
Darmstadt
University of Applied Sciences

– Department of
Natural Science and Mathematics

& Computer Science –

Named Entity Recognition
on German Medical Data

Thesis for the Award of the Academic Degree
Master of Science (M. Sc.)

in the Course of Studies Data Science

in Cooperation with
Charité – Universitätsmedizin Berlin

and SVA System Vertrieb Alexander GmbH

by

Johanna E. Bohn

Supervisors : Prof. Dr. Bettina Harriehausen-Mühlbauer

and Prof. Dr. Jutta Groos

Company Supervisors : Benjamin Engel

and Linda Rebstadt

Date of Issue : 01. Juni 2022

Date of Delivery : 16. Nov 2022



Johanna E. Bohn:
Named Entity Recognition on German Medical Data, © 16. Nov 2022



D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch
nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Darmstadt, 16. Nov 2022

Johanna E. Bohn





A B S T R A C T

Medical data can be used to perform analyses and research in the medical
domain. However, large percentages of the data remain unstructured and
thus unused after they are created. Medical reports are one example of this:
they exist to transmit humanly comprehensible information from one doctor
to another in natural language. But in order to allow automated systems to
take advantage of the information enclosed in natural language, the infor-
mation must first be extracted.

The task of named entity recognition (NER) is a computational linguistics
subtask of information extraction and deals with classifying every word in
a document as belonging to one of a set of predefined categories. The cat-
egories we extract are diagnosis, treatment, and medication. Our goal is to
advance research in the field of German natural language processing (NLP)
in the medical domain by finding the best approach to achieve good perfor-
mance on a benchmark dataset.

We do this by first obtaining and analysing the dataset called Berlin-
Tübingen-Oncology corpus (BRONCO). We train, validate, and evaluate six
transformer models on it: the monolingual models GBERT, MedBERT, and
GELECTRA, as well as the multilingual models mBERT, XLM-RobERTa, and
XLM-RoBERTa GER. We train them using both a feature extraction and a
fine-tuning approach, and perform hyperparameter optimisation (HPO). We
observe that fine-tuning with HPO leads to the best results.

Additionally, we examine the feasibility of performing domain-adaptive
pre-training (DAPT) on one model with ambiguous results. Finally, we con-
duct a detailed inspection of the two best models, i.e. the best monolingual
model GELECTRA and the best multilingual model XLM-RoBERTa.

To our knowledge, our fine-tuned GELECTRA model achieves the highest
F1-score on the held back BRONCO50 testing dataset with an overall F1-score
of 82.2. With that, we manage to outperform the results originally published
for the dataset by Kittner et al. by 2.3-7.7 depending on the predefined cate-
gory [54].

The results show that adapting state-of-the-art models for German medi-
cal NER is an open research question with promising results.





Z U S A M M E N FA S S U N G

Medizinische Daten können für Analysen und Forschung im medizinischen
Bereich verwendet werden, jedoch bleibt ein großer Teil der Daten unstruktu-
riert und somit ungenutzt. Hierfür sind medizinische Berichte wie Arztbriefe
ein Beispiel: Sie dienen der Übermittlung von medizinischen Informationen,
die in natürlicher Sprache für ärztliches Fachpersonal formuliert wurden.
Doch damit die in der natürlichen Sprache enthaltenen Informationen auch
von automatisierten Systemen genutzt werden können, müssen diese Infor-
mationen zunächst extrahiert werden.

Die Eigennamenerkennung ist ein Teilgebiet der Informationsextraktion
im Bereich der Computerlinguistik und befasst sich damit, jedes Wort eines
Dokumentes einer zuvor definierten Kategorie zuzuordnen. Die Kategorien,
die innerhalb dieser Arbeit zugewiesen werden, sind Diagnose, Behandlung
und Medikation. Unser Ziel ist es, die Forschung auf dem Gebiet der natür-
lichen Sprachverarbeitung in deutscher Sprache im medizinischen Bereich
voranzutreiben. Dafür untersuchen wir geeignete Ansätze, um die Vorhersa-
gequalität auf einem Vergleichsdatensatz zu verbessern.

Hierzu analysieren wir zunächst den Datensatz namens Berlin-Tübingen-
Oncology Corpus (BRONCO). Mit Hilfe dessen trainieren, validieren und
evaluieren wir sechs Transformer-Modelle: die deutschsprachigen Model-
le GBERT, MedBERT und GELECTRA sowie die mehrsprachigen Modelle
mBERT, XLM-RobERTa und XLM-RoBERTa GER. Wir trainieren die Model-
le sowohl mit einem Merkmalsextraktions- als auch mit einem Feinabstim-
mungsansatz und führen eine Hyperparameter-Optimierung durch. Die Er-
gebnisse zeigen auf, dass der Feinabstimmungsansatz mit Hyperparameter-
Optimierung zu den besten Ergebnissen führt.

Außerdem untersuchen wir die Umsetzbarkeit von domänenadaptivem
Vortrainieren auf einem der Modelle. Aufgrund der geringen Menge an Da-
ten zum Vortrainieren konnten wir bei diesem Ansatz keine signifikanten
Verbesserungen feststellen. Schließlich führen wir eine detaillierte Untersu-
chung der Ergebnisse des besten deutschsprachigen Modells GELECTRA
und des besten mehrsprachigen Modells XLM-RoBERTa durch.

Unseres Wissens nach erzielt GELECTRA den bisher höchsten F1-Wert auf
dem zurückgehaltenen BRONCO50-Testdatensatz mit einer Gesamtpunktzahl
von 82.2 Prozent. Wir übertreffen damit die Ergebnisse, die von Kittner et al.
für diesen Datensatz veröffentlicht wurden, je nach Kategorie um 2.3-7.7
Prozentpunkte [54].

Die Ergebnisse zeigen, dass die Adaption von Modellen auf dem aktuellen
Stand der Forschung an die deutsche medizinische Eigennamenerkennung
ein offenes Forschungsfeld mit vielversprechender Zukunft ist.
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Part I

I N T R O D U C T I O N



1
M O T I VAT I O N A N D P R O B L E M S TAT E M E N T

Medical data enables the healthcare system and research to achieve medi-
cal progress, better prevention, and better treatment of patients. In order to
unlock the data's potential, prerequisites to make it available and accessible
must be established [5].

For years, digitisation in the field of medicine and healthcare has been a
widely discussed topic in Germany [29]. In 2015, the German government
passed a law regarding secure digital communication and applications in
the field of healthcare [12]. It encouraged, among several other strategies to
advance the creation of a secure telematics infrastructure, the introduction
and use of medical applications like the electronic medical report eArztbrief
and the electronic patient chart ePA [12].

While these advancements are promising, a big factor when working with
German medical data are the restrictions in place to protect it: In addition
to the general data protection regulation (GDPR) of 2018 that solidifies the
protection of natural persons with regard to the processing of personal data,
a law on the protection of patient data became effective in 2021 [13].

Even when data is available in a digital form and authorised to be utilised
for research, the information it contains may not be accessible for computer
systems: 80% of medical data remains unstructured and thus unused af-
ter it is created, e.g. text, image, and signal [55]. A lot of information is
enclosed in medical texts like electronic medical reports [33] which compu-
tational systems cannot easily work with. The main purpose of the report is
to transmit humanly comprehensible diagnostic and treatment information
from one doctor to another. As such, it is usually the most comprehensive
and detailed depiction of a patients course of treatment [90]. However, as it
is a form of communication between people, it cannot be directly utilised by
computer systems for research. Instead, the unstructured data needs to be
converted into a structured format to be taken advantage of by automated
systems. Only then can automatic analyses be performed.

To make all that data usable, the most important information in medical
reports needs to be extracted [15]. An example is illustrated in Figure 1.1,
where the most important information consists of the diagnosis of an illness
by a doctor (DIAG), its treatment (TREAT), and the medication the patient
was administered (MED).

MED 
DIAG  

DIAG  
TREAT  DIAG  

Zur symptomatischen Behandlung der  Luftnot            wurden 2 mg 

Morphin          gegeben , angesichts der komplexen Krankheitssituation und 

der aktuellen  Blutungssymptomatik             wurde auf einen 

koronarangiographischen Eingriff             bei  ST-Hebungsinfarkt 

verzichtet .

Figure 1.1: NER example taken from the BRONCO dataset [54].



motivation and problem statement 3

Based on those extracted entities, medical research is able to for instance
analyse the correlation between specific medications and symptoms and
gain knowledge beyond limited pharmaceutical studies [16].

The process of classifying every word in a document as belonging to one
of a set of predefined categories is called NER and a computational linguistics
subtask of information extraction [9].

In this thesis, we will perform NER on a set of German medical reports to
train a model that extracts the entities diagnosis, treatment, and medication. We
will compare different model types and training regimes, and evaluate and
discuss the results. Our goal is to advance research in the field of German
NLP in the medical domain by finding the best approach to achieving good
performances on a benchmark dataset.



2
S T R AT E G Y

In order to attain the goal of finding the best approach to achieving good per-
formances on a benchmark dataset, a set of steps needs to be accomplished:

1. Obtaining the dataset and preprocessing the data

2. Choosing, training, and optimising models

3. Evaluating and discussing results

2.1 obtaining the dataset and preprocessing the data

As already mentioned in Section 1, obtaining a dataset for a certain task can
be difficult. Once it has been acquired, the data needs to be preprocessed
for the task at hand. That might include examining the data for suitability,
performing exploratory data analysis, and formatting it for use in a pipeline.
Additionally, the dataset needs to be prepared for training and evaluating
models on it by splitting it into training, validation, and test sets (see Section
9).

2.2 choosing , training , and optimising models

Based on the current state of research (see Section 7), there are different
avenues to explore. Mainly, transformer models lend themselves to NER as
either monolingual or multilingual options. They can be trained in differ-
ent ways, i.e. feature extraction and fine-tuning, which are both suitable for
different situations. In addition to training the models, hyperparameter opti-
misation (HPO) needs to be performed in order to optimise the hyperparam-
eters to gain more optimised models.

2.3 evaluating and discussing results

In order to evaluate their performance, the trained models also need to be
studied with respect to one or multiple metrics and under several aspects.
Those can include the kind of training performed, if HPO improved the re-
sults, if monolingual models perform better than multilingual models, etc.
These factors need to be discussed and brought to a final conclusion about
how a good result for the task at hand can be achieved.



3
S T R U C T U R E

This thesis is organised in five parts as follows. Part i introduces the problem,
the motivation behind solving it, and the strategy with which we aim to
solve it.

Then, Part ii gives an overview of the fundamentals of NLP and the meth-
ods in use for NLP in general, and specifically of NER. The focus here will be
deep learning. Based on that knowledge, it will introduce the context of the
current state of research and related work for the task at hand.

The description of the implemented system follows in Part iii by starting
with the utilised dataset and the hardware and software leveraged for com-
putation of the chosen models. Those models are introduced afterwards and
the avenue of hyperparameter optimisation (HPO) is explained. This part de-
scribes the theoretical approach of how we are trying to solve the task at
hand by formulating the experiments we perform.

Part iv evaluates the results of conducting the experiments in order to
compare and discuss them.

Finally, Part v completes the thesis with a summary of what we learned,
the conclusion this brings us to, and an outlook for future work that could
be done.





Part II

F U N D A M E N TA L S
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N AT U R A L L A N G U A G E P R O C E S S I N G

In this part, we first focus on the theoretical background that is necessary to
approach an NLP task by employing modern methods. We start by defining
key concepts of NLP and deep learning and explaining why we need them.
Then, we give context in the form of an overview over the related work of
NER and which methods are currently in use. In doing so, we can focus on
how we utilise those methods when we discuss the details of the developed
system in Part iii.

Natural language processing (NLP) is a subdiscipline of computer science
providing a bridge between natural languages and computers. Kamath et al.
define it as follows [51]:

Natural language processing (NLP) seeks to map language to repre-
sentations that capture morphological, lexical, syntactic, semantic, or
discourse characteristics that can then be processed by machine learn-
ing methods.

It helps to empower machines to understand, process, and analyse human
language [64]. Applications range from machine translation over semantic
parsing to information extraction. The latter identifies structured informa-
tion in unstructured data. Its subtasks include named entity recognition (NER),
relation extraction, coreference resolution, and more.

NER aims to locate and categorise NEs into predefined categories [89]. A
NE was defined as "[...] a proper noun, serving as a name for something
or someone" by Petasis et al. [73]. Focusing on the term named, it was fur-
ther restricted to "only those entities for which one or many rigid designators
stands for the referent" [69]. Those rigid designators include "proper names
as well as certain natural kind terms like biological species and substances"
[69]. However, those definitions can be loosened for practical reasons like in-
cluding temporal or numerical expressions [69]. Although there are multiple
definitions of NEs and NER, a working definition can be delineated as follows
[60]:

A named entity (NE) is a word or a phrase that clearly identifies one
item from a set of other items that have similar attributes.
Named entity recognition (NER) is the process of locating and classi-
fying NEs in text into predefined entity categories.

There are two categories of NEs: generic, e.g. person and location, and
domain-specific, e.g. proteins, enzymes, and genes (see Figure 4.1) [60]. The
NEs examined in this thesis belong to the second group as they are part of
the medical domain.
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(a) Generic

(b) Domain-Specific

Figure 4.1: Generic [11] versus domain-specific NEs [72].

Regardless of the kind of NE explored, there exist different streams of
techniques applied in NER [60]: Rule-based approaches, deep-learning based
approaches, and many more.

One of the most appealing approaches in the NLP domain is deep learning.
It has already demonstrated superior performance in adjoining fields like
Computer Vision and Speech Recognition [89]. In addition, multiple surveys
have identified several deep learning approaches as the current state of the
art for different subtasks of NLP including NER [60, 89, 96]. Thus, we are
focusing on that technique in this thesis.

4.1 preprocessing

In order to apply deep learning techniques to a text, it usually needs to be
preprocessed [65, p. 10]. Most of the data preprocessing steps are specified
by the model to be used (see Section 6.3), which means there is a limit on
how much we can influence those steps.

We describe tokenisation in more detail by way of example for some chal-
lenges posed by working with natural language.

Tokenisation is the task of chopping up a character sequence into pieces
called tokens while sometimes dropping certain characters like punctuation
(see Figure 4.2) [63].

Input: Friends, Romans, Countrymen, lend me your ears;

Output: Friends Romans Countrymen lend me your ears

Figure 4.2: Example of tokenisation [63].

Tokens may be words, characters, or even bytes, but must always be dis-
crete entities [37, p. 461]. A common strategy is to separate tokens by whites-
pace to receive words. However, even when using tokens that correspond to
words, there are challenges in how characters are separated (see Figure 4.3).
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Input: aren't

Output Options: aren’t , arent , are n’t , aren t

Figure 4.3: Challenge of tokenisation [63].

Because of those ambiguities, various methods to achieve appropriate to-
kens have been proposed [40]:

1. rule-based tokenisation

2. dictionary-based tokenisation

3. supervised tokenisation with neural networks

4. unsupervised tokenisation

Which kind of tokenisation strategy is chosen depends not only on the
downstream task it is needed for, but also on the downstream model [40].
Additionally, the issues of tokenisation can be language-specific [63].
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D E E P L E A R N I N G

Now that we have covered NLP basics, we can go on to the background of
the aforementioned deep learning approach. We aim to first give an under-
standing of deep learning in general based on Kinsley et al. [53] before we
bring techniques used for NLP into focus.

Torfi et al. describe deep learning as follows [89]:

Deep learning refers to applying deep neural networks to massive
amounts of data to detect and analyse important structures/features
in order to learn a procedure aimed at handling a task.

Deep neural networks are a subset of neural networks, from which they
are delimited by having two or more hidden layers where shallow neural
networks only have one. As such, they are a part of machine learning and
hence a branch of artificial intelligence (see Figure 5.1) [53, p. 8].

Figure 5.1: Breakdown of the hierarchy from artificial intelligence to deep neural
networks [53, p. 8].

Just like neural networks, deep neural networks are "inspired by the or-
ganic brain, translated to the computer" [53, p. 10] as can be seen in Figure
5.2.

But only when hundreds, thousands, or more neurons are connected, can
they produce results that frequently outperform any other machine learning
method [53, p. 10]. Figure 5.3 depicts a basic example of a neural network
composed of artificial neurons with input layer, two hidden layers, and out-
put layer.

The input layer receives the actual input data, preprocessed and in a nu-
meric form. The hidden layers perform the feature detection whose result is
then processed and returned by the output layer [37, 53, pp. 16, 6]. Since we
are looking at a token classification task, we will only be considering com-
mon classification techniques. For those, the output layer often has as many
neurons as the training dataset has classes [53, p. 16].
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Figure 5.2: Comparison of a biological neuron and an artificial neuron [53, p. 10].
The dendrites act as input layer, cell body and nucleus as activation
function, and the axon terminals as output layer of the (artificial) neuron.

Figure 5.3: Example of a basic neural network [53, p. 16].

5.1 embedding

In order to get tokens created by a tokeniser into a form suitable for a neural
network, they need to be assigned numerical values [37, p. 212]. This is done
by referring to each token by the index this token has in a vocabulary file.
For each of those indices, the embedding is a vector in a d-dimensional space
[75]. Figure 5.4 shows an example of what a word embedding might look
like.

Figure 5.4: Example of a possible word embedding [75].
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Token embeddings are series of real numbers that represent tokens. As
such, similarity of tokens can be computed by calculating the distance of
their vectors [91].

5.2 training

This section introduces the concept of how a deep neural network, i.e. a
model, learns. As mentioned before, the goal of deep learning is to formu-
late a solution to a problem by detecting and analysing important structures
or features in the data [89]. This is done by a series of hidden layers that
extract increasingly abstract features from the input data. Figure 5.5 illus-
trates an example of a computer vision classification task. Analogous for
NLP, morphological information is captured by the word embedding layer,
local syntax by lower layers, and longer range semantics like coreference by
the upper layers [78, p. 75].

Figure 5.5: Example of visual features extracted for a computer vision classification
task [37, p. 6].

Based on the observed data, the model aims to determine which underly-
ing concepts are useful for explaining the relationships present in that data
[37, p. 6]. It then adjusts its parameters or weights, which are values that con-
trol the behaviour of the system. They determine how each feature in the
data affects the prediction [37, p. 107].

The data that is utilised for the extraction of features is called the train-
ing dataset. It consists of many training samples [68, p. 3].

How the feat of training is accomplished in detail lies outside the scope of
this thesis. In it’s core, a classification task's goal like NER is to optimise, i.e.
minimise, the difference between a given and a predicted label by adapting
its model's parameters [85]. This training error gives an idea of how well the
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model is fit to the training data. It is related to the generalisation error which
is a measure of how well the model can generalise from seen to unseen data.
How a model's generalisation error typically evolves during training can be
seen in Figure 5.6. It illustrates what happens to training and generalisation
error when we increase the capacity of a model. A good generalisation error
is achieved, when the gap between training and generalisation error is small.
In the underfitting regime, the gap is small, but both training error and gen-
eralisation error are high. When we increase capacity, the gap between the
errors increases. The optimal capacity is reached at a point where that gap
is compensated by the decrease of the training error. Past that, the capacity
of the model is too large and the size of the gap outweighs the decrease in
training error. This is the overfitting regime. A detailed explanation can be
found in Kinsley et al. and Goodfellow et al. [37, 53].

Figure 5.6: Typical relationship between capacity and error from underfitting to
overfitting regime [37, p. 115].

There are, however, different ways in which a model can be trained for a
target task like NER. In the following sections, we will discern the differences
between several techniques in regard to training a deep learning model:

• supervised, unsupervised, and semi-supervised learning

• traditional machine learning and transfer learning

5.2.1 Supervision

Supervision can be divided into several types, with each being suitable for a
different machine learning scenario [68, p. 7]:

• Supervised learning: labelled data points are available as training data
e.g. for classification, regression, and ranking problems.

• Unsupervised learning: only unlabelled training data exists
e.g. for clustering and dimensionality reduction.

• Semi-supervised learning: a set of training samples consisting of both
labelled and unlabelled data is provided
e.g. for classification, regression, and ranking tasks.
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Predictions are then made for all unseen points.
As we can see, the kind of supervision is reliant on the available data.

Subsequently, the kind of supervision limits the applicability of algorithms
for the task at hand. Based on the dataset and techniques we utilise (see
Sections 6.2 and 9), we focus on supervised learning from this point forward
in this thesis.

5.3 transfer learning

Where traditional machine learning techniques try to learn each task from
scratch, transfer learning techniques try to transfer knowledge from previ-
ously learned source tasks to a target task (see Figure 5.7). In doing so, a
model does not need to learn everything from the data of the target task,
reducing the amount needed for a good performance. Thus a significant
amount of labelling effort for the target task can be saved, which is particu-
larly advantageous in cases where annotated data is hard to come by [71].

(a) Traditional Machine Learning (b) Transfer Learning

Figure 5.7: Comparison between traditional machine learning and transfer learning
[71].

Ruder et al. define transfer learning the following way [79]:

"Transfer learning is a means to extract knowledge from a source set-
ting and apply it to a different target setting." [79]

There are many scenarios that ask for different kinds of transfer learning.
Arguably, the one that is used most frequently in NLP and machine learning
is the branch of sequential transfer learning [78, p. 63]. Here, the source and
target tasks are different and one is performed after the other instead of at
once like for other branches, e.g. multi-task learning. The goal is to "transfer
information from the model trained on the source task to improve perfor-
mance of the target model" [78, p. 63]. Typically, sequential transfer learning
consists of two stages [78, p. 64]:

1. Pre-training phase: a model is trained on the source task.



16 deep learning

2. Adaptation phase: knowledge of the trained model is transferred to the
target task.

Generally, training the source model is expensive and only needs to be
done once, while adaptation to the target task is fast [78, pp. 63–64]. For
that reason, it is common for the first stage to choose a source task which
will enable learning a representation of the data that will be useful for a
wide range of target tasks. A representation in this context means a set of
compressed latent features of the input data [86] [78, p. 34].

Within the space of NLP, the expectation is that leveraging the underlying
structure of language will improve generalisation to those target tasks [78,
p. 64]. A pre-trained model in the context of modern NLP is called a pre-
trained language model [78, p. 75].

For the second stage, there exist two main ways to adapt a pre-trained
model to a target task [78, p. 77]:

• feature extraction: all parameters in the network are frozen and the
pre-trained representations are used in downstream models

• fine-tuning: the parameters in the network are used as initialisation for
the model for the downstream task

Both generally achieve a similar performance, but because parameters are
adjusted in the fine-tuning approach, it needs more resources. It is said that
feature extraction performs better when source and target tasks are distant,
while fine-tuning performs better when they are similar [78, p. 77].

Pre-Training can either be performed in one language or multiple different
languages. Consequently, the adaptation phase should only be implemented
for those languages that the model was pre-trained on. The resulting lan-
guage models are either monolingual [6, 14, 28] or multilingual models [62].

5.3.1 Loss

Since classification is an optimisation task, we need a function to optimise,
i.e. minimise, the error/loss [85]. This is called the loss function [37, p. 82].
Mohri et al. define it as follows [68, p. 4]:

The loss function "measures the difference, or loss, between a pre-
dicted label and a true label" [68, p. 4].

5.4 metric

Apart from the loss function that can act as a measure for the error during
training, there are additional performance indicators called metrics. They do
not influence the optimisation process, but are useful to evaluate and com-
pare different classification models or machine learning techniques [38].
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Based on Grandini et al., we formulate classification as a prediction task
where available data X is used to obtain the best prediction Ŷ of the outcome
variable Y [38].

5.4.1 Binary Case

In order to define the more advanced metrics, we start by introducing bi-
nary precision and binary recall with the aid of a confusion matrix (see Figure
5.8) [38]. The matrix shows a binary classification task, i.e. with two classes
positive and negative, with 50 samples. Out of those, 35 have been correctly
predicted, i.e. Ŷ = Y: 20 as positive (true positive (TP)) and 15 as negative
(true negative (TN)). 15 have been incorrectly predicted, i.e. Ŷ 6= Y: 10 as pos-
itive when they were negative (false positive (FP)), and 5 as negative when
they were positive (false negative (FN)).

Figure 5.8: Example of a two-class confusion matrix with true positives (TPs), false
positives (FPs), false negatives (FNs), true negatives (TNs) [38].

(Binary) Precision is TPs divided by the total amount of samples that were
predicted as positive. It is a value denoting the trust we can have in the
model when it predicts a sample as positive [38]:

Precisionbinary =
TP

TP + FP
(5.1)

(Binary) Recall is TPs divided by the total amount of samples that are actu-
ally positive. It denotes the ability of the model to find all positive samples
in the dataset [38]:

Recallbinary =
TP

TP + FN
(5.2)

In other words, precision refers to the percentage of a system's results
that are correctly recognised. Recall refers to the percentage of total entities
correctly recognised by a system [60]. Both measures take on values in the
range [0; 1] [38].

A common metric used for NER is the (binary) F1-Score [60]. It aggregates
precision and recall under the concept of harmonic mean [38]:
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F1binary =
2

precision(−1) + recall(−1)
= 2 · precision · recall

precision + recall (5.3)

The score can be understood as the weighted average between precision
and recall, aiming to find the best trade-off between the two [38]. As such, it
rewards models that have similar precision and recall values. It is delimited
by 0 and 1, meaning that its best value is at 1 and its worst at 0. However, the
harmonic mean "tends to give more weight to lower values", which makes
the score decrease immensely when either precision or recall assume a value
close to 0 [38].

Following the confusion matrix in Figure 5.8, precision, recall and F1-Score
result in [38]:

Precisionbinary =
20
30
≈ 0.66

Recallbinary =
20
25

= 0.8

F1binary = 2 · 0.66 · 0.8
0.66 + 0.8

≈ 0.72

(5.4)

5.4.2 Multi-Class Case

In order to evaluate a model classifying more than two classes, we need to
use a multi-class version of the F1-Score: either the micro-averaged F1-Score or
the macro-averaged F1-Score. In turn, we require the accompanying measures
of precision and recall for K classes:

averaged Precisionmacro =
∑K

k=1 Precisionk

K

averaged Recallmacro =
∑K

k=1 Recallk

K

F1macro = 2 ·
averaged Precisionmacro · averaged Recallmacro

averaged Precisionmacro + averaged Recallmacro
(5.5)

In macro-averaging, the performance is collected for each class and then
averaged over classes. In micro-averaging, all decisions are collected and
precision and recall computed from that complete collection [50, p. 67].

When we remember the formulas for precision 5.1 and recall 5.2, we see
that they only differ in their denominator. However, in a multi-class setting,
if there is a FP, there is also always a FN and vice versa [39], e.g.:

• class A is predicted and true label is B: FP for A and FN for B

• class A is predicted and true label is A: TP for A and TN for B

In conclusion, there is no possibility that would increase only FP or FN
but not both [39].
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Because we are considering the whole dataset and not just a class of ele-
ments, the micro-averaged precision and recall give us:

averaged Precisionmicro = averaged Recallmicro =
∑K

k=1 TPk

|elements|
(5.6)

And since the harmonic mean of two equal values is the value itself, the
result is [38]:

F1micro =
∑K

k=1 TPk

|elements|
(5.7)

In conclusion, a macro-average is an average measure of the average pre-
cision and recall of the classes, with each class having the same weight. Con-
trarily, a micro-average gives each sample the same importance, and hence
different weights to different classes based on their frequency in the dataset
[38].

We scale the F1-score by a factor of 100 for readability in the text of this
thesis, transforming its range from 0.0-1.0 to 0.0-100.0.

5.5 validation and testing

We have already established that a model needs data to train its features, i.e.
the model's parameters. However, we also want to asses the improvement of
the model during training with metrics and maximise that improvement by
tweaking the model's hyperparameters. Figure 5.9 illustrates the distinction
between the model's parameters and hyperparameters, i.e. settings to control
the behaviour of the model. Finally, we aim to estimate the generalisation
error [37, pp. 120–121]. This Section introduces the means with which those
goals can be achieved.

Figure 5.9: Distinction between model parameters and hyperparameters [88].

5.5.1 Datasets

The techniques to attain those goals are based around separating the data
into three different datasets (see Figure 5.10).
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Figure 5.10: Separation of the available data into training, validation, and test subset
in an exemplary 50:25:25 split.

We have already defined the training dataset in Section 5.2:

The data that is utilised for the extraction of features is called the train-
ing dataset. It consists of many training samples [68, p. 3].

For the first of the two challenges, i.e. measuring the training improve-
ment under different combinations of hyperparameters and evaluating those
combinations, we can utilise a validation dataset of samples that the training
algorithm does not observe [37, p. 121]:

The validation dataset allows the tuning of hyperparameters of a
learning algorithm. The validation samples are used to select appro-
priate values for the model's hyperparameters [68, pp. 3–4].

This can happen during or after the training process [37, p. 121].
For the second challenge, i.e. measuring the generalisation error, we want

to determine how well the model will work in the real world by confronting
it with data it has not seen before, called the test dataset [37, p. 104].

The test dataset is used to evaluate the performance of a learning al-
gorithm on unseen data. That is achieved by comparing each test sam-
ple's true label to the label predicted by the algorithm [68, p. 4].

It is important that this happens only after all hyperparameter optimisa-
tion is complete so that the test dataset does not influence choices about the
model [37, p. 121]. If it did, this would be considered data leakage, i.e. utilising
information that should not legitimately be available [52].

5.5.2 Splitting

In order to achieve accurate estimates on how well the model will perform
on new data, i.e. the generalisation error, a few factors need to be addressed
[95]: the distribution of the datasets, the method used for splitting, and the
balance between training, validation, and test dataset.

Distribution
We usually do not know the true underlying distribution of the data. Because
of that, it is impossible to tell how well the estimated predictive performance
on the test dataset matches it [95]. The general assumption is that the "mea-
sured performance" on the test dataset "is an unbiased, accurate estimator
for the model performance on all unknown samples coming from the same
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distribution of the training/test dataset" [95]. Following that assumption, re-
sampling from the dataset is used to approximate similar distributions for
the dataset splits [95].

Method
The basic idea for cross validation, a class of model evaluation methods, is to
train a model on one part of the data and test the performance on another.
The simplest version is the holdout method, where the data is separated by
holding out a part of the data as validation or test dataset [37, p. 123] [82].
Some more advanced methods for smaller datasets include repeating the
training, validating, and testing on different subsets or splits of the original
dataset and averaging the results [37, pp. 122–123].

Balance
Regardless of the method utilised for splitting, a good balance between train-
ing, validation and test dataset is required to have a stable estimation of the
model performance [95]. A commonly used strategy is allocating two thirds
of samples for training [30].

Xu et al. claim that there is "no clear evidence suggesting which method/
parameter combination would always give significantly better results than
others" [95]. Thus, the method of data splitting and its parameters "cannot
be decided a priori and would be data dependent" [95].
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D E E P L E A R N I N G F O R N L P

With the basics of deep learning out of the way, we can now focus on the
techniques used for NLP.

6.1 encoder-decoder

Many applications of NLP rely on sequence-to-sequence techniques with in-
puts and outputs of variable lengths [98, p. 374]. For these types of inputs
and outputs, an architecture with two major components can be designed:
the encoder-decoder architecture (see Figure 6.1). The encoder takes an input se-
quence of variable length one sample at a time and transforms it into a state
with fixed shape, called compressed latent features or representation [78, p. 34].
The decoder maps that encoded state to an output sequence of variable length
[86, 98, p. 374].

Figure 6.1: The illustrated encoder-decoder architecture [22].

Both of those steps are performed by two separate architectures, namely
two LSTMs, in the original paper (see Figure 6.2) [86]. The training objective in
that paper encourages an LSTM to "find sentence representations that capture
their meaning, as sentences with similar meanings are close to each other
while different sentences' meanings will be far" [86].

Figure 6.2: A LSTM reads the string "ABC" in reverse, i.e. as "CBA" and another
produces "WXYZ" as output sentence, stopping at the end-of-sentence
token <EOS> [86].

A challenge in tasks like machine translation is learning dependencies
over a long range [92]. Sutskever et al. theorise that the reversion of the input
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sequences performed in their model makes it easier to "establish communi-
cation" between input and output sequence. They reverse the input sentence
and concatenate it with the output sentence, e.g. "ABC<EOS>WXYZ<EOS>"
turns into "CBA<EOS>WXYZ<EOS>". This way, the "average distance be-
tween corresponding words in the source and target language is unchanged"
[86], but the distance between the first few words in the input language and
the first few words in the output language is reduced. This did not only
improve performance on short sentences, but also long sentences [86].

6.2 attention in transformers

As a next step, attention mechanisms make it possible to model dependencies
regardless of their distance in the input or output sequence [92].

While the inherent sequential nature of LSTM architectures makes paral-
lelisation within training samples impossible, Vaswani et al. introduce the
transformer architecture that relies solely on an attention mechanism instead
of LSTMs and thus allows for more parallelisation. This attention mechanism
is able to draw global dependencies between input and output, forfeiting the
need for close proximity of input and output tokens that are susceptible to
each other [92].

The core innovation of transformers compared to sequential architectures
lies in the attention mechanism that allows the decoder to look back at the
encoder states [77]. Vaswani et al. describe attention mechanisms as follows
[92]:

"An attention function can be described as mapping a query and a
set of key-value pairs to an output, where the query, keys, values, and
output are all vectors. The output is computed as a weighted sum of
the values, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key." [92]

Their specific attention mechanism is a multi-head attention that performs
scaled dot-product attention on each of several different linear projections on
the queries, keys, and values [92]. In combination, they are used in three
different ways:

• The "encoder-decoder" attention layers "allow every position in the de-
coder to attend over all positions in the input sequence" [92].

• The encoder's self-attention layers make it possible for the encoder to
"attend to all positions in the previous layer of the encoder" [92].

• The decoder's self-attention layers "allow each position in the decoder
to attend to all positions in the decoder up to and including that posi-
tion" [92]. Illegal tokens, i.e. tokens that the decoder is not allowed to
see yet, are hidden using masking tokens.
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Figure 6.3: Architecture of the transformer model [92].

Figure 6.3 shows the architecture of the transformer model whose descrip-
tion we simplify based on Vaswani et al. for better understanding [92].

The computation graph depicts the encoder and decoder part of the archi-
tecture, left and right respectively. Both consist of stacked self-attention and
point-wise, fully connected layers.

After tokenisation (see Section 4.1), the input tokens are converted to vec-
tors of the dimension the model requires by learned embeddings. Then, a
positional encoding is added to the input embeddings for the model to make
use of the order of the sequence. The result is then put into a stack of N = 6
identical layers of the encoder. Each consists of a multi-head self-attention
mechanism and a fully connected feed-forward network with residual con-
nections and their normalisation layers.

The decoder also consists of a stack of N = 6 identical layers almost like
the encoder, but with one additional multi-head attention layer that attends
over the output of the encoder stack. The multi-head attention that is similar
to the encoder's is additionally modified to prevent positions from attending
to subsequent, i.e. illegal, positions by masking them. It is called the masked
multi-head attention.

The vectors are finally run through a linear transformation and softmax
function to compute the next-token probabilities for the translation [92].
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Sutskever et al. already recognised that the length of paths in the network
is a big influence on the model's ability to learn long-range dependencies
[86]. The self-attention deployed in Vaswani et al. leads to a maximum path
length of constant number between all positions, thus making it easier for
the model to learn those long-range dependencies [92]. Another benefit of
self-attention is the added interpretability of models: attention heads learn to
perform different tasks, with many appearing to "exhibit behaviour related
to the syntactic and semantic structure of the sentences" [92].

6.3 pre-trained language model : bert

The attention mechanism explained in the last section has furthered research
on many challenging NLP tasks. But while the architecture can be applied
to many tasks, each one still needs task-specific training with datasets of
thousands of samples [10].

Utilising transfer learning techniques (see Section 5.3) and pre-training
language models before applying them to downstream tasks can improve
many NLP tasks [28]. Depending on the task, it can be enough to only utilise
one half of the transformer, i.e. either encoder or decoder, depending on if
an understanding of the input or a generation of output sequences is needed
[24, 31].

Devlin et al. introduce a language representation model that we exam-
ine in this section: bidirectional encoder representations from transform-
ers (BERT) [28]. It is an encoder model, meaning that it only contains the
encoder, but not the decoder part of the encoder-decoder architecture [28].
Models like this can encode information from the input into a representa-
tion, but cannot generate sequences as outputs [86, p. 374]. This makes them
a good fit for tasks that require understanding the input like NER [31, 43].
BERT achieves state-of-the-art results on more than 10 NLP tasks. It accom-
plishes that feat by utilising a masked language model (MLM) objective in
combination with a next sentence prediction (NSP) for the pre-training pro-
cess [28].

Masked Language Model (MLM)
In the masked language model objective, tokens from the input are randomly
masked by replacing them with a mask token. The objective of the model is
then to predict the original token that was replaced based only on its context.
This allows for a bidirectional approach where tokens before and after the
token in question can be considered [28].

Next Sentence Prediction (NSP)
The NSP is a binary classification task in which the model is trained to distin-
guish between the original next sentence and a randomly chosen sentence
from the corpus [83].
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Pre-training is performed on unlabelled data, by definition characterising
the training as unsupervised learning [28]. However, Ruder et al. profess that
"language modelling is sometimes referred to as self-supervised learning
rather than unsupervised learning" based on the fact that it creates its own
labels for the pre-training tasks [78, p. 66].

In order to fine-tune the pre-trained model, the BERT model is initialised
with the parameters obtained during pre-training. Then, it is fine-tuned with
the help of labelled task-specific datasets [28].

Figure 6.4 shows both the pre-training and fine-tuning procedures.

Figure 6.4: Overall pre-training and fine-tuning procedures for BERT [28].

The combination of both pre-training tasks enables BERT to outperform
many task-specific architectures on sentence-level and token-level tasks, e.g.
sentiment classification and NER respectively [28].
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R E L AT E D W O R K

The previous chapters gave an overview over some developments in the
world of deep learning for NLP and NER in terms of technologies. In this
chapter, we connect those technologies to quantifiable advancements made
with their help and give some historical context.

7.1 named entity recognition

In order to compare the results of different research groups, we will exam-
ine them in regards to an objective benchmark. The CoNLL03 benchmark
containing English and German data was created by Sang et al. in 2003 to
evaluate systems on the same data in a competition [80]. The most frequently
applied technique tested against the benchmark in the challenge surround-
ing it was the statistical learning method maximum entropy model. Top perfor-
mances for English and German were F1-scores of 88.76±0.7 and 72.31±1.3
respectively, achieved by ensemble methods with maximum entropy mod-
els. Some participants utilised small amounts of unannotated data in addi-
tion to the annotated benchmark data. Although they obtained performance
gains around 5% in comparison to only using the labelled data with their ap-
proach, there was no method that could take advantage of the vast amounts
of available raw texts at the time [80].

As an advanced benchmark for German, the GermEval 2014 NER Task was
created [7]. It uses an extended tagset with morphologically motivated sub-
types and requires prediction of nested NEs, e.g. an entity person with the
nested entities first name and last name. The best performance for this chal-
lenge with an F1-score of 76.38 was achieved by the ExB group by utilising a
combination of techniques and features for their system: conditional random
fields (CRFs) and gazetteers, part of speech, tokens, character-level features
and word shape [7].

In 2016, Chiu et al. achieved a new state-of-the-art performance on the
CoNLL03 benchmark by leveraging a hybrid bidirectional LSTM containing
a common convolutional neural network (CNN) architecture with additional
pub-licly-available data [18]. Their F1-score was 91.62 on the English part
of the benchmark. The trend of utilising large unlabelled corpora continued
with Vaswani et al. and their transformer [92]. By adding the bidirectional
approach, Devlin et al. were able to create the first pre-trained language
model BERT [28]. While they did not achieve state-of-the-art performance on
CoNLL03 at the time, trailing 0.29 behind the top result [1], the pre-trained
model got applied to many more tasks outside of NER.

A combination of strategies led to the current state of the art for En-
glish and German CoNLL03. Wang et al. leverage the automatic concate-
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nation of different contextualised embeddings, as well as traditional non-
contextualised embeddings [93]. A controller is tasked with finding the best
combination of embeddings, which come from a set of different models, e.g.
BERT, multilingual BERT [28], and others. For German-specific embeddings, a
BERT model trained on German data was utilised [23]. However, approaches
that concatenate multiple embeddings can be computationally costly, be-
cause different language models are used as inputs [93]. Other multilingual
models include the multilingual BERT called mBERT, and XLM-RoBERTa [20,
28].

Coming back to the GermEval 2014 benchmark, Chan et al. evaluated dif-
ferent transformer architectures and trained two model architectures on Ger-
man data [14]. Their model GELECTRA, based on ELECTRA, outperforms the
German model used by Wang et al. [19, 23, 93] and all other common Ger-
man models [14].

7.2 german medical domain

For German medical texts, the data regulations mentioned in Section 1 in-
crease the difficulty of sharing medical data for research. Several annotation
studies created corpora, but those are being kept closed [54]. Because of this,
the reported quality of information extraction methods can "neither be eval-
uated independently nor reproduced externally" [54]. In order to advance
research in the German medical domain of NLP, Kittner et al. published
the Berlin-Tübingen-Oncology corpus (BRONCO). They also applied state of
the art techniques for NER, named entity normalisation, negation and spec-
ulation detection, and provided their results as benchmarks [54]. The best
results for NER ranged between F1-scores of 77.0 and 91.0 on the validation
data, and 72.0 and 90.0 on the test data, depending on the annotation type.
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S U M M A RY

This part of the thesis has introduced the theoretical background of natu-
ral language processing (NLP) and the task at hand, named entity recogni-
tion (NER). It first offered preliminary knowledge about the most appealing
approach, deep learning, in particular of the kind of preprocessing needed
to perform it and the challenges faced when working with natural language
using the example of tokenisation. Afterwards, it established the basis of
deep learning composed of training, supervision, transfer learning, and loss
function. How a model can be evaluated was shown by use of the F1 metric
and the combination of validation and testing. Finally, the consolidation of
both fields led to deep learning for NLP: the encoder-decoder architecture as
basis for transformers with their attention mechanism paved the way for the
pre-trained language model BERT.

Following these fundamentals, we explored the related work of how they
were applied to the task of named entity recognition (NER) in general and in
the German medical domain specifically. We found that certain benchmark
datasets exist that make a comparison between different types of models
possible. The increased difficulty of working with German medical data
prompted Kittner et al. to publish the Berlin-Tübingen-Oncology corpus
(BRONCO), for which they also published benchmark performances of sev-
eral model types [54].

In the following part, we go over this BRONCO dataset in detail and per-
form an exploratory data analysis on it. In order to work with the dataset, we
need the hardware and software we present afterwards. On it, we can train
the models we introduce and perform hyperparameter optimisation (HPO)
on them. Finally, we summarise the experiments we want to conduct in or-
der to achieve good performances on the task of NER.





Part III

S Y S T E M
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D ATA S E T

The dataset discussed in Section 7, published by Kittner et al., is called the
Berlin-Tübingen-Oncology corpus (BRONCO) [54]. To our knowledge, it is the
only German medical dataset freely available for academic research. Match-
ing its name, the training dataset contains 150 German discharge summaries
of cancer patients treated at Charité Universitätsmedizin Berlin or Univer-
sitätsklinikum Tübingen. Another 50 are held back by the authors as a test
set. The two datasets are called BRONCO150 and BRONCO50 respectively.

In order to publish the dataset in accordance with German law, the au-
thors performed a set of preprocessing steps on the discharge summaries
[54]: First, the reports were manually anonymised. Afterwards, they were
scrambled at the sentence level, resulting in a set of disconnected sentences.
Both methods were applied in the pursuit of making reconstruction of indi-
vidual reports impossible. As an additional measure to protect the patients'
data, researchers wanting to work with the dataset must sign a data usage
agreement detailing the terms of usage [54].

The reports were furnished with the necessary information for four dif-
ferent tasks: named entity recognition (NER), named entity normalisation,
negation detection, and speculation detection. We focus only on the infor-
mation needed for NER in this thesis. For this task, annotations with the
labels diagnosis, treatment, and medication were created by domain experts
[54].

Annotations are given in the form of the CoNLL format, where data files
contain one word per line and the end of a sentence is delimited by an
empty line [80]. In each line, the word, e.g. Leber, is followed by tab-separated
features, and its named entity (NE) tag. In the case of BRONCO, only its part
of speech (POS) tag, e.g. NN, is included as an additional feature. It follows
the Stuttgart-Tübingen-TagSet (STTS) tag set, a specific tag set for the German
language [81].

The NE tag, e.g. I-TREAT, follows the IOB scheme and thus includes the
information whether a word is outside a NE (O), inside a NE (I-XXX), or the
beginning of a NE (B-XXX) of type XXX. When two or more entities of the
same type are next to each other, the first word of the second entity gets
denoted as B-XXX to identify the beginning of another NE [80]. The type is a
short form of the label of the word; in the case of BRONCO, this is DIAG for
diagnosis, TREAT for treatment, and MED for medication [54].

An example taken from the BRONCO dataset is shown in Table 9.1. It de-
picts three different cases of the annotation schema. The simplest are one-
word annotations like the annotations B-TREAT for "TACE" and O for "Bei".
At the beginning of the sentence, we can see the more complex combina-
tion of B-TREAT and I-TREAT to delineate a two-word annotation. In the
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middle of the sentence, we have the case where a one-word annotation with
B-DIAG is immediately followed by a two-word annotation with B-DIAG
and I-DIAG. It is clear with the use of two B-DIAG that we are looking at
two separate NEs.

Word POS Tag NE Tag

MR NE B-TREAT
Leber NN I-TREAT
: $, O
Bei APPR O
Zustand NN O
nach APPR O
TACE NE B-TREAT
von APPR O
HCC-Herden NN B-DIAG
rezidivsuspekte ADJA B-DIAG
Laesion NN I-DIAG
im APPRART O
Segment NN O
8 CARD O
subkapsulaer ADJD O
. $. O

Table 9.1: BRONCO annotation example with a length of 16 tokens.

9.1 exploratory data analysis

As described in Section 5.5, the accuracy of the estimated generalisation
error of the final model depends largely on the similarity of the distributions
of the training, validation, and test datasets. These, in turn, stem from the
underlying distribution of the complete dataset. In this section, we conduct
an exploratory data analysis to assess the similarity of the three datasets by
examining different features, like the amount of tokens in a sentence, and
the distribution of NEs. This knowledge also enables making good decisions
about the training later on.

9.1.1 Amount of Tokens in a Sentence

In Table 9.2, we can see general information about the complete dataset and
the splits we performed in order to achieve a similar distribution for all of
them. We leveraged a random 70:15:15 percentage split for training, valida-
tion, and test, and repeated the process until we found a division that ex-
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hibits desirable qualities. Tokens here correspond to word-level tokens, not
tokens that are the result of a tokeniser being applied as preprocessing for a
model (see Section 5.1).

Dataset #Sentences #Tokens Max
#Tokens

Avg
Tokens
per S.

Complete dataset 8972

(100%)
70572 72 7.87

Train subset 6280

(70%)
49091 57 7.82

Val subset 1346

(15%)
10732 72 7.97

Test subset 1346

(15%)
10749 43 7.99

Table 9.2: Preliminary information about the complete dataset in comparison to the
three splits for the training, validation, and test datasets.

We can see that the maximum number of tokens in a sentence differs quite
dramatically between splits, while the difference of the average number of
tokens per sentence is slight. Figure 9.1, however, shows that there are only
few sentences with more than 30 tokens in the complete dataset, e.g. only
one with 72 tokens. Since the validation subset displays a maximum of 72 to-
kens, we can tell that the sentence with 72 tokens ended up in the validation
dataset. While these differences might influence the training performance
and the accuracy of the generalisation error estimate, they are characteris-
tics of the dataset and cannot be compensated completely. Some of these
characteristics are presented in Figure 9.1.

The different splits exhibit slight variations of the same distribution, such
as the aforementioned maximum number of tokens. This subset is the most
balanced one we could achieve without manually distributing the samples
and risking introducing additional bias.

From here on, we will focus on the complete dataset, because the splits
behave very similarly. Additional figures for the splits of the dataset can be
found in Appendix A.

Figure 9.2 zooms in on the lower end of the distribution, i.e. the sentences
with 10 tokens or less, of the complete dataset. It is notable that a large
number of sentences only consists of one or two tokens. This behaviour is
shared throughout all splits. We take this fact into consideration when we
discuss the performance of the models in Part iv, especially Section 20.2.
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Figure 9.1: Distribution of the amount of tokens per sentence, denoted by a line for
its minimum, mean, and maximum.
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Figure 9.2: Complete dataset: distribution of the amount of tokens per sentence
zoomed in.

9.1.2 Distribution of Named Entities

Another feature of the dataset is the distribution of NEs. First, we examine
how many sentences actually contain NEs. The analysis shows that there are
more sentences that do contain one or more NE and fewer that do not, as can
be seen in Figure 9.3a.

To examine the distribution of tokens further, Figure 9.3b views the data
on a token level instead of the sentence level: less than one quarter of tokens
is labelled as a NE, with most of those being diagnosis, followed by treatment,
and finally by medication. Figure 9.4 shows the distinction of the NEs into
the corresponding NE tags as described in Section 9.
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Figure 9.3: Occurrence of sentences that have no NE tags versus those that do (a)
and general distribution of NE tags in the dataset splits (b).
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Figure 9.4: Distribution of NE tags in the dataset splits.

9.2 baseline results

As mentioned in Section 7, Kittner et al. published their dataset, the Berlin-
Tübingen-Oncology corpus (BRONCO), in order to advance research in the
German medical domain of NLP. They applied state of the art techniques for
named entity recognition (NER), named entity normalisation, negation and
speculation detection, and provided their results as benchmarks.

Table 9.3 shows the results achieved by computing and averaging a 5-fold
cross-validation on the BRONCO150 dataset with standard deviation in brack-
ets. F1-Score refers to the micro-averaged F1-score as described in Section
5.4 [54].
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Annotation
Type

Method BRONCO150 BRONCO50

Diagnosis CRF 75.0 (2.0) 72.0
CRF+WE 74.0 (1.0) 71.0
LSTM 72.0 (1.0) 71.0
LSTM+WE 77.0 (8.0) 72.0

Treatment CRF 82.0 (1.0) 78.0
CRF+WE 81.0 (1.0) 76.0
LSTM 81.0 (2.0) 76.0
LSTM+WE 84.0 (6.0) 75.0

Medication CRF 90.0 (0.9) 90.0
CRF+WE 90.0 (0.6) 90.0
LSTM 88.0 (2.0) 89.0
LSTM+WE 91.0 (4.0) 90.0

Table 9.3: Validation and test F1-score for baseline methods for NER (CRF and LSTM-
CRF), with and without pre-trained word embeddings (WEs) [54].

The authors utilised conditional random fields (CRFs) [59] and a bidirec-
tional long short-term memory (LSTM) network [41] with a final CRF layer
(LSTM-CRF) [54]. In combination with those methods, they tested the im-
pact of German (nonbiomedical) word embeddings (WEs) [67]. They learned
that the WEs only have a "marginal impact on the CRF, but considerably im-
prove performance of the LSTM-CRF approach" [54].

For the test performance, the models were trained on the available com-
plete BRONCO150 dataset and evaluated on the held back BRONCO50 data
(see Table 9.3). The authors attribute the drop for diagnosis and treatment
from validation to test results to a possible form of data leakage as result of
the 5-fold cross validation. Any data leakage that might have occurred can
be disregarded here for the test results. As such, the test results should be
considered as more realistic [54].

Kittner et al. mention the possibility of applying "more fine-grained lan-
guage models" to the dataset in the future, because they were not available
at the time. They specifically refer to a domain-specific German language
model, and also suggest experimenting with the German instance of the
multilingual BERT model [54]. We examine both of these ideas in this thesis.
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H A R D WA R E A N D S O F T WA R E

As mentioned in Chapter 9, a data usage agreement protects the patients and
their data. It includes requirements about the security of the hardware the
dataset is stored on [54]. To fulfil this agreement, we were offered to work on
the high performance cluster HPC@Charité as part of a cooperation between
the Berlin Institute of Health at Charité – Universitätsmedizin Berlin and
SVA System Vertrieb Alexander GmbH [4, 36, 45].

10.1 high performance compute cluster at charité

On the cluster, we have access to high performance hardware and a software
stack allowing users to leverage it. The hardware resources are managed by
the Slurm Workload Manager in version 22.05.2 [97]. They include [35]: 13 all-
purpose CPU nodes with 1408 CPU cores in total, 21 GPU nodes with an
NVIDIA A100 40G GPU each, and 2 NVIDIA DGX A100 nodes, each with 8

A100 80G GPUs.
Since benchmarking the model training lies outside the scope of this the-

sis, we prioritise the allocation of hardware in regards to prompt scheduling
instead of runtime consistency. Jobs are then distributed to available nodes
with the necessary computing power, and thus are trained on slightly differ-
ent hardware.

10.2 development environment

As part of the software stack on the cluster, the scientific container software
Singularity is utilised in version 3.7 to allow developers to "work in repro-
ducible environments of their choosing and design" [57, 58].

We take advantage of the NVIDIA NGC container for PyTorch as a base en-
vironment [32]. With Singularity's capability of converting Docker containers
into Singularity containers [66, 84], we create a mutable sandbox container
in which we can install packages we need via Conda, a manager for pack-
ages, dependencies and environments [47], and for rare instances via Pip,
the package installer for Python [76]. The packages can be found in the pro-
vided requirements.txt.

We prepare data and train models using the PyTorch integration of the
open-source Transformers library by Huggingface in version 4.21.1 with its
associated libraries [94]. Logging is handled by the MLflow platform for ma-
chine learning lifecycles in version 1.26.0 [17]. For hyperparameter optimisa-
tion (HPO), we employ the Huggingface integration of the Optuna framework
in version 2.10.1 [2].
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M O D E L S

We have already examined a pre-trained language model as a concept, namely
the BERT model (see Section 6.3). In this section, we introduce the language
models we work with to achieve the best results on the BRONCO dataset:
GBERT, MedBERT, GELECTRA, mBERt, XLM-RoBERTa, and XLM-RoBERTa
GER. We distinguish between two groups of models; monolingual and mul-
tilingual models. First, however, we discuss model bias.

11.1 model bias

We want to bring attention to the danger of human-like bias in machine
learning algorithms, because "learned biases formed on human-related data
frequently resemble human-like biases towards race, sex, religion, and many
other common forms of discrimination" [34]. Bias correction methods have
helped to reduce the effect of harmful learned biases [34]. While an inspec-
tion of the biases that might be present in the models in this section lies
outside the scope of this thesis, we want to acknowledge their likely exis-
tence.

11.2 monolingual models

Monolingual models are those models pre-trained on data from a single lan-
guage. As such, they can in theory be applied to data from other languages,
but would be expected to perform poorly.

11.2.1 GBERT

The original monolingual BERT model was pre-trained on 16 GB of English
data [28, 62].

Since 2019, when Devlin et al. published the original BERT model, the
masking objective has been updated: before, a subword token could be
masked, leaving the rest of the word's tokens unmasked (see Figure 11.1).

With the introduction of whole word masking, it was guaranteed that when
masking one subword token all other tokens in the word are also masked
out. This change improved performance in their tasks [14, 49].

In addition to adopting the updated masking objective, Chan et al. pre-
trained a BERT model in 2020 on 173.4 GB of German data. The result is a
monolingual German model called GBERT.
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Input: I am eating.

Tokens: I am eat ing .

Subword Masking: I am MASK ing .

Whole Word Masking: I am MASK MASK .

Figure 11.1: Artificial example of whole word masking in comparison to subword
masking for the word "eating".

11.2.2 MedBERT

MedBERT is the only accessible German model pre-trained on data from the
medical domain that we could find in our research [6].

As a basis, Becker et al. utilised a German BERT model: before the current
GBERT version was created by Chan et al. from Deepset, Deepset had pub-
lished a prior German BERT version in 2019. They had pre-trained it on 12

GB of German data and evaluated it on a set of different datasets for sev-
eral tasks [25, 26]. Unfortunately, we are not able to find official information
about the pre-training procedure and could not get a reply from Deepset. We
assume that the German BERT follows the same procedure as the original
monolingual BERT, based on the fact nothing else was published and they
were both developed around the same time.

Becker et al. collected a dataset of 67.5 MB of German medical data and
further pre-trained German BERT on it [6]. This resulted in a monolingual
German model for the medical domain.

11.2.3 GELECTRA

Based on the success achieved by BERT, Clark et al. introduced a learning pro-
cedure that they called "efficiently learning an encoder that classifies token
replacements accurately (ELECTRA)" [19]. The core idea is to replace the MLM

objective that masks a token in BERT by a new self-supervised task that sup-
plies a new token instead. This new token is generated by a small generator
network (see Figure 11.2). The discriminator learns to distinguish between
original and replaced tokens. Generator and discriminator are pre-trained
jointly, but only the discriminator is fine-tuned on downstream tasks [19].

The new replaced token detection results in more compute-efficient pre-
training and better performance on downstream tasks, because the model
learns to distinguish between actual input tokens and those generated by
the generator instead of only finding a suitable token in place of a masked
one [19].

The monolingual model GELECTRA is a version of the English ELECTRA

model, pre-trained on 173.4 GB of German data [14].
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Figure 11.2: Overview of replaced token detection [19].

11.3 multilingual models

Multilingual models have been pre-trained on more than one language and
tend to be competitive with monolingual models. Especially in cases where
only a small amount of training data exists in the target language, transfer
effects from related languages can benefit the model performance [48].

11.3.1 mBERT

At the same time as they published the monolingual BERT, Devlin et al. also
developed a multilingual BERT (mBERT) [28, 44]. They had pre-trained it
in the same manner as the monolingual BERT, but instead of only utilising
one language, they used 104 languages. The decision was based on those
languages with the largest Wikipedia corpora, as to allow for a sufficient
amount of training data. Because the size of the different Wikipedia corpora
varied greatly, the authors decided to re-sample the data [27]: By perform-
ing exponentially smoothed weighting, they achieved an undersampling of
high-resource languages and an oversampling of low-resources languages.
This resulted in a more balanced dataset, where the factor by which English
would be sampled more than Icelandic improved from 1000 to 100.

Unfortunately, we cannot find official information on the size of the pre-
training dataset.

11.3.2 XLM-RoBERTa German

The XLM-RoBERTa is a cross-lingual language model [21] based on the robustly
optimised BERT approach (RoBERTa) published by Facebook in 2019 [62]. The
authors of the original monolingual RoBERTa model, Liu et al., claimed that
the initial monolingual BERT model was significantly undertrained. They
were able to achieve state-of-the-art performance on several challenges by
proposing an improved recipe for training BERT models. The modifications
include [62]:

1. training for more epochs, with bigger batches, and over more data,

2. removing next sentence prediction objective,

3. training on longer sequences,
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4. and dynamically changing the masking pattern applied to the training
data.

Liu et al. also added more data to the initial BERT's training dataset of 16

GB, resulting in over 160 GB of training data [62].
Based on this recipe and the approach of scaling the training dataset's

size, Conneau et al. from Facebook increased the training dataset to 2.5 TB
of filtered CommonCrawl data containing 100 languages. This resulted in a
large multilingual language model called XLM-RoBERTa [21].

The multilingual XLM-RoBERTa was further fine-tuned on the German
part of the CoNLL03 dataset, producing a multilingual language model for
token classification specialised on the German language we are referring to
as XLM-RoBERTa GER.

11.4 comparison

Table 11.1 shows a summary and comparison of the ways in which the mod-
els examined in this section differ. The sizes of their tokenisers' vocabularies
can be found in Appendix C.1.

Model Pre-
Training
Procedure

Pre-
Training
Data

Domain Pre-
Training
Data

NER
Fine-Tuning
Data

BERT SWM, NSP 16 GB Eng.

GBERT WWM, NSP 173 GB Ger.

MedBERT SWM, NSP 12 GB Ger. 67.5 MB
medical Ger.

GELECTRA RTD, NSP 173 GB Ger.

mBERT SWM, NSP 104 lang.

XLM-
RoBERTa

DM 2.5 TB 100

lang.

XLM-
RoBERTa
GER

DM 2.5 TB 100

lang.
CoNLL03

Ger.

Table 11.1: Models and their pre-training procedures, pre-training data, data used
for task fine-tuning, and data used for domain fine-tuning. SWM = Sub-
word Masking, NSP = Next Sentence Prediction, WWM = Whole Word
Masking, RTD = Replaced Token Detection, DM = Dynamic Mask.

We employ the largest available models for each of the three monolingual
and two multilingual models described in this section, i.e. the ones with
the most model parameters. The selection of other hyperparameters will be
discussed in the next section.
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We have already distinguished between model parameters and model hyper-
parameters with the help of Figure 5.9 in Section 5.5. To summarise: model
parameters are what the model learns during training and hyperparameters
are settings to control its behaviour, i.e. how it learns [37, pp. 120–121]. The
latter's values can often impact performance considerably [8]. In this sec-
tion, we present hyperparameter optimisation (HPO) methods that can be
employed to choose these hyperparameters and the ranges of values we
search in.

12.1 population based training

Originally, our goal was to utilise the Huggingface integration of RayTune
for its population based training (PBT) approach, because it is expected to
work well with the high number of hyperparameters in deep learning [8,
61, pp. 28–29, 31, 37]. PBT "uses a population of training runs with differ-
ent settings and applies ideas from evolutionary algorithms" [8, p. 37]. Each
member of the population, i.e. model, can exploit another member's informa-
tion when they perform poorly themselves, e.g. exploit the hyperparameters
of a better performing model [87]. Figure 12.1 shows how the training of the
population progresses, with exploitation and ion being performed periodi-
cally. This ensures that all models in the population perform on a good base
level and that new hyperparameters are explored [87].

This process allows to exploit good hyperparameters quickly and dedicate
more training time to promising models. In addition to this, hyperparame-
ter values can be adapted throughout training, thus leading to "automatic
learning of the best configuration" [87].

Unfortunately, the combination of software and hardware requirements
we discussed in Section 10 impeded that strategy: the ray initialisation func-
tion fails to detect resources correctly on Slurm [42]. This is likely connected
to an issue with object spilling within a Docker image, where data is writ-
ten on a hard drive if ram is getting too full [3]. While there might exist
workarounds for these issues, we decided to prioritise achieving any HPO

and switched to another method.

12.2 tree-structured parzen estimator

As an alternative to PBT, we choose the tree-structured parzen estimator (TPE).
It is a single-objective Bayesian optimisation algorithm that is often used for
the hyperparameter optimisation of machine learning algorithms [70]. It has
been adopted as the standard algorithm of the Optuna framework for hy-
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Figure 12.1: Visualisation of population based training (PBT), where information is
copied from better performing models (exploit) and then new hyperpa-
rameters are explored (explore) [87]. Depicted are two parallel runs, one
on top and one on the bottom. In the second step, the bottom model
performs badly and is replaced by the better-performing model. On
that basis, the hyperparameters are changed to explore more options.

perparameter optimisation, which we leverage for this reason [2]. We choose
TPE because it can deal with different types of data and tens of variables
instead of only two or three variables like random search or grid search [8,
p. 29][70].

12.2.1 Bayesian Optimisation

In order to illustrate the advancements made by utilising TPE, we first give
an overview over bayesian optimisation (BO), the basis of TPE.

BO is an iterative algorithm that aims to model the mapping of a hyper-
parameter configuration to the estimated generalisation error for this config-
uration based on observed performance values via linear or non-linear re-
gression [8, p. 11]. The approximating model is called a surrogate model and
typically consists of a Gaussian process or a random forest. The following
steps are iterated after an initial random choice of configurations has been
evaluated and until a termination criterion is reached or the computation
budget is exploited [8, p. 12]:

1. fit the surrogate model using all evaluated configurations

2. surrogate model: produce estimates of the performance and the pre-
diction uncertainty for each configuration

3. create a predictive distribution for one test configuration or a joint dis-
tribution for a set of configurations

4. establish acquisition function that encodes a trade-off between exploita-
tion and ion and is cheap to evaluate



12.2 tree-structured parzen estimator 45

5. optimise acquisition function

6. generate new configuration candidates for evaluation

7. evaluate new configuration candidates

Figure 12.2 illustrates a snap-shot of the process.

Figure 12.2: Bayesian optimisation (BO) with the goal to minimise the objective func-
tion c(λ) by use of the surrogate model and its estimated prediction
performance ĉ(λ) and uncertainty σ̂(λ), as well as the acquisition func-

tion u(λ), based on all evaluated configurations A[t−1] [8, p. 12].

Which algorithm is used for the surrogate model has great influence on
the performance of the optimisation [8, p. 11]. If the hyperparameters to be
optimised are real-valued, a Gaussian process regression is used most often.
However, it does not support non-numeric or conditional hyperparameters
and does not work well in settings with more than ten dimensions, i.e. hyper-
parameters to be optimised. In addition, their runtime complexity is cubic
in the number of evaluated configurations, which can result in significant
overhead [8, p. 11].

12.2.2 Tree-structured adaptive Parzen Estimators as Surrogate Model

Where Bayesian optimisation utilises Gaussian process regression, TPE uses
tree-structured adaptive Parzen estimators [70]. As a surrogate function, they
handle continuous variables, as well as discrete, categorical, and conditional
variables. In contrast, the Gaussian process regression struggles with dis-
crete, categorical, and conditional variables. TPE also has lower computa-
tional complexity and can scale to tens of variables [70].
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12.3 process

In order to utilise TPE instead of PBT, we need to reduce the amount of
hyperparameters we want to optimise from hundreds down to tens. Since
the set of hyperparameters that have a big influence on performance is often
only a small subset of all available hyperparameters, we aim to find those
hyperparameters that have the biggest impact [8, p. 9].

We focus on those hyperparameters that have been identified as important
by the authors of previous papers in regards to the models to be studied.
For GELECTRA for instance, the relevant papers include the paper it was
published in [14], the ELECTRA paper for the pre-training procedure [19],
and the BERT paper [28] for the underlying architecture.

We identify the learning rate, warm-up ratio for the linear learning rate
scheduler, training batch size, number of training epochs, and weight decay
as central hyperparameters for optimisation. We define a range of values for
each of the chosen hyperparameters that spans all values extricated from the
papers. The resulting ranges are denoted in Table 12.1.

Hyper-
parameter

Minimum Maximum Step Size

Learning Rate 1e-5 5e-4 1e-5

Warm-up Ratio 0.06 0.1 0.01

Batch Size 16 64 16

Training Epochs 2 10 1

Weight Decay 0 0.1 0.01

Table 12.1: Value ranges for hyperparameter optimisation.

Clark et al., who published ELECTRA, mentioned the use of a layer-wise
learning rate decay [19]. In addition to a linear learning rate scheduler with
a warm-up phase, the learning rate would also be decaying more for each
layer for the depth of the network. We could not find an implementation
of this functionality in the Huggingface library and only a faulty one by
the developers of ELECTRA [46]. The layer-wise learning rate decay proved
difficult to implement and its orderly behaviour hard to verify. Thus, we
decided against taking this risk and dropped the additional decay.

We leave other hyperparameters at their default values under the assump-
tion that the developers chose them to be well-suited for a variety of tasks.
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In order to achieve our goal for this thesis, namely to obtain a well-performing
model for the task of NER on BRONCO, we conduct a number of experiments.
In this chapter, we explain our rationale behind the types of experiments we
choose and how we analyse their results.

In the section about transfer learning (see Section 5.3), we discussed that
there are two main ways to adapt models to target tasks, i.e. feature extrac-
tion and fine-tuning. Which way should be performed depends on the sim-
ilarity of the source and target tasks: if they are distant, feature extraction
is expected to perform better, whereas fine-tuning should perform better
when they are similar [78, p. 77]. A benefit of feature extraction is that it
requires less resources. Since we were not able to find any information on
how to classify tasks as similar or distant, we compare both approaches for
all models.

Because the choice of which hyperparameters training is performed with
is central to the model's performance, we want to avoid basing our discus-
sion on non-optimal training runs. For this reason, we perform HPO on both
approaches.

Furthermore, we inspect the possibility and feasibility of further pre-training
a pre-trained language model on medical data before performing transfer
learning on it for the downstream task.

Finally, we inspect the two best models, one monolingual and one multilin-
gual one, in detail and compare their performances on the held back testing
dataset BRONCO50 with those achieved by the publishers of the dataset.

In summary, the experiments and analyses we conduct are the following:

1. feature extraction versus fine-tuning

2. feature-extraction HPO

3. fine-tuning HPO

4. feature extraction HPO versus fine-tuning HPO

5. feasibility of further pre-training on domain data

6. inspection of the best monolingual and multilingual model

Unless stated otherwise, we discuss micro-averaged F1-scores on our test
subset of the BRONCO150 dataset. Using this version of the F1 metric allows
for comparisons to related work [14, 54].
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In this part of the thesis, we described the system we utilise to approach the
task of NER on German medical data. We discussed the composition of the
BRONCO dataset and how we divided it into a training, validation, and test
subset while maintaining similar feature distributions.

Then, we presented the high performance cluster HPC@Charité and the
development environment we worked with on top of it; a combination of
PyTorch, Huggingface, MlFlow, and Optuna makes up the most of our code.
We installed them into a Singularity container with the package managers
Conda and Pip.

We need this hardware and software stack to train models to perform NER.
These models are three monolingual models (GBERT, MedBERT, GELEC-
TRA) and three multilingual models (mBERT, XLM-RoBERTa, XLM-RoBERTa
GER). While they all at least partially evolved from the BERT model (see
Section 6.3), they differ in their pre-training procedures and the kind and
amount of training data. Some were additionally fine-tuned on NER or do-
main data, i.e. XLM-RoBERTa and MedBERT.

We tried to use a population based training (PBT) approach as a HPO algo-
rithm, but ran into obstacles regarding our software stack. Instead, we chose
a Bayesian optimisation approach with tree-structured Parzen estimators as
surrogate model. We picked the type of hyperparameter and the ranges in
which to optimise them based on the literature relevant to the models we
train. We end up optimising the learning rate, warm-up ratio, batch size,
training epochs, and weight decay.

Finally, we explained our rationale behind the experiments we conduct
and the types of analyses we perform. Those can be found in the next part,
where we examine the performances of the models and compare them under
different circumstances.



Part IV

R E S U LT S
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F E AT U R E E X T R A C T I O N V E R S U S F I N E - T U N I N G

As a first experiment we compare the performance of the two modes of
transfer learning mentioned in Section 5.3, i.e. feature extraction and fine-
tuning, on the target task. In feature extraction, only the classifier layer is
adapted to the task data, whereas the whole model including the classifier is
adapted in the fine-tuning approach. We take the hyperparameters for this
experiment from the corresponding papers for each model.

We expect the fine-tuning approach to perform better, because it can ad-
just the model to the data and thus leverage its full potential as a language
model. Also, the hyperparameters we use were selected by the authors of the
corresponding papers for fine-tuning (see Table 15.1), and thus may give this
approach an advantage. Regardless of the approach, we believe that those
models that have been trained on either the task or domain data beforehand,
i.e. XLM-RoBERTa GER and MedBERT, will perform better than those only
trained on the language.

Model Learning
Rate

Learning
Rate

(Deci-
mal)

Batch
Size

Train
Epochs

Warm-
up

Ratio

Weight
Decay

GELECTRA 5e-05 0.00005 16 3 0.1 0

GBERT 5e-05 0.00005 16 3 0.1 0.01

MedBERT 5e-05 0.00005 32 3 0.1 0

mBERT 5e-05 0.00005 16 3 0.1 0.01

XLM-
RoBERTa

5e-05 0.00005 32 3 0.06 0.1

XLM-
RoBERTa
German

5e-05 0.00005 32 3 0.06 0.1

Table 15.1: Hyperparameter configurations for each model before optimisation,
based on values taken from their corresponding papers.

Figure 15.1 shows the results of training the six models under a feature
extraction and a fine-tuning approach. We can see that the mean overall F1-
score is around the 80.0 mark for fine-tuning, but only up to approximately
30.0 for the feature extraction approach (see Appendix D.1 for detailed re-
sults). We examine the results of each approach further in the next sections.
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Figure 15.1: Mean overall F1-scores for feature extraction and fine-tuning of three
runs per model.

15.1 fine-tuning

The best performing models here are GELECTRA, XLM-RoBERTa, and XLM-
RoBERTa GER with F1-scores of 81.4, 82.1, and 81.9 respectively (see Figure
15.1).

There is only a difference of approximately 2.0 points between the mean
F1-scores of the models in the fine-tuning approach — with the exception
of GBERT, where it is a difference of 6.0 to the best performing model XLM-
RoBERTa. Figure 15.2 depicts the different performances based on comput-
ing three runs for each model.

Figure 15.2: Fine-tuning F1-scores of each type of annotations for 3 runs per model,
bottom line = lowest run, middle line = middle run, and top line =
highest run. The brown line depicts the mean overall F1-score of the
models for comparison between the models.

The three types of annotations are depicted alongside the overall F1-score.
We will discuss the differences between performances achieved on the types
in Section 20.

We see that the difference in overall F1-scores for most models is approxi-
mately 1.0, and those for the other types lie around 0.3-3.0. This means that
the difference between models is only slightly bigger than the difference
within models. The small difference between models could be explained by
non-optimal hyperparameter configurations, because most authors only per-
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formed a grid search over a small number of values that might not have
included the optimal configurations. It is also possible that different models
perform differently because some found a more useful representation for the
task at hand. We keep this in mind for experiments where the results exhibit
stronger effects.

We expected the models trained on domain or task data, i.e. MedBERT and
XLM-RoBERTa GER, to perform better based on the knowledge we assumed
they would retain from previous training. Because the performances of the
models are so similar, we cannot see this effect in the fine-tuning approach.

In terms of the difference between runs of the same model, GBERT con-
stitutes an exception: while two of the three runs perform comparable to
the other models, the third run degrades significantly in performance. We
repeated this experiment a second time to rule out hardware and software
malfunctions, but got similar results. This particular run is also responsible
for the lower mean and thus bigger difference to the means of the other
models.

We cannot tell if this is a common occurrence for the GBERT model, since
the authors of the corresponding paper averaged their measured perfor-
mance over different downstream tasks, and not the same one as we did.
We do, however, find some inconsistencies in the linearity of their training
performance that might speak to an underlying issue [14]. Regardless of this
inconsistency, there might be other reasons why the training of GBERT is not
as stable as that of the other models: the three multilingual models mBERT,
XLM-RoBERTa, and XLM-RoBERTa GER might be more stable because they
have seen a lot more data in pre-training from which they can extrapolate
(see Section 11). The monolingual MedBERT model has seen less data, but
this included domain data, which might increase its stability when training
in the domain. GELECTRA mainly differs in the pre-training procedure —
whole word masking versus replaced token detection, which is developed to
be more efficient. This might also influence the stability of training GELEC-
TRA.

15.2 feature extraction

In the feature extraction approach, we see noticeable differences in the per-
formance of the models. XLM-RoBERTa GER has the best performance with
an F1-score of 28.7. The second best is GBERT with 8.9, and the third best
is MedBERT with 6.7. Because the actual language model is fixed in this ap-
proach, only the classifier that utilises the features is trained. It is the only
part that can adjust to the domain data and type of task. Figure 15.3 shows
the differences within and between models.

A notable effect is that the previous fine-tuning of XLM-RoBERTa on a
German NER task improved its performance significantly from not learning
at all to an F1-score of 28.7. Presumably, it gave the language model a chance
to adjust to the kind of task in addition to the language. Analogous, the
MedBERT language model might have retained and utilised some of the
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Figure 15.3: Feature extraction F1-scores of each type of annotations for three runs
per model, bottom line = lowest run, middle line = middle run, and top
line = highest run. The brown line depicts the mean overall F1-score of
the models for comparison between the models.

domain knowledge it was pre-trained with. It also displays some instability
comparable to GBERT.

Why GBERT performs relatively well in this case is uncertain. It was
trained on the same data as GELECTRA and consequently we expected
them to perform similarly when the language models are fixed. It is pos-
sible that GBERT was able to learn more meaningful representations during
pre-training. We would assume that this knowledge would transfer to the
fine-tuning approach, which it does not seem to. However, with the large
instability we see in GBERT, it is also conceivable that the classifier was ini-
tialised with a well-fitting set of random weights for the fixed GBERT model
and performed accordingly. It could also be that the hyperparameters cho-
sen for this model were a better fit for the classifier than the other models'
hyperparameters and thus enabled it to learn to distinguish better between
types. The same can be said for the MedBERT instability and performance,
as well as for the difference between all models.

15.3 summary

This experiment determines that the source and target tasks are similar,
based on the fact that the fine-tuning approach performs significantly bet-
ter for all the models we examine.

Where we can see notable differences between models in the feature extrac-
tion approach, those are not present anymore in the fine-tuning approach. It
seems that any positive effect that a more sophisticated pre-training might
have had on the models got trumped by fine-tuning them on the task data.

However, we chose the hyperparameters for all models based on those
parameters given by the authors of the corresponding papers, all of which
used them for fine-tuning. To rule out that the hyperparameters gave the
fine-tuning approach an unfair advantage, we perform hyperparameter op-
timisation (HPO) on both approaches in the next sections to compare them
accurately.
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There are two reasons for why we perform hyperparameter optimisation
on the feature extraction approach: firstly, because the hyperparameters we
used in the previous chapter were originally chosen for fine-tuning and thus
might have underperformed in the setting of feature extraction. Secondly, be-
cause those parameters were identified by performing grid search instead of
advanced hyperparameter optimisation algorithms. Our goal is to find hy-
perparameters close to the optimal hyperparameter configurations for our
task in this setting and compare the models trained with them to the opti-
mised fine-tuning models later on.

We expect performance to increase significantly, because the choice of hy-
perparameters has a direct impact on the fitting of the classifier to the dataset.
But because only utilising hyperparameters for this is not as powerful as ad-
justing the full model like in the fine-tuning approach, we believe that even
optimised feature extraction is not going to perform as well as unoptimised
fine-tuning.

In the following sections, we examine the hyperparameter optimisation of
XLM-RoBERTa further as an example before discussing the comparison of
all models to their unoptimised performances.

16.1 hyperparameter ranges

First, we chose hyperparameter ranges according to the ranges we found in
the corresponding papers for each model (see Table 12.1). The best hyperpa-
rameter configurations of this optimisation, however, show some concerning
effects: The highest possible learning rate we allowed for the HPO is 5e-04,
and the maximum number of training epochs is 10. All models were op-
timised to use this learning rate, and four out of the six models needed
the high number of training epochs (see Appendix B.1). Because the ranges
were taken from papers dealing with fine-tuning approaches, we assume
that they might not include the optimal configurations for feature extraction.
This may result in undertrained models. This is why we adjust the hyperpa-
rameter ranges as noted in Table 16.1 to allow for more training time and
bigger optimisation steps in the form of a higher learning rate.

With these ranges, the best configurations did not exhaust their options
and instead stayed well within their limits. They are listed in Table 16.2.

The resulting performances depicted in Figure 16.1 prove that the optimi-
sation with adjusted parameter ranges was necessary to train the models to
their full potential under the feature extraction approach. Figures illustrating
the difference between runs can be found in Appendix D.
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Hyper-
parameter

Minimum Maximum Step Size

Learning Rate 1e-5 1e-1 1e-5

Warm-up Ratio 0.00 0.1 0.01

Batch Size 16 64 16

Training Epochs 2 20 1

Weight Decay 0 0.1 0.01

Table 16.1: Value ranges for the advanced hyperparameter optimisation.

Model Learning
Rate

Batch
Size

Training
Epochs

Warm-up
Ratio

Weight
Decay

GELECTRA 0.06248 64 18 0.04 0.01

GBERT 0.03427 48 16 0.01 0.0

MedBERT 0.02874 32 12 0.01 0.03

mBERT 0.03528 32 16 0.01 0

XLM-
RoBERTa

0.03629 32 18 0.02 0

XLM-
RoBERTa
GER

0.08964 32 16 0.01 0

Table 16.2: Best hyperparameter configuration for each model for the feature extrac-
tion approach with adjusted ranges.

Figure 16.1: F1-scores for feature extraction, the first feature extraction optimisation
(HPO FE), and the second advanced feature extraction optimisation
with adjusted hyperparameter ranges (HPO FE adv).

The mean improvement from the unoptimised feature extraction approach
to the optimised feature extraction increased from 50.0 for the first optimisa-



56 feature extraction hpo

tion to 55.0 for the second optimisation with adjusted ranges. For this reason,
we only consider the advanced optimisation with adjusted ranges for future
comparisons and analyses.

16.2 hpo process of xlm-roberta

The goal of HPO is to find good hyperparameters that facilitate optimising a
model by maximising or minimising a certain objective function. In our case,
the goal is to maximise the F1-score. We discussed the theory of HPO, and
specifically TPE, earlier in this thesis (see Section 12). Now, we explore the
application of TPE to the XLM-RoBERTa model by way of example.

Figure 16.2: Optimisation history of XLM-RoBERTa. Blue points denote trial perfor-
mance, red line denotes best value so far.

Figure 16.2 depicts the optimisation history of this model. The best config-
uration was found within the first 20 runs. Subsequent runs were not able to
reach that optimisation potential again. Instead, they show a wide dispersion
with no visible improvement after 20 runs.

We picked the hyperparameters to be utilised for optimisation based on
those that were optimised in the papers corresponding to the models we are
leveraging. Figure 16.3 reports the relative importance of those hyperparam-
eters for the optimisation progress of the XLM-RoBERTa model. Those of the
other models differ and can be found in Appendix B.3.

We can see that weight decay is the most important parameter of those we
consider for optimisation. Also, the number of training epochs and learning
rate shows some impact. The batch size and warm-up ratio exhibit barely
any significance in the optimisation process.

We can also see this in Figure 16.4, where combinations of hyperparameter
values are depicted. The darker the colour of the line is, the better the per-
formance of the resulting model turns out to be. By investigating the weight
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Figure 16.3: Parameter importance of XLM-RoBERTa.

decay, we can see that only lower values result in a good performance. In
contrast, the warm-up ratio can have any of the allowed values without in-
fluencing the performance of the model significantly. This is all determined
by the HPO framework Optuna.

Figure 16.4: Parallel coordinates plot of XLM-RoBERTa. From least important hyper-
parameter to most important. Objective value is the F1-score, observed
hyperparameters are per_device_train_batch_size, warmup_ratio, learn-
ing_rate, num_train_epochs, and weight_decay.

The basic idea of TPE is that BO is used to pick increasingly better can-
didates of hyperparameter configurations to improve the performance, i.e.
maximise the F1-score, while exploring different paths of optimisation along
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the way. Figure 16.5 shows how a good optimisation direction for the weight
decay is found within the first 20 trials and how subsequent trials perform
better on the basis of this optimisation. There are some outliers where we can
assume that a new optimisation direction was tested out and discontinued.

Figure 16.5: Slice plot of the weight decay hyperparameter of XLM-RoBERTa.

This kind of iterative optimisation is performed for all hyperparameters
that were chosen for optimisation. While the figures shown in this section
only illustrate one example, the optimisations of the other models exhibit
similar behaviour.

16.3 optimised versus unoptimised

Figure 16.6 displays the feature extraction performance of the six models
next to the optimised feature extraction performance and the unoptimised
fine-tuning approach's performance. For the optimised feature extraction,
the hyperparameters have been adjusted to achieve a better performance on
the dataset.

Figure 16.6: F1-scores for feature extraction, HPO of feature extraction, and unopti-
mised fine-tuning.
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As expected, we see a strong increase of the F1-score for the optimised
models. This is due to the adjustment of the model to the dataset in the
form of the hyperparameters. The increase is not big enough to overtake the
fine-tuning approach though, presumably because of the different amounts
of hyperparameters; the language model contains a lot more tunable pa-
rameters than the classifier, and only that is tuned in the feature extraction
approach.

Where XLM-RoBERTa GER had an edge in the feature extraction approach
due to the task pre-training, this head start has now been compensated by
the other models: all models not based on XLM-RoBERTa performed better
than XLM-RoBERTa and XLM-RoBERTa GER. In fact, all three multilingual
models performed worse than their monolingual counterparts. The best per-
formances were achieved by GBERT, GELECTRA, and MedBERT, in that
order.

We assumed that the difference in performance of the unoptimised fea-
ture extraction models was in part due to some hyperparameters working
better for the classifier than others. Since these hyperparameters have been
adjusted to optimise the objective function, i.e. the F1-score, we can rule this
effect out as a factor of why the models perform differently in this experi-
ment. It is very likely that the difference in model performance now is simply
based on the way the models represent the input data, and how helpful their
specific representation is for the classifier to distinguish between types. We
will examine this aspect further for the best two models at the end of our
experiments in Section 20.

Regardless of the aspects discussed so far, we would expect the perfor-
mance of the optimised feature extraction models to degrade when applied
to a new or even slightly different dataset. While this is to be expected for
every model, we expect it to be more drastic in this case, because the lan-
guage model is fixed and thus cannot include knowledge from the training
dataset, or generalise from it. Thus, it presumably cannot transfer learned
knowledge from the domain knowledge to a new dataset. However, because
our goal is to find the best performing model for our task, we focus on ex-
periments that aid us in searching for that model instead of using resources
on a non-optimal approach.

16.4 summary

This section gave details about the HPO process performed on all models
in the example of the XLM-RoBERTa model. We can identify the weight
decay as the most important hyperparameter for this model, followed by
the number of training epochs. The best configuration was found within 20

runs, and later runs did not show any improvement. The optimisation with
advanced hyperparameter ranges leads to a bigger performance increase
than the first ranges taken from the accompanying papers.

We are able to dismiss the idea that the suitability of the models' hyper-
parameters to the classifier are a main factor in the order of the model' per-
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formance. This leaves the features emitted by the language models and their
fitness for the distinction of types as central factor of why models achieve
different F1-scores.
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F I N E - T U N I N G H P O

So far, we have achieved the best performances with the fine-tuning ap-
proach, but only used the hyperparameter configurations published in the
corresponding papers. While we believe that they are a decent fit, we expect
some improvements from optimising the hyperparameters for each model.

Table 17.1 denotes the configurations with which the best performances
could be achieved.

Model Learning
Rate

Learning
Rate

(Deci-
mal)

Batch
Size

Training
Epochs

Warm-
up

Ratio

Weight
Decay

GELECTRA 5e-05 0.00005 48 9 0.07 0.04

GBERT 7e-05 0.00007 48 10 0.07 0.09

MedBERT 6e-05 0.00006 48 10 0.08 0.09

mBERT 9e-05 0.00009 32 8 0.1 0.01

XLM-
RoBERTa

4e-05 0.00004 16 10 0.06 0.08

XLM-
RoBERTa
GER

1e-04 0.0001 48 8 0.06 0.01

Table 17.1: Best hyperparameter configuration for each model for the fine-tuning
approach.

We can see that all hyperparameter values stay well within the proposed
ranges, except for GBERT, MedBERT, and XLM-RoBERTa and their number
of training epochs; we only offered a range up to 10 epochs to be explored
in order to keep runtime at a practicable level. This could mean that these
models could benefit from training for more epochs. However, the impor-
tance of this hyperparameter ranges between 0.02 and 0.04 of 1 and thus can
be disregarded in comparison to the overhead a new hyperparameter opti-
misation would introduce. The importance of different hyperparameters for
the models can be found in Appendix B.4.

Figure 17.1 shows the performance differences between the unoptimised
and optimised fine-tuning approach. For most models, an increase of 1.0-3.0
points is achieved for the F1-score. The exception is GBERT, where we see
a decrease of approximately 11.0 points in the average F1-score over three
runs.
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Figure 17.1: F1-scores for fine-tuning and optimised fine-tuning.

With the help of Figure 17.2, it is clear that the decrease in average perfor-
mance of GBERT is due to the high instability it has already shown in the
unoptimised fine-tuning runs (see Figure 15.2). The reasons we discussed in
that section are still applicable to the optimised fine-tuning runs (see Section
15).

Figure 17.2: Optimised fine-tuning F1-scores of each type of annotations for three
runs per model, bottom line = lowest value, middle line = median, and
top line = maximum value. The brown line depicts the mean overall
F1-score of the models for comparison between the models.

Both Figure 17.1 and 17.2 illustrate the order of the models in terms of
average performance as: GELECTRA, XLM-RoBERTa, XLM-RoBERTa GER,
mBERT, MedBERT, and finally GBERT. But because the difference to the
unoptimised models is small, we check if the performance scores of the dif-
ferent runs overlap (see Table 17.2).

The smallest difference between the best unoptimised and worst opti-
mised models can be found in the case of XLM-RoBERTa and measures 0.4
points. On the other hand, we have GELECTRA where that same difference
is 3.0 points. Thus, the performances do not overlap, but show some variety
in magnitude. In conclusion, we can say that the HPO does help to achieve a
better performance.

GELECTRA and mBERT have benefited more from the HPO than for ex-
ample XLM-RoBERTa. If this is a theme or just a single occurrence would
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Model Max. Run FT Min. Run HPO
FT

Difference

GELECTRA 81.6 84.7 3.1

MedBERT 80.9 81.7 0.8

mBERT 80.9 82.0 1.1

XLM-RoBERTa 82.4 82.8 0.4

XLM-RoBERTa
GER

82.2 83.2 0.9

Table 17.2: Difference between the best unoptimised and worst optimised run for
each model.

have to be determined with further experiments. This question, however,
lies outside the scope of this thesis.



18
F E AT U R E E X T R A C T I O N H P O V E R S U S F I N E - T U N I N G
H P O

In the last sections, we have compared the fine-tuning approach and the
feature extraction approach and examined HPO on both. In this section, we
combine our insights.

We have seen that the feature extraction models can be improved signif-
icantly by performing HPO on them. But even the unoptimised fine-tuning
models perform better than the optimised feature extraction models. After
optimising the fine-tuning models, we also see performance improvements
— with the exception of the unstable GBERT. Figure 18.1 presents a con-
densed view of these results (see Appendix D.1 for detailed results).

Figure 18.1: F1-scores for feature extraction, the advanced feature extraction HPO,
fine-tuning, and optimised fine-tuning.

We believe that this higher increase, however, is only interesting in a re-
search setting: we consider the performances of the models trained under
the unoptimised feature extraction approach as too low to be helpful in
any realistic setting. While F1-scores around 64.0 as in the optimised fea-
ture extraction approach might be useful in some contexts, it is unlikely that
a situation exists in which there are no adequate computing resources to
leverage the fine-tuning approach, but sufficient resources to perform HPO.
Even though the F1-score of the fine-tuning approach increases less, that in-
crease is more relevant, because the small increase of up to approximately
4.0 points directly increases the top performances.

Before we examine the best monolingual model GELECTRA and the best
multilingual model XLM-RoBERTa further, there is another avenue of train-
ing we want to consider; including domain data in the pre-training proce-
dure. We discuss this in the next section.
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We have explored two avenues of transfer learning techniques so far. Both
utilised a pre-trained language model as a basis. Where that basis was kept
unchanged in the feature extraction approach, it was tuned alongside the
classification layer in the fine-tuning approach. For both of these approaches,
we were limited in the amount of training data we could train on, because it
has to be annotated for the downstream task.

Another avenue whose feasibility we can explore is further pre-training an
already pre-trained language model on domain data. For this, unannotated
data can be used for the self-supervised pre-training objectives described in
Section 6.2. The process is called domain-adaptive pre-training (DAPT) [99].

19.1 considerations about dapt

While further pre-training increases the masked language model prediction
accuracy during the pre-training process, it does not always improve per-
formance on downstream tasks [99]. Zhu et al. hypothesise that "further pre-
training encodes shallow domain knowledge that has obvious influence only
when there are insufficient labelled data providing task-specific knowledge
for fine-tuning" [99]. After their experiments, they conclude that a smaller
amount of fine-tuning data highlights the importance of pre-training. This
means that DAPT is more useful in low-resource environments.

In order to assess whether we are operating in such a low-resource en-
vironment, we examine an example of DAPT and decide if we can expect a
performance increase that would warrant the additional effort of performing
DAPT.

That example is the monolingual model MedBERT. We compare it to its
base version, the German BERT model, which did not have DAPT performed
on it.

19.2 german bert versus medbert

The base model of MedBERT, the German BERT model, has been trained on
12 GB of German data [25, 26]. Then, that German BERT model has been
further pre-trained on roughly 70 MB of German medical data, creating the
MedBERT model [6].

We consider the question of how much DAPT increased the performance
on tasks in the target domain, i.e. medical texts. The authors responsible
for the development of MedBERT list the performance for a multilabel code
classification task in comparison with the base model German BERT as noted
in Table 19.1 [100].



66 pre-training

Models Precision Recall F1-score

German BERT 86.04 75.82 80.60

German
MedBERT-256

87.41 77.97 82.42

German
MedBERT-512

87.75 78.26 82.73

Table 19.1: Comparison of German BERT and MedBERT with a maximum length of
either 256 or 512 [100].

We see a maximal difference of 2.13 in the F1-score on this task. We are,
however, more interested in the difference in performance on our NER task.
Figure 19.1 shows the F1-scores of the fine-tuned MedBERT and German
BERT, unoptimised and optimised.

Figure 19.1: Mean F1-scores over three runs for each experiment, for MedBERT and
German BERT, unoptimised and optimised, overall and for the three

types of annotations.

There exists only a slight difference in performance between the two mod-
els over all experiments and annotations: the greatest difference of 1.3 lies
between the F1-scores for the treatment annotation of the unoptimised runs.
The standard deviations of the three runs of those experiments for that type
are 1.0 and 1.7 points, i.e. bigger than the difference of the models. Thus,
differences in performance could simply be the expected variations present
in a stochastic system.

In conclusion, we do not see a clear indication of whether DAPT could
improve the performance of a better performing model like GELECTRA with
the help of the available medical data. As a consequence, we decide to focus
on using the remainder of this thesis to perform a detailed inspection of the
two best models in order to understand why they might behave the way they
do.
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The previous sections determined that the best monolingual model is the op-
timised fine-tuning approach of GELECTRA and the best multilingual the
optimised fine-tuning approach of XLM-RoBERTa. We reached that conclu-
sion by comparing the F1-scores of all models and approaches on our test
subset of the BRONCO150 dataset. The next step is to compare our results
with those that others have achieved on the BRONCO50 testing dataset.

20.1 performance on bronco50

In order to compare our results to those published by the creators of the
BRONCO dataset, Kittner et al., we hand over three trained versions of each
GELECTRA and XLM-RoBERTa for evaluation. The models are applied to
the held back test dataset BRONCO50 and the F1-score is computed, creating
an impartial comparison between researchers.

Figure 20.1 shows the performance of both our models on our test subset
of BRONCO150 compared to their performance on the BRONCO50 test dataset.

Figure 20.1: Comparison of test results on the test subset of BRONCO150 versus those
achieved on the held back BRONCO50 test dataset for the best monolin-
gual and multilingual model. Performances are reported per type and
overall.

The results reported for our test subset of BRONCO150 are those already
discussed in Section 18; GELECTRA tends to achieve around 1.0 point better
than XLM-RoBERTa. Both perform best on the medication type, followed by
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treatment and, lastly, the diagnosis type with only a very slight drop from
treatment of 0.6 points for GELECTRA and 0.4 for XLM-RoBERTa. We will
discuss this effect of performing differently depending on the type of NE in
more detail in Section 20.2.

The performances on the BRONCO50 test dataset are between 1.0-3.0 points
lower. While an inferior performance on test data could indicate an issue of
overfitting, a small drop is to be expected because of the datasets. The testing
subset of BRONCO150 is taken out of the same documents as the training data
and expresses a similar distribution of features (see Section 9.1), whereas the
BRONCO50 test dataset is taken from different documents that possibly have
slightly different feature distributions. The test subset being taken from the
same documents could be considered as a form of data leakage, as already
discussed in Section 9.2. For example, one sentence from the same report
could be in the training split, and another of the same document in the
test split. Those two sentences share the doctor, patient, and the underlying
medical information, as well as stylistic features. This is why results on the
BRONCO50 testing dataset should be considered as more realistic.

We see only a very slight drop of 1.0 in the F1-score for the medication
type, but a bigger one for the treatment type. This means that generalis-
ing knowledge about medication is easier for the models than generalising
knowledge about treatment. Why that might be the case will be part of our
discussion in Section 20.2.

Our main research goal is to further the field of German NLP in the field
of medicine by training models that achieve a better performance on down-
stream tasks. We chose the task of NER on the BRONCO dataset as an example.

Figure 20.2 answers the question of if we did indeed achieve a better per-
formance on this task.

Yes, our models outperform those trained by Kittner et al. on all types. Un-
fortunately, they did not report the overall F1-score and we cannot recreate it
since we would need access to the BRONCO50 dataset and their models. The
difference in performance ranges from 2.6 points on treatment to 7.7 points
on diagnosis, with medication in between with 4.8 points difference.

In the next sections, we investigate the results achieved by the two models
in detail. Because we only have access to the BRONCO150 dataset, we perform
this analysis on the test subset of BRONCO150.

20.2 types of named entities

Throughout our experiments, we have seen that performances vary between
the three different types of NEs; diagnosis, medication, and treatment. Gener-
ally, results are leading on medication with treatment and diagnosis trailing
around 15.0 points behind. Diagnosis and treatment are closer to each other,
with F1-scores on treatment usually, but not always, being higher than on
diagnosis for the optimised fine-tuning approaches. The higher scores for
medication are especially surprising when we consider that the medication
type only makes up 2.3% of annotations (see Section 9.1.2). In this section,
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Figure 20.2: Performances achieved by GELECTRA and XLM-RoBERTa on the held
back BRONCO50 dataset compared to those achieved by Kittner et al.,
the publishers of the BRONCO dataset, by use of a CRF.

we explore why the scores might differ by examining the distribution of POS

per type and the distribution of NEs per sentence length.
We start with the distribution of NEs per type: Our hypothesis is that NEs

of different types might occur in different positions in a sentence and thus in
the form of different POS. We test this hypothesis by plotting the distribution
of sub-type per universal POS, which are provided as part of the dataset [54,
81]. Figure 20.3 depicts these distributions.

Unsurprisingly, nouns (NN) and proper nouns or names (NE) make up the
most occurrences for almost all relevant entities. For treatment, the B-TREAT
is dominated by NE, while I-TREAT is spread out over articles (ART), attribute
adjectives (ADJA), and prepositions (APPR) among others. For diagnosis, we
mainly find attribute adjectives, i.e. ADJA, alongside nouns. Medication also
presents as finite modal verb (VVFIN), and non-word (XY) [81].

While these effects might play a part in the slight differences between
treatment and diagnosis, they do not seem to be drastic enough to explain
the extent of the disparity to the F1-scores on medication.
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dataset.
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Another interesting question is whether the different types of NEs occur in
sentences of differing lengths. Figure 20.4a shows the amount of annotations
per type of annotation for the number of tokens in a sentence. Figure 20.4b
shows the same data, but as normalised frequency, i.e. percentage, of anno-
tations per type that occur in a sentence with the given amount of tokens.
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Figure 20.4: Absolute (a) and normalised (b) distributions of NEs type per sentence
length in the complete BRONCO150 dataset.

The shapes of the distributions of diagnosis and treatment are very simi-
lar, with diagnosis annotations occurring more often. Both appear most fre-
quently in sentences with 20 tokens or less, but also appear often in sentences
up to 40 tokens in length. Medication, on the other hand, appears most fre-
quently in sentences with 10 tokens or less and barely shows up in sentences
longer than 30 tokens.

It is possible that this difference between NE types plays an important part
in why it is easier for our models to detect medication NEs. There could,
however, be more effects that we have not considered. For example, med-
ication names are often created artificially, which might make them easily
recognisable.

20.3 errors

With an overall F1-score of 85.0 and 83.0 on BRONCO150 for GELECTRA and
XLM-RoBERTa respectively, we are interested to see what kind of mistakes
were made by the models. For this reason, we examine the errors in terms of
two perspectives: first, which NEs were mistaken for which other types and
second, which types of errors were made.
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20.3.1 Confusion Matrix

We are interested in seeing how differently the models behave when they pre-
dict NEs. In order to quantify the results, we examine the amount of samples
where either one model or both made mistakes. GELECTRA made mistakes
in 206 samples in total and XLM-RoBERTa in 224 samples. There is an over-
lap of 95 in which both models made errors. In 53 of these, they made the
same error, and in 42 a different error.

Figure 20.5 shows a confusion matrix made up of the incorrect samples
of GELECTRA on the BRONCO150 test split. It depicts whether a token was
predicted correctly (diagonal), as FP (top row without diagonal), as a FN (left
column without diagonal), or confused for a different NE category (all other
cells). The confusion matrix of XLM-RoBERTa can be found in Appendix E.1.
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Figure 20.5: Confusion matrix of incorrect samples of GELECTRA on the
BRONCO150 test subset [74].

With 162 FP and 214 FN, more FNs were made. This means that GELECTRA
did not recognise the correct entity more often than mistaking a non-entity
for a NE. In total, GELECTRA predicted a wrong label for 448 tokens and
XLM-RoBERTa for 496. These number are higher than the number of samples
with errors, because multiple incorrect token predictions can occur in the
same sample.
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GELECTRA and XLM-RoBERTa share the general theme, if not the exact
values of their confusion matrices. For both, the number of FPs and FNs is
higher than the number of confusions between categories. The categories
that are most often confused are B-DIAG and I-DIAG, as well as B-TREAT
and I-TREAT.

20.3.2 Types of Errors

We already started discussing FNs and FPs in the previous sections. In this sec-
tion, we also discuss error types, but focus on underlying concepts instead
of on the number of errors. We present the results of performing a concep-
tual content analysis on a random choice of examples in the BRONCO150 test
split. The following concepts became apparent:

1. simple errors

2. negations, speculation, past

3. additional information

4. symptoms versus diagnosis

5. medication versus treatment

For these concepts, we consider two axes: whether the error is on the
side of the label or the prediction, and whether it is a FP or FN. Unfortu-
nately, quantifying these qualitative results lies outside the scope of this the-
sis. While we interpret the data to the best of our ability, we are not medical
professionals and therefore some interpretations might be misleading.

Below, we examine examples for each of the error concept categories.

1. Simple Errors
Humans, as well as models, make mistakes. Some of these mistakes are more
obvious than others. Figure 20.6 shows an example where a medication was
not labelled but predicted, creating a FP error. We discuss the thought process
of why Kittner et al. might not have labelled the NE at the end of this section.

MED 

DIAG  Aufgrund der  Hypoproteinaemie              leiteten wir zudem eine Therapie


mit  Protein 88           3 x taeglich ein .

Prediction GELECTRA (F1-score 0.67)

Label

DIAG  Aufgrund der  Hypoproteinaemie              leiteten wir zudem eine Therapie


mit  Protein 88           3 x taeglich ein .

Figure 20.6: Example of a NE of type medication that was not labelled.

Other simple mistakes we discovered in our analysis include labelling or
predicting punctuation as part of a NE.
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2. Negations, Speculation, Past
Since we are working with natural language, cases are not always clearly
cut. Just because a NE is present in the text, it does not always mean that
it is currently relevant for the patient. Sometimes, doctors speculate about
future developments or recount past progress. They might also exclude cer-
tain ideas or note down a lack of something. Whether these concepts are
annotated depends on the motivation behind the dataset. Whichever choice
is made, it needs to be annotated consistently.

Figure 20.7 illustrates a case where both GELECTRA and XLM created a
FP error, because a negated NE was not annotated.

DIAG  Keine neu abgrenzbaren  Metastasen             .

Prediction GELECTRA and XLM-RoBERTa (F1-score 0.0)

Label
Keine neu abgrenzbaren  Metastasen             .

Figure 20.7: Example of a NE that was not labelled. Assumption: it is not labelled
because it is negated.

In contrast, Figure 20.8 shows how a planned procedure is annotated as
B-TREAT, but both models predict it to be an O-tag.

TREAT  Bei weiterbestehender Kontraindikation fuer eine  TACE             muss eine


Zweitlinientherapie             geplant werden .

Prediction GELECTRA and XLM-RoBERTa (F1-score 0.67)

Label

TREAT  

TREAT  Bei weiterbestehender Kontraindikation fuer eine  TACE             muss eine


Zweitlinientherapie             geplant werden .

Figure 20.8: Example of a NE that was labelled. Assumption: it is incorrectly labelled
because it is only planned.

This might be due to inconsistencies in the annotations, or simply an un-
related error. We discuss the annotation process of the dataset that might
influence this type of error at the end of this section.

3. Additional Information
The next case is one where additional information, i.e. locality, is annotated
in one example and not annotated in another. In both cases, it leads to an
error: in Figure 20.9 it is a FP, and in Figure 20.10 it is a FN.

This demonstrates how inconsistencies can influence the models' decisions.
Other information that was inconsistently labelled and therefore predicted
includes attribute adjectives, articles, and medication doses.

4. Symptoms versus Diagnosis
Another factor we discovered is the difficult distinction between a symptom
and diagnosis. Figure 20.11 shows an example where a type of "Schmerz"
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DIAG  

DIAG  

Beurteilung: Zwei  Laesionen in Segment V und VI              sind aufgrund


von Arterialisierung und Groessenprogredienz suspekt fuer ein  HCC           .

Prediction GELECTRA (F1-score 0.5)

Label

DIAG  

DIAG  

Beurteilung: Zwei  Laesionen in Segment V             und VI sind aufgrund


von Arterialisierung und Groessenprogredienz suspekt fuer ein  HCC           .

Prediction XLM-RoBERTa (F1-score 0.5)

DIAG  

DIAG  

Beurteilung: Zwei  Laesionen            in Segment V und VI sind aufgrund


von Arterialisierung und Groessenprogredienz suspekt fuer ein  HCC           .

Figure 20.9: Example of a NE where a locality was not labelled.

DIAG  

TREAT  CT:            Progress der arterialisierten  malignomsuspekten Areale

am Absetzungsrand im  Segment IVa/b und III

Prediction GELECTRA and XLM-RoBERTa (F1-score 0.8)

Label

DIAG  

DIAG  TREAT  CT:            Progress der arterialisierten  malignomsuspekten Areale

am Absetzungsrand im  Segment IVa/b und III

Figure 20.10: Example of a NE where a locality was labelled.

(pain) is not labelled, but predicted as diagnosis, creating a FP error. This
happens because in other samples, different kinds of "Schmerz" (pain) have
been labelled as diagnosis. In this example, it seems that it is only a symptom
for the diagnosis "Hepatomegalie" (hepatomegaly).

We cannot determine if this is a mistake in the label or if the label is in-
deed correct.

5. Medication versus Treatment
The same example (see Figure 20.11) also illustrates the messy distinction
between medication and treatment. We would argue that treating something
with a medication is always also a treatment. As such, we would expect
"Prednisolon Therapie" (Prednisolon therapy) to be labelled as a treatment.
However, it is only labelled as medication, because the annotation scheme
only allows for a single label per word. While this is not an error in the sense
of the F1-score, we understand it as an annotation inconsistency that might
lead to errors in the sense of the metric in other cases.

20.4 discussion

We have discussed effects and errors from several different perspectives in
these past sections. There are, however, two topics that span over multiple
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MED DIAG  

DIAG  Aufgrund des durch PATIENT beklagten  Leberkapselschmerzes


bei  Hepatomegalie            initiierten wir eine  Prednisolon          Therapie .

Prediction XLM-RoBERTa (F1-score 0.8)

Label

MED DIAG  

Aufgrund des durch PATIENT beklagten  Leberkapselschmerzes


bei  Hepatomegalie            initiierten wir eine  Prednisolon          Therapie .

Figure 20.11: Example of a NE where a supposed symptom was not labelled and a
medication label took priority over a treatment label.

perspectives that we want to expand on here; the difficulty of designing
concise and consistent annotation guidelines, and the suitability of the F1-
score as metric.

20.4.1 Annotation Guidelines

Some of the error concepts we examined so far are rooted in how the au-
thors of the BRONCO dataset decided to annotate and post-process the sam-
ples; in the case of multiple accurate annotations, they defined the order
of importance as diagnosis over medication over treatment. This explains why
"Prednisolon" in Figure 20.11 is given the label of a medication instead of a
treatment.

In other cases, like planned or negated NEs and additional information,
it is unclear to us whether they were supposed to be annotated or not. Ex-
amples of both strategies exist in the dataset. This leads to an F1-score that
underpredicts the real performance for either strategy.

It is clear to us that defining annotation guidelines that make very clear
distinctions in every case is nearly impossible.

20.4.2 F1-Score

The micro-averaged F1-score is a common metric for NER. It only counts
exact matches as correct instead of partial matches like some other metrics.
Table 20.1 illustrates some error calculation examples for the constructed
example of "Diabetes Mellitus, behandelt mit Insulin" (Diabetes Mellitus ,
treated with Insulin).

Even when only part of a multi-word NE is predicted incorrectly, the whole
NE receives an F1-score of 0.0. Accuracy on the other hand generally takes
partial matches into account, ending up with higher scores, but leads to
misinterpretation in cases with a large class imbalance like ours [38, 56].
Whether partial correctness should be rewarded, depends on the task at
hand.

Rewarding partial matches would also lead to a higher F1-score in our
case, especially considering the types of errors we discussed in Section 20.3.2.
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Prediction Overall
F1

DIAG
F1

MED
F1

TREAT
F1

B-DIAG, I-DIAG, O, O, O, B-MED 100.0 100.0 100.0 -

B-DIAG, O, O, O, O, B-MED 50.0 0.0 100.0 -

O, I-DIAG, O, O, O, B-MED 50.0 0.0 100.0 -

B-DIAG, I-DIAG, O, B-TREAT, O,
B-MED

80.0 100.0 100.0 0.0

B-DIAG, I-DIAG, O, I-TREAT, O,
B-MED

80.0 100.0 100.0 0.0

B-DIAG, I-DIAG, O, O, O, B-TREAT 50.0 100.0 0.0 0.0

Table 20.1: Calculation example for the F1-score for the constructed example "Dia-
betes Mellitus , behandelt mit Insulin" (Diabetes Mellitus , treated with
Insulin) with the labels B-DIAG, I-DIAG, O, O, O, B-MED.

However, relevant information might get lost in the extraction if only a par-
tial match is predicted. Because we are operating in the medical domain,
we therefore believe that it is more advantageous to extract no information
for a specific NE than incomplete information. We conclude that the micro-
averaged F1-score is a suitable metric for medical NER.
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This part presented the results of conducting the experiments described in
Section 13:

1. Feature Extraction versus Fine-Tuning
We trained the models with hyperparameters taken from their correspond-
ing papers. Fine-tuning achieved an F1-score of approximately 80.0 for all
models, while feature extraction only reached up to around 28.0 and shows
notable differences between models. One model, namely GBERT, presented
some significant instability in the fine-tuning experiment. The fact that fine-
tuning performed better led us to the conclusion that source and target tasks
are similar in our case.

2. Feature Extraction Hyperparameter Optimisation
Because the hyperparameters we chose might not have been optimal, we per-
formed HPO on the feature extraction approach twice with different ranges
and discussed it in detail. The best configuration was found in less than 20

runs. While both HPO processes increased the performance of the models
drastically, the advanced HPO with bigger ranges achieved the best feature
extraction scores.

3. Fine-Tuning Hyperparameter Optimisation
The HPO for the fine-tuning approach uncovered the same instability for
GBERT as before. Apart from this effect, the HPO on fine-tuning achieved a
slight improvement over the unoptimised fine-tuning approach.

4. Optimised Feature Extraction versus Optimised Fine-Tuning
In total, the optimised fine-tuning achieves better F1-scores than the unop-
timised fine-tuning approach or any of the feature extraction approaches.
GBERT poses an exception to this based on the instability it possesses.

5. Feasibility of further Pre-Training on Domain Data
We explored the feasibility of performing DAPT on a well-performing model
by examining its impact on a model that was trained this way. We did not
see a clear indication of whether it could improve performance.

6. Inspection of the best Monolingual and Multilingual Model
We examined the best monolingual model, GELECTRA, and the best multi-
lingual model, XLM-RoBERTa, in detail. We applied them to the held back
test dataset BRONCO50 and found as expected very similar performances to
the F1-scores on our test subset of BRONCO150. We compared our scores to
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those published on the BRONCO50 test dataset by the authors and found out
that we outperformed their CRF approach.

We looked into why performances on medication tend to be better than
on treatment and diagnosis, and identified the distribution of NE types per
sentence length as likely cause. Additionally, we identified common error
categories as: simple errors, negations or speculations or past, additional
information, symptoms versus diagnosis, and medication versus treatment.

Finally, we determined that defining annotation guidelines that do not al-
low ambiguous annotations are hard to create, and after a brief discussion
concluded that the micro-averaged F1-score is a suitable metric for medical
NER.

The next part completes this thesis with a summary of its contents, the
conclusions we come to, and some ideas for future work in the field of Ger-
man medical NLP with focus on NER.





Part V

C O N C L U S I O N
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In the first part of this thesis, the introduction, we began by explaining the
problem and the motivation behind why we work on this task: in order to
increase the usability of medical data in the form of natural language for the
healthcare system and research, the most important information contained
in it needs to be extracted. This can be done by performing named entity
recognition (NER) on the data, which is the process of classifying every word
in a document as belonging to one of a set of predefined categories. The
categories we focussed on are medication, treatment, and diagnosis. We laid
down our strategy of first obtaining and preprocessing the data and then
choosing models, training and optimising those models on the data in order
to finally evaluate and discuss the results.

The next part introduced the fundamentals we need to approach the task
at hand. We discussed natural language processing (NLP) and preprocess-
ing on the example of tokenisation, which led into deep learning, the most
appealing approach in the NLP domain. We demonstrated how natural lan-
guage is transformed into numerical values by the use of embeddings and
explained how a deep neural network learns with those values as input.
Then, we elaborated on the difference between traditional machine learning
techniques and transfer learning with its two main ways of feature extrac-
tion and fine-tuning. The F1-score as metric gave us a way to measure the
quality of the trained model by aggregating precision and recall under the
concept of harmonic mean. Following the metric, we explained why we need
different splits of the dataset for training, validation, and testing, and which
aspects we need to consider when splitting. Then, we moved on to deep
learning for NLP, where we illustrated the encoder-decoder architecture and
the concept of attention in transformers. The pre-trained language model
BERT is the basis for most of the models we chose later on. Subsequently,
we connected the technologies from the previous chapters to quantifiable
advancements made with their help. Here, we introduced historical context,
the benchmark dataset CoNLL03, and the Berlin-Tübingen-Oncology cor-
pus (BRONCO) published by Kittner et al..

The BRONCO dataset is the dataset we decided to train our models on,
which is why we examined it in detail. We performed an exploratory data
analysis on it, along with discussing the baseline results published by Kit-
tner et al.. In order to switch from theory to praxis in this system part, we
set up our development environment on the high performance compute clus-
ter at Charité and described it. On the back of setting up the environment,
we chose six pre-trained language models; three monolingual models called
GBERT, MedBERT, and GELECTRA, as well as three multilingual models
called mBERT, XLM-RoBERTa, and XLM-RoBERTa GER. We reviewed hy-
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perparameter optimisation (HPO) methods, one of which failed to work in
our setup, and picked the Bayesian optimisation with tree-structured Parzen
estimators as surrogate model. The process we followed is first choosing a
set of hyperparameters from papers corresponding to fine-tuning the models
and then defining ranges for those hyperparameters that include the values
from the papers. The experiments to conduct with the models, the dataset,
and the different methods and techniques were defined next.

Part iv examined the results we obtained by conducting the experiments.
First, we compared the two transfer learning approaches, i.e. feature extrac-
tion and fine-tuning, which resulted in a significantly better performances
under the fine-tuning approach. However, because the hyperparameters were
taken from the corresponding papers of the models and related only to fine-
tuning, we performed HPO on the feature extraction approach. We had to
redefine the hyperparameter ranges after a first HPO, and subsequently op-
timised within bigger ranges. The performance increased dramatically, but
not enough to outperform those achieved under the unoptimised fine-tuning
approach. The HPO we performed for the fine-tuning approach led to a
smaller but more relevant increase, since an increase here means improving
the best performing models. We also explored the feasibility of performing
domain-adaptive pre-training (DAPT) on a well-performing model by exam-
ining its impact on another model. This did not result in a clear indication of
whether DAPT could improve performances for our task. Instead, we focused
in detail on inspecting the best performing monolingual model GBERT, and
the best performing multilingual model XLM-RoBERTa. We compared the
performance of those models on the BRONCO50 testing dataset, on which we
achieved the best results to our knowledge. We also discussed why different
types of NEs lead to different F1-scores, and what kinds of errors were made
by the models on the testing subset of BRONCO150.

This part finalises this thesis by recapping its central points in order to
discuss the conclusions we came to. Finally, we denote ideas for future work
in two branches; ways to improve the results we achieved in this thesis, and
what follow-up work could be performed on the back of them.
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In this thesis, we set out to advance research in the field of German medi-
cal natural language processing (NLP), focusing on the task of named entity
recognition (NER) on the dataset Berlin-Tübingen-Oncology corpus (BRONCO).
The last chapter summarised the steps we took in this endeavour. Here, we
present the compiled conclusions we gained in the process.

We trained six models on the BRONCO training data, namely GBERT, GE-
LECTRA, MedBERT, mBERT, XLM-RoBERTa, and XLM-RoBERTa GER. When
comparing the feature extraction approach and the fine-tuning approach, the
second consistently outperformed the first for all models except GBERT. For
this model, we experienced instabilities that discourage further use.

Performing HPO increases performances on all accounts — apart, again,
from GBERT because of its instability. A higher increase was achieved for
the feature extraction approach compared to the fine-tuning approach. We
believe that this higher increase, however, is only interesting in a research
setting: we consider the performances of the models trained under the unop-
timised feature extraction approach as too low to be helpful in any realistic
setting. While F1-scores of approximately 64.0, as in the optimised feature
extraction approach, might be useful in some contexts, it is unlikely that a
situation exists in which there are no adequate computing resources to lever-
age the fine-tuning approach, but sufficient resources to perform HPO. Even
though the increase for the fine-tuning approach is smaller, it is more rele-
vant, because the smaller increase of up to 4.0 points directly increases the
top performances.

We were interested in seeing whether DAPT would give MedBERT an ad-
vantage over the other models, but could not detect an advantageous effect
in our experiments.

Furthermore, we studied MedBERT based on an older and less complex
model in comparison to that base model, and still could not find a clear
indication for improvement when performing DAPT with around 65 MB of
domain data.

Similarly, we expected XLM-RoBERTa GER to outperform XLM-RoBERTa
based on the fact that it was fine-tuned on German NER data. We only saw
this outcome in the case of the models trained using feature extraction. Based
on the fine-tuning approaches, XLM-RoBERTa takes over XLM-RoBERTa
GER by small margins of 1.0-2.0 points.

Out of all six models, we identified GELECTRA as the best monolin-
gual, and XLM-RoBERTa GER as the best multilingual model. GELECTRA
achieves the highest F1-scores on the held back BRONCO50 testing dataset
with an overall F1-score of 82.2. The results of the three types of named
entities (NEs) are 94.8 on medication, 80.3 on treatment, and 79.7 on diagno-
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sis. With that, GELECTRA outperforms the performance of the conditional
random field (CRF) published as a benchmark by the authors of the dataset,
Kittner et al., by 2.3-7.7 points depending on the category.
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We divide possible future work into two branches: ways to improve the re-
sults, and what to do with those results. We start with ideas that could
improve the quality of our models or the task of German medical NER.

The BRONCO dataset follows a single label schema, where any word can
only be labelled as one NE. This leads to inconsistencies, e.g. between med-
ication and treatment, as discussed. Which label is chosen was defined by
the creators of the dataset. We propose a multi-label approach for future
datasets, where one word can have multiple labels. This would allow some
more flexibility to meet the requirements of an inconsistent language. It
would also give future researchers the option to define their own prioriti-
sation based on the needs of a downstream pipeline.

The creation of a bigger dataset for pre-training in the German medical
domain would aim in the same direction. Although we did not see a clear
improvement from performing DAPT on around 65 MB of German medical
data, we expect that to change with a dataset size that is comparable to
datasets outside of the medical domain. Analysing how much domain data
is needed for this could help researchers to make decisions about their pre-
training and fine-tuning regimes in the future. Even just changing the model
from one pre-trained on 12 GB of data to one pre-trained on 173 GB could
in theory change the outcome.

A similar avenue would be to use medical data from another language
to pre-train multilingual models. We would expect different levels of knowl-
edge transfer to German depending on the type of language, because other
Germanic languages are similar to German, but Latin and Greek are often
the basis of medical terminology.

Part of the motivation for this thesis was to make it easier to perform
automatic analyses on medical reports. With NER, we worked on the step
to extract the most important information from those reports, transforming
unstructured into structured data. The next logical step is to link the NEs

to medical ontologies for normalisation. In order to do that, a named entity
disambiguation model might be needed. It could also be helpful to extract
units and doses from medication entities, or to extract other details like loca-
tion from diagnoses with a rule-based system. A pipeline containing these
steps can become increasingly complex, depending on the task at hand. Dif-
ferent kinds of datasets and techniques like deep learning or rule-based ap-
proaches could be researched and connected into a functional hybrid system.
With systems like that, medical data in the form of natural language can en-
able the healthcare system and research similarly to the way numerical data
is already utilised.
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Figure A.1: Distribution of the amount of tokens per sentence zoomed in.
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Model Learning
Rate

Learning
Rate

(Deci-
mal)

Batch
Size

Training
Epochs

Warm-
up

Ratio

Weight
Decay

GELECTRA 5e-04 0.0005 16 10 0.1 0.0

GBERT 5e-04 0.0005 16 10 0.09 0.02

MedBERT 5e-04 0.0005 16 9 0.08 0.05

mBERT 5e-04 0.0005 16 10 0.06 0.05

XLM-
RoBERTa

5e-04 0.0005 16 10 0.09 0.01

XLM-
RoBERTa
GER

5e-04 0.0005 16 9 0.07 0.09

Table B.1: Best hyperparameter configuration of the first optimisation process for
each model for the feature extraction approach.

Model Learning
Rate

Training
Epochs

Batch
Size

Weight
Decay

Warm-up
Ratio

GBERT 0.9 0.08 0.01 0.01 0

GELECTRA 0.74 0.17 0.05 0.02 0.01

MedBERT 0.9 0.04 0.02 0.02 0.02

XLM-
RoBERTa

0.72 0.22 0.03 0.02 0.01

XLM-
RoBERTa
GER

0.94 0.02 0.04 0 0

mBERT 0.88 0.08 0.02 0.02 0.01

Table B.2: Relative importance of optimised hyperparameters for the feature extrac-
tion approach.
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Model Learning
Rate

Training
Epochs

Batch
Size

Weight
Decay

Warm-up
Ratio

GBERT 0.14 0.62 0.06 0.12 0.06

GELECTRA 0.17 0.65 0.01 0.07 0.1

MedBERT 0.03 0.89 0.04 0.02 0.02

XLM-
RoBERTa

0.16 0.18 0.01 0.62 0.03

XLM-
RoBERTa
GER

0.23 0.21 0.09 0.37 0.09

mBERT 0.16 0.7 0.01 0.09 0.03

Table B.3: Relative importance of optimised hyperparameters for the feature extrac-
tion approach with adjusted ranges.

Model Learning
Rate

Training
Epochs

Batch
Size

Weight
Decay

Warm-up
Ratio

GBERT 0.89 0.02 0.01 0.07 0.01

GELECTRA 0.75 0.06 0.05 0.05 0.1

MedBERT 0.95 0.03 0 0.01 0.01

XLM-
RoBERTa

0.83 0.04 0.07 0.03 0.04

XLM-
RoBERTa
GER

0.73 0.11 0.04 0.11 0.01

mBERT 0.49 0.15 0.1 0.17 0.09

Table B.4: Relative importance of optimised hyperparameters for the fine-tuning ap-
proach.
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Models Vocabulary Size

GBERT 31,102

GELECTRA 31,102

MedBERT 30,000

XLM-RoBERTa 250,002

XLM-RoBERTa GER 250,002

mBERT 119,547

Table C.1: Sizes of the vocabularies of the models' tokenisers.
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Figure D.1: Optimised feature extraction F1-scores of each type of annotations for
three runs per model, bottom line = lowest value, middle line = median,
and top line = maximum value. The brown line depicts the mean overall
F1-score of the models for comparison between the models.

Figure D.2: Optimised advanced feature extraction F1-scores of each type of annota-
tions for three runs per model, bottom line = lowest value, middle line
= median, and top line = maximum value. The brown line depicts the
mean overall F1-score of the models for comparison between the mod-
els.
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Model Feature
Extrac-

tion

HPO FE HPO FE
adv

Fine-
Tuning

HPO FT

GBERT 8.859394 61.972194 65.70573 76.2870339 64.937448

GELECTRA 1.75741 57.3165679 64.509497 81.431588 85.076951

mBERT 3.24668 59.757641 63.086348 80.4560288 82.688868

MedBERT 6.705451 61.8148989 64.119695 80.3875227 81.961317

XLM-
RoBERTa

0.0 51.6056715 61.118938 82.1134781 83.367534

XLM-
RoBERTa
GER

28.694638 57.5528561 62.865437 81.9364185 83.279413

Table D.1: Detailed F1-scores for feature extraction, optimised feature extraction,
advanced optimised feature extraction, fine-tuning, and optimised fine-
tuning.
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Figure E.1: Confusion matrix of incorrect samples of XLM-RoBERTa on the
BRONCO50 testing dataset.
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[65] Viera Maslej-Krešňáková, Martin Sarnovský, Peter Butka, and
Kristína Machová. “Comparison of deep learning models and
various text pre-processing techniques for the toxic comments
classification.” In: Applied Sciences (Switzerland) 10.23 (2020), pp. 1–26.
issn: 20763417. doi: 10.3390/app10238631.

[66] Dirk Merkel. Docker: lightweight Linux containers for consistent
development and deployment. 2014. url:
https://dl.acm.org/doi/10.5555/2600239.2600241.

[67] Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. “Advances in pre-training
distributed word representations.” In: LREC 2018 - 11th International
Conference on Language Resources and Evaluation. 2019, pp. 52–55. isbn:
9791095546009. arXiv: 1712.09405. url:
https://commoncrawl.org/2017/06.

[68] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.
Machine learning. 2012. isbn: 978-0-262-01825-.

[69] David Nadeau and Satoshi Sekine. “A survey of named entity
recognition and classification.” In: (2007). doi:
10.1075/li.30.1.03nad.

https://doi.org/10.5281/ZENODO.4289037
https://doi.org/10.1109/tkde.2020.2981314
https://arxiv.org/abs/1812.09449
https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/1907.11692
https://github.com/pytorch/fairseq
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
https://doi.org/10.3390/app10238631
https://dl.acm.org/doi/10.5555/2600239.2600241
https://arxiv.org/abs/1712.09405
https://commoncrawl.org/2017/06
https://doi.org/10.1075/li.30.1.03nad


bibliography 101

[70] Yoshihiko Ozaki, Yuki Tanigaki, Shuhei Watanabe, and
Masaki Onishi. “Multiobjective tree-structured parzen estimator for
computationally expensive optimization problems.” In: GECCO 2020
- Proceedings of the 2020 Genetic and Evolutionary Computation
Conference. Association for Computing Machinery, 2020, pp. 533–541.
isbn: 9781450371285. doi: 10.1145/3377930.3389817.

[71] Santisudha Panigrahi, Anuja Nanda, and Tripti Swarnkar. “A
Survey on Transfer Learning.” In: Smart Innovation, Systems and
Technologies 194 (2021), pp. 781–789. issn: 21903026. doi:
10.1007/978-981-15-5971-6_83.

[72] Drew Perkins. Tagging Genes and Proteins with BioBERT | by Drew
Perkins | Towards Data Science. 2020. url:
https://towardsdatascience.com/tagging-genes-and-proteins-

with-biobert-c7b04fc6eb4f (visited on 06/22/2022).

[73] Georgios Petasis, Alessandro Cucchiarelli, Paola Velardi,
Georgios Paliouras, Vangelis Karkaletsis, and
Constantine D Spyropoulos. “Automatic adaptation of proper noun
dictionaries through cooperation of machine learning and
probabilistic methods.” In: SIGIR Forum (ACM Special Interest Group
on Information Retrieval). 2000, pp. 128–135. doi:
10.1145/345508.345563.

[74] Plot confusion matrix sklearn with multiple labels - Stack Overflow. url:
https://stackoverflow.com/questions/39033880/plot-confusion-

matrix-sklearn-with-multiple-labels (visited on 10/13/2022).

[75] Pritesh Prakesh. An Explanatory Guide to BERT Tokenizer - Analytics
Vidhya. 2021. url:
https://www.analyticsvidhya.com/blog/2021/09/an-explanatory-

guide-to-bert-tokenizer/ (visited on 10/23/2022).

[76] Python Software Foundation. PyPI · The Python Package Index. url:
https://pypi.org/ (visited on 08/17/2022).

[77] Sebastian Ruder. A Review of the Neural History of Natural Language
Processing.
https://ruder.io/a-review-of-the-recent-history-of-nlp/index.html.
2018. (Visited on 07/14/2022).

[78] Sebastian Ruder and John G Breslin. “Neural Transfer Learning for
Natural Language Processing.” PhD thesis. 2019. url:
https://ruder.io/thesis/.

[79] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and
Thomas Wolf. “Transfer Learning in Natural Language Processing.”
In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Tutorials. 2019, pp. 15–18.
url: https://ruder.io/state-of-transfer-learning-in-nlp/.

https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1007/978-981-15-5971-6_83
https://towardsdatascience.com/tagging-genes-and-proteins-with-biobert-c7b04fc6eb4f
https://towardsdatascience.com/tagging-genes-and-proteins-with-biobert-c7b04fc6eb4f
https://doi.org/10.1145/345508.345563
https://stackoverflow.com/questions/39033880/plot-confusion-matrix-sklearn-with-multiple-labels
https://stackoverflow.com/questions/39033880/plot-confusion-matrix-sklearn-with-multiple-labels
https://www.analyticsvidhya.com/blog/2021/09/an-explanatory-guide-to-bert-tokenizer/
https://www.analyticsvidhya.com/blog/2021/09/an-explanatory-guide-to-bert-tokenizer/
https://pypi.org/
https://ruder.io/thesis/
https://ruder.io/state-of-transfer-learning-in-nlp/


102 bibliography

[80] Erik F. Tjong Kim Sang and Fien De Meulder. “Introduction to the
CoNLL-2003 Shared Task: Language-Independent Named Entity
Recognition.” In: (2003). doi: 10.48550/ARXIV.CS/0306050.

[81] Anne Schiller, Simone Teufel, Christine Stöckert, and
Christine Thielen. “Guidelines für das Tagging deutscher
Textcorpora mit STTS.” In: (1999). url:
https://telemaco.clarin-d.uni-saarland.de/hub/resource/304/.

[82] Jeff Schneider. Cross Validation. https://tinyurl.com/2p8x6ryk. 1997.
(Visited on 07/14/2022).

[83] Wei Shi and Vera Demberg. “Next sentence prediction helps implicit
discourse relation classification within and across domains.” In:
EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in
Natural Language Processing and 9th International Joint Conference on
Natural Language Processing, Proceedings of the Conference. 2019,
pp. 5790–5796. isbn: 9781950737901. doi: 10.18653/v1/d19-1586.
url: https://github.com/google-research/.

[84] Singularity. Singularity and Docker — Singularity container 2.6
documentation. https://docs.sylabs.io/guides/2.6/user-
guide/singularity_and_docker.html. 2018. (Visited on 08/17/2022).

[85] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. “A Survey of
Optimization Methods from a Machine Learning Perspective.” In:
IEEE Transactions on Cybernetics 50.8 (2020), pp. 3668–3681. issn:
21682275. doi: 10.1109/TCYB.2019.2950779. arXiv: 1906.06821.

[86] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to
sequence learning with neural networks.” In: Advances in Neural
Information Processing Systems 4.January (2014), pp. 3104–3112. issn:
10495258. arXiv: 1409.3215.

[87] The Ray Team. A Guide to Population Based Training — Ray 2.0.0. 2022.
url: https://docs.ray.io/en/latest/tune/tutorials/tune-
advanced-tutorial.html (visited on 08/24/2022).

[88] The Ray Team. Ray Tune FAQ — Ray 1.13.0.
https://docs.ray.io/en/latest/tune/faq.html#which-search-
algorithm-scheduler-should-i-choose. 2022. (Visited on 08/04/2022).

[89] Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavaf,
and Edward A. Fox. “Natural Language Processing Advancements
By Deep Learning: A Survey.” In: (2020), pp. 1–23. arXiv:
2003.01200.

[90] Markus Unnewehr. Arztbrief - Die Kommunikation optimieren.
https://www.aerzteblatt.de/archiv/145890/Arztbrief-Die-
Kommunikation-optimieren. 2013. (Visited on 05/30/2022).

[91] Yuli Vasiliev. Natural Language Processing with Python and SpaCy: A
Practical Introduction. 2020. isbn: 9781718500525.

https://doi.org/10.48550/ARXIV.CS/0306050
https://telemaco.clarin-d.uni-saarland.de/hub/resource/304/
https://doi.org/10.18653/v1/d19-1586
https://github.com/google-research/
https://doi.org/10.1109/TCYB.2019.2950779
https://arxiv.org/abs/1906.06821
https://arxiv.org/abs/1409.3215
https://docs.ray.io/en/latest/tune/tutorials/tune-advanced-tutorial.html
https://docs.ray.io/en/latest/tune/tutorials/tune-advanced-tutorial.html
https://arxiv.org/abs/2003.01200


bibliography 103

[92] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
“Attention is all you need.” In: Advances in Neural Information
Processing Systems. Vol. 2017-Decem. 2017, pp. 5999–6009. arXiv:
1706.03762.

[93] Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. “Automated
concatenation of embeddings for structured prediction.” In:
ACL-IJCNLP 2021 - 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing, Proceedings of the Conference. 2021,
pp. 2643–2660. isbn: 9781954085527. doi:
10.18653/v1/2021.acl-long.206. arXiv: 2010.05006.

[94] Thomas Wolf et al. “Transformers: State-of-the-Art Natural
Language Processing.” In: (2020). doi: 10.48550/arXiv.1910.03771.
arXiv: arXiv:1910.03771. url:
https://github.com/huggingface/transformers.

[95] Yun Xu and Royston Goodacre. “On Splitting Training and
Validation Set: A Comparative Study of Cross-Validation, Bootstrap
and Systematic Sampling for Estimating the Generalization
Performance of Supervised Learning.” In: Journal of Analysis and
Testing 2.3 (2018), pp. 249–262. issn: 25094696. doi:
10.1007/S41664-018-0068-2.

[96] Vikas Yadav and Steven Bethard. “A Survey on Recent Advances in
Named Entity Recognition from Deep Learning models.” In: (2019).
arXiv: 1910.11470.

[97] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple
Linux Utility for Resource Management.” In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 2862 (2003), pp. 44–60.
issn: 16113349. doi: 10.1007/10968987_3. url:
https://slurm.schedmd.com/slurm.html.

[98] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola.
“Dive into Deep Learning.” In: Journal of the American College of
Radiology 17.5 (2021), pp. 637–638. issn: 1558349X. arXiv: 2106.11342.

[99] Qi Zhu, Yuxian Gu, Lingxiao Luo, Bing Li, Cheng Li, Wei Peng,
Minlie Huang, and Xiaoyan Zhu. “When does Further Pre-training
MLM Help? An Empirical Study on Task-Oriented Dialog
Pre-training.” In: 2021, pp. 54–61. doi:
10.18653/v1/2021.insights-1.9.

[100] smanjil/German-MedBERT · Hugging Face. 2021. url:
https://huggingface.co/smanjil/German-MedBERT (visited on
09/23/2022).

https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2021.acl-long.206
https://arxiv.org/abs/2010.05006
https://doi.org/10.48550/arXiv.1910.03771
https://arxiv.org/abs/arXiv:1910.03771
https://github.com/huggingface/transformers
https://doi.org/10.1007/S41664-018-0068-2
https://arxiv.org/abs/1910.11470
https://doi.org/10.1007/10968987_3
https://slurm.schedmd.com/slurm.html
https://arxiv.org/abs/2106.11342
https://doi.org/10.18653/v1/2021.insights-1.9
https://huggingface.co/smanjil/German-MedBERT

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Abkürzungsverzeichnis
	 Introduction
	1 Motivation and Problem Statement
	2 Strategy
	2.1 Obtaining the Dataset and Preprocessing the Data
	2.2 Choosing, Training, and Optimising Models
	2.3 Evaluating and Discussing Results

	3 Structure

	 Fundamentals
	4 Natural Language Processing
	4.1 Preprocessing

	5 Deep Learning
	5.1 Embedding
	5.2 Training
	5.3 Transfer Learning
	5.4 Metric
	5.5 Validation and Testing

	6 Deep Learning for NLP
	6.1 Encoder-Decoder
	6.2 Attention in Transformers
	6.3 Pre-trained Language Model: BERT

	7 Related Work
	7.1 Named Entity Recognition
	7.2 German Medical Domain

	8 Summary

	 System
	9 Dataset
	9.1 Exploratory Data Analysis
	9.2 Baseline Results

	10 Hardware and Software
	10.1 High Performance Compute Cluster at Charité
	10.2 Development Environment

	11 Models
	11.1 Model Bias
	11.2 Monolingual Models
	11.3 Multilingual Models
	11.4 Comparison

	12 Hyperparameter Optimisation
	12.1 Population Based Training
	12.2 Tree-structured Parzen Estimator
	12.3 Process

	13 Experiments
	14 Summary

	 Results
	15 Feature Extraction versus Fine-Tuning
	15.1 Fine-Tuning
	15.2 Feature Extraction
	15.3 Summary

	16 Feature Extraction HPO
	16.1 Hyperparameter Ranges
	16.2 HPO Process of XLM-RoBERTa
	16.3 Optimised versus Unoptimised
	16.4 Summary

	17 Fine-Tuning HPO
	18 Feature Extraction HPO versus Fine-Tuning HPO
	19 Pre-Training
	19.1 Considerations about DAPT
	19.2 German BERT versus MedBERT

	20 Detailed Inspection
	20.1 Performance on BRONCO50
	20.2 Types of Named Entities
	20.3 Errors
	20.4 Discussion

	21 Summary

	 Conclusion
	22 Summary
	23 Conclusion
	24 Future Work

	 Appendix
	A Exploratory Data Analysis
	B Hyperparameter Optimisation
	C Models
	D Results
	E Detailed Inspection
	 Bibliography


