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Motivation and Research Topics

In pharmaceutical companies, lab experiments are conducted to develop a robust process

to efficiently manufacture active ingredients. These experiments are expensive and time-

consuming [3, 5] and should therefore be reduced to a minimal necessary number. This

can be achieved by using Gaussian Processes (GPs), especially GP coregionalisation

models, to predict experiments outcomes. The predictions are used by lab-heads to

decide which experiments to conduct next.

The thesis investigates several GP model versions and the data preprocessing of the

pharmaceutical use case in order to improve the predictive quality of the implemented

GP model. The following to topics are investigated in detail:

1. Evaluate the results and training speed of several types of multiple-output
(coregionalisation) GP models with the aim of using the model with best quality:

Select suitable models for the use case.

Implement the selected models with the GPflow python package.

Produce evaluation metric results to allow a proper comparison.

2. Evaluate the experiment clustering process and establish a similarity score to identify

similar experiments. The aim is an increase of input data points for model training.

RelatedWork

No relatedwork is found that handles the specifics of the use case of the thesis. However,

several related topics are found:

1. GPs for predictions in a general chemical context and for chemical reactions.

2. GP coregionalisation models in a general context.

3. Machine Learning methods for the prediction of chemical reactions and reaction

conditions.

4. Machine Learning methods for the optimisation of reaction yield.

Discussion and Conclusion

Separate discussions can be given for the two research topics:

1. Results are based on tests for two experiment clusters of different size and show

that the implemented model versions do not lead to significant differences in

prediction quality. Therefore, no recommendations about which model version to

use in production are possible. A conclusion is that either the models exploit the

little information contained in the training data and already result in the best

possible predictive quality or the model type of GPs is not suitable to handle the

provided data and infer knowledge.

2. Increasing the training data size by skipping the experiment clustering process or

using the implemented similarity score led to a deterioration of the predictive

quality. This leads to the conclusion that the experiment clustering based on

defined business rules is useful to group the experiments in clusters that lead to

better modelling results as well as shorter training times. Whether an increases

data set of comparable experiments leads to better results can only be analysed

once new comparable experiments are conducted to expand the existing clusters.

A further conclusion is that the data quality should be analysed in detail to decide

whether too many features are removed during data preprocessing or the degree of

randomness that may have an influence on the target values is to high.

Further research topics are recommended:

1. Benchmarking of predictions by conducting new experiments and comparing

results to the predictions.

2. An in-depth analysis of further GP model settings.

3. An in-depth analysis of the available data to improve data preprocessing.

Gaussian Processes Regression Models

A Gaussian Process f(x) ∼ GP(m(x), k(x, x′)) is a stochastic process and thus a collec-

tion of random variables where any finite set of random variables has a joint Gaussian

distribution [6, 2]. The function value f(xi) is not a scalar but a Gaussian distribution so

that predictions of GPs are also Gaussian distributions defined by mean and variance.

m(x) is the mean function, k(x, x′) the kernel function of a GP. The predictive function

of a GP is given by the posterior distribution (fig. 1)

f∗|X, y, x∗ ∼ N (f∗, cov(f∗))
f∗ = K(x∗, X)[K(X, X) + σ2

nI]−1y

cov(f∗) = K(x∗, x∗) − K(x∗, X)[K(X, X) + σ2
nI]−1K(X, x∗).

(1)

with K(X, X) being the kernel matrix for training data and x∗ being a new data point.

The choice of kernel influences the shape of drawn GP samples [4]. The thesis uses the

radial basis function kernel.
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Fig. 1. GP prior (a) and posterior with noisy data (b) and drawn samples. The shaded area displays the

model uncertainty defined by the predicted variance [6].

Coregionalisation Models

GP regression models can be used to make predictions for a number of P target variables.

One group of multi-output GP models are coregionalisation models that are able to

detect correlations between targets [1]. This correlation is detected by a type of kernel

called Sum of Separable Kernels which is defined as

K(x, x′) =
Q∑

q=1
kq(x, x′)Bq. (2)

with Bq being a P × P coregionalisation matrix encoding the target correlations.

This kernel is used by coregionalisation models. Three types of coregionalisation models

are investigated that are distinguished by the choice of Q and Rq defining the rank of

Bq [1]. Both parameters determine the model complexity. Table 1 shows the specifics

of the coregionalisation models.

Model Name Q Rq

Linear Coregionalisation Model > 1 > 1
Intrinsic Coregionalisation Model = 1 > 1
Semiparametric Latent Factor Model > 1 = 1

Table 1. Specifics of coregionalisation models

Gaussian Process Model Comparison

In total 15 coregionalisation model versions are implemented. Additionally, one general

multi-output model without a coregionalisation matrix and separate single-output models

for all targets are implemented. Therefore, 17 models are compared to the existing GPy

coregionalisation model. The comparison is applied to two data sets of different size

and investigates the standardised mean absolute error (MAE), non standardised MAE

and Log Loss evaluation metric values. This summary shows MAE results for the data

set of size 20.
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Fig. 2. MAE results for the yield target (a) and an impurity target (b).

The plots in figure 2

show a baseline error

done by a model al-

ways predicting the

training data mean

and variance as a red

horizontal line. It

can be seen that the

trained GP models

lower the baseline er-

ror for the yield target

by approx. 12% on

average for test data

but only two models

slightly fall below the

baseline error of the

impurity target. This shows that the models do not result in a consistent quality for all

targets. Furthermore, it can be seen that the MAE values of most models are similar

considering the target value range. Especially for the yield target that has a value range

from 50.8% to 101.2% the differences in predictive quality are not expressive enough to

allow decisions as to which model to use in production.

Experiment Clustering Evaluation

Fig. 3. MAE for different data sizes.

Before training models, the data provided by con-

ducted experiments is divided into clusters depend-

ing on the experiment setup. This process decreases

the training data set size as models are trained for

each cluster separately. Therefore, a new clustering

process based on an similarity score is implemented.

The similarity score measures the similarity of opera-

tion sequences between two experiments. Modelling

results of the original clustering process (left), no clus-

tering process (right) and the new clustering process

(middle) are compared and the MAE results are dis-

played in figure 3. The original clustering process

results in the best predictive quality regarding the

MAE value.
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