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Zusammenfassung

Fußball stellt bekannte Herausforderungen in der KI-Forschung dar. Eine Abstraktion mit
kleinerem Parameterraum liegt im Tischfußball. Bei einem halbautomatisierten Kicker wird
ein Team mit Industriemotoren durch einen KI-Agenten gesteuert, während das andere Team
von Menschen gespielt wird. Für eine dynamische Spielweise benötigt der KI-Agent den Zu-
griff auf so viele Daten wie möglich, insbesondere auf den Zustand des Spiels in echtzeit. Bei
einem Kickerspiel wird der Spielzustand durch die Position und die Rotation der einzelnen
Figuren sowie die Position des Balls definiert. In dieser Arbeit wird ein System konzipiert,
welches die Erkennung des Spielzustands auf Basis von Computer Vision und Convolutional
Neural Networks ermöglicht. Das System wird auf einem halbautomatisierten Tischkicker
getestet, trainiert und evaluiert. Es wird ein End-to-End-Bildregressionsmodell verwendet,
um die Position und die Rotation der einzelnen Stangen vorherzusagen. Fünf verschiedene
Architekturen, nämlich ResNet18, ResNet50, MobileNetV3, EfficientNetV2 und eine eigene
Architektur, werden als Feature-Extractor für das Regressionsmodell verwendet und evaluiert.
Für das Training der Modelle wird ein Datensatz erstellt, welcher die Position und Rotation
der einzelnen Stangen enthält. Die Daten der schwarzen, automatisierten Figuren werden
direkt aus den Motoren ausgelesen. Im Gegensatz dazu müssen die Daten für die weißen Fig-
uren manuell erhoben werden. Dazu wird die Rotation mit Beschleunigungssensoren gemessen,
während die Position auf Basis des Bildmaterials berechnet wird. Das System zur Erkennung
des Spielzustands wird als Prototyp entwickelt und evaluiert. Es wird gezeigt, dass der Proto-
typ eine hohe Genauigkeit bei der Vorhersage der Position und Rotation der Figuren erreicht,
welche den Anforderungen entspricht. Speziell die ResNet-basierten Modelle erreichen vielver-
sprechende Ergebnisse. Die geforderte Vorhersagegeschwindigkeit von 60 Frames pro Sekunde
konnte das System aufgrund hoher Inferenzzeiten und sequentieller Ausführung jedoch nicht
erreichen. Am Ende dieser Arbeit wird ein Überblick über mögliche Lösungen für dieses Prob-
lem präsentiert.
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Abstract

The game of Football poses well-known challenges in AI research. A smaller parameter space
abstraction can be found in the game of Foosball. In a semi-automated Foosball game, one
team is controlled using industrial motors through an AI agent while the other team is played
by humans. For dynamic gameplay, the AI agent requires access to as much data as possible,
namely the real-time game state. In a Foosball game, the game state is defined by the position
and rotation of the individual figures as well as the position of the ball. In this work, a concept
for a real-time game state detection system based on Computer Vision and Convolutional
Neural Networks is presented. The system is tested, trained and evaluated on a real-world
semi-automatic Foosball table setup. An end-to-end image regression model is employed to
predict the position and rotation of the individual rods. Five different architectures, namely
ResNet18, ResNet50, MobileNetV3, EfficientNetV2 and a custom architecture, are utilized
and evaluated as feature extractors for the regression model. For the training of the models,
a custom dataset is created containing the position and rotation of the individual rods. The
data for the black, automated figures is directly received from the motors. The rotation of the
white, human played figures is measured by using accelerometer sensors while the position is
calculated based on image data. The game state detection system is implemented as a proof-
of-concept. It is demonstrated that the prototype achieves high accuracy in predicting the
position and rotation of the figures, meeting the requirements. Especially the ResNet-based
models show promising results. However, the system could not achieve the required prediction
speed of 60 frames per seconds due to high inference times and sequential execution. An
overview over possible solutions to this is presented at the end of this work.
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Chapter 1

Introduction

The usage of Artificial Intelligence (AI) and Deep Reinforcement Learning (DRL) for the au-
tomation of board games like Go [53] or computer games like Dota 2 [46] enables beating high
level players or even world champions. Using a game is a good example for Deep Reinforce-
ment Learning (DRL) approaches as it provides a defined set of rules and actions. Therefore,
a game provides safe and reproducible environments for the development and testing of new
algorithms. The transfer from a game environment into the real world is another field of re-
search. The usage of robotics and AI in the well-known RoboCup challenge [37] enables the
combination of a defined set of rules and real world challenges.

The training process of DRL agents which should control robots is (1) compute intensive and
(2) needs to be trained on the actual robots. To circumvent this, the usage of simulations for
the training and a transfer of the trained agent into the real world robot enables training
in a safe space [39]. While a simulation needs to follow the physical constraints of the real
world, it cannot cover all possible events and therefore leaves a sim-to-real gap which must
be addressed. De Blasi et al. [19] introduced a DRL system for the automation of a Foosball
table. In contrast to Football, the game of Foosball provides less variables as the game state
can be defined by only using the position and rotation of the figures and the position of the
ball. They also used a simulation for the training and adapted the agents to the real world.

The sim-to-real gap can include physical constraints which are not implemented in the sim-
ulation but can also include the absence of data in the real world. While the Foosball table
is automated on one side, the other side is played by humans. The table communicates the
game state of the automated side but not of the human side. In contrast, this data is available
in the simulation. A DRL agent which is trained inside the simulation using this data could
learn strategies based on the opponents moves which are not applicable in the real world as
this data is not available. Another point is the quality of the available data in the real world.
While the game state is highly accurate in the simulation, the measurements in the real world
can potentially introduce some error margins. Furthermore, the agent should have as much
information as possible available in the training process. Therefore, the detection of the game
state in the real world enables the DRL agent to use this data for its decision making. In this

12



work, a game state detection system for the Foosball table is designed and presented.

1.1 Introduction to the KIcker Project
The semiautomatic Foosball table which is used in this work (cf. Figure 1) was originally build
by Bosch Rexroth and presented by De Blasi et al. [19]. They used an Ullrich Sport U4P table
with black and white teams and four rods per team. The black rods are automated using
IndraDyn S MS2N03 synchronous motors for the rotation and IndraDyn L MCL020 motors
for the translation of the rods. The motors are driven by IndraDrive Cs drive converters
which are connected to the Programmable Logic Controllers (PLCs) IndraControl XM21 and
XM22. The PLCs are connected via an Ethernet interface and can communicate using the
OPC Unified Architecture (OPC UA) protocol [44], an industrial communiction standard for
secure data exchange between different devices in industrial automation. A major benefit of
OPC UA is its platform and programming language independency.

A Logitech Brio 4K camera is mounted above the table and enables a top-down view. The
camera is able to capture 1080p (1920 ×1080 px) in 60 Frames per Second (FPS). The motor
drives are utilized as sensors and report their rotation or lateral position through OPC UA.
For safety reasons a miniTwin4 light curtain by Sick is added above the playing field which
stops all rod movements if the light grid is interrupted, e.g. by a human hand or another
object getting too close to the playing field.

Several studies researched the automation of the Foosball table using DRL. De Blasi et al.
[19] aimed for the automation of the striker rod. The DRL system was trained in a simulation
to score goals. The ball was manually placed on pre-defined positions. Their aim was to
bridge the reality gap of such a system which arises from unavoidable deviations in the real
world which cannot be properly addressed in a simulation. The steps for bridging this gap
are (1) ensuring that the simulation is as close to the real world as possible and (2) Applying
randomization to the parts of the simulated physical system which suffer from imprecision.
In contrast, Rohrer et al. [51] aimed their research at the automation of the goalkeeper using
the same physical table and simulation. While the camera would be able to capture at higher
frame rates, the authors only captured the game state in 30 FPS. Therefore, the position of the
ball is calculated approximately every 33 ms. Using two consecutive detected ball positions,
the direction of the ball is calculated and the DRL system is trained to move the goalkeeper
accordingly to block the shot. Gashi et al. [25] aimed also at the automation of the goalkeeper
but additionally included the opponents striker rod using multi-agent DRL. The agent for the
striker rod was trained to score goals similar to De Blasi et al. [19] while the goalkeeper was
trained to prevent the scoring of a goal similar to the approach of Rohrer et al. [51]. Gashi et
al. solely trained the system inside the simulation since the white opponent is not automated
on the physical table. As the position and rotation data of the white figures is available inside
the simulation, the DRL agents can use this information to predict their actions. In the real
world, this data is not available. The authors note the possibility of imitation learning in the
future which would require a game state detection system to capture a Foosball game between
two human players. Using this captured game state, the DRL agent could learn actual human
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Figure 1: The semi-automated Foosball table used in this work.
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playing strategies and adapt those in the own action prediction.

1.2 Objectives
The goal of this work is a concept of a game state detection system for a Foosball table which
can detect the current game state in real-time to enable DRL approaches in the automation
which can act on the opponents actions and therefore enable a true dynamic Foosball game.
Additionally, the game state detection system could be used to capture a human-played game
and enable an imitation learning approach for the automated agent as proposed by Gashi et
al. [25]. In the following section, a short definition of the term real-time is presented followed
by a description of the defined requirements to reach the overall goal.

The Definition of Real-Time
Most studies in the field of real-time computer vision or computer graphic systems lack a clear
definition of the term real-time. The Oxford Dictionary of Computer Science [16] defines a
real-time system as follows:

“Any system in which the time at which output is produced is significant. This is usually
because the input corresponds to some movement in the physical world, and the output has
to relate to that same movement. The lag from input time to output time must be sufficiently
small for acceptable timeliness.” [16]

Using this definition, it is clear to say that the term real-time cannot be defined without a given
context and without defining the acceptable timeliness in this context. In computer graphics,
the acceptable timeliness is usually defined in FPS. In general, the acceptable amount of FPS
is defined by the ability of the human eye to detect differences between two images. While
humans can detect flicker artifacts of up to 500 Hz, the rate at which a stable image without
flickering can be seen is much lower at around 50-90 Hz [18]. Using this rate, Akenine-Moller
et al. [11] define an upper limit for real-time rendering at 72 FPS. Their main definition of
real-time is based on the ability of the user to focus on action and reaction. Therefore, a
system can be considered real-time at as low as 15 FPS.

In the Computer Vision (CV) context, this definition cannot be used directly since a CV
system often depends on other systems like a camera. Otterness et al. [48] define real-time as
30 FPS since most cameras support the capturing of videos at this frame rate. Pulli et al. [50]
report a response time of 30-40 ms as real-time which corresponds to around 25-30 FPS. In
other studies [30,54], real-time is defined between 24-60 FPS. In the previous work by Horst
et al. [31], real-time was considered to be 60 FPS which is the capturing frame rate of the
used camera. This definition is also used in this thesis as the same physical hardware is used.
Therefore, a resulting acceptable response time is around 16.6 ms.

Another important aspect of real-time is the latency of a system. If the processing time is
below 16.6 ms and the system is therefore able to process input at 60 FPS it would be
considered real-time. If this system introduces some static latency, e.g. for networking or
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other communication, it would still meet the 60 FPS requirement but cannot be considered
real-time, as the processing lags behind the actual time. Floridi [23] focuses his real-time
definition solely on the latency aspect and describes a system with lower than 100 ms latency
as real-time. Additionally, he described real-time as “something that is simulated, represented,
communicated, interacted with, shown etc., at the same time or at the same rate as it happens”
[23]. This more general approach to defining real-time adapts better to reality, as the real-time
requirement is always depending on the use case. Claypool [17] researched the influence of
latency in computer gaming and specially in real-time strategy games. His studies showed
that added latency does not impact the result of the games indicating that real-time is clearly
not as tight defined as it is in other games. Janssen et al. [34] described a maximum velocity
of a ball in a Foosball game to be 10 m/s or 1 cm/ms. Considering the size of the ball with a
diameter of around 35 mm it needs 3.5 ms to completely leave its current position. Therefore,
a system latency of 10 ms would result in a high chance of missing the ball at maximum
velocity. Considering the much lower average velocity in a Foosball game, a latency of 10 ms
can be good enough.

Requirements
The overall goal of the work on hand is a system which can detect the game state of a Foosball
game in real-time. As already mentioned, real-time is defined per use case and lacks a generally
valid definition. Considering that the DRL algorithm, which should use the detected game
state for the automation of the black rods, and the actual control of the rods through the
motors and the PLCs also introduce some latency, the overall reaction time of the computer
controlled rods can only be as fast as the whole system starting with the image capturing,
game state detection, action prediction and ending with the actual movement. Therefore, the
latency of the game state detection should be as low as possible. Additionally, the utilized
webcam can only record 60 FPS at 1080p which is the desired image resolution. Albeit the
documentation of the webcam stating that the camera is able to record 90 FPS at a 720p
resolution this was not reproducable during the implementation of the game state detection
system. Therefore, the real-time requirement is met if the system is able to achieve 60 FPS
and does introduce a maximum static latency of 10 ms.

Furthermore, the system should be able to detect the game state which is defined as the
position and rotation of all figures and the detection of the ball. In the previous work, the ball
is already detected by De Blasi et al. [19]. A system for the detection of the white, human
played figures is conceived by Horst & Hagens et al. [31]. While the position of all white
figures could be detected, the rotation detection was only implemented for the white midfield
figures. This approach should be extended and verified to the other white rods and to the
black rods. Therefore, the game state detection system must be able to detect the position
and the rotation of the black and white figures.

As the DRL system should use the detected game state as input features, the game state
must be detected with a high accuracy. Overall, the position of the figures is more important
than the rotation as the rotation has a much higher range in which the ball is stopped. For
an easier estimation of the rotation range it is assumed that the figure does not move when
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hit by the ball. While this is the case on the black figures as the motors are stronger than
the balls impact, the white figures will rotate a few degrees on impact. Therefore, an offset
of 5 degrees is deducted from the rotation range. In Figure 2 the rotation range is illustrated.
Considering the length of a figure between the center of the rod and the end of the feet which
is 72 mm, the distance between the playing field and the end of the feet of 12 mm and the
diameter of the ball which is 35 mm, the angle 𝛼 is approximately 47 degrees. Deducting the
5 degree offset, a resulting rotation range of ±42 degrees or �23 % of the overall rotation range
of the white figures is calculated.

To perform a straight shot, the ball must be hit in the center. Considering the width of the
feet of 22 mm, a position range of ±11 mm is defined. It is noted that a small deviation
from the center would probably still result in a straight-enough shot. The positional limits
of the rods vary between ±55 mm on the midfield rods and ±180 mm on the defender rod.
Therefore, the position range would be approximately 20 % of the midfield limits and 8.5 %
of the defender rod. Since a player would want to block a ball, it can be assumed that the
figures are standing upright most of the time while they are not always in the center of the
ball. Therefore, an accurate position detection is more important than an accurate rotation
detection. The requirement for accurate detection is met if the average error is inside the
presented ranges.

Figure 2: Rotation range of a figure which would stop the ball.

The system should be used by future students to enhance the automation of the Foosball table
using DRL. Therefore, the hardware requirements should be low, and the system should be
runnable on commodity hardware and laptops. Furthermore, hardware modifications on the
Foosball table itself are not possible.

17



1.3 Structure of this Thesis
First, a short introduction to Convolutional Neural Networks (CNNs) and the network ar-
chitectures ResNet, MobileNet and EfficientNet is presented. Following this, an overview of
related and previous work describing the state-of-research on game state detection in Foosball
games is given. Following this, a concept is presented to capture and detect the game state
of such a Foosball table in real-time, which is implemented as a prototype in the consecutive
chapter. Afterwards, an evaluation of the different network architectures and the overall sys-
tem is presented including a discussion of results. The thesis ends with a conclusion and a
brief overview of future research fields based on the presented concept.
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Chapter 2

Convolutional Neural Networks

The first predecessor of Convolutional Neural Networks (CNNs) is considered to be the Neocog-
nitron in 1980 [24]. The groundbreaking work was LeNet, a CNN to classify handwritten
numbers, by LeCun et al. [41] in 1989. Albeit the early work and due to the lack of computing
power, successful CNN models were only available after the work by Krizhevsky et al. [38] in
2012. Since then, CNNs are widely used in image-based machine learning problems like object
recognition, image classification or text recognition [cf. 12,13,40,42,66].

In contrast to traditional neural networks which utilize hidden layers with fully connected
neurons, the neurons in a convolutional layer are only connected to a subset of neruons from
the previous layer. This behavior enables an implicit learning of features. Each convolutional
layer consists of a set of spatial feature maps with learnable kernels. Neurons of the same
feature map share the same weight parameters which reduces the number of learnable pa-
rameters and therefore the complexity of the whole network. In a basic CNN architecture,
each convolutional layer is followed by a pooling layer which reduces the dimension of the
feature maps which thereby also reduces the complexity and the number of parameters. After
extracting the features through convolutional and pooling layers, at least one fully connected
layer such as in traditional neural networks is used as a loss layer where the error between
the desired and actual output is calculated [cf. 13].

In the work on hand, the following three well-known CNN architectures are used:

• ResNet [28];
• MobileNetV3 [33]; and
• EfficientNetV2 [59].

2.1 ResNet
He et al. [28] introduced the usage of residual blocks in deep CNNs. A residual block, also
called skip-connection block, learns a residual function which references the input of the block.
While a traditional neural network would learn the direct mapping between the input and
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the ouput, a residual block learns the difference between the input and the output. If the
input is denoted as 𝑥 and the desired output is 𝐻(𝑥), a traditional network would directly
try to optimize 𝐻(𝑥). In contrast, the residual network would optimize another mapping
𝐹(𝑥) with 𝐹(𝑥) ∶= 𝐻(𝑥) − 𝑥. Therefore, the network only learns the difference between the
input (𝑥) and the desired output (𝐻(𝑥)). The actual output is calculated by transposing the
formula to 𝐻(𝑥) = 𝐹(𝑥) + 𝑥 as illustrated in Figure 3a. The authors describe the residual
mapping as easier to optimize than the unreferenced mapping in a traditional neural network.
Additionally, the utilization of the original input inside the network reduces the vanishing
gradients problem.

Figure 3: Illustration of a residual block and a bottleneck residual block [28].

The residual blocks are utilized by He et al. [28] to create the ResNet architecture. The authors
define a residual layer as multiple residual blocks with multiple convolutional layers with the
same output size. Each residual block uses a skip-connection between the blocks input and
the output. These residual layers are utitlized to create different sized ResNet models. Each
model starts with one convolutional layer using a 7 ×7 kernel and a stride of two thus dividing
the input size in half. Following this are four residual layers finishing with one fully connected
classification layer. At the beginning of each residual layer, the input size is halved again. In
case of ResNet18, each residual layer contains two residual blocks with two convolutional layers
per block, resulting in 18 layers in total. The larger ResNet50 model uses a total of 50 layers
but introduces a different residual block design called bottleneck residual block. This block
uses three convolutional layers as shown in Figure 3b. Starting with a 1×1 convolutional layer
which reduces the input dimension of the following 3×3 layer and ending with an additional
1×1 layer to restore the original output dimensions. This technique leads to more efficient and
deeper networks. ResNet50 uses three of those bottleneck residual blocks in the first residual
layer, four blocks in the second, six blocks in the third and three blocks in the last residual
layer. He et al. report a inferior performance of the residual based networks in contrast to
similar architectures without skip-connections.
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2.2 MobileNetV3
The aim of the MobileNet series is the creation of a deep CNN tuned to mobile and embedded
devices. MobileNetV1 by Howard et al. [32] introduced the usage of depthwhise separable
convolutions enabling the creation of lightweight deep CNNs suitable for mobile and embed-
ded devices with limited resources. In contrast to traditional convolutions, the depthwhise
separable convolutions are applied separately over each channel thus lowering the resource
requirements. Sandler et al. [52] extended this design in MobileNetV2 by introducing inverted
residual blocks. The skip-connections are between bottleneck layers to reduce the complex-
ity of the network. Howard et al. [33] created MobileNetV3 which is especially tuned to
mobile phone CPUs by utilizing hardware-aware network architecture search. Additionally,
the NetAdapt [65] algorithm was utilizied to shrink the network. NetAdapt shrinks existing
pretrained networks based on resource budgets. In contrast to other network simplification
algorithms which often optimize indirect metrics like the number of parameters, NetAdapt
optimizes for the direct metrics of latency and energy consumption. Additionally, Howard
et al. created a new efficient network design and used new efficient versions of nonlineari-
ties. The authors presented two different Versions of MobileNetV3, MobileNetV3-Large and
MobileNetV3-Small. The small version aims for low latency on slower hardware while the large
version uses a deeper network architecture and is suitable for higher performing hardware.

While latency was also an important parameter in the creation of ResNet by He et al. [28],
MobileNet prioritizes the computational efficiency. Therefore, MobileNet architectures tend to
have a smaller number of parameters than ResNet. Through the adaption of inverted residual
blocks in MobileNetV2, MobileNetV3 is build on comparable techniques as introduced by He
et al. [28].

2.3 EfficientNetV2
In 2020, Tan et al. [58] introduced the first iteration of EfficientNet, a CNN architecture and
network scaling method. In contrast to previous network scaling by scaling the depth, width
and resolution of the network independently, EfficientNet uses a compound coefficient to scale
these factors uniformly. The underlying intuition that a network needs to be deeper if the input
image is bigger justifies the uniform scaling. The network is based on the inverted bottleneck
residual blocks of MobileNetV2 [52]. Later, Tan et al. [59] advanced this architecture to
EfficientNetV2 achieving faster training speed and better paramter efficiency by combining
neural architecure search and scaling to optimize training speed.

In contrast to ResNet [28], the scaling strategy of EfficientNetV2 results in achieving better
accuracy with fewer parameters and enables its usage in resource constrained environments.
Albeit achieving high accuracy on the ImageNet dataset [20], the scaling generally prioritizes
efficiency. Similar to MobileNetV3 [33] and ResNet [28], EfficientNetV2 is available in small
and large versions with different depth and therefore resource requirements.

Vdovjak et al. [60] conducted a comparison of ResNet, MobileNet and EfficientNet by creating
a fire detection classifier based on the different networks. Their comparison was partitioned
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into multiple model tiers based on model size. In their findings, The ResNet models performed
equally or worse than the MobileNet and EfficientNet classifiers. Especially the large ResNet
with 101 layers performed the worst of all compared models. In contrast, the smaller ResNet
models with 18, 34 or 50 layers performance was closer to the results of MobileNet and
EfficientNet. The authors describe the ResNet architecture as outdated as the newer network
architectures achieve the same or better results with less computational power needed. Albeit
this conclusion, all models required approximately the same inference time independent to the
model size with 5 to 6.5 ms. A correlation between the number of trainable parameters and the
inference time is not visible which is clearly indicated by the largest ResNet101 model needing
the same inference time as the smallest ResNet18 model. Therefore, the higher computational
requirements of ResNet do not directly influence the inference time in the presented use case.
It is noted that the authors used high performing hardware, namely an AMD Ryzen 9 5900X
processor with 64 GB RAM and an NVIDIA RTX 3080 GPU which is similar to the hardware
used in this work.
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Chapter 3

Related and Previous Work

3.1 Related Work
Several studies were conducted around the creation of a semi-automatic Foosball table. A key
part of the automation is the subprocess of game state detection. Most studies address both
fields [27,29,62] while some address only the state detection [14,31]. Studies which only ad-
dress the automation without mentioning the game state detection usually extend an already
existing automated Foosball table and use the established state detection methods [25,51,67].

The automation hardware is usually built around linear and rotary motors to control the
rods with additional sensors to measure the position and rotation, cf. [19,34,45,62]. While the
controlling of those motors in older approaches was implemented using rule based algorithms
[62,64] the research shifted towards DRL based machine learning models [19,25,51]. In between
those, Zhang et al. [67] used imitation learning methods to improve the rule based agents by
Weigel et al. [62]. Regardless of the approach to automating a Foosball table, the game state
detection or at least the detection of the ball is needed for a reactive system.

The game state of a Foosball Table is generally defined as:

• The position of the ball; and
• The position and rotation of the figures.

Additionally, the velocity and direction of the ball is a key part. Those values can be calculated
by capturing multiple game states over a short time. Therefore, the real-time detection of the
game state is important. The position of the figures is addressed in some studies while the
rotation of the figures is mostly omitted or only rudamentary addressed. In the most cases,
the game state is retrieved via a CV system consisting of a camera to capture the playing
field and traditional CV algorithms to retrieve the game state.

The only commercially available automated Foosball table, StarKick, was developed by Weigel
et al. [62,64]. To this date, the commercial version was stopped and no further development
seems to be planned. In the early non-commercial version, called KiRo, they used a top down
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camera to capture the game state including the individual figures. Their Foosball table had the
player figures in red and blue colors with a yellow ball. Therefore, the figures and the ball could
be detected using classical color segmentation. Since the position of the individual figures on
each rod is known, this a priori knowledge can be used to average out possible segmentation
errors. The authors calculate the rotation angle of the figures using the bounding box width
and a measured minimum and maximum value. Since only the width of the bounding box is
used, a distinction between a left or right / up or down rotated figure is not possible. Therefore
and because of limited image quality they only detect the figures as an up and down position
without extracting the actual angle.

In later versions [61,63] they switched to a bottom up camera which is mounted inside of the
Foosball table. They used a one-sided transparent playing field, so the field appears to be
green for an outside player while it is transparent for a portion of the infrared light spectrum.
Using additional mounted infrared LEDs to illuminate the field, the camera could get an
image of the playing field without any figures or other objects obstructing the view of the ball.
Due to the new camera setup, the figures could no longer be detected and the resulting game
state only included the position of the ball.

Figure 4: Visual marker pattern used to detect a rods rotation [15].

Bošnak et al. [15] proposed a method for the detection of the rotation of a rod by using
a camera and visual marker patterns on the rods. Figure 4a shows the used pattern. For
positioning reasons, each pattern begins with a barcode on the left side followed by a 5 bit
gray code pattern. Each rotation angle is encoded in this pattern corresponding to 32 distinct
values and a usable bucket width of 360

32 ≈ 11 degrees. The authors proposed an interpolation
method to increase the accuracy of the measurement resulting in an angular resolution of 0.7
degrees. Figure 4b shows the pattern in use on a rod on the Foosball table.

Mohebi [45] discussed several approaches for the game state detection of a semi-automatic
Foosball table. To detect the position of the rods, linear positioning sensors were proposed.
Those include inductive linear sensors and hall effect based sensors using the change in mag-
netic fields. Other mentioned sensor types include resistance-based, optical or capacitive posi-
tioning sensors. Another approach is the algoritmic calculation of the position and rotation of
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the motor-controlled rods. This has a major disadvantage in the accumulation of small errors
over the span of a game to large errors in the assumed position and rotation, creating the
need for some error correction. Another approach for the rotation detection is the usage of
potentiometer sensors by attaching the shaft of the potentiometer to the rod. The rotation
can be calculated by measuring the resistance of the potentiometer. The author points out
that several safety features need to be applied to prevent permanent damage on the sensors.
Additionally, the use of potentiometers can increase the drag of a rod. A third option includes
the usage of a CV system for the player detection utilizing a top down camera mounted above
the Foosball table. This system would use a similar rotation detection as described by Bošnak
et al. [15].

Mohebi [45] also proposed several strategies for the tracking of the ball:
First, a touch screen can be used for the ball detection. While several touch screen technolo-
gies are compared, an infrared based touchscreen is the only available option due to the light,
non-conductive ball with no electrical ground connection during the game. Thus, capacitive
and resistive touch screens as used in mobile phones cannot be used for the ball detection.
The second discussed option is the tracking of the ball via a Bluetooth transmitter inside
the ball and multiple Bluetooth antennas around the playing field. The position can be cal-
culated by measuring the time difference between the antennas. While theoretically working,
this method is not usable in a semi-automatic Foosball table due to the following reasons.
The data processing needs to be very fast, considering the time difference between one an-
tenna with 9000 mm distance and a second antenna with 300 mm distance to the ball is only
about 2.9 ×10-9 s. Furthermore, the position of the sender inside the ball and interference with
other Bluetooth enabled devices can introduce errors in the position detection. The Bluetooth
transmitter would also need a battery inside the ball which must be changeable. The author
notes that the game could be impacted if the mass of the ball is not uniformly distributed.
Therefore, the Bluetooth transmitter and battery must be precisely positioned with almost
no margin for errors.
The third option is the use of a grid of light emitters and detectors. The main advantages of
this system are the flexibility as a higher resolution can be added afterwards by increasing the
number of emitters and detectors and the easy handling of malfunctions as only the broken
parts need to be replaced while the rest of the system is not impacted. The addressed disad-
vantages include the requirement of programming for the ball detection and the limitations in
detection accuracy due to the space needed between two detectors to not interfere with each
other.
The last option is the usage of a computer vision system like already proposed for the figure
detection. In addition to the top-down camera which has the disadvantage of possible hiding
of the ball under the figures, a bottom up camera under the Foosball table is addressed. Simi-
lar to the ball tracking approach in the second iteration by Weigel et al. [61], the detection of
the figures is not possible with the bottom up camera setup. Additionally, the author notes
possible problems in the detection if light sources are directly above the Foosball table.

In contrast to the other presented authors, Bambach et al. [14] only researched the CV based
state detection of a standard Foosball game with no automation involved. While the real-time
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detection was a key part, the authors used captured videos instead of live footage. Their
approach starts by finding the rods of the Foosball table. Since this step is compute heavy
and the rods themselves do not move over the span of a game, the rods only need to be found
once at the start. The rods are found using a priori knowledge about the table and the Hough
transform line detection algorithm [10]. Since the camera orientation is known, only detecting
horizontal lines is sufficient. Lines in the center part and at the end of the image can also be
ignored to suppress the detection of the background lines on the playing field and the walls of
the table. Afterwards, the eight highest peaks in the Hough space are detected as the rods. To
accomodate camera distortions, multiple lines are tested for the difference of each pixel with
the expected gray value. The line with the least median difference is defined as the center
line of each rod. To detect the individual figures, the negative mean distance between the
pixel colors and the known player color for each row is calculated in a 10 pixel wide vertical
strip around the calibrated center. Resulting is a likelihood distribution for the containing
of a part of the figure for each row. After smoothing this distribution, the resulting peaks
are the center locations of each figure. The rotation of each rod is calculated by searching
the endpoints of the individual figures using a similar color likelihood distribution. Using the
length between the endpoints, the rotation angle is computed using predefined min and max
values between -90 and 90 degrees. Therefore, the rotation of the rods does not accommodate
for overhead states where the feet of the figures are above the horizontal line. The detection
of the ball was implemented by masking the background and utilizing a template matching
algorithm supported by a Kalman filter. The background is defined as everything outside a
specific color range around the red ball. The following template matching is supported by
predicting the next location of the ball using a Kalman filter and searching for the template
of the ball inside a 40×40 px square on the predicted location. Lastly, occlusions of the ball
are detected by a linear thresholding function based on the velocity of the ball. If an occlusion
is detected, the balls state is not updated for the specific frame. As no ground truth was
present, the approach was not evaluated quantitatively but the authors describe the results
as “fairly good with some noise due to the video quality” [14].

Janssen et al. [34] proposed a ball tracking system using CV components for a semi-automatic
Foosball table build by the University of Eindhoven. Their setup included a top down camera
which could only capture monochrome images. In contrast to other research, the ball is white
thus simple color segmentation could not be used as the figures were yellow but appeared
white through the monochrome camera. The authors note that even advanced circle detection
algorithms were not applicable in the setup of a Foosball table since the ball is often hidden
below a figure or rod and other objects, like circles in the background, could be misinterpreted
as the ball. Their approach for tracking the ball starts by defining a Region of Interest (ROI)
of 100×60 px. At a maximum observed velocity of 10 m/s of the ball, the minimum framerate
needed for the defined ROI is reported as 97.3 Hz while other research [14,21,31] report
lower minimum frame rates. To reduce the possibility of errors during the ball detection,
static background objects are removed by subtracting the background. Additionally, the yellow
figures need to be masked as their color is not differentiable from the ball in the grayscale
image. The detection of the figures is done using a Magnetic Resonance Imaging (MRI) scanner
to create a 3D scan of the figures and converting their position to the cameras pixel space
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using the known rotation angle as the yellow figures were connected to motors. The dark
figures of the other team are simply removed by thresholding. Therefore, albeit detecting the
yellow figures, this information is not further used. Since everything left in the frame is either
black or the ball, the position can be detected by finding any bright pixel.

In a further development [35], they replaced the monochrome camera by a colored one. As
the white ball and the yellow figures are now distinguishable, the ball can be detected using
color segmentation algorithms. Therefore, the MRI scanner was no longer neccessary but
can improve the performance of the color segmentation. To accommodate different lighting
situations which could result in non-ball and ball pixels having a similar color, a calibration
tool was implemented. In this approach, the detection of the figures was not considered.

The California Polytechnic State University conducted several experiments for the automa-
tion of a Foosball table. Gutierrez-Franco et al. [27] initialised the project introducing two
different aproaches for the detection of the ball. The first approach is a CV system using
color segmentation with a distinguished colored ball or a detection based on the ball’s shape.
They note a major drawback in this system in the occlusion of the ball by the figures and the
rods while additionally noting the need for a high processing power to process the individual
photos. As a second approach, the authors present a laser-grid based system similar to the
light grid system by Mohebi [45]. The main drawback of this system is the accuracy of the ball
detection, which is directly related to the amount of lasers used to detect the ball which can-
not be infinitly increased due to interfering between the lasers if placed to close to each other.
It is also noted that the system will be unable to detect the ball if it bounces off the playing
field. Overall they decided to use the vision system as the laser grid would introduce the need
for adjustments to the Foosball table itself in contrast to almost no adjusments needed for
the usage of a camera. Additionally, the vision system can deliver a higher resolution.

In the next iteration, Stefani et al. [55] enhanced the vision system by adding additional
lighting to the Foosball table to prevent shadows and reflections. They note the need for
further development of the vision system as the existing solution could only deliver around
11 FPS. Considering the maxium velocity of the ball at 10 m/s as reported by Janssen et al.
[34], this would result in the ball moving potentially by around 90 cm per frame. Otherwhise,
the paper focused more on the actual hardware development and mechanical engineering of
the Foosball table.

Another semi-automatic Foosball table was built by the University of Central Florida by Enos
et al. [21]. In contrast to Janssen et al. [34], they reported a maximum ball velocity of only
5 m/s and define 30 FPS as sufficient as the ball would need ~30 ms to travel between two
rods. Since the defense rod is between the goalkeeper and the striker of the opponent, the
computer will have at least ~60 ms to block a goal shot of the opponent. Therefore, the 30 FPS
requirement would result in at least two samples of the ball which is sufficient to detect the
direction and velocity. The authors note that a higher frame rate would be desirable but not
achievable considering their budget constraints. Additionally, they note the importance of a
short exposure time (or fast shutter speed respectively) to prevent motion blur. While noting
that the detection of the opponents figures can be beneficial for the automation process, the
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authors do not include detection for them as it can be assumed that a shot will be blocked.

Aeberhard et al. [9] from the Georgia Institute of Technology also researched a semi-automatic
Foosball table. While the authors focus mostly on the hardware of the Foosball table, they
describe a way for detecting the game state using a webcam for the detection of the ball and
the human played figures. Their approach relies solely on color matching with a calibration
step in which the user needs to select the color of the background, the figures and the ball.
The figures are detected by finding the first similar colored pixel as the calibrated figure color.
Then, the center of mass near that pixel is calculated concluding in the calculation of the
distances between individual figures on the found rod. The ball is initially found by color
comparisons on the whole table and with a 40×40 px ROI centered around the last known
location afterwards. It should be noted that the used camera only had a resolution of 320×240
px, so the ROI is a relatively large field. If the ball is not found in this ROI, the whole table
is rescanned and, if the ball is not found in 10 consecutive frames, a goal is registered. Each
frame, the positions of the human controlled figures is recalculated by scanning the pixels
of the calibrated rod until the top figure is found. As the distance of the figures is already
known, the other figures can be calculated without further image processing. The rotation of
the figures was not addressed.

3.2 Previous Work
The work on hand uses the same physical Foosball table as [19,25,31,51]. De Blasi et al. [19]
used the top-down webcam mounted above the table to detect the position of the ball using
a standard color-based detection algorithm. As their focus lay on reinforcement learning and
sim-to-real transfer the detection of the human played figures was not addressed. However, the
authors note the possibility of detecting the figures in the future. The current implementation
of the Foosball table uses a similar approach but added a ROI for performance reasons [4].

In a previous study of Horst & Hagens et al. [31] which is included in Appendix B, the figure
detection for the white, human playable figures was addressed. They implemented a proof of
concept which can detect all white figures and predict the rotation angle of the white midfield
figures. Instead of predicting the position of the whole rod, each individual figure was detected
using the visual object detection network YOLOX [26]. The rotation was afterwards predicted
for each individual figure of the midfield rod by a modified ResNet18 [28] network. The final
rotation of the midfield rod was calculated as the mean rotation of all five predicted figures.

3.3 Own Contribution
Fundamentally, this work is based on the previous work of Horst & Hagens et al. [31]. While
their approach showed promising results, the rotation detection is limited to the white midfield
figures. In this work, the rotation should be detected on all figures (including the black, motor-
controlled figures). Furhtermore, a trustworthy ground truth should be established as the
previous training data contained some faulty data points. The main contributions can be
summarized as:
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• Verifying Accelerometers to establish a trustworthy ground truth;
• Creating a concept for the real-time detection of the position and rotation of the black

figures and extending the previous concept for the white figures;
• Implementing a proof of concept to verify the approach;
• Evaluating different Feature Extractor neural networks; and
• Evaluating the implemented prototype.

As already stated in [31], the color based approaches, cf. [9,14,55,62], are not applicable since
the figures are not colored with a distinguishable color. While the black of the motor-controlled
figures is often confused with shadows in the goals or at the site of the table, cf. subsection 4.2.1,
the white of the human opponents figures is not distinguishable as the walls and lines on the
playing field are also white. The usage of hardware sensors as described by Mohebi [45] looks
promising but is also not applicable on the Foosball table on hand due to a non-permanent
modification constraint. Additional hardware sensors in the form of accelerometers are only
utilized during the creation of training data. In contrast to the classical CV based approaches,
cf. [15,27,29,61], state of the art deep CNNs are utilized for the game state detection thus
removing the need for a calibration step before the game. The use of deep CNNs also introduces
a high robustness against deviations in lighting or shadows which could occur in the camera
image as the light in the room of the Foosball table is not a controlled environment.
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Chapter 4

Concept

The game state of a Foosball table is defined by the position of the ball and the position and
rotation of the individual figures. While the ball is already detected by De Blasi et al. [19],
the position and rotation are only detected in a proof of concept by Horst & Hagens et al.
[31]. In the prototype, only the midfield figures of the white team were detected. In this thesis,
the prototype should be extendet to include all white figures. Additionally, the black figures
should also be detectable. Furthermore, the objectives, as defined in section 1.2, should be
achieved. Overall, a game state detection pipeline should be implemented with the camera
image as input and the resulting game state data as output. This game state data will be
used for reinforcement learning purposes to automate the Foosball table in the future. The
following chapter describes a concept of a system which can achieve those objectives.

While the black rods are connected to motors which provide the rotation and position data,
the white rods are not connected to any sensors. For the whole purpose of game state detection,
it would be sufficient to only detect the white figures. To enable an end-to-end system, which
could probably be used for imitation learning on other Foosball tables in the future, the
black figures should also be detected using the camera image. The chapter is structured
as followed. First, training data needs to be captured. Therefore, temporary sensors should
measure the rotation of the white figures. Afterwards, a software should be implemented to
capture the image and read the measurements by the motors and the temporary sensors. With
the captured training data, a prediction model for the position and rotation should be trained.
Two approaches will be presented. The first is a further development of the previous proof of
concept, the second is a new approach using only one end-to-end regression model. To finish
the concept, an output system is presented to provide the predicted game state for external
systems.

4.1 Collection of Training data
The collection of the training data underlies the following requirements. The training data
must consist of
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• the rotation angle of the rods;
• the position of the rods;
• the camera frame; and
• a time indicator for synchronization.

Additionally, the dataset should be saved in a standard data format and should use widely
used en- and decoders.

As described in section 1.1, the black figures are connected to motors and sensors which can
measure the positional shift and the rotation angle. More problematic are the white, human
playable figures which do not have any sensors connected to them.

In the previous work, Horst et al. [31] used accelerometers connected to a Microcontroller Unit
(MCU) to measure the rotation of the white figures. The measurements were displayed on small
displays connected to the same MCU which were visible by the camera. The measurements
could be collected using the Tesseract OCR engine [7].

In this work, an optimized version of this approach was used. First, the displays were discarded
in favor of direct readings from the MCU. Horst et al. [31] reported several issues with the
character recognition. Two examples for those issues are shown in Figure 5. The cause for
those errors was a missing synchronization between the camera and the displays resulting in
display changes while the camera would take an image.

Figure 5: Faulty display images resulting in erroneous OCR readings [31].

Secondly the measurement hardware in form of the accelerometers should be evaluated to get
an overview over possible miscalibrations, misreadings and deviations.

Thirdly, a software should be implemented to measure the sensors of the black figures, the
accelerometers of the white figures, a time indicator and the camera image.

Those optimizations should result in a robust dataset with trustworthy ground truths. The
desired dataset should be in an easily readable data format which does not require special
decodings or non-standard format readers.
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4.1.1 Calculating the rotation angle using Gravitational Acceleration

Figure 6: Measuring the tilt angle using two axis acceleration.

An accelerometer measures the linear acceleration along different defined axis. In this thesis,
three-axis accelerometers with the orthogonal axis 𝑋, 𝑌 and 𝑍 are used. Since the gravita-
tional force is a linear acceleration for a given point, the relative tilt of an accelerometer to
the ground can be measured. Figure 6 shows the setup to measure the angle 𝛼 using the 𝑋
and 𝑌 axis and the gravitational acceleration. Since the individual rods are fixed to the frame
of the Foosball table, the need for a third axis is eliminated as only a one-axis rotation is
possible.

As Fisher [22] points out, the 𝑋-axis of the accelerometer is proportional to the sine of the
rotation angle. Additionally, the 𝑌 -axis acceleration is proportional to the cosine of the angle
due to the orthogonal alignment of the two axes, which is shown in Figure 7. Therefore, the
ratio of the accelerations of 𝑋 and 𝑌 can be defined as

𝐴𝑋,𝑂𝑈𝑇
𝐴𝑌 ,𝑂𝑈𝑇

= 1𝑔 × sin(𝛼)
1𝑔 × cos(𝛼) = tan(𝛼)

which results in
𝛼 = tan−1(𝐴𝑋,𝑂𝑈𝑇

𝐴𝑌 ,𝑂𝑈𝑇
)

with 𝐴 as the measured acceleration on the specified axis. The resulting angle can be converted
afterwards from radians to degrees.

Fisher [22] also points out that small inclines on the 𝑋𝑍 or 𝑌 𝑍 planes do not introduce a
relevant bias into the calculated angle. Therefore, a perfect leveling of the whole Foosball
table, while necessary for the actual game, is not necessary for the measuring of the rotation
of the rods.
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Figure 7: Output acceleration vs Angle of Inclination for Dual Axis Inclination Sensing [22].

4.1.2 Sensor Evaluation
Choosing an accelerometer

The accelerometers used to measure the rotation angle should:

• measure correct values with a low error rate;
• be widely available; and
• be cheap.

In the previous work [31], MPU6050 accelerometers by TDK InvenSense on a GY-521 breakout
board, a 3-axis accelerometer and gyroscope providing 6 Degrees of Freedom (DOF) [1], were
used. Another widely used accelerometer in the Arduino community is the ADXL345 by
Analog Devices which does not contain an integrated gyroscope, therefore providing only 3
DOF [2]. Both the GY-521 and the ADXL345 are available by third party vendors costing
around 3-5€ each on Amazon Germany, so they comply with the widely available and cheap
requirement. In the following sections, the GY-521 and MPU6050 will be referred to as MPU
and the ADXL345 will be referred to as ADXL.

Both sensors work with a supply voltage range of 2.0V to 3.6 V and communicate via an
I2C interface bus. While the ADXL supports only a 12 bit resolution at ±8𝑔 range, the MPU
Sensor uses a full scale 16 bit Analog Digital Converter (ADC). Both sensors support high
output polling rates at up to 1000Hz for the MPU and up to 3200Hz for the ADXL. Both
report an absolute maximum rating of 10,000𝑔 acceleration in an unpowered state [1,2].

To validate the accuracy of the measurements, the sensors were tested on the black figures
where the real rotation angle could be set and read from the motors. The rotation of the rod can
be set to a number between -100 and 100 which corresponds to an angle range between 120 and
240 degrees with 0 at 180 degrees. All Sensors were mounted to the same rod for comparable
results. The accuracy testing procedure will take a defined number of measurements while
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altering the rotation of the tested rod using a defined sequence of movement. This sequence
contains the following steps:

1. Alternate Direction: The Rotation will start at -100 and increment each iteration by 1
until it reaches +100. After this, it will decrease by 1 until the rotation is back at -100.

2. Alternate Sign: The rotation starts at -100, increments each iteration by 1 and toggles
the sign between + and -, resulting in -100, 99, -98, 97, …

3. Sine: The rotation follows the sine of the current iteration using rot_val = sin( 𝑖
100)×100

with 𝑖 as the count of the current iteration.
4. Random: The rotation will be randomized to an integer between -100 (incl.) and 101

(excl.).

In each iteration, the measurements of the accelerometers and the motor is taken. All ac-
celerometers were reset to zero before testing. The procedure was iterated 10,000 times with a
mode change every 600 iterations. To accommodate faulty sensors, two MPU and two ADXL
modules were tested simultaneously resulting in a dataset with 10,000 rows of two measure-
ments per sensor type and the real rotation measured by the motor.

Figure 8: Measured rotation angle vs real rotation angle per accelerometer.

Figure 8 shows the measured rotation and the real rotation converted to an integer. The red
line indicates a perfect measurement. The blue line indicates the average measured rotation
per real rotation and the light blue area indicates the deviation in the measured data.

The plot clearly shows a miscalibration error in the first MPU while the second measured
on average accurate results while containing some deviation. The first ADXL Sensor could
also be miscalibrated but shows it less clearly. The second ADXL is on par with the real
measurement while having a bigger deviation.

Figure 9 shows the absolute error between the sensor measurement and the real rotation by
different movement modes. As expected, the first MPU shows a bigger error on the outer
angles which is explained by the observed miscalibration. The second MPU had a mean error
of 2.839° and a median error of 2.252° resulting in accurate readings.

The first ADXL sensor has, as also expected, a bigger error than the second one. Again, this
can be explained by the observed miscalibration, even if it’s slightly lower than the MPU error.
The second ADXL sensor has a mean error of 4.026° and a median error of 3.401° which is
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Figure 9: Absolute error between the measured and real rotation angle per accelerometer and
rotation mode.

slightly worse than the MPU sensors.

In all sensors, the alternate sign (orange) and random (red) modes introduce bigger errors
seen by the increased amount of higher spikes in Figure 9. This shows a clear influence of
the rotation intensity, as the other two modes only rotate about 1-2 degrees per iteration.
On the other hand, the alternate sign and random modes can rotate about 120 degrees in
one iteration. Therefore, to get good measurements, sudden and intense rotations with high
acceleration should be avoided when capturing the training data.

Figure 10: Distribution of the error between the measured and real rotation angle per ac-
celerometer in degrees.

As seen in Figure 10, the error between the measured and real rotation angle of the second
MPU sensor follows a normal distribution. The error distribution of the second ADXL can
also be approximately described by a normal distribution. On the other hand, the first MPU
and first ADXL show clear deviations from a standard distribution, indicating problems such
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Figure 11: Absolute error between the measured and real rotation angle per accelerometer in
degrees.

as the miscalibration of MPU_0. By looking at the absolute error in Figure 11, it is clear that
the second MPU generates the best results with the lowest outliers if only by a small margin.
The second ADXL also generates good results but measured bigger outliers of up to 22.5°.
Overall, the MPU-based sensor delivers better measurements. While the MPU theoretically
delivers a higher precision given the 16 bit resolution in contrast to the 12 bit resolution of
the ADXL sensors, this difference is insignificant.

As a result of this evaluation, the MPU6050 or GY-521 respectively was chosen for the cre-
ation of the training data. Since the taken measurements show a clear indication of possible
calibration issues, further testing of different GY-521 modules was conducted.

Testing different GY-521 modules

As already seen, The GY-521 modules can have calibration errors. As the sensors are factory
calibrated, those errors couldn’t be resolved by hand. To get reliable readings with low error
rates, 8 individual modules were tested. The results of those tests are shown in the following
section.

Figure 12 shows the measured vs real rotation angle. The red line marks a perfect measurement
and the blue line the actual measurement of the tested module. The light blue area marks the
standard deviation of the measured angle. Any measurement with a visible systematic drift
between the real and measured angle could be the result of a miscalibration.

Out of the 8 tested modules, MPU_6 shows a clear miscalibration with further possible
miscalibrations of MPU_0, MPU_2 and MPU_4. The measurements of MPU_2 result in a
higher standard deviation. This can further assure the miscalibration hypothesis but could
also be the result of a general hardware error in this module. This is also clearly visible in the
absolute error as shown in Figure 13.
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Figure 12: Measured vs real rotation angle per different GY-521 modules.

Figure 13: Absolute error between the measured and real rotation angle per module.
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Except for MPU_2, all tested modules measured a mean absolute error of about 5 degrees
while getting maximum outliers between 20 and 25 degrees. As already stated in the last sec-
tion, a larger rotation between two measurements and therefore a higher angular acceleration
results in a higher error. Since the acceleration can be controlled during the capturing of the
training data, a low mean error is more important than low outliers. Therefore, the modules
MPU_0, MPU_1, MPU_3 and MPU_7 were chosen for the training data creation process.

4.1.3 Measurement Hardware

Figure 14: A schematic plan of the used hardware setup.

As stated in the last section, the GY-521 module was chosen to measure the rotation of the
white figures. Four of those modules are connected to an ESP32 [3] MCU so all rods can be
measured simultaneously. A LED Strip based on WS2812B digital RGB-LEDs is added for
time synchronization. The LEDs show a timer with an eight second time window which is
binary encoded, so three of the four connected LEDs are used to display the current time. A
fourth LED is added to allow the display of general information, like a signal for the zeroing
of the accelerometers.

Figure 14 shows the hardware schematic of the measurement hardware. The ESP32 is con-
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nected via USB to a computer and communicates using the Arduino Serial protocol. On the
top of the schematic, the four accelerometers are seen. Since ESP32 modules can potentially
break if a 5V signal is connected to an IO pin, the sensors are connected to 3.3V. While
the MPU6050 sensor itself has a voltage range from 2.375V to 3.46V, the GY-521 breakout
board has a rated supply voltage of up to +6V. The LED Strip uses 5V power but does not
send anything back to the MCU. Therefore, it is connected to 5V power while only getting
a 3.3V data signal. The WS2812B LED chip is not rated for only 3.3V data input voltage
but does not generate any problems because of this. For a more permanent implementation,
the addition of a voltage step up could be considered. Furthermore, it is noted, that an input
signal could be potentially stepped up to 5V which is not the case on the utilized LEDs.

The ESP MCU communicates with the GY-521 modules via the I2C bus. The individual
modules all share the same I2C address (0x68) but can change this address to 0x69 if the AD0
pin is connected to VCC (+3.3V) [1]. The AD0 pin can also be connected to an IO pin of the
ESP32 enabling a dynamic address change at runtime. This dynamic address change is used
to be able to read all four sensors over the same I2C bus with only two addresses by switching
the addresses of three sensors at a time and read the fourth one. The AD0 pins of the sensors
are connected to the digital IO pins D3-D6 of the MCU as shown in Figure 14.

4.1.4 Data Capturing Software
To generate training data, a software should be implemented. This software should:

• Control the black figures for different positions and rotation angles;
• Read the data of the beforementioned accelerometers and the motor sensors; and
• Capture a camera image of the top-down camera.

The resulting data should be saved in a easy-to-read format without the need of complicated
data readers. Therefore, a combination of an MPEG-4 encoded video in a .mov container and
a corresponding CSV file with the extracted data was chosen.

Figure 15 shows the data capturing process. In each iteration, the black figures are moved and
rotated randomly. Before reading the measurements, the software waits for the black figures to
stop moving. Since this can’t be read from the Foosball Table system, the maximum possible
movement time was measured which is approximately 0.4 seconds. After this wait time, the
accelerometer readings are retrieved from the ESP32 MCU, the sensor readings of the motors
are retrieved via the OPC UA protocol and a camera image is taken. When all data is collected,
it is appended to the CSV file and the image is appended to the video. After a configurable
amount of iterations, the process is finished. The timing information which is displayed by
the LED strip can be used to synchronize the video and the captured data to ensure accuracy
between the image and the sensor readings.
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Figure 15: The process for the capturing of training data and video.

4.2 Prediction of the position and rotation of the rods
The prediction of the position and rotation of the different rods will be split into two ap-
proaches. The first approach is equivalent to the previous work by Horst et al. [31] which
could not be used for the present work. Examples and reasons for this will be presented. In
the second approach, the object detector step is discarded.

4.2.1 Approach 1
In the previous work by Horst et al. [31], the position and rotation prediction was separated
into the detection of each individual figure using the object detector network YOLOX [26]
and the prediction of the rotation using a modified ResNet18-based [28] regressor network.
The position of the rod could be calculated using the individual figure positions, as those are
fixed on the rod with distinct spacing. The regressor network was used to predict the rotation
of a cutout of the frame of each individual figure. The rotation of the rod was then calculated
as the mean of the individual figure rotations.

Figure 16: Existing semiautomatic labeling pipeline [31].
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For this approach, two training datasets need to be created. First, a dataset containing the
whole images of the Foosball table with individual labeled figures and second, a dataset
consisting of individual figures labeled with their rotation angle. For the first dataset, a semi-
automatic labeling process was implemented while the second dataset was created using the
labeled individual figures. The semiautomatic labeling pipeline, which is shown in Figure 16,
consists of five sequential steps utilizing traditional image processing techniques. First, the
background of the video is extracted by calculating the median image of a random selection
of frames. This technique is also called temporal median filtering [49]. Using morphological
transformations like opening and closing in combination with a binary thresholding, a mask
of the foreground of one frame at a time is created. Using this mask, the rubber stoppers
on the white rods are removed using the Otsu thresholding algorithm [47]. Afterwards, only
the white figures are included in the resulting mask and the bounding box of each figure can
be detected by utilizing the border following algorithm of Suzuki et al. [57]. The resulting
bounding boxes are saved in the COCO annotation format [43] which is used by the object
detector YOLOX [26].

Figure 17: Errors in the labeling (top) and prediction (bottom) of the goalkeeper in the
previous work [31].

In the previous work, some errors had been reported regarding the feet of the goalkeeper being
cut off as seen in Figure 17. These errors were present in the labeling process and were later
learned by the object detector. In this thesis, the labeling process should be extended to also
include the black figures (which are controlled by the DRL agent) and be adapted to avoid
the shown errors. Several experiments were conducted to comply with those requirements.
While the white figures were detected correctly in most cases (except for the goalkeeper feet),
the black figures could not be detected with a sufficient accuracy, as some examples show in
Figure 18.

In Figure 18a, a simple color segmentation was used to select the black players. While the
bottom figure is selected accurately, the top figure segmentation includes different artifacts
resulting in a faulty bounding box. Those errors were the result of difficult lighting near the
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Figure 18: Examples of different approaches to automatic labeling of the individual figures.

top side wall. Different color ranges were tested but resulted in either the same result or less
accurate bounding boxes around the bottom figure.

Figure 18b shows a combination of background subtraction and color segmentation for the
goalkeeper rod. While this approach shows promising results, the head of the goalkeeper is
cut off in this example and other manually verified examples also include smaller errors like
this.

Figure 18c uses a KMeans clustering algorithm to separate the image into three different
color clusters. Since the main colors of the Foosball table are the white figures, lines and rods;
the black figures; and the dark green playing field, a clustering using three clusters should
potentially separate the image into those colors. As seen in the example, the playing field was
not clustered completely as dark green but includes some black portions, the black figures
were not separated correctly. While this method works mostly fine on the midfield figures, the
other figures couldn’t be segmented reliably.

Figure 18d shows a similar approach as in Figure 18b using background subtraction and
color segmentation with an additional thresholding and a small adjustment of the saturation.
Since the background (or playing field) is very low saturated, the increment of saturation can
improve the color segmentation step as the background color would be more defined. As seen
in the image, this is not the case. Since the black figures and the metallic rods are mostly
unsaturated, their color is undefined and can be the same as the background. An adjustment
of the saturation can therefore result in the background color included in the figures. In the
example, the goalkeepers bounding box also includes a small portion of the background itself
at the feet of the figure.

In Figure 18e, a combination of thresholding and background masking was used. The median

42



background image, which was also used for the background subtraction in the preceding
approaches, was converted into a binary mask including only the playing field without the
rods. This prevents the error of inclusion of the rods itself in the figure segments as seen in
Figure 18d. The masking approach creates accurate results on the defense and striker figures
most of the time. On the other hand, errors like a missing half of the figure as seen in the
example are common on the goalkeeper and too wide bounding boxes were found commonly
on the midfield figures.

Overall, the bad image quality, a difficult lighting environment and the rather difficult colors
of the figures (black and white) resulted in a semiautomatic detection of the figures which
did not generate accurate results. A further usage of this semiautomatic labeling would have
resulted in the need for manual adaptions on most of the images. Therefore, the images could
also be completely manually labeled without a much bigger effort. Since a labeled dataset is
the main requirement for the approach using an object detector and this dataset could not be
created automatically, the object detection approach was not further progressed. The already
mentioned errors in Figure 17 were also not further evaluated, as they are only applicable to
the object detector.

4.2.2 Approach 2
Instead of the two-step model consisting of the object detector and a following regressor,
the second approach utilized an end-to-end CNN-based regression model for each rod. Each
frame, the individual rods are cut out using pre-defined boxes to predict the rotation and
position, thus omitting the object detection step. Consequently, the individual figures are not
detected. This is also the case for the sensory data of the black figures, which also report only
the positional shift of the whole rod. However, the individual position of each figure can be
calculated using the a priori knowledge of the individual positions on each rod, as those are
fixed. The discarding of the object detector also reduces the complexity of the overall system.

As mentioned before, the training data does not contain any information about the position of
the white rods, so those need to be calculated. In the first approach this was not necessary, as
the position of the whole rod was not addressed and could be calculated from the single figure
positions. Unlike Bambach et al. [14], who used the Hough lines transform to find the rods
and calculated the positional shift using a pixel-wise algorithm, the rod-position is assumed to
be known, as only the pre-captured video is used. Therefore, the Hough lines transform is not
needed while the position is detected based on a similar, but adjusted algorithm. First, one
column in the center of each rod was cut out of the frame. As the walls of the Foosball table
cast shadows on the outermost part of the rods, the cut out is a few pixels smaller than the
actual rod. This does not influence the position detection in general but needs to be addressed
when converting the pixels to millimeters. The pixel-column was then transformed into black
and white pixels using a binary thresholding. Afterwards, groups of connected white or black
pixels were built. To prevent small shadows and other errors in the thresholding, small groups
were discarded based on an observed minimum length. Now, the black groups represent the
figures on the black rods or the rubber stoppers on the white rods. The white groups contain
the metallic rods and the white figures. To calculate the middle of a rod, the outermost black
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groups can be used, as the center of those groups is automatically the center of the rod if
the groups are detected correctly. This works also on the black goalkeeper rod, as this rod,
in contrast to the other black rods, contains the same rubber stoppers which are used on the
white rods, resulting in 3 groups of black pixels (the two stoppers and the goalkeeper figure).
Utilizing the calculated center of the rod and the known center of the playing field, a shift of
pixels between the two can be calculated. Through the known numbers of pixels per rod and
the width of the table, which is 680mm, the shift in pixels can be converted into millimeters.
Here, the before mentioned removal of the outermost pixels on each rod needs to be deducted
from the width of the table.

Figure 19: Absoute error between the calculated and measured position shift of the black rods.

Figure 19 shows the deviation between the calculated position shift and the reported position
shift of the motors in millimeters for the black rods. While the overall deviation is less than
10mm, the black defense rod calculated a maximum deviation of 26.27 mm which is a lot
considering the diameter of the ball of only 35 mm. On further inspection, those outliers seem
to be the result of an incomplete movement of the rod. The motors report the destination
position even if the destination is not reached by the time the sensor is queried. The biggest
outlier with a deviation of 26.27 mm is shown in Figure 20a. In the image, the blue line
represents the column size but drawn off-center. The red line represents the calculated shift in
the center and the green line represents the reported shift by the motor. The black horizontal
bar was added manually in the center between the two figures. While the red line ends exactly
at the center, the green line with the reported position shift ends a few pixels above the center.
On closer examination the figures are vertically blurred while notable sharper in the horizontal
direction. Therefore, it is rather likely that an ongoing movement occurred while the image
was taken. Figure 20b shows the other outlier of the black defense rod as observed in Figure 19
with a deviation of 15.22 mm. Here, the overall image is blurry. Again, the calculated position
shift shown by the red line ends at the manually added center while the reported position shift
in green ends above the center. In a further inspection of other images with high deviations
between the calculated position and the reported position, the same could be observed. In
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conclusion, the calculated positions seem to be more accurate than the reported positions.
Therefore, those calculations were used in the further training process.

Figure 20: Outlier of the black defense rod with a deviation between the calculated and
measured position shift of 26.27 mm.

The prediction of the ball position was considered during the implementation as the usage
of the object detector would enable the detection of the ball position without the need for
further detection systems. Since the object detector was discarded in favor of the end-to-end
regressor based game state detector, the detection of the ball position was also discarded.

Image-based Regressor Networks

Utilizing the before mentioned approach to calculating the positional offset of the white figures,
an annotated dataset with position and rotation information for the individual rods can be
created. This resulting dataset can be used in the end-to-end CNN-based regression models.
Most of the commonly available deep CNN are built for the use case of image classification
[12,13,40,42,66]. Since the rotation and position are continuous variables instead of discrete
variables, the problem on hand is defined as a regression problem. Therefore, a classification
network cannot be used directly. The structure of those image classification networks usually
consist of a feature extractor backbone using convolutional layers and a classification head
using fully connected layers. The feature extractor uses multiple sequential layers while the
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classification head can contain only one fully connected layer in ResNet [28] or multiple layers
with pooling layers in between in EfficientNetV2 or MobileNetV3 [33,59].

The use of already existing networks is a good practice for new applications as those networks
are already proven to deliver good results. Additionally, this practice enables the use of transfer
learning to minimize the amount of needed training epochs and therefore the overall training
time. To use existing networks for the prediction of continuous variables, the classification
layer needs to be customized. To circumvent the circular continuity in angle degrees, the
network should predict the sine and cosine of the rotation. Additionally, the position should
be predicted in a scaled range from -1 to 1. The scaling prevents a higher influence of the
position on the training process, as the sine and cosine are also in a -1 to 1 range. Therefore,
a linear layer with an output dimension of three is used to predict those values. This layer
applies a linear transformation to the incoming data: 𝑦 = 𝑥𝐴𝑇 + 𝑏. Any activation function
on the classification layer of the base network is removed to prevent any transformation of
the output of the last layer.

In the previous prototype [31], a ResNet18 [28] feature extractor backbone was used to predict
the rotation angle of individual figures. In this work, different backbones were used and
evaluated. In addition to ResNet18, ResNet50 [28], EfficientNetV2 [59] and MobileNetV3 [33]
backbones are implemented. Furthermore, a simple CNN implementation is used using five
convolutional layers and a linear layer for the regression.

4.3 System Output
To reach the overall goal of creating a usable system for reinforcement learning experiments
conducted by future students, the serving of the predicted data is an important factor. The
system output underlies the following requirements:

• It must be easily readable in standardized formats;
• It must be easily accessible with a minimal need of further Hard- or software; and
• It shouldn’t introduce high latency into the system.

Figure 21: Data Pipeline from the camera input to different Clients.

With the use of a ZeroMQ Publish and Subscribe messaging system, those requirements could
be achieved. The data producer pipeline, in which the rotation and position is predicted, opens
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a TCP socket using the ZeroMQ protocol and publishes JSON-formatted results. Clients can
then connect to this socket, subscribe to the messages and decode the JSON data. Figure 21
shows the overall pipeline using the ZeroMQ server with different (example) clients.

The use of ZeroMQ introduces some latency but also the ability to easily deploy the system
on an integrated server with a dedicated GPU. This server could be accessed by future stu-
dents and therefore reduce their hardware requirements and / or frees hardware resources for
reinforcement learning experiments. Since one ZeroMQ Server can serve multiple clients, a
group of students would also be able to get the data without the need of additional resources.
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Chapter 5

Proof of Concept

In this chapter, a proof of concept of the presented system architecture from chapter 4 is
implemented. The system is developed for the already described semi-automatic Foosball
table which was also used in the previous work by Horst & Hagens et al. [31]. The described
prototype can be used inside an Anaconda virtual environment and is implemented using the
Python programming language. The software which controls and reads the accelerometers is
written in C++ using the Arduino framework. First, the implementation of the data capturing
system with the included measurement hardware is described. Afterwards, the end-to-end
regressor pipeline is portrayed. Furthermore, the implementation of the output system and
two example clients is shown. The section ends with the implementation of a pipeline including
the regressor and the output system.

5.1 Data Capturing
Measurement Hardware
The measurement hardware, as shown in Figure 22 and assembled from the schematic in
Figure 14 was built using GY-521 modules and an ESP32-WROOM-32 from AZ-Delivery.
The accelerometers are screwed onto a 3D printed mount which itself is screwed onto the rods
of the Foosball table. The mounting hardware is printed in PETG1 and needs two M3 ×20
mm, two M3 ×4 mm screws and two M3 nuts per rod. The LED strip is mounted to the wall
of the Foosball table using double-sided tape which can be removed without residue. Each
accelerometer is connected through a five-wire cable for VCC, GND, SDA, SCL and AD0 for
changing the I2C address as illustrated in Figure 14.

The software for the ESP is written in C++ using the Arduino Framework. The GY-521 sen-
sors are polled utilizing the Adafruit_MPU6050 library. The WS2812B LEDs are controlled
using the Adafruit_NeoPixel library. Figure 24 illustrates the loop of the accelerometer hard-
ware. Each rod (and therefore each accelerometer) needs to be activated by setting the specific

1Polyethylene Terephthalate Glycol, a widely used 3D-printing material.
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Figure 22: Image of the assembled measurement hardware.

Figure 23: Model of the 3D-printed mount for the accelerometers.
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AD0 pin of the accelerometer to LOW (0V), i.e. the AD0 pin is utilized as a chip select. At
startup, those pins are set to HIGH (3.3V), so the accelerometers do not respond on the
default I2C address, which is 0x68. The ESP communicates via a serial connection using the
on-board USB port with 1,000,000 Bd. As an on-board voltage converter is available and the
3.3V and 5V pins of the ESP deliver regulated voltages when powered via USB, the USB port
is also used for power. Therefore, no external power supply is necessary.

Figure 24: Flowchart of the ESP loop.

Reading the data
The overall data-capturing software is implemented in Python using the AsyncIO library,
which enables asynchronous computing. This is especially useful when relying on communica-
tion with other services, as they can be polled simultaneously instead of sequentially. Since
the software needs to capture data of different devices, mainly the ESP with the accelerom-
eters and the Foosball table itself, the asynchronous polling of both enables a shorter time
period between the measurements in contrast to a defined lag if the measurements were taken
sequentially.

1. ESP
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As mentioned before, the rotation data from the white rods is read from the ESP using
a serial connection over USB. On the python side, the Serial_AsyncIO library is used
which enables asynchronous communication. The serial port can be configured through
command line options in the python application.

2. Motors
The motors and sensors of the Foosball table itself are controlled and polled via the
OPC UA protocol [44], an open source networking protocol for communication between
sensors, controllers and other devices. The Foosball table uses the protocol via TCP-IP
as already implemented by Bosch Rexroth and described by De Blasi et al. [19].
On the python side, the open source project AsyncUA is utilized. The original code [4]
of the Foosball table uses the predecessor of this library, which is officially deprecated
and, in contrast to the AsyncUA library, does not support asynchronous computation.

3. Camera
The camera image is captured using the OpenCV [6] framework with a custom build
AsyncIO wrapper, as OpenCV does not provide an asynchronous version of the
VideoCapture class.

Combined, the training data contains a dataframe with the white rods rotation, the black
rods position and rotation and the ESP’s timer information. Additionally, the camera image
is capture as a video file for data compression and portability reasons. The dataframe is saved
as a .csv file while the video is saved in an MPEG-4 encoded .mov container. The timer
information of the ESP is used for manual time synchronization between the captured video
and the accelerometers executed by skipping a few frames at the beginning in a video editing
software. In this work, DaVinci Resolve2 was used but any software capable of simple video
editing can be used for the synchronization.

5.2 Prediction of the Position and Rotation of the Rods
Creating a dataset
Since the captured data only consists of the whole frame, the rotation of the white rods
and the rotation and position of the black rods, the data needs to be further processed before
training a regressor network. In contrast to the accelerometers which measure 0° in an upright
position, the sensors on the black rods measure this position as 180°. Therefore, the measured
rotations of the white rods need to be shifted by 180° to match the zero point of the black rods.
Afterwards, the positions of the white rods must be calculated as described in subsection 4.2.2.

As each rod is predicted by an individual regressor network, this individual network should
only receive a portion of the whole frame which includes only the rod with its figures. Those
slices are defined by a color-coded mask which was manually created and is shown in Figure 25.
The mask includes some padding per rod so small adjustments of the camera position or field
of view should still result in a correct slicing of the image. A modification of the camera by

2https://www.blackmagicdesign.com/de/products/davinciresolve/
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Figure 25: Color-coded rod mask to create individual image slices for each rod.

a higher margin would result in the need for creating a new rod mask. Each rod in the mask
uses a distinct color with different intensities of red for the black rods and different intensities
of green for the white rods. The color codes are written as RGB codes in a blue text color
above the slices. Therefore, simple color segmentation methods such as OpenCV’s inRange
function can be used to create a binary mask of the specific rod. It is also possibly to generate
direct masks for all black or all white rods by selecting the whole red or green color spectrum.
The resulting image slices are resized to 224 ×224 px and converted to tensors for direct use
with the regressor networks.

The shown process results in a data directory containing eight individual datasets
with each containing the image slices of a specific rod. Each dataset is available as a
torch.utils.data.DataLoader which can be directly used to train a PyTorch-based neural
network without further processing. To counteract overfitting, those datasets are split into
80% training data and 20% validation data.

Regressor Training
As described in subsection 4.2.2, the position and rotation of the rods should be predicted
using an end-to-end CNN-based regressor network. This is implemented as eight individual
regressor networks for each rod to circumvent errors through the different colors and number of
figures of the rods. In addition, problems through the perspective distortion introduced by the
camera are avoided. This results in eight sequential regressor networks which are implemented
utilizing the PyTorch [56] library. Additionally, the Torchvision [5] extension library is used
as it has a wide variety of pre-built models and features for image processing.

Five different regressor models are implemented while four of which are based on existing
CNN-based image classifiers. Two models of the ResNet [28] series are used, the smallest
ResNet18 and the larger ResNet50. Additionally, the small versions of MobileNetV3 [33] and
EfficientNetV2 [59] are utilized. Since the existing models are built for image classification
tasks while the work on hand is a regression problem, the classification layers are replaced by
linear layers without an activation function. Furthermore, a simple CNN feature extractor is
implemented using the architecture illustrated in Figure 26. In contrast to the other networks
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this is the only network without the usage of residual blocks. Except for the own implemen-
tation, the weights of all CNNs are initialized using transfer learning with the base networks
weights which were trained on the ImageNet [20] 1K dataset. The new regression layers and
the own implemented network are initialized using random weights.

Figure 26: Architecture of the own implemented CNN.

Each regressor is custom trained with the before mentioned dataset and configuration. To
enable an easy-to-use platform independent training process, the best possible device is au-
tomatically chosen. If a CUDA enabled GPU is available, the training process should utilize
this GPU. Otherwise, an Metal Performance Shader enabled device is used. If no GPU (either
CUDA or Metal Performance Shader (MPS)) is available, the training process is executed on
the CPU. The training logic is implemented in a small python application which creates a
dataset for each rod and trains a regressor using the configurable feature extractor backbone.
For each regressor the best checkpoint is saved per default. Additionally, the checkpoints of
each epoch could be saved which greatly increases the needed disk space. The regressors are
trained over 50 epochs utilizing the Mean Squared Error (MSE) loss function and the Adam
optimizer [36] with a learning rate of 0.001.

Table 1 contains an overview of the overall training time per model (i.e. containing all eight
individual rod regressors) and the file size of the checkpoint file which contains the trained
weights. The training was conducted on a M1 Pro based Apple MacBook Pro with Metal Per-
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Table 1: Comparison of the checkpoint file size and training time on a M1 Pro (MacBook Pro
2021) with MPS acceleration.

Backbone ResNet18 ResNet50 MobileNetV3 EfficientNetV2 Own Implementation
Checkpoint size 44.8 MB 94.4 MB 6.3 MB 81.7 MB 656 KB
Training time 00:19:25.5 01:02:21.9 00:22:35.6 01:30:54.6 00:13:12.3

formance Shader (MPS) GPU acceleration. Of the four existing feature extractor networks,
the ResNet18-based model finished the training process in the fastest time but is closely fol-
lowed by the MobileNetV3-based model. As expected, the ResNet50-based model finished
after a significantly longer time period due to its larger architecture compared to the smaller
ResNet18-based model. Additionally, the ResNet50-based model resulted in the largest check-
point file with 94.4 MB per rod or 755.2 MB for all rods. In contrast, the ResNet18-based
model only needs less than half the disk space with 358.4 MB or 44.8 MB per rod. The
EfficientNetV2-based regressor completed the training in 01:30:54 and therefore needed the
longest time. With 81.7 MB per rod or 653,6 MB overall for the checkpoint files it also needs
the second largest disk space. Considering that the own implemented regressor network is the
smallest of all used network architectures, the fastest training time of only 13 minutes and
the smallest checkpoint file size of 656 KB is expected.

Figure 27: MSE loss per epoch and Regressor Architecture.

Figure 27 illustrates the loss function of the training process per epoch and regressor architec-
ture exemplary for the black goalkeeper. The ResNet-based (a & b) and the EfficientNetV2-
based (d) models have a good learning start with only minor improvements after a few epochs.
In contrast, the MobileNetV3-based (c) model and the own architecture (e) show visible im-
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provements over the whole 50 epochs which indicates that an extension of the training process
over more epochs would potentially improve the prediction with those networks.

5.3 Output
The system outputs its data through a ZeroMQ publish and subscribe system. This enables
the usage of multiple clients on one game state detector. To showcase this output system, two
different clients are implemented. First a simple image viewer application and second a web
interface which plots the position and rotation for each rod.

The implemented Image Viewer client uses ZeroMQ subscribe to receive the individual frames
and the corresponding predictions. The position and rotation predictions for each correspond-
ing rod is printed above the rod using pre-defined center positions which were manually
derived from the training data. The frame is updated each time a new frame is sent by the
pipeline. The Image Viewer utilizes the OpenCV [6] library to print the values to the frame
and show the final image in a window. Figure 28 illustrates two sample frames as displayed
by the Image Viewer client.

Figure 28: Example output of the Image Viewer client.

The second implemented client is a web-based interface which visualizes the predicted position
and rotation of each rod over time. Two sample screenshots of this interface are presented
in Figure 29. The top portion displays the default view, where the first plot shows the pre-
dicted position and the second plot the predicted rotation. Additionally, the average FPS are
calculated and printed on the top of the page. The plots and the computed average FPS are
updated once per second. The web interface allows users to filter each plot for one or more
specific rods as demonstrated in the bottom part of Figure 29. The web interface is imple-
mented using the Dash library by Plotly. The integrated use of Plotly enables the filtering
while the usage of Dash enables the web server and the updating of the plots.
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Figure 29: Example output of the web interface client.
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5.4 Game State Detector Pipeline
To use the whole game state detector, a simple-to-use python application was implemented.
This includes the detector pipeline which provides the individual regressors for the game
state prediction and the output system. The pipeline can either use a video as input data or
capture a camera stream. If the input data is a video file, the pipeline will run infinitely until
a keyboard interrupt is triggered and the video is looped.

The pipeline can be configured using the following startup arguments:

• --model: configures the model to use. This must be a directory with 8 subdirectories for
each individual rod. Each subdirectory must include a best_chk.pth file with the actual
trained weights of the model and a config.yml containing the regressor configuration.
While the configuration includes a device entry, the best available device will be used
automatically.

• --input: can be either a file path to a video file or a camera device index. For video files,
any file type which can be read by OpenCV is supported. The camera index needs to
be an integer and is typically either 0 or 1 depending if an internal webcam is available
or not.

• --include-frame: controls the output system. By default and for performance reasons,
the frame itself is not included in the data output stream. If the frame is needed for
further processing or viewing, e.g. by the Image Viewer client, this option needs to be
activated. The frame will be included as a Base64 encoded JPEG image.

• --include-infer-time: also controls the output system. By default, the inference time
is not included. If the inference time is needed for further processing, e.g. by the web
interface client to calculate the mean FPS, this option needs to be activated.

On startup, the pipeline will load the defined regressors for each rod and open a ZeroMQ
publisher TCP socket on tcp://localhost:5555. Afterwards the video or camera stream
will be opened. For each frame, the models predict the position and rotation for each rod and
an output message in JSON format is created. If the frame should be included, the image is
converted to JPEG format, encoded in Base64 and appended to the output data. Afterwards,
the overall processing time per frame is calculated and logged. The process is illustrated in
Figure 30.
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Figure 30: Flowchart of the game state detection pipeline.
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Chapter 6

Evaluation and Discussion of
Results

Derived from the requirements as defined in section 1.2, the system is evaluated considering:

1. The accuracy of the system; and
2. The real-time objective.

In the following, a quantitative evaluation of the system is described. Additionally, a qualita-
tive inspection on a random sample of images was executed but generated no further insights.
To meet the real-time objective the system should be able to detect the game state with 60
FPS on commodity hardware. Especially this should be achieved on a laptop. Therefore, the
inference time of the proof of concept is evaluated on four different systems including two
laptops, one desktop PC and one cloud VM. Furthermore, the overall results considering the
defined objectives are discussed.

6.1 Evaluation of different Feature Extractor Backbones
6.1.1 Accuracy of the Prediction
As mentioned in section 1.2, the accuracy objective is met if the average error of the posi-
tion and rotation prediction is inside the position and rotation range. The rotation range
was defined as ±42 degrees or around 23 %. The position range is defined as ±11 mm. As
every rod has different positional limits, the percentual range is calculated per rod. On the
midfield rod, which has the least movement range, the acceptable range would be around 20
%. The goalkeeper rod has a movement range of ±120 mm resulting in an acceptable range
of approximately 9.2 %.

Figure 31 shows the quantitative evaluation result of the different feature extractor backbones
for the black goalkeeper. Each Column shows the result for one feature extractor network. The
first row shows the predicted sine compared to the actual sine of the rotation of the rod. The
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Figure 31: Prediction metrics of the different feature extractor backbones on the black goal-
keeper.

second row shows the cosine predictions and the third row the comparison of the predicted
and actual position. The results were not further processed so the position is in the −1 to 1
scale and not the actual positional shift in millimeters. The plots in the image show the results
of the black goalkeeper as an example. In the plots, data points are scattered on the actual
and predicted values. The amount of data points on a single point in the plot is mapped to
the color where a red point indicates a high density of data points and a blue point indicates
a low density. A perfect fit between the actual and predicted values would result in each point
in the plot laying directly on the diagonal black line. Additionally, the MSE for each value
is presented above the plot. Since the rotation of the black rods is capped between 120 and
240 degrees, the actual cosine is also capped between the corresponding −1

2 for 120 and 240
degrees and −1 for 180 degrees.

Overall, the ResNet-based regressors in Figure 31a and Figure 31b show promising results with
a low MSE and mostly correct predicted values. Albeit using a larger network, the results of
the ResNet50 feature extractor in Figure 31b are only slightly better than the results of
the ResNet18 base in Figure 31a. In contrast, the results of MobileNetV3 (Figure 31c) and
EfficientNetV2 (Figure 31d) are visible inferior which is further underlined by a higher MSE
on all predicted values.

In comparison, Figure 32 shows the same metrics on the white goalkeeper. Here, the cosine is
not capped as the white rods can rotate freely. While the position is again predicted accurately
by all regressors, the rotation is not. Albeit the majority being predicted correctly as indicated
by the red points on the diagonal line, some outliers are present in each feature extractor.
This resulted in a converted mean absolute error of 12.64° for the ResNet18-based network as
seen in Table 2. Again, the ResNet-based networks showed the most promising results of the
evaluated feature extractor backbones.

The self-implemented feature extractor, as shown in Figure 33, generated promising results
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Figure 32: Prediction metrics of the different feature extractor backbones on the white goal-
keeper.

Figure 33: Prediction metrics of the own architecture on the black and white goalkeeper.
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Table 2: Mean absolute error of the predicted rotation angle in degrees of each rod and each
feature extractor.

Feature Extractor Black Rods White Rods
Goal Defense Midfield Striker Goal Defense Midfield Striker

ResNet18 1.23 1.47 0.88 1.38 12.64 13.93 4.96 10.93
ResNet50 1.34 1.43 0.97 1.33 8.33 5.44 4.06 9.91

MobileNetV3 3.46 2.18 1.72 4.35 17.86 22.96 7.69 21.21
EfficientNetV2 6.31 2.14 2.29 1.69 14.26 25.32 13.59 28.68

Own Implementation 6.54 6.84 3.2 5.76 35.73 31.23 13.09 15.25

Table 3: Mean absolute error of the predicted position in mm of each rod and feature extractor.

Feature Extractor Black Rods White Rods Average
Goal Defense Midfield Striker Goal Defense Midfield Striker

ResNet18 2.94 4.02 1.23 1.6 2.94 7.42 2.2 8.68 3.88
ResNet50 2.4 4.02 1.35 2.77 4.5 6.49 1.91 7.83 3.91

MobileNetV3 7.68 9.35 3.01 7.32 9.06 11.94 3.89 6.78 7.38
EfficientNetV2 9.82 5.97 2.06 3.75 5.5 12.73 4.47 8.53 6.6

Own Implementation 5.88 8.44 1.23 3.2 7.39 21.97 2.46 6.78 7.17

for the position prediction while being worse at predicting the rotation. The overall trend of
a worse prediction on the white rods is also visible. The evaluation metrics of the other rods
are available in Appendix A.

As illustrated in Table 2, the rotation of the black rods is predicted with more accuracy
than the rotation of the white rods by all regressors. Firstly, the rotation measurement of
the black figures is more accurate than the accelerometer-based measurement of the white
figures. The accelerometers have shown a mean absolute error of about 5 degrees as shown in
subsection 4.1.2. Therefore, each captured data point is on average ±5 degrees off of the actual
rotation. Secondly, the captured black rod rotations are evenly distributed due to the random
movement between each captured frame. In contrast, the white rods where moved manually
and not simultaneously resulting in consecutive frames without any change in rotation and a
non-uniform distribution as illustrated in Figure 34. Additionally, it should be noted that the
uncapped prediction of the full possible 360° is more complicated than the capped rotation
between 120° and 240° degrees. Overall, all regressors achieve the required maximum average
error of ±42 degrees.

Illustrated in Table 3 are the mean absolute errors of the predicted position converted to mm
of each rod and feature extractor. The defined position range was ±11 mm, so an average error
needs to be below 11 mm for the objective to be met. On average, each feature extractor passed
the objective. With an average error of 3.88 mm over all rods, the ResNet18-based model
achieved the most accurate position prediction. The least accurate prediction with an average
error of 7.38 mm over all rods was achieved by the MobileNetV3-based model. By looking at
each individual rod, only the MobileNetV3, EfficientNetV2 and the own implemented model
did not meet the requirement. The own implementation is the least accurate on the white
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Figure 34: Distribution of the measured rotation angle of the black (top) and white (bottom)
goalkeeper.

Table 4: Testsystems on which the regressor models have been evaluated.

System CPU (Cores / Threads) GPU RAM OS
A Intel Core I7 @2.2 GHz (6C/12T) AMD Radeon Pro 560X with MPS 16 GB MacOS 14.0 Sonoma
B Apple M1 Pro (10C) Apple M1 Pro (16C) with MPS 32 GB MacOS 14.0 Sonoma
C AMD Ryzen 9 5900X @3.7 GHz (12C/24T) NVIDIA RTX 3080 with CUDA 12.2 64 GB Windows 11 Pro 22H2
D AMD EPYC-Milan @ 2.7 GHz (8VC) NVIDIA A100 80G PCIe with CUDA 12.0 64 GB Ubuntu 22.04.1 LTS

midfield rod with an average error of 21.97 mm.

A qualitative inspection of random samples showed similar results with the ResNet-based
regressors generating the most promising predictions of the tested CNNs. except for the
white midfield rod, the own implementation predicted the position equally or better than
the MobileNetV3- and EfficientNetV2-based regressors with worse results in the rotation pre-
diction.

6.1.2 Inference Times
Benchmark Systems

Table 4 summarizes the four different systems which were used to evaluate the inference times
of the game state detection system. Systems A and B are Notebooks (Apple MacBook Pro
2018 and Apple MacBook Pro 2021) while System D is a cloud VM. All systems are equipped
with dedicated GPUs which are either available through NVIDIA CUDA (System C & D) or
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Apple MPS (Systems A & B). MPS also enables the usage of the PyTorch Library on AMD-
based GPUs. On the software side, each system uses Python 3.9, PyTorch 2.1.0, Torchvision
0.16.0 and OpenCV 4.8.0.76.

According to the TechPowerUp GPU-Database [8], System D theoretically delivers the most
GPU performance with 155.92 TFLOPS in TensorFloat32 Precision. In contrast, System C
has a reported theoretical performance of 29.77 TFLOPS in Float32 Precision. System A
delivers 2.056 TFLOPS in Float32 Precision. This should be viewed with caution as Apple
does not communicate direct hardware specs. If the GPU is modified, e.g. overclocked, the
theoretical performance would be higher. Therefore, System B, which uses an Apple-built SoC,
reports no theoretical performance. Considering the hardware specs, a lower performance than
System C and D is expected.

Measured Inference Times

Table 5 summarizes the mean and median inference times of the different feature extractor
backbones on the different test systems. The times are split into the overall times and the
inference time per rod which should be around 1/8 of the overall time, as each rod is inferred
sequentially. Overall, the ResNet18-based regressor performed the best with 86.18 ms median
inference time per frame which is significantly higher than the required approximate 16.6 ms
which would result in a real-time game state detection with 60 FPS. The ResNet18-based
regressor could only achieve 11.6 FPS in the median. The other regressors were at least 29.75
ms slower on the same system. Albeit utilizing a higher performing GPU, system D could not
generate a median inference time below 105 ms. In contrast to the other systems, system D
also showed a much higher difference between mean and median inference times. This indicates
an asymmetric distribution which is probably caused by slow outliers thus introducing latency
in the prediction cycle of the whole system.

Interestingly, as shown in Table 6, the ARM-based MacBook (System B) delivers the fastest
inference using the own implementation. While the overall quality of prediction, as shown in
subsection 6.1.1, is not on par with the other networks especially considering the rotation
prediction, the own implementation could be further examined and improved in the future.

The prediction seems to be heavily CPU-bottlenecked considering an observed average GPU
utilization of only 40% on the NVIDIA RTX 3080 in system C and 7% on the NVIDIA A100
on system D during testing of the ResNet18-based regressor. This is further highlighted by
the faster inference time on system B and C which both have worse performing GPUs than
system D but faster CPUs with more processing cores. To circumvent this in the future, a
parallelization of the system could be researched. When looking at the inference times per
rod, the ResNet18-based regressor would satisfy the real-time requirement with 10.77 ms
median inference time per rod on system C. Even on the lower performing laptop (system B)
the requirement would be met at 13.38 ms median. A parallelization would introduce some
latency which must be considered. System C would have an additional 5.83 ms free to still met
60 FPS while the laptop would have 3.22 ms free. Therefore, some latency can be introduced
without breaking the requirement. Additionally, the added latency e.g. for networking would
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Table 6: Mean and Median inference time of the own implemented CNN on the different
systems from Table 4.

System Inference Time (ms) Inf. per Rod (ms) FPS
Mean Median Mean Median Mean Median

A 113.06 112.98 14.13 14.12 8.84 8.85
B 56.27 55.57 7.03 6.94 17.77 18.0
C 71.58 71.38 8.94 8.92 13.97 14.01
D 130.16 106.65 16.27 13.33 7.68 9.38

probably be mostly linear. This would result in a longer processing time between the capturing
of the frame and the data output but would possibly not influence the actual inference time
of the system.

Considering the overall performance including the quality of prediction and the inference
speed, the ResNet18-based regressor network shows the best results of the tested feature
extractor backbones. The short training time as shown in section 5.2 is an additional benefit.
The slightly better prediction quality of the ResNet50-based regressor is not enough to justify
the higher inference time of an additional 33.14 ms on the same hardware. Additionally, the
ResNet50-based regressor had a three times longer training time than the smaller ResNet18.

These findings lay in direct contrast to Vdovjak et al. [60] who compared ResNet, MobileNet
and EfficientNet in the image-based fire classification. They conclude that the ResNet-based
classifier produced worse predictions and was slower than the other two networks. Instead of a
classification task, a regression task is the aim of this work. Therefore, the direct findings and
used metrics by Vdovjak et al. are not comparable. While they observed worse results in the
classification, the ResNet-based regressors produced the lowest MSE for all prediction tasks
in this work. A possible explanation for the different inference times could be the disability to
perform batch predictions. While the authors in [60] used datasets and predicted in batches,
the real-time requirement forbids the usage of batching. This could potentially lower the
inference speed of the MobileNet and EfficientNet CNNs.

6.2 Discussion of Results
The demonstrated results in the last section have shown that the concept is able to capture
the position and rotation of the rods of a Foosball table with room for further improvement.
The following limitations of the system are noted:

• The concept only works on a Foosball table with an identical setup, i.e. the figures must
be black and white and include rubber stoppers at the end of the rods;

• The quality of the detection is heavily dependent to the image quality of the camera;
• The rotation of the black rods is limited to the range between 120° and 240° due to the

hardware limitation on the physical Foosball table; and
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• The system does not include the ball into the game state.

Due to the lack of other Foosball tables with different color configurations the system could not
be tested with different colored figures. Since the manual position detection is mostly reliant
on the rubber stoppers it could be sufficient to only conduct minor adaptions of thresholding
values to calculate the correct positions. The color of the actual figures should not influence
this procedure as long as rubber stoppers are installed. The color of the rods, which are not
colored on most of the commercially available Foosball tables, is expected to have a higher
influence on the position detection. If the rods were painted black, major adaptions need to
be conducted. Possibly a new approach would be the better option in this case. Since the
detection of the rotation is done using accelerometer sensors, the color of the figures does not
influence the rotation detection.

The image quality of the camera and especially the shutter speed shows a strong influence on
the detection quality. With a long shutter speed, the images will contain motion blur which
results in indistinct figures as illustrated in Figure 35a. Most common webcams including the
used Logitech Brio 4K use the shutter speed to control the lighting due to the utilization of a
static aperture. The third option to control the lighting in a digital camera is the ISO which
controls the luminous sensitivity of the camera sensor. A high ISO results in brighter images
but introduces noise in the image. In a bad lighting scenario, a webcam will therefore extend
the shutter speed and will not use an ISO level above a certain threshold. In the normal
usage of a webcam where high-speed changes of the image are not common, this behavior
is expected. In contrast, in a high-speed environment like an automated Foosball table, this
results in too long shutter speeds and motion blur.

Figure 35: Example camera images with motion blur (a) due to long shutter speed and overall
blur (b) due to the autofocus.

Additionally, the autofocus of the camera can introduce entirely blurred images as illustrated
in Figure 35b. This is a consequence of a re-focusing of the image which could potentially be

67



the result of the introduced motion blur and the camera thinking that the image is unclear.
Again, the re-focusing is expected for the normal usage of a webcam but should not be applied
on the Foosball table. In the webcam, this behavior is not controllable due to the lack of a
manual focus or the ability to lock it. Therefore, it is recommended to discard the webcam
and instead use a professional camera with the ability to manually control the lighting and
focus.

The limitation of the rotation detection of the black rods to the range between 120° and 240°
is not problematic when using the automated Foosball table on hand. Instead, this could be a
problem if the system is applied to full-manual Foosball tables without the same limitation in
the hardware. This can be fixed by generating a new training dataset without this limitation
and re-training the regressor networks for the black figures. In the generation process, the
rotation of the black rods can also be measured using the accelerometers.

As already mentioned, the detection of the ball position was not pursued due to the discarding
of the object detector. In addition, the ball is already tracked by the previous work of De Blasi
et al. [19] and Rohrer et al. [51].

Albeit these limitations the overall system shows promising results with room for future
improvements. In section 1.2 the following main objectives were defined:

• The system should detect the game state of a Foosball table in real-time.
• The system should detect the position of all figures with high accuracy.
• The system should detect the rotation of all figures with high accuracy.
• The system should provide the data for further use in a defined and easy-to-use way.

As shown in the evaluation of the different feature extractor backbones, the implemented proof
of concept could not comply with the real-time requirement as the ResNet18-based regressor,
which was chosen as the overall best performing feature extractor, could only achieve 11.6
FPS. This would also be too slow for the minimum 30 FPS reported by Enos et al. [21].

The system is able to detect the position of all figures with a high accuracy on all rods.
Individual figures are not detected but can be calculated using a priori knowledge of the
rods and the detected positional shift in relation to the center of the Foosball table. This is
sufficient to meet the requirement and provides the same data as the motors would provide.

The system is also able to detect the rotation of all figures with a slightly lower accuracy
especially on the white figures. On average, the white goalkeeper had an absolute error of
12.64 degrees. In contrast, the black goalkeeper could achieve a mean absolute error of only
1.23 degrees. One possible reason for the difference in the prediction accuracy between the
white and black figures is the error in the actual measurement during the data capturing. The
black figures were measured through permanently installed sensors inside the motors without
any added errors. In contrast, the white figures were measured using accelerometers which
were mounted on the rods. These accelerometers introduced a mean absolute error of around
5 degrees in the data capturing process. Additionally, the white figures are not restrained to
a minimal rotation range but can rotate freely. This could also introduce possible errors due
to multiple rotations looking similar on the camera image.
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The utilization of a ZeroMQ-based publish and subscribe system for the data output enables
the usage of the detected game state by further systems with minimal effort. The whole
detection system could also be outsourced to a permanently installed server to further improve
the ease-of-use. Since ZeroMQ supports multiple simultaneous clients, one detection system
can be used by multiple students at the same time in the future without the need for each
student to set up the detection application.
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Chapter 7

Conclusion & Future Work

In this work, a system was designed to capture the game state of a Foosball game on a
semi-automated Foosball table. The Foosball table on hand has a white team which is played
by humans and a black team which is played by a computer through DRL agents. While the
position of the ball is already detected, the position and rotation of the individual figures is not.
The motors controlling the rods of the black team provide position and rotation information
through the OPC UA standard. The position and rotation of the white figures is not available.
The game state which should be detected included the position and rotation of the white
figures but also the black figures as the system should be usable on other Foosball tables to
enable imitation learning.

The presented concept included the usage of MPU6050 accelerometers on GY-521 breakout
boards to measure the rotation angle of the white figures and create a trustworthy ground
truth. Additionally, the ADXL345 accelerometer was examined but turned out to be less
accurate in the angle measurement. The accelerometers were connected to an ESP32 MCU
via the I2C bus which communicated the measured rotation angles via USB. To create a
training dataset for the prediction of the position and rotation, the accelerometer values, the
values reported by the motors and the image of the camera are captured and saved in separate
.mov and .csv files. In previous work, the position detection of the white figures was addressed
by utilizing the YOLOX object detector network with a semiautomatic labeling step using
traditional CV methods. This approach showed good results on the white rods but was not
adaptable to the black figures. Therefore, a new approach was presented which utilizes an
end-to-end CNN based regressor network for each rod to predict the position and rotation. As
the captured training data contains no information about the position of the white rods, this
position is calculated using the presented color-based algorithm. Utilizing thresholding and
a priori knowledge of the color of the rods, the position is calculated by finding the center
of each rod based on either the black figures on the black rods or the black rubber stoppers
on the white rods. This algorithm proofed to calculate the position of the black rods with a
higher accuracy than the reported position of the motors. The most probable explanation of
this is that the motors report the desired position of the rods even if the movement is not
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finalized and the camera image was taken before the movement was finished.

The end-to-end regressor network was implemented using five different feature extractor back-
bones. First, the existing networks ResNet18, ResNet50, MobileNetV3 and EfficientNetV2
were utilized with each having the classification layer replaced by a linear regression layer.
Additionally, a simple CNN was self-implemented. The models were trained using transfer
learning and random initialization of the replaced and self-implemented layers using the be-
fore mentioned dataset. Overall, the ResNet18-based model showed accurate results with fast
inference and training times. While the ResNet50-based model predicted more accurate results
on the most rods, the drawback of a longer inference and training time does not justify the
minor accuracy improvements. In terms of accuracy of the position and rotation prediction,
the requirements were met. The inference time however was not satisfactory as the goal of
60 FPS were not met by a huge margin. The ResNet18-based model achieved only 11.6 FPS
median inference time on high end hardware (AMD Ryzen 9 5900X CPU, NVIDIA RTX 3080
GPU, 64 GB RAM).

Furthermore, an output system based on ZeroMQ was presented. The usage of a publish and
subscribe messaging model enables the connection of multiple clients to the same game state
detector. The game state detector does not need to run locally as ZeroMQ uses a TCP-based
protocol. Therefore, a game state detector could be permanently installed on the Foosball
table while mobile hardware can be used in the further automation of the table using DRL.

The presented system is able to detect the game state with high accuracy but low inference
times. Therefore, the real-time requirement needs to be further addressed in the future. One
possible enhancement would be the parallelization of the different regressor networks as es-
pecially the GPUs of the higher end computers were not fully utilized. Another approach in
contrast to local parallelization would be the clustering of the system to multiple computers.
One possible solution would be the usage of multiple NVIDIA Jetson single board computers
which contain CUDA enabled GPUs. While this would introduce some networking latency,
the overall performance gain should be high enough to still meet the 60 FPS real-time require-
ment. Another option for faster game state detection would be the usage of a tracking system
where the regressor networks can use the knowledge of the last position and rotation of each
rod.

In this work, a top-down approach was used to detect the game state, i.e. the hardware
was set and not permanently modifiable. In the future, the game state detection can also be
examined using a bottom-up approach by improving the actual hardware of the Foosball table.
One example would be the switch of the camera which currently has clear drawbacks. A new
camera should be able to use a manual focus and a short shutter speed. This would prevent
motion blur and overall blurring which currently occurs occasionally. Additionally, the use of
a high-speed camera could be tested but would also create the need for an improvement of
the detector models as the current 60 FPS could not be achieved with the current setup.

Overall, the detected game state achieves good results which contribute to DRL approaches
and enable imitation learning if used on another Foosball table. While this is not tested, the
system should work without adaptations if the setup of the Foosball table is the same, i.e. the
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figures are black and white on metallic rods. The proof of concept showed limitations which
should be addressed in future work. Especially the inference time of the system needs to be
improved as a real-time detection is currently not possible.
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Part II

Appendix
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Appendix A

Evaluation metrics

In section 6.1, the evaluation metrics of the black and white goalkeeper where shown. In the
following images, the evaluation metrics of the other rods are illustrated.

Figure 36: Prediction metrics of the different feature extractor backbones on the black defense.

Figure 37: Prediction metrics of the different feature extractor backbones on the black midfield.
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Figure 38: Prediction metrics of the different feature extractor backbones on the black striker.

Figure 39: Prediction metrics of the different feature extractor backbones on the white defense.

Figure 40: Prediction metrics of the different feature extractor backbones on the white mid-
field.
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Figure 41: Prediction metrics of the different feature extractor backbones on the white striker.

Figure 42: Prediction metrics of the own CNN architecture on the black rods.

Figure 43: Prediction metrics of the own CNN architecture on the white rods.
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Appendix B

Real Time State Detection of a
Foosball Game Using CNN-Based
Computer Vision [31]

The previous work by Horst et al. [31] is accepted for the SAI Computing Conference 2024
but not yet published. The full text of the paper is appended on the following pages.
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Abstract. Abstractions of the game of football serve as well-known
challenges in AI research. A particularly accessible abstraction is the
game of Foosball where one team is operated by an AI agent while the
other side is controlled by humans. In Foosball, the dynamics can be
described by a few descriptive parameters, namely the shift and rotation
of the corresponding rods plus the position of the ball. In this work,
we present a Computer Vision based real time game state detector in
a real-world setup with an automated Foosball table (constructed by
Bosch Rexroth AG). More precisely, we train an object detector network
based on YOLOX to detect the positions of the figures and an image
regressor network based on ResNet18 to predict the rotation angles. For
the derivation of the training data we propose a semi-supervised labeling
approach based on classical Computer Vision. We evaluate the proposed
approach and find that our methodology works in the sense of a proof of
concept.

Keywords: Foosball, game state detection, object detection, image-
based regression

1 Introduction

Abstractions of the game of football have been used as challenges in AI research.
One example is the well-known RoboCup challenge [10,14]. Another example is
the game of Foosball which is the topic of the present paper. Here, one team is
operated by an AI agent while the other side is controlled by humans. In our
case, the AI operates the black figures; cf. Fig. 1a. In recent years, in particular
deep reinforcement learning strategies have been used to train the AI agent; cf.
Section 1.1 on related work below. In order to train the agent, it is essential
to have access to as much information as possible on the present game state.
It is important to note the whole game state can be described by the shift and
rotation of the rods carrying the figures plus the position of the ball.

In this work, we aim at a Computer Vision based real time game state de-
tector in a real-world setup with an automated Foosball table. Concretely, we
use the following environment setup (see Figure 1a). (a) The black team is au-
tomated using industrial motors; cf., e.g., [3]. In particular, the position and
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(a) The Foosball table setup. (b) Game state detection result.

Fig. 1: (a) Setup. The Foosball table used in the present paper (constructed by
Bosch Rexroth AG). The black figures are controlled by an AI agent while the
white figures are controlled by humans. A camera above the table provides a
top down view. (b) Game State Detection. Two random samples of the detected
game state for the midfield rod. For each figure, both bounding box and rota-
tion angle is predicted using deep convolutional neural networks as detailed in
subsection 2.2 and subsection 2.3. Additionally, averages for the whole rod are
displayed at the bottom.

rotation of the black figures are provided by sensor data of the motors and are
therefore known to the AI agent. (b) The white figures are operated through hu-
man controllable rods. (c) A camera is positioned in the center above the table
such that the playing field is captured in a top down perspective. (d) Accelerom-
eters (cf. Figure 6a) are employed for angle detection of the white figures in the
training stage. We note further, that there is already work on real time tracking
to supply the the AI agent with the position of the ball [3,22]. In contrast to the
black team and the ball, the state of the human controlled team, represented
by the white figures, is not determined in our setup yet. We contribute to this
issue by detecting position and angles of the white figures using a deep neural
network approach.

1.1 Related Work

Game State Detection. Numerous studies have examined the utilization of
computer vision techniques for real time game state detection in Foosball [1,9,23].
These experimental setups employ distinct colorized figures. They use classi-
cal color image processing exploiting the distinct color to capture the figures.
Weigel et al. [26,27,28,29] describe a prototype of a semi automated Foosball
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table which advanced commercially as Star-Kick. In earlier experimental setups,
these authors used a top-down camera. They track the ball and segment the
distinct yellow figures controlled by the human player using classical color im-
age processing as well. The rotation of the rods was (rudimentary) addressed by
switching between an up and down position using the bounding box sizes of the
figures. In later configurations, they use a bottom-up camera mounted inside the
table with a half transparent playing field. They address tracking the ball, but
do not consider the detection of the figures. Mohebi [16] captures the position
and rotation of the figures using hardware potentiometer sensors. In contrast,
Bambach et al. [2] captured the position of the figures via the Hough lines algo-
rithm and color distributions on the rods. There, the rotation of the figures was
addressed by detecting the length of the figures using pixel wise color detection
and calculating an angle using pre-measured minimum and maximum length
values. Janssen et al. [11] use a magnetic resonance imaging (MRI) scanner to
mask the figures and track the ball position. At first, a monochrome camera is
used to capture the ball position by masking the figures in real time and sub-
tracting a static background. Despite the detection of the figures through the
MRI scanner, these data were not extracted and only used to detect the ball. In
[12], these authors switch to a color camera and refine their algorithm omitting
the MRI scanner. In particular, they use the color information to detect the
white ball against to the black and yellow figures. The detection of the figures
was not considered.
Automation of Foosball. The detected game state defines a feature space
which can serve as a basis for the automation of a Foosball table, in particular
for training and executing an AI steering one team. Classical approaches entail
rule based methodologies; e.g., [27]. Zhang et al. [30] improved the rule based
automated agent of [27] using imitation learning techniques. Recently, research
has shifted towards deep reinforcement learning methods to train the agent.
De Blasi et al. [3] propose a simulation-based method for applying Deep Re-
inforcement Learning (DRL). They used a simulation to train a DRL agent to
score goals with the striker rod which was afterwards tested on a physical Foos-
ball table. Their key contribution is the demonstration of sim-to-real transfer
of DRL models. In contrast, Rohrer et al. [22] aim to automate the goalkeeper
using the same simulation and physical table (constructed by Bosch Rexroth
AG). The DRL training was performed inside the simulation and transferred to
the physical table for execution as well. Gashi et al. [5] proposed a multi-agent
DRL approach for the automated goalkeeper and the opponents striker rod in
the before mentioned simulation. Instead of relying on pre-defined scenarios in
the training process, the two separate DRL agents were trained simultaneously
while playing against each other. A transfer of the simulation-trained agent to
the physical table was not performed.

1.2 Our Contribution

In this work, we propose a deep convolutional neural network based real time
game state detector in a real-world setup with an automated Foosball table. In
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Fig. 2: Proposed training process for the detection of figures and the prediction of
their rotation angles. The dataset creation process, composed of data collection,
data bounding box annotation and data evaluation, is described in detail in
subsection 2.1. The figure detection using YOLOX is described in subsection 2.2
and the angle regression is further described in subsection 2.3.

particular we determine the state of the human (white) team without using a
hardware framework distinguishing the color of the figures and the background
(as previous approaches do.) Tracking the ball was considered in [3], information
on the black team is derived by sensor information of the robot. In detail, our
contributions are as follows: (i) We propose an semi-automatic labeling pipeline
using classical image processing. As a result, we obtain an annotated dataset for
object detection and regression of the rotation angle for the white, human team.
(ii) We fine-tune an object detector based on YOLOX [6] and a regressor based
on ResNet18 [8] using the derived annoted data (cf. (i)) to obtain a detector
for the game state of the white, human team. (iii.) We evalute the derived
algorithms.

In contrast to existing non-learning based approaches [2,11,12], we utilize
state of the art deep neural networks (YOLOX [6], ResNet18 [8]) to ensure
robustness and avoid calibration requirements. To create the data set however,
we utilize a similar classical image processing approach as Janssen et al. [12]. A
distinct feature of our Foosball table are the white figures, such that the color
is not a unique feature of the figures. Therefore, we depart from the color based
approaches [1,2,23,27]. Contrary to the hardware solution by Mohebi [16] we
solely used hardware sensors to create training data.

The work contributes to the derivation of a complete feature set uniquely
determining the state of a Foosball game. In particular, determining position
and rotation angle features from image data allows DRL-approaches to include
the human controlled figures into the decision making process. Thus, our work
contributes to the line of research started by De Blasi et al. [3], Rohrer et al.
[22] and Gashi et al. [5] on training an AI agent using DRL-approaches.

2 Real Time State Detection

In this section we describe our methodology for achieving real time game state
detection in our experimental Foosball setup, which is visualized in Figure 2.
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Fig. 3: Data annotation process using image processing techniques to automati-
cally create bounding boxes for the white figures. The resulting annotations were
used in subsection 2.2 to train the YOLOX detector.

To leverage modern CNN-based models, we collected image data using a 60
frames per second camera positioned above the Foosball system. We then cre-
ated an annotated dataset using a preprocessing pipeline based on classical
image processing techniques, followed by a semi-automatic labeling process to
ensure dataset quality. Then object detection was performed using a YOLOX-
network [6]. Lastly angle regression was achieved using a modified ResNet18
model [8].

2.1 Dataset creation

The first three steps of the process, as illustrated in Figure 2, can be described
as dataset creation. The resulting annotated dataset is compulsory for the later
supervised figure detection.
Data collection. In the data collection step, we captured videos of the Foosball
table through the mounted webcam. We recorded multiple videos on various day
times and diverse weather conditions resulting in individual ambient illumination
and shadows. By manually simulating various movements of the white figures in
those videos, we collected a representative data set.
Data annotation. Our proposed data annotation process, as illustrated in Fig-
ure 3, employs image processing techniques and utilizes a semi automatic labeling
method. The process begins by extracting the video background through tem-
poral median filtering [19]. Morphological transformation involving closing [7]
and thresholding produces a binary mask on the foreground. Utilizing the Otsu
thresholding algorithm [17], rubber stoppers on the rods are removed to avoid
confusion with the white figures. This process results in a foreground mask con-
taining only the white playable figures. Lastly, bounding boxes are calculated
using the border-following algorithm developed by Suzuki et al. [24]. The final
annotations are saved in the COCO format [15] using the specific data structure
needed for YOLOX object detection [6].
Data evaluation. An automated process can lead to incorrect annotated bound-
ing boxes. Therefore we implemented a semi automatic labeling tool. Thus low
quality video frames can be identified while simultaneously reducing human
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(a) Correct bounding box prediction. (b) Incorrect prediction.

Fig. 4: Bounding box annotations (top) and the predictions by the object detector
(bottom). While the top and bottom pictures are the same, the scaling of the
images is slightly different. (a) Correct Prediction. The predicted bounding boxes
surround the underlying figures precisely. (b) Incorrect Prediction. The erroneous
bounding box annotation as shown in the top pictures were learned by the object
detector resulting in incorrect bounding box predictions shown below. The red
dashed square shows the missing part of the bounding box on both pictures.
The object detector shows a clear sensitivity to errors if a part of the figure lies
above white background like the walls of the Foosball table.

labeling costs. Furthermore, the data annotation process was improved by opti-
mizing algorithm parameters (kernel size, threshold values etc. see section above)
through multiple iterations using the insights gained through our labeling tool.
Nevertheless small bounding box mistakes as seen in Figure 4b still remained.

2.2 Figure detection

Our experimental setup induces certain requirements such as real time detec-
tion and commodity hardware compatibility. Thus we used an object detection
network to extract the positional information of the figures, which comply with
before mentioned demands. The YOLO family demonstrated proficiency in real
time object detection [20,21]. Since real time detection is a requirement for our
approach, we utilize YOLOX-s [6], the smallest YOLOX model, for figure detec-
tion.

The YOLOX-s detector was fine tuned to detect the position of each white
figure and create individual bounding boxes. The resulting bounding boxes were
later used to extract a cutout of each figure from the original image to train
the regressor as described in subsection 2.3. The network was pre-trained on
the original COCO-dataset [15] and refined using approximately 4900 images
for training and 1200 images for validation. To reduce the training complex-
ity and computation expenses we solely adjusted the weights of the neck- and
classification head layers, keeping the feature detector backbone weights locked.
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2.3 Rotation prediction of the midfield figures

The rotation angle is a continuous variable while the YOLOX network can clas-
sify only discrete variables. Therefore we used a regressor network to predict
those angles.

To estimate the angle rotation of a playable rod, an image regression network
can be used to predict the sine and cosine values. As our setup includes only one
top-down camera, the perspective distortion varies between the center figures
and the figures at the end of the Foosball table. In order to realise a proof of
concept we reduced the complexity by restricting the angle estimation to the
midfield rod. To train the regressor, we created a labeled dataset of images
containing the figures and their corresponding rotation angles.

Pham et al. [18] proposed a method for calculating the tilt angle of ob-
jects using the gravity acceleration measured by an accelerometer. In our study,
we employed a similar approach to measure the rotation angle of the playable
figures by using a MPU6050 accelerometer connected to an Arduino Uno mi-
crocontroller. The measured angle was displayed on an OLED display, which
was visible in the camera feed as outlined in Figure 6a. In this way, an optical
verification of the functionality of the test setup is possible. We leveraged the
Tesseract optical character recognition (OCR) engine [25] to extract the rotation
values from the images. The resulting dataset consisted of 30555 images of indi-
vidual figures and their rotation angle. To address misread rotation angles, we
corrected outliers by calculating the mean of the preceding and following frames
if the current frame deviated more than 30 degrees.

The problem of circular continuity in angle degrees was tackled through the
computation of sine and cosine values of the angles. We employed a pre-trained
ResNet18 model [8] and substituted the classification layer for a linear regression
layer with an output dimension of two, resulting in two neurons for the prediction
of the sine and cosine values of the angles. The ResNet model was used as a
feature extraction backbone. We used the bounding boxes of the figures which
where extracted by the YOLOX network in the previous section to cut out the
figures from the whole image. Those cut outs where then used as the input
of the Regressor model. To compensate for possible errors in the bounding box
detection we added a padding of 20 pixels on each side of the figure which turned
out to be a suitable value for the used YOLOX object detector. The model was
then trained using a Mean-Squared-Error loss function and optimized with the
ADAM optimizer [13].

3 Evaluation

We present the results and evaluation of our approach. Initially we perform a
quantitative analysis of the object detector and rotation regressor. Subsequently,
we evaluate the outcomes on a qualitative inspection.
Quantitative analysis. The YOLOX-based object detector achieved an aver-
age precision of 88.3% and an average recall of 90.7% at an Intersection-over-
Union (IoU) above 0.50, which is a typical threshold for correct object detection



8 Horst et al.

(a) Angle distrib. (b) Regressor eval. (c) Angle eval.

Fig. 5: (a) Angle distribution. Angle distribution of the figures in the train and
test dataset. In general the data distribution is skewed towards 0°, which re-
sembles a realistic Foosball angle distribution and explains the red spikes in
the following plots. (b) Prediction evaluation. Comparison of the actual and
predicted values of the regressor for the training and validation dataset. (c) Cal-
culated angle evaluation. Comparison of the actual angles and the calculated
angles based on the sine and cosine prediction. The color indicates the quantity
of overlapping data points. A red coloring implies an accumulation of data points
while a (dark-) blue coloring implies a less crowded region.

Table 1: Quantitative evaluation summary.
Object detection Avg. precision Avg. recall Avg. inference time
Training data 90.1% 92.0% 4.09ms
Validation data 88.3% 90.7% 4.09ms
Rotation regression Angle MSE Sine MSE Cosine MSE
Training data 11.41 0.0072 0.0064 4.30ms
Validation data 11.68 0.0063 0.0067 4.30ms

[4]. On average the inference time was 4.09 ms on a Nvidia A100 GPU which con-
forms to the boundary of 16.6 ms to process 60 fps, which we consider as real time
detection. In regards of the evaluation of the angle regression, Figure 5b presents
the visualized results. The angle regression was measured as mean squared er-
ror (MSE). On the validation dataset, the sine prediction achieved a MSE of
0.0063 corresponding to an average error of 4.55° degrees. The cosine prediction
achieved a MSE of 0.0067 corresponding to an average error of 4.69° degrees.
The calculated angles achieved a MSE of 11.6775 corresponding to an average
error of 3.417° degrees; cf. Figure 5c. However, we noted a significant spike in
the number of data points with a sine value of 0 and a cosine value of 1, corre-
sponding to an angle degree of 0°. Further investigation of the underlying data
distribution was conducted, as depicted in Figure 5a, revealing that the distribu-
tion of the data was heavily skewed towards 0°, and not uniformly distributed.
This can be explained by the fact that the figures are mostly aligned orthogonal
to the Foosball table to defend and block the ball. On average the inference time
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(a) Display pos. (b) legible numbers. (c) illegible no.

Fig. 6: (a) Positioning of the display of the Foosball table above the rod. In (b)
and (c) example images of the displays are shown with the original gray scale
images above the corresponding binaries. The majority of the images were easy
to recognise as seen in (b). Asynchrony between captured frames of the camera
and display changes may lead to illegible input images as illustrated in (c). As
a result OCR errors may occur. This problem was addressed by using the mean
angle between the previous and the following input images to impute missing
data.

of the regressor was 4.30 ms on the same Nvidia A100 GPU. Combined with the
object detector we achieved an average inference time of 8.39 ms conforming to
our boundary at 60 fps. We note a significant increase in inference time if the
computation was solely CPU-based at above 100 ms for each neural network thus
not hitting the real time requirement. The results are summarized in Table 1.
Qualitative analysis. Concerning object detection, a qualitative inspection of
random samples revealed the potential of the network to find accurate bounding
boxes as shown in Figure 4a. However, it was observed that the feet of the goal-
keeper are occasionally cut off. This error was also present in the training data
which is illustrated in Figure 4b. This indicates that issues in the preprocessing
pipeline may be the source to this challenge which should be addressed in future
research as described in section 4. Manual analysis of the OCR generated an-
notations revealed promising results, cf. Figure 6b. The asynchronous behavior
between the displays and the camera led to the occasional encountering of am-
biguous or illegible angles, as exemplified in Figure 6c. This problem has been
solved by imputation of the illegible angles using the average of the surround-
ing frames. The inspection of random samples, cf. Figure 1b, showed promising
average angle results while containing only small deviations at each figure.

4 Conclusion and future work

In this paper, we have developed a CNN-based real time game state detector
for Foosball; in particular, we detect the position and rotation of the human-
steered (white) figures from camera data. To this end, we first developed a
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semi-automatic labeling scheme using a classical image processing pipeline. As
a result, we obtained a verified labeled dataset consisting of 6111 images with
annotated bounding boxes of each individual figure. Additionally, we obtained a
dataset consisting of 30555 images of single figures with the measured rotation
angles by utilizing a MPU6050 accelerometer. Using those curated datasets we
fine tuned a YOLOX model for figure detection and a ResNet18 based regres-
sion model to predict rotation angles. The evaluation on the test dataset showed
promising results for both target variables. Our work extends the research of De
Blasi et al. [3] and Rohrer et al. [22] by providing the game state as a feature
set.

A first topic of future research is to address limitations through incorrect
training data; see Figure 4b. To this end, we plan to further develop the clas-
sical image processing pipeline used (cf. Figure 3) to get higher quality of the
labelled data. A further next step is to combine the figure detection and rotation
regression into one compact model. A related interesting point is to also apply
our scheme for the black figures, and then both to compare and potentially com-
bine the image based results with the robot-sensor results. Further speedup is
also desirable since professional Foosball players have haptical perception rates
of up to 1000 Hz.
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