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A B S T R A C T

Wildlife conservation is more important than ever to protect biodiversity and
keep the balance of the ecosystem. In recent years, machine learning and
deep learning have been spreading in the computer vision field and gained
huge success. The advancements in this field have also made contributions to
research on wildlife biology. However, considering the fact that wildlife usu-
ally lives in complex nature surroundings, research on wildlife biology still
confronts a number of challenges. For instance, the identification of wildlife
could be disturbed by its habitat. To reduce the effect of living surroundings
and ensure that the further analysis can focus on the animals of interest, an
effective strategy could be foreground/background segmentation.

Background subtraction is one of the traditional segmentation techniques
and includes temporal median filter as well as statistical background mod-
eling. These approaches might perform well in relatively simple scenarios,
but they also have many constraints. Deep learning segmentation models
have been proven to be effective in previous research, especially the Mask
R-CNN of two-stage segmentation model and the YOLACT of one-stage
segmentation model, as well as their variants. On the other hand, it requires
sufficient ground-truth data of wildlife segmentation to train these models,
which poses challenges in view of the limited datasets.

In this thesis, a framework is developed as a tool for automatically seg-
menting wildlife in video sequences that is not limited to only a few cer-
tain species. It contains mainly three components, i.e., a YOLOV5-based de-
tection model ”MegaDetector”, a foundation segmentation model Segment
Anything Model (SAM), and a Video Object Segmentation (VOS) model ”Cutie”.
In addition, a matching procedure and post-processing were implemented
to overcome the issue of multiple overlapping animals in video sequences.
As both SAM and MegaDetector were trained with extensive datasets, they
demonstrate outstanding performance by general segmentation tasks and
wildlife detection tasks, and thus the framework directly employed their
pre-trained models without fine-tuning and domain adaption.

The framework was tested quantitatively with five high-resolution leopard
video clips from the Pan African Programme and achieved a score (Mask IoU
between predicted masks and ground-truth masks) of over 85%. Moreover,
the framework was tested qualitatively with two YouTube low-resolution
videos, which contain multiple overlapping animals. The results are reliable
in the majority of cases.

Keywords: Wildlife Conservation, Automatic Segmentation, Foundation Seg-
mentation Model, Video Object Segmentation



Z U S A M M E N FA S S U N G

Der Schutz von Wildtieren ist heutzutage wichtiger denn je, um die biologi-
sche Vielfalt zu schützen und das Ökosystem im Gleichgewicht zu halten. In
den letzten Jahren haben Machine Learning und Deep Learning im Bereich
der Computer Vision Verbreitung gefunden und dort Erfolge erzielt. Die
Fortschritte in diesem Feld haben gleichzeitig auch einen Beitrag zur Wild-
tierforschung geleistet. Gleichwohl bestehen durch die Tatsache, dass Wild-
tiere üblicherweise in komplexen Naturumgebungen leben, nach wie vor
einige Herausforderungen, mit denen sich die Wildtierbiologie konfrontiert
sieht. Beispielsweise könnte etwa die Identifikation von Wildtieren durch ih-
ren Lebensraum gestört werden. Um den Effekt der lebenden Umgebung
zu reduzieren und sicherzustellen, dass der Fokus der weiteren Analyse auf
den sich im Mittelpunkt des Interesses befindlichen Tieren befindet, könnte
Vordergrund/Hintergrund-Segmentierung eine wirksame Strategie sein.

Die Hintergrundsubtraktion gehört zu den traditionellen Segmentierungs-
techniken und beinhaltet den temporalen Medianfilter sowie die statistische
Hintergrundmodellierung. Diese Ansätze könnten eine gute Performanz in
relativ einfachen Szenarien aufweisen, wobei sie jedoch auch vielen Ein-
schränkungen unterliegen. Deep Learning Segmentierungsmodelle haben
sich in der bisherigen Forschung als effektiv erwiesen, was insbesondere
für das Mask R-CNN Modell der zweistufigen Segmentierung und das YO-
LACT Modell der einstufigen Segmentierung sowie deren Variationen gilt.
Andererseits sind ausreichende Ground-Truth-Daten über Wildtiersegmen-
tierung erforderlich, um diese Modelle zu trainieren, was angesichts der be-
grenzten Datensätze eine Herausforderung darstellt.

Im Rahmen dieser Thesis wird ein Framework als Werkzeug zur automati-
schen Segmentierung von Wildtieren in Videosequenzen entwickelt, welches
sich nicht nur auf einige wenige bestimmte Tierarten beschränkt. Es enthält
vornehmlich drei Komponenten, nämlich ein auf YOLOV5 basierendes De-
tektionsmodell ”MegaDetector”, ein grundlegendes Segmentierungsmodell
”Segment Anything Model” (SAM) sowie ein Video Object Segmentation
(VOS) Modell ”Cutie”. Außerdem wurde ein Matching-Verfahren und eine
Nachbearbeitung implementiert, um das Problem von sich mehrfach über-
lappenden Tieren in Videosequenzen zu lösen. Da sowohl SAM als auch
MegaDetector mit umfangreichen Datensätzen trainiert wurden, weisen sie
eine herausragende Performanz bei allgemeinen Segmentierungsaufgaben
und Wildtierdetektierungsaufgaben auf, weshalb ihre vortrainierten Modelle
ohne Fine-tuning und Domänenanpassung direkt im Framework eingesetzt
werden.

Das Framework wurde quantitativ mit fünf hochauflösenden Leoparden-
Videoclips des Pan African Programme getestet und erreichte einen Score
(Masken-IoU zwischen vorhergesagten Masken und Ground-Truth-Masken)



von über 85%. Zusätzlich ist das Framework qualitativ mit zwei niedrigauf-
lösenden YouTube-Videos getestet worden, die mehrere überlappende Wild-
tiere enthalten. In den meisten Fällen sind die Ergebnisse reliable.

Schlagwörter: Wildtierschutz, Automatische Segmentierung, Grundlegendes
Segmentierungsmodell, Video Objekt Segmentierung
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

The rapidly rising loss of various species is becoming one of the most con-
cerning aspects of the ongoing biodiversity and ecosystems crisis[15]. Ac-
cording to the assessment of the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES)[10], millions of animal species,
including marine mammals, vertebrates, and marine fish, are currently in
danger of extinction. Addressing this issue necessitates an urgent focus on
effectively identifying and tracking threatened species[40].

In recent years, there has been a prominent increase in academic inter-
est within the ecological community to implement applications for detect-
ing, identifying, and tracking animals[70]. Since machine learning and deep
learning have already pervaded the field of computer vision, there has been
significant progress in research aiming to identify target[96].

However, the application of computer vision techniques in the field of
wildlife research still confronts a number of challenges, which primarily
arise from the complex and dynamic nature of the habitat. For instance, an er-
roneous matching between features extracted from the complex background
and those derived from the actually observed wildlife can lead to incorrect
pattern recolonization and misidentification of wildlife animals[78]. Fore-
ground/background segmentation could be employed as a needed strategy
to navigate this challenge. An appropriate segmentation framework might
successfully isolate wildlife from its surroundings, lessening the impact of
the background, so that the subsequent analysis could be focused on the
specific animals of interest.

1.2 aim of this thesis

Numerous efforts have been made for foreground/background segmenta-
tion. Background subtraction is a frequently employed technique for seg-
menting objects of interest in motion within video footages[69]. The con-
ventional methods for background modeling encompass a spectrum of tech-
niques, spanning from straightforward approaches, such as temporal me-
dian filter, to more advanced statistical methods, e.g., ViBe[6], SubSence[77][69].

Besides the aforementioned conventional methods, deep learning networks,
because of their significant advantages, have found widespread application
in computer vision tasks, such as object segmentation[87][37]. Particularly
noteworthy was the introduction of the Vision Transformer (ViT), which is
an epoch-making model and demonstrates vast potential for tasks involving
detection and segmentation[33].
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With ViT as its backbone network, a groundbreaking foundational model
for general image segmentation tasks, known as the SAM, has been recently
released. SAM was trained on the most extensive segmentation dataset to
date, encompassing 11 million images and 1 billion masks. Remarkably, this
model has proved to have outstanding zero-shot performance, even on im-
ages and segmentation tasks that have never been seen previously[51]. En-
couraged by the remarkable segmentation performance of SAM, since the
release, SAM has been utilized in various fields, including medical image
segmentation or remote sensing image segmentation[41] [84]. However, up
to the present, SAM has not been applied in wildlife research.

The primary aim of this thesis is to develop a pipeline combining SAM

together with an object detection model and an object tracking model in or-
der to perform an automatic segmentation of wildlife from its background
in videos. The pipeline is seeking to address those previously already men-
tioned challenges in wildlife analysis, such as incorrect pattern recognition
and mis-identification of wildlife, which often arise from background dis-
ruption.

The next objective is to evaluate whether this framework works reliable
for complex scenarios as well as low-resolution videos or not, and how well
the framework performs in such contexts.

In this thesis, the temporal median filter, one of the most commonly adopted
straightforward techniques for background subtraction[42], serves as the
baseline approach. In addition to that, the performance of the proposed
framework is compared with the previous Video Object Tracking (VOT) frame-
works.

1.3 structure

This thesis seeks to propose a framework that combines a detection model,
a segmentation model, and a VOS model for an automatic segmentation of
wildlife in videos. The proposed framework is evaluated in different scenar-
ios.

The main scenarios of this thesis include the segmentation of a single leop-
ard in a complex environment of high-resolution (1920x1080) videos as well
as the segmentation of multiple wildlife in low-resolution videos (480x360).
The framework applied MegaDetector as the detector, SAM as the segmentor,
and Cutie as the tracker.

The remaining part of this thesis is structured as follows: Section 2 re-
views the theoretical background for segmentation as well as related previ-
ous works. Section 3 describes the sample data and the framework in detail.
Section 4 presents both quantitative and qualitative results of the experi-
ments and shows the failure cases. Finally, in the last section, after drawing
conclusions from the thesis, a brief insight into future perspectives is given
and possible research areas are discussed.



2
T H E O R E T I C A L B A C K G R O U N D

2.1 background subtraction for segmentation

Background subtraction is one of the most widely adopted techniques for
segmenting objects of interest, commonly referred to as "foreground"[79].
The origin of background subtraction can be traced back to the late 1970s
when Jain and Nagel[45] released their groundbreaking work on background
subtraction. Their approach is to detect moving objects by analyzing the
difference between consecutive frames[45][76]. Throughout the years, vari-
ous background subtraction methods have emerged, from straightforward
approaches, such as the temporal median filter, to more advanced statisti-
cal methods, for example, ViBe[6] and SubSence[77][69]. ViBe[6] and Sub-
Sence[77][69] have proven their excellent performance, which is evident in
the superior F-Measure score when compared to other statistical approaches
on the CDnet2014 datasets[11].

The underlying principle of background subtraction involves comparing
the observed frame with an estimated reference frame, also called “back-
ground model”, which is expected to contain no objects of interest [69].
Consequently, the result of the subtraction between the observed frame and
the reference frame represents the objects of interest ("foreground")[56]. This
process can be described with the following formula 2.1(1). Maskt(x, y) rep-
resents a binary mask value of a pixel (x, y) at time t, indicating whether
the pixel (x, y) belongs to a moving object or not, B(x, y) is a background
model for the pixel at the location (x,y), It(x, y) denotes the pixel value at
time t located at (x, y), the value d represents the distance between It(x, y)
and B(x, y), τ stands for the the threshold used for object segmentation[75].

Maskt(x, y) =

{
1 i f d(It(x, y), B(x, y)) > τ

0 otherwise
(2.1(1))

2.1.1 Temporal Median Filter

As a frequently used background modeling technique, TMF works based on
the assumption that every pixel holds the background value across over half
of the entire video frames[54]. In other words, a pixel is assumed to be part
of the background for a longer duration in a video than it is segmented as
part of the foreground[58]. TMF calculates the median of past frames or the
sub-sampled previous frames as the estimated background [28][42]:

B(x, y)K = Median(I(x, y)K−∆k, I(x, y)K−2∆k ... I(x, y)K−n∆k) (2.1(2))
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In equation 2.1(2), I(x, y)K−∆k, I(x, y)K−2∆k,..., I(x, y)K−n∆k represents pixel
values situated at (x, y) over the frames, which are selected at a rate of one
every ∆k from the previous frames of the current Kth frame, for the purpose
of building the background B(x, y)K. Figure 2.1 demonstrates a background
estimation using TMF.

(a) TMF: selected input frames for background modeling

(b) TMF: estimated background as the median of the selected frames

Figure 2.1: An Example of Background Modeling Using TMF

TMF has proved its effectiveness in previous research. In the study of
Lo and Velastin[55], the authors have applied the temporal median tech-
nique to obtain a precise background, ensuring robust performance for their
developed “Automatic Congestion Detection System on Underground Plat-
forms”. Cucchiara [28] highlighted in their research that temporal median
filter is able to robustly build the background with low computational cost.
Hung[43] proposed a median repetition checking algorithm that not only
accelerates the speed of the temporal filter but also lowers computational
expenses, thus making it more suitable for practical applications.

However, despite its effectiveness and advantages, the temporal median
filter has several limitations, one of them being an inevitable result of its un-
derlying assumption. As mentioned above, the temporal median filter works
only on the assumption that the background must be observable in more
than 50% of the total time across the video frames[58]. Otherwise, the filter
may mistakenly take parts of the foreground as background. A failed exam-
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ple for estimating the background using TMF is shown in Figure 2.2. An addi-
tional disadvantage directly linked to the temporal median filter is its storage
demand, which is caused by the requirement to maintain a buffer for stor-
ing selected frames used in the estimation of the reference background[69].
Furthermore, employing the TMF for background estimation requires a back-
ground that remains consistently stable and thus poses challenges in achiev-
ing adaptive background estimation for dynamic or noisy environments[54].

(a): Three selected input frames for the background estimation

(b): Failed estimated background (c): Expected estimated background

Figure 2.2: An Illustration of Failed Background Modeling Using the TMF.

2.1.2 Statistical Methods for Background Subtraction

Environments are usually dynamically changing in the real world. Because
of the inherent complexity and variety of real-world scenarios, such as scenes
where trees often move in the wind, relying purely on median-based tech-
niques for background subtraction might become difficult since acquiring
an accurate and reliable static reference image from frames with dynamic
background seems quite challenging, if not impossible[6].

To deal with this issue caused by non-static background, various back-
ground modeling techniques have been investigated. These background mod-
eling techniques can be mainly categorized into two major groups: those
based on Probability Density Function (PDF) and those sample-based ap-
proaches that are directly based on truly observed samples[80].

Representative approaches of the first group are Gaussian Mixture Model
(GMM)[98] and Kernel Density Estimation (KDE)[34]. GMM assumes that pix-
els can be seen as a result of multiple Gaussian distributions, each with
different weight. To fit an appropriate background model, it is necessary to
update not just the parameters (mean and variance) of each Gaussian distri-
bution but also to dynamically adjust the number of distributions as well as
their associated weights[98]. In cases where the complex background cannot
be adequately described by parametric models like GMM, non-parametric
models such as KDE have been proposed[14][34]. As highlighted in the work



2.2 deep learning for segmentation 7

of Elgammal et al.[34], KDE abandons employing specific parametric distri-
butions and instead estimates the underlying probability density function
using a kernel function, enabling a more flexible and accurate modeling of
the dynamic scenes[99].

However, statistically, the accuracy and robustness of any distribution es-
timation, including statistical background estimation in computer vision,
are dependent on the amount of data employed for estimation, implying
that the initialization for estimating the pixel distributions should use suf-
ficient video frames to ensure a reliable model[6]. In order to minimize
the data needed for initialization and accelerate the modeling process, al-
ternative sample-based approaches have been proposed, such as ”VIsual
Background Extractor” (ViBe)[6] and ”Self-Balanced SENsitivity SEgmenter”
(SubSENSE)[77], which only require a single frame for initialization.

In both methods, each pixel x has its background model represented by
a set of background samples {v1, v2, . . . , vN} that were truly observed from
previous frames. The background model of each pixel is initialized by select-
ing its neighboring pixels NG(x) randomly as background samples[6][77].
Whether the pixel x belongs to background pixels or foreground pixels de-
pends on the distance between its current pixel value and its previously
saved background samples. If the pixel x is classified as a background pixel
at the time t, it could be used for updating the background samples in the
pixel model Mt(x). By continually updating the background samples for
each pixel, ViBe and SubSENSE are able to adapt to dynamic background
changes.

M(x) = {v1, v2, . . . , vN} M0(x) = {v0(y|y ∈ NG(x))} (2.1(3))

However, the authors noted that the initialization works on the assump-
tion that the first frame must be free of any objects of interest to avoid gen-
erating ghost area; otherwise the ghost area might be only gradually disap-
peared after a long period[6][77]. Despite the better performance in compar-
ison to alternative statistical methods[11], ViBe and SubSENSE still struggle
with the challenge of eliminating ghost areas, as shown in Figure 2.3.

2.2 deep learning for segmentation

As previously noted, conventional segmentation techniques, such as the
aforementioned TMF and the statistical background subtraction methods, are
efficient in many practical applications. However, their performance is con-
strained by their underlying statistical assumptions. In recent years, deep
learning networks from CNNs to transformers have gained widespread ap-
plication for object-segmentation tasks[87][37]. Especially the invention of
the transformer lead to a revolutionary change in the field of computer vi-
sion[81].
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(a) Ghost area problem using ViBe

(b) Reason for ghost area: the first frame contains the target of interest

Figure 2.3: Ghost Area Problem

2.2.1 Basic Transformer

• Encoder-Decoder Architecture

The encoder is a network that converts an input sequence x = (x1, x2....xn)

into a fixed-length vector sequence z = (z1, z2....zn). The decoder takes the
vector sequence z as input and produces the final output sequence y =

(y1, y2....ym)[5][81]. The length m of the output sequence y can differ from the
length n of the input sequence x since the use of the EOS (end-of-sequence)
token enables the decoder to generate sequences of flexible length[66].

The encoder-decoder framework can incorporate different kind of neural
networks. Cho et al.[23] propose using Recurrent Neural Networks (RNNs)
in both encoder and decoder in their model ”RNN Encoder-Decoder” for
translation tasks, and their model shows impressive performance in terms
of Bilingual Evaluation Understudy (BLEU)[74] scores. Moreover, depending
on the specific requirements of the task, other types of neural networks, such
as Long Short-Term Memory (LSTM) and CNNs, are also frequently applied
within the encoder-decoder framework[57][83].

Vaswani et al.[81] presented in their work ”Attention Is All You Need” a
groundbreaking model known as the ”Transformer”, which is a revolution-
ary encoder-decoder model that completely relies on attention mechanism.
The basic structure of transformer is illustrated in Figure 2.4.

The left side of Figure 2.4 shows the structure of the encoder within the
transformer architecture. The encoder is made up of N identical blocks, each
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Figure 2.4: Transformer Structure[81]

with two primary layers: a multi-head attention mechanism and a fully con-
nected feed-forward network. After each layer, a residual connection and a
layer normalization are attached.

The structure of the decoder, as shown on the right side of Figure 2.4,
also comprises N identical blocks. A notable difference to the attention layer
in the encoder is that the attention layer in the decoder is adapted into
a masked self-attention layer since the decoder is an auto-regressive (AR)
model, in which the previously generated token serves as input for the gener-
ation of the next token. Besides the masked self-attention layer and the fully
connected feed-forward network, a cross-attention mechanism is added in
the decoder as a bridge between encoder and decoder, allowing the decoder
to utilize the output of the encoder.

• Attention Mechanism

As already mentioned, the application of the attention mechanism, which
attempts to generate the final context vectors by capturing contextual infor-
mation from the input sequences, is the highlight of transformer. Figure 2.5
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and Figure 2.6 illustrate in detail the process of how a single-head atten-
tion mechanism transforms the input vectors a=(a1,a2,a3) into the output
vectors b=(b1,b2,b3), each element of the output vector b containing infor-
mation from all elements of the input vectors. a is the input vectors of a
dimension dmodel , originating from an input sequence that consists of n to-
kens. Each input vector is linearly projected into a query vector as well as a
key vector of dimension dk, and a value vector of dimension dv. Mathemat-
ically, for instance, q1 =a1*Wq, k1 =a1*Wk, v1 =a1*Wv. Wq, Wk, Wv are the
learnable weight parameters obtained from training[81].

Once Q, K, V have been obtained, scaled dot-product attention calculates
the dot products of query Q - key K pairs and scales these products by di-
viding them with a predefined factor

√
dk to hinder the vanishing gradients

issue that can arise when the softmax function is applied since very large dot
products would result in extremely small gradients within the softmax layer,
leading to the vanishing gradient problem. After applying the softmax func-
tion, attention weights α

′
are generated, demonstrating the contribution of

each input element to the final context vector b, which is the weighted sum
based on the attention weights α

′
across all elements of the value vectors

V[1]. Self-attention works with queries Q, keys K, and values V generated
within the same sequence, whereas cross-attention serves as a connection
between the encoder and the decoder since it uses keys K and values V
generated by the encoder and queries Q generated by the Decoder[81].

Figure 2.5: Scaled Dot-Product Attention[81]

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2.2(1))
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with Q = Wq I, K = Wk I, V = Wv I, I is the input. Wq, Wk,Wv are the metrics
to be learned.

Figure 2.6: Scaled Dot-Product Attention Mechanism[44]
a is an input vector or an output vector of a hidden layer. q, k, v stand for query, key, value,

respectively. The attention layer generates the output vector b, which is a weighted
representation that aggregates information from the entire input sequence.

Vaswani et al.[81] introduced multi-head attention in their work. Each
head aims to capture a certain attention pattern for a better understanding
of the complex relationships[82][25]. Figure 2.7 explains the calculation pro-
cess of the multi-head attention. In Figure 2.8[65], it is clearly proven that
each token in different heads is related to other tokens in different ways,
highlighting the ability of the multi-head attention mechanism to capture
various relation patterns.

2.2.2 Transformer Adapted for Computer Vision

The widespread application of transformers in a variety of natural language
processing tasks inspired the development of Vision Transformers (ViTs),
which have in recent years demonstrated potential performance in computer
vision tasks, such as segmentation, object identification, and recognition[72].
The ViTs were first introduced in the pioneering research of Dosovitskiy et
al.[33], in which the transformer architecture is directly applied in the field
of computer vision with minimal possible adaptions.

Figure 2.9 illustrates the modified model architecture. The transformer
was originally introduced for handling sequence token embeddings and has
been adapted by Dosovitskiy et al. to process images effectively. The most im-
portant adaption involves image tokenization, where an image x ∈ RH×W×C

is considered being equivalent to a sequence containing N patches xp ∈
RN×(P2·C). The number of patches N = HW/P2, (H, W) represents the reso-
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Figure 2.7: Multi-Head Attention[81]

Figure 2.8: Visualization of the Attention of Different Heads at the Same Layer[65]
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Figure 2.9: Vision Transformer Model Overview[33]

lution of the original image and (P, P) denotes the resolution of each patch.
After being flattened, these patches are projected linearly to patch embed-
dings of dimension D through a fully connected layer. The obtained patch
embeddings, together with class and positional embeddings also of dimen-
sion D, serve as input for the transformer encoder.

Instead of using the sinusoidal positional embeddings employed in the
original Transformer released by Vaswani et al.[81], the authors opted to
train learnable positional embeddings in the ViT, which was inspired by
BERT[32]. Furthermore, as the ViT in this research is for classifying objects,
the authors also added a class embedding[32]. Although the authors pro-
posed ViT in their research initially for classification tasks, they also pre-
sented the possibility to further explore the model for dealing with other
computer vision tasks, such as object detection and segmentation.

2.2.3 Application of Transformer in VOS

Semi-supervised VOS aims to predict segmentation masks for the objects of
interest in a video sequence. The ground-truth masks for the objects of in-
terest are provided in the first frame and used as initialized input for the
following tracking[97]. The underlying concept of VOS is to acquire the rela-
tionships between the current frame (query frame) and the historical memo-
rized frames (reference frames)[60]. Motivated by the great success of trans-
former in the computer vision field, researchers have started to apply it for
VOS tasks[93]. With the built-in attention mechanism of transformer, a match-
ing map Attention(Q, K, V) can be calculated between the extracted features
from the present frame and the memorized representations from the histor-
ical frames, where Q represents the query embedding of the present query
frame, K and V stand respectively for the key embedding and the value
embedding of the historical memorized frame[90][60][21].
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Mei et al.[60] proposed in their work a transformer-based VOS model
”TransVOS”, achieving a J&F score of over 75%. Acknowledging that histori-
cal information has to be saved and might cost extensive memory, Cheng and
Schwing[21] published the VOS model ”XMEM”. In contrast to the previous
transformer-based research where the high-resolution features were merged
into the feature memory after they were merged, Cheng and Schwing[21]
suggest a memory system containing three independent components, namely
a sensory memory updated every frame, a high-resolution working memory
updated every nth frame, and a highly compact long-term memory that
stores consolidated information from the high-resolution working memory
when the latter reaches its memory limit. With the innovative memory sys-
tem, ”XMEM” addressed the issue of memory consumption when tracking
targets in long-term videos[21]. ”XMEM” reached a J&F score of over 80%
on their test videos.

2.2.4 Comparison Between CNNs and Transformer

When compared to CNNs, which have de facto dominated the field of com-
puter vision since 2012[46][49], ViT has its own advantages and disadvan-
tages. CNNs benefit from specific inductive biases, such as locality and trans-
lation equivariance, which allow them to perform effectively even with lim-
ited quantities of data[26]. Differing from CNNs, ViT is built with less image-
specific inductive biases. While this indicates a reduced demand for image-
specific domain knowledge, it also requires a larger volume of data for ef-
fective learning to compensate for the absence of these inductive biases[33].
As illustrated in Figure 2.10, by limited dataset size, CNN exhibits a better
performance compared to ViT. ViT outperforms CNN if both are trained with
a very large dataset.

Figure 2.10: Performance of Transformer and ResNet(BiT) on Different Size of
Data[33]

Another significant difference between Transformers and CNNs lies in their
receptive fields in low layers. CNNs, especially in their lower layers, are only



2.3 related works 15

able to capture local information among neighboring pixels since the recep-
tive field is strongly restricted by the convolutional kernel[52]. In contrast,
Transformers, due to their built-in self-attention mechanism that captures
information from the entire input, are able to aggregate global information
from the whole input sequence even in their lower layers. Figure 2.11 visual-
izes the attended distance at different layers of ViT.

Figure 2.11: Attended Area by Different Heads and Network Depth[33]

The unsaturated performance of the ViT, as demonstrated in the research
conducted by Dosovitskiy et al.[33] in which the performance of ViT contin-
ues to improve when more training data is available, indicates the potential
of ViT as a foundation model in the computer vision field[9].

Moreover, the development of ViT models has greatly facilitated the in-
teraction between the natural language processing field and the computer
vision field, enabling the development of a more efficient architecture of
multi-modal models[4]. In contrast to previous multimodal research that fre-
quently relied on CNN backbones for extracting region or grid features, Kim
et al.[50] introduced "ViLT", a new vision and language model based on ViT,
in which images can now be linearly projected to patch embeddings that can
be seen as extracted features[68], along with text embeddings as input for
a unified transformer model for learning the relationship between embed-
dings of different modalities.

2.3 related works

Numerous studies regarding object segmentation and tracking have been
conducted in various domains such as city traffic monitoring, self-driving
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Figure 2.12: Multi-modal Models[50]

vehicles, or pedestrians tracking for public security [30] [94] [61] [35]. Many
of these studies have employed frameworks built upon Mask R-CNN [39], an
instance segmentation model that extends the two-stage structure of Faster
R-CNN. In addition to the existing branch for bounding box generation,
Mask R-CNN introduces a third parallel branch to predict binary object
masks for each Region of Interest (RoI)[39].

Since its publication, Mask R-CNN has gained popularity in the field of
object segmentation due to its robust performance[3]. Mask R-CNN has
also caught the attention of biologists because of its effectiveness. Kassim
et al.[47] conducted an investigation to explore the potential of Mask R-
CNN for wild turkey detection with UAV (unmanned aerial vehicles). De-
spite challenging factors such as the high habitat complexity and the small
target object size, Mask R-CNN achieves a F1 score of over 80%. The research
of Xu et al.[47], in which Mask R-CNN was applied for monitoring livestock,
demonstrated a promising performance with an accuracy exceeding 90%.

Besides two-stage models like Mask R-CNN, one-stage segmentation mod-
els, also known as end-to-end segmentation models, are an alternative for
object segmentation. By omitting bounding box detection and feature re-
pooling, one-stage segmentation models aim to simplify the traditional two-
stage instance segmentation process[48]. YOLACT (You Only Look At Coef-
ficienTs), a real-time one stage segmentation model, introduces the concept
of prototype masks and per-instance mask coefficients to generate the final
instance masks by linearly combining these prototypes with the correspond-
ing coefficients[8]. SOLO (Segmenting Objects by Locations) is another state-
of-the-art stage instance segmentation model that functions based on the
quantized center locations and object sizes, assuming that different instances
within an image are usually located in different places or have different ob-
ject sizes[85][48].

These one-stage segmentation models have demonstrated their effective-
ness in real-time wildlife detection applications. Choudhury et al.[24] com-
pared the performance of YOLACT, YOLACT++, and Mask-RCNN in detect-
ing rhinos. In their use case, YOLACT outperformed Mask-RCNN both in
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speed and accuracy. Further evidence for the viability of one-stage segmen-
tation models in real-time wildlife detection and segmentation is provided
by the experimental study of Bello et al.[7]. They analyzed the performance
of Mask-RCNN and SOLO in their study, finding that SOLO-based modified
frameworks performed slightly better.

However, research on segmenting and tracking wildlife is still very limited
due to a lack of ground-truth datasets for wildlife segmentation[73]. The lack
of wildlife segmentation datasets poses a great challenge when training the
aforementioned models.

Kirillov et al.[51] released SAM, a foundation model for segmentation tasks,
offering a promising solution to solve the limited availability of wildlife
datasets and opening up new possibilities for wildlife segmentation.

SAM consists of a flexible prompt encoder that can handle various kinds
of prompts, an image encoder, and a fast mask decoder. SAM employs the
ViT pre-trained with Masked AutoEncoders (MAE)[38] as its image encoder
backbone. Its decoder is based on a bidirectional cross-attention mechanism
that calculates cross-attention from tokens to image embedding as well as
from image embedding to tokens in order to achieve a better understanding
of cross-modality feature representations[51][29][86]. With only two layers,
the lightweight structure allows for a very fast mask prediction[51]. Another
highlight of this research is the release of the largest segmentation dataset,
”SA-1B”, comprising more than 1 billion masks for 11 million images that
were used to train the model. Based on the training with this to date largest
segmentation dataset, SAM has proven to provide strong zero-shot[88] gener-
alization on previously unseen object classes[51].

Furthermore, SAM adopts various types of prompts, including points, boxes,
masks, and text. Along with its impressive zero-shot generalization ability,
this enables it to act as a foundational model that can be seamlessly applied
to a wide range of downstream tasks, such as instance segmentation and
Text-to-Mask[51]. Yang et al.[89] published in their research Track Anything
Model (TAM), an interactive VOT model that takes the SAM generated masks
as initialized reference masks and tracks the annotated target objects in the
following frames using XMEM, which is a semi-supervised VOS model[21].
TAM allows users to easily initialize masks with clicks and make mask ad-
justments interactively during the tracking process.

TAM inspired the development of other VOT models, such as SAMTrack[22]
and TDeva[20] . In comparison to TAM, SAMTrack uses in its pipeline the model
”DeAOT” [90] as its tracking model, which has been demonstrated to be
more efficient than XMEM [92]. Furthermore, both SAMTrack and TDeva serve
as multimodal tracking models allowing for text-prompted object tracking
and segmentation through the combination of Grounding Dino[53], SAM,
and a VOS model. The concept is that Grounding Dino initially generates
detection boxes, which are then used in SAM as prompts for generating ini-
tialized segment masks. These masks are employed in a semi-supervised VOS

model to track objects in the following frames. To guarantee the detection
and tracking of newly appearing objects, the masks are regularly updated.
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According to SAMTrack, a new object is defined as an object that appears in
the background for the first time. This means that although SAMTrack might
be effective when objects do not overlap significantly, it may miss a new
object if this new object heavily overlaps with an already existing object.
Figure 2.13 (a) to (f) illustrate a failed example of SAMTrack. In the initial
frame, two leopards are detected as a single animal due to the overlap (a),
resulting in the generation of only one leopard mask as the initialized mask
(c), which is then used for tracking in the following frames. In the 26th
frame, where an update happens, although two leopards are detected (b)
and SAM also segments two leopard masks (e), SAMTrack still only recognizes
one leopard. Ideally, one would expect that the AOT Track mask (d) of the
26th frame could be modified by the SAM mask and thus two leopards can
be segmented and tracked in the next frames. However, the limitation of
SAMTrack lies in its definition of new objects. As a result, the overlapped
smaller leopard is not considered as a new object.

TDeva addressed the issue of overlapping to some extent by identifying
a new object as one having a low IoU(<0.5) with the previous segmented
objects. Nevertheless, as shown in Figure 2.14, the overlap in the initialized
frame still results in missegmentation until a re-segmentation is performed.

(a) Detection in 1st frame (b) Detection in 26th frame

(c) Initialized reference mask in 1st frame (d) AOT track mask in 26th frame

(e) SAM segmentation mask in 26th frame (f) Updated reference mask in 26th frame

Figure 2.13: A Failed Example of SAMTrack

Both SAMTrack and TDeva are multimodal tracking models with Ground-
ing Dino as detector. Grounding Dino has a transformer-based structure
and was pre-trained as a zero-shot detection model, enabling it to track
”anything” using text prompts. On the other hand, Grounding Dino may
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(a) Segmentation mask in 1st frame (b) Segmentation mask in 23th frame

(c) Segmentation mask in 26th frame

Figure 2.14: A Failed Example of Tracking with DEVA

generate a single bounding box for multiple objects due to the nature of
transformer (see Figure 2.15 and Figure 2.16). The multiple animals detected
within a single bounding box are segmented and treated as a single animal
since they are assigned the same mask value, which not only increases the
likelihood of mis-classifying an already existing object as a newly appearing
object but also poses a challenge in identifying individual wildlife.

Figure 2.15: Segmentation Example Frame with SAMTrack (Grounding Dino as De-
tector)

2.4 goal of this thesis

This thesis aims to:

1. Present a general VOT framework called ”MegaCutie”, which combines
”MegaDetector”[4] , ”SAM”, and ”Cutie”[19] to automatically segment
and track wildlife in videos, supporting biologists in further biodiver-
sity surveys such as wildlife identification.
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Figure 2.16: Segmentation Example Frame with TDeva (Grounding Dino as Detector)

2. Address the overlapping issues during tracking with a matching algo-
rithm.

3. Propose a post-processing algorithm to address the misdetection or
overlapping issue at the first frame.



3
D ATA A N D F R A M E W O R K

In this section, the test data and the proposed framework are described in
detail.

3.1 data sample

Experiments in this thesis were carried out with different videos, which can
be mainly classified into two types:

1. High-resolution Videos (1920x1080) containing only a single animal

The test videos, a collection of high-resolution leopard videos with
static background, were provided by the ”Pan African Programme”[71].
Challenging videos are selected to test the robustness of the proposed
framework. The target animals are leopards in complex environments.
Two of these videos were filmed under very extreme illumination con-
ditions. The duration of each video is approximately 10 seconds. Fig-
ure 3.1 shows some test samples.

(a) Leopard in dark (b) Leopard in bright sunlight

(c) Leopard in wood (d) Leopard in wood

Figure 3.1: Leopard Test Samples

2. Low-resolution Videos (480x360) containing multiple animals

The real-world environment is usually complex and the video quality
might also be limited. Since the framework is developed for general
tracking tasks for wildlife research, two wildlife test videos of relatively
low resolution were selected from YouTube to evaluate the model. In
these test videos, multiple animals are heavily overlapped. The test
samples are shown below in Figure 3.2.
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(a) Overlapping leopards (b) Overlapping wildlife

Figure 3.2: Overlapping Wildlife Test Samples

3.2 framework

3.2.1 Applied Models in the Framework

Similar to the fundamental concept of previous works[22][20], the proposed
framework in this thesis consists of three components: a detection model,
a segmentation model, and a tracking model. The detection model gener-
ates bounding boxes that are used as box prompts for segmentation in the
segmentation model. The segmentation model then produces object masks,
which are used as initialized mask in the tracking model for the further
tracking.

MegaDetector is applied here as detector instead of Grounding Dino. As
previously mentioned, although Grounding Dino achieves impressive perfor-
mance in object detection[53], the bounding boxes provided by Grounding
Dino might include multiple animals, and thus raise the risk of different
animals in a bounding box being assigned the same mask value in the seg-
mentation phase. This not only increases the risk of segmenting an already
existing object as a new one, as illustrated in Figure 3.3, but also leads to
difficult situations when identifying individual wildlife.

(a) Purple Zebra marked with red star

(b) Blue Zebra marked with red star

Figure 3.3: Same Zebra but Identified as Different Zebra
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MegaDetector is an object detection model released by Microsoft[4] as part
of the ”AI for Earth program”[63]. It has been developed for finding camera
trap images containing animals, people, and vehicles so that blank images
can be effectively excluded, saving conservation biologists a lot of time and
efforts in preparatory work[4][31]. It has been trained on huge datasets, in-
cluding large private datasets as well as 13 public datasets, such as Caltech
Camera Traps[13], COCO[12], and iNaturalist Dataset 2017[27][64]. The large
scale and extensive diversity of training data makes MegaDetector a com-
mon tool for wildlife detection, unlike previous animal detection models
that were limited to specific species.

In prior research[36], MegaDetector has also demonstrated reliable and
efficient performance. YOLOV5 model is used in the most recently released
version of MegaDetector, saving inference time when compared to the Faster
R-CNN model that has been previously used[95]. A few challenging frames
were selected to evaluate the performance of MegaDetector. As shown in
Figure 3.4, it performs well even when confronted with low-resolution im-
ages with overlapping objects. Since the aim of this thesis is to build a gen-
eral framework for segmenting and tracking wildlife without classifying any
species, MegaDetector is used here as detector.

Figure 3.4: Detection Result of MegaDetector on a Low-Resolution Image 480x360

SAM is applied as segmentor of the framework due to its zero-shot capa-
bilities as a segmentation foundation model[51]. Nevertheless, the emphasis
lies on examining the potential of SAM for wildlife segmentation tasks since
wildlife, unlike other segmentation targets, often has a highly complex back-
ground with various distractors.

Cutie is employed as tracker for the framework. In comparison with previ-
ous pixel-level VOS models, such as XMEM and deAOT, which maps the
query pixels to the referenced pixels retained in memory independently,
Cutie works on an object-level, and therefore uses object-level queries in-
stead of pixel-level queries. Furthermore, object-level memory and pixel-
level memory are integrated in Cutie, enabling the model to capture not
only pixel-level details but also object-specific features[19]. According to the
research of Ho et al.[19], Cutie can effectively reduce the noise from distrac-
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tors, and thus it generates more robust object masks due to the introduction
of object-level query and object-level memory. On most test datasets, it out-
performs XMEM, deAOT, and TDeva in terms of both accuracy and comput-
ing time. It has proven to be approximately two times faster than deAOT and
four times faster than XMEM with regard to computing time[19]. Moreover,
Cutie saves considerable GPU memory when tracking targets in long-term
videos[19]. Figure 3.5 demonstrates a comparison of object masks separately
generated by Cutie and by XMEM. As shown in this figure, the mask pro-
duced by Cutie is obviously less affected by distractors at night.

(a) Mask generated by an object-level track model Cutie

(b) Mask generated by a pixel-level track model XMEM

Figure 3.5: Comparison of Track Masks Generated by Cutie and by XMEM
The Object Mask generated by Cutie is less affected by distractors.

3.2.2 Pipeline

The workflow of the suggested framework is depicted in Figure 3.6.
Initially, the first frame of an input video is fed into the framework. The

detector is responsible for finding any wildlife that appears in this frame and
producing the bounding boxes. To mitigate the potential issue of strongly
overlapping bounding boxes and thus inaccurate segmentation masks, the
inclusion rates of the bounding boxes are calculated in pairs, as shown in
Formula 3.2(1). Two bounding boxes are considered strongly overlapping if
their inclusion rate exceeds a pre-defined threshold value of 0.9.

Inclusion rate(Bi, Bj) =
Bi ∩ Bj

Bi
with i ̸= j. (3.2(1))
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Figure 3.6: Pipeline

The order in which the bounding boxes are handled could influence the
final segmentation result when there are overlapping bounding boxes. If the
bounding box containing the larger target is segmented first, the smaller tar-
get that lies within it might be mis-segmented since the pixels that fall within
the overlapping region have already been assigned to the larger object. To
reduce the effect of overlapping bounding boxes, the smaller bounding box
will be first used as a box prompt in SAM to generate the segmentation mask,
ensuring that the smaller target can be correctly segmented. An example of
segmentation with unsorted box prompts and an example for segmentation
with sorted box prompts are shown in Figure 3.7.

After the segmentation masks are generated using sorted box prompts,
the tracker takes these segmentation masks as initialized reference masks to
follow the objects in the first frame until the nth frame, where n is a pre-
defined update frequency. At the nth frame, the reference masks would be
updated to get the refined masks, which would be used as reference masks
for the next n frames. This update is required to be performed regularly for
three reasons:

1. New wildlife might appear during tracking. Without updates, these
newly appearing targets would be overlooked.
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(a) Overlapping bounding boxes generated by MegaDetector

(b) Segmentation masks generated by SAM with unsorted box prompts

(c) Segmentation masks generated by SAM with sorted box prompts

Figure 3.7: Segmentation by Overlapping Bounding Boxes
In b), the small leopard is considered a part of the adult leopard since the box prompts are
unsorted, the adult leopards is segmented first and SAM segments the overlapping area and
the adult leopard as a single entity. In c), the small leopard is segmented first, allowing for
the separation of the small leopard from the adult leopard.

2. The masks of wildlife might become imprecise during tracking and
require adjustment.

3. Despite the presence of wildlife, for some reason, it might not be de-
tected and segmented at the moment of the update.

These updated reference masks are subsequently employed for tracking
in the next part of the video, from the (n + 1)th frame to the (2n)th frame.
More details of the update process are explained in the following subsection.

3.2.3 Matching Algorithm

As in subsection 3.2.2 already mentioned, the reference masks for the tracker
are regularly updated. The update is based on the SAM segmentation mask,
which is generated at every nth frame, and on the track mask generated by
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Cutie at the same frame. Using the SAM segmentation mask and the Cutie
track mask, the update produces the refined masks that subsequently serve
as new reference masks for the tracking in the next n frames. More visual-
izations of the updates are attached to the Appendix.

Because the same object might be assigned different mask values in SAM

segmentation masks and Cutie track masks, the objects are required to be
mapped first. The mapping starts with the calculation of Mask Intersection-
over-Union (Mask IoU). This metric is computed by dividing the intersection
area of the masks by their union area[17]. The Mask IoU provides a measure of
similarity between SAM segmentation and Cutie track masks for the existing
objects and is mathematically represented as follows:

Mask IoU(MSAM, MCutie) =
|MSAM ∩MCutie|
|MSAM ∪MCutie| (3.2(2))

• Mapping case 1: exact One-To-One match

For each SAM segmentation mask, the mapping process attempts to identify a
Cutie track mask that has the highest Mask IoU with the given SAM mask. The
pair consisting of a segmentation mask and a track mask with the highest
IoU ≥ 0.85 is considered an exact One-To-One match, implying that these
two masks point exactly to the same object. In case of an exact One-To-One
match, the refined mask for an object is determined by the SAM segmentation
mask, considering that noise might appear in the track mask over time, and
thus the object mask needs to be slightly modified.

• Mapping case 2: appearance of new objects

New objects might appear in a video sequence at any time. In such a sce-
nario, the SAM segmentation mask of a new object fails to match any already
existing track masks. A new object mask is defined here as the SAM segmen-
tation mask with the highest Mask IoU less than 0.3 when compared to all
currently existing Cutie track masks.

• Mapping case 3: objects presented but undetected

Objects which were detected and tracked in previous frames may become
heavily overlapped due to their movement. In the update phase, the MegaDe-
tector may fail to detect these objects, leading to missegmentation in SAM. In
Figure 3.10 (b), wildlife within a red circle is incorrectly classified as part of
the background in the SAM since there are no bounding box prompts gen-
erated by the MegaDetector for these overlapped animals. To prevent the
omission of the overlapped targets during updating, the Cutie track masks
are considered to represent targets that are currently still existing but are
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Figure 3.8: An Illustration of Mapping between Segmentation Masks and Track
Masks

(a) The refined masks at the 30th frame used for tracking in frames 31 to 59; (b) The
Cutie-generated track masks, which have the same mask values as the initialized masks in
(a); (c) The segmentation mask produced by SAM; (d) The refined masks after mapping,
which are based on (b) and (c) for subsequent tracking.

(a) New object 117th frame (b) Cutie track masks 117th frame

(c) Segmentation masks 117th frame (d) Refined masks 117th frame

Figure 3.9: New Animals During Tracking
(a) A recently detected duck within the red bounding box; (b) Already existing track masks

in the 117th frame; (c) The segmentation mask generated by SAM for the 117th frame: the
newly detected duck is segmented; (d) Updated refined masks for later tracking: adding the
new segmentation mask to the currently existing track masks.

undetected at the moment of the update if their highest Mask IoUs are less
than 0.3 when compared to all existing segmentation masks.

• Mapping case 4: adjustment of object masks
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(a) Detected animals 88th frame (b) SAM segmentation masks 88th frame

(c) Cutie track masks 88th frame (d) Refined masks 88th frame

Figure 3.10: Mis-Detected Objects
(a) MegaDetector detected animals within bounding boxes; (b) SAM segmented masks in

the 88th frame. Animals within the red circle are not segmented as they were not detected
by the MegaDetector in (a); (c) Cutie track masks in the 88th frame. The animals that were
considered a part of the background by SAM in (b) are still tracked by Cutie in (c) since they
were detected and segmented in the previous frame; (d) Updated refined masks for the
following tracking: Cutie track masks are kept for the mis-segmented targets.

■ 4.1 Adjustment of object masks in One-To-N match

In the final situation, the Mask IoU between the SAM segmentation mask
and the Cutie track mask for a given object falls within the range between
0.3 to 0.85. This often happens in a One-To-N match, which means that one
given SAM segmentation mask might be mapped to multiple objects repre-
sented by different Cutie track masks, or vice versa, a single Cutie track mask
could be associated with several SAM segmentation masks. Overlapping tar-
gets are a common cause of these One-To-N cases. It is noteworthy here
that the Cutie track masks, which have already been handled in the previ-
ous three mapping cases, would be ignored in the last situation. Figure 3.11

demonstrates a One-To-N example.
To address the issue of overlapping, besides Mask IoU, another metric is

introduced here, namely the Mask inclusion rate that is expressed below:

InclusionRateSAM =
|MSAM ∩MCutie|
|MSAM| ; InclusionRateCutie =

|MSAM ∩MCutie|
|MCutie|

(3.2(3))

Compared to the metric Mask IoU, the mask inclusion rate is an asymmet-
ric and bidirectional metric that could be more effective in handling over-
lapping situations. Relying solely on Mask IoU may not provide sufficient
information to recognize where the overlapping happened and the direction
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(a) Overlapped animals within red circle (b) SAM segmented masks 59th frame

(c) Cutie track masks 59th frame (d) Refined masks 59th frame

Figure 3.11: An Example of One-To-N Match
(a) Overlapped animals within red circles in the 59th frame; (b) The animals within the red

circles share the same mask value because they were segmented as one instance by SAM; (c)
Cutie tracks these animals individually since they were separately segmented by SAM in the
course of the previous update; (d) Refined masks based on (b) and (c).

of the One-To-N relationship. As illustrated in Figure 3.12, both situations
(a) and (b) show a Mask IoU of 0.5 between the SAM segmentation mask and
the Cutie track mask. However, (a) represents a situation where overlap-
ping might have occurred in the previous frame. One Cutie track mask is
currently mapped to N SAM segmentation masks. (b) indicates a situation
where overlapping might be happening in the current frame, with one SAM

segmentation mask mapped to N Cutie masks. Although the Mask IoU values
are identical in both situations, the Inclusion Rates differ, contributing to a
more effective handling of overlapping cases.

The basic concept of One-To-N Matching Algorithm is represented in
pseudocode form in Algorithm 1. A step-by-step calculation example can
be found in the Appendix in Figure A.1.

Since a specific SAM segmentation mask can be mapped to several Cutie
track masks, j denotes all the Cutie track masks that are mapped to one given
SAM segmentation mask, and the mapped Cutie track masks are sorted in
descending order based on their Mask IoUs with the given SAM segmenta-
tion mask. This means the first mapped Cutie mask always has the highest
Mask IoU with the given SAM Mask. For each SAM Maski exists one Cutie Maskhi

that has the highest Mask IoU with the SAM Maski. The SAM Masks are also
sorted in descending order based on their Mask IoUs with Cutie Maskhi .

For a given SAM Mask, the sum of InclusionRateSAM
j is computed. If this

sum falls below a predefined threshold of 0.7, this indicates that more than
30% of the area of the given SAM segmentation mask is not covered by the
Cutie track masks. As previously mentioned, 30% is also the threshold for
defining a new object. In addition to the SAM segmented mask being added
as a new object, the first mapped Cutie track mask will be directly kept as
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(a) One track mask in Cutie maps to N segmentation masks in SAM

(b) One segmentation mask in SAM maps to N track masks in Cutie

Figure 3.12: One-To-N Match

an object mask. Other mapped Cutie masks that have not been processed or
are not mapped to other SAM masks as their first Cutie masks will also be
kept as object masks.

When InclusionRateSAM
j adds up to more than the predefined threshold

of 0.7, this indicates that the mapped Cutie track masks roughly match or
even fully cover the given SAM segmentation mask. Since a Cutie track mask
might be mapped to more than one SAM segmentation mask, the sum of
InclusionRateCutie

i (in algorithm: ∑(dictInclusion{j}.values)) is computed for
the Cutie track mask j. i stands for the SAM segmentation masks that are
mapped to the Cutie track mask j. If the sum result is less than the threshold
of 0.7, the Cutie mask j is not entirely covered by the mapped SAM masks. As
previously mentioned in mapping case 3, 30% is also the threshold for defin-
ing a mis-detected object. In this scenario, besides adding the SAM masks as
new object masks, the Cutie mask is kept to ensure that no object is over-
looked during the update process. If the sum result is greater than or equal
to the threshold of 0.7, while ignoring the corresponding Cutie track mask j
itself, the first mapped SAM mask, which has the highest Mask IoU with Cutie
track mask j, is added as mask modification to the already existing object,
and other mapped SAM masks are added as new object masks.

Note that the Cutie masks, except the ones that are mapped for differ-
ent SAM masks as their first Cutie mask, will not be repeatedly processed.
Two lists are given in the algorithm, i.e., listCutieValues and listCutieValues.
listCutieValues saves the mask values of all the Cutie Maskhi . The mask val-
ues of those Cutie track masks which have already been kept in the final
refined masks are saved in processedCutieValues.

As previously mentioned, all the Cutie track masks that are mapped to
one given SAM segmentation mask are sorted in descending order based
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on their Mask IoU with the given SAM segmentation mask. The first Cutie
mask has the highest Mask IoU with the given SAM segmentation mask. For
a given SAM segmentation mask, its first mapped Cutie mask is directly
processed. Its other mapped Cutie track masks will be checked first before
they are processed. Those whose mask values that are already existing in the
aforementioned two lists are to be ignored because they have been processed
or will be processed, while the remaining ones are kept as object masks so
that the existing objects are not mis-segmented.

Although SAM and Cutie already outperform other models, their perfor-
mance still relies on the video quality. It should be noted that under the con-
dition that InclusionRateSAM

j >= 0.7 and InclusionRateCutie
i < 0.7, one object

might seem to be torn to pieces if much noise appears in the Cutie mask dur-
ing tracking or the generated SAM mask is inaccurate. To solve this problem,
compromises could be made in two manners that are explained below. A
comparison of matching results is shown in Figure 3.13. More comparisons
are to be found in the Appendix.

(a) Raw image (b) Refinement without any compromise

(c) Refinement with compromising method 1 (d) Refinement with compromising method 2

(e) Cutie track masks (f) SAM Segmentation masks

Figure 3.13: Comparison of the Matching Results

The first method, as illustrated in Figure 3.14, is to lower the threshold
value, which has the default value 0.7. By reducing the threshold, an object is
less likely to be segmented in pieces, but the risk of missing objects presented
by the Cutie track mask increases.

The second compromising method (see Figure 3.15) is that after keeping
the Cutie mask as an object mask, all the mapped SAM masks are still added
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(a) Cutie track mask (b) SAM segmentation masks

(c) Refined masks by threshold 0.7 (d) Refined masks by threshold 0.5

Figure 3.14: An Illustration of Compromising Method 1
Situation 1: If Cutie mask 1 contains noise, then the mask of object 1 in (c) might be noise;

however, it is segmented as an object. Situation 2: If Cutie mask 1 is accurate and SAM mask
2 is smaller than the actual existing object, this leads to one object being broken into two
parts. Here, object 2 and object 1 in (c) should be the same object. By setting the threshold
down to 0.5, the problems described in situation 1 and situation 2 could be solved, with the
risk of missing object 1.

as object masks. The first mapped SAM mask, which has the highest Mask IoU

with the Cutie mask, is then assigned the same value as the Cutie mask.
Compared to other mapped SAM masks, this SAM mask is most likely to be
the same object that is presented by the Cutie track mask. This method could
reduce the possibility that one object is broken into pieces, but at the cost
of possible segmentation failure. The object which is presented by the first
mapped SAM segmentation mask is not separately segmented in the final
refined masks.

Finally, the object masks are sorted according to their area in ascending
order. The smaller object masks are added first to the final refined masks to
reduce the possibility that they would be overlapped by the larger objects.

■ 4.2 Adjustment of object masks in One-To-One match

Another scenario in which the Mask IoU lies between 0.3 to 0.85 may also
occur when one SAM mask is only mapped to one Cutie mask and vice versa.
Compared to the exact One-To-One match in mapping case 1 where the re-
fined mask is determined by the SAM segmentation mask, the inclusion rate
gap is employed here to determine the adjustment of object masks. Since
Cutie works at the object level and significant form changes of the Cutie
track masks in a short time interval are very unlikely, if the absolute gap
between InclusionRateSAM and InclusionRateCutie is greater than the prede-
fined threshold, this indicates that the generated segmentation mask dur-
ing the updating process might be inappropriate due to improper bounding
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(a) Cutie track mask (b) SAM segmentation masks

(c) Refined masks without compromise (d) Refined masks with compromise method 2

Figure 3.15: An Illustration of Compromising Method 2
Situation 1: If Cutie mask 1 contains noise, then the mask of object 1 in (c) might be noise,

however, it is segmented as an object. Situation 2: If Cutie mask is accurate and SAM ,ask 2
is smaller than the actual existing object, this causes one object to be broken into two parts.
Here, object 2 and object 1 in (c) should be the same object. By the second compromising
method, the first mapped SAM mask, i.e., the SAM which has the highest Mask IoU with the
Cutie Mask, is assigned the same mask value with the Cutie mask. The problems in
situation 1 and situation 2 could be solved. However, this might lead to object 2 being
missed.

boxes or an unsatisfying segmentation quality. Despite the fact that the Cutie
track mask may become slightly inaccurate during tracking, it is insufficient
to consider Cutie as the cause of this relatively low match rate with the seg-
mentation mask. In this case, the track mask will be directly used as the
refined mask for the next frames. Otherwise, in case the difference between
InclusionRateSAM and InclusionRateCutie is relatively small, which is more
likely due to the track mask becoming slightly inaccurate over time, the SAM

segmentation mask will be used directly as the refined mask for tracking
in the next part of the video. The threshold value is adjustable. A higher
threshold value means more confidence in the SAM segmentation mask.

3.2.4 Post-process

After the first n frames, the refined masks that are formed from SAM masks
and Cutie masks are employed as reference masks for tracking. However, the
first part of the video (the first n frames) relies solely on the SAM-generated
segmentation masks from the first frame as reference masks for tracking.
Problems including misdetection and overlapping may exist, as shown in
Figure 3.16. Although these issues might be addressed with future updates,
the segmentation result of the first n frames still remains unsatisfying with-
out correction.

To address the aforementioned issues, a post-process is required to im-
prove the performance in the first part of the video. The refined masks that
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(a) Overlapping in 1st frame

(b) Misdetection in 1st frame

Figure 3.16: Potential Issues in the First Frame

serve as reference masks for the second part of the video are also used as
reference masks for tracking targets in the reversed frames of the first part
of the video. The results after post-processing are illustrated in Figure 3.17

and Figure 3.18. As demonstrated in Figure 3.17, since the adult leopard
covers the small leopard completely in the first frame, they are detected and
segmented as one instance until the 26th frame, in which the next mask
refinement occurs. The refined masks in the 26th frame are then used as ref-
erence masks for re-tracking targets in the reversed frames of the first part
of the video so that the improper segmentation results in the first n frames
can be corrected. As shown in Figure 3.17 (d), the leopards in the first frame
are segmented as two separate targets after the post-processing.
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(a) Leopards in one bounding box 1st frame (b) SAM segmented masks 1st frame

(c) Cutie track masks 26th frame (d) SAM segmented masks 26th frame

(e) Refined masks 26th frame (f) Corrected masks 1st frame after post-processing

Figure 3.17: An Example of Post-processing
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Algorithm 1 One-To-N Matching Algorithm

Requirements:
0.3 ≤Max(Mask IoU(MSAM

i , MCutie
j )) < 0.85

and
0 < Mask IoU(MSAM

i , MCutie
j ) ▷ Comment: i: a mask value of SAM Mask,

j: a mask value of Cutie Mask

Variables and Steps:

dictInclusionCutie = {j : {i : InclusionRateCutie
i } ∀i

listCutieValues = [hi] ∀i ▷ Comment: for each MSAM
i exists one MCutie

hi
,

which has the highest Mask IoU with MSAM
i , Mask IoU(MSAM

i , MCutie
hi

) =
Max(Mask IoU(MSAM

i , MCutie
j )) ∀j

processedCutieValues = [ ]

for i← 1 to m do
for j← 1 to n do

if ∑ InclusionRateSAM
j < 0.7 then

Add MSAM
i as an object mask;

if j = hi then
Keep MCutie

j as an object mask;
else

if j ̸∈ listCutieValues and j ̸∈ processedCutieValues then
keep MCutie

j as an object
processedCutieValues.append(j);

else
pass

end if
end if

else
if ∑(dictInclusion{j}.values) < 0.7 then

if j = hi then
Keep MCutie

j as an object mask
add MSAM

i as an object mask;
else

if j ̸∈ listCutieValues and j ̸∈ processedCutieValues then
keep MCutie

j as an object
processedCutieValues.append(j);

else
pass

end if
end if

else
if j = hi then

use MSAM
i as an object mask;

else
if j ̸∈ listCutieValues and j ̸∈ processedCutieValues then

keep MCutie
j as an object

processedCutieValues.append(j);
else

pass
end if

end if
end if
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(a) 1st frame raw image

(b) Masks in 1st frame before post-processing

(c) Masks in 1st frame after post-processing

Figure 3.18: Comparison of Masks in the First Frame Before and After Post-
processing



4
E X P E R I M E N T S A N D R E S U LT S

4.1 quantitative results

Five high-resolution video clips about leopards are used to evaluate the pro-
posed framework. The performance score is calculated as the Mask IoU be-
tween the predicted mask of the framework and the corresponding ground-
truth mask. Ten frames have been evaluated from each test video clip, except
from the first video clip. The test results are demonstrated in Table 4.1. Even
though the test videos were filmed in a complex environment with dense
forests, which posed great challenges for segmentation, the framework per-
forms still effectively and reliably. For all tested frames, it achieves a Mask IoU

score of over 85%.
The median filter was applied here as a baseline method for two main

reasons. Firstly, the median filter has proven to be effective for segment-
ing objects in a static background, which might be suitable for the given
test samples since they were captured from cameras in fixed positions. Sec-
ondly, training and evaluating other segmentation models are difficult due
to the lack of sufficient ground-truth datasets for wildlife segmentation. Each
test video randomly took 25 selected frames from which the background is
calculated as the median. To remove the small blinking noise in the back-
ground and fill the gap within the target, erosion and dilation, two common
image processing techniques, were employed[67]. The results are shown in
Table 4.2. However, the results are below expectations because it was not
possible to estimate an accurate background using median filter in some test
cases.

The statistical background subtraction models were not evaluated in this
section. They are not suitable for the given test samples in this thesis since all
the videos were filmed when wildlife appeared in front of the camera. For
the reason that the first frame of each test sample is not free of wildlife, this
would trigger the ghost area problem, as previously shown in Figure 2.3.

Furthermore, SAMTrack, as a model in previous research, is also evaluated
using the same five test videos. Its quantitative results are shown below
in Table 4.3. As displayed in Table 4.1 and Table 4.3, when evaluating the
test frames of the high-resolution videos which contain only a single target
animal, the average quantitative performance of the SAMTrack is almost on a
par with the average quantitative performance of the framework proposed in
this thesis. In the scenes containing obstacles, MegaCutie performs slightly
better, as shown in Figure 4.1, since the tracker Cutie works on an object
level.
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MegaCutie f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 mean

subject35698457 / 0.899 0.869 0.902 0.895 0.904 0.906 0.91 0.907 0.915 0.901

subject35698457 0.890 0.899 0.891 0.886 0.876 0.880 0.899 0.869 0.884 0.892 0.887

subject35718591 0.877 0.859 0.901 0.908 0.905 0.903 0.901 0.913 0.903 0.91 0.898

subject35852611 0.878 0.894 0.898 0.894 0.876 0.887 0.88 0.88 0.879 0.875 0.884

subject35857244 0.889 0.890 0.896 0.909 0.901 0.906 0.909 0.914 0.9 0.901 0.902

Table 4.1: Performance of the Framework on the High-Resolution Leopard Videos

Baseline f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 mean

subject35698457 / 0.575 0.578 0.549 0.551 0.549 0.555 0.553 0.542 0.553 0.556

subject35698457 0.529 0.542 0.542 0.553 0.53 0.559 0.544 0.565 0.548 0.502 0.542

subject35718591 0.582 0.584 0.562 0.563 0.564 0.583 0.585 0.596 0.598 0.59 0.581

subject35852611 0.624 0.636 0.634 0.637 0.644 0.644 0.654 0.652 0.643 0.632 0.640

subject35857244 0.778 0.817 0.803 0.791 0.798 0.815 0.809 0.782 0.772 0.765 0.793

Table 4.2: Performance of the Median Filter on the High-Resolution Leopard Videos

SAMTrack f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 mean

subject35698457 / 0.844 0.847 0.858 0.845 0.853 0.856 0.864 0.857 0.861 0.854

subject35698457 0.890 0.903 0.886 0.873 0.876 0.874 0.894 0.868 0.879 0.890 0.883

subject35718591 0.878 0.859 0.894 0.896 0.897 0.897 0.896 0.905 0.892 0.893 0.891

subject35852611 0.908 0.907 0.909 0.908 0.889 0.901 0.89 0.897 0.89 0.886 0.899

subject35857244 0.887 0.897 0.911 0.917 0.911 0.915 0.914 0.919 0.905 0.914 0.909

Table 4.3: Performance of the SAMTrack on the High-Resolution Leopard Videos

(a) Raw Image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.1: Qualitative Performance Comparison in Scenarios with Obstacles at
Night

4.2 qualitative results

Some qualitative results are shown in this subsection. The proposed frame-
work is not only tested with the given high-resolution leopard test videos
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but also with the YouTube low-resolution videos, which are complex sce-
narios with multiple overlapping animals. The qualitative results for the
high-resolution leopard videos are presented in Figure 4.2 and Figure 4.3.
To analyze the robustness of the proposed framework, two low-resolution
wildlife videos are applied for testing.

Using the same collection of low-resolution wildlife videos, the perfor-
mance of MegaCutie is compared with the performance of the models SAMTrack

and TDeva in previous research. The qualitative results are demonstrated
from Figure 4.4 to Figure 4.9. The displayed results of MegaCutie were gen-
erated with the second compromising method. More results that were gen-
erated without any compromising methods or with the first compromising
method can be found in the Appendix.

(a) Subject35698457 (b) Subject35698457

(c) Subject35718591 (d) Subject35852611

(e) Subject35857244

Figure 4.2: Qualitative Results of MegaCutie on the High-Resolution Leopard
Videos

4.3 failure cases

In this subsection, failure cases are analyzed, and two main reasons why
failure cases occurred are presented.

(1) Failure Case 1 : Since SAM uses detected bounding boxes as prompts
for further segmentation, any misdetection could result in incorrect segmen-
tation and tracking results. An example is shown in Figure 4.10. The misseg-
mentation mask might disappear in a dynamic background.
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(a) Subject32236280

(b) Subject35697857

Figure 4.3: Qualitative Results of MegaCutie on the High-Resolution Leopard
Videos in a Challenging Environment

(a) Raw image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.4: Qualitative Results of MegaCutie on the YouTube Low-Resolution Leop-
ards Video (1st Frame of the Video) and Comparison With SAMTrack and
TDeva

However, if the background is always static, the missegmentation mask
remains as false positive in the rest frames.

(2) Failure Case 2 : This failure occurs because the pipeline uses the pre-
trained SAM model, which is a foundation model for general task segmenta-
tion. Without fine-tuning for particular tasks, it may lack the specific knowl-
edge of the expected targets. As a result, SAM might generate inaccurate seg-
mentation masks. Two examples are shown in Figure 4.11. In Figure 4.11(b),
SAM generates an over-segmentation mask when dealing with leopard spots.
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(a) Raw Image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.5: Qualitative Results of MegaCutie on the YouTube Low-Resolution Leop-
ards Video (a Frame in the Middle of the Video) and Comparison With
SAMTrack and TDeva

(a) Raw image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.6: Qualitative Results of MegaCutie on the YouTube Low-Resolution Leop-
ards Video (Last Frame of the Video) and Comparison With SAMTrack and
TDeva

In Figure 4.11(d), SAM generates an under-segmentation mask for the leop-
ard at night.

4.4 application field

Besides automatic segmentation, the proposed framework might also be ap-
plied for automatic counting of wildlife. The counting results are shown in
Table 4.4. Figure 4.12 and Figure 4.13 show the automatic counting results
and manual counting results respectively. To test the performance of auto-
matic counting, three frames were selected, i.e., the first frame of the video, a
frame in the middle of the video, and a frame at the end of the video. The re-
sults show the potential of applying the proposed framework for automatic
counting of wildlife.
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(a) Raw image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.7: Qualitative Results of MegaCutie on the YouTube Low-Resolution
Wildlife Video (1st Frame of the Video) and Comparison With SAMTrack
and TDeva

(a) Raw image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.8: Qualitative Results of MegaCutie on the YouTube Low-Resolution
Wildlife Video (a Frame in the Middle of the Video) and Comparison
With SAMTrack and TDeva

(a) Raw image (b) Result of SAMTrack

(c) Result of TDeva (d) Result of MegaCutie

Figure 4.9: Qualitative Results of MegaCutie on the YouTube Low-Resolution
Wildlife Video (Last frame of the Video) and Comparison With SAMTrack
and TDeva
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(a) Misdetection

(b) Missegmentation

Figure 4.10: Failure Case 1

(a) Leopards detection (b) Over-segmentation

(c) Leopards detection (d) Under-segmentation

Figure 4.11: Failure Case 2

Frames Automatic counting results Manual counting results

1st f rame 24 26

88th f rame 31 32

146th f rame 35 32

Table 4.4: Automatic Counting Results vs. Manual Counting Results
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(a) Automatic counting of wildlife 1st frame

(b) Automatic counting of wildlife 88th frame

(c) Automatic counting of wildlife 146th frame

Figure 4.12: Automatic Counting of Wildlife
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(a) Manual counting of wildlife 1st frame

(b) Manual counting of wildlife 88th frame

(c) Manual counting of wildlife 146th frame

Figure 4.13: Manual Counting of Wildlife



5
C O N C L U S I O N

This thesis proposes MegaCutie as a framework for wildlife segmentation in
video sequences. The aim is to segment and track wildlife that appears in a
video sequence automatically.

The framework contains three components, namely a detector, a segmen-
tor, and a tracker. The core concept is that the detector generates bounding
boxes that are used as box prompts for the segmentor. The segmentor then
generates object masks, which are used as reference masks in the tracking
model for the tracking in the following frames. The reference masks are up-
dated every nth frame to guarantee that all the currently existing objects
could be segmented and tracked. To accelerate the framework, the YOLOV5-
based MegaDetector is employed as detection model, while Cutie, which
has proven to be more efficient than the previous VOS models both in speed
and accuracy, functions as tracker. The framework integrates SAM as its seg-
mentor because of its excellent zero-shot segmentation performance, and
because of the lack of ground-truth datasets for wildlife segmentation. To
address the overlapping issue, a matching procedure is conducted in every
updating phase by using metrics Mask IoU and inclusion rates. Additionally,
a post-process is applied in an attempt to address the overlapping issue in
the first initialized frame.

To access the effectiveness and robustness, the framework is tested with
high-resolution leopard videos in complex environments and with challeng-
ing illumination, as well as low-resolution YouTube videos containing mul-
tiple overlapping wildlife. The framework achieves Mask IoU scores of over
85 % with the ground-truth leopard dataset. For the low-resolution YouTube
videos, it also produces reliable results in most scenarios, as demonstrated
in the qualitative results in Section 3 and in the Appendix. It should be noted
that there is a trade-off between fragmented object masks and possible mis-
segmentation since both the segmentation model and the VOS model do not
always work perfectly.

Nevertheless, the framework is built under the assumption that the MegaDe-
tector generates correct bounding boxes. As the first failure case demon-
strated, misdetection causes subsequent missegmentation since SAM is not
trained for particular tasks and thus might lack specific knowledge for the
expected target. This also leads to inaccurate segmentation in some challeng-
ing scenarios, as shown in the second failure case.

5.1 further work

Since wildlife often lives in a camouflaged environment and some animals
are nocturnal, domain adaption[16][91] could be employed to make SAM
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more robust for wildlife segmentation, and therefore the basic foundation
model could be more suitable for specific downstream tasks. With domain
adaption, SAM might be more reliable for segmentation of animals in com-
plex nature surroundings or in low-light conditions.

Prompts, as the first step of the framework, are of prime importance. If
performance time is ignored, different detection models could be combined
so that convincing bounding boxes are more likely to be generated.

MegaCutie also shows potential for automatic counting of wildlife. More
tests could be conducted in the future to test the robustness of the automatic
counting function.
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A P P E N D I X

a.1 appendix model version

Model version: Table A.1

model version

MegaDetector md_v5a.0.0.pt[59]

SAM sam_vit_h_4b8939[62]

Cutie Cutie_v1.0[18]

Table A.1: Model Version

a.2 python environment and packages

Python version: 3.9.16.
The packages have been listed in the file ”requirement.txt”.

a.3 test videos

Links of the test videos: Table A.2

videos

Subject 35698457 (night) [103]

Subject 35718591 (daylight) [105]

Subject 35852611 (daylight) [104]

Subject 35857244 (daylight) [106]

Subject 35852611 (daylight) [104]

Subject 32236280 (challenging illumination) [101]

Subject 35697857 (complex surrounding) [102]

Multiple leopards [100]

Multiple wildlife [2]

Table A.2: Test Videos
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a.4 a calculation example of the matching algorithm

(a) SAM Masks (b) Cutie Masks

(c) Putting all masks in one image (d) Refined Masks

Figure A.1: A Calculation Example of the Matching Algorithm

Mask IoU :


SAM1:


Cutie Mask 1: 0.4

Cutie Mask 3: 0.35

Cutie Mask 2: 0.1

SAM2:
{

Cutie Mask 2: 0.4

Inclusion SAM :


SAM1:


Cutie Mask 1: 0.4

Cutie Mask 3: 0.3

Cutie Mask 2: 0.1

SAM2:
{

Cutie Mask 2: 0.4

Inclusion Cutie :


SAM1:


Cutie Mask 1: 1

Cutie Mask 3: 0.9

Cutie Mask 2: 0.3

SAM2:
{

Cutie Mask 2: 1

• Step 1: Sorting
The SAM Masks are sorted based on their highest Mask IoUs. SAM
Mask 1 and SAM Mask 2 both have the same highest Mask IoU, namely
0.4. In this case, the SAM Mask with the smaller mask value will be
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first processed. Otherwise, the SAM Mask with a higher Mask IoU will
be first processed.

The Cutie masks mapped to each SAM mask are also sorted in de-
scending order based on their Mask IoUs with the SAM Mask.

• Step 2: Matching of SAM Mask 1
Cutie mask 1, Cutie mask 2, and Cutie mask 3 are mapped to SAM
mask 1.
The sum of InclusionRateSAM

j ( j = 1, 2, 3 ) by SAM mask 1 is 0.8.
This sum is higher than the threshold 0.7, which means the SAM mask
1 is almost covered by its mapped Cutie masks. The Cutie masks might
also be mapped to different SAM masks.

Cutie mask 1 is processed first and must be processed because it has
the highest Mask IoU with SAM mask 1. The sum of InclusionRateCutie

i
( i = 1 ) for Cutie mask 1 is 1 since the Cutie mask 1 is only mapped to
the SAM mask 1 and totally included in the SAM mask 1. Cutie mask
1 is kept as an object mask.

Cutie mask 3 is the mapped Cutie mask with the second highest Mask
IoU with SAM mask 1. Cutie mask 3 is to be checked if it has already
been processed or will be processed. This is not the case here. The
Cutie mask 3 is kept as an object mask.

Cutie mask 2 is the mapped Cutie mask with the lowest Mask IoU with
SAM mask 1. Cutie mask 2 should also be checked if it has already
been processed or will be processed. In this example, Cutie mask 2 has
its highest Mask IoU with SAM mask 2, so Cutie mask 2 is ignored
here and will be processed later when SAM mask 2 is processed.

• Step 3: Matching of SAM Mask 2
Cutie mask 2 is mapped to SAM mask 2.

The sum of InclusionRateSAM
j ( j = 2 ) by SAM mask 2 is 0.4.

The sum is lower than the threshold 0.7, which means the SAM mask
2 is not covered by its mapped Cutie mask. The SAM mask 2 should
be added as a new object. Also, Cutie mask 2 must be kept as an object
mask.

Note that the numbers in this example are not exactly calculated. They
only describe approximately the relationship between the SAM masks and
the Cutie masks.
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a.5 qualitative performance of the matching algorithm

Matching results without any compromise, with the first compromising method,
and with the second compromising method are demonstrated respectively.

(a) Raw image (b) Cutie track masks

(c) SAM segmentation masks (d) Refined masks without compromise

(e) Refined masks with compromising method 1 (f) Refined masks with compromising method 2

Figure A.2: 1st Update 30th Frame
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(a) Raw image (b) Cutie track masks

(c) SAM segmentation masks (d) Refined masks without compromise

(e) Refined masks with compromising method 1 (f) Refined masks with compromising method 2

Figure A.3: 2nd Update 59th Frame

(a) Raw image (b) Cutie track masks

(c) SAM segmentation masks (d) Refined masks without compromise

(e) Refined masks with compromising method 1 (f) Refined masks with compromising method 2

Figure A.4: 3rd Update 88th Frame



A.5 qualitative performance of the matching algorithm 56

(a) Raw image (b) Cutie track masks

(c) SAM segmentation masks (d) Refined masks without compromise

(e) Refined masks with compromising method 1 (f) Refined masks with compromising method 2

Figure A.5: 4th Update 117th Frame

(a) Raw image (b) Cutie track masks

(c) SAM segmentation masks (d) Refined masks without compromise

(e) Refined masks with compromising method 1 (f) Refined masks with compromising method 2

Figure A.6: 5th Update 146th Frame
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