
Darmstadt University of
Applied Sciences

Faculty of Mathematics and Natural
Sciences & Computer Science

Language Modeling of Physics and
Computer Science Texts with BERT

Models

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science (M.Sc.)

by

Jeremy Mah Zhee Kein
Matriculation number: 769452

First Examiner : Prof. Dr. Stefan Rapp

Second Examiner : Prof. Dr. Antje Jahn

Date of Issue : 19. January 2023

Date of Submission : 05. July 2023



Jeremy Mah Zhee Kein: Language Modeling of Physics and Computer
Science Texts with BERT Models, © 05. July 2023



D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig ver-
fasst und keine anderen als die im Literaturverzeichnis angegebenen
Quellen benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder
noch nicht veröffentlichten Quellen entnommen sind, sind als solche
kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir
selbst erstellt worden oder mit einem entsprechenden Quellennach-
weis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner an-
deren Prüfungsbehörde eingereicht worden.

Darmstadt, 05. July 2023

Jeremy Mah Zhee Kein



A B S T R A C T

Recent developments in pre-trained language models advanced the
field of natural language processing (NLP). The introduction of Bidi-
rectional Encoders for Transformers (BERT) has had important im-
pact and increased the relevance of pre-trained models. At the be-
ginning, research in this field was started on English text data. This
was followed by multilingual text corpora. Despite of this, there has
been a lack of domain-specific language models, that could extract
information from texts which belong to a specific field. Some exam-
ples of such language models are SciBERT, BioBERT and MatSciBERT.
The use of these language models however yields subopotimal results
when used in the physics and computer science domain. This work
presents new BERT language models, that are pre-trained with text
data from the physics and computer science domain obtained from
the open-access repository arXiv. These models are then evaluated
based on their performance in named entity recognition (NER) as a
downstream task. We show that the models pre-trained in this work
achieved lower pseudo-perplexities than their original counterparts.
Additionally, we show that the models pre-trained in this work im-
proved the micro F1 scores of the original models on the computer
science and physics named entity recognition datasets by up to 0.69%
and 3.85%, respectively. The addition of a Conditional Random Fields
(CRF) layer however did not improve the performances of the mod-
els on the named entity recognition tasks in this work. However, the
models pre-trained in this work still achieved higher micro F1 scores
compared to their original counterparts regardless whether the CRF
layer was used.



Z U S A M M E N FA S S U N G

Vor Kurzem haben vortrainierte Sprachmodelle den Bereich der Ver-
arbeitung von natürlichen Sprachen (NLP) vorangebracht. Die Ein-
führung von Bidirectional Encoders for Transformers (BERT) hat die
Bedeutung von vortrainierten Modellen erhöht. Anfangs wurde im
Bereich englischer Textdaten geforscht, gefolgt von Modellen, die mit
mehrsprachigen Textkorpora trainiert wurden. Allerdings existieren
inzwischen wenige domänenspezifische Sprachmodelle, die sich mit
der Semantik und Syntax von Texten eines bestimmten Bereichs be-
fassen. Beispiele für BERT-basierte domänenspezifische Sprachmodel-
le sind SciBERT, BioBERT und MatSciBERT. Die direkte Anwendung
dieser Modelle im Bereich der Physik und der Informatik kann zu sub-
optimalen Ergebnissen führen, denn die Modelle sind nicht mit den
für den Bereich spezifischen Bezeichnungen und Fachausdrücke trai-
niert. In dieser Arbeit werden neue BERT Sprachmodelle vorgestellt,
die mit Hilfe von Texten aus dem Bereich der Physik und Informatik
aus dem arXiv-Repository vortrainiert werden. Die neue Sprachmo-
delle werden anhand ihrer Leistung bei einer nachgelagerten Named-
Entity-Recognition (NER) Aufgabe in den Informatik- und Physikdo-
mänen bewertet. Die in dieser Arbeit an unserem Textkorpus vortrai-
nierten Sprachmodelle haben kleinere Pseudo-Perplexitätswerte er-
reicht. Außerdem sind die Sprachmodelle auch in der Lage, höhere
Mikro F1-Werte im Vergleich zu BERT und SciBERT zu erzielen. Eine
Verbesserung von bis zu 0,69% und 3,89% wurden jeweils für die NER-
Datensätze aus dem Informatik- bzw. Physikbereiche gemessen. Ein
zusätzlicher Conditional Random Fields (CRF)-Schicht hat allerdings
keine Verbesserungen zu der NER-Leistung der Modelle gebracht.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

The abundance of computer science and physics papers have contin-
ued to rise rapidly. In 2022 , more than 13000 articles [71] in the
physics sector and more than 70000 research papers in the computer
science sector [70] have been published on arXiv, an open access repos-
itory for electronic preprints in the scientific field. Figure 1.1 shows
the number of articles, cross listed articles not included, that have
been published on arXiv annually from 2011 to 2022. With the in-
crease in the numbers of the documents comes a demand for mining
information from these text data. Though most machine learning tech-
nologies focus on structured information, there is also an abundance
of information, that can be extracted from textual data. However, text
data is high-dimensional, unstructured and, at times, sparse in infor-
mation.

Figure 1.1: Number of articles from physics and computer science domains
from arXiv [70, 71].
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In the recent years, progress of text mining models has made its
stride with the advancements of deep learning technologies used in
the field of Natural Language Processing (NLP). To further elaborate,
NLP is the application of computational methodologies for the analy-
sis and synthesis of natural language and speech and it is therefore
a multidisciplinary subfield of linguistics, artificial intelligence and
computer science. For instance, the introduction of RNN [35, 67] and
LSTM [17, 56, 64] have made it possible for different applications of
NLP such as text generation [51] and machine translation [8]. The
information found in recent text mining techniques have been used to
build knowledge graphs and help in the navigation of semantic webs,
in order to gain better insight and an overview of text data. However,
the use of RNNs and LSTMs does come with its limitations. The former
suffers from the phenomenon known as vanishing gradients, as long
series of multiplications of small values diminish the gradients and
cause the gradients to be insignificant, as the layers get deeper [56].
The latter is an improvement of the RNN, whereby the LSTM can re-
tain information in memory for long periods of time and hence over-
come the shortcoming of vanishing gradients in an RNN [56]. Both
RNN and LSTM are nonetheless recurrent model and therefore pro-
cess data sequentially, which prohibits parallelization during train-
ing. This becomes critical when longer sequence data is required for
training these networks. Recent word representation models such as
Word2Vec [37] and ELMo [45], which capture the syntax and seman-
tics of a word in isolation, do not distinguish their representations or
embeddings in different contexts. With the introduction of the trans-
former network and its derivative BERT, contextual embeddings of
words can be used to model text data, that contain long-range infor-
mation.

BERT was however pre-trained on datasets containing general do-
main texts in the English language [13]. It is hence questionable
whether its performance is optimal for domain-specific tasks. There-
fore, domain-specific BERT-variants have been researched in the recent
years. For instance, SciBERT, is one of the very first variants of BERT
that was pre-trained on unlabeled scientific texts from biomedical and
computer science literature, in order to model texts in the scientific
domain [4]. BioBERT was pre-trained with BERT on biomedical text
corpora [28]. ClinicalBERT was similarly pre-trained with BERT on
clinical notes to predict hospital readmission based on clinical notes
[18]. To the best of our knowledge, no BERT variants for the modelling
of a combination of texts from the computer science and physics do-
main have been studied.
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1.2 goal of this thesis

Since computer science plays an important role in the physics domain,
it would be interesting to pre-train a BERT model in both physics and
computer science domains. Although SciBERT was also pre-trained
on computer science texts, it is interesting to investigate, whether fur-
ther expanding the unlabeled text corpus for pre-training SciBERT
on computer science texts will improve its performance on down-
stream tasks in these domains. Hence, the goal of this thesis is to
model texts from the physics and computer science domain using
a method known as masked language modelling with the help of
BERT models initiated with weights from SciBERT and BERTBASE.
BERTBASE was the first BERT model pre-trained on English texts from
Wikipedia and BooksCorpus [13]. The models pre-trained on texts
from computer science and physics domains and initialized with
BERTBASE and SciBERT weights in this thesis shall henceforth be
known as PCBERT and PCSciBERT, respectively. PCBERT denotes
"Physics Computer Science BERT" and PCSciBERT denotes "Physics
Computer Science SciBERT". Both uncased and cased variants of the
models were used in this thesis to study the effects of case sensitiv-
ity on their ability to model the language used in these two domains,
mainly because it is expected that case-sensitivity is important for our
downstream task. The texts that are used for the pre-training stage
are collected and extracted from the open access repository arXiv.

In order to evaluate the performance of the models, the models are
fine-tuned for domain-specific Named-Entity Recognition (NER) tasks.
The two NER datasets for physics and computer science domains orig-
inate from WIESP dataset [65] as well as the CS-NER dataset [12], re-
spectively. The former proposes text fragments from astrophysics
papers provided by NASA Astrophysical Data System with manu-
ally tagged astronomical facilities and other entities of interest. On
the other hand, the latter provides a standardized dataset for NER in
the computer science domain by defining a set of contribution-centric
scholarly entities. A summary of the workflow for this thesis is pro-
vided in Figure 1.2. Further studies from [1, 57] have also introduced
the application of CRF on language models for the improvement of
its performance in sequence labeling tasks. It would therefore also
be in this work’s interest to investigate whether the addition of a CRF
layer on the pre-trained language models would perform better than
its counterparts without the said layer.
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Figure 1.2: Workflow for producing PCBERT and PCSciBERT models.

1.3 thesis structure

In the next chapter, the theoretical background of language modelling
and the BERT architecture as well as the concept of NER is introduced.
In chapter 3, the process of text extraction from arXiv and further
details on the CS-NER and WIESP datasets are described. Expanding
upon that, the methods used for pre-training and fine-tuning are also
shown. Chapter 4 shows the results obtained in this work and its re-
lated discussion. Lastly, Chapter 5 presents the summary of this work
in addition to further work that may be explored upon the findings
of this thesis.



2
T H E O R E T I C A L B A C K G R O U N D

2.1 language modelling

A language model has the objective to learn the true distribution of
a text corpus and hence attempts to model a probability distribution
over sequences of tokens or words. Given a vocabulary V of a set
of word tokens, a language model assigns each sequence of tokens
x1, ..., xL ∈ V a probability, where x is a token and L is the total
number of tokens in a sentence [52]. For instance, a language model
should assign the sentence "The fox jumped over the fence" with a
high probability and the sentence "The fox jump over the fence" with
a lower probability due to its grammatical error and the infrequent
mention of "jump" appearing directly after "fox" in a sentence.

Perhaps the most useful method to learn the true distribution of a
text corpus is through next word prediction. Given a sentence s, the
goal of next word prediction is to predict a distribution of P(x|s) of
the following word, where P(x|s) denotes the conditional probability
of a word token, given the previous sequence of words [52]. For ex-
ample, in the incomplete sentence "The cat chased the", the language
model would place words such as "mouse", "bird" or "insect" with a
high probability.

The simplest form of a language model would be the n-gram model.
An n-gram is commonly defined as a sequence of n words, e.g. a 2-
gram or bigram is sequence containing two words such as "cat chased"
or "chased the" from the previously mentioned example and a 3-gram,
also known as a trigram, contains the 3 words "cat chased the". In an
n-gram model, the probability of words are calculated using relative
frequencies of word counts, i.e. a large text corpus is created and the
number of occurrences of the word in focus preceded by the previous
words in the sentence is counted and is compared with the number
of occurrences of the previous words in the sentence. The following
equation formulates this mathematically, c(.) in this equation denotes
the count of occurrences of these words appearing together in the text
corpus:

P(mouse|The cat chased the) =
c(The cat chased the mouse)

c(The cat chased the)
(2.1)



2.1 language modelling 7

Since a text corpus is large and words in sentences vary, finding
an exact match of the words occurring in a sequence may lead to
negligible counts or even no counts at all depending on the corpus.
Hence, a more practical way to compute probabilities of entire sen-
tences would be to use the chain rule of probability to decompose
the entire sequence and calculate its joint probability, as shown in the
equation :

P(x1, ..., xL) = P(x1)P(x2|x1)P(x3|x1:2)...P(xL|x1:L−1) =
L

∏
i=1

P(xi|x1:i−1)

(2.2)
P(x1, ..., xL) denotes the joint probability of an entire sequence of

words, whereas P(xL|x1:L−1) denotes the conditional probability of
the word token xL, given the word tokens x1, ...xL−1 appearing before
it in the sequence. However, this calculation method still requires
P(xL|x1:L−1) to be computed, which in large corpora is difficult to cal-
culate, as its frequency is sparse. To alleviate this, the n-gram model
approximates the probability the entire sequence of words with the
probability of a word occurring with the last few words in the sen-
tence [24]. By doing so, the n-gram model utilizes the Markov as-
sumption, that assumes the probability of a future word token can
be predicted, without looking too far in the past [24]. This assump-
tion can be, in the case of a trigram, summarized in the following
approximation:

P(xL, x1:L) ≈ P(xL|xL−1, xL−2) (2.3)

Hence, Equation 2.2 can be, in the case of a trigram, instead be
approximated with:

P(xL, ..., xL) ≈
L

∏
i=1

P(xi|xi−1, xi−2) (2.4)

Although this assumption eases the calculation of long sentences,
this does not reflect the syntax and semantics in natural languages
well. It also does not take into account long dependencies within
sentences, where one word in a sentence depends on the reference of
another in the same sentence.

A frequent approach to finding the optimal solution to the language
modelling problem is to minimize the cross entropy loss between the
true distribution pt

.|s and the model prediction p.|s for a given sen-
tence s ∈ S [3, 13, 52]. pL is used to represent the true distribution
over a context set S in the corpus used for the language model [52].
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The cross-entropy loss for a language model can be consequently be
expressed as:

LCE = Es∼pLEx∼pt
.|s
[−log(p.|s(x))] (2.5)

2.1.1 Neural Language Models

In contrast to n-gram language models, the conditional probability
distribution p.|s is parametrized with the help of low-dimensional vec-
tors, called embeddings. Embeddings overcome the curse of dimen-
sionality by learning a distributed representation for words, which
constitutes a word as a low dimensional vector [22]. For an embed-
ding w ∈ Rd, the softmax distribution over V using word embeddings
Φ ∈ Rdx|V| is :

pw,Φ(x) =
ewTϕx

∑x∈X ewTϕx
(2.6)

In the case of neural language models, the context or sentence
s is first embedded into f (s) ∈ Rd by employing a feature map
f : S → Rd. The feature map chosen to embed the context can be
parametrized by the neural network model of choice. The model pre-
diction p.|s(x) from 2.5 can be replaced by p f (s)(x), that is, the pre-
dicted conditional distribution is determined by the softmax distribu-
tion influenced by the word embeddings Φ and the context embed-
ding f (s) [52]. Therefore, the cross entropy loss for a neural language
model is:

LCE = Es∼pLEx∼pt
.|s
[−log(p f (s)(x))]

= Es∼pLEx∼pt
.|s
[−log(

e f (s)Tϕx

∑x∈X e f (s)Tϕx
)]

(2.7)

2.2 word embeddings

After introducing the role of word embeddings in 2.1.1 in neural
language models, this section discusses the two main distinct types
of word embeddings , namely the static word embeddings and the
contextualized embeddings. Word embedding is a method in NLP,
whereby text from a corpus is mapped to a vector. That way, words
with the same meaning have the same learned representation. There-
fore, words can have a more expressive representation in lower di-
mensions and does not suffer from the curse of dimensionality. Static
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embeddings represent individual words as a fixed vector and in con-
trast, contextualized embeddings takes into account the contextual
information of a sentence or paragraph. For a static embedding, the
same word in a sequence would receive the same embedding from the
system, regardless of whether the sentence or context affects its mean-
ing. The same is not true for a contextualized embedding where the
same word in different contexts would receive different embeddings
from the model.

2.2.1 Static Embeddings

2.2.1.1 Feed Forward Neural Network Language Models

The first ever successful implementation of a neural network model
for the purpose of language modelling was introduced by Bengio,
Ducharme, and Vincent [5]. In their findings, they managed to build
a model that simultaneously learns a distributed representation of
each word as well as the probability function for word sequences,
which were expressed in the form of these representations. Similar to
traditional n-gram language models, Feed Forward Neural Network
(FFNN) language models are able to use n − 1 words in a sequence
to predict the nth word in the same sequence. These models were
then usually used in the first layer of a deep neural network model.
One drawback of using such FFNNs is the limitation of not being able
to directly process variable-length data and represent the historical
context. Hence for language modeling tasks FFNNs have to use fixed-
length sequences as inputs [22]. The FFNN language model can be
expressed mathematically as:

y = W ∗ w + U ∗ tanh(d + H ∗ w) + b (2.8)

W, U and H are weight matrices for the connections between the
layers, whereas d and b are the biases of the hidden layer. For the
model to predict the conditional probability of a word at position n,
the previous n− 1 words are projected by a shared projection matrix
C ∈ R|V|×d into a continuous feature vector space based on their index
in the vocabulary [5]. |V| implies the size of the vocabulary. The
input for the FFNN model is a concatenation of feature vectors of n− 1
words represented by w in 2.8. The output of the model is subjected
to a Softmax layer to ensure that the conditional probabilities of the
words are summing to one and are positive. The architecture of this
model is illustrated in Figure 2.1.
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Figure 2.1: The FFNN Language Model as introduced in [5].

2.2.1.2 Recurrent Neural Networks (RNN)

A major drawback from Bengio’s work [5] as mentioned in Subsec-
tion 2.2.1.1 is that a feedforward network has to make use of a fixed
length context that needs to be defined before training. This causes
the neural network to only process a fixed number of preceding words
when predicting the target word. The first RNN language model was
introduced in [38]. It was also suggested by the authors in [5], that
utilizing more structure and parameter sharing in neural networks
could capture longer contextual information.

Figure 2.2: RNN shown as one layer. Each layer in the RNN takes in an input
for the current time step and a state from the previous time step
[22].

Figure 2.2 shows the structure of one layer in an RNN model. The
model used in [38] was the simplest version of a recurrent neural
network. The network comprises of an input layer x, hidden layer s
which is also known as state or context layer and finally the output
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layer y. At a given time t, the input to the network is x(t) and the
state is given as s(t) and finally the output is denoted as y(t). Similar
to an FFNN language model in Subsection 2.2.1.1, the input token is
first mapped to an embedding. The input at time t is made up of
the embedding w(t) of the current word and the state s at time t −
1 by concatenating both of these vectors. The structure of the RNN
language model can be described as:

x(t) = w(t) + s(t− 1) (2.9)

s(t) = f (U ∗ x(t) + b) (2.10)

y(t) = g(V ∗ s(t) + d) (2.11)

where f(.) signifies a sigmoid activation function and g(.) is a soft-
max function. U and V are weight matrices , whereas b and d are bi-
ases of the state layer and the output layer correspondingly. The size
of the input vector x is equal to the size of the vocabulary used during
training i.e. approximately 30000 and the size of the state s is normally
around 30 to 500 hidden units [38]. The RNN language model was a
breakthrough approach when compared to the FFNN language model
[22, 35]. Unlike FFNNs , RNNs utilize their internal memory and can
process arbitrary sequences of inputs. Hence, this makes it perfect
for processing sequences of data with variable lengths. The passing
of internal states to neighbouring neurons at time step t also reveals
timing information in the data. Though RNNs are able to take into
consideration all contexts for prediction and are able to process data
sequences, their major drawback can be observed when attempting to
learn long-term dependencies, especially in text data. This is due to
their gradient’s tendency to diminish or explode as the sequence gets
longer [22].

2.2.1.3 Long Short-Term Memory (LSTM)

The vanishing and exploding gradient problem of the RNN was stud-
ied in [17, 22]. During backpropagation through time in the RNN,
the gradients are scaled by a certain factor. This effect gets magni-
fied, as the time steps of the network increases. By introducing gate
units in a network similar to RNN, the authors in [17] were successful
in dropping out unimportant hidden states from previous time steps
and keeping important features from the previous time steps when
inputs are passed through the recurrent network. Thus, they have
effectively modified the network in such a way that the scaling factor
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for the gradients is fixed to one and by doing so, helps the network to
retain some memory when processing the input sequence. The flow
of information in the LSTM is controlled by three gate structures: in-
put gate, forget gate, and output gate. Figure 2.3 exhibits the inner
structure of an LSTM network.

Figure 2.3: Inner workings of an LSTM network [17].

The forget gate in the network acts as a binary mask that is mul-
tiplied with the cell state of the previous time step. By applying a
sigmoid function, the forget gate can decide which features from the
previous cell state is kept or left out. The input gate uses two activa-
tion functions, namely the sigmoid and the hyperbolic tangent func-
tion (tanh). The tanh outputs values in[−1, 1] and helps determine if
a cell state should be incremented or decremented. The output gate
determines the output and cell state that is exposed to the following
time step of the LSTM network. According to the authors in [17], the
output gate also prevents the network’s attempts at storing long time
lag memories from unsettling the activations that represent the learn-
able short time lag memories. The structure of the network can be
generalized as follows:

it = σ(Wi(ht−1, xt) + bi),
ft = σ(W f (ht−1, xt) + b f ),

ot = σ(Wo(ht−1, xt) + bo),
c̃t = tanh(Wc(ht−1, xt) + bc),
ct = ft · ct−1 + it · c̃t,
ht = ot · tanh(ct)

(2.12)
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where it, ft, ot are the input gate, forget gate and output gate at the
current time step, respectively. ht, ht−1 are the hidden states from the
current and previous time step, xt is the input at the current time step
and σ is a sigmoid function. Wi, W f , Wo are the weight matrices for the
input gate, forget gate and output gate, respectively, whereas bi, b f , bo
are the corresponding biases. c̃t represents the candidate cell state
and, which is used to calculate the current cell state ct. The current
cell state can then be outputted and be used as input in the next time
step. Note that the (·) operator is the elementwise multiplication of
the vectors.

The structure of the LSTM language model is similar to the one in
2.2.1.1. But instead of directly using the embeddings after the pro-
jection layer, an LSTM layer is inserted between the output and the
projection layer, as it is shown in Figure 2.4 [58]. The hidden states
corresponding to the tokens in the input sequence are then used by
the final output layer.

Figure 2.4: Language model with LSTM network used in 2nd hidden layer
[58].

2.2.2 Contextualized Embeddings

Distributional word representations using static embeddings pre-
trained on large scale unlabeled text corpora are a breakthrough for
NLP systems [5, 37, 43]. It meant that the intrinsic features of textual
data could be captured and represented in a certain feature space. In
spite of that, these methods solely obtain a single global representa-
tion of each word, which effectively ignores its context. Contrary to
the traditional static embeddings, contextual embeddings move be-
yond word-level semantics and associates each word with a repre-
sentation that is a function of the entire input sequence [30]. In this
subsection, two major contextualized embeddings that predate BERT
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are briefly introduced. This should serve as a precursor for a better
understanding of the improvements that BERT brings.

2.2.2.1 Embeddings from Language Models (ELMo)

Peters et al. presented in their work [45] a deep language model, that
could represent each token in a sequence as a function of the entire
input sentence. This was made possible with the application of a bidi-
rectional LSTM that was trained on a large text corpus with a coupled
language model objective. Moreover, linear combinations of word vec-
tors that were produced from the bidirectional LSTM could be stacked
on top of each input word and be used for training for each end task.
By combining the word vectors, rich word representations for the in-
put tokens can be produced.

Similar to the objective function for a forward language model as
presented in Equation 2.2, the authors in [45] created a backward lan-
guage model, which predicts the previous token given the future con-
text. Both the forward and backward language models are combined
to produce a bidirectional model and the resulting log-likelihood ob-
jective function of Embeddings from Language Models (ELMo) to be
maximized for the language modeling task can be presented as fol-
lows:

N

∑
k=1

(log p(tk|t1, ..., tk−1; Θx,
−→
Θ LSTM, Θs)+

log p(tk|tk+1, ..., tN; Θx,
←−
Θ LSTM, Θs))

(2.13)

Parameters for the backward
←−
Θ LSTM and forward

−→
Θ LSTM LSTMs

are seperated as shown in Equation 2.13, while the parameters for the
token representation Θx, which is produced by the projection layer,
and the parameter for the softmax layer Θsare tied to both directions
[45]. Hence, each token tk receives 2L + 1 representations, 2L comes
from the bidirectional LSTM and the last layer originates from the pro-
jection layer :

Rk = {xk,
−→
h k,j,
←−
h k,j|j = 1, ...., L}

= {hk,j|j = 1, ...., L}
(2.14)

where Rk is the representation for each token, xk is the token repre-
sentation from the projection layer and finally

−→
h k,j,
←−
h k,j are the rep-

resentations from the forward and backward LSTM respectively. The
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weights for the bidirectional LSTM and the projection layers are pre-
trained on large text corpora before being used on downstream tasks
such as text classification [31], question answering [49] and named
entity recognition [44]. This step is called transfer learning, where
a model is trained on domain specific data and relevant parts of the
model are then taken to be applied on a downstream task that is rele-
vant for the domain. By doing so, the bidirectional LSTM can compute
representations for any task and these representations are context de-
pendent due to the bidirectional feature that the LSTM layer provides.
Subsequent fine-tuning of the model on task specific data then leads
to an increase in performance for downstream tasks. For the applica-
tion of ELMo on downstream tasks, ELMo flattens the layers in its rep-
resentations Rk into a single vector. Generally, task specific weighting
of all bidirectional LSTM layers are computed:

Rtask
k = γtask

L

∑
j=0

stask
j hk,j (2.15)

stask
j are softmax-normalized weights for each layer in hk,j and the

scalar parameter γtask enables the task model to scale the entire ELMo
vector [45]. The authors in [45] have also suggested that it may be
helpful to apply a layer normalization to each bidirectional LSTM layer
before the weighting, due to the activations in these bidirectional lay-
ers having different distributions.

2.2.2.2 Contextualized Word Vectors (CoVe)

Instead of using a large unlabeled text corpus to pretrain the word
representations of a language model, McCann et al. used a deep LSTM
attentional sequence-to-sequence model from a machine translation
task to fine-tune on downstream tasks [36]. By pretraining the en-
coder on a machine translation task, the model is able to obtain con-
textual embeddings from the training data.

As shown by the authors in [36], pretraining the sequence-to-
sequence model was done on English-to-German translations. Ac-
cording to their work, machine translation is an appropriate task for
transfer learning because it generally requires the model to reproduce
a sentence in the target language without losing information in the
source language. The words were first tokenized and then embed-
ded with Global Vectors (GloVe) embeddings [43]. The embeddings
are then fed into an encoder, which consists of a bidirectional LSTM
network, similar to the one in Subsection 2.2.2.1. Subsequently, the
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output from the bidirectional LSTM provides the context for the at-
tentional decoder to produce a distribution over words in the target
language, which in the case of [36] is German. The decoder itself is
an unidirectional LSTM layer that receives three inputs: the target em-
bedding from the previous time step, the context hidden state from
encoder from the previous time step and also the hidden state of the
previous time step from the same decoder [36]. The decoder com-
putes a vector of attention weights, which expresses the importance
of each encoding time-step to the current decoder state.

After pretraining the model, the encoder component of the model
is transfered to downstream tasks to produce context vectors. Figure
2.5 shows the general pretraining and fine-tuning task done for CoVe.
For classification and question answering tasks, the GloVe and CoVe
embeddings of the input sequence are concatentaed before being used
as features in the downstream task [36].

Figure 2.5: a) Pretraining of CoVe on a machine translation task. b) The
encoder component from the pretraining phase is used as a
feature extractor for downstream tasks [36].

2.3 transformers in nlp

Previous methods used for extracting features and representations of
words, such as the ones mentioned in Subsection 2.2.1 do not take
into consideration the context of words or are unidirectional. On the
contrary, the word embeddings used in the presented contextualized
embeddings in Subsection 2.2.2 though bidirectional, require long pre-
training periods, as data is fed sequentially into the model. This pro-
hibits its ability to parallelize data input. These shortcomings were
overcome when BERT was introduced by Devlin et al. in their work
[13]. In this section, the attention mechanism, which is the funda-
mental principal that gave the transformer model its breakthrough is
explained in Subsection 2.3.1. From there on, the transformer model
is introduced and in the final subsection, the theoretical background
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behind the BERT model, which is the main model used in this thesis,
is presented.

2.3.1 Attention Mechanism

For the implementation of a general model, it is imperative to first
describe the general characteristics of a model that is able to employ
attention. Such a model will be known as a task model in this subsec-
tion. At its most general form, the task model takes an input, carries
a specified task and produces a desired output. Furthermore, the task
model consists of four submodels: the feature model, query model, at-
tention model and the output model [6]. The individual components
of the task model can be seen in Figure 2.6 below:

Figure 2.6: Task model for the application of attention mechanism. X is the
input, F is a matrix of feature vectors , q is the query from the
query model, c is the context vector and ŷ is the output from the
task model [6].

We follow [6] in illustrating the attention mechanism. Assume the
task model takes in the matrix X ∈ Rdx×nx , where dx represents the
size of the input vectors and nx represents the amount of input vec-
tors. In the case of text input, nx are the number of words or tokens
in a text sequence [6]. A feature model is then applied to extract n f

feature vectors f1, ..., fn f ∈ Rd f from X. d f could be the dimension
size of a word embedding in the case of language models. To decide
which feature vectors to attend to, the attention model needs a query
q ∈ Rdq , where dq represents the size of the query vector. The query
is extracted through a query model and in general is constructed de-
pending on the type of output that is desired by the model. The query
can be interpreted literally as a question the model tries to ask [6]. For
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example, in the case of language modeling, one can produce an out-
put of the target word to be predicted by using a query, that asks the
question, which feature vectors from the input contains the necessary
information to predict the subsequent words in a sentence.

Figure 2.7: Inner workings of the attention model [6].

The attention model takes in the feature vectors as a matrix F =
[ f1, ..., fn f ] ∈ Rd f×n f from the feature model and the query q from the
query model. Two independent matrices are obtained from the matrix
of feature vectors F. These are the keys and values matrix, denoted as
K = [k1, ..., kn f ] ∈ Rdk×n f and V = [v1, ..., vn f ] ∈ Rdv×n f , respectively.
Generally, both these matrices are obtained by a linear transformation
of F using weight matrices WK and WV for the keys and values matrix
accordingly. These weights are learnable parameters during training
or they can be predefined. These weights can either be used as iden-
tity matrices to retain the original feature vectors from the input or
they can have different weights and dimensions to project the feature
vectors into a new space. The only constraint that must be obeyed is
that the number of columns in K and V must remain the same [6], as
seen in the equations below:

K = WK × F, s.t. K ∈ Rdk×n f , WK ∈ Rdk×d f , F ∈ Rd f×n f

V = WV × F, s.t. V ∈ Rdv×n f , WV ∈ Rdv×d f , F ∈ Rd f×n f
(2.16)

The objective of the attention model is to produce a weighted av-
erage of the value matrix V [6]. These weights used to produce the
output are computed by calculating the attention score and executing
an alignment step. The query and the keys matrix are used to calcu-
late the attention score vector e = [e1, ..., en f ] ∈ Rn f . More specifically,
the attention scores in the attention matrix represents how important
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information contained in the keys vector of the keys matrix is accord-
ing to the query [6]. The calculation for the attention score is done via
a score function score(.):

el = score(q, k) (2.17)

Here, el ∈ R represents lth value in vector e. In [62], the atten-
tion scoring function used for the transformer is a scaled dot product,
which is essentially a cosine-similarity function [14]. The attention
scores are redistributed via an alignment function, as the objective is
to produce a weighted average of the values vector. It also allows
the attention scores to be constrained within a range inside of [0, 1].
One example of an alignment function is the softmax function, as
shown in Equation 2.6. As each weight is a direct indication of how
relevant each feature vector is to the others, it provides a deeper un-
derstanding of the model’s behaviour and its relationships between
the outputs and inputs. The application of the alignment function is
shown in the equation below:

al = align(el, e) (2.18)

al ∈ R corresponds to the attention weight for the lth value. The
vector of attention weights a = [a1, ..., an f ] ∈ Rn f is multiplied with
the values vector to produce the context vector c ∈ Rdv , which is the
contextualized embedding in the case of language modeling. The out-
put model in 2.6 utilizes the context vector to output a prediction. The
equations below summarize the procedure of computing the context
vector c and the output prediction ŷ as depicted in Figure 2.6.

c =
n f

∑
l=1

al × vl (2.19)

ŷ = so f tmax(Wc × c + bc) (2.20)

In Equation 2.20, Wc ∈ Rdy×dv and bc ∈ Rdy are the weights and bi-
ases for the output model. dy represents the number of output classes.
In the language modelling setting, dy would be the same as the size
of the vocabulary and the output is used to predict the probability of
the next word based on the context of the sentence.
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2.3.2 Transformer architecture

The attention mechanism gained traction in the NLP field, espe-
cially with the introduction of transformers [14, 62] for sequence-
to-sequence annotation. According to [62], the transformer is the
first sequence-to-sequence model that relies on self-attention to com-
pute representations of the input and output, without using sequence-
aligned RNNs. This intrinsically motivates parallelization within train-
ing examples, which becomes critical when processing longer se-
quence lengths.

The transformer’s architecture follows most state of the art neural
sequence transduction models, which have an encoder-decoder struc-
ture. The encoder projects an input sequence of representations to
a sequence of learned contextualized embeddings. Given these rep-
resentations from the encoder component, the decoder component
of the model generates an output sequence one element at a time.
By consuming the previously generated element as additional input
when generating the next, the model is said to be autoregressive [62].
The architecture of the transformer can be summarized in the follow-
ing figure:

Figure 2.8: Architecture of a transformer model [62].

The encoder consists of a stack of N = 6 identical layers and each
layer has two sublayers, through which the input is subjected to. The
first sublayer is a multi-headed self-attention mechanism and the sec-
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ond is a position-wise fully connected FFNN. Residual connections,
which are followed by layer normalizations, are employed on each
operation to prevent the vanishing or exploding gradient problem in
the training of a deep neural network [60]. Similar to the encoder,
the decoder component consists of a stack of N = 6 identical layers.
Along with the two sublayers in the encoder layer, the decoder layer
takes in a representation of the output and also the output from the
encoder layer stack to perform multi-head attention. As it can be
seen in Figure 2.8, residual connections followed by layer normaliza-
tion are employed over each sublayer. The first multi-head attention
sublayer of the decoder in Figure 2.8 are modified by masking to pre-
vent positions from attending to ensuing positions, hence preserving
the autoregressive property [62]. The masking of output embeddings
together with the fact that the output embeddings are offset by one
position, enables the predictions for a certain position to only depend
on the known outputs at the preceding positions.

Due to the abscence of recurrence and convolution, the model can-
not make use of the order of the sequence without a positional en-
coding. The additional information about the relative positions of
the tokens in sequence is hence inserted into the input embeddings
by Vaswani et al. in the transformer architecture. The positional en-
codings have the same dimensions as the input embeddings, which
makes the summation of both these embeddings possible. In [62],
sine and cosine functions of different frequencies were used to cap-
ture the positional information of the tokens (Refer to Equation 2.21).
pos is the absolute position of token in sequence and i is the dimen-
sion of the embedding. To this end, each dimension of the positional
encoding is represented by a sinusoid. This method of encoding po-
sitions of tokens was chosen by the authors in [62], as it allowed the
model to extrapolate to sequence lengths longer than the ones used
in training. A visual example output of the positional encodings with
a dimension size of 128 is shown in Figure 2.9

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
(2.21)

As discussed in Subsection 2.3.1, the transformer architecture also
utilizes the attention mechanism and applies a scaled dot product as
the score function. The dot product essentially computes the cosine
similarity between the query and key by evaluating the dot product
between the query and key matrices. The dot product between query
and key matrices is then subjected to a softmax function and is subse-
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quently scaled by the hidden dimension of the key matrix. Applying
the softmax function aligns the attention scores, as mentioned in Sub-
section 2.3.1, and scaling is done to prevent the softmax function from
having extremely small gradients [62]. Both key and query matrices
have the same hidden dimension size in [62]. Since the dot product
can be implemented using optimized matrix multiplication code, the
scaled dot product is in practice fast and space-efficient. A special-
ized variation of the attention mechanism is used for the transformer
model which is known as self-attention. Similar to the attention mech-
anism in Subsection 2.3.1, a query model is used to extract a query
matrix to calculate the attention score. But instead of using another
input for the query model, the query is derived from the feature vec-
tors. This is done similar to the calculation of the keys and values
matrix in Subsection 2.3.1, where the query matrix is obtained by a
linear transformation using a learnable weight matrix in a deep neural
network setting. Hence, the query of the model is learned along the
way during training and is used to uncover relations between feature
vectors [6]. The relations uncovered by self-attention can be used as
supplementary information to incorporate into new representations
for the feature vectors and therefore summarizes the information that
is relevant to the query. The self-attention implemented in the trans-
former architecture is shown in Equation 2.22. Equation 2.22 thus
summarizes Equations 2.17, 2.18 and 2.19.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
) ∗V (2.22)

Rather than performing a single attention function with the entire
dimension size of queries, keys and values, Vaswani et al. discovered
that it was more practical to linearly project the queries, keys and
values h times with different learned linear weights to dq, dk and dv,
respectively. The dimension size dk is the same as the size dq in order
for the dot product to be calculated. This effectually splits the original
dimension size of the linear weights h times and therefore allows for
the parallelization of the attention function. The splitting of these
linear weights also promotes the model to learn different attentions on
the feature vector, through which different relations between feature
vectors can be calculated [62]. For example, relations between words
such as: which verbs refer to which nouns, which nouns are being
referred by the pronouns, etc. Once all h context vectors have been
calculated in parallel, they are concatenated and once again projected
with a weight matrix (Refer to Equation 2.23).
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Figure 2.9: Positional encodings represented in each dimension. Position on
the y-axis represents the absolute position of token in sequence
and depth on the x-axis corresponds to the dimension. A
dimension size of 128 was used in this figure [25].

MultiHead(Q, K, V) = Concat(head1, ..., headh)W0

where headi = Attention(Qi, Ki, Vi)
(2.23)

W0 ∈ Rhdv×dmodel in the above equation is the output weight matrix
that produces an output of dimension dmodel. It should also be men-
tioned here that the second sublayer of the decoder in the transformer
model as shown in Figure 2.8 accepts queries from the previous de-
coder layer and the keys and values originate from the output of the
encoder. This enables every position in the decoder to attend to all
positions in the input sequence from the encoder [62].

2.3.3 Bidirectional Encoder Representations from Transformers (BERT)

With the introduction of the transformer architecture, causal language
models became a standard in sequence-to-sequence tasks. Though us-
ing causal language models is recommended for tasks such as text
generation and machine translation [34], other tasks only require hid-
den features of texts to be extracted. To this end, the model architec-
ture of BERT, which is based on the original transformer model as dis-
cussed in Subsection 2.3.2, consists of a multi-layer bidirectional Trans-
former encoder. BERT does not contain the decoder component as in
the transformer architecture. Two variants of BERT were introduced
in [13]: BERTBASE and BERTLARGE. BERTBASE has 12 encoder lay-
ers, denoted by L, 12 attention heads h, as described in Subsection
2.3.2 and a dimension size dmodel of 768 for the feature vector, which
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is also known as the hidden dimension size of the model. Whereas
BERTLARGE has 24 encoder layers, 16 attention heads and a dmodel of
1024.

The two important steps in training and implementing BERT are
the pre-training and fine-tuning. In the course of pre-training, the
model is trained in an unsupervised fashion on unlabeled text data
over different pre-training tasks. Whereas for fine-tuning, the BERT
model is firstly loaded with the pre-trained weights and all the param-
eters are fine-tuned using labeled data in downstream tasks [13]. The
pre-training corpus used for pre-training BERTBASE and BERTLARGE
was the BooksCorpus from [68] with 800M words and the English
Wikipedia corpus with 2500M words. Two pre-training methods
were employed by Devlin et al. for BERT: Masked Language Mod-
eling (MLM) and Next Sentence Prediction (NSP). During MLM, 15%
of the input tokens are masked at random and the objective is to pre-
dict the masked tokens, similar to the objective function in 2.7. Of
those 15% masked tokens, 80% of the time the word is replaced with
a special [MASK] token, 10% of the time the word is replaced with a
random token and for the remaining 10% , the token is unchanged. By
having the token unchanged for 10% of the time, the input representa-
tion is biased towards the actual observed word [13]. The advantage
of this pre-training process is that the encoder does not know which
words it will be asked to predict and therefore forces the encoder
to keep a distributional contextual representation of every input to-
ken [13]. In contrast to MLM, NSP helps for downstream tasks where
sentence level prediction such as question answering and natural lan-
guage inference is the objective. In the case of NSP, the model receives
two sentences and the goal is to predict if the second sentence is an
actual sentence that follows the first input sentence. For each down-
stream task there are different models, which are initialized with the
same pre-trained parameters and for practical purposes, the down-
stream tasks should be in the same domain as the unlabeled data
used for pre-training the model.
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Figure 2.10: Pre-training and fine-tuning operations for BERT [13].

In order for BERT to operate on a variety of downstream tasks, the
input embeddings should be able to easily represent both a single
sentence and a pair of sentences. An example case where a pair of
sentences are needed for fine-tuning is the downstream task of ques-
tion answering, where one sentence corresponds to the question and
the other sentence corresponds to the answer. The term "sentence"
refers to an arbitrary span of adjoining text, instead of an actual lin-
guistic sentence. The input embeddings of the BERT model is made
up of three embeddings, namely the token embeddings, the segment
embeddings and position embeddings as shown in Figure 2.11.

Figure 2.11: Input representations of BERT made up of token embeddings,
segment embeddings and position embeddings [13].

The token embeddings require that the input sequence be first tok-
enized with a method known as WordPiece tokenization [55]. Given
a text input, WordPiece first tokenizes the text into words by split-
ting on punctuation and whitespaces. Then it tokenizes each word
into subword entities known as wordpieces. By doing so, the Word-
Piece tokenizer can handle out-of-vocab words that are not found in
the vocabulary used for BERT. For example, the word "algebra" may
not be in the vocabulary used for tokenizing text sequences in BERT,
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hence the tokenizer looks for the next longest subwords that makes up
the word "algebra" and tokenizes the word into the wordpieces "al",
"##ge", "##bra". The prefix "##" is used in the WordPiece tokeniza-
tion process to signal that the wordpiece belongs to the preceeding
wordpiece in the sequence. As shown in the summary of embed-
dings that make up the input representation in Figure 2.11, the word
"playing" is seperated into two tokens: "play" and "##ing". It is also
interesting to note, that the token embeddings add special tokens at
the beginning and at the end of sentences. The [CLS] token stands for
a classification token and is used to represent the sentence-level repre-
sentation of the sentence, whereas the [SEP] token is used to seperate
the first input sentence from the second [13]. The [SEP] token also
signifies the end of a sentence. A custom WordPiece tokenizer can
be trained to build up a vocabulary for tokenization. This would
prove useful when the original BERT vocabulary used in BERTBASE
and BERTLARGE does not cover most of the vocabulary used in the
task at hand or when tokenizing characters from a foreign language.
The tokenizer is trained in a similar manner to the Byte-Pair Encod-
ing tokenizer [53]. The vocabulary of the tokenizer is first initialized
with all the characters present at the beginning of a word and the
characters present within a word in a given corpus. Similar to Byte-
Pair Encoding, WordPiece learns merge rules. WordPiece finds the
most frequent pair of adjacent tokens and calculates a score, given
by Equation 2.24 [21]. The adjacent pair of tokens with the highest
aforementioned score are merged and inserted as a new token in the
vocabulary. This process is repeated until a predetermined size of vo-
cabulary is reached. Dividing the frequency of the newly formed pair
by the product of the frequencies of its substituents helps the algo-
rithm in prioritizing the merging of pairs where the individual parts
are less frequent in the vocabulary.

Frequency_o f _pair
Frequency_o f _ f irst_element× Freqeuncy_o f _second_element

(2.24)

The vocabulary size of BERTBASE and BERTLARGE is 30522. De-
vlin et al. had also built 2 variants of the vocabulary, one cased and
the other uncased. The cased vocabulary tokenizes words as is by not
converting the tokens to lowercase, whereas the uncased vocabulary
converts tokens that are capitalised to lowercases. By tokenizing the
words in a text sequence and assigning the words token ids, each to-
ken can then be represented by a token embedding of size dmodel. For
BERTBASE this dimension size is 768 and for BERTLARGE it is 1024.
The segment embeddings assign tokens that belong to one sentence
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an index 0 and assigns tokens of the other sentence a different index
of 1. Through this embedding, the model can differentiate which to-
kens belong to which sentence. Lastly, the position embeddings used
for BERT is similar to the one used in the transformer architecture,
as described in Subsection 2.3.2. Both segment embeddings and po-
sition embeddings have an embedding size of dmodel, similar to the
token embedding.

2.4 named-entity recognition (ner)

In the field of data mining, a named-entity can be defined as a word
or a phrase that clearly distinguishes one item from a set of other
items that have analogous attributes [29]. The word "named" narrows
down the scope of entities in a sentence that have one or many rigid
designators that semantically refer to the same object. A rigid des-
ignator is an expression that refers to the same object or entity in
every possible world. Although rigid designators usually comprise
of proper names, they also depend on the domain of interest. some
examples of named-entities are person, location and organization in
the general domain; whereas organic compounds, organic polymers
and chemical reactions are more suited as entities of interest in the
chemical field.

Given a sequence of tokens s = x1, ..., xL, a NER-model outputs a
list of tuples ⟨js, je, E⟩, with each tuple representing a named-entitiy
in s. Here, js ∈ [1, L] and je ∈ [1, L] are the start and end indexes of a
named-entity instance, correspondingly. E is the entity type which is
predetermined by either the model or a dataset. Figure 2.12 illustrates
an example output of a named entity recognition system. NER-tasks
can be further broken down into coarse-grained NER and fine-grained
NER, where the former assigns a single entity type for each named-
entity detected and the latter allows a named-entity instance to be
allocated multiple entity types. In this work, the course-grained NER
datasets are to be the focus.
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Figure 2.12: An example of a named entity recognition system.

2.5 conditional random fields (crf)

Though often times features extracted from language models such as
BERT can be used directly in a linear neural network layer to return
output probabilities per label in a NER task, this naïve procedure of-
ten assumes that each prediction for a specific token is independent
of the predictions of the neighbouring tokens. This could pose a chal-
lenge for a task that implicitly requires predictions to be aware of the
predictions of surrounding neigbour tokens and hence imply a cer-
tain pattern of order for predictions. For an instance, the B-tag in an
IOB2-scheme explained in 3.1.3 should always come before an I-tag of
the same entity type when an entity is detected and spans over more
than one word. Originally proposed by [26] for labeling sequential
data, the CRF has expanded its application in NLP where sequence la-
beling tasks are needed to be solved, such as the case for NER and
Parts-of-Speech (POS) tagging.

The most common form of CRF in sequence labeling tasks is the lin-
ear chain CRF, as these are more tractable during inference. Given an
input sequence of representations of tokens X = (x1, ..., xL) and a se-
quence of token predictions Y = (y1, ..., yL) and yi ∈ {1, ..., K}, where
K is the number of prediction tags, the linear chain CRF computes a
score of the sequence which is defined as:

s(X, Y) =
L

∑
i=1

E(xi, yi) +
L−1

∑
i=1

T(yi, yi+1) (2.25)
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E(xi, yi) denotes the emission score and signifies the score allocated
to each prediction y based on the input representation x after i itera-
tions. The input representation can contain any type of information,
but typically contains information on surrounding tokens and its con-
text [1]. The term T(yi, yi+1) denotes the transition score and assigns
the score when the model prediction transitions from position i to
i + 1 in the same sequence. Specifically, it signifies the chance that the
prediction yi+1 comes after yi. Hence, they only impose dependencies
on the previous prediction. To make use of this score and compute
the conditional probability p(Y|X), a partition function Z(X) is intro-
duced:

P(Y|X) =
eS(X,Y)

Z(X)

where

Z(X) = ∑
ỹ∈YX

es(X,ỹ)

(2.26)

YX are all possible prediction tag sequences. Z(X) can be consid-
ered a normalization function to discover a distribution of probabili-
ties [1]. Due to the recurrent properties of Z(X), computing its values
is not a simple task, as all iterations of the input for each step has to be
considered. Despite the fact that the complexity of calculating Z(X)
is very high (O(|y|k)), its recurrent property also allows dynamic pro-
gramming to solve its summation, which then reduces its complexity
down to O(k ∗ |y|2). This can be achieved with the forward/back-
ward algorithm [1, 26]. During training, the goal is to minimize the
negative log-likelihood of the prediction sequence. Where the for-
ward/backward algorithm is used to ease the computation of Z(X),
the Viterbi algorithm is used to determine the most likely sequence
with the highest P(Y|X) during inference [57, 59].

It would be of special interest to investigate, whether the perfor-
mances of the domain-specific models used in this work on the NER
tasks can be improved with the help of linear chain CRF. To study
its effects, the BERT models pre-trained in this work are fitted with
a linear neural network layer that projects the hidden dimension of
the token representations to the label space. The output of the linear
neural network layer is subsequently passed to a CRF layer.
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2.6 related work

Because unsupervised training of language models on large corpora
has been shown to improve on many NLP tasks [13, 45], there has
been a recent trend on pre-training language models on domain spe-
cific texts to improve performance on a variety of NLP tasks that
require domain-specific input. To this end, a few examples of pre-
trained domain-specific or otherwise different from general text cor-
pus BERT models that are related to a scientific field are introduced in
this subsection. There exists in addition to that other domain-specific
BERT models such as FinBERT [2], LEGAL-BERT [7] and PatentBERT
[27], but these are not discussed here as they are not related to scien-
tific fields.

The first reference of language models pre-trained on scientific text
corpora was introduced by Beltagy, Lo, and Cohan [4]. The authors
pre-trained the model on a random sample of 1.14M papers from
Semantic Scholar, where 82% originate from the broad biomedical do-
main and and the remaining 18% come from the computer science
domain [4]. A total of 3.17B tokens were used for training, which is
similar to 3.3B tokens on which BERT was pre-trained on in [13]. Be-
sides that, the authors also introduced a custom vocabulary for its
tokenizer called SCIVOCAB, which is a new WordPiece vocabulary
used on the scientific pre-training corpus and it was trained with the
SentencePiece library [54]. SCIVOCAB managed to capture 58% of its
vocabulary from the pre-training corpus which do not exist in the vo-
cabulary used by BERT’s tokenizer [4]. SciBERT underwent the same
pre-training procedure as BERT with MLM and NSP. The performance
of SciBERT was evaluated on five main NLP tasks: NER, PICO extrac-
tion, text classification, relation classification and dependency parsing.
PICO extraction is similar to NER, where the model detects and classi-
fies token spans into four classes, namely Participants, Interventions,
Comparisons and Outcomes in a clinical trial paper [4]. SciBERT
managed to perform better than the state of the art results for NER,
text classification and relation classification for the computer science
domain at the time of publication, achieving an increase in macro F1

score of 3.55 with fine-tuning and an increase of 1.13 without fine-
tuning [4]. Simultaneously, the model had also achieved state of the
art results in NLP tasks of the biomedical domain.

During the same period, when Beltagy, Lo, and Cohan presented
SciBERT, a pre-trained biomedical language representation model
BioBERT was introduced in [28]. The model was pre-trained on
PubMed abstracts and PubMed Central full-text articles, each with
4.5B and 13.5 B words respectively [28]. Instead of constructing a new
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vocabulary for the tokenizer, BioBERT used the readily available cased
vocabulary of BERT. This is to allow BioBERT to be compatible with
BERT. During fine-tuning, BioBERT was trained for three biomedical
text mining tasks which were NER, relation extraction and question
answering. BioBERT managed to outperform BERT and other earlier
state of the art models in biomedical text mining tasks. BioBERT out-
performs BERT on biomedical NER by a F1 score of 0.62% and biomed-
ical relation extraction by 2.80% [28]. Although BioBERT was pre-
trained on purely biomedical text corpora, SciBERT was able to per-
form better than BioBERT in 2 NER datasets and one dataset for rela-
tion extraction task [4]. This could be due to SciBERT employing its
custom vocabulary which can represent more words in the biomedical
domain.

Huang, Altosaar, and Ranganath presented ClinicalBERT to build
representations of clinical notes during a patient’s admission in order
to predict the patient’s risk of being readmitted within a 30-day time
frame [18]. The objective functions for pre-training ClinicalBERT were
similar to the ones used in [13]. During fine-tuning, the embeddings
from ClinicalBERT were used to train for a downstream binary classi-
fication task for readmission prediction. In contrast to previous works
on domain-specific BERT models, the authors of [18] also tested Clini-
calBERT by evaluating its ability to rank similarity scores of 30 pairs
of medical terms. This is done by computing embeddings of a med-
ical term and the sum of the last four hidden states of ClinicalBERT
of the encoder layers was used to represent the medical term. This
practice however yields results that are not credible as this method is
often worse than averaging GloVe embeddings of the input [48]. Clini-
calBERT outperformed BERT on the downstream task.

Besides the medical field, BERT started gaining popularity within
the material science domain. The first usage of a domain-specific
BERT for material science came with the introduction of MatSciBERT
[16]. Research papers from the domain were searched on Crossref
and the papers were downloaded from the Elsevier Science Direct
database. The text from these research papers were then extracted
with the help of a custom XML parser and the extracted texts were
preprocessed, where random Unicode characters were removed and
different Unicode characters having similar meaning and appearance
were replaced with single standard characters. Different from previ-
ous mentioned works on domain-specific models, the authors of [16]
initiated the weights for BERT with the weights from SciBERT to pre-
train on their text corpus. The authors also used the SCIVOCAB to
tokenize the input sequences for the reason that the uncased SCIVO-
CAB could cover 53.64% of the material science vocabulary, whereas
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the vocabulary from BERT was only able to cover 38.90% [16]. Be-
sides that, it is more practical than building a custom vocabulary for
the material science domain, which would cause pre-training to take
a longer time. MatSciBERT also went through a different approach
for pre-training its model. Instead of using both MLM and NSP, the
authors in [16] employed a whole word masking method, where the
masking of tokens is done on a word level and tokens that belong
to a word are masked all together. MatSciBERT performed better
than SciBERT in all downstream tasks in the material science do-
main, namely NER, text classification and relation classification. An-
other similar BERT model pre-trained on a material science corpus
was also included in the research of MatBERT in [61]. Pre-training
for MatBERT was done on two million papers which were randomly
sampled from a corpus of peer-reviewed material science journal ar-
ticles. Trewartha et al. employed two custom vocabularies to train its
tokenizers. One of these vocabularies is cased and the other uncased.
Furthermore, the objective of pre-training was solely MLM. In contrast
to MatSciBERT, MatBERT was pre-trained by initiating its BERT model
with BERT weights instead of SciBERT weights. MatBERT achieved
an overall 1% to 4% improvement over SciBERT on downstream NER
tasks. It was also discovered in [61], that SciBERT outperformed BERT
on the same downstream NER tasks by 3% to 9%, which emphasizes
the importance of scientific pre-training.

Another example of a custom pre-trained language model used for
domain-specific purposes was shown in [19]. In the work of Huang
and Cole, the authors constructed 6 variants of domain-specific BERT
models for text mining in the field of battery research and the mod-
els were used to update and enhance a battery database that was
generated using ChemDataExtractor [20]. Two of which were initi-
ated with BERT model weights (BatteryBERT), another two variants
were initiated with SciBERT model weights (BatterySciBERT) and
the remaining two were trained from scratch with a BERT architec-
ture (BatteryOnlyBERT). In each pair of variants initiated with the
same model weights, one model used a cased vocabulary and the
other used an uncased vocabulary. When comparing BatteryOnly-
BERT with BatteryBERT as well as BatterySciBERT in the downstream
NER task, BatterySciBERT and BatteryBERT perform better than Bat-
teryOnlyBERT when it came to precision and recall as evaluation mea-
sures. This could be due to the fact that the number of training steps
for BatteryOnlyBERT was not sufficient. Generally, BatteryBERT, Bat-
terySciBERT as well as BatteryOnlyBERT outperformed the original
BERTBASE in the downstream task of NER. Moreover, BatteryBERT
was employed to enhance a battery database by [20] by building in a
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document classifier that filters out documents not related to battery
research and also a question answering agent in its data extraction
pipeline. The pre-programed questions about various device materi-
als in the question answering agent allowed the pipeline to classify
device components and be saved in the battery database.



3
E M P I R I C A L S T U D Y

In this section, the datasets as well as the methodologies used in this
work are described. Firstly, the origins of the text corpus from the
physics and computer science domain for pre-training is reported.
Furthermore, the NER datasets used for evaluating the BERT language
models pre-trained in this work is introduced. For both the text
corpus as well as the NER datasets, data preprocessing procedures
were executed, which are also described in their respective sections.
The methodologies used for pre-training as well as fine-tuning on the
downstream task of NER are also explained.

3.1 data

3.1.1 arXiv Text Corpus

In order to investigate how well the present BERT model architecture
can represent texts from the physics and computer science domain, a
text corpus from these two domains was built in this thesis. Text data
from these two domains were extracted by first downloading research
articles from the open access repository arXiv. The physics domain
is further broken down into different subcategories, which are de-
scribed in Table A.1. The period of publication of the aforementioned
research articles are from 01. September 1998 until 10. December 2021.
For bulk downloads, a Python script provided by arXiv was used to
download the papers from a cloud storage service [69]. A total of
1,580,695 papers were downloaded as PDF files. From this number
of papers, text data from 1,560,661 research papers were successfully
extracted. Approximately 29% of the extracted texts originated from
the computer science domain and the rest comes from the physics
domain. The extraction and parsing of the textual data was carried
out with the help of a Python binding for lightweight PDF, XPS and
E-book viewing and rendering called PyMuPDF [46]. During extrac-
tion and parsing, the texts were stored in text files and encoded with
the UTF-8 encoding. Unencodable Unicodes are replaced with a ques-
tion mark. The remaining 20034 papers could not be used with this
Python library due to errors from non-standardized font sizes and
corrupted downloads from arXiv.
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After the extraction of texts from downloaded research papers, the
text data was cleaned with a series of data preprocessing procedures.
Firstly, similar to previous works mentioned in 2.6, the figures and
tables from the research articles were removed, as they do not contain
meaningful textual information. Captions of figures and tables were
retained, as these contain important textual information. At the same
time, sentences that contain a high ratio non-alphabetic characters
such as mathematical formulas and table rows were removed. A pro-
cedure similar to the preprocessing procedure in [4] was used. This
procedure removes sentences that did not fulfill all of the following
requirements:

• The sentence must have at least 4 tokens after being tokenized
by the tokenizer.

• The ratio of tokens that solely contain alphabets to the total num-
ber of tokens must be more than or equal to 0.4.

• The ratio of characters that are alphabets to the total number of
characters in the sentence must be more than or equal to 0.6.

During the extraction of sentences, incomplete sentences were also
extracted especially when the texts in the research papers were for-
matted in a multi-column structure. To alleviate this issue, sentences
which have an alphabetic character in upper case at the beginning and
have a total character length of more than 80 characters as well as end
with a full-stop were not removed. The predetermined total character
length of 80 is arbitrary. However, this allowed short sentences like ti-
tles of subsections as well as sentences that only contain abbreviations
that end with full stops such as "Fig." to be removed. Other forms of
end of sentence punctuation such as question marks and exclamation
marks were not considered, as they could also be used in mathemat-
ical formulas that are written within the sentence. Moreover, it was
rare to encounter both of these punctuations as end of sentence punc-
tuation in the context of scientific research papers. Texts in scientific
literature also contain symbols and random characters. To address
this, the texts also underwent a normalization procedure, similar to
the one employed in [16]. The process involved normalizing the cor-
pus with BertNormalizer from the Hugging Face tokenizers library
[21]. The BertNormalizer strips accents from characters and also re-
move any control characters and replaces all whitespaces with the
classic whitespace. Thereafter, a list of mappings of Unicode char-
acters created by [16] was used to map different Unicode characters
having similar definitions and appearance to either a single standard
Unicode character or a sequence of standard characters. To create a
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training corpus that is representative of the overall text corpus, the
lines in the training corpus was shuffled randomly. After all the pre-
processing procedures, the final pre-training corpus produced had a
size of 16GB and an evaluation corpus, which is needed for the mea-
surement of its pseudo-perplexity in Subsection 3.2.1, with a size of
81MB was also created.

In order to gain insight into the text corpus used for pre-training,
the training corpus was explored by counting unique its unique words
and also training a WordPiece tokenizer like the one used in [13] and
as described in Subsection 2.3.3. Unique words which were counted
did not include common stop words such as "the", "is" and "and"
which could mislead the word count as these words are very common
among texts. The stop words for filtering out the words were taken
from the Python library NLTK [40].

Figure 3.1: Unique words in pre-training corpus for training without
including stop words.

As it is shown in Figure 3.1, the word "model" appears most fre-
quently in the text corpus, followed by "fig", which is commonly used
as an abbreviation in research articles for the word "figure", and "re-
sult". A comparison of frequently occurring words in our corpus with
the corpora for pre-training BERTBASE [13] as well as SciBERT [4] is
also shown in Figure 3.2. The words present in our training corpus
are similar to that of SciBERT than that of BERTBASE as less scientific
terms were captured in the general domain of BERT. It can then be as-
sumed that initializing the weights for pre-training with the weights
of SciBERT should provide better results.
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Figure 3.2: Wordcloud comparison for our corpus (left), BERTBASE
(middle), SciBERT (right). Wordclouds for BERTBASE and
SciBERT taken from [19].

Training the WordPiece tokenizer in our corpus also gives further
insight into the number of new distinct tokens or subwords existing in
the vocabulary of the texts extracted (refer to Subsection 2.3.3). Figure
3.3 shows the Venn diagrams for the vocabulary produced after train-
ing the WordPiece tokenizer on our text corpus extracted from arXiv
and also the vocabularies from the BERTBASE and SciBERT models.
Both cased and uncased variants of the vocabularies are shown in Fig-
ure 3.3. Planned comparisons between all three training data of the
models for pre-training revealed that the uncased vocabulary share
more similar tokens than the cased vocabulary. As there are more
unique words when words are distinguished by their casings it is ex-
pected that the uncased vocabularies of these models would share a
higher number of words. Evaluating the similarities of the vocabu-
lary between the models also yields that the training data used for
SciBERT share a higher number of words or subwords in its vocab-
ulary (6174 for uncased, 7123 for cased) with the training data used
in this work than BERTBASE does (2251 for uncased, 1626 for cased).
This shows that the SciBERT vocabulary has a higher similarity to
the vocabulary of the training data used in this thesis. These results
correspond to the findings from Figure 3.2. Although it is feasible to
pre-train a model with a custom vocabulary trained using WordPiece
tokenization, it is not done in this work as doing so would take a
longer time to pre-train than initialising the model with weights from
pre-trained models such as SciBERT and BERTBASE [13, 19].
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Figure 3.3: Venn diagram of vocabulary trained using WordPiece
tokenization with our training corpus (PCBERT) , SciBERT and
BERTBASE.

3.1.2 Computer Science Named Entity Recognition in the Open Research
Knowledge Graph (CS-NER)

As a way to evaluate the performance of the pre-trained models objec-
tively in the computer science domain, an NER dataset that focuses on
a standardized annotation for contribution-centric scholarly entities
in the computer science domain is employed. The dataset was pro-
posed by D’Souza and Auer in their work [12]. In their work, they
unified annotations from prior work on scholarly domain-specific
NER datasets from the computer science domain and standardized
the various annotations from the assorted datasets to form seven
contribution-centric entities, namely "research problem", "method",
"solution", "tool", "resource", "dataset", "language". The field of in-
terest of the datasets studied in [12] ranges from computer linguistics
to artificial intelligence as well as computer vision. The entities and
the definition according to [12] are given in Table 3.1.
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Table 3.1: Entity types and their definitions in CS-NER dataset according to
[12].

Entity Definition

research problem Theme of the investigation.

method Exisiting protocols and procedures
used to support a solution.

solution Novel contribution of a work that
solves the research problem.

tool By which means the research problem
was solved.

resource Names of existing data and other ref-
erences to utilities like the Web, Ency-
clopedia, etc.

dataset Name of dataset.

language The natural language focus of a work.
This is mainly found in the computer
linguistics branch.

The datasets from previous works that were standardized in [12]
were FTD [15], SciERC [33], NLPContributionGraph (NCG) [11], ACL
[10] and PapersWithCode (PwC) [41]. All of the datasets used in
CS-NER had existing semantic entity types that matched the definition
given by [12]. Hence, these were incorporated into the CS-NER dataset.
The remaining semantic entities that did not match the contribution-
centric entities were discarded. In each of these datasets, texts from
research article titles and abstracts were extracted. D’Souza and Auer
structured the dataset in such a way that the annotated NER dataset
for research titles were separated from the annotated dataset for re-
search abstracts. The titles corpus contained the semantic entities
mentioned in Table 3.1, whereas the abstracts corpus only had the
entities "research problem" and "method". This discrepancy is due to
the fact that all the datasets used in [12] had the same format, where
the titles were separated from the abstracts and the abstract corpora
had mostly entities that fit into the definition of "research problem"
and "method". Both titles and abstracts corpora are split into training,
evaluation and testing datasets. For this thesis, only the titles corpus
of CS-NER is used for fine-tuning purposes as this corpus has more se-
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mantic entities than the abstracts corpus. Furthermore, the abstracts
corpus has less records in its datasets than the titles corpus.

The annotation scheme for CS-NER follows an IOBES-scheme. In this
scheme, words in texts are treated as tokens and the tokens can be as-
signed a tag to a specific entity type. A group of tagged tokens make
up a chunk and therefore spans of tokens of different lengths can be
tagged. The tags of this annotation scheme indicate the relative posi-
tion and span of the annotated entities and can be broken down into
five parts: I-tag stands for a tag inside a chunk, O-tag means no entity
type can be assigned to the token, B-tag stands for the beginning of
a chunk, E-tag stands for the end of a chunk and S-tag indicates that
the chunk is made up of a single token. The abbreviations, except for
the O-tag, are prefixed before the entity type, so that both the infor-
mation about the relative positions of the tag in the chunk as well as
the entity type can be expressed. An example is shown in the figure
below:

Figure 3.4: An example record in the CS-NER dataset with IOBES-scheme.

3.1.3 Workshop on Information Extraction from Scientific Publications
(WIESP)

A thorough search of the relevant literature yielded only one related
NER dataset in the physics domain with considerable number of en-
tities. WIESP was a workshop to foster discussion and research using
NLP and machine learning [66]. Through this forum, professionals ,
researchers as well as students can cooperate towards constructing al-
gorithms, models and tools to pave way for machine comprehension
of science in the future. The workshop in 2020 presented a dataset that
is a derived dataset from the Detecting Entities in the Astrophysics Lit-
erature (DEAL) task which is available on their HuggingFace website
[65]. This dataset contains text fragments from astrophysics papers
with manually tagged astronomical facilities and other entities of in-
terest in the astrophysics domain. Moreover, the task of DEAL was
to build a system that is automatic and does not require human in-
tervention that can identify named entities in text fragments from the
astrophysics literature [9]. A total of 31 semantic entities were used as
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labels in this dataset. The entities and their definitions are presented
in Table 3.2.
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Table 3.2: Entity types and their definitions in WIESP dataset according to
[9].

Entity Definition

Archive Curated collection of the literature or
data. (e.g. MAST)

CelestialObject Named object in the sky. (i.e. An-
dromeda galaxy)

CelestialObjectRegion Named area on/in in a celestial boy.
(e.g. Inner galaxy)

CelestialRegion A defined region projected onto the
sky or celestial coordinates. (e.g.
GOODS field, l=2, b=15)

Citation A reference to previous work in the lit-
erature. (e.g. Allen et al. 2012)

Collaboration An organizational entity containing
multiple organizations and/or coun-
tries. (e.g Plank Collaboration)

ComputingFacility Facility whose primary purpose is to
operate computational resources. (e.g.
CINECA supercomputing Centre)

Database Curated and searchable set of re-
latable data tables (very similar to
Archive). (e.g. Simbad)

Dataset Curated set of data (Similar to a single
data table). (e.g. Gaia EDR3)

EntityOfFutureInterest A general catch of all entities that may
be worth further research in the fu-
ture.

Event A conference, workshop or other
event that often brings scientists to-
gether. (e.g. Protostars and Planets
VI)
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Table 3.2 (continued)

Entity Definition

Fellowship A grant that is focused towards stu-
dents and/or early career researchers.
(e.g. Hubble Fellowship)

Formula Mathematical formula or equations.
(e.g. F = Gm1m2/r2)

Grant Allocation of money and/or time for
a research project. (e.g. grant No.
12345)

Identifier Unique identifier for data, images, etc.
(e.g. ALMA 123.12345)

Instrument A device used to make measurements.
(e.g. NIRCam)

Location A name of location on Earth. (e.g.
Canada)

Mission A spacecraft that is not a telescope
or observatory that carries multiple in-
struments. (e.g. WIND)

Model Name of scientific or computational
model. (e.g. Salpeter IMF)

ObservationalTechniques Method used to observe celestial ob-
jects. (e.g. Resolved Long-slit Spec-
troscopy)

Observatory A group of telescopes, that are often
similarly located. (e.g. Keck Observa-
tory)

Organization An organization that is not an obser-
vatory. (e.g. NASA)

Person Name of person. (e.g. A. Einstein)

Proposal A request for telescope time or fund-
ing. (e.g. GN-2014B-Q-26)
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Table 3.2 (continued)

Entity Definition

Software Name of computer code or language.
(e.g. Numpy)

Survey Organized search of the sky often
dedicated to large scale astronomy
projects. (e.g. 2MASS)

Tag A HTML tag. (e.g. <\bold>)

Telescope Optical instrument to capture images
of distant objects. (e.g. Hubble Space
Telescope)

TextGarbage Incorrect text, often multiple punctua-
tions marks with no inner text. (e.g.
’„„,’)

URL A link to a website. (e.g.
https://www.astropy.org/)

Wavelength A portion of the electromagnetic spec-
trum (it can be expressed as a particu-
lar wavelength, a name or a particular
transition). (e.g. 656.46 nm)

The WIESP dataset uses the IOB2-scheme to annotate its text. In con-
trast to the IOBES-scheme mentioned in 3.1.2, there are no distinctions
between the S-tag and the B-tag, that is single tagged tokens receive
the B-tag instead of the S-tag. Additionaly, no E-tags are used in this
scheme. The IOB2-scheme is similar to the IOB-scheme. The only dif-
ference is that every beginning of a token chunk in the IOB2-scheme,
including chunks that are made up of single tokens, are tagged with
the B-tag. On the other hand, the IOB-scheme tags the beginning of
token chunks which consist of a single token with the I-tag.

3.2 methodology

Since the goal of this thesis is to learn text representations from the
computer science and physics domain, a pre-training procedure is
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carried out. Subsequently, the models are fine-tuned for the NER task
utilizing the datasets shown in Subsection 3.1.2 abd 3.1.3.

3.2.1 Pre-training

As discussed in Subsection 2.3.3, the pre-training acomplished in this
work is done in a similar manner as with the pre-training of BERT
in [13]. In contrast to [13] however, the NSP pre-training is not done
for this thesis. One reason for this is because it has been reported in
[32] that the performance of BERT is unimproved with NSP. Another
reason is because the downstream task in this thesis does not require
reasoning about the relationships between pairs of sentences such as
the one essential in question answering. Hence, for the pre-training
procedure MLM is chosen as the training objective. The objective func-
tion for MLM can be expressed with Equation 3.1. The BERT models
chosen to initialize the weights before pre-training are SciBERT and
BERTBASE. SciBERT was chosen for this thesis because its vocabu-
lary contained more similar words and subwords in its vocabulary as
shown in Subsection 3.1.1. BERTBASE is also chosen to initiate the
weights of the BERT model in this work to investigate whether the per-
formance of the models using the initial weights and vocabulary of
BERTBASE would suffice on downstream tasks.

max
Θ

log pΘ(x|x′) ≈
L

∑
i=1

milog pΘ(xi|x<i, x>i) (3.1)

LCE = −
L

∑
i=1

milog pΘ(xi|x<i, x>i) (3.2)

In Equation 3.1, Θ is the parameters of the model, x and x′ indicate
the true token sequence and the masked token sequence, respectively.
L is the length of the sequence and xi is the masked token. mi de-
notes the presence of a masked token, where mi = 1 denotes that
xi is masked and mi = 0 if otherwise. In order to maximize the ob-
jective function, the cross entropy loss is minimized , similar to the
approach in 2.1.1. Equation 3.2 shows the cross entropy loss of a sin-
gle token sequence. To calculate the cross entropy loss of multiple
sequences in one batch, the cross entropy loss is averaged over the
number of sequences in one batch. To assist in pre-training, BERT
models from the HuggingFace [21] platform was used. The models
and their respective tokenizers can be downloaded from the website.
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To use the models, their respective tokenizers must also be used ac-
cordingly. The authors for the various domain-specific BERT models
in Section 2.6 used different hyperparameters for pre-training their
respective domain-specific BERT models. Table 3.3 shows an overview
of the hyperparameters used for pre-training their models including
batch size, number of epochs, optimizer settings and sequence length.
N/A denotes that no information can be found regarding the hyper-
parameter. BERT in Table 3.3 refers to BERTBASE and BERTLARGE
which were the original BERT models trained by Devlin et al. [13].
BERTBASE, BERTLARGE, SciBERT and ClinicalBERT went through
two rounds of pre-training, once with a sequence length of 128 and
the next round with 512. Additionally, ClinicalBERT trained its first
round of pre-training with a batch size of 64 and the second round
with a batch size of 8. Pre-training in this thesis was carried out on
a NVIDIA A100-PCIE-40GB GPU and the pre-training of each model
took 11 to 13 days. An AdamW optimizer was used with β1 = 0.9,
β2 = 0.999, ϵ = 1e−8, weight decay of 0.01 and a learning rate of 2e−5.
Furthermore, a linear decay schedule for the learning rate without a
warm-up ratio was used. These hyperparameter settings are similar
to the ones used in [19]. A maximum input sequence length of 512

with a batch size of 40 was used. The batch size was set at 40 for
the uncased and cased versions of BERTBASE as well as the uncased
version of SciBERT, whereas a batch size of 30 was used during the
pre-training of the cased version of SciBERT. The batch sizes were
chosen in this manner as this was the maximum size that the GPU
was capable to process. Number of epochs for pre-training was set at
5.

Before feeding the text into the models for pre-training, the text
are first tokenized by the respective tokenizers of the models into to-
kens. The tokens created for each sentence are grouped and split into
chunks with sequence lengths of 512. This grouping and chunking
step is done to concatenate the input sentences and prevent long sen-
tences from getting truncated when it has more tokens than the fixed
512 [21]. This prevents information that might be helpful from being
discarded from the pre-training task.
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Table 3.3: Hyperparameters used for pre-training different domain-specific
BERT models.

Model Batch
Size

Number
of Epochs

Optimizer Settings Sequence
Length

BERT
(BERTBASE)
(BERTLARGE)
[13]

256 40 Adam with learning
rate = 1 × 10−4,
warm-up steps =
10000, weight decay
=0.01, β1 = 0.9, β2 =
0.99,ϵ = 1× 10−6

128,
512

SciBERT [4] N/A N/A N/A 128,
512

BioBERT [28] 192 40 Adam with learning
rate = 1e−4, warm-
up steps = 10000,
weight decay =0.01,
β1 = 0.9, β2 =
0.99,ϵ = 1× 10−6

512

ClinicalBERT
[18]

64,8 1 Adam with learning
rate = 2e−5,warm-up
steps =10,weight
decay=0.01,β1 =
0.9,β2 = 0.999,ϵ =
1× 10−6

128,512

MatSciBERT
[16]

256 30 AdamW with learn-
ing rate = 1 × 104,
warm-up steps =
4.8% of total training
steps, weight decay
=0.01, β1 = 0.9,β2 =
0.98,ϵ = 1× 10−6

512

MatBERT [61] 192 5 AdamW with
learning rate =
5 × 10−5,weight de-
cay =0.01, β1 = 0.9,
β2 = 0.999,ϵ =
1× 10−8

N/A

BatteryBERT
[19]

256 40 AdamW with
learning rate =
5 × 10−5,weight
decay =0.01,
β1 = 0.9,β2 =
0.999,ϵ = 1× 10−8

512
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Language models are usually evaluated on a metric known as per-
plexity, which is defined in Equation 3.3. s denotes a sentence with
tokens x1, ..., xL with L being the number of tokens in the sentence. It
is a measurement of how confident a language model predicts a test
text sample or rather how "surprised" the language model is when
it sees new data. Another interpretation of perplexity is as being a
branching factor, describing the weighted average number of choices
of tokens a language model can have when predicting a subsequent
token or word [24]. However, since masked language models are dif-
ferent to the traditional causal language models as described under
Section 2.1 that model the probabilities of subsequent words based
on preceding words in a sentence, perplexity is not well defined for
masked language models [50]. Despite of this, Salazar et al. have in-
troduced the idea of pseudo-perplexity that can be applied to masked
language models [50]. In order to score a sentence from a model with
pseudo-perplexity, copies of the sentence with each token masked
out is created. The special tokens [CLS] and [SEP] are not masked
out. The cross entropy for each masked token is summed over copies
of the sentences to give a total cross entropy score. The number of
tokens, excluding the [CLS] and [SEP] tokens in the sentence is noted.
The total cross entropy of the sentence is then divided by the number
of tokens in the sentence and exponentiated. Figure 3.5 shows the pro-
cedure of calculating the total cross entropy of an example sentence
when fed into BERT as a masked language model and Equation 3.4
illustrates the calculation for pseudo-perplexity.

Perplexity(s) = e−
1
L ∑L

i log pΘ(xi|x<i) (3.3)

Pseudo− perplexity(s) = e−
1
L ∑L

i log pΘ(xi|x<i,x>i) (3.4)

It is also imperative to understand the boundaries of the perplexity
metric to evaluate the best and the worst possible perplexities. The
best perplexity of a language model is 1, as a language model that is
able to predict subsequent or masked words perfectly would assign
the token in its vocabulary with a probability of 1 and the log proba-
bility is 0, which when exponentiated returns 1. The worst perplexity
that a language model can achieve would be the size of its vocabu-
lary. In the worst case, the language model knows absolutely nothing
about the data and consequently models the sequence of tokens as
a uniform distribution, assigning all tokens that are to be predicted
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with a probability of 1
|V| , where |V| is the size of the vocabulary used.

As a result, the lower the perplexity, the better the performance of
the language model. A proof of the size of vocabulary |V| being the
worst score for perplexity is shown in the following equation:

e−
1
L ∑L

i log pΘ(xi|x<i) = e−
1
L ∑N

i log 1
|V|

= e−
1
N Nlog 1

|V|

= elog|V|

= |V|

(3.5)

Thus, comparing perplexities across models is only sensible, when
the models being compared utilize the same vocabulary for its tok-
enizer. For the evaluation of the masked language models in this
thesis, the pseudo-perplexities of the models were computed before
and after pre-training on a seperate evaluation corpus extracted from
the arXiv text corpus. The evaluation corpus was not used during
pre-training and hence the evaluation corpus can be considered as
unseen data for the models. To prevent a memory overload during
computation of the perplexity scores, only sentences that contain less
than 120 tokens are evaluated.
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Figure 3.5: Total cross entropy calculated for one sentence as shown in [50].

3.2.2 Fine-tuning

After the pre-training stage, the models are subjected to downstream
task training with the NER datasets introduced in Subsection 3.1.2 and
3.1.3. Fine-tuning on both NER datasets from CS-NER and WIESP was
accomplished by first looking for the best performing hyperparam-
eter settings for each combination of the models together with the
datasets. The batch size used is fixed according to dataset used. The
batch size for fine-tuning on CS-NER was 40 , whereas the batch size
for fine-tuning on WIESP dataset was 10. The disparity of batch sizes
between datasets is due to the size of the data input from each dataset.
Data input from WIESP was larger as it had longer sequences than the
records in CS-NER. The hyperparameters varied in this work are the
number of epochs and the learning rates used in the AdamW op-
timizer. The number of epochs 1 to 8 as well as the learning rate of
1× 10−4,3× 10−4,5× 10−5 or 3× 10−5 were selected for hyperparame-
ter tuning. This range for the number of epochs was chosen as higher
number of epochs would cause longer training durations. In fact,



3.2 methodology 51

smaller ranges of epochs were used in similar tasks [1]. The range of
learning rates matches that of previous works [4, 13, 19].A warm-up
ratio of 0.1 with an AdamW optimizer was used for fine-tuning and
hyperparameter tuning. For each combination of hyperparameters,
the results from 3 different random seeds were used and the aver-
age of the evaluation score is calculated. The selected hyperparame-
ters which gave optimum micro F1 score is chosen for the respective
model and the dataset the model was evaluated on. The models for
each dataset are subsequently trained with their respective optimum
hyperparameters with one seed and are assessed using a test dataset.
One seed was used as training multiple models on multiple seeds
unfortunately requires a lot of disk space to save the models.

Precision, recall and F1 scores are chosen as evaluation metrics for
the fine-tuning stage. Precision is defined as a fraction of relevant
instances amidst all retrieved instances, while recall is the fraction of
retrieved instances among all relevant instances. Precision and recall
can be expressed as equations 3.6 and 3.7 respectively. TP is the num-
ber of true positives detected, i.e. how many predicted entities were
actually correct, FP is the number of false positives, i.e. how many
predicted entities were in fact not entities and FN is the number of
false negatives, i.e. how many unpredicted entities were actually true
entities. The F1-Score is used as an average score of precision and
recall.

Precision =
TP

TP + FP
(3.6)

Recall =
TP

TP + FN
(3.7)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(3.8)

Calculations for the F1 score for both WIESP and CS-NER are the
same. The seqeval metric module from Pytorch was used to com-
pute the mentioned evaluation metrics [39]. However, the definition
of TP,FP and FN within the WIESP task differs from the ones used in
CS-NER. This is due to the fact, that the WIESP task uses a lenient count
for TP, FP and FN, which counts correct entity types with incorrect
I/B-prefixes as true positives. Conversely, the IOBES scheme used in
CS-NER only allows a strict mode in seqeval and doesn’t identify in-
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correctly prefixed entity labels as true positives, penalising the model
not only on entity type but also the relative position of the label.

There also exist two procedures for averaging the evaluation results
regarding multilabel tasks. These procedures are coined as micro and
macro averages. The micro average of a metric is calculated by sum-
ming the individual TP, FP and FN of the system for different sets or
labels and apply them to calculate the evaluation metric. Whereas for
macro average, the evaluation metric for different labels are calculated
and the average of the calculated evaluation metrics of the different
labels is taken. While micro averaging favours the majority class, as
the resulting performance takes into account the proportion of every
class and each observation is given equal weight, macro averaging
favours the minority class, as it gives equal weight to each class of the
task instead. Since micro averaging takes into account the imbalance
of labels in the dataset, it is often used in NER [28, 57]. Hence, the mi-
cro averaged F1 metrics are used in this work to evaluate the models.
A detailed illustration of the equations for calculating micro precision
and micro recall is depicted in Equations 3.9 and 3.10 , respectively.
Here, |L| denote the number of labels and in the case of NER denote
the number of entity types. The calculation for micro and macro F1

scores is shown in Equations 3.11 and 3.12, respectively.

Precisionmicro =
∑|L|i=1 TPi

∑|L|i=1 TPi + ∑|L|i=1 FPi

(3.9)

Recallmicro =
∑|L|i=1 TPi

∑|L|i=1 TPi + ∑|L|i=1 FNi

(3.10)

F1micro = 2 ∗ Precisionmicro ∗ Recallmicro

Precisionmicro + Recallmicro
(3.11)

F1macro =
1
|L|

|L|

∑
i=1

F1i (3.12)
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R E S U LT S A N D D I S C U S S I O N

In this chapter, the results from the experiments carried out in Chap-
ter 3 are presented and discussed with regard to previous works and
research. Firstly, the results from pre-training the different BERT mod-
els are presented and compared to previous performances achieved
by previous works. Finally, the results on the fine-tuning perfor-
mances of the models pre-trained in this work on the NER-tasks are
introduced and discussed.

4.1 pre-training

The cross-entropy loss curves for both the uncased and cased vari-
ants of BERTBASE as well as SciBERT were recorded throughout pre-
training. Figure 4.1 shows the cross-entropy loss curves that were
recorded during the pre-training stages of the models. The term
"uncased" in Figure 4.1 signifies that an uncased vocabulary of the
model was used, whereas the term "cased" stands for the usage of
the cased vocabulary. From Figure 4.1, it is clear that pre-training
the model with initialized weights from SciBERT has a lower initial
cross-entropy loss (1.8 for uncased model,1.99 for cased model) when
compared to the model initialized with weights from the BERTBASE
model (3,07 for uncased model,3.96 for cased model). This behaviour
is similar to the results found in [19]. A popular explanation for
this observation is that SciBERT was initialized with weights from
the BERTBASE model for its pre-training and pre-trained on scien-
tific texts [4]. Hence, the SciBERT language model has improved the
weights from the BERTBASE model and can predict masked tokens
better than BERTBASE. Although this is generally accepted, it does
not directly indicate that a language model with lower cross-entropy
loss in masked language modelling outperforms a model with higher
loss on downstream tasks. This was especially noticeable during the
question-answering task in the field of battery research used in [19]
where the model pre-trained on weights from cased BERTBASE out-
performed that pre-trained with cased SciBERT weights. Overall, the
cross-entropy loss decreases continuously and the models that stop
pre-training after 5 epochs demonstrated good performances on the
NER tasks as will be shown later.
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(a) PCBERT(uncased) (b) PCSciBERT(uncased)

(c) PCBERT(cased) (d) PCSciBERT(cased)

Figure 4.1: Cross-entropy loss recorded during pre-training of models in
this thesis. The MA10 Loss describes the cross-entropy loss
averaged over 10 steps.

What is also interesting to note are the five spikes in the pre-training
loss curves in Figure 4.1. Thorough analysis of the training data for
pre-training shows that there are also extracted texts from published
research articles on the official arXiv repository that contain place-
holder sentences. An example text fragment from a research article
in the computer science domain of arXiv containing the placeholder
texts is shown in Figure 4.2. In addition, there are also hidden texts
in the PDF-files that could be extracted with the PyMuPDF library
that were present in research papers as found in [23]. It is assumed
that the authors of these publications had used these texts as a place-
holder during the writing of these articles and have not updated the
publications to a more formal version ever since. It is found that
the training batch with the highest proportion of said placeholder
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text corresponded to the batches which caused the spikes in the pre-
training loss curves shown in 4.1. Due to the fact that the cased and
uncased versions of both BERTBASE and SciBERT were primarily
pre-trained on texts from the English language, this may explain why
the model was not able to correctly predict the masked tokens during
training. Furthermore, the placeholder texts used in these research ar-
ticles are known as Lorem Ipsum texts and do not make sense seman-
tically. Although these texts exist in the training dataset, the number
of research articles containing these texts were negligible. There are
current Python libraries such as langdetect [73], which is a Python
version of Google’s Java language-detection library [72], which can
detect the type of languages in a text but they cannot detect domain-
specific jargon. Hence, using these libraries to screen out unknown
terms would also screen out the scientific terms needed to pre-train
the model. Our findings also show that out models have learned to
model these placeholder texts as can be seen from the decrease in
its cross-entropy loss, though they are not relevant to the domains of
interest in this work.

Figure 4.2: Lorem Ipsum sentences found under the "Discussion" section
from [63].

The pseudo-perplexities of the models before and after pre-training
are shown in Table 4.1. From Table 4.1, it can concluded that pre-
training on texts that are rich in computer science and physics texts
have led to an increase in performance for the BERT models in mod-
elling texts in these domains. Although a comparison of the pseudo-
perplexities should only be compared within models using the same
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vocabularies by their respective tokenizers, it is worth noting that all
models achieved pseudo-perplexities of just above 3.

Table 4.1: Pseudo-perplexities of BERT models before and after pre-training
on physics and computer science training corpus.

Models
Pseudo-perplexity

Before Pre-training After Pre-training

BERTBASE(cased) 8.26 3.15

BERTBASE(uncased) 10.04 3.40

SciBERT(cased) 7.95 3.46

SciBERT(uncased) 5.28 3.68

4.2 fine-tuning

Table 4.2 shows the values of the F1 scores for each entity type and
for each model. The procedure of calculating the F1 scores for each
entity type is the same by using Equation 3.8. The values in paren-
thesis next to the F1 scores are the absolute difference between the F1

score of the model, which was pre-trained in this thesis, and the F1

score of the initial model, from which the model was initialised from
e.g. difference between F1 score of PCBERT(cased) and F1 score of
cased version of BERTBASE, difference between F1 score of PCSciB-
ERT(cased) and F1 score of cased version of SciBERT etc. The values
of F1 scores reported in this work are all in percentages, unless stated
otherwise. The total annotated entities for each entity type is also
presented in Table 4.2. The numbers do not reflect the unique set of
annotated entities. Red cells in Table 4.2 indicate the lowest F1 scores
achieved by the model, whereas green cells indicate the highest F1

scores from the model. Values in bold represent the highest absolute
increase of F1 scores and underlined values show the second highest
absolute increase of the F1 scores.

From Table 4.2, it is clear that the entity type "language" obtained
the highest F1 scores across all models. This corresponds to the results
observed in [12], as the human annotators and authors who curated
the dataset had the highest consensus score for this entity and hence
it is easier for the model to detect this entity type. All models per-
formed worst on the entity type "method". This also agrees with the
findings of the authors in [12] due to the frequent confusion among
the annotators when deciding on whether the entity belongs to the en-
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tity type "method" or "tool". As a consequence, the "tool" entity type
received the second lowest F1 scores from all models. The largest
improvement for the F1 score comes from PCBERT(cased) with an
improvement of 4.1% for the entity type "dataset". The models pre-
trained on the arXiv text corpus in this thesis also caused F1 scores for
some entities to deteriorate with the highest reduction of F1 score ob-
tained from PCBERT(uncased) for the entity type "language" with a F1

score reduction of 3.87%. This could hint that pre-training a language
model on domain specific text data could worsen its performance on
downstream tasks that require more general knowledge of the lan-
guage. Since the entity type "language" defined by [12] focuses on
the natural languages, this entity type does not require the domain
specific knowledge learned in the physics or computer science text
corpus. Further analysis also shows that all the models pre-trained in
this thesis improved the F1 scores for at least 5 out of 7 entity types.
The entity types which were improved by all models are "research
problem", "resource" and "tool", which are common entities that can
be found from research articles.
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The overall micro F1 scores for each model when tested on CS-NER
dataset is recorded in Table 4.3. Results from Table 4.3 show that
for all models pre-trained in this work, the micro F1 scores for the
CS-NER dataset have been improved. Comparing the models pre-
trained in this thesis and their initial models, with which their weights
were initialized with before pre-training, PCBERT(uncased) and PC-
SciBERT(cased) both improved their corresponding initial models by
0.69%, the largest improvement among all the models. The largest mi-
cro F1 score achieved during fine-tuning on the CS-NER dataset came
from PCSciBERT(cased) with a micro F1 score of 76.22%. This shows
that SciVOCAB used by SciBERT does help in achieving higher perfor-
mance for downstream tasks of scientific domains. Further analysis
also indicate that all the cased versions of the models used during
fine-tuning with the exception of PCBERT achieved higher micro F1

scores than their uncased counterparts. This finding supports the
notion that the cased variants do improve the models capability of
identifying and classifying tokens to the correct entity type, although
the increase in micro F1 scores for all models are less than 1%. Consid-
ering that most entities in the CS-NER dataset contain words that are
capitalized, this result is to be expected. Authors in [28] also came to
the conclusion, that models with the cased vocabulary achieve higher
performances for NER tasks.

Table 4.3: Micro F1 scores of models fine-tuned on CS-NER dataset.

Models Micro F1

BERTBASE(cased) 74.88

BERTBASE(uncased) 74.76

SciBERT(cased) 75.53

SciBERT(uncased) 75.41

PCBERT(cased) 75.32

PCBERT(uncased) 75.45

PCSciBERT(cased) 76.22

PCSciBERT(uncased) 75.67

Similar to Table 4.2, the F1 results for each entity type in the WIESP
dataset are presented in Table 4.4. The coloured cells as well as the
bolded and underlined values in Table 4.4 denote similar meaning as
explained for Table 4.2. All models fine-tuned in this thesis achieved
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the highest F1 scores for the entity type "Fellowship". To the contrary,
all of the models obtained the lowest F1 scores for the entity type "In-
strument". Since neither "Fellowship" nor "Instrument" have the high-
est or lowest counts of annotated entities in the test dataset, the num-
ber of annotated entities in the dataset does not seem to be the reason
that the F1 scores for these entity types lie on different extremes. The
models pre-trained in this thesis also achieved higher F1 scores for
most of the entity types compared to the models, whose weights were
used to initialize for pre-training. Both PCBERT(cased) and PCSciB-
ERT(cased) accomplished the best improvement in F1 scores for the
"Software" entity within the test dataset. Moreover, the "Model" entity
also received the highest increase in F1 score from PCBERT(uncased)
and the second highest improvements from PCBERT(cased) and PC-
SciBERT(cased). Both these entities relate closely to computer science
and physic domains. This could be a possible indication that pre-
training the models on texts in these domains led to a better under-
standing for the domain specific language and hence lead to better
identification of these domain specific entities.

Table 4.4: F1 scores from models pre-trained in this thesis according to
entity types for WIESP dataset. Values without parenthesis denote
the F1 score and values in parenthesis denote absolute difference
from initial model. Green cells indicate the highest F1 score from
the model and red cells indicate the lowest F1 score from the
model. Bolded values indicate the highest improvements in F1

score from the model compared to its original before pre-training
and underlined values denote the second highest improvements
in F1 score.

Entity
Models

PCBERT
(cased)

PCBERT
(uncased)

PCSciBERT
(cased)

PCSciCBERT
(uncased)

Archive (359) 84.35 (4.88) 84.19 (3.75) 83.84 (1.72) 84.54 (1.88)

CelestialObject (3609) 63.09 (1.05) 61.73 (0.85) 63.46 (1.55) 63.04 (0.14)

CelestialObjectRegion
(723)

44.66 (5.04) 54.2 (1.95) 44.13 (8.15) 68.59 (34.94)

CelestialRegion (209) 78.99 (6.67) 78.03 (5.39) 79.24 (4.26) 78.79 (2.55)

Citation (8621) 90.67 (2.0) 90.18 (0.44) 90.36 (1.67) 89.92 (-0.13)

Collaboration (428) 92.37 (1.44) 92.68 (0.42) 92.97 (0.74) 92.64 (0.44)
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Table 4.4 (continued)

Entity
Models

PCBERT
(cased)

PCBERT
(uncased)

PCSciBERT
(cased)

PCSciCBERT
(uncased)

ComputingFacility (607) 64.49 (2.69) 64.45 (-1.25) 71.13 (3.02) 68.03 (-0.64)

Database (342) 88.54 (6.65) 88.75 (2.97) 88.76 (4.56) 88.57 (2.23)

Dataset (516) 80.31 (7.68) 80.33 (4.85) 80.5 (2.95) 80.49 (2.49)

EntityOfFutureInterest
(435)

56.38 (2.77) 57.44 (1.46) 56.94 (-0.01) 60.62 (2.41)

Event (59) 60.78 (4.09) 61.02 (1.31) 62.12 (0.48) 61.52 (-0.08)

Fellowship (607) 96.72 (3.02) 96.43 (0.29) 97.3 (0.39) 96.84 (0.23)

Formula (3452) 86.47 (3.09) 87.35 (0.51) 87.51 (0.19) 87.54 (0.07)

Grant (5259) 49.18 (6.24) 45.07 (6.74) 49.08 (4.29) 49.87 (7.16)

Identifier (180) 74.6 (8.67) 74.2 (6.45) 71.46 (4.06) 73.95 (-1.08)

Instrument (1102) 3.37 (2.5) 0.0 (-0.85) 0.0 (-0.38) 1.15 (0.38)

Location (2256) 63.58 (8.47) 61.04 (4.68) 62.41 (3.52) 63.47 (2.5)

Mission (204) 89.08 (4.62) 89.51 (1.65) 90.14 (0.92) 89.37 (0.24)

Model (3208) 68.91 (9.02) 69.77 (12.51) 72.73 (12.08) 71.98 (5.94)

ObservationalTechniques
(91)

79.32 (6.46) 75.02 (5.17) 76.83 (2.02) 76.13 (1.11)

Observatory (1326) 92.86 (6.62) 93.79 (1.15) 93.61 (0.86) 93.25 (0.49)

Organization (11399) 77.22 (3.08) 78.29 (2.67) 78.91 (0.74) 77.91 (1.7)

Person (6085) 84.25 (6.89) 83.14 (4.28) 84.19 (4.17) 83.76 (2.22)

Proposal (180) 84.74 (5.93) 80.64 (1.25) 80.51 (-2.53) 80.67 (-1.42)

Software (1386) 53.32 (23.5) 51.89 (5.55) 53.82 (15.32) 57.3 (6.54)

Survey (1188) 66.67 (1.82) 67.88 (0.34) 69.61 (0.91) 70.46 (3.27)

Tag (115) 77.93 (5.12) 77.34 (2.55) 77.11 (1.65) 76.98 (0.8)

Telescope (2346) 19.95 (0.53) 24.22 (2.99) 20.43 (2.63) 23.92 (-1.12)
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Table 4.4 (continued)

Entity
Models

PCBERT
(cased)

PCBERT
(uncased)

PCSciBERT
(cased)

PCSciCBERT
(uncased)

TextGarbage (283) 52.44 (6.84) 52.07 (3.77) 52.06 (4.22) 51.09 (3.57)

URL (405) 90.67 (1.85) 89.73 (1.06) 89.8 (0.6) 90.52 (-0.14)

Wavelength (4643) 87.22 (1.4) 86.01 (1.06) 86.24 (-0.25) 86.2 (0.14)

It is worth discussing the interesting findings revealed by the results
of Table 4.5, which shows the overall micro F1 scores of the models
fine-tuned on WIESP dataset. Both PCBERT(cased) and PCBERT-
(uncased) improved their original models used for initiation in pre-
training by 3.85% and 1.92%, respectively. Not to mention, both
these models obtained a higher improvement than their PCSciBERT
counterparts, a similar finding observed on the CS-NER dataset. This
suggests that the SciBERT models, that have been pre-trained on sci-
entific texts and have their own scientific vocabulary, can’t be im-
proved as much as their BERTBASE counterparts, as SciBERT has al-
ready obtained much more domain specific comprehension. PCSciB-
ERT(cased) and PCSciBERT(uncased) improved their original models
by 1.49% and 0.8%, respectively.

Table 4.5: Micro F1 scores of models fine-tuned on WIESP dataset.

Models Micro F1

BERTBASE(cased) 77.46

BERTBASE(uncased) 79.12

SciBERT(cased) 80.7

SciBERT(uncased) 80.74

PCBERT(cased) 81.31

PCBERT(uncased) 81.04

PCSciBERT(cased) 82.19

PCSciBERT(uncased) 81.54
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Although PCBERT(cased) and PCBERT(uncased) achieved higher
improvements than their PCSciBERT counterparts, both PCSciBERT-
(cased) and PCSciBERT(uncased) achieved the highest and second
highest micro F1 scores among all the models when fine-tuning
on WIESP dataset, respectively. Similar to the findings from the
CS-NER dataset as shown in Table 4.3, it can be inferred that the
application of SciVOCAB in the BERT language model allows the
model to comprehend the vocabulary used in computer science and
physics texts, which mostly already exist in the scientific domain
of SciVOCAB. Furthermore, PCSciBERT(cased) achieved higher mi-
cro F1 scores than PCSciBERT(uncased) in both datasets. This im-
plies that the cased versions do play a role in improving the per-
formance in NER tasks, especially when most of the entities begin
with capital letters. The improvements in micro F1 scores from the
CS-NER dataset is smaller than the improvements achieved in the
WIESP dataset. This could be caused by the lower proportion of com-
puter science texts in the text corpus as mentioned in Subsection
3.1.1. Besides that, a strict evaluation mode was used when evalu-
ating the F1 results on CS-NER dataset. The masked language mod-
els PCSciBERT(cased) and PCSciBERT(uncased) have been deposited
on https://huggingface.co/jmzk96/PCSciBERT_cased and https://

huggingface.co/jmzk96/PCSciBERT_uncased, respectively. Since both
of these models achieved the best and second best performances for
both NER datasets, they may be useful for further applications in fu-
ture work and can be easily accessed with the Python transformers
library [47].

Fine-tuning the pre-trained models with the CRF layer also gave
similar results to the models that were just fine-tuned with a linear
layer on top of the BERT embeddings. Table 4.6 shows the F1 scores
of the models with CRF layer according to entity types fine-tuned on
CS-NER dataset. Albeit the values of F1 scores are lower than the mod-
els with just a linear layer on top of the BERT embeddings, they show
that pre-training the BERT models on computer science and physics
texts do lead to an improvement in the domain knowledge of the
embeddings, irrespective of the final output layer in the model for
the downstream tasks. Analogous to the results obtained by models
without the CRF layer, the "language" entity type received the highest
F1 score, whereas the entity type "method" received the lowest.

https://huggingface.co/jmzk96/PCSciBERT_cased
https://huggingface.co/jmzk96/PCSciBERT_uncased
https://huggingface.co/jmzk96/PCSciBERT_uncased
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Similar to the results shown in Table 4.4, the models pre-trained on
the computer science and physics texts also improved the F1 scores
on the WIESP dataset for most entity types even as the CRF layer
was added. However, in contrast to the CS-NER dataset, different en-
tity types received the highest and lowest F1 scores. This implies
that the different types of output layers of the model do change the
outcome of the performance from the models and the performance
is not dependent on the datasets labels, which was the case in the
CS-NER dataset. Both PCBERT(uncased)+CRF as well as from PCSciB-
ERT(uncased)+CRF provided the highest improvements in F1 scores
for the entity type "Mission", which is highly related to the astro-
physics domain. Ambiguous and less related entities such as "Enti-
tyOfFutureInterest" and "TextGarbage" received the lowest F1 scores.
This could indicate that the BERT embeddings pre-trained in this work
focus more on domain specific vocabulary.

Table 4.7: F1 scores from BERT+CRF models according to entity types for
WIESP dataset. Values without parenthesis denote the F1 score
and values in parenthesis denote absolute difference from initial
model. Green cells indicate the highest F1 score from the model
and red cells indicate the lowest F1 score from the model. Bolded
values indicate the highest improvements in F1 score from the
model compared to its original before pre-training and
underlined values denote the second highest improvements in F1

score.

Entity
Models

PCBERT
(cased)+CRF

PCBERT
(uncased)+CRF

PCSciBERT
(cased)+CRF

PCSciCBERT
(uncased)+CRF

Archive (359) 85.74 (2.52) 87.79 (1.71) 89.8 (2.85) 88.03 (1.86)

CelestialObject (3609) 84.43 (9.8) 84.43 (8.69) 84.89 (5.23) 83.72 (4.14)

CelestialObjectRegion
(723)

17.01 (3.14) 18.22 (-0.4) 20.46 (1.75) 17.5 (4.07)

CelestialRegion (209) 49.26 (17.31) 41.81 (11.95) 53.35 (16.4) 54.37 (5.07)

Citation (8621) 95.27 (5.5) 95.07 (1.02) 95.92 (1.01) 94.36 (-0.54)

Collaboration (428) 70.91 (2.88) 75.08 (-1.82) 80.19 (-1.55) 77.0 (1.26)

ComputingFacility (607) 68.19 (1.29) 70.44 (2.25) 71.82 (5.82) 68.37 (1.06)

Database (342) 75.74 (0.82) 75.2 (1.58) 74.88 (2.58) 74.38 (2.1)
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Table 4.7 (continued)

Entity
Models

PCBERT
(cased)+CRF

PCBERT
(uncased)+CRF

PCSciBERT
(cased)+CRF

PCSciCBERT
(uncased)+CRF

Dataset (516) 46.2 (6.74) 46.63 (8.13) 52.59 (10.76) 48.51 (1.75)

EntityOfFutureInterest
(435)

0.0 (0.0) 0.59 (-1.35) 2.74 (-2.01) 1.16 (-1.67)

Event (59) 49.09 (-1.76) 60.61 (7.83) 57.26 (19.99) 54.63 (7.84)

Fellowship (607) 63.04 (1.97) 63.3 (-1.51) 65.72 (4.84) 62.63 (1.72)

Formula (3452) 64.03 (15.1) 66.42 (4.07) 65.65 (-0.52) 65.99 (1.07)

Grant (5259) 61.71 (1.51) 61.47 (1.0) 61.95 (2.86) 61.32 (0.95)

Identifier (180) 72.77 (0.86) 70.56 (0.49) 73.99 (3.93) 73.2 (-1.55)

Instrument (1102) 66.57 (9.63) 68.38 (14.03) 71.02 (7.87) 72.92 (9.99)

Location (2256) 90.96 (2.86) 90.5 (1.27) 91.05 (2.08) 90.29 (0.96)

Mission (204) 32.27 (17.1) 42.08 (24.78) 45.6 (12.07) 45.05 (14.0)

Model (3208) 57.11 (9.23) 54.6 (7.28) 57.0 (7.39) 55.51 (5.16)

ObservationalTechniques
(91)

2.33 (-13.05) 14.75 (4.31) 23.91 (7.74) 22.36 (-0.04)

Observatory (1326) 81.6 (3.61) 80.18 (2.64) 82.35 (0.97) 82.19 (2.26)

Organization (11399) 89.26 (3.56) 89.39 (1.55) 90.01 (2.31) 88.72 (1.52)

Person (6085) 96.26 (1.44) 96.14 (1.15) 96.61 (2.66) 96.28 (1.74)

Proposal (180) 44.48 (4.75) 45.52 (3.38) 43.71 (-8.29) 50.61 (-4.21)

Software (1386) 78.06 (8.62) 76.83 (5.55) 77.4 (4.07) 76.39 (3.98)

Survey (1188) 75.63 (7.83) 76.72 (8.35) 77.73 (8.14) 77.79 (5.03)

Tag (115) 82.41 (-0.77) 86.17 (2.69) 84.15 (0.86) 86.91 (5.3)

Telescope (2346) 77.11 (7.55) 77.2 (5.1) 78.48 (5.99) 78.65 (4.31)

TextGarbage (283) 0.0 (0.0) 0.0 (-0.46) 2.3 (-0.85) 3.15 (0.07)

URL (405) 98.12 (0.95) 97.81 (0.22) 98.15 (0.35) 98.19 (0.3)
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Table 4.7 (continued)

Entity
Models

PCBERT
(cased)+CRF

PCBERT
(uncased)+CRF

PCSciBERT
(cased)+CRF

PCSciCBERT
(uncased)+CRF

Wavelength (4643) 79.49 (5.32) 80.26 (3.82) 81.99 (3.96) 81.25 (1.86)

Although the BERT models pre-trained in this work do generally
improve the F1 scores for both CS-NER and WIESP datasets, the mod-
els with the CRF layer as the output layer performed worse than their
counterpart models that do not have the CRF layer. Tables 4.8 and 4.9
show the micro F1 scores of the pre-trained models in this work fine-
tuned with a CRF layer on the CS-NER and WIESP datasets, respectively.
The micro F1 scores from the CS-NER suffered a higher decline in micro
F1 scores when compared to the WIESP dataset. It is speculated that
this might be due to the evaluation method of seqeval module in Py-
torch when evaluating the micro F1 scores on labels using the IOBES-
scheme. Since the seqeval evaluates the output in an IOBES-scheme
on a strict mode, it penalizes labels that have the wrong IOBES-prefix
even though the correct entity type has been predicted.

Table 4.8: Micro F1 scores of BERT models pre-trained in this work with CRF
layer fine-tuned on CS-NER dataset.

Models Micro F1

PCBERT(cased)+CRF 69.57

PCBERT(uncased)+CRF 71.29

PCSciBERT(cased)+CRF 71.46

PCSciBERT(uncased)+CRF 70.74

Further inspection of the transition scores of the CRF layer is done
to investigate the cause of the lower performances from the models.
The transition scores were obtained from the CRF layer and subse-
quently normalised with a softmax function. Since the dimensions of
the transition matrix are Rk×k, where k is the number of label tags
depending on dataset, the transition scores can be visualized as a
heatmap. Figures 4.3 and 4.4 show the transition scores of the best
performing pre-trained BERT model with CRF layer for the CS-NER and
WIESP datasets, respectively. For both CS-NER and WIESP datasets, PC-
SciBERT(cased)+CRF achieved the highest micro F1 scores among the



4.2 fine-tuning 68

Table 4.9: Micro F1 scores of BERT models pre-trained in this work with CRF
layer fine-tuned on WIESP dataset.

Models Micro F1

PCBERT(cased)+CRF 79.74

PCBERT(uncased)+CRF 79.82

PCSciBERT(cased)+CRF 81.76

PCSciBERT(uncased)+CRF 80.43

models with the added CRF layer. The label tags on the y-axis in
Figures 4.3 and 4.4 represents the label tag of a current arbitrary posi-
tion in a sequence of tag predictions and the label tags on the x-axis
represent the label tag of the next position in the sequence of tag
predictions. Hence, the transition scores presented in the heatmaps
can be interpreted as the probability of label tag on the x-axis ap-
pearing after the label tag on the y-axis. Analysis of the transition
scores from the CRF layer for the CS-NER dataset found evidence that
the CRF layer scarcely models the transition between prediction tags.
The transition of I-tags to I-tags for most entity types including "lan-
guage", "method", "research problem" and "resource" is learned by the
CRF layer, which is shown by the high transition scores between I-tags
of the previously mentioned entity types. The transition of B-tags
to I-tags as well as the transition of I-tags to E-tags are however less
obvious. For the B-tag to I-tag transition, the entity types "dataset",
"method", "resource" and "solution" show high transition scores, al-
beit being not as high as the I-tag to I-tag transition. Whereas for the
I-tag to E-tag transition, only the entity types "research problem", "so-
lution" and "tool" could be seen having high scores for the transition.
This could be caused by the length of the entity in the sentence being
processed. Entities types such as "research problem" and "solution"
tend to have longer spans in the data and hence their transitions of
I-tag to I-tag as well as I-tag to E-tag are given high scores. Thus,
not all transitions of IOBES-tags for the entity types for the CS-NER
dataset can be modeled by the CRF layer. We speculate that the subop-
timal hyperparameters chosen for fine-tuning the models led to the
incomplete modelling of the IOBES-tag sequences in its predictions,
as shown in Tables A.6 and A.4, which show the hyperparameters
that gave the best micro F1 results for models with and without the
CRF layer, respectively. It requires more training epochs to achieve
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optimal micro F1 results for the models with the CRF layer. A higher
number of training epochs may improve its performance.

Figure 4.3: Transition scores in CRF layer of PCSciBERT(cased)+CRF for
CS-NER dataset.

Due to the larger number of available tags in the WIESP dataset com-
pared to CS-NER dataset, the distribution of the transition scores in the
CRF layer is less clear. Nevertheless, it can be seen from Figure 4.4 that
high scores for the I-tag to I-tag transitions for the respective entity
types are more prominent than I-tag to B-tag transitions, as these are
less frequent in the dataset, though a B-tag can appear directly after
an I-tag when a seperate entity type is detected directly after in the
text. Similar observations can be made when comparing the B-tag
to I-tag transitions with the B-tag to B-tag transitions, as it can be il-
lustrated in Figure 4.4 that there are higher scores for the transition
of the B-tag to I-tag than there are for the B-tag to B-tag transition.
Similarly, mostly 8 training epochs were required to achieve the best
micro F1 results for the models with CRF layers when fine-tuning for
the WIESP dataset, as show in Table A.7. Possible improvements in mi-
cro F1 scores could be achieved if higher number of training epochs
used. Fine-tuning of both datasets on higher number of epochs was
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not resumed due to the longer durations needed to train the models.
This should be further studied in future work.

Though it has been reported in previous studies that the addition
of a CRF layer does improve the performances of a language model
on sequence labeling tasks [1, 16, 57], there have also been reports
where the addition of a CRF layer does not improve or even degrades
the performance of the model. The authors in [57] used a Portuguese
BERT model for an NER task and found that the Portuguese BERTBASE
model with a CRF layer did not improve the the model without a CRF
layer when fine-tuned on the task. Instead, it was found that the
Portuguese BERTLARGE model showed improvements in its NER per-
formance when CRF was added. This could imply that larger models
maybe needed to observe an improvement in the performance.
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Figure 4.4: Transition scores in CRF layer of PCSciBERT(cased)+CRF for
WIESP dataset.

The outputs of the NER models can also be visualized with the help
of the Python library displaCy. Figures 4.5 and 4.6 illustrate the ex-
ample outputs from models for the CS-NER and WIESP dataset, respec-
tively. Before applying the displaCy rendering functions to visualize
the entities, words which were broken down into subwords by the
models respective tokenizers were merged back together. The cor-
responding labels were assigned to the merged word, since the sub-
words have the same label. Hence, the examples shown in Figures 4.5
and 4.6 do not contain any prefix "##", which denotes that a word has
been broken down into subwords by the tokenizer. A sample sentence
from the test dataset shown in Figure 4.5 illustrates that although PC-
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SciBERT(cased)+CRF learned the intrinsic order of the IOBES-scheme
for entity types "solution", "tool" and "method", its output had more
mismatches to the true labels when compared to the predicted entities
from PCSciBERT(cased).

(a) Ground truth labels

(b) Prediction output from PCSciBERT(cased)

(c) Prediction output from PCSciBERT(cased)+CRF

Figure 4.5: Example predictions from the test dataset of the CS-NER dataset
from the best performing models with and without the CRF layer

Both PCSciBERT(cased)+CRF and PCSciBERT(cased) achieved sim-
ilar results in their micro F1 scores with PCSciBERT(cased) hav-
ing 0.43% more than PCSciBERT(cased)+CRF. Thus, their predic-
tions are also similar. Although both PCSciBERT(cased) and PCSciB-
ERT(cased)+CRF detected similar entities in the example input sen-
tence in Figure 4.6, PCSciBERT(cased)+CRF mispredicted the closing
parenthesis ")" in the sentence with the tag "B-Instrument". It can also
be seen in the outputs that PCSciBERT(cased) has already learned the
intrinsic sequence of the IOB2-tagging scheme. Hence, this could im-
ply that the CRF layer is redundant for the NER task for these datasets.
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(a) Ground truth labels

(b) Prediction output from PCSciBERT(cased)

(c) Prediction output from PCSciBERT(cased)+CRF

Figure 4.6: Example predictions from the test dataset of the WIESP dataset
from the best performing models with and without the CRF layer
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C O N C L U S I O N A N D F U T U R E W O R K

5.1 conclusion

In the first part of this thesis, we have pre-trained BERT language mod-
els initiated with the cased and uncased variants of BERTBASE and
SciBERT on scientific texts in the computer science and physics do-
main collected from the arXiv open repository. We named the models
pre-trained with BERTBASE weights as PCBERT and those pre-trained
with SciBERT weights as PCSciBERT. To the best of our knowledge
this is the first report of domain-specific BERT models pre-trained on
computer science and physics texts. The results of pre-training have
shown that the pseudo-perplexities of the models were reduced and
hence show that the models pre-trained in this work have gained a
better understanding of modelling the texts in both of theses domains,
although semantically irrelevant placeholder texts were present in the
text corpus for pre-training.

In the subsequent part of this thesis, we have evaluated the down-
stream performance of the pre-trained models on NER tasks with the
help of the CS-NER dataset for computer science and WIESP dataset
for physics. All models pre-trained on the computer science and
physics text corpus in this thesis achieved higher micro F1 scores than
their original counterparts, though the improvements of the micro F1

scores for the CS-NER dataset was lower than that for the WIESP dataset.
The application of a CRF layer on the pre-trained models were also in-
vestigated in this thesis. After finetuning the models with the CRF
layer, we found that although the pre-trained models still performed
better than their original models, the BERT models with CRF layers per-
formed worse than the BERT models without CRF layers. We assumed
this could be due to the lack of training epochs in order to achieve
optimial micro F1 scores. Further visual inspection of the transition
scores of the CRF layer shows that although some transitions of the
tagging schemes were learned by the model, not all of the transitions
could be modeled properly by the CRF layer. Nevertheless, our find-
ings show that PCSciBERT(cased) performed the best for all datasets,
regardless on whether the CRF layer was applied.
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5.2 future work

Future research should consider investigating the performance of PC-
SciBERT(cased) on other downstream tasks suchs as text classification
and relation extraction, the latter providing more useful information
when building semantic knowledge graphs that could ease the search
of related scientific articles in the related domains. Datasets, from
which the CS-NER dataset was derived from, contained other datasets
which offered annotated relations and their corresponding entities.
Among them is the SciERC dataset, which contains annotations for
identifying and classifying entities, relations and coreference clusters
in scientific articles [33]. Furthermore, this thesis shows the lack of
downstream NLP tasks in the computer science and physics domains.
Hence, this work warrants the need for further development and cura-
tion of datasets related to these domains. Another interesting research
question for future research that can be derived from the extracted
computer science and physics texts in this work is whether the addi-
tion of the structural features of mathematical formulas would lead to
better information retrieval performances. A recent modified version
of the BERT model known as MathBERT can take in mathematical for-
mulas, extracted in operator tree form, as well as its respective context
to improve the mathematical information retrieval of texts [42]. This
would naturally contribute to the computer science and physics do-
mains, where equations and algorithms, often represented with math-
ematical notation, are used frequently.

Though most studies have found that the addition of the CRF to the
BERT layer does generally improve the performance on downstream
sequence labeling tasks [1, 16], further research should examine why
in some cases this might not be true, as shown in this work and in
[57].
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A
F I G U R E S A N D TA B L E S

Table A.1: Extracted documents from ArXiv and their corresponding
categories.

Categories
No. of documents

(extracted)

No. of documents

(not extracted)

Computer Science 449056 4510

Physics: Astrophysics 304273 3634

Physics: Condensed Matter 310916 3977

Physics: General Relativity

and Quantum Cosmology
54635 956

Physics:High Energy

Physics-Experiment
43492 460

Physics: High Energy

Physics-Lattice
19926 346

Physics: High Energy

Physics-Phenomology
102473 2154

Physics: High Energy

Physics-Theory
58068 1175

Physics: Nonlinear
Sciences

9698 119

Physics: Nuclear
Experiment

12301 120

Physics:Nuclear Theory 18925 354

Physics: Physics 116553 1348

Physics: Quantum Physics 60345 881

Total 1560661 20034
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Table A.2: Counts of annotated entities in CS-NER dataset. They do not
reflect the unique set of annotated entities. Values without
parenthesis indicate the count and values in parenthesis indicate
the percentage with regard to the total count. The underlined
values represent the minimum and the values in bold represent
the maximum.

Entity
Dataset split

train development test

dataset 882 (1.62) 39 (1.2) 228 (1.15)

language 1141 (2.09) 50 (1.54) 499 (2.51)

method 8854 (16.24) 574 (17.63) 2768 (13.94)

research problem 15646 (28.7) 989 (30.37) 4070 (20.5)

resource 7346 (13.48) 439 (13.48) 3226 (16.26)

solution 18924 (34.72) 1072 (32.92) 8316 (41.89)

tool 1718 (3.15) 93 (2.86) 743 (3.74)

Table A.3: Counts of annotated entities in WIESP dataset. They do not
reflect the unique set of annotated entities. Values without
parenthesis indicate the count and values in parenthesis indicate
the percentage with regard to the total count. The underlined
values represent the minimum and the values in bold represent
the maximum

Entity
Dataset split

train development test

Archive 192 (0.47) 153 (0.46) 359 (0.58)

CelestialObject 2940 (7.14) 2285 (6.94) 3609 (5.86)

CelestialObjectRegion 265 (0.64) 150 (0.46) 723 (1.17)

CelestialRegion 158 (0.38) 102 (0.31) 209 (0.34)

Citation 6360 (15.45) 4820 (14.64) 8621 (13.99)

Collaboration 306 (0.74) 238 (0.72) 428 (0.69)

ComputingFacility 399 (0.97) 360 (1.09) 607 (0.99)
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Table A.3 (continued)

Entity
Dataset split

train development test

Database 256 (0.62) 199 (0.6) 342 (0.55)

Dataset 328 (0.8) 222 (0.67) 516 (0.84)

EntityOfFutureInterest 61 (0.15) 52 (0.16) 435 (0.71)

Event 45 (0.11) 37 (0.11) 59 (0.1)

Fellowship 411 (1.0) 326 (0.99) 607 (0.99)

Formula 2088 (5.07) 1541 (4.68) 3452 (5.6)

Grant 3478 (8.45) 2834 (8.61) 5259 (8.53)

Identifier 112 (0.27) 94 (0.29) 180 (0.29)

Instrument 714 (1.73) 683 (2.07) 1102 (1.79)

Location 1404 (3.41) 1157 (3.52) 2256 (3.66)

Mission 110 (0.27) 105 (0.32) 204 (0.33)

Model 1800 (4.37) 1412 (4.29) 3208 (5.21)

ObservationalTechniques 124 (0.3) 102 (0.31) 91 (0.15)

Observatory 873 (2.12) 735 (2.23) 1326 (2.15)

Organization 7448 (18.1) 6054 (18.39) 11399 (18.5)

Person 3916 (9.51) 3267 (9.93) 6085 (9.87)

Proposal 100 (0.24) 76 (0.23) 180 (0.29)

Software 1017 (2.47) 839 (2.55) 1386 (2.25)

Survey 885 (2.15) 620 (1.88) 1188 (1.93)

Tag 66 (0.16) 53 (0.16) 115 (0.19)

Telescope 1573 (3.82) 1257 (3.82) 2346 (3.81)

TextGarbage 52 (0.13) 47 (0.14) 283 (0.46)

URL 294 (0.71) 227 (0.69) 405 (0.66)
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Table A.3 (continued)

Entity
Dataset split

train development test

Wavelength 3384 (8.22) 2869 (8.72) 4643 (7.53)

Table A.4: Optimal hyperparameter settings chosen for fine-tuning models
without CRF layer for CS-NER dataset.

Models No. of Epochs Learning rate

BERTBASE(uncased) 4 1× 10−4

BERTBASE(cased) 3 3× 10−4

SciBERT(uncased) 3 1× 10−4

SciBERT(cased) 3 1× 10−4

PCBERT(uncased) 2 1× 10−4

PCBERT(cased) 4 1× 10−4

PCSciBERT(uncased) 3 1× 10−4

PCSciBERT(cased) 2 1× 10−4
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Table A.5: Optimal hyperparameter settings chosen for fine-tuning models
without CRF layer for the WIESP dataset.

Models No. of Epochs Learning rate

BERTBASE(uncased) 8 1× 10−4

BERTBASE(cased) 8 1× 10−4

SciBERT(uncased) 8 1× 10−4

SciBERT(cased) 7 1× 10−4

PCBERT(uncased) 8 1× 10−4

PCBERT(cased) 8 1× 10−4

PCSciBERT(uncased) 8 1× 10−4

PCSciBERT(cased) 7 1× 10−4

Table A.6: Optimal hyperparameter settings chosen for fine-tuning models
with CRF layer for CS-NER dataset.

Models No. of Epochs Learning rate

BERTBASE(uncased)+CRF 8 3× 10−5

BERTBASE(cased)+CRF 8 3× 10−5

SciBERT(uncased)+CRF 8 3× 10−5

SciBERT(cased)+CRF 8 3× 10−5

PCBERT(uncased)+CRF 8 3× 10−5

PCBERT(cased)+CRF 8 3× 10−5

PCSciBERT(uncased)+CRF 7 3× 10−5

PCSciBERT(cased)+CRF 7 3× 10−5
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Table A.7: Optimal hyperparameter settings chosen for fine-tuning models
with CRF layer for WIESP dataset.

Models No. of Epochs Learning rate

BERTBASE(uncased)+CRF 8 3× 10−4

BERTBASE(cased)+CRF 8 1× 10−4

SciBERT(uncased)+CRF 6 3× 10−4

SciBERT(cased)+CRF 8 3× 10−4

PCBERT(uncased)+CRF 8 1× 10−4

PCBERT(cased)+CRF 6 1× 10−4

PCSciBERT(uncased)+CRF 8 1× 10−4

PCSciBERT(cased)+CRF 8 1× 10−4

Table A.8: Micro F1 scores of BERTBASE and SciBERT models with CRF
layer fine-tuned on CS-NER dataset.

Models Micro F1

BERTBASE(cased)+CRF 70.29

BERTBASE(uncased)+CRF 70.71

SciBERT(cased)+CRF 69.52

SciBERT(uncased)+CRF 68.96

Table A.9: Micro F1 scores of BERTBASE and SciBERT models with CRF
layer fine-tuned on WIESP dataset.

Models Micro F1

BERTBASE(cased)+CRF 75.25

BERTBASE(uncased)+CRF 77.11

SciBERT(cased)+CRF 78.77

SciBERT(uncased)+CRF 78.59
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