effects of the user model on simulation-based learning of di-
alogue strategies.” In: IEEE Workshop on Automatic Speech Recognition
and Understanding, 2005. IEEE. 2005, pp. 220–225.

[76] Konrad Scheffler and Steve Young. “Automatic learning of dialogue
strategy using dialogue simulation and reinforcement learning.” In:
Proceedings of HLT. Vol. 2. 2002.

[77] Iulian Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville,
and Joelle Pineau. “Building end-to-end dialogue systems using gen-
erative hierarchical neural network models.” In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 30. 1. 2016.

[78] Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu. “How to build
user simulators to train rl-based dialog systems.” In: arXiv preprint
arXiv:1909.01388 (2019).

[79] Saleh Soltan, Shankar Ananthakrishnan, Jack FitzGerald, Rahul Gupta,
Wael Hamza, Haidar Khan, Charith Peris, Stephen Rawls, Andy Rosen-
baum, Anna Rumshisky, et al. “Alexatm 20b: Few-shot learning using
a large-scale multilingual seq2seq model.” In: arXiv preprint arXiv:2208.01448
(2022).

bibliography 85

[80] Sebastian Steindl, Ulrich Schäfer, and Bernd Ludwig. “Generating
Synthetic Dialogues from Prompts to Improve Task-Oriented Dia-
logue Systems.” In: German Conference on Artificial Intelligence (Kün-
stliche Intelligenz). Springer. 2023, pp. 207–214.

[81] Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An
Lai, and Yi Zhang. “Multi-task pre-training for plug-and-play task-
oriented dialogue system.” In: arXiv preprint arXiv:2109.14739 (2021).

[82] Weiwei Sun, Shuyu Guo, Shuo Zhang, Pengjie Ren, Zhumin Chen,
Maarten de Rijke, and Zhaochun Ren. “Metaphorical User Simula-
tors for Evaluating Task-oriented Dialogue Systems.” In: ACM Trans-
actions on Information Systems (2023).

[83] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence
learning with neural networks.” In: Advances in neural information pro-
cessing systems 27 (2014).

[84] Ryuichi Takanobu, Qi Zhu, Jinchao Li, Baolin Peng, Jianfeng Gao, and
Minlie Huang. “Is your goal-oriented dialog model performing really
well? empirical analysis of system-wise evaluation.” In: arXiv preprint
arXiv:2005.07362 (2020).

[85] Silvia Terragni, Modestas Filipavicius, Nghia Khau, Bruna Guedes,
André Manso, and Roland Mathis. “In-Context Learning User Simula-
tors for Task-Oriented Dialog Systems.” In: arXiv preprint arXiv:2306.00774
(2023).

[86] Manisha Thakkar and Nitin Pise. “Survey of available datasets for de-
signing task oriented dialogue agents.” In: 2019 International Confer-
ence on Mechatronics, Remote Sensing, Information Systems and Industrial
Information Technologies (ICMRSISIIT). Vol. 1. IEEE. 2020, pp. 1–10.

[87] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal,
Eric Hambro, Faisal Azhar, et al. “Llama: Open and efficient foun-
dation language models.” In: arXiv preprint arXiv:2302.13971 (2023).

[88] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. “Llama 2: Open foundation and fine-
tuned chat models.” In: arXiv preprint arXiv:2307.09288 (2023).

[89] Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and Bill Byrne. “Trans-
ferable dialogue systems and user simulators.” In: arXiv preprint arXiv:2107.11904
(2021).

[90] Stefan Ultes et al. “PyDial: A Multi-domain Statistical Dialogue Sys-
tem Toolkit.” In: Proceedings of ACL 2017, System Demonstrations. Van-
couver, Canada: Association for Computational Linguistics, 2017, pp. 73–
78. url: http://aclweb.org/anthology/P17-4013.

http://aclweb.org/anthology/P17-4013

bibliography 86

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Atten-
tion is all you need.” In: Advances in neural information processing sys-
tems 30 (2017).

[92] Marilyn A Walker, Diane J Litman, Candace A Kamm, and Alicia
Abella. “PARADISE: A framework for evaluating spoken dialogue
agents.” In: arXiv preprint cmp-lg/9704004 (1997).

[93] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter
Autoregressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax. May 2021.

[94] Chengwei Wei, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. “An
overview on language models: Recent developments and outlook.”
In: arXiv preprint arXiv:2303.05759 (2023).

[95] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, Denny Zhou, et al. “Chain-of-thought prompting
elicits reasoning in large language models.” In: Advances in Neural
Information Processing Systems 35 (2022), pp. 24824–24837.

[96] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David
Vandyke, and Steve Young. “Semantically conditioned lstm-based
natural language generation for spoken dialogue systems.” In: arXiv
preprint arXiv:1508.01745 (2015).

[97] Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina
M Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. “A
network-based end-to-end trainable task-oriented dialogue system.”
In: arXiv preprint arXiv:1604.04562 (2016).

[98] Jason D Williams, Antoine Raux, and Matthew Henderson. “The dia-
log state tracking challenge series: A review.” In: Dialogue & Discourse
7.3 (2016), pp. 4–33.

[99] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Mor-
gan Funtowicz, et al. “Transformers: State-of-the-art natural language
processing.” In: Proceedings of the 2020 conference on empirical methods
in natural language processing: system demonstrations. 2020, pp. 38–45.

[100] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang
Feng, Haoming Jiang, Bing Yin, and Xia Hu. “Harnessing the power
of llms in practice: A survey on chatgpt and beyond.” In: arXiv preprint
arXiv:2304.13712 (2023).

[101] Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz. “Multiwoz
2.4: A multi-domain task-oriented dialogue dataset with essential an-
notation corrections to improve state tracking evaluation.” In: arXiv
preprint arXiv:2104.00773 (2021).

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

bibliography 87

[102] Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta,
Jianguo Zhang, and Jindong Chen. “MultiWOZ 2.2: A dialogue dataset
with additional annotation corrections and state tracking baselines.”
In: arXiv preprint arXiv:2007.12720 (2020).

[103] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe
Kiela, and Jason Weston. “Personalizing dialogue agents: I have a dog,
do you have pets too?” In: arXiv preprint arXiv:1801.07243 (2018).

[104] Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and Xi-
aoYan Zhu. “Recent advances and challenges in task-oriented dialog
systems.” In: Science China Technological Sciences 63.10 (2020), pp. 2011–
2027.

[105] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yu-
peng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong,
et al. “A survey of large language models.” In: arXiv preprint arXiv:2303.18223
(2023).

[106] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh.
“Calibrate before use: Improving few-shot performance of language
models.” In: International Conference on Machine Learning. PMLR. 2021,
pp. 12697–12706.

[107] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales,
Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc
Le, et al. “Least-to-most prompting enables complex reasoning in
large language models.” In: arXiv preprint arXiv:2205.10625 (2022).

[108] Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi Takanobu, Jin-
chao Li, Baolin Peng, Jianfeng Gao, Xiaoyan Zhu, and Minlie Huang.
“ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and
Diagnosing Dialogue Systems.” In: Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics. 2020.

[109] Qi Zhu et al. “ConvLab-3: A Flexible Dialogue System Toolkit Based
on a Unified Data Format.” In: arXiv preprint arXiv:2211.17148 (2022).
url: http://arxiv.org/abs/2211.17148.

http://arxiv.org/abs/2211.17148

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables

	 Thesis
	1 Introduction
	2 Background
	2.1 Task-Oriented Dialogue Systems
	2.1.1 Pipeline Architecture
	2.1.2 End-to-End Architecture
	2.1.3 Evaluation of TODSs

	2.2 User Simulation
	2.3 Large Language Models
	2.4 Related Work

	3 Proposed ICL-based User Simulator
	3.1 Data Set Selection
	3.2 Prompbuilding and Incontext-Learning
	3.2.1 Proposed TELeR-RESPONDeR Taxonomy for Complex Prompts
	3.2.2 Design of the Basic Prompt Elements for Zero- and Few-Shot Strategies
	3.2.3 Zero-Shot and Few-Shot Setup
	3.2.4 Reasoning, Planning and Ensemble Prompting Concepts

	3.3 LLM Selection & Generation Decoding Strategies
	3.4 Wizard of Oz Testing
	3.5 Modification Via Dialogue State Tracking Component

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.2.1 Goal Fullfillment Evaluation Metrics
	4.2.2 Lexical Diversity Metrics

	4.3 Quantitative Evaluation Results
	4.3.1 Quantitative Results Goal Fulfillment Performance
	4.3.2 Quantitative Diversity Evaluation Results

	4.4 Qualitative Evaluation Results & Human Error Analysis

	5 Conclusion & Future Work

	 Appendix
	.1 Appendix A: Qualitative Analysis Examples
	 Bibliography

