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A B S T R A C T

MOTIVATION: Fertility plays a crucial role in life and has direct effects on
the quality of life and mental well-being. Many people face challenges re-
lated to fertility disorders and, therefore, getting medical therapies to cope
with them. Individuals confronted with fertility issues and getting medical
treatment tend to actively engage in social media, sharing and evaluating
these treatments. The analysis of these patient reviews, capturing not only
emotions but also various aspects of medication, is called aspect-based sen-
timent analysis. It provides insights into which aspects of the therapy are
effective or problematic. However, the lack of domain specificity in existing
datasets poses a challenge for aspect-based sentiment analysis. Therefore,
developing a method to generate such a dataset is of great importance to
train supervised models that analyze emotions and aspects.

METHODS: For the generation of the artificial dataset, a combination of
GPT-3.5 and Few-Shot Learning was applied. This involved leveraging the
extensive knowledge embedded in the numerous parameters of GPT-3.5 to
generate synthetic data. Two BERT models were then trained for the classi-
fication of emotions and aspects using this data. Concurrently, manual an-
notation of data took place, used to train another pair of BERT models. The
performance of these BERT models was subsequently compared and evalu-
ated to determine the suitability of an artificially generated dataset for model
training. Finally, a dataset comprising 50% manually annotated data and 50%
artificially annotated data was created and the experiment repeated.

RESULTS: The evaluation of a Bidirectional Encoder Representations from
Transformers (BERT) model fine-tuned with only GPT-3.5 annotated data
yields noteworthy findings. The model demonstrates strong performance
in aspect prediction with a test accuracy of 0.92, while sentiment prediction
slightly lags behind at 0.87. The highest result was observed for a model
trained with a mixed dataset, comprised of 50 ratio between human and
Generative Pre-trained Transformer 3.5 turbo (GPT-3.5 turbo) annotations with
a test accuracy of 0.95 for the aspect prediction.

CONCLUSION: We recommend a nuanced approach that involves GPT-3.5 turbo

labeling and human validation.



Z U S A M M E N FA S S U N G

MOTIVATION: Die Fruchtbarkeit spielt eine wesentliche Rolle im mensch-
lichen Leben und hat direkte Auswirkungen auf die Lebensqualität und das
psychische Wohlbefinden. Viele Menschen stehen vor Herausforderungen
im Zusammenhang mit Fruchtbarkeitsstörungen und greifen daher auf me-
dikamentöse Therapien zurück, um diese zu bewältigen. Personen, die mit
Fruchtbarkeitsstörungen konfrontiert sind und daher auf medikamentöse
Therapien zurückgreifen, neigen dazu, sich in sozialen Medien aktiv auszut-
auschen und die Therapien zu bewerten. Die Analyse dieser Patientenbewer-
tungen, die nicht nur Emotionen, sondern auch verschiedene Aspekte eines
Medikaments erfassen, nennt sich aspektbasierte Sentimentanalyse und lie-
fert Erkenntnisse darüber, welche Aspekte der Therapie wirkungsvoll oder
problematisch sind. Die fehlende Domänenspezifität in vorhandenen Daten-
sätzen stellt jedoch eine Herausforderung für die aspektbasierte Sentiment-
analyse dar. Daher ist die Entwicklung einer Methode zur Generierung eines
solchen Datensatzes von großer Bedeutung, um ein überwachte Modelle zu
trainieren, die Emotionen und Aspekte analysieren.

METHODEN: Für die Erzeugung des künstlichen Datensatzes wurde eine
Kombination aus GPT-3.5 turbound Few-Shot Learning angewendet. Hierbei
wurde auf das umfangreiche Wissen, das in den zahlreichen Parametern von
GPT-3.5 turbo vorhanden ist, zurückgegriffen, um synthetische Daten zu gene-
rieren. Mit diesen Daten wurden zwei BERT-Modelle für die Klassifikation
der Emotionen und der Aspekte trainiert. Parallel dazu erfolgte die manu-
elle Annotation von Daten, mit denen ebenfalls zwei BERT-Modelle trainiert
wurden. Die Performance dieser BERT-Modelle wurde anschließend vergli-
chen und evaluiert, inwiefern ein künstlich erzeugter Datensatz sich für das
Training eines Modells eignet. Schließlich wurde ein Datensatz aus 50% ma-
nuell annotierten Daten und 50% künstlich annotierten Daten erstellt und
der Versuch wiederholt.

ERGEBNISSE: Die Auswertung eines BERT-Modells, das mit GPT-3.5 turbo -
annotierten Daten trainiert wurde, ergibt bemerkenswerte Ergebnisse. Das
Modell zeigt eine starke Performance in der Aspektvorhersage mit einer
Testgenauigkeit von 0,92, während die Vorhersage von Emotionen mit 0,87

leicht dahinter liegt. Optimale Ergebnisse werden bei der Aspektvorhersage
in einem gemischten Datensatz beobachtet, der zu 50 % aus menschlichen
und zu 50 % aus GPT-3.5 turbo Annotationen besteht, mit einer Testgenauig-
keit von 0,95 für die Aspektvorhersage.

FAZIT: Wir empfehlen einen nuancierten Ansatz, der die Annotation durch
GPT-3.5 turbo und menschliche Validierung einbezieht.
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1
I N T R O D U C T I O N

In Germany, nearly every tenth couple aged 25 to 59 is unintentionally child-
less, according to the Federal Ministry for Family Affairs, Senior Citizens,
Women and Youth [19]. Pharmaceutical companies such as Merck provide
reproductive medications that assist in fulfilling the desire for parenthood.
Patients oftentimes share their experiences about therapies or certain drugs
on social media platforms and are therefore a valuable source of information
for pharmaceutical companies. Is important from a corporate perspective to
analyse social media data to understand which sentiments patients express
towards the medications and what aspects of them should be improved.

1.1 motivation

Until now, Merck uses a model that does the current sentiment analysis on a
document/review level. Review level means that a whole review is classified
as positive or negative which doesn’t reflect reality in a lot of cases. Users
can talk about multiple aspects of a product, therefore we aim to perform
an aspect-based sentiment analysis. If a user/patient addresses multiple as-
pects of a medication and expresses different emotions towards them, this
information is lost during the analysis. Analyzing social media conversa-
tions on a more fine-granular level, holds great potential for companies to
better respond to customer demands and continuously improve their prod-
ucts. However, most machine learning algorithms focus on structured infor-
mation and, therefore, can’t handle the high-dimensional, unstructured, and
sometimes sparse information in social media text data. The rapid devel-
opment in the field of Natural Language Processing (NLP) in recent years
has made it possible to analyze such text data and perform various tasks
such as text classification. Current language models can be used here to
perform sentiment analysis and, beyond that, answer questions such as to-
wards wich aspect of the medication a patient expresses negative or positive
emotions. This analysis can be carried out in the form of a supervised clas-
sification problem using LLMs such as BERT. However, it is challenging to
create a domain-specific dataset that is suitable for this specific classification
task. Although LLMs are trained on a diverse range of data, they may not
have encountered specific domain-related nuances or terminology. Therefore
a custom dataset is needed, resulting in the key challenge of investigating
methods to automatically generate labeled data that are of high quality and
can be used for supervised training.
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1.2 objectives of the thesis

The overall goal is to get an understanding of patient’s opinions regarding
certain fertility drugs. Therefore, we need to capture all the opinions ex-
pressed in a single review, that contain the relevant information. Relevant
means, that the opinion is about one of the pre-defined aspects, that are of
interest to the stakeholder. A drug can have many aspects. However, stake-
holders prioritize five aspects that play a significant role in their analysis.
These aspects are listed and described in table 1.2. The opinions reduce a
long review to its most important parts. This is important, cause user re-
views can be long and contain a lot of noise, which can affect the analysis
in a negative way. After the opinions/text spans have been extracted and
labeled, two classification models must be trained, which receive the text
spans as input and return a probability for the sentiments and for the five
aspects as output. The manual creation of a dataset that satisfies the named
requirements, is a time-intensive step.

Therefore, two research questions can be derived from this use case:

1. Can the use of large language models such as GPT-3.5 turbo help to cre-
ate a domain-specific dataset and therefore reduce labeling costs? The
dataset must contain the relevant text passages of a social media re-
view as well as their sentiment and aspect class. The background of
the question is that manual labeling for this specific NLP task is very
time-consuming

2. Can a mix of human-generated- and GPT-3.5 turbo generated labels fur-
ther boost performance at a lower cost?

Figure 1.1: Workflow High-Level, describing the process from retrieving the raw
data until performing the classification tasks.

The overall workflow on a high level can be obtained from figure 1.1. The
raw data gets extracted from a sprinklr database and stored in multiple Excel
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Figure 1.2: Example of a typical user review with highlighted opinions.The opinions
function as the input for the BERT models.

files. We extract the user reviews from the Excel sheets and apply multiple
pre-processing steps which will be discussed in more detail in 3.2.2. Figure
1.2 shows a typical example of a user review. The highlighted text represents
the relevant opinions.

Figure 1.3: Sentiment Classification. First we use human annotated data as input,
then GPT-3.5 turbo annotated data. We then compare the performances of
both models.

Those extracted opinions/text spans form the basis for two classification
tasks:

1. a binary classification of the sentiment (positive or negative) visualized
in figure 1.3

2. a multi-label classification of aspect categories, that were pre-defined
by the stakeholder visualized in figure 1.4

The outputs of both classification models should then be concatenated.



1.2 objectives of the thesis 4

Figure 1.4: Aspect Classification. We have five pre-defined and distinct aspect cat-
egories/classes. First, we use human annotated data as input, then
GPT-3.5 turbo annotated data. We then compare the performances of both
models.

In table 1.1 you can see an example of how the final output should look
like.

Table 1.1: Example of final output

Opinion/Span Aspect Sentiment

’I got 12 eggs, 6 of
them fertilized...’

effectiveness positive

’Menopur is not
available in the
Pharmacies right
now. There seems
to be a shortage’

availability negative

’I am so frus-
trated with the in-
jection. It always
leaks!"

administration negative

’...it gave me
a really bad
headache and I
feel sick all the
time!!’

adverse event negative

’...unfortunately,
this round failed’

effectiveness negative

’I got pregnant!!’ effectiveness positive
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The stakeholders limited themselves to five pre-defined aspects which are
described in table 1.2.

Table 1.2: Definitions of pre-defined aspects.

Aspect Definition

effectiveness The drug is considered to be effective, if the
patient retrieved eggs, the eggs got fertil-
ized, got embryos or got pregnant

adverse event This aspect comes into play when the pa-
tient talks about complaints related to the
medication, for example if they suffered
from any kind of pain, insomnia etc.

cost The patient talks about the money spent on
the medication. Either the patient consid-
ered it as too expensive or affordable.

availability Usually, patients talk about drug shortages
and non-availability in the pharmacies

administration The patient talks about the handling of the
drug. For example, if the drug comes in
form of different powders, the patient de-
scribes the procedure of mixing these pow-
ders or if the drug comes in the form of an
injection, the patient shares the experience
with the handling of the injection.

1.3 structure of the thesis

First, a brief overview of the medical basis is given in section 2 along with
the theoretical background of transformer models. Both the architecture and
the way in which they have been trained are explained. In 3 we will have
a look on how we created our datasets by explaining pre-processing steps
and the annotation process. The fine-tuning of the classification models and
their results are then discussed in chapter 4. Finally, an outlook on future
challenges is given and a final conclusion is drawn.



2
T H E O R E T I C A L B A C K R O U N D

We will start with the medical background and then move on to the concept
of language models. We will then take a closer look at one language model
in particular, the transformer model. We look at its architecture and some
of the special features that distinguish it from other language models. We
then describe the transformer models used in this thesis: BERT, GPT-3.5 turbo

and Text-to-Text-Transformer (T5). We look at the pre-training, the datasets
on which they were trained and the fine-tuning.

2.1 medical fundamentals

This section introduces the medical principles that are important for this
study.
IVF, or In Vitro Fertilization, is a medical procedure designed to assist indi-
viduals or couples with fertility issues. It involves the conception of a child
outside the body, typically in a laboratory setting. Two essential steps in the
IVF process are:

1. Ovulation Stimulation: In the first phase, the woman undergoes treat-
ment with fertility medications to stimulate the ovaries. This encour-
ages the development of multiple follicles, each containing an egg. Reg-
ular monitoring, through blood tests and ultrasounds, ensures that the
eggs within the follicles reach an optimal level of maturity.

2. Egg Retrieval and Fertilization: Once the eggs within the matured
follicles are ready, a minor surgical procedure is performed to retrieve
them from the ovaries. In the laboratory, these eggs are then fertilized
with sperm. The fertilized eggs, now embryos, are closely monitored
for several days before one or more are selected for implantation in the
woman’s uterus.

It is important to know that the mentions of follicles in the reviews don’t
determine the success of a fertility drug. More important are the number
and quality of the eggs. If the patient mentions only the follicles, the review
doesn’t contain valuable information here, and therefore nothing should be
labeled here. More information can be obtained from table 1.2.
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Figure 2.1: Representation of the IFV Process. Source: [14]

2.2 language modeling

A language model has the objective to learn the true distribution of a text cor-
pus and hence attempts to model a probability distribution over sequences
of tokens or words. A popular approach to do so is through next word pre-
diction [32]. Given a context, it predicts the distribution over the word to
follow. For example for the context "The food was", the model could place
high probabilities on words like "delicious" or "expensive" [32]. A way to
compute probabilities of entire sentences would be to use the chain rule of
probability to decompose the entire sequence and calculate its joint probabil-
ity, as shown in the equation:

P(x1, .., xn) = P(x1)P(x2|x1)P(x2)P(x3|x1:2)...P(xn|x1:k-1) =
n

∏
k=1

P(xk|x1:k-1)

(2.1)

Equation 2.1 suggests that we could estimate the joint probability of an entire
sequence of words by multiplying together a number of conditional probabil-
ities [9]. This is difficult to compute on large text corpora as it requires count-
ing the number of times every word occurs following every long string[9].
To overcome this problem, the n-gram model is introduced, which approxi-
mates the history of words by just looking at the last n words where ’n’ can
be 1 (unigram), 2 (bigram), 3 (trigram), and so on. The bigram approximates
the probability of a word given all the previous words by using only the
conditional probability of the preceding word [9].

P(wi|w1:i−1) ≈ P(wi|wi−1) (2.2)
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The assumption, that the probability of a word depends only on the previous
word is called Markov assumption. Markov models predict the probability
of some future unit without looking too far into the past [9]. However, this as-
sumption doesn’t take into account that language is creative and can change
and therefore some contexts might not have occurred before [9]. Another
weakness is that this approach ignores long dependencies between words,
i.e. a word that refers to a word from much earlier in a sequence. There-
fore, they struggle to capture patterns of syntax and semantics in natural
language well. Another fundamental problem is the curse of dimensionality,
which limits modeling on larger corpora [18].

2.3 neural network language models

To overcome the curse of dimensionality, the conditional probability distri-
bution is parametrized with the help of low-dimensional vectors, called em-
beddings. Embeddings learn a distributed representation for words, which
constitutes a word as a low dimensional vector [18]. This continuous repre-
sentation allows the model to capture semantic similarities between words
and generalize better to unseen data. Neural networks such as Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks
can use such embeddings as input. However, they encounter two key chal-
lenges: First, they process sequences one step at a time, making it diffi-
cult to parallelize and slowing down training. Second, they also struggle
to capture meaningful relationships between distant elements in a sequence,
as their influence diminishes quickly over time step. Hence, Transformer
models were introduced to address this bottleneck problem. In contrast to
N-grams, Recurrent Neural Networks (RNNs) and Long Short-Term mem-
ory (LSTMs), Transformers can capture complex patterns and dependencies
in language. Notable examples of Transformer-based Models include Gener-
ative Pre-trained Transformer (GPT)[5] and Bidirectional Encoder Represen-
tations from Transformers (BERT)[10]. Both GPT-3.5 turbo and BERT are current
state-of-the-art models and will be discussed in more detail throughout this
thesis as they will be used to perform the automated annotation and super-
vised text classification.

2.4 transformers

Transformer models have significantly impacted the field of Natural Lan-
guage Processing (NLP). They excel in capturing contextual relationships
and long-term dependencies within sequential data, making them a notable
choice compared to alternatives like recurrent networks. The paper that first
introduced Transformer models was authored by Vaswani et al. in 2017, ti-
tled ’Attention is All You Need’[37] and serves as the primary source of
reference in this section. This study demonstrated that transformers could
achieve state-of-the-art results on a variety of natural language processing
tasks, including machine translation, text summarization, and question an-
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swering. For example, in a machine translation application the transformer
would convert one language to another, or for a classification problem will
provide the class probability using an appropriate output layer. This original
transformer model is often referred to as the ’vanilla’ transformer model. Var-
ious architectural variations of this vanilla model have since been proposed
in [24]. In the next sections, the transformer architecture is explained along
with the transformer models, which were used to perform the aspect-based
sentiment analysis: BERT, GPT-3.5 turbo, and T5.

2.4.1 Transformer Model Types

There are three categories in which transformer models can be classified:

• Encoder-only: These models are typically used to create a representa-
tion of the input sentence, primarily for tasks like classification or se-
quence labeling. Well-known encoder only models include BERT [10]
and RoBERTa [25].

• Decoder-only: Such models are usually used for auto-regressive se-
quence generation tasks. GPT-3.5 turbo is an example for such a decoder
only model which has shown exemplary results on NLP task.

• Both Encoder and Decoder: These models are widely employed in
sequence-to-sequence generation tasks, such as neural machine trans-
lation, where the generation of tokens relies on both the original input
and the tokens already generated. T5 [30] and BART[22] are popular
examples of encoder-decoder transformers.

2.4.2 Transformers Architecture

The vanilla model architecture proposed by [37] consists of an encoder-
decoder structure, which is stacked six times on top of eachother. One encoder-
decoder layer is shown in 2.2 where the left side represents the encoder and
the right side the decoder. The first layer is the embedding layer, which trans-
forms the original data into a numerical representation, that will be fed into
the encoder block.
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Figure 2.2: Illustration of the Transformer architecture by Vaswani et al. [37].

2.4.2.1 Encoder

The encoder aims to project an input sequence of representations to a se-
quence of learned contextualized embeddings. It consists of a stack of N=6

(proposed in the original paper) encoder blocks, where the output of one
block is fed as the input to the next block. Each encoder block has two
sub-layers: a multi-head self-attention mechanism and a position-wise feed-
forward neural network. The encoder expects its inputs to be of the shape
SxD (as shown in figure 2.3). S represents the input sentence length, and
D is the length of the embedding, whose weights can be trained with the
network.

In particular, BERT has a fixed input size of D=512 tokens. Then it processes
these vectors by passing them to a self-attention layer followed by a position-
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wise feed-forward neural network, which captures local interactions. The
output of the last encoder serves as the input for all decoder layers, enabling
the decoder to access the fully processed information from the entire input
sequence for generating the output sequence.

Figure 2.3: Input and Output representation in one encoder layer based on [1].

2.4.2.2 Decoder

Given these contextualized representations provided by the encoder com-
ponent, the decoder component generates an output sequence one element
at a time. By consuming the previously generated element as additional in-
put when generating the next, the model is characterized as auto-regressive.
[37]. Similar to the encoder, the decoder consists of multiple layers. Each
decoder layer has three sub-layers: a self-attention layer, a position-wise
feed-forward neural network, and additionally an ecoder-decoder attention
layer, that helps the decoder to focus on relevant parts of the input sentence.
The position-wise feed-forward neural network in the decoder performs the
same function as in the encoder, capturing local interactions. The figures 2.4
and 2.5 provide a high-level visualization of the encoder-decoder structure.
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Figure 2.4: One encoder-decoder layer based on [2].

Figure 2.5: Data flow between the encoder and the decoder based on [2].
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2.4.2.3 Attention

What makes Transformers so special is the the so called ’attention mecha-
nism’. The concept of ’attention’ has its roots in addressing the bottleneck
problem encountered in machine translation systems. Recurrent Neural Net-
works (RNNs) and Long-Short Term Memory (LSTM) models encounter two
key challenges. First, they process sequences one step at a time, making it
difficult to parallelize and slowing down training. Second, they struggle to
capture meaningful relationships between distant elements in a sequence, as
their influence diminishes quickly over time steps[37]. Transformers address
these challenges by enabling parallel processing and effectively modeling
long-term dependencies through self-attention mechanisms. The core idea
behind the attention mechanism is to allow a model to dynamically focus
on the most relevant parts of the input sequence and therefore represent re-
lations between words in a sentence [12]. It allows the model to focus more
on the tokens that are most relevant for a given task, while downplaying the
influence of irrelevant token. Therefore, it allows the model to let a sequence
learn information about itself. For example let’s consider the sentence: ’The
cat chased the dog because it was hungry.’ ’it’ could refer to either the cat or
the dog, and understanding the correct reference is essential for comprehen-
sion. Self-attention mechanisms enable a model to determine that ’it’ refers
to ’the cat’ or ’the dog’ based on the context. It captures the dependencies
between words and identifies the relationships. Figure 2.6 visualizes the self-
attention functionality.

Figure 2.6: Visualization of the self-attention mechanism by [31].
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The attention mechanism used by [37] is a dot-product attention, which can
be described by the following equation:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2.3)

The equation calculates attention scores (compatibility) between Q and K,
scales them, applies the softmax function, and computes a weighted sum
using V. Q is a matrix that contains the set of queries packed together, K and
V are keys and values matrices. The matrices are calculated by multiplying
the input X with weight matrices Wq, Wk, Wv. These weight matrices are first
iniliazed and get updated during training.

Q = X · Wq (2.4)

K = X · Wx (2.5)

V = X · Wv (2.6)

2.4.2.4 Multi-head attention

To enhance the representational power of self-attention, [37] employed a
multi-head attention mechanism, which repeats its computations multiple
times in parallel. The attention module splits its Query, Key, and Value pa-
rameters N-ways, and each split is passed independently through a separate
head shown in 2.7. By using multiple attention heads, each focusing on dif-
ferent parts of the input sequence, the model can capture various types of
dependencies and extract different types of information. The outputs from
multiple attention heads are concatenated and linearly transformed to obtain
the final representation/final attention score.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (2.7)

where headi = Attention(Qi, Ki, Vi) (2.8)
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Figure 2.7: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention con-
sists of several attention layers running in parallel. Figure was taken
from [37].

2.4.2.5 Positional Encoding

Positional encoding is another important component in the transformer model.
It allows the model to consider the order of words in a sentence. In natural
language, the order of words is crucial for understanding the meaning of
a sentence. For example, “The cat chases the mouse” has a different mean-
ing than “The mouse chases the cat”, even though both sentences use the
same words. Transformer models, unlike recurrent neural networks (RNNs),
do not inherently consider the order of elements in a sequence. This is be-
cause transformers treat each word in the input sequence independently and
apply the same operations to each word. Therefore, without positional en-
coding, a transformer model would not be able to distinguish between “The
cat chases the mouse” and “The mouse chases the cat”. Positional encoding
solves this problem by adding additional information to each word in the
input sequence, indicating its position relative to other words. This allows
it to consider both the meaning of each word and its position in the sen-
tence when making predictions. It has recently become more common to
use relative position embeddings [16]. Raffel et al. (2019) further explain in
[30] that instead of using a fixed embedding for each position, relative po-
sition embeddings produce a different learned embedding according to the
offset between the “key” and “query” being compared in the self-attention
mechanism [30].

2.4.3 BERT

There are several Large Language Models LLMs, that are built on the Trans-
former architecture. They differ in terms of whether they employ the en-
coder, decoder or both components, their training objectives and size. BERT

(Bidirectional Encoder Representations from Transformers) is a specific ex-
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ample that employs only the encoder component. BERT was introduced in
2019 and back then one of the early models to leverage the Transformer
architecture and demonstrating the power of capturing context in both di-
rections within a sentence [10]. BERT was used in this work to perform the
classification tasks and therefore it is important to spend some time explor-
ing the architecture and pre-training objectives.

2.4.3.1 What is BERT

BERT is designed to pre-train deep bidirectional representations from unla-
beled text by jointly conditioning on both the left and right context in all lay-
ers. It utilizes MLM (Masked Language Model) and NSP (Next Sentence Pre-
diction) as its pre-training objectives. These objectives are achieved through
the incorporation of unique tokens, namely CLS (Classification), SEP (Sep-
arator), and MASK (Masked). As a result, Devlin et al. states that the pre-
trained BERT model can be fine-tuned with just one additional output layer
to create state-of-the-art models for a wide range of tasks, such as question
answering and language inference, without substantial task-specific architec-
ture modifications [5]. BERT uses a transformer language model designed by
[37] at its heart, but only deploys the encoder layers. It typically utilizes a
stack of 12 or 24 encoder layers, depending on the specific variant (BERTBase

or BERTLarge). BERTBase consists of 12 encoder layers, while BERTLarge em-
ploys 24 encoder layers. These layers are responsible for processing and ex-
tracting contextual information from the input text. The choice of variant
depends on the complexity and scale of the natural language processing
task at hand.

2.4.3.2 Input and Output Representation

Input Representation: The input to BERT is a sequence of tokens, which is
first converted into vectors and then processed in the neural network. The
token sequence can represent a single sentence or a pair of sentences (e.g.,
for tasks that compare two sentences). Each token is embedded into a vector
using WordPiece embeddings (a subword tokenizer, developed by Google),
with a vocabulary size of 30,000 tokens. To allow the model to distinguish
between sentences and to understand the order of sentences, BERT adds two
types of embeddings to the token embeddings: segment embeddings and
position embeddings. The first token of every sequence is always a special
classification token (‘[CLS]‘). The final input representation for each token is
the sum of its token embedding, segment embedding, and position embed-
ding.

Output Representation: The output from BERT is a sequence of hidden state
vectors, one for each input token. These vectors capture the contextual infor-
mation for each input token based on all other tokens in the sequence (to
both the left and the right). For tasks that require a single vector (e.g., text
classification), the hidden state vector corresponding to the ‘[CLS]‘ token is
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Figure 2.8: Overview of the steps involved in converting the input data into a nu-
merical representation. Source: [10]

used. This vector goes through an additional layer of neural network to pro-
duce the final task-specific outputs. An overview of the described processes
are illustrated in figure 2.8.

2.4.3.3 Pre-Training objectives

Pre-training involves training a language model on a massive corpus of un-
labeled text to learn contextualized representations of words. This is done
through pre-training objectives such as masked language modeling and next
sentence prediction. This initial phase allows the model to capture rich se-
mantic relationships and contextual information, providing a foundation for
further fine-tuning on specific downstream tasks.

2.4.3.4 Masekd Language Modeling

The first pre-trainng objective is called Masked Language Modeling (MLM).
In Masked Language Moddeling (MLM), a certain percentage of the input
data is masked at random, and the model is trained to predict these masked
tokens based on their context. IN figure 2.9 the word ’you’ is masked in
the sentence ’how are you today’ and we want the model to predict it. This
allows the model to learn a deep understanding of language structure and
semantics [7] [3]. The masking process in BERT is not simply replacing se-
lected tokens with a ’[MASK]’ token. Instead, 80 percent of the time the
selected tokens are replaced with the ’[MASK]’ token, 10 percent of the time
they are replaced with a random token, and 10 percent of the time they are
left unchanged. This encourages the model to focus on the entire context
rather than relying solely on the ’[MASK]’ token, making it more robust.
The MLM approach enables BERT to learn bidirectional representations, as it
has to understand the context on both sides of each token to make accu-
rate predictions12. This is in contrast to traditional language models, which
typically operate in a unidirectional manner.
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Figure 2.9: Pre-training objective ’Masked Language Modeling’ for BERT. Based to
on [17].

2.4.3.5 Next Sentence Prediction (NSP)

Next Sentence Prediction (NSP) is the other important component in the pre-
training process. This objective is shown in figure 2.10 and teaches BERT to
understand longer-term dependencies across sentences. It involves feeding
BERT ’sentence A’ and ’sentence B’. Then we ask, ’Hey, BERT, does sentence B
follow sentence A?’ BERT outputs either IsNextSentence or NotNextSentence.
In NSP the special token’[SEP]’ is used to indicate where the first sentence
ends and the second sentence starts.

Figure 2.10: NSP Task in Bert [10].
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2.4.3.6 Fine-Tuning

To apply transformers in different tasks, instead of starting the training pro-
cess from the beginning each time, a commonly adopted method is to use
the pre-trained transformers and subsequently adjust them using a down-
stream dataset. This step is called fine-tuning. It involves training the model
on a specific task (like question answering , translation or summarization)
using labeled data. The Transformer’s internal weights as well as weights of
the newly added classification layer are updated here. This two-step process
allows Transformers to leverage both the information available in large text
corpora and the specific details contained in task-specific datasets. For the
fine-tuning, the BERT model is loaded with the pre-trained weights and fur-
ther fine-tuned using labeled data in downstream tasks [10]. The pre-training
corpus used for pre-training BERTBase and BERTLarge was the BooksCorpus
from [42] with 800M words and the English Wikipedia corpus with 2500M
words.

Figure 2.11: BERT is pre-trained with an NSP and MLM training objective and fur-
ther fine-tuned on a specific downstream dataset like SQuAD for exam-
ple [10].
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2.4.4 T5 and Flan-T5

Whereas BERT requires fine-tuning on specific tasks, and different fine-tuned
models are often used for those different tasks, T5 was trained to handle
multiple tasks simultaneously [44] as illustrated in 2.12. T5 is an open-source,
encoder-decoder-based, pre-trained language model, developed by Google,
that reframes all NLP tasks into a unified text-to-text format where the input
and output are always text strings [30]. This method is called ’prompting’.
A prompt/input is a human-like message that instructs the model about
the specific task to perform. The prompt typically includes a task descrip-
tion or directive that guides the model in generating the desired output.
The flexibility of T5 allows it to handle various natural language processing
tasks by framing them as text generation problems, with the input prompt
providing the necessary context for the model to produce the correspond-
ing output. For example, if you were to input a text into T5 and instruct
it to "summarize this text," it would understand that it needs to generate a
shorter version of the same text. T5 was trained in various settings using a
mixture of unsupervised and supervised tasks and can be downloaded from
Hugging Face. Google Research claims that T5 is flexible enough to be eas-
ily modified for application to many tasks beyond those considered in [30].
Fine-tuned Language Net - Text-To-Text Transfer Transformer (FLAN-T5) is
an enhanced version of Google’s T5 AI model. It was released in the paper
“Scaling Instruction-Finetuned Language Models” and has been fine-tuned
on more than 1000 additional tasks. Flan-T5 is introduced here, because it
can be used for the span/opinion extraction task via a Question-Answering
approach. Question-Answering is an important task that deals with the chal-
lenge to understand user queries in natural language and deliver accurate re-
sponses [20]. Question-Answering (QA) aims to simplify the human-machine
interaction and was used in several products as AI assistant like in Amazon
Alexa 1, Google Assistent 2 and Apple Siri 3. FLAN-T5 was trained on the
The Stanford Question Answering Dataset (SQuAD) dataset, which contains
many paragraphs of text, different questions related to the paragraphs, their
answers, and the start index of answers in the paragraph. Because in the
Question-Answering setting, the model extracts the answer from the con-
text, the task is called ’Extractive QA’. Generative Pre-trained Transformer
3.5 (GPT-3.5) in contrast performs a generative QA task. Both approaches will
be tested and compared with each other.

1 Amazon Alexa: https : //alexa.amazon.de/
2 Google Assistent: https : //assistant.google.com/intl/dede/
3 Apple Siri: https : //www.apple.com/de/siri/
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Figure 2.12: Illustration of the different tasks, including translation, question
answering, and classification the Text-to-Text-Transformer Model is
trained on. Figure based on [30].

2.4.5 GPT

2.4.5.1 Evolution of the GPT model series

A model that has revolutionized the field of NLP is GPT-3.5 turbo, also
known as ChatGPT. It was developed by OpenAI and released in 2022

4.
Models of the GPT model series rapidly evolved in different versions, being
trained on a larger corpus of textual data and with a growing number of
parameters. This development led to a number of milestones presented in
figure 2.13. With each version, the understanding and generation capabili-
ties improved, and with the release of GPT-3 in-context learning approaches
could be leveraged [20]. The third version of GPT, with 175 billion parame-
ters, is 100 times bigger than GPT-2. The premise is, that a higher number
of parameters leads to better model performance. Brown et al. demonstrate,
that scaling up language models greatly improves task-agnostic, few-shot
performance, sometimes even reaching competitiveness with prior state-of-
the-art fine-tuning approaches [5]. However, GPT-3 is not chat-optimized,
which led to the development of GPT-3.5 turbo and its release in November
2022. The latest model of the GPT model series is GPT-4, with its ability
to handle image data as input [20]. Besides the number of parameters and
the amount of training data, there is also evidence that the data quality
is a factor here [23]. OpenAI has made the model available to the public
through a playground [27] and an Application Programming Interface (API).
GPT-3.5 turbo can generate text that is appropriate for a wide range of contexts,
but unfortunately, often expresses unintended behaviors such as making up
facts, generating biased text, or simply not following user instructions [28],
which can undermine the potential of real-world applications.

4 https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
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Figure 2.13: Important steps in the evolution of large language models.
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2.4.5.2 Few-Shot Learning

LLMs are pre-trained on an enormous amount of data and hold a huge gen-
eral knowledge in their parameter weights. Updating these weights via fine-
tuning can be computationally very expensive. We can make use of the
model’s existing knowledge by providing the model a context with some
instructions and examples at inference time. The objective is to manipulate
the the input prompt in such a way, that the probability distribution of the
next-tokens, that the model predicts, matches the intentions. This process
is called ’Prompting’ or ’In-Context-Learning’. It has been a new trend to
explore In-Context-Learning (ICL) to evaluate and extrapolate the ability of
LLMs [11].

Figure 2.14: Fine-Tuning LLMs is usually more expensive than using Prompts

The key idea is to learn from analogy. The model is ’trained’ on a small
number of examples (more than one but still relatively few and depend-
ing on how many examples fit into the model’s context window) for a
given task. Brown et al. demonstrated in [5] the effectiveness of modulat-
ing a frozen GPT-3 model’s behavior through text prompts. The approach
of ’freezing’ pre-trained models is appealing, especially as model size con-
tinues to increase. Instead of having a separate copy of the model for each
downstream task, a single generalist model can simultaneously serve many
different tasks. Prompt Engineering becomes an increasingly important skill
to use LLMs in an effective way. White et al. (2023) state that prompts are
not only instructions but also a form of ’programming’ that can customize
the outputs and interactions with an LLM[38]. He even compares prompts
with software patterns that can be reused to solve recurring problems. He in-
troduces 16 prompt patterns for more efficient interaction between the user
and the LLM, specifically ChatGPT. We use LangChain to create dynamic
prompts. To use the GPT-3.5-turbo-16k model, Merck provided an OpenAI
API key. We select a few examples from our set of labeled reviews and format
them in the way shown in figure 2.15.
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Figure 2.15: Illustration of a .txt file with examples for few-shot learning.

An instance for the Few-Shot approach could look like in the example below.
It shows, how we can reduce a text to it’s relevant parts by extracting only
spans.

Original text: Ellenn im at a private clinic but nhs funded. In Nottingham
they outsource ivf to private clinics - they only do OI in the nhs hospital.
We were self funding at our clinic before anyway for OI, and now switched
to our funding now it’s cleared. For ohss I think their process is only FA if
someone is in ohss but defo will ask. Thank you! Ovaleap is a lot better and
don’t have to mix like Menopur. No same dose. Continue as I was as size
wise they’re not there yet. Collection Monday apparently but will see what’s
happening tomorrow in my next scan. remind me - this your first round or
second?

Span1: Ovaleap is a lot better and don’t have to mix like Menopur
Aspect1: positive
Sentiment1: administration



3
M E T H O D O L O G Y

In this chapter, we will explain how we conducted our empirical study. We’ll
talk about how we created the datasets, breaking down the process into
manual and automatic labeling. We will also discuss the metrics we used to
measure the quality of the automatically labeled dataset. After that, we will
move on to fine-tuning the BERT model and check how well it performs in
both sentiment prediction and aspect prediction tasks.

3.1 pipeline

The raw data is provided in the form of MS Excel files which the stakeholder,
a representative of Merck Healthcare, exported from a Sprinklr database.
It contains a significant amount of noise, which needs to be removed first
before we can proceed with the actual labeling process. Therefore, we have
to apply some data preparation steps to ensure that the data we label is of
high quality in order to fine-tune BERT. The pipeline is illustrated in figure
3.2.

Figure 3.1: Pipeline with an overview of important steps involved in this thesis: Pre-
Labeling, Labeling and Fine-Tuning.

3.2 creation of a dataset

In total, we manually label a set of 400 records by extracting the opinions and
assigning an aspect category and a sentiment to it. We label the same amount
of records in an automated manner by using a combination of GPT-3.5 turbo

and a Few-Shot Learning approach. Here we define a prompt and modify it
until the model outputs are stable. The labeling process is shown in figure
3.2
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Figure 3.2: The two different labeling methods used to generate our datasets: hu-
man labeling and automated labeling with GPT-3.5 turbo.

3.2.1 Annotation Guideline

We begin with the definition of an annotation guideline, designed to ensure
consistent human labeling. This guideline was created in close collaboration
with the business stakeholders. It contains information like what should be
labeled and what should not be labeled and therefore reduces conflicts dur-
ing the annotation process.

3.2.2 Pre-Labeling Steps

The most important steps in the pre-labeling phase are further explained in
the following:

• Brand Name Extraction: Each MS Excel file contains multiple sheets,
each one for a specific medication. We have chosen a subset of these
sheets based on our specific medication brands of interest:

– Menopur

– Gonal-F

– Decapeptyl

– Ovaleap

– Puregon

– Fostimon

– Bemfola
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• Not every review contains an explicit mention of the brand stated
above. We systematically applied a case-insensitive Regular Expres-
sion (Regex) pattern across all reviews, filtering and retaining only those
that contained the specified brands. This ensures that the dataset is cen-
tered around those brands, which is a requirement of the stakeholder.

Listing 3.1: Python Code for filtering data based on a regex pattern

regex_pattern = ’Menopur|Gonal|Ovaleap|bemfola|Pergoveris|
puregon|Fostimon|Decapeptyl ’

def filter_by_regex(df, regex_pattern):

df = df[df[ ’ text ’].str.contains(regex_pattern, flags=re.

IGNORECASE, regex=True)]

return df

The pipe (’|’) symbol acts as an "OR" operator, meaning the pattern
will match any of these words. The re.IGNORECASE flag makes the
pattern case-insensitive, so it will match regardless of the letter casing
in the target text.

• Irrelevant Data Filtering: The selected drugs can not only be used
in the fertility context, but also in the context of cancer treatment.
For example, Decapeptyl can be used as part of a broader treatment
plant in radiotherapy for certain types of cancers. Decapeptyl is a
gonadotropin-releasing hormone (GnRH) agonist, and it works by sup-
pressing the production of sex hormones. In the context of cancer
treatment, it may be used to temporarily suppress the production of
hormones such as estrogen or testosterone, which can be beneficial in
certain cancers that are hormone-sensitive like prostate- or breast can-
cer. Decapeptyl may be used to reduce testosterone or estrogen levels,
therefore slowing down the growth of the cancer cells[36]. The issue is,
that cancer patients may talk about different topics and certain aspects
of the drug such as ’effectiveness’ for example is interpreted differently
by them than by a patient who uses the drug for fertility reasons. To
center our dataset around the fertility topic, we filter out the topics
that are not about fertility by using a regex pattern with the following
keywords: cancer, tumor, oncology, and endometriosis.

• HTML Tag Removal: We then remove any HTML tags present in the
data by using the library ’BeautifulSoup’. This is crucial as these tags
can interfere with the text analysis and do not provide meaningful
information for our task.

• Word Count Filtering: We filter out data that contains less than 5

words or more than 350 words. This helps us focus on texts that are
likely to provide substantial and relevant information. For example
there are reviews that contain more than 1000 words, which most of
the time, are copy-paste Wikipedia articles and not actual user reviews.



3.2 creation of a dataset 28

• Duplicate Removal: Finally, we remove any duplicate entries in our
dataset. We perform a hard-duplucate removal which focuses on ex-
act matches between records. This ensures that each piece of data we
analyze is unique, improving the quality of the data.

3.2.3 Manual Labeling

The manual annotation is then carried out in the labeling framework ’NLP
Labs’ [21]. It is important to note, that some reviews can have opinions about
multiple aspects and express different sentiments towards each of them like
in figure 3.3. Here, the patient discusses the ineffectiveness of the initial med-
ication. However, upon switching to a different brand, they experienced pos-
itive results. Consequently, we encounter the aspect of "effectiveness" twice
in this context, each associated with a distinct sentiment—negative and pos-
itive, respectively.

Figure 3.3: Review with two relevant text spans. Each span is extracted separately
and treated independently in the dataset.

Note: Some reviews might not contain any relevant opinions about our pre-
defines aspects at all. In this case, nothing should be labeled here.

3.2.4 Challenges and Limitations during Labeling

There were several issues during the annotation process, partly related to
the data itself and partly associated with the NLP Lab labeling tool ’John-
Snow Lab’ [21]. Starting with the data, the initial amount of raw data was
drastically reduced after applying the data preprocessing steps. As only the
stakeholder had access to the Sprinklr database and thus control over the
data volume, she had to be contacted repeatedly to provide more data. The
MS Excel files had a significant overlap of data, resulting in a high num-
ber of duplicates that needed to be removed. Consequently, the quantity of
labeled data increased only very slowly. Another challenge in annotating re-
views is figuring out which parts of the texts are important and which aren’t
due to the lack of clear text boundaries. This requires reading carefully the
reviews multiple times before annotating anything, which is also very time-
consuming. Additionally, users often share extensive and irrelevant drug-
related histories, such as experiences from a decade ago. Unfortunately, pre-
filtering this irrelevant information is not feasible and the process of reading
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through entire reviews can be exhausting, potentially leading to mistakes
in annotation and impacting the accuracy of classification models. Also, the
annotation tool has caused some difficulties. For example, there was only a
"next" button and no "back" button. So, if you wanted to revisit a previous re-
view to make some changes, you could only do so after navigating through
the tool, which was a time-intensive process. Another issue was, that after
a data record was labeled and submitted, the labeling tool didn’t allow any
changes, resulting in time-consuming manual post-processing efforts. Also,
the order of the labeling sequence, whether starting with sentiment or as-
pect first, is crucial, as inconsistency can lead to intricate post-processing
complexities as well.

3.2.5 Automated Labeling with GPT-3 and Few-Shot Learning

In this data labeling approach, Few-Shot learning is leveraged to annotate
user reviews in the context of aspect-based sentiment analysis. We will give
the model a few examples (here we used 10 examples) and a context, which
includes descriptions about the aspects and sentiment. Both components will
be chained together by using ’Prompt Templates’ which are provided by
the library ’LangChain’ [29]. With our prompt, we can guide the model in
extracting specific information related to fertility drugs.

3.2.6 Final Datasets

Both labeling approaches resulted in the following data distributions 3.4, 3.5,
3.6, 3.7.

First we compare the sentiments labels generated by a human and by
GPT-3.5 turbo. First we notice, that GPT-3.5 turbo extracted in total 220 more
opinions and therefore we got the same number of additional labels. Sec-
ondly, we notice an imbalance in both datasets. The negative class is over-
represented here, which GPT-3.5 turbo seemed to have recognized correctly.

Now we take a look at the aspect categories annotated by a human and
GPT-3.5 turbo. We also have an imbalanced dataset here. In the ground truth
dataset, the category ’effectiveness’ has the highest number of samples, fol-
lowed by ’adverse event’. Also GPT-3.5 turbo captured this imbalance, but com-
pared to the ground truth dataset recognized more samples of ’administra-
tion’. The categories ’cost’ and ’availability’ seemed to have been captured
correctly by GPT-3.5 turbo.
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Figure 3.4: Count of negative and positive instances annotated by a human.

Figure 3.5: Count of negative and positive instances annotated by GPT-3.5 turbo.
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Figure 3.6: Counts of aspects annotated by a human.

Figure 3.7: Counts of aspects annotated by GPT-3.5 turbo.
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3.3 baseline and evaluation

First, we want to evaluate the quality of the predicted text-spans by GPT-3.5 turbo

and FLAN-T5. With texts presented as vectors, we measure the degree of sim-
ilarity of two texts as the correlation between their corresponding vectors,
which can be further quantified as the cosine of the angle between the two
vectors [16]:

Cosine(x, y) =
x · y
|x||y| (3.1)

That being said, we need to calculate an embedding vector for the true text
span and the generated text span by FLAN-T5 and GPT-3. OpenAi recom-
mends using text-embedding-ada-002 model for nearly all use cases. To re-
trieve the embeddings, we send our input to the embeddings API endpoint
and get the embedding as a response [26].
Accuracy and F-1 score are two commonly used metrics for evaluating the
performance of classification models. Accuracy is the most intuitive perfor-
mance measure. It is simply a ratio of correctly predicted observations to
the total observations. Its score ranges between 0 and 1. It works well only if
there are an equal number of samples belonging to each class. The formula
for accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

with TP = True Positive, TN = True Negative, FP = False Positive and FN = False
Negative. However, accuracy is not a good choice with imbalanced datasets,
where some classes have significantly more samples than others. For exam-
ple in our case, we have more negative opinions than positive ones. In such
cases, even a simple model that always predicts the majority class will have
a high accuracy rate. The F1-Score was introduced to address this problem.
It is a measure of a model’s performance that considers both precision and
recall. Precision is the number of true positives divided by the number of
true positives and false positives. Recall (Sensitivity) is defined as the num-
ber of true positives divided by the number of true positives and the number
of false negatives. The F1-Score is the harmonic mean of precision and recall,
taking both false positives and false negatives into account. It reaches its best
value at 1 (perfect precision and recall) and worst at 0 [43]. The formula for
the F1-Score is given by:

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)
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F1 − Score = 2
Precision ∗ Recall
Precision + Recall

(3.5)

An alternative approach is using class weights to handle imbalanced datasets.
Each class j is assigned a weight wj based on its frequency in the training
dataset [34]. The equation to calculate the class weights wj is given by:

wj =
nsamples

nclasses × nsamples,j
(3.6)

Here nsamples is the total number of samples or rows in the dataset, nclasses
is the total number of unique classes in the target and nsamples,j is the total
number of rows of the respective class j.
In general, the less frequent a class j is, the higher its weight wj will be.
During the training process, the model adjusts its parameters to minimize a
weighted loss function. The weighted loss gives more emphasis to the errors
made on the underrepresented classes. This helps the model to focus more
on improving its performance on the minority classes. With the class weights,
we can continue to use the accuracy as metric [34].
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F I N E - T U N I N G B E RT F O R P R E D I C T I N G T H E S E N T I M E N T
A N D A S P E C T

In the main chapter of this thesis we explain how we generated the data and
how we conducted the fine-tuning of BERT for predicting the sentiment and
aspects patients expressed towards certain fertility drugs. In the following,
we will provide an overview of the models used, the tokenization method,
the hyperparameters, the loss-function, and the hardware we used for the
training.

4.1 model structure

For GPT-3 labeling we use the Azure OpenAI API service and select the
gpt-35-turbo-0613 model. It has 6 billion parameters and is smaller than the
DaVinci model, which has 175 billion parameters, but is less expensive. For
the classification tasks we use BERT base which is a Transformer model with
12 encoder layers, 768 hidden size and 12 attention heads. The fine-tuning
codes are mainly based on Pytorch and the Hugging Face Transformer li-
brary [45]. While BERT is traditionally used for binary-label classification
tasks, it can be modified for multi-label tasks by changing the loss function
used during training.

4.2 hardware

We fine-tuned BERT on the hardware components shown in table 4.1

Component Specification

GPU Tesla V100-SXM2

Notebook Instance
- Volume Size 150GB EBS (Elastic

Block Store)
- Instance Type ml.p3.2xlarge

Table 4.1: Specification of hardware components to fine-tune the used BERT model.
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4.3 tokenizer

Before the actual fine-tuning can take place, we use the existing Tokenizer
’WordPiece’ by Google, which is a subword segmentation algorithm [39]. It
basically converts the input data into an appropriate format so that each sen-
tence can be fed to the pre-trained BERT model to obtain the corresponding
embedding [40].

4.4 learing rate and optimizer

Sun et al. [35] suggest to use a lower learning rate to make BERT overcome
the catastrophic forgetting problem, where the pre-trained knowledge is lost
during the learning of new knowledge. Here, we use an Adam Optimizer
with a learning rate lr = 1e-5.

4.5 epochs

The term "epochs" refers to the number of times the entire dataset is passed
through the training process. Selecting an appropriate number of epochs is
crucial, as too few may result in underfitting, while too many may lead to
overfitting. We chose 30 Epochs.

4.6 batch size

The batch size, set to 32 in our configuration, defines the number of data sam-
ples processed in a single iteration during training, impacting both memory
efficiency and the stability of the training process.

4.7 loss function

We are using the BCEWithLogitsLoss (Binary Cross Entropy with Logits
Loss) which is implemented by PyTorch [8]. Multi-label classification can
be understood as a series of binary classifications like ’Is sample 1 in class
A – yes or no? Is sample 1 in class B – yes or no?’ And so on. This allows
for the model to predict multiple classes for each input. This loss function is
beneficial for BERT classification tasks because it integrates seamlessly with
the model’s architecture, producing logits as an output. Moreover, BCEWith-
LogitsLoss is highly efficient and numerically stable, making it a popular
choice for training models like BERT in binary classification scenarios. BCE-
WithLogitsLoss can be calculated through:

BCEwithLogitsLoss(ŷ, y) = −[y log(ŷ) + (1 − y) log(1 − ŷ)] (4.1)

Here ŷ represents the predicted probabiity and y is the ground truth label.
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4.8 extracting evaluating the relevant text spans

We will now investigate two approaches to extract the opinions/text spans
of a given review, with FLAN-T5 and GPT-3.5 turbo. The extracted spans are
treated independently from each other, meaning that each span will get an
own row in the resulting dataset without any reference to it’s original review.
Afterwards, for each span we assign an aspect category and a sentiment.

4.8.1 Flan T-5

First, we want to analyze how well FLAN-T5large can extract the opinions by
solving a Question-Answering Problem. We have a systematic approach to
take advantage of the model’s ability to perform Question-Answering tasks.
First, formulate a clear and concise question that contains the information
we are looking for. Then, we provide the context, which are the user reviews.
It is important to ensure that the query and context combination matches
the maximum Flan T5 token limit of 512 tokens. Once we have prepared the
input, Flan T5 will generate a response, trying to answer the given question
based on the given context. Finally, we check the responses made and adjust
the question, if the results are not satisfying.
The formulated question reacts very sensitively to minor changes, mean-
ing that small adjustments in the prompt/question can lead to significantly
different outputs. We manually make adjustments by "Try and Error" until
the responses look okay. The final question is formulated as follows: What
does the patient say about the emotional experience with the fertility drug?"
We then evaluate the responses by calculating the cosine similarity between
the model’s answer and the true answers. We first notice, that FLAN-T5 only
returns one exact answer for a given context. This doesn’t match our require-
ment of extracting multiple answers/opinions per a given context. Then we
compare the extracted spans with the true spans. At first sight, the extracted
spans don’t seem to match the true spans. By calculating the cosine similarly
and getting a value of 0.07, we get a confirmation for that. Therefore, we will
not move one with these spans and instead use GPT-3.5 turbo for extracting the
opinions.

4.8.2 GPT-3 and Few-Shot Learning

As discussed in 3.2.5, we use a few-shot learning approach by given 10 ex-
amples to the model. We make sure, that each aspect category is represented
at least one time. The final prompt was relatively long, because it included
information for each aspect category and the definitions of what a ’relevant’
span is, that needs to be extracted. The process of extracting spans posed
a challenge, as we noticed that GPT-3.5 turbo tends to extract more spans per
review. This resulted in spans not being in the same order, making it diffi-
cult to compute cosine similarity for each span directly. To address this, we
decided to combine all the spans for a specific review and then calculate
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the cosine similarity for the overall lists of spans. This approach helps to
overcome the variations in the span extraction order, allowing for a more
simplified comparison. The process of the evaluation is visualized in 4.1.

Figure 4.1: Evaluation process to measure the quality of extracted spans by
GPT-3.5 turbo

We first concatenate the spans for each review:

Predicted Spans: [Span1, Span2, Span3...]
True Spans: [Span1, Span2, Span3...]

Then, we calculate the embedding for each list using OpenAI’s text-embedding-
ada-002-v2 embedding model, which is an advanced embedding model that
represents large texts as a 1536-dimensional vector [13], [15].

embedding 1 = embed(Predicted Spans)
embedding 2 = embed(True Spans)

Finally, we calculate the cosinus similarity between both lists:

cosine similarity = np.dot(embedding1, embedding2)

In some instances, GPT-3.5 turbo doesn’t extract any opinions at all. The er-
ror we get points to Azure OpenAI’s policy and that the provided prompt
does not align with it. Therefore we end up in the situation, that we have
zero predicted spans for some reviews. Despite this, a similarity score be-
tween 0.6 and 0.75 is assigned to these cases, which actually should be 0

because if we compare an empty list with a non-empty list, we don’t expect
any similarity ar all. To address this anomaly, we implement a solution by
setting all similarity scores below 0.75 to 0. This correction is crucial in ensur-
ing a more accurate evaluation. Finally, the average cosine similarty between
the GPT-3.5 turbo extracted labels and the true labels is calculated and returns
a score of 0.66.

Average Cosine Similarity for Spans 0.66

Table 4.2: Opinion extraction results
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Figure 4.2: Comparison between spans (opinions) extracted by GPT-3.5 turbo and by a
human

4.9 classification

After the data has been annotated, we can now move forward with the classi-
fication task. We split the 400 annotated records into a train- and validation
set (80/20 split). Additionally, we keep a separate human-annotated test set
with 80 records frozen to prevent data leakage. The process is shown in fig-
ure 4.3. The results can be retrieved from table 4.3. A detailed discussion will
take place in section 4.10.
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Figure 4.3: Train/Test Split

4.9.1 Aspect Classification

In the following we will discuss the aspect classification process. For this
classification we will use the human-annotated and the GPT-3.5 turbo anno-
tated dataset. With each of them, we will fine-tune two BERT models. We use
the base-uncased version with a dropout of 0.3 and 5 output nodes in the lin-
ear classification head. We see the performance of the Aspect-Classification
models in figure 4.4 and 4.5. The blue curve represents the training accuracy,
and the orange curve the validation accuracy. We chose 30 epochs, which
led to overfitting in both cases. An optimal number of epochs seems to be
between 17 and 20.
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Figure 4.4: Performance of Aspect Classification with human annotated data

Figure 4.5: Performance Aspect Classification with GPT-3.5 turbo annotated
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4.9.2 Sentiment Classification

Now we train a BERT model for sentiment classification in the same man-
ner. We only change the number of output nodes from 5 to 2 and use the
sentiment labels as targets. We observe, that overfitting takes place earlier,
namely between 8 and 10 Epochs. The performance per epoch is shown for
each model in figure 4.6 and in figure 4.7.

Figure 4.6: Performance of Sentiment Classification with Human annotated data.

Figure 4.7: Performance of Sentiment Classification with GPT-3.5 turbo annotated
data.
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4.9.3 Classification with Mix of Human Labels and GPT-3.5 turbo Labels

Now we use an input of 50% human-annotated data and 50% GPT-3.5 turbo-
annotated data and and fine-tune two BERT models, for the aspect-, and
sentiment classification. The resulting training and validation accuracy over
epochs is shown in the figures 4.8 and 4.9.

5

Figure 4.8: Performance of Aspect Classification with a mix of human- and
GPT-3.5 turbo annotated data (ratio: 50/50).

Figure 4.9: Performance of Sentiment Classification with a mix of human- and
GPT-3.5 turbo annotated data (ratio: 50/50).
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4.10 experimental results

The test accuracy for each model is given in the table below 4.3.

Data Human GPT-3 Mix Human and GPT-3.5

Test Acc Sentiment 0.92 0.877 0.89

Test Acc Aspect 0.87 0.92 0.95

Table 4.3: Results for all models used in the experiments.

We are observing, that the aspect prediction task with a BERT model, that
was fine-tuned with GPT-3.5 turbo annotated data, achieved a test accuracy of
0.92, which even outperformed the model trained on human data. There are
two possible explanations. One of them is, that humans also tend to make
mistakes during labeling. Even though we tried to reduce mistakes by defin-
ing an annotation guideline, they are not completely avoidable. This ’dirty
data’, affects the model performance in a negative way. Another explanation
is, that Human performance on a task is not an upper bound on Large Lan-
guage Mode (LLM) performance considering an LLM has seen much more
data compared to a human [4]. In contrast, the sentiment prediction perfor-
mance was slightly lower with a test accuracy of 0.87, which indicates that
the prompt was defined better for the aspects while being more vague for
the sentiment prompts. We get the best result with a mixed dataset com-
prising of 50% human-annotated data and 50% GPT-3.5 turbo annotated data
resulting in a test acc of 0.95. This implies a potential 50% reduction in hu-
man annotation efforts.

The results raise the question whether GPT-3.5 turbo annotated data alone
could be sufficient for the classification task without the need to fine-tune
a smaller BERT model. There are both advantages and drawbacks to this
approach. On the positive side, it eliminates the need to deploy an inhouse
model like BERT. Maintenance of the deployment infrastructure, create ad-
ditional cost when running BERT as an API and can be avoided by using
GPT-3.5 turbo-, which only requires an effective prompt and a few examples.
If the model is not used that much, the ROI (Return on investment) is lower.
we can simply make some API Calls with GPT-3.5 turbo. which would be less
expensive if the usage of the model is less. If the inhouse model experiences
infrequent usage, it results in a lower ROI, opting for GPT-3.5 turbo through
API calls becomes a more cost-effective alternative.

However, a potential drawback lies in the effectiveness of the prompt, with
the risk of inaccurate predictions, as observed in our use case where senti-
ment classification suffered due to missing information in the prompt.
Another drawback is, that by only using GPT-3.5 turbo we highly depend on
OpenAI. We must trust, that the model is constantly available and reliable.
However, a performance and behaviour shift was observed [6] which indi-
cated that the model has been changed in the backend. Therefore, in order to
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get stable results, it would be better to have a frozen model like a fine-tuned
BERT.

All in all, if the business is open to trading off accuracy, and are willing to
take the risk of having a model, that might change over time, a direct ap-
proach utilizing GPT-3.5 turbo can be pursued. However, for those prioritizing
higher accuracy, it is advisable to employ a strategy involvingGPT-3.5 turbo la-
beling coupled with human validation. The resultant labeled data can then
be used for fine-tuning a more compact model like BERT.
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F U T U R E W O R K

The main challenge when working with LLMs is to write an effective prompt
so that the model returns the expected results. However, prompts are very
sensitive, and changing one word can lead to major changes in the output.
The way a user usually deals with this problem is by using a trial and error
approach and manually adjusting the prompt until it outputs the desired
results. It is sometimes unclear what exactly led to those changes and to
manually adjust the prompt accordingly. Therefore, it is crucial to investi-
gate methods, that help to create effective prompts in an automated way. [41]
are facing this challenge and are introducing an approach called Automatic
Prompt Engineering (APE). The idea is to let the LLM propose candidates of
prompts by giving it a few input-output pairs as examples. Then they let the
LLM create variations of those prompts and finally score them to determine
the top candidate prompt. They used this approach on 24 different NLP tasks
and achieved human-level or even better performance. However, the tasks
were relatively simple and the question is how this approach would work
on more challenging tasks like in our case. In any case, it would be good
if the domain expert started to rewrite the prompt and include information,
that was missing in our prompt. Exploring methods for choosing better ex-
amples in the Few-Shot learning approach also holds potential for further
improvements. There are Few-Shot selection methods like those proposed
in [33] which can be incorporated in the future. Another improvement for
the future would be to also consider the sentiment ’neutral’. We did not la-
bel neutral instances yet, because it was difficult to determine the text span
boundaries for neutral spans. By giving a sharp definition of what mentions
are considered ’neutral’, we could overcome this problem. Another point to
keep in mind is to have an additional model, that decides which review is
relevant or not relevant. Also, we need another model for the span extrac-
tion task, which comes before the final classification model. If we manage
to build such a pipeline, we could move on to the next step and deploy the
models.



future work 46

Figure 5.1: Automatic Prompt Engineer (APE) workflow [41].
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C O N C L U S I O N

In this work we tried to answer the question, whether we could reduce hu-
man labeling costs for our specific task by leveraging LLM models. We ex-
plored an approach to reduce the costs of human annotation by utilizing
GPT-3.5 turbo as annotator. We tested this approach on an aspect-based senti-
ment analysis tasks. The results have shown, that the model for aspect clas-
sification, which was fine-tuned on only synthetic data, outperformed the
model that was fine-tuned with human data. The model for the sentiment
classification, trained on synthetic data yieled a slightly lower performance
compared to the one, trained on human data. Improving the prompt with
the help of a domain expert who can describe the sentiments in a better way
can potentially lead to a better performance here. Considering the improve-
ments of more advanced LLMs like GPT-4 in generating human-like texts,
we can expect even better results for synthetic annotation in the future. Also,
we expect to be able to formulate shorter prompts. With larger models, the
incorporated knowledge increases, and therefore the model could be able
to understand short prompts. However, it is not recommended to use mod-
els like GPT-3.5 turbo directly for the classification due to the fact, that the
model could change its behavior over time and also might not be always
available. This is a general problem with models that are not open-source
and building a whole application on such a model is risky and therefore not
recommended for sensitive tasks.
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