

Anlage 5 Modulhandbuch des Studiengangs

Analytics in Business and Financial Markets Bachelor of Science

des Fachbereichs Mathematik und Naturwissenschaften der Hochschule Darmstadt – University of Applied Sciences

vom 8. Juli 2025 Gültig ab 1. Mai 2026

Zugrundeliegende BBPO vom 8. Juli 2025 (Amtliche Mitteilungen Jahr 2025)

Inhaltsverzeichnis

Pflichtkatalog	4
Analysis 1	5
Analysis 2	7
Lineare Algebra 1	9
Lineare Algebra 2	12
Betriebswirtschaftslehre	15
Volkswirtschaftslehre	17
Finance Theory	19
Operations Research	22
Asset Pricing	24
Risk Management	27
Schadenversicherungsmathematik	30
Explorative Datenanalyse	32
Stochastik	35
Einführung in die Statistik	37
Statistische Modellierung und Regression	40
Numerische Mathematik	43
Optimierung	46
Programmieren 1	49
Programmieren 2	51
Proseminar	53
Seminar	55
Projekt	57
Fremdsprache	59
Interdisziplinärer Studienbereich Sozial- und Kulturwissenschaften (SuK)	62
Praxismodul - Berufspraktische Phase	65
Bachelormodul	67
Wahlpflichtkatalog	69
Ökonometrie und Zeitreihenanalyse	70

Kreditanalyse	73
Derivative Finanzinstrumente	76
Personenversicherung	78
Heuristische Optimierungsverfahren	8
Analyse von Logistiksystemen	83
Spieltheorie und Rationaltheorie	85
Graphentheorie	87
Wahlpflichtmodule Wirtschaft	89
Wahlpflichtmodule Computational Mathematics	9′
Wahlpflichtmodule Data Science	93
Wahlpflichtmodule Informatik	95

Pflichtkatalog

Catalog of compulsory modules

Analysis 1

Modulname

Analysis 1 Analysis 1

Modulkürzel

Ana1

Art

Pflicht

Lehrveranstaltung

Analysis 1

Semester

1

Modulverantwortliche(r)

T. Bedenk

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Zahlenräume
- elementare Funktionen
- Folgen, Reihen, Potenzreihen
- Grenzwerte und Stetigkeit reellwertiger Funktionen einer reellen Variablen
- Differentialrechnung reellwertiger Funktionen einer reellen Variablen
- Integralrechnung reellwertiger Funktionen einer reellen Variablen
- ggf. metrische Räume

Ziele

Mit dieser Vorlesung erwerben die Studierenden gemeinsam mit den Veranstaltungen Analysis 2 sowie Lineare Algebra 1 und Lineare Algebra 2 die Grundlagen für sämtliche weiterführenden mathematischen Veranstaltungen dieses Studiengangs.

Kenntnisse

Die Studierenden kennen und verstehen Grundlagen der Analysis, wie Konvergenz, Stetigkeit, Differentiation und Integration.

Fertigkeiten

Die Studierenden sind zur Lösung typischer Fragestellungen in der Lage.

Kompetenzen

Die Studierenden können mathematische Beweise verstehen, zu Problemen Lösungen mathematischer erarbeiten wie argumentieren.

Lehr- und Lernformen

7 SWS Vorlesung und 3 SWS Übung

Arbeitsaufwand und Credit Points

10 CP 300 h (Präsenzstudium 140 h plus 160 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester

Verwendbarkeit des Moduls

Verwendbar für fast alle Lehrveranstaltungen dieses Studiengangs

- Königsberger, Analysis 1, Springer
- Forster, Analysis 1, Vieweg+Teubner
- Heuser, Lehrbuch der Analysis, Teil 1, Vieweg+Teubner
- Spindler, Höhere Mathematik, Harry Deutsch

Analysis 2

Modulname

Analysis 2 Analysis 2

Modulkürzel

Ana2

Art

Pflicht

Lehrveranstaltung

Analysis 2

Semester

2

Modulverantwortliche(r)

T. Bedenk

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Differentialrechnung von Funktionen mehrerer reeller Variablen mit Satz von Taylor, implizite Funktionen, Extrema mit und ohne Nebenbedingungen (Lagrange)
- Parametrisierte Kurven
- Integralrechnung von Funktionen mehrerer reeller Variablen mit Satz von Fubini, Transformationssatz (Substitutionsregel)

Ziele

Mit dieser Vorlesung erwerben die Studierenden gemeinsam mit den Veranstaltungen Analysis 1 sowie Lineare Algebra 1 und Lineare Algebra 2 die Grundlagen für sämtliche weiterführenden mathematischen Veranstaltungen dieses Studiengangs.

Kenntnisse

Die Studierenden kennen und verstehen Grundlagen der mutlivariaten Analysis, wie Konvergenz, Stetigkeit, Differentiation und Integration.

Fertigkeiten

Die Studierenden sind zur Lösung typischer Fragestellungen in der Lage.

Kompetenzen

Die Studierenden können mathematische Beweise verstehen, zu Problemen Lösungen mathematischer erarbeiten wie argumentieren.

Lehr- und Lernformen

4 SWS Vorlesung und 2 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 84 h plus 66 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

Lineare Algebra 1, Analysis 1

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

Verwendbar für fast alle Lehrveranstaltungen dieses Studiengangs

- Königsberger, Analysis 1, Springer
- Königsberger, Analysis 2, Springer
- Forster, Analysis 2, Vieweg+Teubner
- Forster, Analysis 3, Vieweg+Teubner
- Heuser, Lehrbuch der Analysis, Teil 2, Vieweg+Teubner
- Spindler, Höhere Mathematik, Harry Deutsch

Lineare Algebra 1

Modulname

Lineare Algebra 1 Linear Algebra 1

Modulkürzel

LA1

Art

Pflicht

Lehrveranstaltung

Lineare Algebra 1

Semester

1

Modulverantwortliche(r)

C. Bach

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Grundlagen wie Rechengesetze und Polynome
- Mengen, Abbildungen und Äquivalenzrelationen
- Aussagen- und Prädikatenlogik; Beweisprinzipien
- Gruppen, Ringe, Körper, Vektorräume
- Fundamentalsatz der Algebra
- Skalarprodukt und Vektorprodukt
- Basis und Dimension
- Matrizen und lineare Abbildungen
- Lineare Gleichungssysteme und Gauß-Algorithmus
- Determinanten
- Eigenwerte und Eigenräume

Ziele

Kenntnisse

Die Studierenden kennen und verstehen zentrale Beweisprinzipien der Mathematik sowie grundlegende Strukturen der linearen Algebra, wie Vektorräume und lineare Abbildungen, und deren Zusammenhang mit Matrizen und Matrizenmultiplikation.

Fertigkeiten

Die Studierenden sind in der Lage, mathematische Beweise zu führen und formale Rechnungen auch in neu eingeführten, bis dahin unbekannten, Strukturen auszuführen. Sie können die Rechentechniken der linearen Algebra zur Vektor- und Matrizenrechnung anwenden und diese u.a. zur Lösung linearer Gleichungssysteme verwenden.

Kompetenzen

Die Studierenden können mathematische Beweise, Argumente und Berechnungen verstehen und auf ihre Richtigkeit hin prüfen. Sie entwickeln ein Abstraktionsvermögen und sind in der Lage, Verbindungen zwischen konkreten Problemstellungen und allgemeinen Strukturen herzustellen und darauf basierend erlernte Verfahren auch auf bekannte Probleme anzuwenden. Ihre Lösungswege können sie sowohl technisch als auch argumentativ darlegen.

Lehr - und Lernformen

7 SWS Vorlesung und 3 SWS Übung

Arbeitsaufwand und Credit Points

10 CP 300 h (Präsenzstudium 140 h plus 160 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

ein Semester, Wintersemester

Verwendbarkeit des Moduls

Verwendbarkeit für fast alle Lehrveranstaltungen dieses Studiengangs

- Beutelspacher: Lineare Algebra, Vieweg+TeubnerFischer: Lineare Algebra, Vieweg+Teubner
- Huppert, Willems: Lineare Algebra, Vieweg+Teubner
 Karpfinger, Stachel: Lineare Algebra, Springer
 Spindler, Höhere Mathematik, Harry Deutsch

Lineare Algebra 2

Modulname

Lineare Algebra 2 Linear Algebra 2

Modulkürzel

LA2

Art

Pflicht

Lehrveranstaltung

Lineare Algebra 2

Semester

2

Modulverantwortliche(r)

J.-Ph. Hoffmann

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Koordinatentransformation
- Diagonalisierbarkeit
- Jordansche Normalform
- Skalarprodukt und Hermitesche Form
- Orthonormalbasis und Orthonormalisierungssatz (Gram-Schmidt)
- Orthogonale und unitäre Matrizen (Isometrien)
- Symmetrische und Hermitesche Matrizen (Selbstadjungierte Endomorphismen)
- Hauptachsentransformationen und SVD
- Matrixzerlegungen (LR, QR)

Ziele

Mit dieser Vorlesung erwerben die Studierenden gemeinsam mit den Veranstaltungen Lineare Algebra 1 sowie Analysis 1 und Analysis 2 die Grundlagen für sämtliche weiterführenden Veranstaltungen dieses Studiengangs.

Kenntnisse

Die Studierenden kennen und verstehen Grundlagen der linearen Algebra, wie Koordinatentransformationen und deren Zusammenhang zu Normalformen. Sie kennen spezielle Normalformen für allgemeine Matrizen wie auch für symmetrische und für othogonale Matrizen sowie für Hermitesche und unitäre Matrizen.

Fertigkeiten

Die Studierenden sind in der Lage Koordinatentransformationen und spezifische Normalformen selbst zu berechnen.

Kompetenzen

Die Studierenden sind in der Lage Matrizen in ihrer Struktur zu analysieren und in ihrer Anwendung zu transformieren. Sie verstehen die Verbindungen zwischen Koordinatentransformationen und Normalformen, kennen die Vorteile und Bedeutung verschiedener Normalformen. Sie können Zusammenhänge zwischen konkreten Problemstellungen und allgemeinen Strukturen herzustellen und darauf basierend erlernte Verfahren auch auf bekannte Probleme anzuwenden. Ihre Lösungswege können sie sowohl technisch als auch argumentativ darlegen.

Lehr - und Lernformen

4 SWS Vorlesung und 2 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 84 h plus 66 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

Lineare Algebra 1, Analysis 1

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

ein Semester. Sommersemester

Verwendbarkeit des Moduls

Verwendbarkeit für fast alle Lehrveranstaltungen dieses Studiengangs

- Beutelspacher: Lineare Algebra, Vieweg+Teubner
- Fischer: Lineare Algebra, Vieweg+Teubner
- Huppert, Willems: Lineare Algebra, Vieweg+Teubner
 Karpfinger, Stachel: Lineare Algebra, Springer
 Spindler, Höhere Mathematik, Harry Deutsch

Betriebswirtschaftslehre

Modulname

Betriebswirtschaftslehre Business Administration

Modulkürzel

BWL

Art

Pflicht

Lehrveranstaltung

Betriebswirtschaftslehre

Semester

3

Modulverantwortliche(r)

Ch. Almeling

Weitere Lehrende

Lehrende des Fachbereichs Wirtschaft

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Grundzüge der Betriebswirtschaftslehre mit

- Organisation und Unternehmensführung
- Wertschöpfungsprozess
- Investition und Finanzierung
- Rechnungswesen

Ziele

Kenntnisse

Die Studierenden kennen den Gegenstand der Betriebswirtschaftslehre, die Grundzusammenhänge und die Grundbegriffe. Für die einzelnen Funktionsbereiche der Betriebswirtschaftslehre entwickeln die Studierenden ein Grundverständnis und können grundlegende Aufgabenstellungen lösen.

Fertigkeiten

Die Studierenden können die Arbeitsmethodik und Analysetechniken der Betriebswirtschaftslehre auf einfache betriebswirtschaftliche Fragestellungen anwenden.

Kompetenzen

Die Schnittstellen zu wirtschafts- und sozialwissenschaftlichen Nachbardisziplinen werden erkannt und deren Bedeutung für die Betriebswirtschaftslehre verstanden.

Lehr- und Lernformen

4 SWS Vorlesung ggf. mit (integrierten) Übungen

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 60 bis 90 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

entfällt

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester

Verwendbarkeit des Moduls

entfällt

- Wöhe, Döring: Einführung in die Allgemeine Betriebswirtschaftslehre, Vahlen
- Bea, Dichtl, Schweitzer (Hrsg.): Allgemeine Betriebswirtschaftslehre, Bd. 1: Grundfragen, Lucius & Lucius
- Schierenbeck, Wöhle: Grundzüge der Betriebswirtschaftslehre, Oldenbourg
- Schmalen, Pechtl: Grundlagen und Probleme der Betriebswirtschaft, Schäffer-Poeschel

Volkswirtschaftslehre

Modulname

Volkswirtschaftslehre Economics

Modulkürzel

VWL

Art

Pflicht

Lehrveranstaltung

Volkswirtschaftslehre

Semester

2

Modulverantwortliche(r)

S. Puth

Weitere Lehrende

Lehrende des Fachbereichs Wirtschaft

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Grundzüge der Mikroökonomik mit

- Gleichgewichtstheorie der Märkte von Nachfrage und Angebot,
- Unternehmensverhalten bei Produktion und Kosten
- sowie Marktformen und ggf. Marktversagen

Grundzüge der Makroökonomik mit

- volkswirtschaftlicher Gesamtrechnung
- Zusammenhänge von gesamtwirtschaftlichen Größen wie Produktion, Konsum, Sparen, Investitionen, Arbeitslosigkeit, Inflation

Ziele

Kenntnisse

Die Studierenden kennen die aktuellen Fragestellungen und grundlegenden Analysemethoden der Volkswirtschaftslehre.

Fertigkeiten

Die Studierenden können die erlernten Methoden auf einfache volkswirtschaftliche Problemstellungen anwenden.

Kompetenzen

Die Studierenden sind in der Lage, selbstständig wirtschaftspolitische Vorschläge zu beurteilen, einzuordnen und zu erarbeiten.

Lehr- und Lernformen

4 SWS Vorlesung ggf. mit (integrierten) Übungen

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 60 bis 90 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

entfällt

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester. Sommersemester

Verwendbarkeit des Moduls

entfällt

- Acemoglu, Laibson, List: Economics, Pearson
- Beck: Volkswirtschaftslehre: Mikro- und Makroökonomie, De Gruyter Oldenbourg
- Bofinger: Grundzüge der Volkswirtschaftslehre, Pearson
- Krugman, Wells: Volkswirtschaftslehre, Schäffer Poeschel
- Mankiw, Taylor: Grundzüge der Volkswirtschaftslehre, Schäffer Poeschel

Finance Theory

Modulname

Finanzmathematik Finance Theory

Modulkürzel

FΜ

Art

Pflicht

Lehrveranstaltung

Finanzmathematik (Finance Theory)

Semester

3

Modulverantwortliche(r)

J.-Ph. Hoffmann

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Preise und Märkte
- Geld und Finanzinstrumente
- Zinsen und Renten
- Kredite und Tilgung
- Kalender und Konventionen
- Barwert und Rendite
- Zinskurve und Forward-Zinssätze
- Einführung: Derivate und stochastische, arbitrage-freie Bewertung

Ziele

Kenntnisse

Kenntnis der fundamentalen Produkte und Begriffe des Finanzmarktes sowie der Mathematik in deren Bewertungs- und Berechnungsverfahren

Fertigkeiten

Analyse und Verständnis praktischer finanzmathematischer Probleme sowie Durchführung eigener Berechnungen zur Lösung und Darstellung und Interpretation der Ergebnisse sowohl in mathematischer als auch in allgemeinsprachlicher Formulierung

Kompetenzen

Anwendung praktischer Fragestellungen mit finanzmathematischen Verfahren, Verständnis und Abgrenzung der methodischen Ansätze, Kenntnis von Stärken, Schwächen und Grenzen der verschiedenen Verfahren. Fähigkeit zur sachgerechten Bewertung, Interpretation und Aufbereitung von Ergebnissen sowohl für Fachpublikum als auch für Fachfremde

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, bestandene Prüfungsvorleistung in Stochastik

Empfohlene Kenntnisse

Analysis 2, Lineare Algebra 2, Explorative Datenanalyse und Visualisierung, Stochastik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester

Verwendbarkeit des Moduls

entfällt

- Bodie, Merton: Finance, Prentice Hall
- Deutsch, Beinker: Derivate und interne Modelle, Schäffer-Poeschel
- Hull: Optionen, Futures und andere Derivate, Pearson
- Martin: Finanzmathematik, Hanser
- Ortmann: Praktische Finanzmathematik, Springer
- Pliska: Introduction to Mathematical Finance: Discrete Time Models, Wiley
- Pfeiffer: Praktische Finanzmathematik, Europa
- Reitz: Mathematik in der modernen Finanzwelt, Springer
- Ross: An elementary introduction to mathematical finance, Cambridge University Press

- Tietze: Einführung in die Finanzmathematik, Springer
 Wohlschlägl-Aschberger: Bankgeschäft und Finanzmarkt, Springer Gabler

Operations Research

Modulname

Operations Research Operations Research

Modulkürzel

OR

Art

Pflicht

Lehrveranstaltung

Operations Research

Semester

3

Modulverantwortliche(r)

J. Kallrath

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Grundlagen des OR, u.a. Logistikgrundlagen
- Modellierungsgrundsätze des OR und klassische OR-Probleme (Zuordnungs-, Mischungs, Rucksackprobleme, etc.)
- Einführung in eine Modellierungssoftware
- Grundlagen der Graphentheorie
 - Kürzeste Wege Probleme
 - Rundreiseplanung
- Transport- und Umladeplanung
- Netzwerkprobleme
- Tourenplanung
- Standortplanung
- Einführung in die Gemischt-Ganzzahlige Optimierung
 - Modellierungstechniken
 - Lösungsmethoden

7iele

Kenntnisse

Die Studierenden kennen und verstehen Grundlagen des OR, kennen ausgewählte OR Probleme und Lösungsverfahren.

Fertigkeiten

Die Studierenden sind in der Lage zur Lösung praktischer Fragestellungen aus den Anwendungsbereichen des OR adäguate Auswahlen verschiedener Methoden und Optionen zu treffen.

Kompetenzen

Die Studierenden können praktische Probleme modellieren, lösen und bei Bedarf die Modelle in die professionelle OR-Software umsetzen und die erhaltene Lösung im Sinne der Praxisprobleme interpretieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Lineare Algebra 1, Analysis 1

Empfohlene Kenntnisse

entfällt

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester

Verwendbarkeit des Moduls

entfällt

- Dempe S., Schreier H.; Operations Research, Teubner
- Domschke, W. und Drexl, A.; Einführung in Operations Research, Springer
- Hillier F.S., Lieberman G.J.; Operations Research, Oldenburg Wissenschaftsverlag
- Lasch R., Strategisches und operatives Logistikmanagement: Distribution
- Nickel, S., Stein O. und Waldmann, K.-H.; Operations Research, Springer

Asset Pricing

Modulname

Asset Pricing Asset Pricing

Modulkürzel

AΡ

Art

Pflicht

Lehrveranstaltung

Asset Pricing

Semester

4

Modulverantwortliche(r)

Ch. Becker

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Einführung über die Struktur und Empirie der Finanzmärkte und Wechselkurse
- Finanzprodukte insb. Anleihen und Aktien
- Rendite- und Risikokenngrößen wie Duration, Convexity und Sharpe-Ratio
- Portfoliotheorie mit Capital Asset Pricing Model (CAPM)

sowie ausgewählte Themen aus

- Fama-French Erweiterungen des CAPM
- Bilanzkennzahlen und Fundamentalanalyse
- Statistische Anlage- und Handelsstrategie

Ziele

Kenntnisse

- Struktur von Finanzmärkten
- Beziehung von Rendite und Risiko, Kenntnis wichtiger Kenngrößen
- mathematischen Methoden zur Portfoliobewertung
- Methoden zu Parameterschätzung und Prognose in diesen Modellen
- Kenntnis der Eigenschaften sowie des Zusammenhangs zwischen den entsprechenden Verfahren

Fertigkeiten

- Beschreibung und Lösung praktischer Probleme der Portfoliotheorie
- Durchführung eigener Berechnungen
- Schätzung und Interpretation der Modellparameter
- Erstellung modelladäguater Bewertungen

Kompetenzen

- Verständnis und Abgrenzung der unterschiedlichen Ansätze
- Auswahl und Anwendung des im jeweiligen Kontext geeigneten Verfahrens
- Fähigkeit zur sachgerechten Interpretation von Ergebnissen sowie zur Beurteilung der Aussagefähigkeit dieser Ergebnisse im Hinblick auf die zugrunde liegenden Daten und Methoden
- Urteilsfähigkeit im Hinblick auf Durchführung und Ergebnisinterpretation fremder Analysen

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, bestandene Prüfungsvorleistung in Stochastik

Empfohlene Kenntnisse

Analysis 2, Lineare Algebra 2, Explorative Datenanalyse und Visualisierung, Stochastik, Einführung in die Statistik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

entfällt

- Cochrane: Asset Pricing, Princeton University Press
 Choudhry, et.al.: Capital Market Instruments, Palgrave Macmillan
 Kramer: Marktrisiken, Springer
 Mondello: Portfoliomanagement, Springer Gabler

Risk Management

Modulname

Risikomanagement Risk Management

Modulkürzel

RM

Art

Pflicht

Lehrveranstaltung

Risk Management

Semester

4

Modulverantwortliche(r)

S. Döhler, J.-Ph. Hoffmann

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Wiederholung aus Wahrscheinlichkeitstheorie und Statistik
- Gefahr, Risiko und regulatorischer Rahmen
- Risikomaße
- Modellierung von Gewinnen und Verlusten
- Risikofaktoren

ausgewählte Themen aus

- Risikoreserveprozess und Ruinwahrscheinlichkeit
- Ökonomisches Kapital, Kapitalallokation, Performancemessung
- Marktpreisrisikomodellierung
- Kreditportfoliomodelle
- Loss-Distribution-Approach
- Backtestingverfahren
- Abhängigkeitsmodellierung

• Extremwertmodelle

Ziele

Kenntnisse

Die Studierenden kennen wichtige klassische Verfahren des quantitativen Risikomanagements. Sie kennen und verstehen die Mathematik, die hinter diesen Verfahren und Ergebnissen steht. Sie lernen diese Werkzeuge in charakteristischen Anwendungsbereichen kennen.

Fertigkeiten

Die Studierenden vertiefen Ihre Fertigkeiten, indem sie die erlernten Modelle und Verfahren des Risiko-Managements auf praktische Beispiele anwenden. Dazu verwenden Sie geeignete professionelle Software.

Kompetenzen

Die Studierenden verstehen und beherrschen die mathematischen Grundlagen des quantitativen Risikomanagements. Sie kennen Stärken, Schwächen und Grenzen der verschiedenen methodischen Ansätze. Sie können diese vergleichen und in der Praxis zielführende Verfahren auswählen und beherrschen deren technische Umsetzung. Sie können die Ergebnisse Ihrer Analysen korrekt interpretieren und effektiv kommunizieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, bestandene Prüfungsvorleistung in Stochastik

Empfohlene Kenntnisse

Analysis 2, Lineare Algebra 2, Explorative Datenanalyse und Visualisierung, Stochastik, Einführung in die Statistik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

entfällt

- Cottin, Döhler: Risikoanalyse, Springer
 McNeil, Frey, Embrechts: Quantitative Risk Management, Princeton University Press

Schadenversicherungsmathematik

Modulname

Schadenversicherungsmathematik Actuarial Theory

Modulkürzel

SchadenV

Art

Pflicht

Lehrveranstaltung

Schadenversicherungsmathematik

Semester

4

Modulverantwortliche(r)

C. Bach, S. Döhler

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Wiederholung aus Wahrscheinlichkeitstheorie und Statistik
- Modelle für die Schadenanzahl
- Modelle für die Schadenhöhe
- Modelle für den Gesamtschaden
- Prämienkalkulation
- Reservierungsverfahren

Ziele

Kenntnisse

- Kenntnis der fundamentalen Begriffe, Verfahren und Ergebnisse der Schadenversicherung sowie der Mathematik, die hinter diesen Verfahren und Ergebnissen steht
- Kenntnis der Eigenschaften und des Zusammenhangs zwischen den entsprechenden Verfahren

Fertigkeiten

- Beschreibung und Lösung praktischer Probleme durch versicherungsmathematische Modelle
- Durchführung eigener Berechnungen zur Modellanpassung und Modellschätzung
- Darstellung und Interpretation der Ergebnisse sowohl in mathematischer als auch in allgemeinsprachlicher Formulierung

Kompetenzen

- Vernetzung praktischer Fragestellungen mit dem versicherungsmathematischen Instrumentarium
- Verständnis und Abgrenzung der unterschiedlichen methodischen Ansätze
- Kenntnis von Stärken, Schwächen und Grenzen der verschiedenen Verfahren
- Fähigkeit zur sachgerechten Bewertung, Interpretation und Aufbereitung der Ergebnisse sowohl für fachlich vorgebildete als auch für fachfremde Kommunikationspartner

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, bestandene Prüfungsvorleistung in Stochastik

Empfohlene Kenntnisse

Analysis 2, Lineare Algebra 2, Explorative Datenanalyse und Visualisierung, Stochastik, Einführung in die Statistik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

entfällt

- Cottin, Döhler: Risikoanalyse
- Goelden et al.: Schadenversicherungsmathematik
- Kaas et al.: Modern Actuarial Risk Theory
- Klugman, Panjer, Willmot: Loss Models
- Mack: Schadenversicherungsmathematik

Explorative Datenanalyse

Modulname

Explorative Datenanalyse und Visualisierung Exploratory Data Analysis and Visualisation

Modulkürzel

EDA

Art

Pflicht

Lehrveranstaltung

Explorative Datenanalyse und Visualisierung

Semester

1

Modulverantwortliche(r)

S. Döhler, A. Jahn

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Beschreibende Statistik
- Datenvisualisierung / Grammar of Graphics
- Data wrangling / Datenverarbeitung / Reproduzierbarkeit
- Univariate Regression
- Praktische Analyse von Daten mit einer professionellen Software
- Arbeiten mit Markdown / Notebooks
- ggf. weitere Themen wie robuste Regression, Kerndichteschätzer

7iele

Kenntnisse

Die Studierenden kennen und verstehen wesentliche Begriffe und Verfahren der explorativen Datenanalyse. Sie lernen praktische Verfahren wie Daten in der Praxis erfasst werden, wie man fehlerhafte Daten aufbereitet

und sie präsentiert. Sie lernen erste explorative Methoden kennen und verstehen die Grundlagen im Umgang mit Multivariaten Daten. Sie erfahren wie man Daten codiert und transformiert. Ihnen werden einige in der Praxis übliche Visualisierungen verschiedener Datentypen aufgezeigt.

Fertigkeiten

Die Studierenden können Verfahren der explorativen Datenanalyse auf praktische Beispiele anwenden. Sie beherrschen ein professionelles Visualisierungs-Tool.

Kompetenzen

Die Studierenden können Daten explorativ analysieren und visualisieren. Sie können geeignete Darstellungen auswählen, software-technisch durchführen und die Ergebnisse interpretieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Praktikum

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Praktikumsaufgaben. Die Prüfungsvorleistung ist unbenotet.

Prüfungsform: Zu Beginn des Semesters ein der folgenden Prüfungsvarianten festgelegt und bekannt gege-

- 1. Schriftliche Klausurprüfung (Dauer: 90 Minuten)
- 2. Mündliche Prüfung (Dauer: 15-30 Minuten)

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

entfällt

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester

Verwendbarkeit des Moduls

entfällt

- Chen, Härdle, Unwin: Handbook of Data Visualization
- Cleveland: Visualizing data
- Field: Discovering Statistics
- Fahrmeier, Künstler: Statistik, der Weg zur Datenanalyse

Tukey: Exploratory Data AnalysisWilkinson: The Grammar of GraphicsWickham: R for Data Science

Stochastik

Modulname

Stochastik Stochastics

Modulkürzel

Stoch

Art

Pflicht

Lehrveranstaltung

Stochastik

Semester

2

Modulverantwortliche(r)

C. Bach, A. Jahn

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Kombinatorik
- Wahrscheinlichkeitsräume
- Bedingte Wahrscheinlichkeiten und Unabhängigkeit
- Zufallsvariablen und ihre Verteilungen
- Gesetze der großen Zahlen und zentraler Grenzwertsatz

Ziele

Kenntnisse

- Kenntnis des mathematischen Modells von Wahrscheinlichkeit
- Kenntnis grundlegender Rechentechniken und Ergebnisse der Wahrscheinlichkeitstheorie
- Kenntnis verschiedener Verteilungstypen von Zufallsvariablen, ihrer Kenngrößen und Eigenschaften

Fertigkeiten

- Adäguate mathematische Formulierung praktischer Sachverhalte
- Beschreibung und Lösung praktischer Probleme durch stochastische Modelle
- Auswahl und Anwendung eines im jeweiligen Kontext geeigneten Modells

Kompetenzen

- Verständnis der wesentlichen wahrscheinlichkeitstheoretischen Begriffe und Methoden
- Sicherheit im Umgang mit dem stochastischen Instrumentarium (Modelle und Verfahren, Rechentechniken)

Lehr- und Lernformen

2 SWS Vorlesung und 2 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung von Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten); Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent zu Semesterbeginn bekannt.

Notwendige Kenntnisse

Bestandene Prüfungsvorleistung in Analysis 1 und Lineare Algebra 1 sowie mindestens eine bestandene Prüfungsleistung aus Analysis 1 und Lineare Algebra 1

Empfohlene Kenntnisse

Analysis 1, Lineare Algebra 1, Explorative Datenanalyse

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

Grundlagenmodul Direkte Fortsetzung: Statistik Grundlage für alle auf quantitative Analysen ausgerichteten Module des Bachelorstudiengangs sowie der konsekutiven Masterstudiengänge des Fachbereichs

- Bourier, Beschreibende Statistik
- Bourier, Wahrscheinlichkeitsrechnung und schließende Statistik
- Dehling, Haupt; Einführung in die Wahrscheinlichkeitstheorie und Statistik
- · Hesse, Wahrscheinlichkeitstheorie, Vieweg
- ggf. Skripte und sonstige Unterlagen zur Vorlesung

Einführung in die Statistik

Modulname

Einführung in die Statistik Introduction to Statistics

Modulkürzel

Stat

Art

Pflicht

Lehrveranstaltung

Statistik

Semester

3

Modulverantwortliche(r)

C. Bach, A. Jahn

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Grundannahmen der schließenden Statistik
- Parameterpunktschätzung inklusive Maximum-Likelihood-Schätzung
- Konfidenzintervalle
- Parametertests
- Nichtparametrische Tests
- Bearbeitung praktischer Fragestellungen mit einer Statistik-Software

Ziele

Kenntnisse

- Kenntnis der mathematischen Grundlagen des Schätzens und Testens
- Kenntnis grundlegender Schätz- und Testverfahren inklusive ihrer Anwendungsgebiete und Eigenschaften

Fertigkeiten

- Adäquate mathematische Formulierung praktischer Sachverhalte
- Beschreibung und Lösung praktischer Probleme durch stochastische Modelle, insbesondere Aufbau eines Repertoires verschiedener statistischer Schätz- und Testverfahren
- Formulierung angemessener statistischer Hypothesen und Durchführung der entsprechenden Hypothesentests
- Beherrschung mindestens einer Statistik-Software

Kompetenzen

- Auswahl und Anwendung eines im jeweiligen Kontext geeigneten statistischen Verfahrens
- Urteilsfähigkeit im Hinblick auf Durchführung und Ergebnisinterpretation fremder statistischer Studien

Lehr- und Lernformen

2 SWS Vorlesung und 2 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung (inklusive Abnahme) von Übungs- und Praktikumsaufgaben. Die Prüfungsvorleistung ist unbenotet.

Prüfungsform: Klausur (Dauer 90 Minuten); Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent zu Semesterbeginn bekannt.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, bestandene Prüfungsvorleistung in Stochastik

Empfohlene Kenntnisse

Stochastik, Explorative Datenanalyse

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester: Wintersemester

Verwendbarkeit des Moduls

Grundlagenmodul Direkte Fortsetzung: Statistische Modellierung und Regression Grundlage für alle auf quantitative Analysen ausgerichteten Module des Bachelorstudiengangs sowie der konsekutiven Masterstudiengänge des Fachbereichs

- Bamberg, Baur, Statistik, Oldenbourg
- Bourier, Wahrscheinlichkeitsrechnung und schließende Statistik
- Dhrymes, Introductory Econometrics, Springer
- Fahrmeir, Statistik Der Weg zur Datenanalyse, Springer
- Hartung et al, Statistik, Oldenbourg

- Neter, Kutner, et al, Applied Linear Statistical Methods, McGraw -Hill
 Winker, Empirische Wirtschaftsforschung und Ökonometrie, Springer
 ggf. Vorlesungsskripte der Dozenten und sonstige Unterlagen zur Vorlesung

Statistische Modellierung und Regression

Modulname

Statistische Modellierung und Regression Statistical Modelling and Regression

Modulkürzel

STATREG

Art

Pflicht

Lehrveranstaltung

Statistische Modellierung und Regression

Semester

4

Modulverantwortliche(r)

C. Bach, A. Jahn

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Einfache und multiple lineare Regression
- Maximum-Likelihood-Methoden in Regressionsmodellen
- Logistische Regression
- Varianzanalyse

Ziele

Kenntnisse

- Kenntnis der mathematischen Formulierung und Eigenschaften von Regressionsmodellen (Lineare Regression, Varianzanalyse, Logistische Regression)
- Kenntnis wichtiger Kenngrößen der Modellanpassung
- Kenntnis verschiedener Anwendungsfelder von Regressionstechniken

• Kenntnis verschiedener Schätz - und Testverfahren in den genannten Modellen inklusive der Eigenschaften und des Zusammenhangs dieser Verfahren

Fertigkeiten

- Beschreibung und Lösung praktischer Probleme durch Regressionsmodelle
- Schätzung der Modellparameter
- Formulierung geeigneter statistischer Hypothesen und Durchführung der entsprechenden Hypothesentests
- Beherrschung mindestens einer Statistik-Software

Kompetenzen

- Auswahl und Anwendung eines im jeweiligen Kontext geeigneten Verfahrens
- Sachgemäße Durchführung und Ergebnisinterpretation von Regressionsanalysen
- Urteilsfähigkeit im Hinblick auf Durchführung und Ergebnisinterpretation fremder statistischer Studien

Lehr- und Lernformen

2 SWS Vorlesung und 2 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung (inklusive Abnahme) von Übungs- und Praktikumsaufgaben. Die Prüfungsvorleistung ist unbenotet.

Prüfungsform: Klausur (Dauer 90 Minuten); Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent zu Semesterbeginn bekannt.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, Stochastik, Bestandene Prüfungsvorleistung in Einführung in die Statistik

Empfohlene Kenntnisse

Analysis 2, Einführung in die Statistik, Explorative Datenanalyse

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

entfällt

- Dhrymes, Introductory Econometrics, Springer
- Fahrmeir, Der Weg zur Datenanalyse, Springer
- Fahrmeir, Regression, Springer

- Greene, Econometric Analysis, Pearson
- Hartung et al, Statistik, Oldenbourg
- Neter, Kutner, et al, Applied Linear Statistical Methods, McGraw -Hill
- von Auer, Ökonometrie, Springer
- Winker, Empirische Wirtschaftsforschung und Ökonometrie, Springer
 ggf. Vorlesungsskripte der Dozenten ggf. Skripte und sonstige Unterlagen zur Vorlesung

Numerische Mathematik

Modulname

Numerische Mathematik Numerical Mathematics

Modulkürzel

NM

Art

Pflicht

Lehrveranstaltung

Numerische Mathematik

Semester

3

Modulverantwortliche(r)

F. Lenders

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Rechnerarithmetik
- Genauigkeit, Kondition und Stabilität numerischer Algorithmen
- Fehlerentstehung und Fehlerfortpflanzung
- Direkte numerische Verfahren zur Lösung linearer Gleichungssysteme, insb. LR-Zerlegung
- Iterative Verfahren zur Lösung nichtlinearer Gleichungssysteme, insb. Newton-Verfahren
- Polynominterpolation
- Numerische Differentiation und Integration
- Programmierung von Algorithmen und numerische Experimente zu den Themen der Vorlesung

Ziele

Kenntnisse

Die Studierenden kennen Grundlagen und Prinzipien numerischer Algorithmen. Sie erhalten einen Überblick über grundlegende Verfahren und Algorithmen. Sie wissen, welchen Beschränkungen maschinelle Berechnungen unterliegen.

Fertigkeiten

Die Studierenden können numerische Algorithmen selbständig implementieren und numerische Experimente durchführen. Sie können Konvergenz und Fehlerfortpflanzung beurteilen und Ergebnisse grafisch darstellen.

Kompetenzen

Die Studierenden können numerische Algorithmen beurteilen und geeignete Algorithmen zur Lösung numerischer Probleme auswählen und implementieren.

Lehr - und Lernformen

3 SWS Vorlesung, 1 SWS Praktikum (Computer-Labor)

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Praktikumsaufgaben. Die Prüfungsvorleistung ist unbenotet.

Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1

Empfohlene Kenntnisse

Programmieren 1

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester

Verwendbarkeit des Moduls

entfällt

- Bornemann: Numerische lineare Algebra, Springer Verlag
- Dahmen, Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag
- Deuflhard, Hohmann: Numerische Mathematik 1, de Gruyter Verlag

- Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg+Teubner Verlag
- Neher: Numerische Mathematik, Springer Verlag
- Plato: Numerische Mathematik kompakt, Vieweg+Teubner Verlag
- Richter, von Wahl, Wick: Einführung in die Numerische Mathematik, Springer Verlag
 Schwarz, Köckler: Numerische Mathematik, Vieweg+Teubner Verlag

Optimierung

Modulname

Optimierung Optimization

Modulkürzel

0PT

Art

Pflicht

Lehrveranstaltung

Optimierung

Semester

3

Modulverantwortliche(r)

T. Bedenk

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Lineare Optimierung mit - Modellierung und Eigenschaften linearer Optimierungsprobleme - Simplex-Algorithmus - Dualität

Nicht-lineare Optimierung mit - Karush-Kuhn-Tucker-Punkte - Abstiegs-Methoden - Konvexe Optimierung und Subgradientenverfahren

Grundlagen der gemischt-ganzzahligen Optimierung mit - Modellierungstechniken - Branch-and-Bound-Algorithmus und Schnittebenenverfahren

Optimierung auf Graphen

Ziele

Kenntnisse

Die Studierenden kennen und verstehen die grundlegenden Verfahren der linearen, nicht-linearen und gemischt-ganzzahligen Optimierung. Sie können einfache Sachverhalte als lineare Optimierungsprobleme darstellen und verstehen die algorithmischen Ansätze.

Fertigkeiten

Die Studierenden sind in der Lage, die erlernten Verfahren an kleinen Beispielen anzuwenden. Für größere Beispiele können sie entsprechende Implementierungen ausführen und die Ergebnisse sinnvoll interpretieren. Darüber hinaus können die Studierenden ein gegebenes Optimierungsmodell in einer Modellierungssprache implementieren und mit einem Solver lösen.

Kompetenzen

Die Studierenden können praktische Probleme modellieren, lösen und bei Bedarf die Modelle in die professionelle Optimierungs-Software umsetzen und die erhaltene Lösung im Sinne der Praxisprobleme interpretieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Praktikum

Praktikum: PC-Labor mit OR-Software (z.B. GAMS und CPLEX)

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30-45 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Lineare Algebra 1, Analysis 1

Empfohlene Kenntnisse

Analysis 2

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

entfällt

- Dempe, Schreier: Operations Research, Teubner
- Domschke, Drexl: Einführung in Operations Research, Springer
- Hillier, Lieberman: Operations Research, Oldenburg Wissenschaftsverlag
- Nickel, Stein, Waldmann: Operations Research, Springer

Programmieren 1

Modulname

Programmieren 1 Programming 1

Modulkürzel

Prog1

Art

Pflicht

Lehrveranstaltung

Programmieren 1

Semester

1

Modulverantwortliche(r)

T. Schürg

Weitere Lehrende

Lehrende des Fachbereichs Informatik

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Grundkonzepte der Programmierung
- Effiziente Nutzung integrierter Entwicklungsumgebungen zur Entwicklung, Fehlersuche und Dokumentation.
- Einfache Ein- und Ausgabe, Datentypen, arithmetische, logische und Vergleichsoperatoren,
- Prozedurale Programmierung, Kontrollstrukturen, Funktionen, Parameterübergabe und Sichtbarkeit von Bezeichnern
- Implementierung und Tests mathematischer Algorithmen. Einsatz von Iteration und Rekursion in Algorithmen aus verschiedenen Bereichen.

Ziele

Kenntnisse

Die Studierenden sollen die grundlegenden Konzepte und Werkzeuge des Programmierens kennen lernen. Formeln und mathematische Funktionen können ausgewertet und durch Funktionen dargestellt werden.

Fertigkeiten

Die Studierenden können die entsprechenden Elemente einer Programmiersprache anwenden sowie einfache Programme analysieren, erstellen und testen sowie den Debugger zur Fehlersuche einsetzen.

Kompetenzen

Die Studierenden können zu Aufgabenstellungen aus den mathematischen Grundvorlesungen einfache Algorithmen entwerfen und in verbreiteten Hochsprachen implementieren.

Lehr- und Lernformen

2 SWS Vorlesung, 2 SWS Praktikum (Computer-Labor)

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Praktikumsaufgaben. Die Prüfungsvorleistung ist unbenotet.

Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester. Wintersemester

Verwendbarkeit des Moduls

entfällt

- Hans-Bernhard Woyand, Python: Einführung in die Programmierung und mathematische Anwendungen
- Bruce E. Shapiro, Scientific Computation: Python Hacking for Math Junkies
- Amit Saha, Doing math with python: Use Programming to Explore Algebra, Statistics, Calculus, and More!
- Bernd Klein, Einführung in Python 3: Für Ein und Umsteiger
- Svein Linge und Hans Petter Langtangen, Programming for Computations Python: A Gentle Introduction to Numerical Simulations with Python
- Christian Ullenboom, Java ist auch eine Insel: Programmieren lernen mit dem Standardwerk für Java -Ent-wickler
- Jürgen Wolf, C++: Das umfassende Handbuch

Programmieren 2

Modulname

Programmieren 2 Programming 2

Modulkürzel

Prog2

Art

Pflicht

Lehrveranstaltung

Programmieren 2

Semester

2

Modulverantwortliche(r)

T. Schürg

Weitere Lehrende

Lehrende des Fachbereichs Informatik

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Strukturierung und Modularisierung von Programmen
- Komplexe Datenstrukturen
- Graphische Darstellung von mathematischen Objekten
- Anwendung objektorientierter Programmierung
- Grundlagen der symbolische Programmierung

Ziele

Kenntnisse

Die Studierenden sollen erweiterte Konzepte des Programmierens kennen lernen. Diese Vorlesung erweitert die in Programmieren 1 erworbenen Kenntnisse mit Blick auf komplexere Datenstrukturen, graphische Darstellung von Ergebnissen, den gezielten Einsatz verschiedener vorgefertigter Module und die symbolische Programmierung exemplarisch mithilfe von Computer-Algebra.

Fertigkeiten

Die Studierenden können komplexere (objektorientierte) Programme und Algorithmen entwerfen und analysieren sowie eigene Datenstrukturen erstellen und einsetzen und Ergebnisse graphisch darstellen. Sie können Ergebnisse und Daten implementierter Algorithmen über Schnittstellen austauschen.

Kompetenzen

Die Studierenden können komplexere Programme strukturieren. Sie können für anspruchsvollere Aufgabenstellungen aus den mathematischen Grundvorlesungen geeignete Softwarekomponenten auswählen, konfigurieren und kombinieren.

Lehr- und Lernformen

2 SWS Vorlesung, 2 SWS Praktikum (Computer-Labor)

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Praktikumsaufgaben. Die Prüfungsvorleistung ist unbenotet.

Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

entfällt

Empfohlene Kenntnisse

Programmieren 1

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester

Verwendbarkeit des Moduls

entfällt

- Hans Petter Langtangen, A Primer on Scientific Programming with Python
- Massimo Di Pierro, Annotated Algorithms in Python: with Applications in Physics, Biology, and Finance
- Robert Sedgewick und Kevin Wayne, Algorithmen und Datenstrukturen
- Christian Weiß: Mathematica kompakt: Einführung Funktionsumfang Praxisbeispiele
- Wolfgang Schweizer: MATLAB kompakt

Proseminar Modulname Proseminar Introductory Seminar Modulkürzel PSem Art Pflicht Lehrveranstaltung Proseminar Semester 2 Modulverantwortliche(r) Prüfungsausschuss Weitere Lehrende Lehrende des Fachbereichs Mathematik und Naturwissenschaften Studiengangsniveau Bachelor Lehrsprache Deutsch Inhalt Der Inhalt ist von dem Themenbereich des jeweiligen Proseminars abhängig Ziele Kenntnisse

Studierenden werden an das selbständige Erarbeiten von wissenschaftlichen Texten herangeführt.

Fertigkeiten

Studierenden lernen schriftliche Ausarbeitungen zu verfassen und die Arbeitsergebnisse mündlich zu präsentieren. Sie recherchieren wissenschaftliche Quellen und zitieren diese.

Die Zuhörer beteiligen sich aktiv an einer fachlichen Diskussion.

Die Studenten planen nach Vorgabe des Themas und Festlegung des Vortragstermins, das eigenständige weitere Vorgehen und gleichen den Zeitplan fortlaufend mit ihrem Arbeitsstand ab.

Kompetenzen

Studierenden können, Resultate einem zwar kompetenten, aber nicht unbedingt mit dem Thema des Projekts vertrauten Interessenkreis verständlich zu präsentieren.

Lehr- und Lernformen

4 SWS Seminar - Referate der Studierenden Anleitung der Studierenden zum wissenschaftlichen Arbeiten durch Lehrende.

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Regelmäßige Anwesenheit ist Pflicht. Das Halten eines Vortrages (Dauer 45-60 Minuten) und die Abgabe einer schriftlichen Ausarbeitung sind verpflichtend. Bewertung der Vorträge, der schriftlichen Ausarbeitung und der Mitarbeit. Die Anteile der Einzelbewertungen an der Modulnote werden durch die Dozentin oder den Dozenten rechtzeitig und in geeigneter Weise festgelegt.

Notwendige Kenntnisse

Bestandene Prüfungsvorleistungen in den Fächern Analysis 1 und Lineare Algebra 1. Zusätzlich mindestens eine bestandene Prüfungsleistung aus den Fächern Analysis 1, Analysis 2, Lineare Algebra 1, Lineare Algebra 2.

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester und Wintersemester

Verwendbarkeit des Moduls

Modul zur Vertiefung der Basiskenntnisse - Das Proseminar dient als Ausgangspunkt für weiterführende, vertiefende Studien in einem Spezialgebiet des Studiengangs.

Literatur

Themenabhängige Literatur

einzuarbeiten.

Seminar Modulname Seminar Seminar Modulkürzel Sem Art Pflicht Lehrveranstaltung Seminar Semester 4,5 Modulverantwortliche(r) Prüfungsausschuss Weitere Lehrende Lehrende des Fachbereichs Mathematik und Naturwissenschaften Studiengangsniveau Bachelor Lehrsprache Deutsch oder Englisch Inhalt Der Inhalt ist von dem Themenbereich des jeweiligen Projekts abhängig. Ziele Kenntnisse

55

Vertiefung der im Proseminar erworbenen Fähigkeit, sich in ein ausgewähltes Spezialgebiet des Studienfachs

Fertigkeiten

Das Seminar befähigt die Studierenden zur Lektüre von anspruchsvoller Spezialliteratur, zum Verfassen wissenschaftlicher Texte und zur mündlichen Präsentation der Arbeitsergebnisse.

Die Teilnehmer suchen nach Bedarf weitere relevante Literatur, arbeiten diese aus und treffen eine geeignete Auswahl des zu präsentierenden Materials.

Die Zuhörer beteiligen sich aktiv an einer fachlichen Diskussion.

Kompetenzen

Die Studierenden können, Resultate einem zwar mathematisch kompetenten, aber nicht unbedingt mit dem Thema des Projekts vertrauten Interessenkreis verständlich präsentieren.

Lehr- und Lernformen

2 SWS Seminar - Referate der Studierenden

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 28 h plus 122 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Regelmäßige Anwesenheit ist Pflicht. Das Halten eines Vortrages (Dauer 45-60 Minuten) und die Abgabe einer schriftlichen Ausarbeitung sind verpflichtend. Bewertung der Vorträge, der schriftlichen Ausarbeitung und der Mitarbeit. Die Anteile der Einzelbewertungen an der Modulnote werden durch die Dozentin oder den Dozenten rechtzeitig und in geeigneter Weise festgelegt.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, Proseminar

Empfohlene Kenntnisse

Analysis 2, Lineare Algebra 2, weitere empfohlene Voraussetzungen hängen vom jeweiligen Thema des Seminars ab.

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester. Winter- und Sommersemester

Verwendbarkeit des Moduls

Modul zur Förderung und Verstärkung der Fachkompetenz - Das Seminar dient als Ausgangspunkt für weiterführende, vertiefende Studien in einem Spezialgebiet des Studiengangs.

Literatur

Themenabhängige Literatur

Projekt

Modulname Projekt Project Modulkürzel PJArt Pflicht Lehrveranstaltung Projekt Semester 5 Modulverantwortliche(r) Prüfungsausschuss Weitere Lehrende Lehrende des Fachbereichs Mathematik und Naturwissenschaften Studiengangsniveau Bachelor Lehrsprache Deutsch oder Englisch Inhalt Der Inhalt ist von dem Themenbereich des jeweiligen Projekts abhängig. Ziele Kenntnisse Fertigkeiten Die Studierenden erwerben (in Vorbereitung auf die in Industrie und Wirtschaft übliche Projektarbeit) die Fähigkeit, sich effektiv in ein vorgegebenes Anwendungsfeld einzuarbeiten, anderen Projektteilnehmenden zu-

Die Teilnehmenden erweitern die im Proseminar erlernte Zeitplanung auf eine Arbeitsplanung für mehrere

zuarbeiten und umgekehrt deren Ergebnisse und Lösungen zu nutzen.

Projektmitarbeiter, gleichen diese mit dem Arbeitsfortschritt ab und steuern ggf. nach.

Kompetenzen

Die Studierenden lernen, Resultate einem zwar mathematisch kompetenten, aber nicht unbedingt mit dem Thema des Projekts vertrauten Interessentenkreis verständlich zu präsentieren.

Lehr- und Lernformen

2 SWS Projektarbeit und Präsentation

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 28 h plus 122 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Regelmäßige Anwesenheit ist Pflicht. Präsentation (Dauer 45-60 Minuten) der Arbeitsergebnisse und die Abgabe einer schriftlichen Ausarbeitung sind verpflichtend. Bewertung der Vorträge, der schriftlichen Ausarbeitung und der Mitarbeit. Die Anteile der Einzelbewertungen an der Modulnote werden durch die Dozentin oder den Dozenten rechtzeitig und in geeigneter Weise festgelegt.

Notwendige Kenntnisse

Analysis 1 und 2, Lineare Algebra 1 und 2, Programmieren 1 und 2, Proseminar

Empfohlene Kenntnisse

Weitere empfohlene Voraussetzungen hängen von dem jeweiligen Thema des Projekts ab und werden bei Themenvorstellung bekannt gegeben.

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester. Winter- und Sommersemester

Verwendbarkeit des Moduls

Modul zum Aufbau von Kenntnissen und Erfahrungen in einem Spezialgebiet

Literatur

Themenabhängige Literatur

Fremdsprache

Modulname

Fremdsprachliche Kommunikationskompetenzen Foreign language communication skills

Modulkürzel

SPR1+2

Art

Wahlpflicht

Lehrveranstaltung

Zwei hochschulspezifische Lehrveranstaltungen aus dem Lehrangebot des Sprachenzentrums

Semester

2 - 5

Modulverantwortliche(r)

Leitung des Sprachenzentrums

Weitere Lehrende

Lehrende des Sprachenzentrums

Studiengangsniveau

Bachelor

Lehrsprache

Englisch oder die entsprechende Fremdsprache

Inhalt

Das Modul umfasst jeweils zwei hochschulspezifische Lehrveranstaltungen mit Bezug zum bevorstehenden Berufseinstieg.

Die Studierenden wählen eine Lehrveranstaltung in Englisch auf dem Niveau B2 (oder höher) und eine weitere zweite Fremdsprache aus dem unteren Lehrangebot des Sprachenzentrums.

Unter den Fremdsprachenmodulen muss wenigstens ein Englischmodul des Niveaus B2 oder höher sein.

Die Studierenden können aus diesem Lehrangebot hochschulspezifische Lehrveranstaltungen auswählen:

- Deutsch als Fremdsprache ab Niveau C2
- Englisch ab Niveau B2
- Andere Fremdsprachen ab Niveau A1

Ziele

Kenntnisse

Ziel des Moduls ist die Vorbereitung der Studierenden auf Aufgaben im Bereich von internationalen und interdisziplinären Arbeitszusammenhängen sowie der Erwerb von vertieftem Wissen über die vielschichtigen soziokulturellen Dimensionen des Zusammenlebens moderner Gesellschaften und die Fähigkeit, sensibel mit Menschen unterschiedlicher Kulturen zu interagieren und zu kommunizieren.

Fertigkeiten

Nach Abschluss des Moduls können die Studierenden dem Kompetenzniveau entsprechend adäquat und unter Berücksichtigung der interkulturellen Erfordernisse kommunizieren. Sie haben über die zu erwerbenden interkulturellen und sprachlichen Kompetenzen hinaus erste Erfahrungen mit interdisziplinär zusammengesetzten Gruppen und Herangehensweisen an Probleme und Situationen im gesellschaftlichen Kontext gemacht. Und sie können ihre eigene interdisziplinäre Perspektive zu anderen Disziplinen in Beziehung setzen.

Kompetenzen

Der Abschluss des Moduls befähigt zu verantwortungsbewusstem Handeln, zu interdisziplinärer und interkultureller Kommunikation. Zudem werden Schlüsselkompetenzen vermittelt, die es erlauben, fachspezifisches Wissen auf professionelle Weise zu erwerben, zu kommunizieren, einzusetzen und weiterzuentwickeln.

Lehr- und Lernformen

je 2 SWS Übung als Projektarbeiten, Gruppenarbeiten, Präsentationen, o.ä.

Arbeitsaufwand und Credit Points

Das Modul umfasst zwei Lehrveranstaltungen (je 2,5 CP/ 2 SWS) aus dem Lehrangebot des Sprachenzentrums. Gesamtarbeitsaufwand von 5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Jeweils Klausur (90 Minuten), aktive Teilnahme und mündliche Prüfung oder Präsentation mit schriftlicher Ausarbeitung nach Maßgabe der Lehrenden (genaue Prüfungsform wird zu Beginn der Lehrveranstaltung festgelegt). Die regelmäßige Anwesenheit ist in den Lehrveranstaltungen erforderlich. Voraussetzung für die Klausurberechtigung ist die aktive Teilnahme an mindestens dreiviertel der Unterrichtseinheiten.

Notwendige Kenntnisse

Für die Teilnahme an Sprachlehrveranstaltungen für Anfängerinnen und Anfänger ohne Vorkenntnisse ist keine Voraussetzung vorgegeben.

Für alle anderen Niveaustufen müssen die Vorkenntnisse nachgewiesen werden bzw. ein Einstufungstest abgelegt werden.

Empfohlene Kenntnisse

entfällt

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Jedes Semester. Wintersemester und Sommersemester

Verwendbarkeit des Moduls

entfällt

Literatur

Je nach Lehrveranstaltung. Genauere Informationen werden zu Beginn der Lehrveranstaltung zur Verfügung gestellt.

Interdisziplinärer Studienbereich Sozial- und Kulturwissenschaften (SuK)

Modulname

Interdisziplinäre Herausforderungen gesellschaftlicher Entwicklungen Elective Studies in Interdisciplinary Challenges in Social Changes

Modulkürzel

SuK1+2

Art

Wahlpflicht

Lehrveranstaltung

Wahl aus dem Angebot des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften des Fachbereiches Gesellschaftswissenschaften.

Semester

2 - 5

Modulverantwortliche(r)

Leitung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften, Fachbereich Gesellschaftswissenschaften

Weitere Lehrende

Alle Lehrenden des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Das Modul umfasst alle Lehrveranstaltungen aus dem Angebot des Interdisziplinären Studienbereichs Sozialund Kulturwissenschaften des Fachbereichs Gesellschaftswissenschaften auf Bachelor-Niveau (Einführungsveranstaltungen (SuK I) und Vertiefungsveranstaltungen (SuK II)) des jeweiligen Semesters. Die Studierenden haben die Möglichkeit, frei aus den Themenfeldern Arbeit, Beruf & Selbständigkeit, Kultur, Information & Kommunikation, Politik, Institutionen & Gesellschaft sowie Wissen, Innovation und nachhaltige Entwicklung zu wählen.

Ziele

Kenntnisse

Die Studierenden lernen die reflexive Auseinandersetzung mit Themen eines zukunftsorientierten und verantwortungsbewussten Handelns im demokratischen und sozialen Rechtsstaat sowie die interdisziplinäre Kooperation und interkulturelle Kommunikation aus fachübergreifender Perspektive kennen.

Fertigkeiten

Die Studierenden sind in der Lage, sich fachkundig und kritisch mit den eigenen beruflichen Aufgaben und Verantwortungen als angehende Analytiker in unterschiedlichsten Themenfeldern und Bereichen und mit dem eigenen Berufsfeld im gesamtgesellschaftlichen Kontext auseinanderzusetzen. Sie lernen das Arbeiten in interdisziplinär zusammengesetzten Gruppen und Herangehensweisen an Probleme und Situationen im gesellschaftlichen Kontext.

Kompetenzen

Die Studierenden sind in der Lage, fachübergreifende Kompetenzen mit ihrem originären Berufsfeld in Verbindung zu bringen und zu verknüpfen. Weitere Kompetenzen variieren ja nach gewählter Veranstaltung im Angebot des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften.

Lehr- und Lernformen

Vorlesung (V), Seminar (Sem), Gruppenarbeit, Planspiel je nach Wahl der Veranstaltung, in der Regel 2 SWS, in Ausnahmefällen auch 4 SWS

Eingesetzte Medien: Kommunikationsmedien (u.a. elektronische Lernplattformen wie Moodle), Präsentationsmedien (u.a. Beamer, Whiteboard, Tafel, Flipchart, Smartboard, Metaplan)

Arbeitsaufwand und Credit Points

Gesamtarbeitsaufwand von 150 Stunden für 5 Credit Points, aufgeteilt in der Regel auf zweimal 75 Stunden für je 2,5 Credit Points Präsenzzeiten: 2 x 30 Stunden (oder 60 Stunden bei 4 SWS-Veranstaltung) Selbststudium: 2 x 45 Stunden (oder 90 Stunden bei 4 SWS-Veranstaltung)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Die Veranstaltungen des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften schließen mit einer Prüfungsleistung. Folgende Prüfungsformen sind möglich:

Klausur (60 Min. bis 90 Min.), Vortrag (20 Min.) mit schriftlicher Ausarbeitung (ca. 8 bis 10 Seiten), Präsentation oder Hausarbeit, Erstellung eines Plakats, etc.

Die konkrete Prüfungsform ergibt sich aus der jeweils gewählten Veranstaltung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften. Sie ist dem Onlinevorlesungsverzeichnis zu entnehmen und wird zu Beginn der jeweiligen Veranstaltung bekannt gegeben.

Voraussetzung für die Teilnahme an der Prüfungsleistung ist die regelmäßige Teilnahme an der Veranstaltung im Umfang von mindestens 80 Prozent.

Ggf. ist Voraussetzung für die Teilnahme an der Prüfungsleistung das Bestehen einer Prüfungsvorleistung. Dies ergibt sich aus der jeweils gewählten Veranstaltung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften und wird zu Beginn der jeweiligen Veranstaltung bekannt gegeben.

Wiederholungsmöglichkeiten sind grundsätzlich im Angebot des Interdisziplinären Studienbereichs Sozialund Kulturwissenschaften nicht vorgesehen. Im Einzelfall besteht jedoch für Prüfungsleistungen eine Wiederholungsmöglichkeit im Folgesemester oder innerhalb des Studienjahres (abhängig von der gewählten Veranstaltung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften).

Notwendige Kenntnisse

Diese sind der jeweils gewählten Veranstaltung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften zu entnehmen.

Empfohlene Kenntnisse

Diese sind der jeweils gewählten Veranstaltung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften zu entnehmen.

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Das Modul umfasst zwei Veranstaltungen mit je 2 SWS, ggf. auch eine Veranstaltung mit 4 SWS. Für dieses Modul wählbare Veranstaltungen werden jedes Semester angeboten.

Verwendbarkeit des Moduls

Die Veranstaltungen des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften stehen allen Studierenden der Hochschule offen.

Literatur

Literatur wird jeweils in der gewählten Veranstaltung des Interdisziplinären Studienbereichs Sozial- und Kulturwissenschaften bekannt gegeben.

Praxismodul - Berufspraktische Phase

Modulname

Praxismodul - Berufspraktische Phase Practical Phase

Modulkürzel

BPP

Art

Pflicht

Lehrveranstaltung

Praxismodul - Berufspraktische Phase

Semester

6

Modulverantwortliche(r)

Prüfungsausschuss

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Eine Aufgabenstellung aus einem der Anwendungsgebiete des Studiengangs.

Ziele

Den Studierenden gelingt die Mitarbeit an einer konkreten Aufgabenstellung, die thematisch dem Bachelorstudiengang angepasst ist. Sie erwerben durch die Tätigkeit im Unternehmen fer ner fachübergreifende, nichttechnische Qualifikationen. Die Studierenden vertiefen die Fähigkeit zur kritischen Auseinandersetzung mit dem eigenen Fachgebiet und Berufsfeld im betrieblichen Kontext, sowie die Fähigkeit zu interdisziplinärer und interkultureller Kooperation. Sie verbessern die Fähigkeit, Arbeitsergebnisse angemessen schriftlich darzustellen und zu präsentieren.

Lehr- und Lernformen

Wissenschaftliches Arbeiten mit Kolloquium

Arbeitsaufwand und Credit Points

15 CP Praktische Tätigkeit von mindestens 12 Wochen Dauer, Anfertigung eines schriftlichen Berichtes, Abschlussvortrag von etwa 15 Minuten Dauer im anschließenden Kolloquium

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Die Prüfungsvorleistung besteht aus den drei Teilen: - Teilnahme am vorbereitenden Blockseminar - Bescheinigung der Praxisstelle über zeitlichen Umfang und Inhalt der berufspraktischen Phase - schriftlicher Bericht über diese Tätigkeit

Die Prüfungsleistung besteht aus einem etwa fünfzehnminütigen Vortrag mit anschließendem Kolloquium.

Notwendige Kenntnisse

Die Zulassung zur berufspraktischen Phase regelt die BBPO §10 (2).

Empfohlene Kenntnisse

Proseminar, Seminar, Projekt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Vorbereitendes Blockseminar in jedem Semester, Praktikum nach Absprache bei Erfüllung der Zulassungsvoraussetzungen

Verwendbarkeit des Moduls

Die Inhalte der berufspraktischen Phase können in einer späteren Bachelorarbeit vertieft werden.

Literatur

Themenabhängige Forschungsliteratur

Bachelormodul

Modulname

Bachelormodul Bachlor Thesis

Modulkürzel

ВА

Art

Pflicht

Lehrveranstaltung

Bachelormodul

Semester

6

Modulverantwortliche(r)

Prüfungsausschuss

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Bachelorarbeit, Kolloquium zur Bachelorarbeit.

Gegenstand der Bachelorarbeit ist eine Aufgabenstellung aus einem der Anwendungsgebiete des Studiengangs.

Studierende des Dualen Studienmodells absolvieren das Bachelormodul im jeweiligen Kooperationsunternehmen

Ziele

Die Kandidatin oder der Kandidat ist in der Lage, in einem vorgegebenen Zeitraum eine Aufgabenstellung aus Anwendungsgebiet, die im Zusammenhang mit der Praxisphase stehen kann, selbstständig mit wissenschaftlichen Methoden und Erkenntnissen des Fachs zu bearbeiten und die Ergebnisse zu präsentieren. Hierzu gehören die Strukturierung der Aufgabenstellung, die Zusammenstellung der erforderlichen Ressourcen und die Bearbeitung anhand eines Zeit- und Ablaufplans.

Lehr- und Lernformen

Wissenschaftliches Arbeiten mit Kolloquium

Arbeitsaufwand und Credit Points

15 CP 10 Wochen Bearbeitungszeit für die Bachelorarbeit, Vortrag von etwa 15 Minuten Dauer im anschließenden Kolloquium

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Abgabe der schriftlichen Ausarbeitung.

Vorstellung der Bachelorarbeit in einem Vortrag von etwa 15 Minuten Dauer, anschließendes Kolloquium.

Notwendige Kenntnisse

Die Zulassung zum Bachelormodul regelt die BBPO §12 (4).

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Themenausgabe nach Absprache bei Erfüllung der Zulassungsvoraussetzungen

Verwendbarkeit des Moduls

entfällt

Literatur

Themenabhängige Forschungsliteratur

Wahlpflichtkatalog

Catalog of elective modules

Ökonometrie und Zeitreihenanalyse

Modulname

Ökonometrie und Zeitreihenanalyse Econometrics and Time Series Analysis

Modulkürzel

ZRA

Art

Wahlpflicht

Lehrveranstaltung

Ökonometrie und Zeitreihenanalyse

Semester

5

Modulverantwortliche(r)

C. Bach, S. Döhler

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Einfache lineare Modelle

- Kleinste-Quadrate-Schätzung
- Gütemaße
- Prognose

Deskriptive Ansätze der Zeitreihenanalyse:

- Komponentenzerlegung
- Glättung durch Filter
- Exponentielles Glätten

Stochastische Prozesse

- Mittelwert und Kovarianzfunktion
- Autokorrelationsfunktion und partielle Autokorrelationsfunktion

- Stationarität
- Lineare Modelle für stationäre Zeitreihen: AR-. MA- und ARMA-Modelle

mit Anwendungen auf volks- und versicherungswirtschaftliche Fragestellungen, Finanzmarktanalysen sowie Kundenverhaltens- und Marketing-Untersuchungen

Ziele

Kenntnisse

- Kenntnis der mathematischen Formulierung und der Eigenschaften von Regressions- und Zeitreihenmodellen
- Kenntnis von Methoden zu Parameterschätzung und Prognose in diesen Modellen
- Kenntnis der Eigenschaften sowie des Zusammenhangs zwischen den entsprechenden Verfahren
- Kenntnis wichtiger Kenngrößen der Modellanpassung
- Kenntnis verschiedener Anwendungsfelder der Regressions- und Zeitreihenanalyse

Fertigkeiten

- Beschreibung und Lösung praktischer Probleme durch Regressions- und Zeitreihenmodelle
- Durchführung eigener Berechnungen
- Schätzung und Interpretation der Modellparameter
- Erstellung modelladäguater Prognosen

Kompetenzen

- Verständnis und Abgrenzung der unterschiedlichen Ansätze
- Auswahl und Anwendung des im jeweiligen Kontext geeigneten Verfahrens
- Fähigkeit zur sachgerechten Interpretation der Ergebnisse von Schätzung und Prognose sowie zur Beurteilung der Aussagefähigkeit dieser Ergebnisse im Hinblick auf die zu Grunde liegenden Daten und Methoden
- Urteilsfähigkeit im Hinblick auf Durchführung und Ergebnisinterpretation fremder Analysen

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, bestandene Prüfungsvorleistung in Stochastik

Empfohlene Kenntnisse

Analysis 2, Lineare Algebra 2, Explorative Datenanalyse und Visualisierung, Stochastik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Brockwell, Davis: Introduction to Time Series and Forecasting, Springer
- Greene: Econometric Analysis, Pearson
- Hartung et al: Statistik, Oldenbourg
- Neusser, Wagner: Zeitreihenanalyse in den Wirtschaftswissenschaften, Springer
- Schlittgen, Streitberg: Zeitreihenanalyse, Oldenbourg
- von Auer: Ökonometrie, Springer

Kreditanalyse

Modulname

Kreditanalyse Credit Analytics

Modulkürzel

KRA

Art

Wahlpflicht

Lehrveranstaltung

Kreditanalyse

Semester

5

Modulverantwortliche(r)

J.-Ph. Hoffmann

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Einführung Insolvenzrecht
- Überblick über Kreditgeschäfte
- Modellierung von Ausfallwahrscheinlichkeiten (PD)
- Modellierung von Verlusthöhen (LGD)
- Exposure-Modellierung (EAD, CCF)
- Immobilienbewertung
- Risikovorsorge nach HGB, IFRS9
- Portfoliomodelle für Kreditrisiko (u.a. Merton-Modell)
- Risikokapitalallokation
- Kreditrisiko bei Derivaten (CVA, Wrong-Way-Risk)

Ziele

Kenntnisse

Studierende kennen fundamentale Begriffe, Konzepte und Bewertungsverfahren von Kreditrisiken sowie der Mathematik, die diesen Verfahren und Ergebnissen zugrunde liegt.

Fertigkeiten

Studierende sind in der Lage praktische Anwendungsfälle und Produkte geeigneten Risikomodellen zuzuordnen und eigener Berechnungen durchzuführen. Sie können Ergebnisse in Darstellung und Interpretation sowohl in mathematischer als auch in allgemeinsprachlicher Formulierung vermitteln.

Kompetenzen

Studierende vermögen unterschiedliche methodische Ansätze abzugrenzen und Stärken, Schwächen und Grenzen der verschiedenen Verfahren zu beurteilen Sie sind fähig zur sachgerechten Bewertung, Interpretation und Aufbereitung der Ergebnisse sowohl für Fachkundige als auch für Fachfremde.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, Stochastik, Einführung in die Statistik

Empfohlene Kenntnisse

Finanzmathematik, Asset Pricing, Risikomanagement

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Bluhm, Overbeck, Wagner: Credit Risk Modelling, Chapman & Hall
- Cottin, Döhler: Risikoanalyse, Springer
- Lichters, Stamm, Gallagher: Modern Derivatives Pricing and Credit Exposure Analysis

- Martin, Reitz, Wehn: Kreditderivate und Kreditrisikomodelle, Springer
 McNeil, Frey, Embrechts: Quantitative Risk Management, Princeton University Press

Derivative Finanzinstrumente

Modulname

Derivative Finanzinstrumente Derivatives

Modulkürzel

DER

Art

Wahlpflicht

Lehrveranstaltung

Derivative Finanzinstrumente

Semester

5

Modulverantwortliche(r)

J.-Ph. Hoffmann

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Assetklassen: Fx, Equity, Fixed Income, Credit
- Produkte: Forward und Future, Swap, Overnights, Optionen, Zinsoptionen
- Modelle: OIS-Discounting, Black-Scholes, Black76, Bachelier, Breeden-Litzenberger
- Risikomanagement: Risikosensitivitäten (Greeks) und Hedging

Ziele

Kenntnisse

Studierende kennen fundamentalen Begriffe, Konzepte und Bewertungsverfahren von Derivaten sowie der Mathematik, die diesen Verfahren und Ergebnissen zugrunde liegt.

Fertigkeiten

Studierende sind in der Lage praktische Anwendungsfälle und Produkte geeignete Bewertungsmodellen zuzuordnen und eigener Berechnungen durchzuführen. Sie können Ergebnisse in Darstellung und Interpretation sowohl in mathematischer als auch in allgemeinsprachlicher Formulierung vermitteln.

Kompetenzen

Studierende vermögen unterschiedliche methodische Ansätze abzugrenzen und Stärken, Schwächen und Grenzen der verschiedenen Verfahren zu beurteilen Sie sind fähig zur sachgerechten Bewertung, Interpretation und Aufbereitung der Ergebnisse sowohl für Fachkundige als auch für Fachfremde.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1, Stochastik

Empfohlene Kenntnisse

Finanzmathematik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester. Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Deutsch, Beinker: Derivate und interne Modelle, Schäffer-Poeschel
- Hull: Optionen, Futures und andere Derivate, Pearson
- Hunt, Kennedy: Financial Derivatives in Theory and Practice, Wiley
- Karatzas, Shreve: Methods of Mathematical Finance, Springer
- Lichters, Stamm, Gallagher: Modern Derivatives Pricing and Credit Exposure Analysis
- Reitz: Mathematik in der modernen Finanzwelt, Springer

Personenversicherung

Modulname

Personenversicherung Life and Health Insurance Mathematics

Modulkürzel

PERSV

Art

Wahlpflicht

Lehrveranstaltung

Personenversicherung

Semester

5

Modulverantwortliche(r)

C. Bach

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Lebensversicherung
 - Grundlagen
 - Prämien
 - Deckungsrückstellung
 - Vertragsänderungen
 - Überschussbeteiligung
- Krankenversicherung
 - Grundlagen
 - Prämien
 - Alterungsrückstellung
 - Tarifwechsel und Beitragsanpassung
 - Überschussbeteiligung

Ziele

Kenntnisse

- Kenntnis der grundlegenden Funktionsweise sowie des gesellschaftlichen und institutionellen Rahmens der deutschen privaten Lebens- und Krankenversicherung, insbesondere in Abgrenzung zu den öffentlich-rechtlichen Systemen
- Kenntnis des Äquivalenzprinzips als Basis versicherungsmathematischer Berechnungen
- Kenntnis verschiedener Versicherungsformen und der Berechnung der entsprechenden versicherungstechnischen Werte
- Kenntnis der Notwendigkeit der Überprüfung der Rechnungsgrundlagen
- Kenntnis der Bedeutung der Überschussbeteiligung

Fertigkeiten

- Kalkulation von Prämien und Deckungsrückstellung verschiedener Versicherungsformen
- Kalkulation von Vertragsänderungen und Beitragsanpassungen
- Berechnung und Projektion von Überschüssen und Überschussbeteiligung

Kompetenzen

- Umsetzen von Tarifbeschreibungen in mathematische Formeln
- Urteilsfähigkeit im Hinblick auf sachgemäße Verwendung von Rechnungsgrundlagen und Regeln zur Überschussbeteiligung

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1

Empfohlene Kenntnisse

Finanzmathematik, Stochastik

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Führer/Grimmer, Einführung in die Lebensversicherungsmathematik, Verlag Versicherungswirtschaft
 Milbrodt, Aktuarielle Methoden der deutschen privaten Krankenversicherung, Verlag Versicherungswirtschaft

Heuristische Optimierungsverfahren

Modulname

Heuristische Optimierungsverfahren heuristic optimisation

Modulkürzel

HOV

Art

Wahlpflicht

Lehrveranstaltung

Heuristische Optimierungsverfahren

Semester

5

Modulverantwortliche(r)

T. Bedenk

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Überblick über die wichtigsten Klassen von heuristischen Verfahren

- Greedy-Algorithmen
- Lokale Suche
- Metaheuristiken

Ziele

Kenntnisse

Die Studierenden können heuristische und exakte Optimierungsverfahren unterscheiden und einordnen. Sie verstehen die Idee heuristischer Optimierungsverfahren und können sie klassifizieren.

Fertigkeiten

Die Studierenden sind in der Lage, einfache bekannte heuristische Algorithmen auf gegebene Problemstellungen anzuwenden. Sie können einfache Algorithmen hinsichtlich ihrer Laufzeitkomplexität bewerten und ggf. eine Aussage zur Lösungsqualität machen.

Kompetenzen

Die Studierenden haben die Kompetenz, zu einem gegebenen Problem ein passendes heuristisches Verfahren auszuwählen, anzupassen und ggf. weiterzuentwickeln. Sie können das Verfahren implementieren und die Ergebnisse interpretieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Lineare Algebra 1, Analysis 1, Optimierung, Numerische Mathematik

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Sommersemester oder Wintersemester

Verwendbarkeit des Moduls

entfällt

- Dempe S., Schreier H.; Operations Research, Teubner
- Domschke, W. und Drexl, A.; Einfü hrung in Operations Research, Springer
- Hillier F.S., Lieberman G.J.; Operations Research, Oldenburg Wissenschaftsverlag
- Nickel, S., Stein O. und Waldmann, K.-H..; Operations Research, Springer
- ggf. Vorlesungsskripte der Lehrenden

Analyse von Logistiksystemen

Modulname

Analyse von Logistiksystemen Logistics Systems Analysis

Modulkürzel

LogAna

Art

Wahlpflicht

Lehrveranstaltung

Analyse von Logistik-Systemen

Semester

5

Modulverantwortliche(r)

T. Bedenk

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Distributionsnetzwerk
- Logistikprozesse
- Logistikkostenfunktion

Ziele

Kenntnisse

Die Studierenden kennen die in einem Distributionsnetzwerk relevanten Logistikprozesse und können sie unterscheiden.

Fertigkeiten

Die Studierenden können die Logistikprozesse analysieren und mit einer passenden Kostenfunktion bewerten.

Kompetenzen

Die Studierenden können ein gegebenes Logistiksystem als Ganzes analysieren und mit Kosten bewerten. Sie können die Logistikkostenfunktion ermitteln und optimieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Lineare Algebra 1, Analysis 1, Operations Research

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Daganzo, C.: Logistics Systems Analysis
- ggf. Vorlesungsskripte der Lehrenden

Spieltheorie und Rationaltheorie

Modulname

Spieltheorie Game Theory

Modulkürzel

SpT

Art

Wahlpflicht

Lehrveranstaltung

Spieltheorie

Semester

5

Modulverantwortliche(r)

T. Bedenk

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch

Inhalt

- Gleichgewichte in dominanten, reinen und gemischten Strategien, Satz von Nash
- Oligopolmärkte: Cournot- und Bertrand-Gleichgewichte
- Spiele in Extensivform: Stackelberg-Spiele, wiederholte Spiele
- Informationsökonomie, Adverse Selektion
- Einführung Verhandlungstheorie, Nash-Verhandlungslösung
- Wohlfahrtstheorie: Arrows-Theorem

Ziele

Kenntnisse

Die Studierenden kennen Spiele in ihren verschiedenen Darstellungsformen und können die Strategien der Spielenden unterscheiden. Sie kennen die verschiedenen Anwendungsformen der Spieltheorie in der Oligopolund Informationstheorie.

Fertigkeiten

Die Studierenden können in einem gegebenen Spiel jeweilige Gleichgewichte berechnen und das Ergebnis interpretieren.

Kompetenzen

Die Studierenden können eine gegebene Entscheidungssituation als Spiel darstellen und die Strategien der Beteiligten identifizieren. Sie können Gleichgewichte identifizieren und sie bezogen auf den Sachverhalt interpretieren.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Analysis 1, Lineare Algebra 1

Empfohlene Kenntnisse

entfällt

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Holler M., Illing G., Napel S.: Einführung in die Spieltheorie, Springer
- Rieck Ch.: Spieltheorie, Gabler

Graphentheorie

Modulname

Graphentheorie Graph Theory

Modulkürzel

GT

Art

Wahlpflicht

Lehrveranstaltung

Graphentheorie

Semester

5

Modulverantwortliche(r)

J. Kallrath

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

- Einführung in die Graphentheorie und deren Grundbegriffe
- Speicherung von Graphen
- Wege, Kreise und Zusammenhang
- Perfekte und chordale Graphen
- Färbungen und Überdeckungen
- Planare Graphen und Färbung planarer Graphen
- Graphentheoretische Algorithmen
- Flüsse und Strömungen

Ziele

Kenntnisse

Die Studierenden kennen graphentheoretische Grundbegriffe, typische Problemstellungen und Lösungsalgorithmen

Fertigkeiten

Die Studierenden erkennen bei typischen Fragestellungen die gelernten Problemtypen und wenden die passenden Lösungsmethoden an.

Kompetenzen

Die Studierenden modellieren praktische Probleme als graphentheoretische Fragestellungen, lösen diese mithilfe der graphentheoretischen Methoden und interpretieren die Ergebnisse. Sie sind in der Lage die Korrektheit der Modellierung und der durchgeführten Algorithmen zu prüfen.

Lehr- und Lernformen

3 SWS Vorlesung, 1 SWS Übung

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit 56 h plus 94 h Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung: Erfolgreiche Bearbeitung der Übungsaufgaben. Die Prüfungsvorleistung ist unbenotet. Prüfungsform: Klausur (Dauer 90 Minuten) oder eine mündliche Prüfung (Dauer 30 Minuten). Die Prüfungsform wird zu Beginn des Semesters bekannt gegeben.

Notwendige Kenntnisse

Lineare Algebra 1, Analysis 1

Empfohlene Kenntnisse

entfällt

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Ein Semester, Wintersemester oder Sommersemester

Verwendbarkeit des Moduls

entfällt

- Harary, F.; Graph Theory, Perseus Books
- Jungnickel, D.; Graphen, Netzwerke und Algorithmen, Springer
- Krumke, O. und Noltemeier, H.; Graphentheoretische Konzepte und Algorithmen, Springer
- Marcus, D.A.; Graph Theory: A Problem Oriented Approach, MAA Textbooks
- Turau, V.; Algorithmische Graphentheorie, Oldenburg

Wahlpflichtmodule Wirtschaft

Modulname

Wahlpflichtmodule Wirtschaft Elective Studies in Economics and Business Administration

Modulkürzel

W-WP1+2

Art

Wahlpflicht

Lehrveranstaltung

Wahlweise zwei Lehrveranstaltungen wirtschaftswissenschaftlicher Grundlagenfächern aus

- Externes Rechnungswesen / Externe Finanzberichterstattung
- Internes Rechnungswesen / Kosten- und Leistungsrechnung
- Management und Organisation
- Marketing
- Wirtschaftsrecht / Wirtschaftsprivatrecht
- Human Resources, Leadership and Organizational Development
- Unternehmensbesteuerung
- Betriebliche Informationssysteme / Betriebliches Informationswesen / Wirtschaftsinformatik
- Investition und Finanzierung
- Logistik / Grundlagen der Logistik
- Controlling / Grundlagen des Controlling

aus durch den Fachbereich Wirtschaft wie in den Bachelor-Studiengängen Betriebswirtschaftslehre, Energiewirtschaft oder Wirtschaftsingenieurwesen angebotenen Lehrveranstaltungen.

Semester

4 + 5

Modulverantwortliche(r)

Ch. Almeling

Weitere Lehrende

Lehrende des Fachbereichs Wirtschaft

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Die Inhalte ergeben sich aus den angebotenen Lehrveranstaltungen.

Ziele

Ziele, Kenntnisse, Fertigkeiten und Kompetenzen ergeben sich ebenfalls aus den angebotenen Lehrveranstaltungen.

Lehr- und Lernformen

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Arbeitsaufwand und Credit Points

Zwei Lehrveranstaltungen wirtschaftswissenschaftlicher Grundlagenfächern mit je 5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistungen und Prüfungsleistung werden zum Anfang der Lehrveranstaltung bekannt begeben.

Notwendige Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Empfohlene Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Jedes Semester, Wintersemester und Sommersemester

Die im jeweiligen Semester angebotenen Lehrveranstaltungen werden durch den Fachbereich zu Beginn des Semesters bekannt gegeben.

Verwendbarkeit des Moduls

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Literatur

Je nach Lehrveranstaltung. Genauere Informationen werden zu Beginn der Lehrveranstaltung zur Verfügung gestellt.

Wahlpflichtmodule Computational Mathematics

Modulname

Wahlpflichtmodule Computational Mathematics Elective Studies in Computational Mathematics

Modulkürzel

CM-WP

Art

Wahlpflicht

Lehrveranstaltung

Fourier Methoden Gewöhnliche Differentialgleichungen Maschinelles Lernen Numeriische Mathematik 2 sowie weitere Module des Computational Mathematics (B. Sc.) gemäß der geltenden Prüfungsordnung

Semester

5

Modulverantwortliche(r)

Studiengangsleitung des Studiengangs

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Die Inhalte ergeben sich aus den angebotenen Lehrveranstaltungen.

Ziele

Ziele, Kenntnisse, Fertigkeiten und Kompetenzen ergeben sich ebenfalls aus den angebotenen Lehrveranstaltungen.

Lehr- und Lernformen

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistungen und Prüfungsleistung werden zum Anfang der Lehrveranstaltung bekannt begeben.

Notwendige Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Empfohlene Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Jedes Semester, Wintersemester und Sommersemester

Die im jeweiligen Semester angebotenen Lehrveranstaltungen werden durch den Fachbereich zu Beginn des Semesters bekannt gegeben.

Verwendbarkeit des Moduls

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Literatur

Je nach Lehrveranstaltung. Genauere Informationen werden zu Beginn der Lehrveranstaltung zur Verfügung gestellt.

Wahlpflichtmodule Data Science

Modulname

Wahlpflichtmodule Data Science Elective Studies in Data Science

Modulkürzel

DS-WP

Art

Wahlpflicht

Lehrveranstaltung

Maschinelles Lernen Mathematische Grundlagen des Maschinellen Lernens Stochastische Modellierung und Simulation sowie weitere Module des Data Science (B. Sc.) gemäß der geltenden Prüfungsordnung

Semester

5

Modulverantwortliche(r)

Studiengangsleitung des Studiengangs

Weitere Lehrende

Lehrende des Fachbereichs Mathematik und Naturwissenschaften sowie des Fachbereichs Informatik

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Die Inhalte ergeben sich ebenfalls aus den angebotenen Lehrveranstaltungen.

Ziele

Ziele, Kenntnisse, Fertigkeiten und Kompetenzen ergeben sich ebenfalls aus den angebotenen Lehrveranstaltungen.

Lehr- und Lernformen

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistungen und Prüfungsleistung Werden zum Anfang der Lehrveranstaltung bekannt begeben.

Notwendige Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Empfohlene Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltunge.

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Jedes Semester, Wintersemester und Sommersemester

Die im jeweiligen Semester angebotenen Lehrveranstaltungen werden durch den Fachbereich zu Beginn des Semesters bekannt gegeben.

Verwendbarkeit des Moduls

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Literatur

Je nach Lehrveranstaltung. Genauere Informationen werden zu Beginn der Lehrveranstaltung zur Verfügung gestellt.

Wahlpflichtmodule Informatik

Modulname

Wahlpflichtmodule Informatik Elective Studies in Information Technologies

Modulkürzel

I-WP

Art

Wahlpflicht

Lehrveranstaltung

Programmieren 3 ggf. weitere verfügbare Module des Bachelor-Studiengangs Data Science

Semester

5

Modulverantwortliche(r)

Studiengangsleitung des Studiengangs

Weitere Lehrende

Lehrende des Fachbereichs Informatik

Studiengangsniveau

Bachelor

Lehrsprache

Deutsch oder Englisch

Inhalt

Die Inhalte ergeben sich aus den angebotenen Lehrveranstaltungen.

Ziele

Ziele, Kenntnisse, Fertigkeiten und Kompetenzen ergeben sich ebenfalls aus den angebotenen Lehrveranstaltungen.

Lehr- und Lernformen

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Arbeitsaufwand und Credit Points

5 CP 150 h (Präsenzzeit gemäß SWS plus Eigenstudium)

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistungen und Prüfungsleistung werden zum Anfang der Lehrveranstaltung bekannt begeben.

Notwendige Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Empfohlene Kenntnisse

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Dauer zeitliche Gliederung und Häufigkeit des Angebots

Jedes Semester, Wintersemester und Sommersemester

Die im jeweiligen Semester angebotenen Lehrveranstaltungen werden durch den Fachbereich zu Beginn des Semesters bekannt gegeben.

Verwendbarkeit des Moduls

Ergeben sich aus den angebotenen Lehrveranstaltungen.

Literatur

Je nach Lehrveranstaltung. Genauere Informationen werden zu Beginn der Lehrveranstaltung zur Verfügung gestellt.