
Hochschule Darmstadt

– Fachbereich Mathematik–

Generation of Meaningful SQL-Query
Exercises Using Large Language Models and

Knowledge Graphs

Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

vorgelegt von

Paul Christ

Matrikelnummer: 771982

Referent : Prof. Dr. Markus Döhring

Korreferent : Prof. Dr. Torsten Munkelt

Paul Christ: Generation of Meaningful SQL-Query Exercises Using Large Lan-
guage Models and Knowledge Graphs, © 20. Januar 2023

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch
nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Rüsselsheim, 20. Januar 2023

Paul Christ

A B S T R A C T

This thesis presents a system for generating meaningful SQL-query-exercises
for educational purposes. The system utilizes a combination of relational
database concepts, knowledge graphs and natural language generation to
generate exercises that are both syntactically correct and semantically mean-
ingful. The system allows for parametrization of the SQL-query-exercise gen-
eration algorithm, to provide the user with fine granular control over the
included SQL-query concepts. The exercise task consists of the formulation
of a SQL-query, based on the information presented in the database schema
and the natural language description of the generated SQL-query. The result-
ing exercises are designed to teach students the skills necessary to effectively
retrieve data from a database using SQL, while reducing manual effort in
creating SQL-query-exercises by hand. The results are evaluated by a crowd-
working framework and show a promising foundation in the generation of
meaningful SQl-query-exercises.

Z U S A M M E N FA S S U N G

In dieser Arbeit wird ein System zur Generierung von semantisch plausi-
blen SQL-Query-Übungen für Ausbildungszwecke vorgestellt. Das System
nutzt eine Kombination aus relationalen Datenbankkonzepten, Wissensgra-
phen und natürlicher Sprachgenerierung, um Übungen zu generieren, die
sowohl syntaktisch korrekt als auch semantisch sinnvoll sind. Das System
erlaubt die Parametrisierung des Algorithmus zur Generierung von SQL-
Abfragen, um dem Benutzer eine fein granulare Kontrolle über die enthalte-
nen SQL-Abfragekonzepte zu ermöglichen. Die Übungsaufgabe besteht aus
der Formulierung einer SQL-Abfrage, basierend auf den Informationen des
Datenbankschemas und der natürlichsprachlichen Beschreibung der gene-
rierten SQL-Abfrage. Die daraus resultierenden Übungen sollen den Studie-
renden die notwendigen Fähigkeiten vermitteln, um Daten aus einer Da-
tenbank mit Hilfe von SQL effektiv abzurufen und gleichzeitig den manu-
ellen Aufwand für die Erstellung von SQL-Abfrageübungen zu reduzieren.
Die Ergebnisse werden mit Hilfe eines Crowdworking-Frameworks evaluiert
und zeigen eine vielversprechende Grundlage bei der Generierung sinnvol-
ler SQl-Abfrageübungen.

C O N T E N T S

i thesis

1 introduction 2

1.1 Motivation . 2

1.2 Aim and scope . 2

1.3 Methodology . 3

2 aspects of relational databases , natural language pro-
cessing and knowledge graphs 4

2.1 Aspects of Relational Databases Regarding the Generation of
SQL-Queries . 4

2.1.1 Related Work in Generating SQL-Query Exercises 4

2.1.2 Assessing the Complexity of SQL-Queries 5

2.2 Natural Language Processing for Transforming SQL to Natu-
ral Language . 6

2.2.1 Related Work in Generating Text from SQL-Queries . . . 6

2.2.2 Natural Language Generation Pipeline 7

2.3 Knowledge Graphs for Semantically Enriching Relational Databases 8

2.3.1 Current Landscape of Knowledge Graphs 8

2.3.2 Entities of the Knowledge Graph as Tables 9

3 analysis of the requirements for a system for the gen-
eration of meaningful sql-query exercises 11

3.1 Features of the Exercise Generation Algorithm 11

3.1.1 Parametrization of the Exercise Generation System . . . 11

3.1.2 Generation of an Exercise Formulation in Natural Lan-
guage . 11

3.1.3 Automatic Assessment of the Solution Attempts 12

3.2 Consistency and Quality of the Generated Exercises 12

3.2.1 Syntactic Soundness of the Generated Exercise 12

3.2.2 Semantic Plausibility of the Generated Exercise 12

3.2.3 Unambiguity of the Exercise Formulation Description
in Natural Language . 13

3.3 Properties of the Exercise Generation System 13

3.3.1 Constant Access and Readiness and Platform Indepen-
dent Usability of the Exercise Generation System of the
Exercise Generation System 13

3.3.2 Performance of the Exercise Generation System 13

4 design and implementation of a system for the gener-
ation of meaningful sql-query exercises 14

4.1 Overview of a System for the Generation of Meaningful SQL-
Query Exercises . 14

4.2 Deriving a Relational Database from a Knowledge Graph . . . 15

contents vii

4.2.1 Subsetting a Knowledge Graph Into Topicallly Coher-
ent Domains . 15

4.2.2 Deriving a Relational Schema from Entities of the Knowl-
edge Graph . 16

4.2.3 Limitations of Deriving Relational Databases From Knowl-
edge Graphs . 17

4.3 Semantically Enriching a Relational Database with a Knowl-
edge Graph . 18

4.3.1 Normalizing the Relational Database to Satisfy Domain
Constraints and Cardinality Restrictions 18

4.3.2 Knowledge Graph Entities for Semantic Labeling of Ta-
bles . 19

4.4 Generation of Meaningful SQL-Query Exercises 22

4.4.1 Parameter Space of the Generation Algorithm 22

4.4.2 Traversing the Relational Schema as a Graph of Tables
and Foreign Key Constraints 22

4.4.3 Generation of Random Parameter-Compliant SQL-Queries 24

4.5 Generation of an SQL-Query Exercise Formulation in Natural
Language . 25

4.5.1 Macroplanning the SQL-Query Exercise Formulation . . 25

4.5.2 Microplanning the SQL-Query Exercise Formulation . . 26

4.5.3 Surface Realization of the Structured Exercise Formu-
lation . 26

5 evaluation of the system for the generation of mean-
ingful sql-query exercises 29

5.1 Evaluation study design . 29

5.1.1 Crowdsourcing for Evaluating the Generated Exercise
Component . 29

5.2 Evaluation of the Exercise Generation Algorithm Features . . . 31

5.2.1 Evaluation of the Generation of an Exercise Formula-
tion in Natural Language 31

5.2.2 Evaluation of the Automatic Assessment of the Solu-
tion Attempts . 32

5.3 Evaluation of the Consistency and Quality of the Generated
SQL-Query Exercises . 32

5.3.1 Evaluation of the Syntactic Soundness of the Generated
Exercise . 32

5.3.2 Evaluation of the Semantic Plausibility of the Gener-
ated Exercise . 32

5.4 Evaluation of the SQL-Query Exercise Generation System Prop-
erties . 33

5.4.1 Evaluation of the Performance of the Exercise Genera-
tion System . 33

6 conclusion and future work 36

6.1 Conclusion . 36

6.2 Future Work . 36

contents viii

ii appendix

a appendix 39

a.1 DQL Keyword Subset . 39

a.2 PostgreSQL Reflection Queries 41

a.2.1 PostgreSQL Table Reflection Query 41

a.2.2 PostgreSQL Foreign Key Reflection Query 41

a.3 NLG Template Repositories . 42

a.3.1 Baseline NLG Templates 42

a.3.2 Hybrid NLG templates 43

bibliography 46

L I S T O F F I G U R E S

Figure 2.1 Near impossible query translation case as presented
in [61] . 7

Figure 2.2 Natural Language Generation (NLG)-Pipeline accord-
ing to [58] . 7

Figure 4.1 Unified Modeling Language (UML) component dia-
gram of the SQL-query exercise generation system . . . 14

Figure 4.2 Wikidata hyperonymy graph of the entities ’voluntary
association’ and ’sports club’, that are both types of ’or-
ganization’ . 17

Figure 4.3 Normalised relational model of the IMDB database . . 18

Figure 4.4 Handcrafted IMDB knowledge graph 20

Figure 4.5 Subfloat - Figure . 23

Figure 4.6 SQL-query Abstract Syntax Tree (AST) example 25

Figure 4.7 Subfloat - Figure . 27

Figure 4.8 Complex SQL-query AST 27

Figure 4.9 Subfloat - Figure . 28

Figure 5.1 Assessment opening screen 29

Figure 5.2 General questions about the SQL-query 30

Figure 5.3 Error categories per NLG-approach 30

Figure 5.4 Human-likeness of the SQL-query descriptions 31

Figure 5.5 Subfloat - Figure . 31

Figure 5.6 Subfloat - Figure . 33

Figure 5.7 Subfloat - Figure . 34

Figure 5.8 Runtime of generating a SQL-query exercise without
outliers . 35

Figure 5.9 Runtime of generating a SQL-query exercise with out-
liers . 35

L I S T O F TA B L E S

Table 2.1 Table structure modelled by cardinalities 9

Table 4.1 Query generation algorithm parameters 21

L I S T O F A L G O R I T H M S

Figure 1 Map Wikipedia categories to Wikidata entities 16

Figure 2 Sort knowledge graph entities into semantically simi-
lar tables . 16

Figure 3 Table selection by generating a subgraph of the database
schema . 22

L I S T I N G S

Listing 4.1 SQL-query generation order 24

Listing 4.2 Numeric constraint operators 24

Listing 4.3 String constraint operators 24

Listing 4.4 SQL-query string example 25

Listing 4.5 SQL-query description structuring 25

Listing 4.6 Complex SQL-query string example 27

Listing A.1 Data Query Language (DQL) keyword subset 39

Listing A.2 Table reflection query . 41

Listing A.3 Foreign Key reflection query 41

Listing A.4 Baseline SQL-constiuent templates 42

Listing A.5 Hybrid SQL-constiuent templates 43

A C R O N Y M S

UML Unified Modeling Language

DQL Data Query Language

DDL Data Definition Language

DML Data Manipulation Language

CFG Context Free Grammar

GUI Graphical User Interface

DAG Directed Acyclic Graph

LSTM Long Short Term Memory

NLG Natural Language Generation

SPARQL SPARQL Protocol and RDF Query Language

LCA Lowest Common Ancestor

AST Abstract Syntax Tree

LLM Large Language Model

Part I

T H E S I S

1
I N T R O D U C T I O N

1.1 motivation

Students and professors are often confronted with a limited supply of avail-
able exercises, as creating new exercises is a time-consuming process. Some
of these exercises are commonly used as teaching examples or solved to-
gether in practical courses, leaving students with little to no exercises for so-
lidifying the underlying concepts in self study. This limited pool of exercises
also concerns the construction of exams, often resulting in not publishing
sample exams, to not disclose potential exam exercises.

Furthermore, existing exercises may be too difficult or too easy, or address
only certain aspects of the task and thus fail to meet students at their current
knowledge level [72]. In addition to the common lack, or insufficient detail
of sample solutions and the limited availability of teaching staff to provide
feedback regarding the subject, this may attribute to underperforming and
less motivated students [20].

An increasing number of studies has shown that the aforementioned is-
sues also apply to SQL-query exercises, such as a lack of practice opportu-
nities [49], resignation in the case of unavailable feedback [50] and varying
knowledge levels [56, 60].

In order to more effectively teach query formulation, educators should
emphasize natural language patterns, query planning, and increasingly am-
biguous exercises [67].

1.2 aim and scope

This thesis aims to provide a system, that is capable of generating SQL-query
exercises, consisting of a SQL-query and a natural language SQL-query de-
scription. The exercise goal is to produce a SQL-query that yields the same
query-result as the originally generated SQL-query. The only input for ful-
filling the exercise goal, is the database schema and the natural language
description of the generated SQL-query. It is assumed, that a system for
generating SQL-query exercises enables time and location independent self-
study and alleviate the time expenditure on creating and curating SQL-query
exercises. That said, the goal of this thesis is explicitly not to measure the
educational effectiveness of the generated SQL-query exercises. Due to the
expressiveness of SQL-queries only a subset of the DQL part of SQL is uti-
lized.

1.3 methodology 3

1.3 methodology

The goal of this work is to develop a system for generating meaningful SQL-
query exercises, to reduce the expenditure of time on creating and curating
said exercises manually and to enable students to self-study independent of
time and location.

Due to the broad assortment of relevant disciplines involved in creating
a system for generating SQL-query exercises, such as relational databases,
natural language processing and graph theory, proven results of prior works
will be integrated if applicable.

The evaluation of the proposed system for generating SQL-query exercises
was performed by consulting human feedback. The evaluators were curated
to be somewhat familiar with SQL-query formulation.

The data collection was performed at one single point in time, due to
money and time constraints and no immediate reflux of information into
the used methods was performed.

2
A S P E C T S O F R E L AT I O N A L D ATA B A S E S , N AT U R A L
L A N G U A G E P R O C E S S I N G A N D K N O W L E D G E G R A P H S

2.1 aspects of relational databases regarding the genera-
tion of sql-queries

2.1.1 Related Work in Generating SQL-Query Exercises

Of the entire field of automatic question generation, only the subfield of gen-
erating SQL-query-exercises is considered. Two major approaches apply to
the automatic generation of SQL-queries. The first approach generates SQL-
queries from natural language. With the recent success of large neural lan-
guage models, a surge of papers utilizing this approach is currently recorded
[11, 39, 57]. The second approach generates SQL-queries in a more constraint-
oriented and structured rule-based approach. In the following only related
works following the second approach are presented, as this thesis utilizes
the second approach as well. Also general SQL-query teaching tools and
frameworks, which do not generate the exercises, are omitted, as the focus
of this work is in the generation of SQl-query-exercises instead of consider-
ing SQL-specific teaching techniques.

Gudivada et al. [21] provide a theoretical outline of adapting a Context
Free Grammar (CFG) for arithmetic expressions to SQL queries. The ap-
proach is limited to a small subset of SQL keywords, predicates and op-
erators. The generated queries are abstract in the sense that they are not tied
to an existing database and that there is no natural language description
provided. Due to this approach, the generated queries lack in plausibility,
semantic depth and the ability to specify the query constituents.

Do et al. [12] propose a generic approach to the generation of SQL-query-
exercises, which is based on database metadata of any database schema.
The approach allows for a selection of an extensive list of SQL-constituents
that are to be used in the SQL-query and allows for JOIN-statements to
cross multiple tables. The user is then prompted to explain the generated
SQL-query according to predefined questions, but not to recreate the query
bases on alternative output, like the SQL-query result or a natural language
description of the query. This approach generates SQL-queries that lack in
plausibility and semantic depth.

Atchariyachanvanich et al. [4] propose the so called RSQLG-algorithm.
The algorithm generates a SQL-query first and then a natural language de-
scription based on the generated SQL-query. The algorithms approach to
generating SQL-queries is similar to [12], in that it generates a SQL-query
based on the metadata of any database schema. Compared to [12], the algo-
rithm operates on a smaller set of SQL-constituents and supports the inclu-

2.1 aspects of relational databases regarding the generation of sql-queries 5

sion of only one table at a time. The generated natural language description
is a direct mapping of The approach allows for specifying which constituents
are used in the SQL-query generation, but the generated SQL-queries still
lack in plausibility.

The approach presented in [4] has been extended by Dwivedi et al. [13] to
support Data Definition Language (DDL) commands and by Rakesh et al .[10]
to support DDL and Data Manipulation Language (DML) commands. Basse
et al. [6] extend the proposed approach in [4] by allowing predefined JOIN-
statements for up to three tables. This extension requires adding manual
metadata in an ontology, which makes the generation algorithm no longer
generic.

2.1.2 Assessing the Complexity of SQL-Queries

Complexity is an ambiguous concept whose concrete definition is dependent
on the context domain. Complexity science can be seen as the study of the phe-
nomena which emerge from a collection of interacting objects [35]. Multiple emer-
gent phenomena can be observed, when applying this definition to SQL-
queries. Examples of emergent phenomena are computation time, memory
requirement or intricacy of control flow. This thesis focuses on the emer-
gent phenomenon of perceived difficulty of writing a SQL-query from the
perspective of somebody learning SQL.

Thus, SQL-query complexity is defined as follows: The complexity that re-
sults in the cognitive effort required to formulate or comprehend the SQL-query.

A number of complexity measures to approximate the cognitive effort re-
quired to formulate or comprehend a piece of software in general have been
introduced over the years [24, 46, 65, 66, 73, 81]. These metrics are mostly
tied to the occurrences of certain concepts or keywords contained in a piece
of code, but usually do not consider an individual weighing of the concepts
or keywords. As multiple studies have shown, especially novices experience
different levels of difficulty depending on the concepts that are used [2, 3,
48–50, 56, 60, 63, 67, 69].

Furthermore, different error types have been examined, such as syntax er-
rors, semantic errors and logic errors. [56, 67, 69] report that syntax errors
are observed less than semantic and logic errors. [47, 50, 60, 69] on the other
hand report the opposite, but all report that students are mostly able to fix
syntax errors by themselves, whereas semantic and logic errors often lead
to abandoning the query when no hints are given. In the case of semantic
and logic errors, students are observed to transform their initial query into
unnecessarily complex constructs by incremental changes with low word-
based edit distances [50]. Students appear to struggle with queries includ-
ing JOINs, GROUP BY statements and subqueries the most [2, 3, 48, 63] Thus,
complexity measures to approximate the cognitive effort required to formu-
late SQL-queries ideally should include a way of associating custom weights
to specific concepts or SQL-constituents.

2.2 natural language processing for transforming sql to natural language 6

In upcoming mentions of the complexity of SQL-queries, the above defini-
tion is referred to, if not specifically mentioned otherwise.

The effect of database schema complexity on the generation of SQL-queries
[68] is explicitly not considered.

2.2 natural language processing for transforming sql to nat-
ural language

2.2.1 Related Work in Generating Text from SQL-Queries

The approaches for SQL-to-text can be categorized into two different classes:
1.) template- and rule-based and 2.) neural machine translation. Rule-based
approaches explicitly employs the information represented by the query,
along with predefined text-templates, to create a corresponding natural lan-
guage description. Neural machine translation is usually used for translating
a natural language into another natural language, but can also be utilized
to transform a structured language into natural language or vice versa. This
typically involves a large amount of training data, but doesn’t require the
manual construction of transformation rules.

Koutrika et al, [38] propose a rule-based approach, by transforming the
SQL-query into a directed graph and formulating generic text-templates for
edges and manually created text-templates for paths along the graph. Addi-
tional meta-information about the database schema has to be provided by a
human modeler. In order to provide concise natural languages descriptions
of the SQL-queries, a lot of effort is required for every database schema. The
approach is extensible for the entire SQL syntax and always provides correct
descriptions in terms of SQL-query-content.

Kokkalis et al. [37] extend the approach of [38] by adding support for
the generation of multilingual SQL-query-descriptions, as well as provid-
ing a Graphical User Interface (GUI) for browsing and annotating database
schemes.

Eleftherakis et al. [15] expanded upon the system introduced in [37] by ex-
tending the translation capability to support more SQL-query-constituents
and the fluency of the generated description by modifying the template
mechanism.

Iyer et al. [33] introduce a neural sequence-to-sequence model for trans-
lating SQL-queries to a natural language description. The SQL-queries are
relatively simple and only feature one table at a time and simple constraint-
clauses. The proposed model utilizes the Long Short Term Memory (LSTM)
architecture for encoding the SQL-query and a feed forward neural network
for decoding the natural language description. It also is able to generate nat-
ural language descriptions of C# code. While the model generates textual
descriptions in an end-to-end fashion, it only produces correct descriptions
∼ 63% of the time.

Xu et al. [80] introduce a neural graph-to-sequence model for translating a
Directed Acyclic Graph (DAG) representation of simple SQL-queries to a nat-

2.2 natural language processing for transforming sql to natural language 7

ural language description. The proposed model consists of a graph encoder
and an attention based sequence decoder. By encoding the graph structure
and thus the neighbours of each SQL-constituent node, it produces correct
descriptions ∼ 75% of the time.

Ma et al. [43] expand on the approach presented in [80] by utilizing the
transformer architecture [74]. The model was trained and tested on more
complex SQL-queries, that feature subqueries and multiple JOINs. The adapt-
ability to more complex SQL-queries is achieved by encoding the SQL-query
structure with custom attention strategies. While the model produces cor-
rect descriptions only ∼ 66% of the time, it does so with considerably more
complex queries than the approaches of [33, 80].

Figure 2.1: Near impossible query translation case as presented in [61]

As seen, both rule-based and neural machine translation approaches still
possess major limitations, due to the complexity of the SQL-to-text task. Sim-
itsis et. al [61] present a set of cases that illustrate the complexity of the
SQL-to-text task even further. Figure 2.1 shows one extreme such case.

2.2.2 Natural Language Generation Pipeline

Figure 2.2: NLG-Pipeline according to [58]

2.3 knowledge graphs for semantically enriching relational databases 8

The standard NLG pipeline is a widely accepted architecture, originally
proposed by Reiter et al. [58]. As depicted in figure 2.2 it is composed of
three major components, that are traversed from left to right and top to
bottom: 1.) Macroplanning, 2.) Microplanning and 3.) Surface Realization.

Macroplanning consists of two subtasks: a) content determination deter-
mines the text content and b) document structuring organises the high level
structuring of, e.g. paragraphs or sections.

Microplanning consists of three subtasks: a) lexicalization selects appro-
priate expressions and words to use, b) aggregation organises the low level
structuring of, e.g. sentences and c) referring expression generation identi-
fies the entities and their references.

Surface Realization consists of two subtasks: a) linguistic realization ap-
plies grammar and syntax rules to the abstract text and b) structure realiza-
tion converts the abstract representation into eventually required mark-up
symbols for the presentation component (such as XML, for example).

Not every NLG-pipeline requires all steps. Which steps may be used, de-
pends on the input data and target output or environment.

A recent development is also to break up end-to-end neural NLG models
to substitute certain aspects of the pipeline depicted in figure 2.2 or use this
pipeline as a preprocessing step for the end-to-end models [16]. This allows
for more explainability and fine-grained control in the end-to-end models
and less manual work in creating the components of the NLG-pipeline shown
in figure 2.2 [78].

2.3 knowledge graphs for semantically enriching relational

databases

2.3.1 Current Landscape of Knowledge Graphs

There exists a large number of definitions for knowledge graphs that are not
congruent. Early mentionings of knowledge graphs define it as ”A mathemat-
ical structure with vertices as knowledge units connected by edges that represent
the prerequisite relation.” [44], ” A particular kind of semantic network.” [55] and
”A graph that understands real-world entities and their relationships to one another:
things, not strings.” [62]. More recent definitions are: ”A knowledge graph ac-
quires and integrates information into an ontology and applies a reasoner to de-
rive new knowledge” [14], ”A data model used in the Semantic Web [...] based on
three basic principles: 1. Encode knowledge using statements. 2. Express background
knowledge in ontologies. 3. Reuse knowledge between datasets” [79] and ”A knowl-
edge graph is presented as the intersection of the formal models able to represent facts
of various types and levels of abstraction using a graph-based formalism.” [75].

It is therefore unclear what exactly classifies a knowledge graph. For the
purpose of this work a knowledge graph must consist of:

1. entities that are classified by types,

2. directed binary semantic relationships between entities and

2.3 knowledge graphs for semantically enriching relational databases 9

3. the specific relationships:

a) is-a-relationships between types (hyponymy),

b) has-a-relationships between entities (meronymy) and

c) instance-of -relationships between entities and instances.

This definition excludes semantic networks such as WordNet [51], com-
mon sense knowledge graphs such as OpenCyc [42], TransOMCS, Concept-
Net [64] and ATOMIC [29], as they do not contain instance-of -relationships.

Eligible knowledge graphs that are considered further are YAGO [70], DB-
pedia [41] and Wikidata [77]. Knowledge graphs that are subsets of any of
the aforementioned knowledge graphs, such as ASER [83] or Freebase [71],
are not considered individually.

While there have been efforts to comparatively analyse knowledge graphs
on several metrics, no conclusive ”best of breed” has been determined as of
yet [1, 17, 32, 53, 54]. While YAGO, DBpedia and Wikidata are being gener-
ally similar regarding their content size, depth and width, they most notably
differ in a) their datasource and b) their underlying ontology. The content in
DBpedia is derived from Wikipedia articles and the underlying ontology is
generated from a manually specified mapping, that maps the extracted con-
tent of wikipedia articles to their respective DBpedia types [41]. Wikidata
instead derives its content from multiple sources, including Freebase, digi-
tal libraries and manual user input. The underlying ontology is community
built in a bottom-up fashion [77]. YAGO imports its content directly from
Wikidata, but uses the Schema.org [22] ontology instead [70].

As knowledge graphs grow in size, modifications to the underlying ontol-
ogy are necessary to accommodate domain changes and their natural evolu-
tion over time. Currently only the ontology specified by Wikidata follows a
transparent versioning scheme with fine-grained changes due to the bottom-
up approach [23, 36].

2.3.2 Entities of the Knowledge Graph as Tables

In order to transform a knowledge graph into a relational database schema,
the constituents need to be mapped accordingly.

Cardinality Result

1-1 Table attribute
1-n Lookup table
n-m Junction table

Table 2.1: Table structure modelled by cardinalities

The entities of a knowledge graph can be translated to individual tables.
By traversing the taxonomy, derived from the is-a-relationships, of an entity
a common table name can be assigned. The meronomy, derived from the has-
a-relationships, of an entity allows to assign properties and attributes to the

2.3 knowledge graphs for semantically enriching relational databases 10

table. The cardinality of every has-a-relationship of an entity can be derived
by iterating the instances of an entity and its respective has-a-relationships
(how many Bs is A connected to) and the other way around (how many
is As is B connected to). The same needs to be done for semantic relation-
ships between entities to derive the cardinality. The cardinality can then be
used to transfer table attributes into separate tables. As listed in table 2.1
the cardinalities require to model the following table structures: A 1-1 cardi-
nality means that it is a proper table attribute. A 1-n cardinality means that
a lookup-table is required. A n-m cardinality means that a junction-table is
required.

3
A N A LY S I S O F T H E R E Q U I R E M E N T S F O R A S Y S T E M F O R
T H E G E N E R AT I O N O F M E A N I N G F U L S Q L - Q U E RY
E X E R C I S E S

3.1 features of the exercise generation algorithm

3.1.1 Parametrization of the Exercise Generation System

The system shall allow users to parameterize the generation algorithm to
regulate the complexity of the generated SQL-query and the selection of
SQL-keywords in the generation process.

Applying the definition of complexity stated in chapter 2.1.2, the resulting
complexity of a generated SQL-query is defined as being governed by the
following criteria:

1. The number of distinct SQL-keywords that occur in the generated SQL-
query.

2. The number of occurrences of a specific SQL-keyword in a generated
SQL-query.

3. The number of distinct operands a specific SQL-keyword receives.

4. The total number of operands per SQL-keyword.

3.1.2 Generation of an Exercise Formulation in Natural Language

For each generated SQL-query, the system shall formulate a description of
the corresponding result set in human-like natural language.

The exercise description shall consist of a depiction of the underlying
database schema and a description of the result set.

What makes machine-generated text human-like differs depending on the
domain and task. The task-dependent evaluation of what makes a text human-
like often lacks concrete specifications [40, 84]. Thus for the task of generating
descriptions of SQL-queries, the following criteria are defined to determine
the property of human-like:

1. Conciseness

a) Text length, for which shorter is preferred.

b) Information aggregation, for which less repetitions are preferred.

c) Technical details that are a result of database normalization, for
which less are preferred.

2. Correctness

3.2 consistency and quality of the generated exercises 12

a) Missing information, where less is preferred.

b) Writing style, for which better is preferred.

c) Comprehensibility, for which more is better.

The conciseness-criteria aim to reflect the general human trait to omit
information that seems self-evident (tacit knowledge) [7], as well as the
manner in which a set of data would be described in a practical setting,
which is rather the question of what data is required instead of how the
data should be extracted.

3.1.3 Automatic Assessment of the Solution Attempts

For every emitted solution attempt, the system shall be able to assess whether
the solution is correct and in case of an error produce a score and a hint.

A solution attempt is defined as a syntactically correct SQL-query. In case
of syntactical errors only the error message of the database system shall be
propagated.

The correctness of a solution is to be determined by matching the result
set instead of the queries, as the projection of SQL-queries to result sets is
surjective but not injective.

In contrast, the score and hint generation is to be determined by measur-
ing the distance between the solution attempt and the generated query, as
almost identical queries can produce vastly different result sets.

3.2 consistency and quality of the generated exercises

3.2.1 Syntactic Soundness of the Generated Exercise

The system shall generate SQL-queries that adhere to standard SQL syntax
in general and specifically the DQL subset of SQL [30, 31].

Due to the vast space of possibilities the SELECT-command enables, the
available keywords shall be further reduced to the subset defined in A.1.

To ensure syntactically correct SQL-queries, the keywords SELECT and
FROM are required to occur exactly once, with at least one argument each.
Furthermore all non-aggregate columns referenced in the select list are to
be specified as grouping columns. The lower and upper bounds regarding
the number of arguments for the remaining keywords must be determined
dynamically depending on the database schema.

3.2.2 Semantic Plausibility of the Generated Exercise

The generated SQL-query shall be semantically plausible regarding a) the
coherency of the combination of SQL-query-constituents and b) the actual
meaning of the query objective.

The coherency of the generated SQL-query may be considered semanti-
cally plausible if:

3.3 properties of the exercise generation system 13

1. the query doesn’t contain redundant constituents,

2. the combination of constituents doesn’t contradict the behaviour of one
or more other constituents,

3. every constituent effects the result set.

The query objective may be considered semantically plausible if the query
objective:

• is deemed logically feasible and

• adheres to selectional preference in the context of the database schema.

3.2.3 Unambiguity of the Exercise Formulation Description in Natural Language

The generated natural language SQL-query description shall be unambigu-
ous.

This means there should be no information lost from the translation pro-
cess of the generated SQL-query to the natural language description, when
paired with the information of the database schema.

Given the database schema and the natural language description, then
producing a SQL-query that generates the same output as the generated
SQL-query should always be feasible.

3.3 properties of the exercise generation system

3.3.1 Constant Access and Readiness and Platform Independent Usability of the
Exercise Generation System of the Exercise Generation System

The system shall be presented in such a way that allows for constant digital
access and readiness and the ability to deploy the system on any platform.

3.3.2 Performance of the Exercise Generation System

The system shall perform the query-generation in a reasonable amount of
time. A reasonable amount of time is declared as a run time that does not
increase faster than a polynomial function of the input size.

4
D E S I G N A N D I M P L E M E N TAT I O N O F A S Y S T E M F O R
T H E G E N E R AT I O N O F M E A N I N G F U L S Q L - Q U E RY
E X E R C I S E S

4.1 overview of a system for the generation of meaningful

sql-query exercises

Figure 4.1: UML component diagram of the SQL-query exercise generation system

Figure 4.1 displays a highlevel overview over the SQL-query exercise gen-
eration system, in the scenario of a teacher generating an exercise for a
student. The teacher gives a set of parameters as input to the SQL-query
generator. The SQL-query generator utilizes database metadata of the rela-
tional database to generate the SQL-Query. The relational database in turn
is enriched with additional semantic information via a metamodel provided
by a knowledge graph. The NLG-pipeline handles the creation of a natural
language description of the SQL-query, by using a SQL-query AST and the
semantic labels provided by the knowledge graph. The resulting SQL-query
description provided by the NLG-pipeline can then be consumed by the stu-
dent.

4.2 deriving a relational database from a knowledge graph 15

4.2 deriving a relational database from a knowledge graph

4.2.1 Subsetting a Knowledge Graph Into Topicallly Coherent Domains

The knowledge contained in Wikidata is considered to be the most com-
prehensive due to its multiple sources and the most conclusive due to the
rapid and explicit changes in the ontology. Thus all following experiments
concerning knowledge graphs are performed on Wikidata unless specified
otherwise.

Due to the sheer size of the Wikidata knowledge graph, a single relational
schema to contain all the information is not feasible. 1. schemas that are too
large may hinder student learning [45, 82] 2. realistic db schemas may be
large, but don’t span across a large number of domains / are cohesive in
their modelled domain

Generating subsets of Wikidata is a common use case, which commonly
involve the use of the taxonomical structure of Wikidata entities, albeit in
different ways. Different subsetting methods may be categorized into ap-
proaches based on a) query-languages [5, 9], b) patterns or entity-schemas
[8, 18, 19] and c) graph-theoretic techniques [26, 76].

However, approaches of category a) and b) produce very narrow sub-
graphs that consist of a singular or small number of different entities and
require extensive knowledge about the ontology of the general knowledge
graph [34]. Approaches of category c) tend to produce subgraphs with more
diverse entity compositions but less topical cohesion [28].

To avoid the shortcomings of the aforementioned approaches, a folkson-
omy, the Wikipedia Category Graph [25] is used to derive subgraphs that
consist of multiple entities, while being topically cohesive. Wikimedia pro-
vides access to a mapping between Wikipedia pages, their categories and
corresponding Wikidata entities 1.

The Wikipedia category graph is processed and mapped to their Wiki-
data entities as portrayed in algorithm 1. The algorithm receives a list of the
toplevel Wikipedia categories t and a flattened list of Wikipedia categories
and their immediate subcategories or pages f . The toplevel categories are
then iterated and used as their individual starting points for further nesting
paths p. The categories below the toplevel are then added onto a stack s, that
is iterated until empty and continuously filled with not yet visited, deeper
nested categories. Wether or not a nested entity e is a category or a leaf node
(a Wikipedia-page), is marked by a prefix. Regardless of wether it is a nested
category, e is then added to a nested dynamic HashMap representation g of
the current Wikipedia-category-subgraph at it’s corresponding location. If a
Wikidata entity identifier can be associated with it, it is added as well. As
the Wikipedia category graph may contain infinite loops, a list of already
visited categories v in the current path has to be kept and checked against,
to terminate the program.

1 See pages database at: https://www.mediawiki.org/w/index.php?title=Manual:Database_
layout/diagram&action=render

https://www.mediawiki.org/w/index.php?title=Manual:Database_layout/diagram&action=render
https://www.mediawiki.org/w/index.php?title=Manual:Database_layout/diagram&action=render

4.2 deriving a relational database from a knowledge graph 16

Algorithm 1 Map Wikipedia categories to Wikidata entities
Input: t, f
Output: g

1: s← empty Stack
2: v← empty Set
3: g← empty HashMap
4: for c in t do
5: push c on s
6: p← c
7: while s is not empty do
8: sc← s.pop()
9: for e in f [sc] do

10: if isCategory(e) then
11: if e not in v then
12: s.push(e)
13: end if
14: end if
15: g[sc]← wikidataIdentifier(e)
16: end for
17: end while
18: end for

Return(g)

4.2.2 Deriving a Relational Schema from Entities of the Knowledge Graph

Algorithm 2 Sort knowledge graph entities into semantically similar tables
Input: Es
Output: T

1: T ← empty HashMap
2: for e ∈ Es do
3: Me ← empty HashMap
4: for ê ∈ Es do
5: if e ̸= ê then
6: h← HyperonymyGraph(e)
7: ĥ← HyperonymyGraph(ê)
8: H ← Union(g, ĝ)
9: t← LowestCommonAncestor(H)

10: Me[t].add(ê)
11: end if
12: end for
13: t← Max(Me)
14: T[t]← Me[t]
15: Es ← Es \Me[t]
16: end for
17: Return(T)

4.2 deriving a relational database from a knowledge graph 17

In order to derive a relational schema from the entities of a category sub-
graph a pairwise Lowest Common Ancestor (LCA)-approach is utilized, as
shown in algorithm 2. The algorithm gets the set of entities of the category
subgraph Es as input. Then the entities are shuffled, iterated pairwise and
the LCA, t of their united hyperonymy-graph H is determined. The paired
entity ê is then assigned to the set of entities with the paired LCA t. After
all entities are paired, the t with the largest number of assigned entities is
persisted as its own table. The entities assigned to tmax are then removed
from Es. After pairing all entities the algorithm returns the set of tables T
with their associated entities.

4.2.3 Limitations of Deriving Relational Databases From Knowledge Graphs

Figure 4.2: Wikidata hyperonymy graph of the entities ’voluntary association’ and
’sports club’, that are both types of ’organization’

The produced relational databases are of low quality. This is mostly due
to the fact, that the algorithm that infers a relational database schema fails
to merge different entities along their hyperonymy-graph into sensible joint
tables. Thus, either a very small number of very generic tables, consisting of
very diverse instances, or a very large number of highly overlapping tables
with only very few instances are created, depending on the cutoff that is
set. In figure 4.2 one suche case is highlighted. The SPARQL Protocol and
RDF Query Language (SPARQL)-query on the right recursively gathers the
hyperonymy-graph of the ’voluntary association’- and ’sports club’-entities.
When their graphs are joined together, the lowest common node is ’organisa-
tion’. While not being false, this is not the desired level of table granularity,
especially considering, that the example was taken out of the mapped Wiki-
data entries to the subgraph of the Wikipedia basketball category.

4.3 semantically enriching a relational database with a knowledge graph 18

Further it is unclear what attribute belongs to which class in the hyperonomy-
system and how they are composed, as the properties are set on the instance-
level instead of the class-level.

It is also ambiguous what entity is a class and what is an instance of a
class, as this is largely dependent on the surrounding context, which is not
encoded in Wikidata. This may result in entities being tables themselves,
while also being a data row of another table.

The approach also fails at establishing clear cut offs to differentiate be-
tween additional entities and mere properties. Both of which may be con-
nected to an entity that belongs to a domain subgraph, but cannot be classi-
fied as such.

4.3 semantically enriching a relational database with a knowl-
edge graph

4.3.1 Normalizing the Relational Database to Satisfy Domain Constraints and
Cardinality Restrictions

Figure 4.3: Normalised relational model of the IMDB database

Due to the issues in generating a relational database from existing knowl-
edge graphs mentioned in section 4.2.3, the IMDB database 2 is chosen as a
foundational database for the remaining experiments, due to its large size
and easy to understand domain.

The schema provided by IMDB itself is not normalized and the data not
assigned to readily distinguishable entities.

Therefore the database schema requires manual preprocessing before it
can be used by the system further. The tables in the IMDB database schema
were transformed into at least third normal form. Domain constraints were
set, to guarantee unique values on non-id columns and make columns not
nullable whenever applicable.

2 See IMDB database schema at: https://www.imdb.com/interfaces/

https://www.imdb.com/interfaces/

4.3 semantically enriching a relational database with a knowledge graph 19

The transformed relational model is depicted in figure 4.3. Two key enti-
ties Person and Title are identified. A title is any piece of media, such as a
movie, television series, computer game, etc. A person is any human that
is involved with a title in any way, such as directing or producing the title.
Each person is assigned a name, a birth- and deathyear. A person can also
have multiple professions, which in turn can be practised by multiple per-
sons. A person can be associated to a title in multiple ways, such as directing
it, while also acting in it.

Each title is assigned a name, format, an average rating with an amount of
voters, a release year and wether it is rated adult. A title can have localized
variants, that may have a different title name and an associated region and
language. Each title may have multiple genres it belongs to, whereas a genre
can be assigned to many titles.

4.3.2 Knowledge Graph Entities for Semantic Labeling of Tables

To provide the additional metadata required by the SQL-query generation
and SQL-query exercise description generation algorithms, a knowledge
graph was manually crafted for the normalised IMDB database schema
shown in figure 4.3. As the database already contains rows associated with
the entities of the crafted relational database schema shown in figure 4.3, the
instances of the knowledge graph class entities are omitted.

Thereby merely semantic labels for tables, table attributes and foreign key
constraints are added, as well as imposing a directionality of semantic la-
bels on foreign key constraints and junction tables. The cardinality between
knowledge graph entities is additionally marked, to be able to model the
need for junction tables in the physical database model.

4.4 generation of meaningful sql-query exercises 20

Figure 4.4: Handcrafted IMDB knowledge graph

4.4 generation of meaningful sql-query exercises 21

Parameter Type Shape Definition Dependency

joinRange Tuple<int,int> {min..max} ⇒ {n ∈N+ : min ≤ n ≤ max}

Determines the boundaries
for the sampled amount of
tables to use in the query.
If more than one table is
chosen, explicit JOIN
statements are generated.

joinType

joinType Array<string>

[
"INNER JOIN",
"OUTER RIGHT JOIN",
"OUTER LEFT JOIN",
"FULL OUTER JOIN",
"CROSS JOIN"
]

Determines the type of
JOINs to sample from.
Independent of the
JOIN-type every JOIN
is realised as an equi-join.
The join-predicate is
generated explicitly.

-

columnRange Tuple<int,int> {min..max} ⇒ {n ∈N+ : min ≤ n ≤ max}
Determines the boundaries
for the sampled amount of
columns to use in the query.

-

constraintRange Tuple<int,int> {min..max} ⇒ {n ∈N+ : min ≤ n ≤ max}

Determines the boundaries
for the amount of
constraints to use in the
query.

constraintType

constraintType Array<string>

[
"numericRange",
"numericComparison",
"nullComparison",
"booleanEquality",
"stringComparison",
"stringFuzzyComparison"
]

Determines the type of
constraints to sample from.
- numericRange uses the
BETWEEN keyword.
- numericComparison uses
the <>, <. >. = -operators
- nullComparison uses the
IS NULL keyword.
- stringComparison uses the
= operator for exact string
matching
- stringFuzzyComparison
uses the = and % operators
for fuzzy string matching

-

allowAggregates Boolean { f alse, true}

Determines wether aggregate
functions are allowed or not.
If aggregate functions are
allowed, a random number of
aggregate functions are
sampled and applied to a
random number of previously
sampled columns. This also
forces the generation of a
GROUP BY clause.

aggregateType

aggregateType Array<string>

[
"AVG",
"COUNT",
"MAX",
"MIN",
"SUM"
]

Determines the type of
aggregate functions to
sample from.

-

forceHavingClause Boolean { f alse, true}
Determines wether to
generate a HAVING
clause or not.

allowAggregates,
aggregateType

forceOrderBy Boolean { f alse, true}

Determines wether to
generate a ORDER BY
clause or not. If a
ORDER BY clause is
generated, a random
amount of columns are
sampled and a random
sort direction is chosen
for each column.

-

schema string "imdb"

Determines the database to
use for the query generation.
Currently only supports the
imdb-database.

-

seed string s ∈ U∗ where |s| > 0 3

If an arbitrary seed string
is provided, the generation
algorithm becomes
deterministic and the result
reproducible.

-

Table 4.1: Query generation algorithm parameters

4.4 generation of meaningful sql-query exercises 22

4.4 generation of meaningful sql-query exercises

4.4.1 Parameter Space of the Generation Algorithm

To satisfy the three criteria defined in section 3.1.1, the SQL-query generation
algorithm receives the set of parameters defined in table 4.1.

4.4.2 Traversing the Relational Schema as a Graph of Tables and Foreign Key
Constraints

Algorithm 3 Table selection by generating a subgraph of the database
schema
Input: R, T
Output: S

1: n← randomIntegerInRange(R)
2: t← sampleWithoutReplacement(T)
3: T̂ ← t
4: K̂ ← empty set
5: K ← t.edges
6: while n ̸= 0 | K.length > 0 do
7: k← sampleWithoutReplacement(K)
8: if isTargetJunctionTable(k) and n > 2 then
9: K̂.push(k)

10: T̂.push(k.target)
11: k2 ← sampleWithoutReplacement(k.target.edges)
12: K.push(k.target.edges− k2)
13: T̂.push(k2.target)
14: K.push(k2.target.edges)
15: n← n− 2
16: else if not isNotTargetJunctionTable(k) then
17: K.push(k.target.edges)
18: K̂.push(k)
19: T̂.push(k.target)
20: n← n− 1
21: end if
22: end while
23: Ŝ← (T̂, K̂)
24: return Ŝ

The table selection algorithm shown in 3 receives a set of tables T. T and
their foreign keys K are extracted from a given PostgreSQL database via the
respective reflection queries listed in appendix A.2.

The parameter joinRange, defined in table 4.1, governs the amount of edges
in the generated subgraph. A random, non-junction table t is sampled from
T.

3 Let U be the Unicode alphabet and U∗ the set of all strings of any length over the alphabet
U.

4.4 generation of meaningful sql-query exercises 23

While n is not zero or K is not empty, sample an edge k from K. If the
target of k is a junction table, two hops instead of one is made. This is done
to generate more semantically plausible SQL-queries, as the junction tables
represent a semantic relationship between two entities. Any edge, that was
not already traveled is added to K, all traveled edges added to K̂ and all
traveled nodes to T̂. n is decreased by two.

If the target of k is not a junction table, only add the unseen edges of
k.target to K, the travelled edge k to K̂ and k.target to T. n is decreased by
one.

The set of tables T and the set of foreign keys K are transformed into an
undirected graph S = (T, K) and returned.

(a) Sampling of the start node
with n = 4

(b) Iteration 1: n = 3

(c) Iteration 2: n = 1 (d) Iteration 3: n = 0

Figure 4.5: Schema path selection example with n = 4 hops

A step by step example of the algorithm 3 is visualized in figure 4.5.

4.4 generation of meaningful sql-query exercises 24

4.4.3 Generation of Random Parameter-Compliant SQL-Queries

Once the table selection is performed by generating the JOIN path with the
algorithm outlined in 3, the remaining SQL-query constituents are generated
in the order defined in listing 4.1.

[WHERE CONSTRAINTS]

SELECT COLUMN

[GROUP BY]

[HAVING CONSTRAINTS]

[ORDER BY]

Listing 4.1: SQL-query generation order

NOT BETWEEN, BETWEEN, <>, <, >, <=, >=, =

Listing 4.2: Numeric constraint operators

LIKE, NOT LIKE, <>, =

Listing 4.3: String constraint operators

The WHERE-clause allows for four sets of operations, depending on the
datatype and wether the selected column is nullable. The supported con-
straint sets are 1.) numeric, 2.) string, 3.) boolean 4.) null. Numeric operands
can be constrained by the operators in listing 4.2. String operands can be con-
strained by the operators in listing 4.2 Boolean operands can be constrained
by the =-operator and either the value true or false. To generate the con-
straints, a number n in the range specified by the constraintRange-parameter
is sampled. Then a set of uniquely named columns C, across the previously
selected tables is constructed. The set C is then filtered by the supported
datatypes of the selected constraint types in the constraintType-parameter to
create the set C f . n columns are sampled from C f and for every c therein a
random constraint type, that adheres to the domain constraint of the column,
is then sampled. If multiple constraints are generated, they are concatenated
randomly with either the AND or OR keyword.

For the numericRange-constraint, the algorithm randomly chooses between
the operator BETWEEN or NOT BETWEEN and samples two random dis-
tinct values of the column data as operands.

For the numericComparison-constraint, the algorithm randomly chooses a
relational operator and samples a random value of the column data. To avoid
empty return sets, the min and max value of the column data are not eligible
as operands.

For the nullComparison-constraint, the algorithm randomly chooses between
the operator IS NULL or IS NOT NULL.

For the stringComparison-constraint, the algorithm randomly chooses be-
tween applying the <> or = operator and samples a random value of the
column data.

For the stringFuzzyComparison-constraint, the algorithm randomly chooses
between applying the LIKE or not NOT LIKE operator and samples a random

4.5 generation of an sql-query exercise formulation in natural language 25

value of the column data. The operand is then sliced into a substring by
selecting random indices. This may also return the original substring if the
indices match the boundaries of the operand. %-signs are appended to the
left most outer and right most outer position of the operand, if any character
was sliced off either end.

The SELECT-clause is generated by choosing a random number i in the
range specified by the columnRange and again sampling i random columns
of the set of uniquely named columns C of all selected tables. If the allowAg-
gregates-parameter is true, a random number of numeric, non-id columns is
selected and a randomly chosen aggregate function specified in the aggre-
gateType-parameter is applied to the column. If an aggregate function was
applied, a GROUP BY-clause is generated, by applying every non-aggregate
column as operands.

If the forceHavingClause-parameter is set to true, an aggregate function and
GROUP BY-clause is generated. The HAVING-clause then chooses a random
amount of aggregated columns and applies either a numericComparison or
numericRange constraint to the chosen operands.

If the forceOrderBy-parameter is set to true, an ORDER BY-clause is gener-
ated. The operands are randomly sampled from the set of uniquely named
columns C of all selected tables and a random sorting order of the options
ASC or DESC is applied.

Figure 4.6: SQL-query AST example

The generated constituents are then transformed into a AST-representation
of the SQL-query, as shown in example 4.6.

SELECT year, is_adult

FROM title as t

WHERE runtime_minutes < ’86 ’ OR average_rating >= ’ 6.9 ’;

Listing 4.4: SQL-query string example

The AST-representation is then traversed to generate the textual SQL-query
string, as shown in example 4.4.

4.5 generation of an sql-query exercise formulation in nat-
ural language

4.5.1 Macroplanning the SQL-Query Exercise Formulation

COLUMN TABLE|JOIN [WHERE CONSTRAINTS] [GROUP BY] [HAVING] [ORDER BY]

Listing 4.5: SQL-query description structuring

4.5 generation of an sql-query exercise formulation in natural language 26

The generation of the SQL-query exercise description follows the pipeline
outlined in section 2.2.2.

As the content of the SQL-query can already be controlled by the parametri-
sation of the SQL-query generation algorithm, no additional content deter-
mination is required. The input of the NLG-pipeline is a SQL-query-AST pro-
duced by the SQl-query generation algorithm outlined in the previous sec-
tion 4.4.

The NLG-pipeline functions in two modes: A1, a rudimentary rule-based
templating approach as a baseline, and A2, a hybrid approach that utilizes
a Large Language Model (LLM). The differences between the approaches in
the NLG-pipeline are mentioned as they occur in the following.

The structuring of the exercise description follows the same predefined
pattern for both A1 amd A2. Since SQL is modeled closely to read like the
English language, the pattern is outlined in the general order of keyword
specification, as shown in listing 4.5.

4.5.2 Microplanning the SQL-Query Exercise Formulation

The lexicalization component of the NLG-pipeline utilizes two repositories to
select and assign the appropriate expressions to the generated SQL-query-
constituents and operands. Repository a): The handcrafted semantic node
labels and the semantic descriptors assigned to the edges, which are defined
in the knowledge graph displayed in figure 4.4 and repository b): An assort-
ment of generic templates that directly translate the semantics of a particular
SQL-query keyword or operator.

A2 utilizes the semantic labels of repository a) to assign natural sounding
table and attribute names, as well as specifying the semantic label of eventual
relationships between entities. The templates provided by repository b) are
utilized by both A1 and A2, to formulate the operational semantics of the
SQL symbols. A2 also utilizes placeholders in the shape of [MASK], that are
replaced at a later stage.

The template repositories for both approaches are attached in appendix
A.3.

A2 also utilizes aggregation and referring expression generating compo-
nents, to a) reduce redundant entity mentions, b) shorten the text output
and c) hide unnecessary technical details by employing implicit phrasing.

4.5.3 Surface Realization of the Structured Exercise Formulation

A2 utilizes a LLM as a linguistic realization component. The previously in-
troduced [MASK] tokens are unmasked by the DistilBERT model [59]. The
mask filling approach gives the sentence structure a less rigid feel. On the
negative side, the output is not controllable, so there is a chance of unfitting
words being introduced.

Neither A1, nor A2 make use of a structure realization component.

4.5 generation of an sql-query exercise formulation in natural language 27

(a) Hybrid NLG-pipeline, highlighted text
was previously masked

(b) Base NLG-pipeline

Figure 4.7: SQL-query example in 4.4 of baseline vs. hybrid NLG-pipeline

As figure 4.7 shows, there are only minor differences between the two NLG-
pipeline approaches in terms of length for the translation of simple queries.
That said, by providing semantic labels for column names, the description
reads less technical and utilizing mask filling allows for embedded clauses.

Figure 4.8: Complex SQL-query AST

SELECT COUNT(t.title_id), t.runtime_minutes, t.vote_amount, lo.

language_id

FROM imdb2.person as p

INNER JOIN imdb2.year as y

ON p.birthyear_id = y.year_id

INNER JOIN imdb2.title as t

ON y.year_id = t.release_date_id

INNER JOIN imdb2.localization as lo

ON t.title_id = lo.title_i

INNER JOIN imdb2.region as r

ON lo.region_id = r.region_id

WHERE r.region LIKE ’ge%’
GROUP BY t.runtime_minutes, t.vote_amount, lo.language_id

HAVING COUNT(t.title_id) <> ’4883174 ’
ORDER BY p.person_id ASC;

Listing 4.6: Complex SQL-query string example

When the two approaches are compared on more complex queries, the
differences become clearer, as shown in 4.9, for the complex query displayed
in 4.6.

4.5 generation of an sql-query exercise formulation in natural language 28

(a) Hybrid NLG-pipeline (b) Base NLG-pipeline

Figure 4.9: Complex SQL-query example of baseline vs. hybrid NLG-pipeline

5
E VA L U AT I O N O F T H E S Y S T E M F O R T H E G E N E R AT I O N
O F M E A N I N G F U L S Q L - Q U E RY E X E R C I S E S

5.1 evaluation study design

5.1.1 Crowdsourcing for Evaluating the Generated Exercise Component

In order to evaluate the system for generating SQL-query exercises the crowd-
sourcing framework Amazon Mechanical Turk 1 was used. Each assessment
was rated by three judges. The raters were selected, if they had self-proclaimed
knowledge of SQL.

A total number of 667 assessments of individual SQL-queries were evalu-
ated. The payment per query evaluation was 0.40$ with an estimated evalu-
ation time of 2-3 minutes, yielding a hourly rate of 8 to 12$.

Figure 5.1: Assessment opening screen

The assessment were all structured equally. A introductory task descrip-
tion alongside the database schema open each assessment, as seen in screen-
shot 5.1

As seen on screenshot 5.2, every assessment provides a SQL-query screen-
shot and the matching first 10 rows of the resultset. The rater is then asked
to rate how likely it is, that the information in the presented SQL-query is
requested by a human for the given database on a 5 point likert scale. Also
on a 5 point likert scale the rater is asked to judge how frequently the infor-

1 https://www.mturk.com/

https://www.mturk.com/

5.1 evaluation study design 30

Figure 5.2: General questions about the SQL-query

mation expressed by the SQL-query is requested. On a numeric scale of 1 to
10, the rater is then asked to rate the complexity of the given SQL-query.

Figure 5.3: Error categories per NLG-approach

Screenshot ?? requests the raters to judge eventually applicable error cate-
gories per natural language description of each NLG-approach.

Lastly, the raters are asked which of the two presented natural language
descriptions of the SQL-query were deemed more human-like.

5.2 evaluation of the exercise generation algorithm features 31

Figure 5.4: Human-likeness of the SQL-query descriptions

5.2 evaluation of the exercise generation algorithm features

5.2.1 Evaluation of the Generation of an Exercise Formulation in Natural Lan-
guage

(a) Text length (b) Term frequency

Figure 5.5: Comparison of Exercise Formulation in Natural Language

As figure 5.5a and figure 5.5b show, compared to the baseline, the hy-
brid NLG-approach generates natural language descriptions of SQL-queries,
which are on average 47.87% shorter and exhibit a ∼ 20% decrease in term
frequency. Also, by applying aggregation and referring expression generat-
ing techniques and using semantic labels for foreign key constraints, the
hybrid approach minimizes explicit mentions of database normalisation in-
duced technicalities.

Thus the hybrid approach is deemed more concise, by the criteria defined
in 3.1.2.

The raters assigned each error category more often to the natural language
description generated by the baseline approach. The difference in correctness
is therefore considerably smaller, although the hybrid approach still outper-
forms the baseline. The largest margin is gained on the missing information
error category, which is interesting as the hybrid approach is on average
only half as long. This suggests that really only redundant and implicitly
clear information has been removed.

5.3 evaluation of the consistency and quality of the generated sql-query exercises 32

5.2.2 Evaluation of the Automatic Assessment of the Solution Attempts

The SQL-query exercise generation system is able to decide on the correct-
ness of a solution attempt by matching the result sets of the user query and
the generated query. The generation of individual scores and hints was not
fulfilled, therefore this requirement is viewed as only partially satisfied.

5.3 evaluation of the consistency and quality of the gener-
ated sql-query exercises

5.3.1 Evaluation of the Syntactic Soundness of the Generated Exercise

The generation of syntactically sound SQL-queries was achieved, as all gen-
erated queries can be executed and follow the restrictions defined in section
3.2.1, such as always producing the SELECT and FROM keyword and select-
ing all non-aggregate columns to be specified as grouping columns.

5.3.2 Evaluation of the Semantic Plausibility of the Generated Exercise

5.4 evaluation of the sql-query exercise generation system properties 33

(a) Global rated semantic plausibility of
generated SQL-query

(b) Rated semantic plausibility of generated
SQL-query per voter

(c) Voter consensus

Figure 5.6: Comparison of how semantically plausible the raters judge a generated
query to be

5.4 evaluation of the sql-query exercise generation system

properties

5.4.1 Evaluation of the Performance of the Exercise Generation System

As seen in figure ?? the query exercise generation system generates the exer-
cises in a reasonable amount of time. Generally well below a second.

As seen in ??, the generation of some queries require longer amounts of
time with up to a minute. This is due to those generated queries, requiring to
retrieve information from the database often during the generation process.
This is especially expensive when generating queries including a HAVING-

5.4 evaluation of the sql-query exercise generation system properties 34

(a) Global likeliness of generated SQL-
query being asked

(b) Likeliness of generated SQL-query be-
ing asked per voter

(c) Voter consensus

Figure 5.7: Comparison of how likely raters judge a generated query to be asked

clause, as sensible values need to be extracted by querying the database with
the, by then, almost fully generated SQL-query.

5.4 evaluation of the sql-query exercise generation system properties 35

Figure 5.8: Runtime of generating a SQL-query exercise without outliers

Figure 5.9: Runtime of generating a SQL-query exercise with outliers

6
C O N C L U S I O N A N D F U T U R E W O R K

6.1 conclusion

A system for the generation of SQL-query exercises was developed and
presented. It features a SQL-query generation algorithm that allows for se-
lection of necessary SQL-constituents that are required to be generated in
the SQL-query. The generated query-exercises are syntactically correct and
are deemed semantically plausible. The SQL-query generation also includes
more keywords than previous approaches and thus allows for the genera-
tion of more varied exercises. The system is also capable of determining the
correctness of any solution attempt by matching the query result sets.

The system also provides a SQL-query exercise description in natural lan-
guage, which is generated based on the SQL-query. The natural language
description is evaluated against a baseline approach which it outperforms
by a large margin on the metrics defined in 3.1.2. Still, it is found that the
generated natural language descriptions are often to be found written in
awkward style, in less cases even incomprehensible and exhibited missing
information according to the evaluation. It was also found that in order to
generate high quality SQL-query exercises, some manual labor in creating
an appropriate metamodel from which to generate the SQL-queries or the
relational databases from is required. This is due to lacking data quality in
existing resources from which the required task artefacts could be generated
automatically, or semi-automatically.

6.2 future work

Future work will include the testing of the system for generating meaningful
SQL-query exercises in educational settings to determine whether students
benefit from the proposed approach. Due to the not fully satisfying natu-
ral language descriptions of the generated SQL-queries, more research has
to be done on how to write them in a more human-like fashion, without
compromising correctness and comprehensiveness. An interesting approach
could be the use of composition methods in natural language embeddings
[27, 52] to mirror SQL operations in the latent space of the embeddings, such
as applying different filter constraints in WHERE or HAVING clauses. For
example, a numeric constraint that restricts an column called age of a table
called person, to only contain values lower than 10 changes the semantic
identifier of the table to, e.g. minor or child. Although how these operations
are supposed to be mirrored in the embedding space is still unclear. Also,
new measures on cognitive complexity in regards to the writing of SQL-
queries and writing programs in general could be of use, as current metrics

6.2 future work 37

do not take into consideration the different weighting of individual con-
stituents and the complexity arising out of eventual synergies that arise out
of specific constellations of query-constituents. Additionally, the approach
to generate DQL-query exercises is envisaged to be expanded to different,
larger subsets of the SQL-language.

Part II

A P P E N D I X

A
A P P E N D I X

a.1 dql keyword subset

SELECT <select_list>

FROM <table_reference_list>

[<where_clause>]

[<group_by_clause>]

[<having_clause>]

[<order_by_clause>]

<select_list> ::=

<column_specifier> [{ , <column_specifier> } ...]

| [<aggregate_function>(<column_specifier>)]

<column_specifier> ::=

[table_alias.] <column_specifier>

<aggregate_function> ::=

AVG

| MAX

| MIN

| COUNT

| SUM

<table_reference_list> ::=

[schema_name.] table_name [AS table_alias]

| <joined_table>

<joined_table> ::=

table_name [<join_type>] JOIN table_name <join_specification>

<join_type> ::=

INNER

| LEFT [OUTER]

| RIGHT [OUTER]

| FULL [OUTER]

<join_specification> ::=

ON <predicate_clause>

<predicate_clause> ::=

<predicate>

[<concatenation> <predicate>]

<concatenation> ::=

AND

A.1 dql keyword subset 40

| OR

<predicate_clause> ::=

<comparison_predicate>

| <between_predicate>

| <like_predicate>

| <null_predicate>

| <boolean_predicate>

<comparison_predicate> ::=

<column_specifier> <comp_op> column_value

<comp_op> ::=

=

| <>

| <

| >

| <=

| >=

<between_predicate> ::=

<column_specifier> [NOT] BETWEEN column_value AND column_value

<like_predicate> ::=

<column_specifier> [NOT] LIKE [%] string [%]

<null_predicate> ::=

<column_specifier> IS [NOT] NULL

<boolean_predicate> ::=

<column_specifier> IS [NOT] <truth_value>

<truth_value> ::=

TRUE

| FALSE

<where_clause> ::=

WHERE <predicate_clause>

<group_by_clause> ::=

GROUP BY <column_specifier> [{ , <column_specifier> } ...]

<having_clause> ::=

HAVING <predicate_clause>

<order_by_clause ::=

ORDER BY <column_specifier> <sort_direction>

<sort_direction> ::=

ASC

| DESC

Listing A.1: DQL keyword subset

A.2 postgresql reflection queries 41

a.2 postgresql reflection queries

a.2.1 PostgreSQL Table Reflection Query

DECLARE @schema VARCHAR

SET @schema = ’imdb’

SELECT columns.table_name,

columns.column_name,

columns.data_type

FROM information_schema.columns

WHERE table_name in

(SELECT tables.table_name

FROM information_schema.tables

WHERE tables.table_schema = @schema

AND tables.table_name != ’schema_version ’
AND tables.table_type = ’BASE TABLE’);

Listing A.2: Table reflection query

a.2.2 PostgreSQL Foreign Key Reflection Query

DECLARE @schema VARCHAR

SET @schema = ’imdb’

SELECT m.relname AS source_table,

(SELECT a.attname FROM pg_attribute a

WHERE a.attrelid = m.oid

AND a.attnum = o.conkey[1]

AND a.attisdropped = false)

AS source_column,

f.relname AS target_table,

(SELECT a.attname

FROM pg_attribute a

WHERE a.attrelid = f.oid

AND a.attnum = o.confkey[1]

AND a.attisdropped = false)

AS target_column

FROM pg_constraint o

LEFT JOIN pg_class f ON f.oid = o.confrelid

LEFT JOIN pg_class m ON m.oid = o.conrelid

WHERE o.contype = ’ f ’
AND o.conrelid IN (SELECT oid FROM pg_class c WHERE c.relkind = ’ r ’)
AND o.connamespace::regnamespace::text = @schema ’ ;

Listing A.3: Foreign Key reflection query

A.3 nlg template repositories 42

a.3 nlg template repositories

a.3.1 Baseline NLG Templates

conjunctions: {

"&": " and ",
"|": " or ",

},

joinTemplate: {

nonJoinStartingPhrase: "Use table ${ table } . ",
joinStartingPhrase: "Form",
joinTypes: {

"RIGHT OUTER JOIN": " the intersection that contains al l
entries of ${source} and the corresponding entries
of ${ target } ",

"LEFT OUTER JOIN": " the intersection that contains al l
entries of ${ target } and the corresponding entries
of ${source} ",

"CROSS JOIN": " the cross product of the tables ${source}
and ${ target } ",

"INNER JOIN": " the intersection that contains the
corresponding entries of the tables ${source} and ${
target } ",

},

},

booleanTemplate: " ",
aggregationTemplate: {

SUM: " the sum of ${column} ",
AVG: " the average of ${column} ",
MAX: " the maximum of ${column} ",
MIN: " the minimum of ${column} ",
COUNT: " the amount of ${column} ",

},

operatorTemplate: {

BETWEEN: " is between ${value1 } and ${value2 } ",
"<>": "doesn’ t equal",
"<": " is smaller than",
">": " is greater than",
"<=": " is smaller or equal than",
">=": " is greater or equal than",
"=": "equals",
LIKE: {

0: "contains ’${value} ’ ",
1: "ends with ’${value} ’ ",
2: " starts with ’${value} ’ ",

},

"NOT LIKE": {

0: "doesn’ t contain ’${value} ’ ",
1: "doesn’ t end with ’${value} ’ ",
2: "doesn’ t start with ’${value} ’ ",

},

NULL: "NULL",

A.3 nlg template repositories 43

"NOT NULL": "not NULL",
},

columnTemplate: {

columnStartingPhrasePlural: "Return the columns",
columnStartingPhraseSingular: "Return the column",
columnEndingPhrase: " ",

},

constraintTemplate: {

startingPhrase: "Only return the data for which",
endingPhrase: " is true",
LIKEOperatorFallback: { exclude: "contains any string ",

include: "contains an empty string " },

},

groupByTemplate: {

startingPhrase: "Group the result by",
endingPhrase: " ",

},

havingTemplate: {

startingPhrase: "A further constraint is ",
endingPhrase: " ",

},

orderByTemplate: {

startingPhrase: "Sort the result ",
endingPhrase: " ",
direction: {

ASC: "ascending",
DESC: "descending",

},

}

Listing A.4: Baseline SQL-constiuent templates

a.3.2 Hybrid NLG templates

conjunctions: {

"&": " and ",
"|": " or ",

},

joinTemplate: {

nonJoinStartingPhrase: " ",
joinStartingPhrase: " ",
joinTypes: {

"RIGHT OUTER JOIN": "${ target } and [MASK] ${source } ,
even i f [MASK] have no ${ target } ",

"LEFT OUTER JOIN": "${source} and [MASK] ${ target } , even
i f [MASK] have no ${source} ",

"CROSS JOIN": "das kartesische Produkt der Tabellen ${
source} und ${ target } ",

"INNER JOIN": "${source} and [MASK] corresponding ${
target } ",

},

A.3 nlg template repositories 44

},

booleanTemplate: "wether the ${ table } is ${column} or not",
aggregationTemplate: {

SUM: " the sum of ${column} ",
AVG: " the average of ${column} ",
MAX: " the maximum of ${column} ",
MIN: " the minimum of ${column} ",
COUNT: " the count of ${column} ",

},

operatorTemplate: {

BETWEEN: " is between ${value1 } and ${value2 } ",
"<>": " is not",
"<": " is smaller than",
">": " is larger than",
"<=": " is smaller or the same as",
">=": " is greater or the same as",
"=": " is ",
LIKE: {

0: "contains ’${value} ’ ",
1: "ends with ’${value} ’ ",
2: " starts with ’${value} ’ ",

},

"NOT LIKE": {

0: "doesn’ t contain ’${value} ’ ",
1: "doesn’ t end with ’${value} ’ ",
2: "doesn’ t start with ’${value} ’ ",

},

NULL: "NULL",
"NOT NULL": "not NULL",

},

columnTemplate: {

columnStartingPhrasePlural: " ",
columnStartingPhraseSingular: " ",
columnEndingPhrase: " ",

},

constraintTemplate: {

startingPhrase: " ",
endingPhrase: " ",
LIKEOperatorFallback: { exclude: "contains any string ",

include: "contains an empty string " },

},

groupByTemplate: {

startingPhrase: "Group the result by",
endingPhrase: " ",

},

havingTemplate: {

startingPhrase: " ",
endingPhrase: " ",

},

orderByTemplate: {

startingPhrase: "Sort the result by ",
endingPhrase: " ",

A.3 nlg template repositories 45

direction: {

ASC: " in ascending order",
DESC: " in descending order",

},

}

Listing A.5: Hybrid SQL-constiuent templates

B I B L I O G R A P H Y

[1] David Abián, Francesco Guerra, J. Martínez-Romanos, and Raquel
Trillo Lado. “Wikidata and DBpedia: A Comparative Study.” In: In-
ternational KEYSTONE Conference. 2017.

[2] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Coleman Prior,
and Raymond Lister. “Students’ Syntactic Mistakes in Writing Seven
Different Types of SQL Queries and its Application to Predicting Stu-
dents’ Success.” In: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (2016).

[3] Alireza Ahadi, Julia Coleman Prior, Vahid Behbood, and Raymond
Lister. “A Quantitative Study of the Relative Difficulty for Novices of
Writing Seven Different Types of SQL Queries.” In: Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science
Education (2015).

[4] Kanokwan Atchariyachanvanich, Srinual Nalintippayawong, and Thanakrit
Julavanich. “Reverse SQL Question Generation Algorithm in the DBLearn
Adaptive E-Learning System.” In: IEEE Access 7 (2019), pp. 54993–
55004.

[5] “Automatic Construction of Domain-Specific Knowledge Graphs from
Wikidata.” In: 2020.

[6] Adrien Basse, Baboucar Diatta, and Samuel Ouya. “Ontology-Based
System for Automatic SQL Exercises Generation.” In: IMCL. 2019.

[7] Maria Becker, Siting Liang, and Anette Frank. “Reconstructing Implicit
Knowledge with Language Models.” In: Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures; Deep Learning Inside
Out. 2021.

[8] Armand Boschin. “WikiDataSets : Standardized sub-graphs from Wiki-
Data.” In: ArXiv abs/1906.04536 (2019).

[9] Hans Chalupsky, Pedro A. Szekely, Filip Ilievski, Daniel Garijo, and
Kartik Shenoy. “Creating and Querying Personalized Versions of Wiki-
data on a Laptop.” In: ArXiv abs/2108.07119 (2021).

[10] Mr. Sumit Chaudhari, Mr. Aditya Hire, Ms. Bhagyashree Mandale, and
Ms. Sharayu Vanjari. “Structural Query Language Question Creation
by using Inverse Way.” In: 2021.

[11] Naihao Deng, Yulong Chen, and Yue Zhang. “Recent Advances in Text-
to-SQL: A Survey of What We Have and What We Expect.” In: COL-
ING. 2022.

[12] Quan Chau Dong Do, Rajeev Agrawal, Dhana Rao, and Venkat N. Gu-
divada. “Automatic Generation of SQL Queries.” In: 2014.

bibliography 47

[13] Abhilasha A. Dwivedi and Dinesh D. Patil. “AUTOMATIC SQL QUES-
TION GENERATION USING REVERSE APPROACH.” In: 2020.

[14] Lisa Ehrlinger and Wolfram Wöß. “Towards a Definition of Knowledge
Graphs.” In: International Conference on Semantic Systems. 2016.

[15] Stavroula Eleftherakis, Orest Gkini, and Georgia Koutrika. “Let the
Database Talk Back: Natural Language Explanations for SQL.” In: SEA-
DataVLDB. 2021.

[16] Juliette Faille, Albert Gatt, and Claire Gardent. “The Natural Language
Generation Pipeline Neural Text Generation and Explainability.” In:
2020.

[17] Michael Färber. “Which Knowledge Graph Is Best for Me ? “ Linked
Data Quality of DBpedia , Freebase , OpenCyc , Wikidata , and YAGO
” in a Nutshell.” In: 2018.

[18] Jose Emilio Labra Gayo. “Creating Knowledge Graphs Subsets using
Shape Expressions.” In: ArXiv abs/2110.11709 (2021).

[19] Jose Emilio Labra Gayo. “WShEx: A language to describe and validate
Wikibase entities.” In: ArXiv abs/2208.02697 (2022).

[20] Ryan Colin Gibson and Gordon Morison. “Improving Student Engage-
ment and Active Learning with Embedded Automated Self-assessment
Quizzes: Case Study in Computer System Architecture Design.” In:
Lecture Notes in Networks and Systems (2021).

[21] Venkat N. Gudivada, Kamyar Arbabifard, and Dhana Rao. “Automated
Generation of SQL Queries that Feature Specified SQL Constructs.” In:
2017.

[22] Ramanathan V. Guha, Dan Brickley, and Steve Macbeth. “Schema.org:
Evolution of Structured Data on the Web.” In: Queue 13 (2015), pp. 10–
37.

[23] Armin Haller and Axel Polleres. “Are we better off with just one on-
tology on the Web?” In: Semantic Web 11 (2020), pp. 87–99.

[24] Maurice H. Halstead. Elements of Software Science (Operating and Pro-
gramming Systems Series). USA: Elsevier Science Inc., 1977. isbn: 0444002057.

[25] Nicolas Heist and Heiko Paulheim. “Uncovering the Semantics of Wikipedia
Categories.” In: ArXiv abs/1906.12089 (2019).

[26] Daniel Henselmann and A. Harth. “Constructing demand-driven Wiki-
data Subsets.” In: WikidataISWC. 2021.

[27] Dayananda Herurkar, Philipp Blandfort, Federico Raue, Jörn Hees,
and Andreas R. Dengel. “ANP-W2V: Effects of Composition Methods
for Embedding Adjective-Noun Pairs.” In: 2021 International Joint Con-
ference on Neural Networks (IJCNN) (2021), pp. 1–8.

[28] Seyed Amir Hosseini Beghaeiraveri, Alasdair Gray, and Fiona Mcneill.
“Experiences of Using WDumper to Create Topical Subsets from Wiki-
data.” In: June 2021.

bibliography 48

[29] Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke
Sakaguchi, Antoine Bosselut, and Yejin Choi. “COMET-ATOMIC 2020:
On Symbolic and Neural Commonsense Knowledge Graphs.” In: AAAI
Conference on Artificial Intelligence. 2020.

[30] ISO Central Secretary. Information technology – Database languages – SQL
– Part 1: Framework (SQL/Framework). en. Standard ISO/IEC TR 9075-
1:2016. International Organization for Standardization, 2016. url: https:
//www.iso.org/standard/63555.html.

[31] ISO Central Secretary. Information technology – Database languages – SQL
– Part 2: Foundation (SQL/Foundation). en. Standard ISO/IEC 9075-2:2016/Cor
2:2022. International Organization for Standardization, 2016. url: https:
//www.iso.org/standard/84487.html.

[32] Ali Ismayilov, Dimitris Kontokostas, S. Auer, Jens Lehmann, and Se-
bastian Hellmann. “Wikidata through the Eyes of DBpedia.” In: ArXiv
abs/1507.04180 (2015).

[33] Srini Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. “Sum-
marizing Source Code using a Neural Attention Model.” In: Proceed-
ings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers) (2016).

[34] Labra-Gayo Je et al. “Knowledge graphs and wikidata subsetting.” In:
2021.

[35] N.F. Johnson. Two’s Company, Three is Complexity: A Simple Guide to
the Science of All Sciences. A Oneworld book. Oneworld, 2007. isbn:
9781851684885. url: https://books.google.de/books?id=NnEcAQAAIAAJ.

[36] M. Klein and Dieter A. Fensel. “Ontology versioning on the Semantic
Web.” In: International Conference on Semantic Web & Web Services. 2001.

[37] Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zervakis, Alkis Sim-
itsis, Georgia Koutrika, and Yannis E. Ioannidis. “Logos: a system for
translating queries into narratives.” In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (2012).

[38] Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioannidis. “Explaining
structured queries in natural language.” In: 2010 IEEE 26th Interna-
tional Conference on Data Engineering (ICDE 2010) (2010), pp. 333–344.

[39] Ayush Kumar, Parth Nagarkar, Prabhav Nalhe, and Sanjeev Vijayaku-
mar. “Deep Learning Driven Natural Languages Text to SQL Query
Conversion: A Survey.” In: ArXiv abs/2208.04415 (2022).

[40] Chris van der Lee, Albert Gatt, Emiel van Miltenburg, and Emiel J.
Krahmer. “Human evaluation of automatically generated text: Current
trends and best practice guidelines.” In: Comput. Speech Lang. 67 (2021),
p. 101151.

[41] Jens Lehmann et al. “DBpedia - A large-scale, multilingual knowledge
base extracted from Wikipedia.” In: Semantic Web 6 (2015), pp. 167–195.

https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/84487.html
https://www.iso.org/standard/84487.html
https://books.google.de/books?id=NnEcAQAAIAAJ

bibliography 49

[42] Douglas B. Lenat. “CYC: a large-scale investment in knowledge infras-
tructure.” In: Commun. ACM 38 (1995), pp. 32–38.

[43] Da Ma, Xingyu Chen, Ruisheng Cao, Zhi Chen, Lu Chen, and Kai Yu.
“Relation-Aware Graph Transformer for SQL-to-Text Generation.” In:
Applied Sciences (2021).

[44] E. Marchi and O. Miguel. “On the structure of the teaching-learning
interactive process.” In: International Journal of Game Theory 3.2 (1974),
pp. 83–99. issn: 1432-1270. doi: 10.1007/BF01766394. url: https://
doi.org/10.1007/BF01766394.

[45] Raina Mason, Carolyn Seton, and Graham Cooper. “Applying cogni-
tive load theory to the redesign of a conventional database systems
course.” In: Computer Science Education 26 (Mar. 2016). doi: 10.1080/
08993408.2016.1160597.

[46] T.J. McCabe. “A Complexity Measure.” In: IEEE Transactions on Soft-
ware Engineering SE-2.4 (1976), pp. 308–320. doi: 10.1109/TSE.1976.
233837.

[47] Daphne Miedema, Efthimia Aivaloglou, and G. Fletcher. “Identifying
SQL Misconceptions of Novices: Findings from a Think-Aloud Study.”
In: Proceedings of the 17th ACM Conference on International Computing
Education Research (2021).

[48] Daphne Miedema, Efthimia Aivaloglou, and G. Fletcher. “Identifying
SQL misconceptions of novices.” In: ACM Inroads 13 (2022), pp. 52–65.

[49] Daphne Miedema, G. Fletcher, and Efthimia Aivaloglou. “Expert Per-
spectives on Student Errors in SQL.” In: ACM Transactions on Comput-
ing Education (TOCE) (2022).

[50] Daphne Miedema, G. Fletcher, and Efthimia Aivaloglou. “So many
brackets! An analysis of how SQL learners (mis)manage complexity
during query formulation.” In: 2022 IEEE/ACM 30th International Con-
ference on Program Comprehension (ICPC) (2022), pp. 122–132.

[51] George A. Miller. “WordNet: A Lexical Database for English.” In: Com-
mun. ACM 38 (1995), pp. 39–41.

[52] Masahiro Naito, Sho Yokoi, Geewook Kim, and Hidetoshi Shimodaira.
“Revisiting Additive Compositionality: AND, OR and NOT Opera-
tions with Word Embeddings.” In: ArXiv abs/2105.08585 (2021).

[53] Heiko Paulheim. “Towards Profiling Knowledge Graphs.” In: PRO-
FILESISWC. 2017.

[54] Sini Govinda Pillai, Lay-Ki Soon, and Su-Cheng Haw. “Comparing
DBpedia, Wikidata, and YAGO for Web Information Retrieval.” In: In-
telligent and Interactive Computing (2019).

[55] Roel Popping. “Knowledge Graphs and Network Text Analysis.” In:
Social Science Information 42.1 (2003), pp. 91–106. doi: 10.1177/0539018403042001798.
eprint: https://doi.org/10.1177/0539018403042001798. url: https:
//doi.org/10.1177/0539018403042001798.

https://doi.org/10.1007/BF01766394
https://doi.org/10.1007/BF01766394
https://doi.org/10.1007/BF01766394
https://doi.org/10.1080/08993408.2016.1160597
https://doi.org/10.1080/08993408.2016.1160597
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1177/0539018403042001798
https://doi.org/10.1177/0539018403042001798
https://doi.org/10.1177/0539018403042001798
https://doi.org/10.1177/0539018403042001798

bibliography 50

[56] Seth Poulsen, Liia Butler, Abdussalam Alawini, and Geoffrey L. Her-
man. “Insights from Student Solutions to SQL Homework Problems.”
In: Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education (2020).

[57] Bowen Qin et al. “A Survey on Text-to-SQL Parsing: Concepts, Meth-
ods, and Future Directions.” In: ArXiv abs/2208.13629 (2022).

[58] Ehud Reiter and Robert Dale. “Building applied natural language gen-
eration systems.” In: Natural Language Engineering 3 (1997), pp. 57–87.
doi: 10.1017/S1351324997001502.

[59] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
“DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter.” In: ArXiv abs/1910.01108 (2019).

[60] Yasin N. Silva, Alexis Loza, and Humberto Luiz Razente. “DBSnap-
Eval: Identifying Database Query Construction Patterns.” In: Proceed-
ings of the 27th ACM Conference on on Innovation and Technology in Com-
puter Science Education Vol. 1 (2022).

[61] Alkis Simitsis and Yannis E. Ioannidis. “DBMSs Should Talk Back
Too.” In: ArXiv abs/0909.1786 (2009).

[62] Amit Singhal. Introducing the knowledge graph: Things, not strings. 2012.
url: https : / / www . blog . google / products / search / introducing -

knowledge-graph-things-not/.

[63] John B. Smelcer. “User errors in database query composition.” In: Int.
J. Hum. Comput. Stud. 42 (1995), pp. 353–381.

[64] Robyn Speer, Joshua Chin, and Catherine Havasi. “ConceptNet 5.5: An
Open Multilingual Graph of General Knowledge.” In: ArXiv abs/1612.03975

(2016).

[65] Emil Stankov, Anastasia Bogdanova, Bojan Ilijoski, and Mile Jovanov.
“A SURVEY ON SOFTWARE COMPLEXITY METRICS IN THE CON-
TEXT OF THEIR APPLICATION IN EDUCATIONAL ENVIRONMENT.”
In: 2018.

[66] Made Agus Putra Subali and Siti Rochimah. “A new model for mea-
suring the complexity of SQL commands.” In: 2018 10th International
Conference on Information Technology and Electrical Engineering (ICITEE)
(2018), pp. 1–5.

[67] Toni Taipalus. “Explaining Causes Behind SQL Query Formulation Er-
rors.” In: Oct. 2020. doi: 10.1109/FIE44824.2020.9274114.

[68] Toni Taipalus. “The Effects of Database Complexity on SQL Query For-
mulation (journal-first).” In: 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (2020), pp. 185–185.

[69] Toni Taipalus and Piia M. H. Perälä. “What to Expect and What to
Focus on in SQL Query Teaching.” In: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (2019).

https://doi.org/10.1017/S1351324997001502
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1109/FIE44824.2020.9274114

bibliography 51

[70] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek.
“YAGO 4: A Reason-able Knowledge Base.” In: The Semantic Web 12123

(2020), pp. 583–596.

[71] Thomas Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner,
and Lydia Pintscher. “From Freebase to Wikidata: The Great Migra-
tion.” In: Apr. 2016, pp. 1419–1428. doi: 10.1145/2872427.2874809.

[72] Rahman Taufik and Dade Nurjanah. “An Intelligent Tutoring System
with Adaptive Exercises Based on a Student’s Knowledge and Miscon-
ception.” In: 2019 IEEE International Conference on Engineering, Technol-
ogy and Education (TALE) (2019), pp. 1–5.

[73] Aditya Vashistha. “Measuring Query Complexity in SQLShare Work-
load.” In: 2015.

[74] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.
“Attention is All you Need.” In: ArXiv abs/1706.03762 (2017).

[75] Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad
Sakor, and Ariam Rivas. “Transforming Heterogeneous Data into Knowl-
edge for Personalized Treatments–A Use Case.” In: Datenbank-Spektrum
19 (2019), pp. 95–106.

[76] Lucas Donizetti Vieira. “Accessing related topics through community
detection in knowledge graph.” In: 2020.

[77] Denny Vrandečić and Markus Krötzsch. “Wikidata.” In: Communica-
tions of the ACM 57 (2014), pp. 78–85.

[78] Wei Wei, Bei Zhou, and G. Leontidis. “A Hybrid Natural Language
Generation System Integrating Rules and Deep Learning Algorithms.”
In: ArXiv abs/2006.09213 (2020).

[79] Xander Wilcke, Peter Bloem, and Viktor de Boer. “The knowledge
graph as the default data model for learning on heterogeneous knowl-
edge.” In: Data Sci. 1 (2017), pp. 39–57.

[80] Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei Chen, and Vadim
Sheinin. “SQL-to-Text Generation with Graph-to-Sequence Model.” In:
Conference on Empirical Methods in Natural Language Processing. 2018.

[81] Sheng Yu and Shijie Zhou. “A survey on metric of software complex-
ity.” In: 2010 2nd IEEE International Conference on Information Manage-
ment and Engineering (2010), pp. 352–356.

[82] Kwok bun Yue. “Using a Semi-Realistic Database to Support a Database
Course.” In: J. Inf. Syst. Educ. 24 (2013), pp. 327–336.

[83] Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song, and Cane Wing
ki Leung. “ASER: A Large-scale Eventuality Knowledge Graph.” In:
Proceedings of The Web Conference 2020 (2019).

https://doi.org/10.1145/2872427.2874809

bibliography 52

[84] Chris van der Lee, Albert Gatt, Emiel van Miltenburg, and Emiel Krah-
mer. “Human evaluation of automatically generated text: Current trends
and best practice guidelines.” In: Computer Speech & Language 67 (2021),
p. 101151. issn: 0885-2308. doi: https://doi.org/10.1016/j.csl.
2020.101151. url: https://www.sciencedirect.com/science/article/
pii/S088523082030084X.

https://doi.org/https://doi.org/10.1016/j.csl.2020.101151
https://doi.org/https://doi.org/10.1016/j.csl.2020.101151
https://www.sciencedirect.com/science/article/pii/S088523082030084X
https://www.sciencedirect.com/science/article/pii/S088523082030084X

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	 Thesis
	1 Introduction
	1.1 Motivation
	1.2 Aim and scope
	1.3 Methodology

	2 Aspects of Relational Databases, Natural Language Processing and Knowledge Graphs
	2.1 Aspects of Relational Databases Regarding the Generation of SQL-Queries
	2.1.1 Related Work in Generating SQL-Query Exercises
	2.1.2 Assessing the Complexity of SQL-Queries

	2.2 Natural Language Processing for Transforming SQL to Natural Language
	2.2.1 Related Work in Generating Text from SQL-Queries
	2.2.2 Natural Language Generation Pipeline

	2.3 Knowledge Graphs for Semantically Enriching Relational Databases
	2.3.1 Current Landscape of Knowledge Graphs
	2.3.2 Entities of the Knowledge Graph as Tables

	3 Analysis of the Requirements for a System for the Generation of Meaningful SQL-Query Exercises
	3.1 Features of the Exercise Generation Algorithm
	3.1.1 Parametrization of the Exercise Generation System
	3.1.2 Generation of an Exercise Formulation in Natural Language
	3.1.3 Automatic Assessment of the Solution Attempts

	3.2 Consistency and Quality of the Generated Exercises
	3.2.1 Syntactic Soundness of the Generated Exercise
	3.2.2 Semantic Plausibility of the Generated Exercise
	3.2.3 Unambiguity of the Exercise Formulation Description in Natural Language

	3.3 Properties of the Exercise Generation System
	3.3.1 Constant Access and Readiness and Platform Independent Usability of the Exercise Generation System of the Exercise Generation System
	3.3.2 Performance of the Exercise Generation System

	4 Design and Implementation of a System for the Generation of Meaningful SQL-Query Exercises
	4.1 Overview of a System for the Generation of Meaningful SQL-Query Exercises
	4.2 Deriving a Relational Database from a Knowledge Graph
	4.2.1 Subsetting a Knowledge Graph Into Topicallly Coherent Domains
	4.2.2 Deriving a Relational Schema from Entities of the Knowledge Graph
	4.2.3 Limitations of Deriving Relational Databases From Knowledge Graphs

	4.3 Semantically Enriching a Relational Database with a Knowledge Graph
	4.3.1 Normalizing the Relational Database to Satisfy Domain Constraints and Cardinality Restrictions
	4.3.2 Knowledge Graph Entities for Semantic Labeling of Tables

	4.4 Generation of Meaningful SQL-Query Exercises
	4.4.1 Parameter Space of the Generation Algorithm
	4.4.2 Traversing the Relational Schema as a Graph of Tables and Foreign Key Constraints
	4.4.3 Generation of Random Parameter-Compliant SQL-Queries

	4.5 Generation of an SQL-Query Exercise Formulation in Natural Language
	4.5.1 Macroplanning the SQL-Query Exercise Formulation
	4.5.2 Microplanning the SQL-Query Exercise Formulation
	4.5.3 Surface Realization of the Structured Exercise Formulation

	5 Evaluation of the System for the Generation of Meaningful SQL-Query Exercises
	5.1 Evaluation study design
	5.1.1 Crowdsourcing for Evaluating the Generated Exercise Component

	5.2 Evaluation of the Exercise Generation Algorithm Features
	5.2.1 Evaluation of the Generation of an Exercise Formulation in Natural Language
	5.2.2 Evaluation of the Automatic Assessment of the Solution Attempts

	5.3 Evaluation of the Consistency and Quality of the Generated SQL-Query Exercises
	5.3.1 Evaluation of the Syntactic Soundness of the Generated Exercise
	5.3.2 Evaluation of the Semantic Plausibility of the Generated Exercise

	5.4 Evaluation of the SQL-Query Exercise Generation System Properties
	5.4.1 Evaluation of the Performance of the Exercise Generation System

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	 Appendix
	A Appendix
	A.1 DQL Keyword Subset
	A.2 PostgreSQL Reflection Queries
	A.2.1 PostgreSQL Table Reflection Query
	A.2.2 PostgreSQL Foreign Key Reflection Query

	A.3 NLG Template Repositories
	A.3.1 Baseline NLG Templates
	A.3.2 Hybrid NLG templates

	 Bibliography

