
Hochschule Darmstadt

Fachbereich Mathematik und Naturwissenschaften

&

Fachbereich Informatik

Exact Methods and Heuristic Approaches

for Setup Minimization of One-Dimensional

Cutting Stock Problems

Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science (M. Sc.)

im Studiengang Data Science

vorgelegt von

Jan-Erik Justkowiak

Referent: Prof. Dr. Julia Kallrath (Hochschule Darmstadt)

Korreferent: Prof. Dr. Tobias Bedenk (Hochschule Darmstadt)

Ausgabedatum: 15. Oktober 2018

Abgabedatum: 18. März 2019

Jan-Erik Justkowiak

Römerstraße 38

64291 Darmstadt-Arheilgen

Hochschule Darmstadt

Fachbereich Mathematik und Naturwissenschaften

Matrikelnummer: 736604

i

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen ent-
nommen sind, sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen in
dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quel-
lennachweis versehen. Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner
anderen Prüfungsbehörde eingereicht worden.

Darmstadt, den 18. März 2019

ii

Zusammenfassung

Das eindimensionale Zuschnittproblem mit einer minimalen Anzahl von unterschiedlichen
Schnittmustern gehört zur Klasse der schwer lösbaren Probleme. Neben der Formulie-
rung als reines gemischt-ganzzahliges nichtlineares Optimierungsproblem werden Lösungen
durch exakte Methoden, z. B. Branch & Price oder durch Heuristiken, z. B. Ausschöpfungs-
methoden, ermittelt. Der Nachteil dieser Verfahren ist der hohe Implementierungsaufwand.

Alternativ zu diesen Methoden präsentieren wir mehrere neuartige und leicht implemen-
tierbare (praxistaugliche) Modellformulierungen und Heuristiken zur Lösung des eindimen-
sionalen Verschnittproblems mit Musterminimierung und exakter Erfüllung der Nachfrage.
Im Gegensatz zu den meisten Ansätzen in der Literatur verzichten wir auf die Verwendung
von ganzzahligen Variablen und nichtlinearen Termen in der Modellierung oder speziellen
Lösungsstrategien wie Column Generation und Branch & Price. Stattdessen verbessern
wir die Ergebnisse und die Laufzeit, indem wir - neben der Entwicklung einer perfor-
manten Modellformulierung durch die ausschließliche Verwendung von Binärvariablen -
problem-spezifische Eigenschaften ausnutzen. Zusätzlich präsentieren wir einen heuristi-
schen Greedy-Algorithmus zur Generierung von Schnittmustern. Dabei werden inkremen-
tell solche Schnittmuster erzeugt, die eine maximale Anzahl von Aufträgen exakt erfüllen.
Darüber hinaus stellen wir einen Ansatz zur Partitionierung einer komplexen Problemin-
stanz vor. Anhand der Nachfragemengen werden zwei abgeleitete Unterinstanzen gebildet,
die auf Grundlage einer monolithischen Modellformulierung in der Regel erheblich leichter
gelöst werden können.

Die Modelle und Heuristiken wurden in GAMS implementiert und mit GAMS/CPLEX gelöst.
Eine breite Referenzmenge von Probleminstanzen aus der Literatur bildet die Basis der
numerischen Experimente. Dabei unterscheiden wir zwischen 80 Probleminstanzen aus
realen Anwendungen in der Industrie sowie 1980 zufällig generierten (CUTGEN) Instanzen.
Durch die Verwendung der monolithischen Modellformulierungen können wir optimale
Lösungen für alle Probleminstanzen aus den realen Anwendungen bestimmen. Darunter
sind mehrere Instanzen, für die in der Literatur bislang keine Optimallösungen bekannt
sind. Die von unserer robustesten Heuristik bestimmten Lösungen werden durchschnittlich
in wenigen Sekunden ermittelt und sind dabei im Durchschnitt um nur 13 % schlechter
(bzgl. der Anzahl der Schnittmuster) als die Optimallösungen (die Berechnungsgrundlage
dieser Bewertung bilden 1060 Optimallösungen, die zuvor unter Nutzung der monolithi-
schen Modellformulierungen - erstmalig in der Literatur - bestimmt werden konnten). Im
Vergleich mit den optimalen Lösungen für die Instanzen aus den industriellen Anwendun-
gen sind die heuristischen Lösungen in absoluten Zahlen im Allgemeinen um höchstens ein
oder zwei Schnittmuster schlechter (durchschnittlich um 0,8 Schnittmuster).

Schlagwörter : Zuschnittproblem, Papierindustrie, exakte Optimierung, heuristische Ver-
fahren, Musterminimierung, Verschnittminimierung

iii

Abstract

Minimal number-of-pattern solutions of the one-dimensional cutting stock problem (which
is known to be strongly NP-hard) have - beyond mixed integer nonlinear programming -
been solved by exact methods, e. g., Branch & Price, or heuristics like exhaustion methods.
Both suffer from high implementation efforts.

Alternatively, we present some novel and easy to implement model formulations and
heuristic approaches in order to formulate and solve the one-dimensional cutting stock
problem for setup minimization with exact demand fulfilment, being suitable for industrial
applications. In particular, we have developed some exact linear models using only binary
variables, i. e., in contrast to most approaches in literature we avoid integer variables,
non-linear terms and special solution techniques like column generation and Branch &
Price. Instead, we improve the performance by exploiting problem-specific properties. In
addition, we have developed a Greedy algorithm with iterative pattern generation, where
we try to maximize the number of order widths being fulfilled exactly by the currently
generated pattern and an approach for splitting the original problem instances into smaller
sub-instances based on the demand levels, which are more likely to be solvable by a
monolithic formulation.

The models and heuristics have been implemented in GAMS and solved with GAMS/CPLEX.
Our approaches have been tested on a broad range of benchmark instances used in lit-
erature, including 80 real-world instances from industrial applications as well as 1980
randomly generated CUTGEN instances. By solving the monolithic model formulation, we
are able to calculate and prove optimal solutions for all real-world instances. For some of
these instances, no optimal solutions have been known so far. The most stable heuristic
being proposed provides solutions within seconds on average, being only 13 % worse in
terms of pattern count compared to the optimal solutions on average (this evaluation is
based on 1060 instances being solved to optimality - for the first time in literature - by
applying the monolithic model formulations). Compared to the optimal solutions for the
instances from the industrial applications, these heuristic solutions are in general at most
one or two patterns worse (on average by 0.8 patterns).

Keywords: cutting stock problem, paper industry, exact optimization, heuristic algo-
rithms, setup minimization, cutoff reduction, trimloss minimization

iv

Acknowledgement

Foremost, I would like to thank my thesis advisor Prof. Dr. Julia Kallrath (Darmstadt
University of Applied Science) for the excellent mentoring. Her friendly guidance and
helpful expert advice in all the time of research on and writing of this thesis was invaluable.
Besides from supervising this thesis, Prof. Julia Kallrath offered me the opportunity to
attend as undergraduate assistant on several lectures for many years, including operations
research. In addition, Prof. Dr. Julia Kallrath and Prof. Dr. Josef Kallrath (University
of Florida, Gainesville) supported me on the first steps with regard to the postgraduate
period.

Special thanks are due to Prof. Dr. Josef Kallrath for his feedback and suggestions on
the manuscript, but more important I have gained a broader and deeper understanding
and insights on modeling and on solving complex optimization problems just from being
in contact from time to time.

In addition, I would like to thank GAMS Software GmbH (Frechen) for providing a
free GAMS license.

I would also wish to express my gratitude to Prof. Dr. Werner Helm (Darmstadt
University of Applied Science). Even though we were barely in touch during my studies in
the master program for the last years, Prof. Helm has always supported and encouraged
me during my bachelor program, also introducing me to the field of operations research
at all and supervised me during my internship and as well as during my bachelor thesis.

Last but not least, I would like to thank the co-advisor Prof. Dr. Tobias Bedenk
(Darmstadt University of Applied Science). The participation in his lecture on mixed
integer linear programming was quite beneficial with respect to the topic of this thesis.

v

Contents

1. Introduction 1

2. Cutting Stock Problems - Setup Minimization 4
2.1. Exact Model Formulations . 8

2.1.1. Mixed Integer Non Linear Model Formulation 8
2.1.2. Binary Linear Model based on complete Pattern Generation 10
2.1.3. Monolithic Binary Linear Model Formulation 12
2.1.4. Multiple Types of Master Rolls . 17

2.2. Heuristic Approaches . 20
2.2.1. Combining Generation of efficient Patterns with free Patterns 20
2.2.2. Greedy Algorithms . 23
2.2.3. Partitioning Algorithms . 33

2.3. Setup Minimization & Cutoff Reduction . 41

3. Numerical Experiments 44
3.1. Benchmark Data . 44
3.2. Implementation . 47
3.3. Results . 53

4. Conclusions and Further Research 71

List of Figures 74

List of Tables 75

Acronyms 76

Bibliography 77

A. Notation 79
A.1. General . 79
A.2. Sets and Indices . 79
A.3. Parameter . 80
A.4. Decision Variables . 80

B. Selected Optimal Patterns 82

1. Introduction

With an annual production volume of 411 million tons in 2016, the pulp and paper indus-
try is an important economical sector worldwide. Germany is the fourth largest producer
of paper and paperboard with an annual production of 22.6 million tons in 2016, close
behind Japan with a production of 26.3 million tons. The largest producers (by nations
in 2016) are the United States of America with an annual production of 72.1 million tons
and China with 111.3 million tons. The German pulp and paper industry employs 39800
people, generating a total annual revenue of 14.24 billion Euro in 2016 (see also [22]).

Cost-saving and environment-friendly production techniques and the planning of effi-
cient operating processes are of great importance for every company. With respect to the
pulp and paper industry, effective solution techniques for frequently occurring blending
and cutting stock problems are of special interest. The latter is the problem of cutting
standardized paper-rolls into quantities (demands) of smaller rolls (items/order widths)
being requested by customers, while minimizing the material usage, i. e., the quantities of
paper-rolls being cut resp. while minimizing the waste (cutoff reduction), leading to cost-
and resource-saving, environment-friendly production processes. This problem involves
the construction of cutting patterns while determining the application quantities on the
paper-rolls for each pattern. However, it does not consider the costs when changing from
one pattern to another (setup costs) by re-adjusting the knife arrangement. The problem
of reducing the setup costs by using as few different patterns as possible is known as setup
minimization problem in literature.

Note that we introduced and motivated the cutting stock problem (with setup mini-
mization) from the perspective of the pulp and paper industry, but their applications are
not limited to this specific industrial sector. The problem of cutting large rolls into smaller
items also occurs in the steel- or plastic film industry for instance.

In this thesis, we present several novel model formulations and heuristic approaches in
order to solve the setup minimization problem with exact demand fulfilment. Additionally,
cutoff reduction or trimloss minimization is observed as secondary objective. Following
the literature review, we will present the contents of this thesis in detail.

Literature Review
Cutting stock problems have long been investigated in the operations research field and
are among the most prominent optimization problems, as they are hard to solve, while
providing good solutions is of great practical interest.

Next to the rich body of literature focussing on the cutoff minimization problem, e. g.,
the well-known paper of Gilmore and Gomory, presenting a comlumn generation approach
(1961, see [1]), there are several publications tackling the setup minimization problem, also
referred as pattern reduction, which is known to be significantly more complex compared
to the cutoff minimization problem.

Foerster and Wäscher proposed a two-step heuristic approach (2000, see [21]). Initially,
the cutoff minimization problem is solved without observing the number of patterns, which
is reduced afterwards by iteratively combining the patterns of the obtained solution.

An exact algorithm for minimizing the number of patterns is proposed by F. Vander-

1. Introduction

beck (2000, see [3]). He developed a Branch & Price & Cut procedure involving a column
generation approach in order to solve the pattern minimization problem being formulated
as integer quadratic linear programming problem.

S. Umetani, M. Yagiura, T. Ibaraki presented an iterated local search algorithm with
adaptive pattern generation (2003, [7]). The heuristic is used to search a best solution for
a fixed number of patterns that minimizes the quadratic deviation of the produced items
compared to the demand levels.

G. Belov and G. Scheithauer developed a Branch & Price algorithm in order to solve
the setup minimization problem being formulated as an integer programming model (2003,
see [8]).

R. Johnston and E. Sadinlija presented an exact model formulation resolving the non-
linearity in the MINLP formulation of the cutting stock problem by the novel use of binary
variables (2004, see [4]).

A hybrid heuristic in order to reduce the number of different patterns in cutting stock
problems is proposed by H. Yanasse and M. Limeira (2006, see [14]). Initially, good
patterns are generated with limited waste that fulfil the demands of at least two items.
Afterwards, pattern reduction techniques are applied (in particular, the combining heuris-
tic proposed by Foerster and Wäscher).

Y. Cui, X. Zhao, Y. Yang and P. Yu present a sequential heuristic algorithm for pat-
tern reduction (2008, see [18]). A pattern is generated using a subset of unassigned items,
the pattern multiplicity is determined and the assigned items are deleted from the set of
unassigned items. The procedure is repeated, until all items are assigned. The subset is
determined such that the multiplicity of the generated pattern can be as large as possible,
observing some constraint to keep the cutoff reasonable.

G. Cerqueira and H. Yanasse developed a heuristic pattern reduction procedure by
grouping items according to their demands (2009, see [15]). The items are separated in
two disjoint groups in the beginning. Afterwards, patterns are generated for each group
and those with limited cutoff are accepted. Finally, a residual problem observing the
items which are not satisfied yet is solved and a pattern reduction procedure of literature
is applied.

J. Kallrath, S. Rebennack, J. Kallrath and R. Kusche proposed an exhaustion method,
involving a pattern generation heuristic and MILP techniques (2014, see [5]). Depending
on the number of orders, either the model by Johnston and Sadinlija is used directly or
they successively generate new patterns with maximum multiplicities and low waste. In
case there is only a small number of orders left, the model of Johnston and Sadinlija is
solved.

E. Banbal and J. Kallrath presented numerical results for solving the setup minimiza-
tion problem with exact demand fulfilment formulated as MINLP using different solvers
(2015, see [6]). In addition, the authors proposed two decomposition approaches in order
to solve smaller sub-instances of lower complexity derived of the original problem instance
based on some characteristics like the demand levels or the widths ordered.

A two-stage heuristic for calculating solutions with reduced setup and material cost is
presented by Y. Cui, C. Zhong, Y. Yao (2015, see [19]). Initially, a set of at most 5000
patterns is generated. An integer linear programming model to minimize the sum of ma-
terial and setup costs (by pattern reduction) is solved afterwards.

In summary, the setup minimization problem is often formulated as MINLP or MILP,
both hard to solve for commercial solvers. Therefore, acceptable results in terms of so-
lution time and solution quality (number of patterns) can be attained only by applying

2

1. Introduction

specific and sophisticated solution strategies like Branch & Price & Cut methods or by us-
ing heuristic approaches, in general at the cost of high implementation effort.

Note that most authors investigate a problem definition allowing for overproduction
while observing the cutoff simultaneously or by adding a restriction on the material us-
age based on the optimal solution of the cutoff minimization problem, deviating from our
pure setup minimization problem with exact demand fulfilment (and cutoff reduction as
secondary objective). This will be taken into account when evaluating the results.

Own Contributions and Structure of this Thesis
We present several novel exact linear model formulations for the setup minimization prob-
lem with exact demand fulfilment in Section 2.1. Based on these formulations, instances
of low or medium complexity can be solved to optimality in reasonable time. In order to
obtain a general performance improvement, we use binary variables only, while reducing
the resulting high number of variables by exploiting problem specific properties, e. g., we
apply tighter bounds on the pattern multiplicities being derived by the demand levels,
leading to a significantly reduce in terms of solution time. A further benefit besides the
fast implementability with an algebraic modeling language is the easy adaptability of our
models, i. e., additional requirements can be included straightforward (e. g., diverging ob-
jectives or further constraints).

In order to solve problem instances with increasing complexity, we present several novel
and easy to implement heuristic approaches Section 2.2. These approaches are character-
ized by a transparent top-level conception. In particular, we are repeatedly solving minor
complex models by the comfortable usage of an algebraic modeling language combined
with an optimization solver (CPLEX). For instance, a greedy algorithm being proposed
generates in each iteration a pattern which maximizes the number of orders being fulfilled
exactly, while also observing the already generated patterns within the decision process,
as one might add further widths to those patterns. This task will be realized best and
most comfortable by formulating an appropriate model (which is of low complexity) being
solved in each iteration to optimality.

As the requirement of pure setup minimization with exact demand fulfilment often leads
to solutions with high material consumption, most of the approaches will be modified in
Section 2.3 in order to observe the minimization of material consumption as secondary
objective, too.

Next to an evaluation of our approaches based on numerical results calculated on a
broad range of problem instances frequently used in literature (see Section 3.1 and Section
3.3), we also give some theoretical insights in relation with our approaches, e. g., we prove
upper and lower bounds on the pattern multiplicity or that it is sufficient to solve the re-
laxed variant of a model. Finally, we summarize the results while giving an assessment of
which approach should be applied based on the problem data characteristics and present
the current and further research in Chapter 4.

3

2. Cutting Stock Problems - Setup
Minimization

In the beginning of this Chapter, we describe the one-dimensional cutting stock problem
for setup minimization, also referred as pattern reduction. In addition, we introduce the
most basic notations (i. e., parameter and sets) in order to define the monolithic model
formulations and heuristic approaches later on. Afterwards, we demonstrate the setup
minimization problem on a small instance as an introductory example.

The monolithic model formulations are described in Section 2.1, among them the well-
known standard MINLP (Mixed Integer Non Linear Programm), a linear model based on
complete pattern generation and a novel linearisation of the standard MINLP using binary
variables only while exploiting some problem specific properties in order to reduce the
problem complexity in terms of model size and solution time.

Several novel heuristic approaches are discussed in the Section 2.2, among them varying
versions of a Greedy algorithm and an approach for splitting the original problem instance
into smaller derived sub-instances in order to get a heuristic solution of the original in-
stance by solving the smaller sub-instances (to optimality).

Finally, the model formulations introduced in Section 2.1 and most of the heuristic ap-
proaches presented in Section 2.2 are modified in order to consider the number of master
rolls being cut as secondary objective (Section 2.3).

Problem Description
The general cutting stock problem (see [1] or [13] for reference) can be described as follows:
Master rolls (see Figure 2.1 for instance) of identical width and infinite length shall be cut
in an efficient way to fulfil demand of smaller order widths.

http://www.badische-zeitung.de/bzcard-leserfahrten/papier-fuer-die-badische-zeitung–46612744.html

Figure 2.1.: Master-roll in the paper industry.

This results in varying objectives, for example, reducing the waste of master rolls with
no further use, which accrues during the cutting process, in order to reduce the cost of
materials and to protect the environment (known as cutoff reduction).

2. Cutting Stock Problems - Setup Minimization

The width of the master roll (there is only a single type of master roll), the number
of knifes which are used to cut the master rolls in smaller items resp. smaller rolls, the
quantity of orders (demands) and the widths ordered are assumed to be known. Figure 2.2
illustrates a master roll being cut into smaller items/rolls by applying a pattern (which
is defined by the item multiplicities) using a specific knife arrangement (the knifes are
located at the positions 1, 2, 3 and 4). The red striped area represents cutoff.

Figure 2.2.: Schematic pattern resp. setup representation.

In the setup minimization or pattern reduction problem, the setup costs of cutting
machines shall be minimized by using as few different patterns as possible. When mini-
mizing the number of setups, we have to treat the case, in which demand has to be fulfilled
exactly, i. e., no over- or underproduction of order widths is allowed. This condition is
reasonable, since allowing over- or underproduction while not observing the cutoff resp.
the over- or underproduction of orders simultaneously when minimizing the number of
setups has a major impact on the problem complexity (solution times decrease while the
solutions get impractical in general). For instance, if we allow unlimited overproduction,
the solution to the setup minimization problem will be close to its lower bound derived in
Note 1 later on in this Chapter, while there will be an enormous overproduction of nearly
all orders (except for the one with the largest demand). Moreover, in the worst case, we
may not have any further use of the overproduction afterwards. However, note that some
authors allow for a small range of over- or underproduction in literature.

In order to formulate the setup minimization problem described as above, we introduce
the following sets and parameters:

- Set of patterns p ∈ P :=
{
p1, . . . , p|P|

}
.

- Set of orders i ∈ I :=
{
i1, . . . , i|I|

}
.

- Demand Di sorted in descending order and width wi of order i ∈ I. We assume
wi 6= wi′ , ∀i, i′ ∈ I with i 6= i′.

- Width W of the master rolls and number K of knifes.

5

2. Cutting Stock Problems - Setup Minimization

- Pattern multiplicity k ∈ K := {1, . . . , maxi∈I Di}. There is no pattern which will
be used more than maxi∈I Di times, since overproduction shall be avoided (exact
demand fulfilment).

- Item multiplicity n ∈ N := {1, . . . , min [maxi∈I bW/wic ;K]} of a width i in a
pattern p. The maximum item multiplicity is restricted by the available number of
knifes or by the greatest number of rolls of an order width which can be cut from
the master roll.

The cardinality of P depends on the model formulation. In case of pattern generation
by complete enumeration, |P| = #possible patterns. Without generation of all possible
patterns, |P| can be set to |P| = |I| (in the worst case, the demand of each order width
will be fulfilled by a different setup/pattern).

A valid solution of the one-dimensional cutting stock problem is denoted by (the pa-
rameters) up ∈ Z+

0 , describing the multiplicity of pattern p (i. e., the quantities of master
rolls being cut according to pattern p) and by aip ∈ Z+

0 , indicating how many pieces of
width i (item multiplicity) are cut from a master roll when applying the pattern p. The
term z refers to the number of different patterns. The quantity of master rolls being cut
is denoted by m.

Note that some additional sets, parameters etc. are introduced later on. However, the
ones presented above are the most basic ones and will be used in most of the models and
heuristics. A complete overview on the notation is presented in Appendix A.

Example 1 (Solving a small Instance) Given an instance I = (I, Di, wi,K,W) of
the one-dimensional cutting stock problem, we will demonstrate how to find an optimal
solution for the pattern reduction problem analytically. There are four order widths with
width wi and demand Di, summarized in the following table. The width of the master rolls
is given by W = 1000, the number of knifes is K = 7.

Basic Data

i wi Di

i1 100 60
i2 200 30
i3 500 20
i4 300 10

At first, we will calculate a lower bound on the minimal num-
ber zopt of different patterns. Since not all order widths can be
combined in a single pattern, i. e.,

∑
i∈I wi = 1100 > 1000 = W ,

we obviously need more than a single pattern in order to fulfil the
demand for all order widths (exactly). However, two patterns
are probably sufficient. We will now construct a solution with
two different patterns by looking closely.

Obviously, one can combine the order widths in several ways (two of them presented
below), each using two patterns. Since two is an lower bound on zopt, both solutions are
optimal with respect to the number of patterns. Note that we have to cut 30 master rolls in
both solution in order to apply those patterns, yet the second one is more desirable, since
the knifes must be re-adjusted only for the orders i3 and i4 when switching from the first
pattern to the second one. However, this additional request is not considered in this thesis.

6

2. Cutting Stock Problems - Setup Minimization

p1 p2
up 20 10 Di

w1 = 100 3 0 60
w2 = 200 0 3 30
w3 = 500 1 0 20
w4 = 300 0 1 10

width 800 900

cutoff 200 100

p1 p2
up 20 10 Di

w1 = 100 2 2 60
w2 = 200 1 1 30
w3 = 500 1 0 20
w4 = 300 0 1 10

width 900 700

cutoff 100 300

For instance, in the first pattern p1 of the solution on the left, we will cut the first order
i1 three times and the third order i3 a single time out of the master roll. The first pattern
p1 will be used 20 times. The width of the master roll and the number of knifes is not
exceeded. As stated above, both solutions not only require two different patterns (primary
objective), but also the same amount m of master rolls (30 pieces) have to be used in order
to apply those patterns for exact demand fulfilment. In general, there are often several
optimal solutions with varying values of m. Minimizing the number of master rolls as
secondary objective is discussed in Section 2.3. The solution below represents the optimal
solution (25 pieces) for the cutoff reduction problem.

p1 p2
up 20 5 Di

w1 = 100 3 0 60
w2 = 200 1 2 30
w3 = 500 1 0 20
w4 = 300 0 2 10

width 1000 1000

cutoff 0 0

While the solution above is optimal for both objectives, note that minimizing the number
of master rolls and the number of different patterns is contrary in general.

The procedure of determining a lower bound zlo on the optimal solution zopt, demon-
strated in the previous example, can be generalized.

Note 1 (Lower Bound on the Number of Patterns) The sum of all order widths
divided by the length of the master roll defines a lower bound zlo on the number of patterns,
i. e., zlo ≤ zopt for zlo :=

⌈∑
i∈I wi/W

⌉
. The lower bound on the number of different pat-

terns can be used to evaluate the goodness of the results for instances which are solvable
only by heuristic approaches, i. e., it is possible to calculate the worst case gap for a given
solution z. Calculating the lower bound as demonstrated above can also be seen as Bin

Packing, where the master rolls corresponds to the bins, the demand levels are equal to one
for all order widths and the widths wi represents the items to be packed into (a minimal)
number of bins.

7

2.1. Exact Model Formulations

2.1. Exact Model Formulations

In this Section, we introduce some exact model formulations for the one-dimensional cut-
ting stock problem with pattern reduction. In particular, we present the well-known MINLP

in the first Subsection 2.1.1. Afterwards, we develop a linear model formulation based on
complete pattern generation (Subsection 2.1.2). Additionally, the integer variables (ex-
pressing the multiplicity of a pattern resp. the item multiplicity of a width in a pattern in
the MINLP formulation) are substituted by a set of binary variables. The complete pattern
generation approach might not be applicable for instances with many small widths, as the
number of possible combinations of the orders in a single pattern might be far too large. In
Subsection 2.1.3, we develop a novel linear model by using binary variables only without
complete pattern generation in advance. This formulation can be seen as an extension of
the linear model in [4], but it extends the usage of binary variables, as we have seen a
significant further decrease in terms of solution time. Furthermore, we will exploit some
problem specific properties in order to reduce the large number of binary variables and
the solution time.

In Section 2.1.4, we will present novel model formulations for the pure setup minimiza-
tion problem with exact demand fulfilment and multiple types of master rolls.

Solving instances with optimization solvers like CPLEX or GUROBI based on exact model
formulations has many advantages in general; the models are easy to understand and can
be implemented quite fast and comfortable with an algebraic modelling language like GAMS.
In addition, the models can be adjusted easily in order to meet extensions or modifications
of the problem definition, e. g., by adding further constraints. At the end of the solution
process, one will get an optimal solution theoretically or detect infeasibility. Additionally,
the solver reports a bound, i. e., the goodness of the current solution can be evaluated if
the solution process is terminated before finding an optimal solution resp. before proving
the optimality of the solution. The major drawback of this overall approach is the solution
time for instances with increasing complexity, since the number of variables and constraints
increases dramatically (in addition to the strongly NP-Hardness of the pattern reduction
problem [12]). In the worst case, finding an optimal or near optimal solution in reasonable
time is not possible. Sometimes, the solver will not even find a feasible point or the model
generation terminates due to an out of memory abort.

However, we have seen remarkable results when solving the linear models compared
to the results in [5] and [6] on some real world cutting stock problem data. In addition,
approximately 10 out of 30 benchmark classes investigated in this thesis (each consisting
of several instances) can be solved to optimality within one hour by using the monolithic
model formulations proposed in Subsection 2.1.2 and 2.1.3.

2.1.1. Mixed Integer Non Linear Model Formulation

The setup minimization or pattern reduction problem is often formulated as MINLP, among
others in [3], [5] and [6]. In order to formulate the problem, three kinds of binary resp.
integer variables are used:

- Multiplicity µp ∈ Z+
0 of pattern p ∈ P, i. e., the number of master rolls which are

cut according to pattern p.

- Item multiplicity αip ∈ Z+
0 of order width i ∈ I in pattern p ∈ P.

8

2.1. Exact Model Formulations

- Pattern usage indicator δp ∈ {0, 1} of pattern p ∈ P, i. e., if pattern p is used at
least once (µp > 0), the binary variable δp is equal to one (zero otherwise).

Using the previous variables, we formulate the following MINLP (MINLP1 - MINLP8):

Mixed Integer Non Linear Program - MINLP:

min z =
∑
p∈P

δp (MINLP1)

s. t.
∑
p∈P

αipµp = Di ∀i ∈ I (MINLP2)∑
i∈I

wiαip ≤ W ∀p ∈ P (MINLP3)∑
i∈I

αip ≤ K ∀p ∈ P (MINLP4)

δp+1 ≤ δp ∀p ∈ P \ {p|I|} (MINLP5)

µp+1 ≤ µp ∀p ∈ P \ {p|I|} (MINLP6)

µp ≤ Mδp ∀p ∈ P (MINLP7)

δp ∈ {0, 1}, µp ∈ Z+
0 , αip ∈ Z+

0 (MINLP8)

The objective function MINLP1 is to minimize the number z of (different) patterns,
which are used in the current cutting plan. Constraint MINLP2 enforces exact demand
fulfilment (note the non linear terms in this constraint). The total pattern width cannot
exceed the width W of the master roll (MINLP3). The number of smaller rolls which are
cut from the master roll is restricted by the number K of knifes (MINLP4). However,
if the sum of all widths in a pattern is equal to the width of the master roll, one can
get K + 1 items of course (but this rare case is not considered further on). Finally, the
symmetry breaking constraints MINLP5 and MINLP6 are added to the model for numerical
improvement by reducing the search space. In particular, constraint MINLP5 enforces that
the next pattern p + 1 can only be used if pattern p is already used, while MINLP6 sorts
the patterns according to their multiplicity in descending order. The variables δp and µp
are connected in constraint MINLP7, where M is a sufficient large number. In particular,
µp greater than zero enforces δp to be equal to one, while δp is free, if µp is equal to zero.
Since we are minimizing the sum over δp in the objective, the value of δp will be equal to
zero in the second case.

Note 2 (Number of Knifes) Note that only a very small amount of instances in the
benchmark sets have a restriction on the number of knifes (in particular, only the in-
stances of the Kallrath benchmark set). However, we include the constraint of observing
the number of knifes in the problem description, as the model formulation becomes more
general and realistic. In addition, the constraint can be easily turned off for instances
without a restriction by defining K =∞ in the model formulation. For numerical reasons,
we will simply omit the constraint in the model implementations, if there is no restriction
on the number of knifes.

While the formulation presented above is quite compact and easy to implement with
an algebraic modelling language (e. g., GAMS), the numerical performance when solving the

9

2.1. Exact Model Formulations

model with strong global MINLP solvers like BARON is acceptable only for small instances
like C5, C6 or C7 of the Kallrath benchmark set with up to seven order widths and low
demand levels in general. For instances with increasing complexity (being characterized
by an increase in terms of |I| and higher quantities of demands Di), the runtimes increase
significantly, often without finding optimal solutions or proving optimality. In case of the
hardest instances C49 and C50 of the Kallrath benchmark set, no feasible solution has
been found within a day (see [6]).

In the next Section, we eliminate the non linear term in the demand fulfilment equation
in order to reduce the solution time by generating all possible patterns in advance. Note
that generating all patterns is impractical for many instances, due to the large amount
of possible patterns. However, to our surprise, with today’s computer technology one
can solve about a quarter of all instances considered in this thesis to optimality with the
complete pattern generation approach (see Chapter 3 for the numerical results and the
system properties).

2.1.2. Binary Linear Model based on complete Pattern Generation

Initially, we define a model whose feasible resp. optimal solution represent a valid pattern.
By using the CPLEX Solution Pool Option, all valid patterns resp. solutions of the
model can be determined (theoretically). In order to formulate the problem, we define the
following integer variable:

- Item multiplicity γi ∈ Z+
0 of the order i in the currently generated pattern.

Obviously, the item multiplicity of i is restricted by the number of times the width can
be cut from the master roll, by the number of knifes and by the demand level Di of the
width i, i. e., γi ≤ min(bW/wic ;K;Di), ∀i ∈ I. By the use of the variable γi, we will
define the following MILP (PG1 - PG4):

Pattern Generation - PG:

min z = 0 (PG1)

s. t.
∑
i∈I

wiγi ≤ W (PG2)∑
i∈I

γi ≤ K (PG3)

γi ∈ Z+
0 (PG4)

As we only seek to generate a valid pattern which corresponds to a feasible solution
of PG, we define a constant dummy objective in PG1. Constraints PG2 and PG3 are the
pattern generation constraints, in particular, PG2 observes the width of the master roll,
while PG3 observes the number of knifes (in general, a master roll cannot be cut in more
than K items).

All generated patterns are used as input parameters aip (item multiplicity of width i in
pattern p) in the next model (BLMPG) in order to eliminate the non linear term in demand
fulfilment equation. However, the solution times of the resulting MILP are still to high
for most instances and practical usage. Substituting the integer variables µp, introduced
in the previous Subsection, with the sum over |K| binary variables δkp, while multiplying

10

2.1. Exact Model Formulations

each variable with the index k, finally results in a considerable reduction of solution time.
In particular, the variable δkp is defined by

δkp :=

{
1, if p is used exactly k times

0, otherwise.

By the use of the previous introduced variable, we formulate the following binary linear
program (BLMPG1 - BLMPG4):

Binary Linear Model with Pattern Generation - BLMPG:

min z =
∑
p∈P

∑
k∈K

δkp (BLMPG1)

s. t.
∑
p∈P

∑
k∈K

kδkp︸ ︷︷ ︸
∈ Z+

0

aip = Di ∀i ∈ I (BLMPG2)

∑
k∈K

δkp ≤ 1 ∀p ∈ P (BLMPG3)

δkp ∈ {0, 1} (BLMPG4)

The number of different patterns is to be minimized (BLMPG1). Constraint BLMPG2

enforces exact demand fulfilment. To ensure the use of at most one δkp (i. e., to enforce
the uniqueness multiplicity of the pattern p as claimed in the definition of δkp), we add
constraint BLMPG3. Note that this constraint could be omitted (Lemma 1). Though adding
the constraint has a varying, but on average, a slightly positive effect on solution time.
Lemma 1 is also valid for the model formulations developed in Subsection 2.1.3.

Lemma 1 (Uniqueness of Pattern Multiplicity) The uniqueness multiplicity of a
pattern p in an optimal solution δkp for the model BLMPG is ensured without constraint
BLMPG3, i. e., the constraint can be removed from the model.

Proof. Assuming there is a pattern p̃ in the optimal solution of BLMPG with several
different pattern multiplicities, i. e., there is a set K̃ ⊂ K holding δkp̃ = 1, ∀k ∈ K̃ and∑

k∈K̃ δkp̃ = k̃ > 1. Choose k∗ ∈ K in such a way, that k∗ =
∑

k∈K̃ kδkp̃ holds. Assigning

δk∗p̃ = 1 and δkp̃ = 0, ∀k ∈ K̃ reduces the target function value
∑

p∈P
∑

k∈K δkp by |K̃|−1
in contradiction to the optimality of the solution, while the equality of the demand fulfill-
ment constraint BLMPG2 is ensured. �

In order to reduce the solution time, the values for many variables δkp could be fixed,
i. e., δkp = 0 for k > mini∈I bDi/γipc, ∀(k, p) ∈ K × P. However, there is no observable
influence on the solution time, since this is also done directly by the presolver and somehow
slightly faster. As stated before, this approach is applicable for approximately one quarter
of all instances. In general, it is not possible to generate all patterns if there is a great
spread in the order widths, especially in the context of an unlimited number of knifes.
The numerical results of this approach are presented and discussed in detail in Chapter 3.

11

2.1. Exact Model Formulations

2.1.3. Monolithic Binary Linear Model Formulation

In this Section, we derive a novel linear model formulation for the one-dimensional cutting
stock problem with setup minimization and exact demand fulfilment. Instead of generating
all valid patterns in advance (which is not always possible), we will introduce a large
number of binary variables to avoid the non linearity in the model formulation described
in Subsection 2.1.1. In order to reduce the solution time and the number of variables, we
will exploit some problem- and model-specific properties and techniques. To formulate the
problem as a binary linear program, we will use the binary variable δkp already introduced
in the previous Subsection 2.1.2, indicating if the pattern p is used exactly k times and
the binary variable γiknp, defined as follows:

γiknp :=

{
1, if p contains i exactly n-times and is used exactly k times

0, otherwise.

By the use of the previous variables, we formulate the following binary linear program
(constraints BLM1 - BLM10):

Binary Linear Model - BLM:

min z =
∑
p∈P

∑
k∈K

δkp (BLM1)

s. t.
∑
p∈P

∑
k∈K

∑
n∈N

knγiknp = Di ∀i ∈ I (BLM2)∑
i∈I

∑
n∈N

winγiknp ≤ Wδkp ∀(k, p) ∈ K × P (BLM3)∑
i∈I

∑
n∈N

nγiknp ≤ Kδkp ∀(k, p) ∈ K × P (BLM4)∑
k∈K

δk,p+1 ≤
∑
k∈K

δkp ∀p ∈ P \ {p|I|} (BLM5)∑
k∈K

kδk,p+1 ≤
∑
k∈K

kδkp ∀p ∈ P \ {p|I|} (BLM6)∑
n∈N

∑
k∈K

γiknp ≤ 1 ∀(i, p) ∈ I × P (BLM7)∑
k∈K

δkp ≤ 1 ∀p ∈ P (BLM8)∑
k∈K

kδkps +
∑
s′<s

D̃s′ ≥ mlo −
∑

p∈P,p>s

∑
k∈K

kδkp ∀s ∈ {1, . . . , |I|} (BLM9)

δkp ∈ {0, 1}, γiknp ∈ {0, 1} (BLM10)

The number of different patterns is to be minimized (BLM1). Constraint BLM2 enforces
exact demand fulfilment (beware of the linearity). Constraint BLM3 ensures the logical
connection between δkp and γiknp, in such a way, that the pattern p is interpreted as used,
if it is generated by cutting the master roll into smaller items while observing the width
W . Another connection of the variables via constraint BLM4 affects the solution time
positively (note that there are other possibilities to connect the variables, for example in

12

2.1. Exact Model Formulations

BLM7, with differing impact on the solution time). Constraint BLM5 enforces that the next
pattern p+ 1 will only be used, if pattern p is already used, while BLM6 sorts the patterns
in descending order (symmetry breaking constraints). Both constraints tighten up the
solution space to reduce the solution time. The model is completed by BLM7 and BLM8 to
ensure the uniqueness of the item multiplicity n of width i resp. the multiplicity k of a
pattern p. Note that the constraint BLM8 could be omitted in consequence of Lemma 1.
The constraint BLM9 is added to improve the performance and will be motivated later on
in Note 3.

Constraints BLM5 and BLM6 need to be explained briefly. If pattern p is not used, the
sum on the right site of the inequality is zero, enforcing each term in the sum on the left
site to be equal to zero, i. e., δk,p+1 = 0, ∀k ∈ K. Thus, pattern p+ 1 cannot be used for
any multiplicity k.

If p is used, the sum on the right side of the inequality, respectively exactly one δpk
according to constraint BLM8, is equal to one. This allows a single variable on the left side
to be equals one for an arbitrary multiplicity k, i. e., the pattern p+ 1 can be used. Other
cases do not appear, due to constraint BLM8.∑

k∈K
δk,p+1 ≤

∑
k∈K

δkp ∀p ∈ P \ {p|I|} (BLM5)

The ordering constraint BLM6 works in a quite similar way. If p is used with multiplicity
k∗, i. e., δpk∗ = 1 and δpk = 0, ∀ k ∈ K\{k∗}, the right side of the inequality BLM6 is equal
to k∗. This allows the usage of pattern p+ 1, but only with smaller or equal multiplicity
k
′

(corresponding to the value of the left side). Consequently, k
′ ≤ k∗.∑

k∈K
kδk,p+1︸ ︷︷ ︸
= k

′

≤
∑
k∈K

kδkp︸ ︷︷ ︸
= k∗

∀p ∈ P \ {p|I|} (BLM6)

The number of variables can be reduced significantly before starting the solution pro-
cess. As a consequence of the ordering-constraint BLM6, the values for many variables can
be fixed in advance according to Lemma 2, i. e.,

δkps = 0 = γiknps , ∀(s, i, k, n) for k > D̃s, where s ∈ {1, . . . , |I|},

leading to a significant decrease in terms of solution time, where D̃s denotes the demands
sorted in descending order. We will motivate Lemma 2 based on the data of Example 1.
The first pattern will not be used more than D1 = 60 times, since overproduction must
be avoided. In addition, the second pattern p2 will not be used more that D2 = 30 times
in the optimal solution. If we assume the multiplicity of p2 to be greater than D2, non of
the orders i2, i3 or i4 can be part of the first two patterns, since the patterns are sorted
in descending order (i. e., the first pattern p1 will be used at least 30 times as well) and
overproduction of i2, i3 or i4 must be avoided. Therefore, the first two patterns are used
to cover up the demand of the order width i1 exclusively, which cannot be optimal.

Lemma 2 (Upper Bounds on Pattern Multiplicity) In an optimal solution δkp of

model BLM with sorted pattern multiplicity, the multiplicity of pattern ps is bounded by D̃s,
i. e.,

∑
k∈K kδkps ≤ D̃s, ∀s ∈ {1, . . . , |I|}, where D̃s denotes the demand levels sorted in

descending order.

13

2.1. Exact Model Formulations

Proof. Let s ∈ {1, . . . , |I|}. If we assume the multiplicity of pattern ps to be greater
than the corresponding D̃s, no order width with demand levels smaller or equal than D̃s

can be part of the patterns p1, . . . , ps, because overproduction must be avoided and the
patterns are sorted in descending order. That implies the need of the first s patterns to
cover up the demand for at most s− 1 order widths in contradiction to the optimality of
the solution (in the worst case, we need a different pattern for each order width). �

Note that there is a trivial example (the widths ordered are all wider than W/2) where
the pattern multiplicities are equal to their upper bounds.
Furthermore, the item multiplicity n of a specific width i in a pattern p is restricted by the
number of times the order width can be cut from the master roll bW/wic, their demand
Di and by the number of knifes K, i. e.,

γiknp = 0, ∀(i, k, n, p) for n > min {bW/wic ; Di; K} .

Of course, γiknp = 0, ∀(i, k, n, p) for nk > Di, since the term nk describes the number
of produced rolls of type i by a particular pattern p (this is also done directly by the solver
during presolve).

One can also calculate some weak lower bounds on the pattern multiplicity in order to fix
the values of more variables before starting the solution process, at least by considering the
first patterns. For most instances, the lower bounds are negative (and therefore worthless),
except for the first three or four patterns on average. We will motivate the following
Lemma 3 based on some example data. The width of the master rolls is given by W =
1000, the demand and the width of the orders are summarized in the following table.

Basic Data

i wi Di

i1 750 40
i2 400 30
i3 600 25
i4 500 20

Initially, we will calculate a lower bound mlo on the number
of master rolls being used in total. If we assume that there are
patterns with zero cutoff, we can derive

mlo =

⌈
40 · 750 + 30 · 400 + 25 · 600 + 20 · 500

1000

⌉
= 67,

i. e., we have to cut at least 67 master rolls.

Since four is an upper bound on the number of different patterns to be used and the
patterns are sorted in descending order according to their multiplicities, we can derive
that the first pattern p1 will be applied at least d67/4e = 17 times. The patterns p2, p3
and p4 will be applied at least 67− 40 = 27 times, since the first pattern will not be used
more than 40 times according to Lemma 2. Hence, the second pattern p2 will be applied
at least d27/3e = 9 times. The lower bounds on p3 and p4 are negative already.

Lemma 3 (Lower Bounds on Pattern Multiplicity) In an optimal solution δkp of
the model BLM with sorted pattern multiplicity, the multiplicity of pattern ps is greater or
equal ls, defined by

ls :=

⌈
mlo −

∑
s′<s D̃s′

zup − s+ 1

⌉
, ∀s ∈ {1, . . . , zup},

where mlo :=
⌈

1
W

∑
i∈I Diwi

⌉
is a (weak) lower bound on the number of master rolls to be

used, D̃s denotes the demands sorted in descending order and zup is an upper bound on
the number of different patterns (setups) to be used.

14

2.1. Exact Model Formulations

Proof. Let s ∈ {1, . . . , zup}. Then, mlo −
∑

s′<s D̃s′ is a lower bound on the number of
master rolls

∑
p∈P,p≥s

∑
k∈K kδkp to be used for the patterns ps, ps+1, ..., p|I|, since∑

p∈P,p<s

∑
k∈K

kδkp ≤
∑
s′<s

D̃s′

due to Lemma 2 (the number of master rolls to be used for the first p1, ..., ps−1 patterns
is smaller or equal then the sum of the highest demands D̃1, ..., D̃s−1), i. e.,∑

p∈P,p≥s

∑
k∈K

kδkp ≥ mlo −
∑
s′<s

D̃s′ .

Since the patterns are sorted in descending order, one can derive

(zup − s+ 1)
∑
k∈K

kδkps ≥
∑

p∈P,p≥s

∑
k∈K

kδkp ⇒
∑
k∈K

kδkps ≥

⌈
mlo −

∑
s′<s D̃s′

zup − s+ 1

⌉
= ls.

�

In consequence, the following values of the variables can be fixed (for s ∈ {1, . . . , zup}):

δkps = 0, ∀k ∈ K with k < ls, yiknps = 0, ∀(i, k, n) ∈ I × K ×N with k < ls.

Furthermore, no order width with lower demand than ls can be part of the pattern, i. e.,

yiknps = 0, ∀(i, k, n) ∈ I × K ×N with Di < ls.

Note 3 (Quality of the Lower Bounds on Pattern Multiplicity) As stated before,
the lower bounds ls are very weak for zup = |I|, i. e., the lower bounds for the third or
fourth patterns will be already negative and low for the first patterns for most instances,
i. e., most of those lower bounds are worthless.

When fixing the values of the variables as described above, the solution time decreases
slightly on average, hence, the lower bounds on the pattern multiplicity are added to the
model.

Instead of the worst case estimation in the last step of the proof of Lemma 3, one can
also add the following constraint to the model:∑

k∈K
kδkps ≥ mlo −

∑
s′<s

D̃s′ −
∑

p∈P,p>s

∑
k∈K

kδkp ∀s ∈ {1, . . . , |I|} (BLM9).

The effect on the solution times is clearly positive on average, hence the constraint BLM9
is added to the model BLM (see also Section 3.3 for the numerical results).

Note 4 (Reducing the Number of Patterns in Model BLM) It is not reasonable
to reduce the number of patterns in model BLM directly, i. e., setting |P| = zup < |I|, since
the solver needs to much time to find a feasible solution, while the number of variables and
equations decreases of course due to the value fixing motivated by Lemma 3. As a result,
the effect on the solution time is negative on average.

By investigating the optimal solutions for some instance, we have noticed that the
number of different widths per pattern, in the following denoted by Imax

p , ∀p ∈ P and the
number of patterns per width, in the following denoted by Pmax

i , ∀i ∈ I, are in general
much lower as theoretically possible.

15

2.1. Exact Model Formulations

Number of Widths per Pattern and Number of Patterns per Width
Therefore, we studied the effect when limiting the number of different widths per pattern
and when limiting the number of patterns per width. Since we cannot see a general way
to determine the values of Imax

p , ∀p ∈ P and Pmax
i , ∀i ∈ I in advance, we determine

those values by evaluating the optimal solutions generated by the model BLM. Afterwards,
we solved the model BLM again, while adding the following constraint to limit the number
of different widths per pattern:∑

k∈K

∑
i∈I

∑
n∈N

γiknp ≤ Imax
p ∀p ∈ P,

resp. for a limit on the number of patterns per width:∑
p∈P

∑
k∈K

∑
n∈N

γiknp ≤ Pmax
i ∀i ∈ I.

We studied the effect on the solution time, which is clearly negative on average, since the
finding of feasible solutions will be more difficulty for the solver. Additionally, it remains
unclear how to solve the major problem of determining the values of Imax

p , ∀p ∈ P and
Pmax
i , ∀i ∈ I in advance.

16

2.1. Exact Model Formulations

2.1.4. Multiple Types of Master Rolls

In order to describe the pure setup minimization problem with exact demand fulfilment
and multiple types of master rolls, we define the following sets and parameters in addition
to those introduced in the beginning of Chapter 2:

- Set of different types of master rolls j ∈ J = {1, . . . , |J |}.

- Width Wj of master roll type j, sorted in ascending order, i. e., W1 < ... < W|J |.

- Capacity (stock level) Cj of master roll type j.

The setup minimization problem with multiple types of master rolls can be seen as gen-
eralization of the setup minimization problem with a single type of master roll. However,
take in mind the following note.

Note 5 (Changes in the Problem Definition)
While the capacity of master rolls was assumed to be unrestricted in case of a single type
of master roll, this assumption is no longer reasonable when minimizing the number of
setups for multiple types of master rolls, as one could focus on the widest master rolls to
obtain the optimal solution for the pure setup minimization problem. By using smaller
master rolls, the number of setups might eventually increase due to a decrease in possible
patterns applicable on the smaller master rolls.

In order to define a reasonable problem statement, we have to add at least one of the
further requirements to the setup minimization problem:

1. Observing a (potentially active) capacity limit Cj on the stock of master rolls for all
j ∈ J .

2. Focussing on setup minimization as primary objective, but preferring the usage of
smaller master rolls as secondary objective (by observing the cutoff).

In the following, we will consider only the first remark, i. e., we observe capacity limits
(stock levels) on the different types of master rolls while presenting some model formula-
tions closely related to BLMPG resp. BLM.

Exact Binary Linear Model based on complete Pattern Generation
At first, we formulate the model based on complete pattern generation. For this we define
the following variables:

ηp :=

{
1, if p is applied

0, otherwise

and

µpjk :=

{
1, if p is applied on master roll type j with multiplicity k

0, otherwise.

The CPLEX Solution Pool options is used to generate all valid patterns by solving the
model PG, see also Section 2.1.2. Afterwards, we evaluate the generated patterns, i. e., we
determine if the pattern p can be applied on master roll type j. The results will be stored
as parameter epj ∈ {0, 1} (epj is equal to one, if p can be applied on j).

17

2.1. Exact Model Formulations

By the use of the previous variables and parameters, we formulate the following bi-
nary linear program based on complete pattern generation (constraints BLMPG-MMR1 -
BLMPG-MMR6):

Bin. Lin. Model with Pattern Generation and Mult. Types of Master Rolls - BLMPG-MMR:

min z =
∑
p∈P

ηp (BLMPG-MMR1)

s.t.
∑
p∈P

∑
j∈J

∑
k∈K

kµpjkγip = Di ∀i ∈ I (BLMPG-MMR2)∑
p∈P

∑
k∈K

kµpjk ≤ Cj ∀j ∈ J (BLMPG-MMR3)∑
j∈J

∑
k∈K

µpjk ≤ |J |ηp ∀p ∈ P (BLMPG-MMR4)∑
k∈K

µpjk ≤ epj ∀(p, j) ∈ P × J (BLMPG-MMR5)

ηp ∈ {0, 1}, µpjk ∈ {0, 1} (BLMPG-MMR6)

The objective is to minimize the number of different patterns (BLMPG-MMR1). Constraint
BLMPG-MMR2 enforces exact demand fulfilment, while the stock levels of the different mas-
ter rolls are observed by constraint BLMPG-MMR3. A pattern p is considered as used, if
it is applied on any master roll type j (BLMPG-MMR4). Constraint BLMPG-MMR5 is used to
connect the variable µpjk with the parameter epj , while also ensuring the uniqueness of
the pattern multiplicity k of p on master roll type j.

The values of many variables µpjk can be fixed, e. g., µpjk = 0, if k > mini∈I [bDi/γipc]
∀(p, j, k) ∈ P×J ×K. In addition, µpjk can be set to zero, if k > Cj ∀(p, j, k) ∈ P×J ×K
(constraint BLMPG-MMR3).

Exact Binary Linear Model Formulation
If it’s not possible to generate all patterns (note that this gets more likely as there are
probably some wider master rolls compared to the single type of master roll problem), we
suggest a linear model formulation based on the following binary variables:

γiknp :=

{
1, if p contains i exactly n-times and is used exactly k times

0, otherwise

µpjk :=

{
1, if p is applied on roll type j exactly k times

0, otherwise

υpj :=

{
1, if p can be applied on roll type j

0, otherwise

δpk :=

{
1, if p is used exactly k times

0, otherwise

By the use of the previous variables, we formulate the following binary linear program
(constraints BLM-MMR1 - BLM-MMR14):

18

2.1. Exact Model Formulations

Binary Linear Model with Multiple Types of Master Rolls - BLM-MMR:

min z =
∑
p∈P

∑
k∈K

δpk (BLM-MMR1)

s.t.
∑
p∈P

∑
k∈K

∑
n∈N

knγiknp = Di ∀i ∈ I (BLM-MMR2)∑
i∈I

∑
n∈N

winγiknp ≤ W|J |δpk ∀(p, k) ∈ P ×K (BLM-MMR3)∑
i∈I

∑
n∈N

winγiknp ≤ W|J |υp|J | −
∑

j∈J\{|J |}

(Wj+1 −Wj)υpj

∀(p, k) ∈ P ×K (BLM-MMR4)∑
i∈I

∑
n∈N

nγiknp ≤ Kδkp ∀(p, k) ∈ P ×K (BLM-MMR5)

υpj ≤ υp,j+1 ∀(p, j) ∈ P × J \ {|J |} (BLM-MMR6)∑
k∈K

kδkp =
∑
j∈J

∑
k∈K

kµpjk ∀p ∈ P (BLM-MMR7)∑
k∈K

µpjk ≤ υpj ∀(p, j) ∈ P × J (BLM-MMR8)∑
p∈P

∑
k∈K

kµpjk ≤ Cj ∀j ∈ J (BLM-MMR9)∑
k∈K

∑
n∈N

γiknp ≤ 1 ∀(p, i) ∈ P × I (BLM-MMR10)∑
k∈K

δpk ≤ 1 ∀p ∈ P (BLM-MMR11)∑
k∈K

kδpk ≥
∑
k∈K

kδp+1,k ∀p ∈ P (BLM-MMR12)∑
k∈K

δpk ≥
∑
k∈K

δp+1,k ∀p ∈ P (BLM-MMR13)

δkp ∈ {0, 1}, γiknp ∈ {0, 1}, µpjk ∈ {0, 1}, υpj ∈ {0, 1} (BLM-MMR14)

The number of different patterns is to be minimized (BLM-MMR1), while the second con-
straint ensures the exact demand fulfilment (BLM-MMR2). Although we allow the pattern
generation based on the widest master roll type by constraint BLM-MMR3, we evaluate for
each pattern on which master roll types it can be applied to (constraints BLM-MMR4 and
BLM-MMR6). The number of knifes is observed by the constraint BLM-MMR5. In addition,
the third and sixth constraint are used to connect the variables γiknp and δpk. The total
multiplicity of the pattern p must be equal to the sum of the pattern multiplicity’s being
applied on the different types of master rolls (BLM-MMR7). If a pattern p cannot be applied
on roll type j, µpjk must be equal to zero for all k ∈ K (constraint BLM-MMR8). The
stock levels must be observed for all types of master rolls (BLM-MMR9). The uniqueness
of the patterns multiplicity k and the uniqueness of the item multiplicity n of an order
width i are ensured by the constraints BLM-MMR10 and BLM-MMR11, while BLM-MMR11 could
be omitted of course (see Lemma 1). Finally, the patterns are sorted in descending order

19

2.2. Heuristic Approaches

(BLM-MMR12), while the next pattern can only be applied, if the previous pattern is already
used (BLM-MMR13). Both constraints are added to reduce the search space and to improve
performance.

First numerical results indicate that instances of small and medium complexity of the
Kallrath benchmark set can be solved to optimality in reasonable time by using the for-
mulations presented above. Note here that we just added two types of master rolls with
width 0.7 ·W resp. 1.3 ·W to the already existing type of width W (i. e., |J | = 3) and
some random stock levels Cj for testing purposes only.

2.2. Heuristic Approaches

In this Section, we will present some heuristic approaches for solving the one-dimensional
cutting stock problem with setup minimization and exact demand fulfilment.

The idea for the first approach presented in Subsection 2.2.1 is to adapt the complete
pattern generation approach demonstrated in Subsection 2.1.2 (model BLMPG). Instead
of generating all valid patterns, which is not always possible, we confine the pattern
generation on efficient patterns, e. g., patterns with a small amount of trim loss (cutoff).

We will present some variations of a Greedy algorithm in Subsection 2.2.2. The basic
idea of this algorithm is to generate patterns stepwise, while we try to maximise the
number of order widths which are fulfilled exactly by generating a single pattern in the
current iteration. Already fulfilled order widths are removed from the set of all order
widths after each iteration.

In Subsection 2.2.3, we present a novel approach for splitting an original problem
instance into smaller derived sub-instances. Those much smaller and less complex sub-
instances are formulated according to the model formulation BLM introduced in Subsection
2.1.3, which is quite performant for instances with small or medium complexity, and solved
with CPLEX afterwards. The unification of the solutions of the sub-instances provides a
feasible solution to the original problem instance.

Heuristic approaches are in general the only way to calculate acceptable solutions in
terms of solution time and solution quality also for large and complex instances of the
cutting stock problem with setup minimization. For instance, the Belov benchmark sets
provides problem sizes with up to 150 order widths, for whom it is not even possible to
generate the model BLM. However, the drawback is, that we have no guarantee to find the
optimal solution (or even good solutions, i. e., solutions with a small gap). In addition,
we have troubles to evaluate the goodness of the heuristic solution in general.

2.2.1. Combining Generation of efficient Patterns with free Patterns

Initially, we generate a set Pg of efficient patterns with efficiency rate 0 < e ≤ 1, e. g.,
patterns with fife percent trim loss (e = 0.05), by solving the pattern generation model
PG (constraints PG1-PG4) introduced in Subsection 2.1.2 with the CPLEX Solution Pool

functionality while adding the following constraint:∑
i∈I

wiγi ≥W (1− e). (PG5)

Afterwards, we solve the model BLMPG based on the set of efficient patterns. If we
obtain an optimal solution zP

g
opt , it provides an upper bound on the optimal solution zopt.

20

2.2. Heuristic Approaches

In case of infeasibility, we add free patterns one after another to the set Pf of the free
patterns in order to obtain an (optimal) solution zP

g
opt . These free patterns in Pf are then

added to Pg and removed from Pf . Note that the free patterns corresponds to the binary
variable γiknp with p ∈ Pf introduced in Section 2.1.3, while the generated patterns are
represented by the parameter γgip, denoting the item multiplicity of width i ∈ I in pattern
p ∈ Pg.

Note 6 (Worst Case Number of free Patterns in Case of Infeasibility) In the
worst case, one must add |I| free patterns to Pf in order to obtain an (optimal) solution

zP
g
opt when solving BLMPG at first. Obviously, it holds zP

g
opt = zopt in that case. For a given

efficiency rate 0 < e ≤ 1, i. e., patterns with a cutoff greater than e·W will not be generated
since they are not efficient, one can easily construct such a pathological worst case scenario
by defining the order widths in the following way: W/2 < wi < (1 − e)W, ∀i ∈ I. For
practical reasons, the efficiency rate e can be assumed to be (much) smaller than 0,5.

Another worst case scenario considers the number of knifes, while the order widths can
be arbitrary small: K = 1, wi < (1− e)W, ∀i ∈ I and wi +wi′ 6= W, ∀i, i′ ∈ I with i 6= i′

(the last constraint prevents the unlikely case that there can be cut two order widths with
one knife in a single pattern).

After calculating a solution zP
g
opt , we warm start a slightly modified version of BLM

(described in the following), named BLMEPG, with constraints BLMEPG1, BLMEPG2, BLM3-

BLM7 and BLMEPG8, in order to calculate zopt by adding zP
g
opt − 1 free patterns to Pf , i. e.,

Pf =
{
p1, ..., p

z
P
g
opt−1

}
.

Lower values for Pf do not guarantee the solution to be optimal (Lemma 4), but are
useful to reduce the solution time (heuristic approach).

We have to observe both kind of patterns in the objective of course, i. e.,

min z =
∑

p∈Pg∪Pf

∑
k∈K

δkp. (BLMEPG1)

The demand fulfilment equation is defined by∑
p∈Pg

∑
k∈K

kδkpγ
g
ip +

∑
p∈Pf

∑
k∈K

∑
n∈N

knγiknp = Di ∀i ∈ I. (BLMEPG2)

Note that the term kδkpγ
g
ip is linear, since γgip is a parameter. The constraints BLM3 to

BLM7 from the model BLM must be applied only for the free patterns, i. e., ∀p ∈ Pf . The
inequality BLM8 is applied for both, the generated patterns and the free patterns, since the
uniqueness multiplicity of all pattern shall be ensured, i. e.,∑

k∈K
δkp ≤ 1 ∀p ∈ Pg ∪ Pf . (BLMEPG8)

Note that we omit constraint BLM9 for simplicity.

Lemma 4 (Smallest valid Number of free Patterns for Model BLMEPG)

Given an optimal solution zP
g
opt of the model BLMPG based on pattern generation with

efficiency rate e, then zP
g
opt − 1 is a sufficient large number of free patterns to guarantee

finding an optimal solution zopt of the model BLMEPG, while there are also configurations,
where zP

g
opt − 1 is the smallest number of free patterns necessary to calculate an optimal

solution.

21

2.2. Heuristic Approaches

Proof. Since zP
g
opt is an upper bound to zopt, adding zP

g
opt − 1 free patterns is obviously

sufficient to find an optimal solution of the model BLMEPG. However, one can construct

worst case scenarios, where all free patterns Pf =
{
p1, ..., p

z
P
g
opt−1

}
are active to reduce

the number of different patterns (by one), while in the optimal solution, none of the gen-
erated efficient patterns can be used. For instance:

Width of master roll W = 100, set of orders I = {i1, ..., i4}, efficiency rate e = 0, 12.
The table summarizes the order widths wi, the demand Di, all efficient generated pat-
terns and the optimal solution based on the those patterns.

p1 p2 p3 p4
wi\µp 4 1 6 4 Di

w1 = 30 3 0 0 0 12
w2 = 44 0 2 1 1 12
w3 = 51 0 0 1 0 6
w4 = 52 0 0 0 1 4∑
wiγ

g
ip 90 88 95 96

The minimal number of setups based on the generated efficient patterns is zP
g
opt = 4,

while the optimal solution zopt for this configuration based on free and generated pat-
terns (shown in the next table) actually needs zopt = zP

g
opt − 1 = 3 free patterns. Note

that there is no optimal solution using any of the generated (efficient) patterns, i. e.,

we would not have found the optimal solution, if we allowed less than zP
g
opt − 1 free

patterns.

p1 p2 p3
wi\µp 12 6 4 Di

w1 = 30 1 0 0 12
w2 = 44 1 0 0 12
w3 = 51 0 1 0 6
w4 = 52 0 0 1 4∑
wiγ

f
ip 74 51 52

�

Note that the smallest number of free patterns necessary to find an optimal solution
is probably smaller, if there had been already added free patterns to obtain a feasible
solution when solving BLMPG based on the efficient patterns initially.

The solution times of the modified model BLMEPG have increased on most instances.
Holding a large amount of generated patterns in combination with free patterns often
results in an out of memory abort. Therefore, we suggest two variations.

Instead of solving the model BLMEPG, we use the generated patterns only to get a good
bound zup to zopt by solving BLMPG. Afterwards, we warm start the original model BLM
resp. the model BLMEPG (but by defining |Pg| = 0 and |Pf | = zup in order to omit the
generated patterns). Note that the solution must be sorted in advance to fulfil the sym-
metry breaking constraints BLM5 and BLM6.

The second variation is very obvious and a heuristic approach (while everything dis-
cussed above was exact of course). Instead of solving an exact model formulation like BLM

22

2.2. Heuristic Approaches

or BLMEPG subsequently, we denote the solution of the model BLMPG based on the efficient
generated patterns as heuristic solution and terminate the process at this point (while
there are some major differences, the idea of generating only a subset of all patterns in
order to solve a MILP model afterwards is well known, see [19] for instance). However, if
the model is infeasible at first, we have to add some free patterns.

The usage of generated patterns with small cutoff often leads to solutions with a small
number of master rolls m to be cut (secondary objective). Though, all approaches in this
Subsection will not be discussed further nor are the results presented and compared to
the other approaches, since we could not investigate the behaviour of the approaches on
a broad range of benchmark instances.

2.2.2. Greedy Algorithms

In this Subsection, we propose (some variations of) a novel heuristic greedy algorithm in
order to solve the one-dimensional cutting stock problem with pattern reduction. A greedy
algorithm searches the local optimum in each step, while there is in general no guarantee
that the returned solution is globally optimal.

The basic idea of our approach is to generate single patterns successive, while we try
to maximize the number of order widths being satisfied exactly by a single pattern in each
step (getting an local optimum). Order widths which are fulfilled exactly are removed
after each iteration until the demand of all order widths is satisfied exactly. The number
of iterations is equivalent to the number of the generated patterns and will be returned as
heuristic solution z.

Algorithm Greedy1
First of all, we have to introduce some additional notations:

- A binary variable χi ∀i ∈ I, defined as

χi :=

{
1, if the order i is satisfied exactly

0, otherwise.

- Set I ′ ⊆ I of order widths which are not fulfilled exactly yet. Initially, it holds
I ′ = I (i. e., no order width is fulfilled exactly).

- Number of order widths IP which can be fulfilled exactly by the current pattern.

- Remaining length W r of the recently generated pattern which can be used to cut
further items of the not yet fulfilled order widths.

- Remaining number Kr of knifes of the recently generated pattern which can be used
to cut further items of the not yet fulfilled order widths.

The variable z, defined as the number of different patterns in the previous Section, will
be used as an iteration counter, i. e., we increase z by one for each generated pattern resp.
iteration, starting with z = 0.

By the use of the previous variables and parameters, we formulate the following binary
linear program (G1A1 - G1A7):

23

2.2. Heuristic Approaches

Model for the Greedy1 Algorithm - G1A

max IP =
∑
i∈I′

χi (G1A1)

s. t.
∑
i∈I′

∑
n∈N

winγiknpz ≤ Wδkpz ∀k ∈ K (G1A2)∑
i∈I′

∑
n∈N

nγiknpz ≤ Kδkpz ∀k ∈ K (G1A2)∑
k∈K

∑
n∈N

knγiknpz = Diχi ∀i ∈ I ′ (G1A4)∑
k∈K

δkpz ≤ 1 (G1A5)∑
k∈K

∑
n∈N

γiknpz ≤ 1 ∀i ∈ I ′ (G1A6)

γiknp ∈ {0, 1}, δkp ∈ {0, 1}, χi ∈ {0, 1} (G1A7)

Note that we use the variables δkp and γiknp of the BLM formulation, while the last
index p is fixed to the current number of patterns z, which increases in each iteration of
the algorithm.

The objective G1A1 is to maximize the number of order widths whose demand can be
fulfilled exactly by the current pattern. The width of the pattern and the number of knifes
is observed by the constraints G1A2 and G1A3, while χi = 1 enforces the demand of i to
be fulfilled exactly by constraint G1A4. The uniqueness multiplicity of the pattern with
respect to the variable δkp is ensured by the constraint G1A5. The uniqueness multiplicity
of the current pattern and the uniqueness item multiplicity n of a width i with respect to
the variable γiknp is ensured by the constraint G1A6.

Based on the model G1A, we propose the following greedy algorithm, referred as Greedy1.
In each iteration, the algorithm generates a pattern which maximizes the number of orders
satisfied by this pattern (i. e., the demand is fulfilled exactly) by solving G1A. After each
iteration, there might be enough width W r of the master roll left to cut some further
items in order to reduce the demand of some yet not fulfilled order widths. In detail, for
every order width i in the set of the yet not fulfilled orders I ′ (starting with the first one
which will have the highest demand probably), we try to add i with the highest possible
item multiplicity to the current pattern while observing the remaining length W r of the
master roll and the remaining number Kr of knifes. Note here that no order i in I ′ will
be fulfilled exactly in this post processing step, since otherwise we would have gotten this
solution directly from solving the model G1A. The pseudocode of the Greedy1 algorithm
is presented below. The parameters up and aip are used to store the solution.

24

2.2. Heuristic Approaches

Greedy1 (I, Di, wi,K,W)

1: I ′ = I
2: z = 0, up = 0, aip = 0
3:

4: while |I ′| > 0 do
5: z ← z + 1
6: solve G1A(I ′, z,Di, wi,K,W)
7: upz =

∑
k∈K kδkpz

8: aipz =
∑

k∈K
∑

n∈N nγiknpz
9: W r = W −

∑
i∈I′ wiaipz

10: Kr = K −
∑

i∈I′ aipz
11: I ′ ← I ′ \ {i ∈ I ′|χi = 1}
12: for each i ∈ I ′ do
13: reduce Di

14: end foreach
15: N ,K ← getMaxMultiplicities(I ′)
16: end while
17:

18: return: z, up, aip

Line 15 is motivated due to the obtainable reduction of variables when solving G1A in
the next iteration by reducing the maximum item multiplicity resp. the maximum pattern
multiplicity. The numerical results of Greedy1 are presented and compared to the other
approaches in Section 3.3.

Example 2 (Demonstrating Greedy1) The Greedy1 algorithm will be demonstrated
on the instance fiber13a 9080 of the Fiber benchmark set. The number of knifes is
unrestricted and the master roll width is given by 9080. The following table summarizes
the order widths and the demands of the instance I = (I, Di, wi,K,W).

1. Iteration

i wi Di

i1 1000 158
i2 985 32
i3 1250 30
i4 920 23
i5 940 16
i6 923 10
i7 1100 6
i8 1050 4

When solving the model G1A for the first time, the demand
of the order widths i5 and i8 is fulfilled exactly, i. e., χi5 = 1
and χi8 = 1. The first pattern p1 will be used four times,
the item multiplicity of order i5 is equal to four and the item
multiplicity of order i8 is equal to one. Afterwards, the orders
i5 and i8 are removed from I ′, i. e., I ′ = {i1, i2, i3, i4, i6, i7}.
At this point, further widths can be added to p1, since there are
4270 length units unused. Starting with the first width in I ′,
we try to add further widths to p1. In consequence, the width
i1 is added four times to the pattern p1, which will reduce the
demand of i1 to Di1 = 142.

25

2.2. Heuristic Approaches

2. Iteration

i wi Di

i1 1000 142
i2 985 32
i3 1250 30
i4 920 23
i6 923 10
i7 1100 6

Solving the model G1A for the updated set I ′ and the reduced
demand Di, the demand for the widths i3 and i7 is fulfilled
exactly by adding i3 five times and i7 a single time to the next
pattern p2, which will be used six times in total. The orders i3
and i7 are removed from I ′. There are 1730 length units unused
in pattern p2. In consequence, the first order i1 is added a sin-
gle time to p2, which will reduce the demand of i1 to Di1 = 136.

3. Iteration

i wi Di

i1 1000 136
i2 985 32
i4 920 23
i6 923 10

In this iteration, only the demand of a single width can
be fulfilled exactly. The solver decides for the order width i1,
which will be added to the pattern p3 eight times, while the
pattern will be used seventeen times in total. Since there are
1080 length units unused in the current pattern, the order
width i2 is added a single time to p3, reducing the demand of
i2 to Di2 = 15.

4. Iteration

i wi Di

i2 985 15
i4 920 23
i6 923 10

Solving the model G1A for the data on the left will fulfil
the demand for i2 and i6 exactly, by adding i2 three times
and i6 twice to the pattern p4, which will be used 5 times in
total. Since there are 4279 length units unused in the current
pattern, the order width i4 is added four times to p4, reducing
the demand of i4 to Di4 = 3.

5. Iteration

i wi Di

i4 920 3

The width i4 will be added a single time to the last pattern
p5, which will be used three times in total (even if it would
be better the other way around, we have no influence in the
decision of the solver).

Note that the solution z = 5 generated by Greedy1 (summarized in the following table)
is one pattern worse than the optimal solution.

p1 p2 p3 p4 p5
wi\up 4 6 17 5 3 Di

w1 = 1000 4 1 8 0 0 158
w2 = 985 0 0 1 3 0 32
w3 = 1250 0 5 0 0 0 30
w4 = 920 0 0 0 4 1 23
w5 = 940 4 0 0 0 0 16
w6 = 923 0 0 0 2 0 10
w7 = 1100 0 1 0 0 0 6
w8 = 1050 1 0 0 0 0 4∑

wiaip 8810 8350 8985 8481 920

26

2.2. Heuristic Approaches

Algorithm Greedy2
This extension of the Greedy1 algorithm includes the decision how to fill up the already
generated patterns with not yet fulfilled order widths to the model formulation (presented
below), in order to replace the static filling procedure proposed in Greedy1. In addition,
we try not only to fill up the last generated pattern, but also all yet generated patterns
by including them into the model.

First of all, we have to introduce some additional notations:

- A binary variable γinp for all (i, n, p) ∈ I ×N × P, defined as

γinp :=

{
1, if the order i is added to the pattern p exactly n times

0, otherwise.

Note that the set of patterns P depends on the number of generated patterns z, i. e.,
P = {p1, ..., pz}, where z is incremented by one in each iteration starting with z = 0.

- Remaining length W r
p of a pattern p ∈ P \ {pz} which can be used to cut further

items of the not yet fulfilled order widths.

- Remaining number Kr
p of knifes of a pattern p ∈ P \ {pz} which can be used to cut

further items of the not yet fulfilled order widths.

After solving the model G1A initially, we will solve the model G2A (G2A1 - G2A10), de-
fined below, in each iteration.

Model for the Greedy2 Algorithm - G2A

max IP =
∑
i∈I′

χi (G2A1)

s. t.
∑
i∈I′

∑
n∈N

winγiknpz ≤ Wδkpz ∀k ∈ K (G2A2)∑
i∈I′

∑
n∈N

nγiknpz ≤ Kδkpz ∀k ∈ K (G2A3)∑
p∈P\{pz}

up
∑
n∈N

nγinp +
∑
k∈K

∑
n∈N

knγiknpz = Diχi ∀i ∈ I ′ (G2A4)∑
i∈I′

∑
n∈N

winγinp ≤ W r
p ∀p ∈ P \ {pz} (G2A5)∑

i∈I′

∑
n∈N

nγinp ≤ Kr
p ∀p ∈ P \ {pz} (G2A6)∑

k∈K
δkpz ≤ 1 (G2A7)∑

i∈I′

∑
n∈N

γiknpz ≤ 1 ∀k ∈ K (G2A8)∑
i∈I′

∑
n∈N

γinp ≤ 1 ∀p ∈ P \ {pz} (G2A9)

γiknp ∈ {0, 1}, δkp ∈ {0, 1}, χi ∈ {0, 1} (G2A10)

27

2.2. Heuristic Approaches

There is no change in the objective G2A1 compared to G1A. In each iteration, we try
to maximize the number of widths being fulfilled exactly by generating the new pattern,
while we try to add further order widths to all yet generated patterns in contradiction
to Greedy1, were this decision is made statically before solving the model again in each
iteration. The width of the new pattern and the number of knifes is observed by the
constraints G2A2 and G2A3, while χi = 1 enforces the demand of i to be fulfilled exactly by
constraint G2A4. Note here that we add a term respecting all yet generated patterns with
their fixed pattern multiplicity up, while we try to add further widths to all yet generated
patterns by using the variable γinp in order to fulfil the demand of order i ∈ I ′. Adding
further order widths to the already generated patterns is restricted to their remaining
length and their remaining number of knifes (constraints G2A5 and G2A6). The uniqueness
multiplicity of the currently generated pattern is ensured by the constraint G2A7. The
uniqueness multiplicity of the current pattern and the uniqueness item multiplicity n of a
width i is ensured by the constraint G2A8, while the uniqueness item multiplicity n of a
width i for the already generated patterns is ensured by the constraint G2A9.

Note that we use the variables δkp and γiknp defined in the formulation of the model
BLM, while the last index for the pattern p is fixed to the current number of patterns
z, which increases with every iteration of the algorithm. The pseudocode of Greedy2 is
demonstrated below. The parameters up and aip are used to store the solution.

Greedy2 (I, Di, wi,K,W)

1: I ′ = I, P = {}
2: z = 0, up = 0, aip = 0
3:

4: while |I ′| > 0 do
5: z ← z + 1
6: P ← P ∪ {pz}
7: solve G2A(I ′,P, z,Di, wi,K,W,K

r
p ,W

r
p)

8: upz =
∑

k∈K kδkpz
9: aipz =

∑
k∈K

∑
n∈N nγiknpz

10: W r
z = W −

∑
i∈I′ wiaipz

11: Kr
z = K −

∑
i∈I′ aipz

12: for each p ∈ P \ {pz} do
13: aip ← aip +

∑
k∈K

∑
n∈N nγinp

14: W r
p ←W r

p −
∑

i∈I′
∑

k∈K
∑

n∈N nwiγinp
15: Kr

p ← Kr
p −

∑
i∈I′

∑
k∈K

∑
n∈N nγinp

16: end foreach
17: I ′ ← I ′ \ {i ∈ I ′|χi = 1}
18: N ,K ← getMaxMultiplicities(I ′)
19: end while
20:

21: return: z, up, aip

Line 18 is motivated due to the obtainable reduction of variables when solving G1A in
the next iteration by reducing the maximum item multiplicity resp. the maximum pattern
multiplicity. The numerical results of Greedy2 are presented and compared to the other
approaches in Section 3.3.

28

2.2. Heuristic Approaches

Example 3 (Demonstrating Greedy2) The Greedy2 algorithm will be demonstrated
on the instance fiber13a 9080 of the Fiber benchmark set. The number of knifes is
unrestricted and the master roll width is given by 9080. The following table summarizes
the order widths and the demands of the instance I = (I, Di, wi,K,W).

1. Iteration

i wi Di

i1 1000 158
i2 985 32
i3 1250 30
i4 920 23
i5 940 16
i6 923 10
i7 1100 6
i8 1050 4

When solving the model G1A (=G2A for z = 1) initially,
the demand of the order widths i5 and i8 is fulfilled exactly,
i. e., χi5 = 1 and χi8 = 1. The first pattern p1 will be
used four times, the item multiplicity of order i5 is equal to
four and the item multiplicity of order i8 is equal to one.
Afterwards, the orders i5 and i8 are removed from I ′, i. e.,
I ′ = {i1, i2, i3, i4, i6, i7}. At this point, further widths could
be added to p1, since there are 4270 length units unused (i. e.,
W r

p1 = 4720). Note that Greedy1 would add the first order
with item multiplicity four to p1. The decision which orders
are added is now redirected to the first call of model G2A in the
next iteration.

2. Iteration

i wi Di

i1 1000 158
i2 985 32
i3 1250 30
i4 920 23
i6 923 10
i7 1100 6

In this iteration, three order widths can be fulfilled exactly by
generating a new pattern and by adding further order widths to
p1. The demand for order i2 will be fulfilled by adding i2 with
frequency three to p1, which is used four times and by adding i2
with item multiplicity two to the pattern p2, which will be used
ten times. In addition, adding i3 with item multiplicity three
and i6 with item multiplicity one to p2 will fulfil the demand
for i3 and i6 exactly. All three order widths are removed from
I ′. The remaining length in p1 is W r

p1 = 1315 and in p2 is
W r

p2 = 2437.

3. Iteration

i wi Di

i1 1000 158
i4 920 23
i7 1100 6

The first order i1 will be added to the pattern p2 with
item multiplicity two, reducing the remaining length of p3 to
W r

p2 = 437. Adding i1 with item multiplicity six to the new
pattern p3 which is used 23 times will fulfil the demand of i1
exactly. By adding i4 with item multiplicity one to p3, also the
demand of i4 will be fulfilled exactly. The remaining length of
p3 will be W r

p3 = 2160.

4. Iteration

i wi Di

i7 1100 6

The remaining width i7 can be added to all yet generated
patterns theoretically, but there would be an underproduction
when adding i7 to p1 and an overproduction when adding i7
to p2 or p3. In consequence, a fourth pattern must be generated.

While Greedy2 is a heuristic approach of course, note that the solution z = 4 (summa-
rized in the following table) is also the optimal solution for this instance.

29

2.2. Heuristic Approaches

p1 p2 p3 p4
wi\up 4 10 23 6 Di

w1 = 1000 0 2 6 0 158
w2 = 985 3 2 0 0 32
w3 = 1250 0 3 0 0 30
w4 = 920 0 0 1 0 23
w5 = 940 4 0 0 0 16
w6 = 923 0 1 0 0 10
w7 = 1100 0 0 0 1 6
w8 = 1050 1 0 0 0 4∑

wiaip 7765 8643 6920 1100

Algorithm Greedy3
This algorithm represents a variation of Greedy2, i. e., we do not modify the idea of the
heuristic itself, but we have seen that some constraints in the model G1A resp. G2A can
be omitted in order to keep the heuristic as slim and simple as possible. Afterwards,
we studied the effect on the solution time and solution quality (which seems to increase
slightly). In particular, the constraints G1A6 of the model G1A resp. the constraints G2A8

and G2A9 of the model G2A, ensuring the uniqueness multiplicity k and item multiplicity
n of the width i in the pattern p according to the definition of the variable γiknp, can be
omitted (Lemma 5). We will focus on Greedy2 resp. the model G2A for this variation,
as the solution quality is already superior compared to Greedy1. Note that Greedy3 will
find divergent solutions compared to Greedy2 in general, since the solver may decide for
differing order widths to be fulfilled exactly in the first iterations (but with the identical
objective value) by omitting the constraints, which will affect the decisions and the solution
quality in later iterations. For the same reason, the proposed Greedy algorithms are also
sensitive with regard to the sequence of the constraints in the implementation.

Lemma 5 (Uniqueness of Width Frequency) The constraint G1A6 of the model G1A
resp. the constraints G2A8 and G2A9 of the model G2A, ensuring the uniqueness item
multiplicity n of an order width i in a pattern p (and the uniqueness multiplicity k of p),
can be omitted.

Proof. We will proof that the constraint G1A6 of the model G1A can be omitted (in
order to proof that the constraints G2A8 and G2A9 of the model G2A can be omitted, one
can proceed analogously). First of all, note that the uniqueness multiplicity k of p with
respect to the variable γiknp is ensured by the constraint G1A2 in combination with G1A5,
i. e., γiknp = 1 and γik′np = 1 only for k = k′. In consequence, omitting the constraint
G1A6 will not affect the uniqueness of the pattern multiplicity k.

Every feasible solution δkp, γiknp of the model G1A without the constraints ensuring the
unique item multiplicity n of an order width i in pattern p has a corresponding feasible
solution in the non relaxed model G1A (and vice versa). Assuming there is a solution γiknp
of the relaxed model, where the item multiplicity of the width i in the pattern p is not
uniquely determined, i. e.,

∃(i, p) ∈ I ′ × P with
∑
k∈K

∑
n∈N

γiknp > 1.

We define nip as the total item multiplicity of the width i in pattern p, i. e.,

nip :=
∑
k∈K

∑
n∈N

nγiknp ∀(i, p) ∈ I ′ × P.

30

2.2. Heuristic Approaches

Obviously, nip ≤ |N |, since the total frequency is restricted by the maximum item
multiplicity |N | derived from the constraints G1A2 or G1A3. In addition,

∑
i∈I′ nip ≤

K, ∀p ∈ P, since γiknp is a feasible solution.
One can now construct the corresponding feasible solution to the non relaxed model

by redefining the solution in the following way:

γiknp = 0, ∀(i, k, n, p) ∈ I ′ ×K ×N \ {nip} × P

and

γiknipp :=

{
1, if δkp = 1

0, else.
∀(i, k, p) ∈ I ′ ×K × P.

In consequence, the solution gets feasible to the constraint G1A6 (which ensures the
uniqueness of the item multiplicity n), while the feasibility to the other constraints is
not affected. We will demonstrate this exemplarily for the constraint G1A2 observing the
number of knifes (the feasibility to the other constraints can be verified analogously). Note
that the values of the variable γiknp are redefined as explained above, while the values of
δkp are not affected, since the pattern multiplicity must not be redefined:

Kδkp ≥
∑
i∈I′

nipδkp=
∑
i∈I′

nipγiknippδkp =
∑
i∈I′

∑
n∈N

nγiknpδkp ∀(p, k) ∈ P ×K.

It holds γiknpδkp = γiknp, since γiknp = 1 implies δkp = 1, because the pattern multi-
plicity k for the pattern p is uniquely determined. If γiknp = 0, the product γiknpδkp will
be zero, too (while the value of δkp might be zero or one). In consequence, we can derive

Kδkp ≥
∑
i∈I′

∑
n∈N

nγiknpδkp =
∑
i∈I′

∑
n∈N

nγiknp ∀(p, k) ∈ P ×K.

Note that the uniqueness of the pattern multiplicity k is of particular importance when
verifying the feasibility of the redefined solution to the demand fulfilment constraint, as
the index k is also used as a factor in this equation. �

Consequently, one could also omit the constraint BLM7 of the model formulation BLM

in Section 2.1.3. However, the effect on the solution time was clearly negative when
investigating the solution time of BLM on a small amount of instances.

Note 7 (Approximation Quality of Greedy3) In order to evaluate the quality of the
solutions returned by a heuristic algorithm, it is of special interest to determine the ap-
proximation factor t. The approximation factor for a minimization problem is defined as
the smallest number t with z ≤ t · zopt, where z denotes the objective function value of the
heuristic solution returned by Greedy3 and zopt denotes the corresponding optimal objec-
tive function value for an arbitrary problem instance (absolute performance guarantee).

However, note that the proposed algorithm Greedy3 is sensitive with respect to the se-
quence of the constraints or the arrangement of the data, i. e., the algorithm will return
different solutions for the same problem instance if the constraints or the data are rear-
ranged. That is because there are in general several solutions with identical objective value
in the first iterations (e. g., the maximum number of orders being fulfilled exactly in the
first iteration is equals three by either adding i2, i5 and i13 or by adding i3, i4 and i10
to the current pattern). Those decisions in the first iterations have a major influence on
the results in the later iterations, leading to different solutions. In addition, one has no
insight into the decision process of the solver.

31

2.2. Heuristic Approaches

Both circumstances make it impossible to predict the behaviour of the algorithm deter-
ministically (in the worst case).

Therefore, we are just going to discuss some (weak) lower and upper bounds for the
approximation factor t. A lower bound on t can be derived by investigating the behaviour
of the algorithm on tiny problem instances.

A. For problem instances with a single order width, i. e., |I| = 1, the optimal solution
has the objective function value zopt = 1, while Greedy3 obviously returns the ob-
jective function value of z = 1, too, as the single order width can be fulfilled exactly
by a single pattern in the first iteration. In case of problem instances with a single
order width, the approximation factor t is equal to one, consequently.

B. For problem instances with exactly two order widths, i. e., |I| = 2, we have to dis-
tinguish two cases:

1. Both order widths can be combined in a single pattern, i. e., the minimal number
of patterns is zopt = 1. Indeed, Greedy3 will return the solution z = 1, as
both order widths will be combined within the first generated pattern (while the
demand will be fulfilled exactly). The approximation factor t is equal to one.

2. It is not possible to combine both order widths in a single pattern, i. e., the
minimal number of patterns is zopt = 2. In consequence, the solution returned
by Greedy3 will fulfil one of the order widths exactly by the first generated
pattern, while the remaining order width will be fulfilled exactly by the second
generated pattern, i. e., z = 2. Consequently, the approximation factor t is
equal to one in case of problem instances with two order widths.

C. As we have seen, algorithm Greedy3 will solve problem instances with a single or
two order widths to optimality. However, if |I| = 3, one can construct a problem in-
stance with zopt = 2 and z = 3, i. e., the (absolute) approximation factor t is greater
or equal 3/2 (but note that the actual performance observed in the computational
experiments is in general much better). The order widths i with demands Di and
width wi of the instance I can be seen in the left table, while the optimal solution
and the solution returned by Greedy3 can be seen in the middle or right table, resp.
The number of knifes K is unlimited and the width W of the master roll is given by
W = 100.

Instance I

i wi Di

i1 20 20
i2 75 10
i3 80 10

p1 p2
up 10 10 Di

w1 = 20 1 1 20
w2 = 75 1 0 10
w3 = 80 0 1 10

width 95 100

cutoff 5 0

p1 p2 p3
up 20 10 10 Di

w1 = 20 1 0 0 20
w2 = 75 0 1 0 10
w3 = 80 0 0 1 10

width 20 75 80

cutoff 80 25 20

Note that Greedy3 does not find the optimal solution, as the first order i1 is fulfilled in
the first iteration with pattern multiplicity 20, while it would be better to fulfil the second
and third order in the first resp. second iteration, as the first order can be added to these
patterns in the third iteration without generating a third pattern. Also note that Greedy3
may find the optimal solution, if the data or the sequence of the constraints are rearranged
due to the sensitivity of the algorithm mentioned in the beginning of this note.

We will not have any further insights by investigating problem instances with |I| = 3

32

2.2. Heuristic Approaches

and zopt = 1, as the algorithm will return the solution z = 1, since all order widths can be
combined in a single pattern.

Determining an upper bound on the factor t is far more difficult for the reasons men-
tioned at the beginning of this note (while determining an upper bound is also of far more
interest). However, it is clear that Greedy3 will never return a solution worse than the
upper bound |I| on the number of patterns, as the number of iterations is equal to |I| in
the worst case at and least one order width is being fulfilled in each iteration (weak relative
performance guarantee).

As the suggested greedy heuristics provide solutions in very short time but in general
without finding or proving optimal solutions, one should consider to exploit the heuristic
solution by using it as initial solution when solving an exact model formulation in order
to calculate optimal solutions (theoretically) and to get a better estimation of the solution
quality by observing the lower bound reported by the solver.

Exact Approach G3-BLM: Combining Greedy3 with BLM
Each instance is solved by the Greedy3 heuristic initially in order to warm start the
solver based on the BLM formulation afterwards. Note that the lower bounds motivated by
Lemma 3 can be improved due to a better upper bound zup (i. e., the solution returned
by Greedy3) on the number of patterns. Also note that the solution must be sorted in
advance to be feasible for the formulation BLM, as the model includes the pattern ordering
constraints BLM5 resp. BLM6.

G3-BLM (I, Di, wi,W,K)

1: zup, δkp, γiknp ← Greedy3(I, Di, wi,W,K) . get a feasible solution
2:

3: δkp, γiknp ← sort(δkp, γiknp)
4: ls ← getLowerBounds(Di, wi, z

up)
5: z ← solve BLM(I, Di, wi,W,K, δkp, γiknp, ls) . warm start BLM
6:

7: return: z

The numerical results of G3-BLM are discussed in Section 3.3.

2.2.3. Partitioning Algorithms

In this Subsection, we present a novel approach for splitting the original problem instance
into smaller and less complex derived sub-instances. While there are many potential
criteria on how to split the original instance, e. g., grouping the order widths by some
characteristics like the demand levels (see also [15]), this approach is motivated by the
fact, that the performance when solving an instance based on the monolithic BLM formu-
lation decreases significantly, if the demand levels are high on average. In addition, a
monolithic model formulation based on the BLM formulation, but with much fewer vari-
ables, is presented.

Demand Dividing Algorithm - DDA
The idea of this heuristic approach is to reduce the potential maximum multiplicity of
the patterns by reducing the demand levels Di in order to reduce the number of variables

33

2.2. Heuristic Approaches

significantly when solving an instance based on the BLM formulation afterwards, leading
to a considerable reduce of the solution time.

Therefore, we consider the representation Di = fi · v + ri of the demands with the
divisor v ∈ N0, quotient fi ∈ N0 and remainder ri ∈ {0, ..., v − 1}. From the original
instance I = (I, Di, wi,K,W), we derive the following instances: Ir = (Ir, ri, wi,K,W),
keeping the remainders as demand and Ifv = (Ifv, fi ·v, wi,K,W), keeping fi ·v = Di−ri
as demand. Note that i ∈ Ir ⇔ ri > 0, ∀i ∈ I and i ∈ Ifv ⇔ fi > 0, ∀i ∈ I. Obviously,
solving both instances separately generates a feasible solution for the original instance I.
For the numerical experiments, the divisor is set to v = 10 (see also Note 8), leading
to a significant reduce of variables for the instance Ir, since the maximum multiplicity
is restricted by the maximum demand v − 1 = 9. Though, the demands and therefore
the maximum multiplicity for the instance Ifv are almost unchanged at this point. For
instance, if the maximum demand was 158, the maximum demand in the instance Ifv is
equals 150.

However, instead of solving Ifv, one could also solve the instance If = (If , fi, wi,K,W)
with i ∈ If ⇔ fi > 0, ∀i ∈ I and objective function value zf to get a feasible solution
for Ifv with objective function value zfv = zf (Lemma 6). The number of variables in
the model for the instance If is much lower, since the maximum demand is divided by v.
Hence, the maximum multiplicity is reduced from 150 to 15 for the example above, leading
to an enormous reduction of solution time compared to the instance Ifv in general.

Example 4 (Demonstrating DDA) The DDA algorithm will be demonstrated on the
instance fiber13a 9080 of the Fiber benchmark set. The number of knifes is unrestricted
and the master roll width is given by 9080. The table on the left summarizes the order
widths and the demands of the original instance I = (I, Di, wi,K,W).

By choosing v = 10, we construct the instance Ir = (Ir, ri, wi,K,W), holding the
remainders when dividing the demand Di by v and the instance Ifv = (Ifv, fi ·v, wi,K,W),
holding the major parts of the demands, i. e., Di − ri. As mentioned in the description
above, instead of solving Ir and Ifv separately based on the BLM formulation, we solve Ir

and If in order to reduce the maximum element in the set K from 150 to 15, leading to a
significantly reduce of variables and equations in the BLM formulation.

Instance I

i wi Di

i1 1000 158
i2 985 32
i3 1250 30
i4 920 23
i5 940 16
i6 923 10
i7 1100 6
i8 1050 4

Instance Ir

i wi Dr
i

i1 1000 8
i2 985 2
i4 920 3
i5 940 6
i7 1100 6
i8 1050 4

Instance Ifv

i wi Dfv
i

i1 1000 150
i2 985 30
i3 1250 30
i4 920 20
i5 940 10
i6 923 10

Instance If

i wi Df
i

i1 1000 15
i2 985 3
i3 1250 3
i4 920 2
i5 940 1
i6 923 1

The following table summarizes the optimal solutions of the instance Ir on the left and
the optimal solution of If on the right.

34

2.2. Heuristic Approaches

p1 p2

wi\up 2 3 Dr
i

w1 = 1000 1 2 8
w2 = 985 1 0 2
w4 = 920 0 1 3
w5 = 940 0 2 6
w7 = 1100 0 2 6
w8 = 1050 2 0 4∑

wia
r
ip 4085 7000

p1 p2

wi\up 3 1 Df
i

w1 = 1000 5 0 15
w2 = 985 1 0 3
w3 = 1250 0 3 3
w4 = 920 0 2 2
w5 = 940 0 1 1
w6 = 923 0 1 1∑

wia
f
ip 5985 7453

One can now easily construct a feasible solution for the original instance I (shown
below) by constructing the unification of all patterns shown above and by multiplying the
multiplicity of the patterns in the optimal solution of If with the factor v = 10.

p1 p2 p3 p4
wi\up 2 3 30 10 Di

w1 = 1000 1 2 5 0 158
w2 = 985 1 0 1 0 32
w3 = 1250 0 0 0 3 30
w4 = 920 0 1 0 2 23
w5 = 940 0 2 0 1 16
w6 = 923 0 0 0 1 10
w7 = 1100 0 2 0 0 6
w8 = 1050 2 0 0 0 4∑

wiaip 4085 7000 5985 7453

While DDA is a heuristic approach of course, note that the solution above is also optimal
for the original instance I.

Although the BLM formulation is applied to solve the sub-instances Ir and If , we use
the model formulation MINLP (see 2.1.1) and the variables δp ∈ {0, 1} (pattern usage
indicator), µp ∈ Z+

0 (pattern multiplicity) and αip ∈ Z+
0 (item multiplicity of i in p) for

now in order to simplify the notation being used in Lemma 6.

Lemma 6 (Dividing the Demand by a common Divisor) If the solution δfp , µfp and

αf
ip is optimal for the instance If = (If , fi, wi,K,W) with objective function value zf , than

the solution δfvp , µfvp and αfv
ip defined by

δfvp = δfp , µfvp = vµfp and αfv
ip = αf

ip ∀(p, i) ∈ P × Ifv

is feasible for the instance Ifv = (Ifv, vfi, wi,K,W) with objective function value zfv =
zf , where v is a positive integer (and Ifv = If).

Proof. As there is no change with respect to the values of the variable αfv
ip compared

to the optimal (and feasible) solution αf
ip, the feasibility to the constraints MINLP3 and

MINLP4 (observing the width of the master roll and the number of knifes) is obvious. This
also applies to the ordering constraints MINLP5 and MINLP6 with respect to the variables
δfvp and µfvp , as µfp is multiplied with a constant factor.

The feasibility of δfvp = δfp and µfvp = vµfp with respect to the big M constraint MINLP6

35

2.2. Heuristic Approaches

is ensured, as the big M constant is defined in dependence of the largest demand level,
which is also multiplied by v for the instance Ifv. In addition, it holds∑

p∈P
αfv
ip µ

fv
p =

∑
p∈P

αf
ipvµ

f
p = v ·

∑
p∈P

αf
ipµ

f
p = vfi ∀i ∈ Ifv

and
zfv =

∑
p∈P

δfvp =
∑
p∈P

δfp = zf .

�

The pseudocode of DDA is given on page 37. Note that we introduce a duplicate checking
in line 31, as the proposed algorithm performs very bad on instances with broad widths
on average compared to the width of the master roll. For instance, an order width which
cannot be combined with any other order width while having demand levels greater zero
for both instances Ir and If increases the number of patterns z by two, while the pattern
is a duplicate actually. It is worth to check for duplicates; at least for instances where DDA

performs very bad, a reduction by five or six patterns is not uncommon.
The numerical results of the DDA heuristic are presented and compared to the other

approaches in Section 3.3.

Note 8 (Determining the Divisor v) The choice to define v statically by v = 10 is
basically motivated by the enormous reduction of variables in order to calculate optimal
solutions for the sub-instances Ir and If based on the model formulation BLM afterwards
in shorter time. However, one should also consider the following notes:

- If there are several orders with demand level greater than 100, there are (much)
more elements in the set Kf = {1, ...,maxi∈If fi} of the quotients (e. g., 57, if the
highest demand level is 576) than in the set Kr = {1, ...,maxi∈Ir ri} of remainders
(where the largest element is v − 1 = 9 in the worst case). Since these sets for the
pattern multiplicity have a major influence on the number of variables, the static
choice of v will probably result in unbalanced instances Ir and If (while the number
of variables also depends on the number of orders in each sub-instance, of course).
In consequence, the solution times for unbalanced sub-instances vary significantly.
Instead of the statical decision, one could define the divisor v depending on the highest
demand level, i. e., v = d

√
maxi∈I Di e. This will lead to more balanced sub-instances

If and Ir, since the sets Kf and Kr are more balanced, as the largest element in
both sets is approximately equals v.

- Based on numerical results, we have observed that it is slightly preferable if more
order widths occur exclusively in If or either Ir. Thus, we suggest to define the
divisor v as the (greatest) number dividing the most demand levels without rest.
However, to guarantee a decrease of variables and solution time, v should be greater
than a specific bound, e. g., greater than five. The drawback of this approach is,
that the divisor v will be close to its (user defined) lower bound in general, as the
smaller numbers are more likely to divide more demand levels without rest. Thus,
the reduction in terms of variables and solution time is smaller on the other hand.

36

2.2. Heuristic Approaches

DDA(I, Di, wi,K,W, v)

1: Ir = {}, If = {}
2:

3: for each i ∈ I do . define sets for the remainder model
4: Dr

i = mod(Di, v) . keep only the remainders as demand
5: if Dr

i > 0 then
6: Ir ← Ir ∪ {i}
7: end if
8: end foreach
9: Pr = {p1, ..., p|Ir|}

10: Kr = {1, ...,maxi∈Ir D
r
i }

11: N r = {1, ...,min [maxi∈Ir bW/wic ;K]
12:

13: if |Ir| > 0 then . solve only for the remaining demands
14: δrkp, γ

r
iknp ← solve BLM(Ir,Pr,Kr,N r, Dr

i , wi,K,W)
15: end if
16:

17: for each i ∈ I do . define sets for the quotients model
18: Df

i = floor(Di/v) . keep only the quotients as demand

19: if Df
i > 0 then

20: If ← If ∪ {i}
21: end if
22: end foreach
23: Pf = {p1, ..., p|If |}
24: Kf = {1, ...,maxi∈If D

f
i }

25: N f = {1, ...,min [maxi∈If bW/wic ;K]
26:

27: if |If | > 0 then . solve only for the quotients demands

28: δfkp, γ
f
iknp ← solve BLM(If ,Pf ,Kf ,N f , Df

i , wi,K,W)
29: end if
30:

31: z ← duplicateCheck
(
δrkp, γ

r
iknp, δ

f
kp, γ

f
iknp

)
32:

33: return: z

For the same reasons as mentioned in preface of G3-BLM, one should consider to use
the solution returned by DDA as initial solution when solving a problem instance based on
the BLM formulation.

Exact Approach DDA-BLM: Combining DDA with BLM
Each instance is solved by the DDA heuristic initially in order to warm start the solver
based on the BLM formulation afterwards with the solution returned by DDA. Note that the
lower bounds motivated by Lemma 3 can be improved due to a better upper bound zup

(i. e., the solution returned by DDA) on the number of setups. Also note that the solution
must be sorted in advance to be feasible for the formulation BLM, as the model includes the
pattern ordering constraints BLM5 resp. BLM6. In addition, one must construct the feasible

37

2.2. Heuristic Approaches

solution for BLM with respect to the original instance I in advance, since DDA returns only
the solutions for the sub-instances If and Ir.

DDA-BLM (I, Di, wi,W,K)

1: zup, δkp, γiknp ← transform(DDA(I, Di, wi,W,K)) . get a feasible solution
2:

3: δkp, γiknp ← sort(δkp, γiknp)
4: ls ← getLowerBounds(Ds, ws, z

up)
5: z ← solve BLM(I, Di, wi,W,K, δkp, γiknp, ls) . warm start BLM
6:

7: return: z

At the end of this section, we want to present an alternative version of the model formu-
lation BLM with much fewer (binary) variables in total, also motivated by the Di = fiv+ri
demand representation.

Exact Model Formulation with fewer Variables
The performance of the model BLM decreases significantly, if the demand levels Di are high
on average (due to large values of |K| and Di, the number of variables and constraints
increases drastically), e. g., the instance C4 of the Kallrath benchmark set with only four
order widths but with demands ranging up from 97 to 610 is solved to optimality in about
30 seconds, while other instances with similar size in terms of |I|, but with much smaller
demand levels, are solved to optimality in less than a second.

Based on the idea of splitting the problem instance I into the instances If and Ir by
exploiting the representation Di = fiv + ri of the demand levels, we suggest to split the
variables δkp and γiknp of the BLM formulation by the index k into an index set referring
to fi and an index set referring to ri. Therefore, we introduce the following variables:

δfkp :=

{
1, if p is used exactly kv times with regard to the quotients fi

0, otherwise,

resp.

γfiknp :=


1, if p contains i exactly n-times and is used exactly kv times

with regard to the quotients fi

0, otherwise,

where k ∈ Kf
0 := {0, 1, ...,maxi∈If fi} and

δrkp :=

{
1, if p is used exactly k times with regard to the remainders ri

0, otherwise,

resp.

γriknp :=


1, if p contains i exactly n-times and is used exactly k times

with regard to the remainders ri

0, otherwise,

where k ∈ Kr
0 := {0, 1, ...,maxi∈Ir ri}. The binary variable δp, introduced in Section

2.1.1, indicates the usage of the pattern p ∈ P. By the use of the previous variables, we
formulate the following binary linear program (constraints BLMFV1 - BLMFV15):

38

2.2. Heuristic Approaches

Binary Linear Model with Fewer Variables - BLMFV:

min z =
∑
p∈P

δp (BLMFV1)

s. t.∑
p∈P

∑
n∈N

(∑
k∈Kf

0

kvnγfiknp +
∑
k∈Kr

0

knγriknp

)
= Di ∀i ∈ I (BLMFV2)

∑
i∈I

∑
n∈N

winγ
f
iknp ≤ Wδfkp ∀(k, p) ∈ Kf

0 × P (BLMFV3)∑
i∈I

∑
n∈N

winγ
r
iknp ≤ Wδrkp ∀(k, p) ∈ Kr

0 × P (BLMFV4)∑
i∈I

∑
n∈N

nγfiknp ≤ Kδfkp ∀(k, p) ∈ Kf
0 × P (BLMFV5)∑

i∈I

∑
n∈N

nγriknp ≤ Kδrkp ∀(k, p) ∈ Kr
0 × P (BLMFV6)∑

n∈N

∑
k∈Kf

0

γfiknp ≤ 1 ∀(i, p) ∈ I × P (BLMFV7)

∑
n∈N

∑
k∈Kr

0

γriknp ≤ 1 ∀(i, p) ∈ I × P (BLMFV8)∑
k∈Kf

0

δfkp ≤ δp ∀p ∈ P (BLMFV9)

∑
k∈Kr

0

δrkp ≤ δp ∀p ∈ P (BLMFV10)∑
k∈Kf

0

γfiknp −
∑
k∈Kr

0

γriknp = 0 ∀(p, i, n) ∈ P × I ×N (BLMFV11)

∑
k∈Kf

0

kvδfkps +
∑
k∈Kr

0

kδrkps ≥ mlo −
∑
s′<s

D̃s′ −
∑

p∈P,p>s

(∑
k∈Kf

0

kvδfkp +
∑
k∈Kr

0

kδrkp

)

∀s ∈ {1, . . . , |I|} (BLMFV12)∑
k∈Kf

0

kvδfk,p+1 +
∑
k∈Kr

0

kδrk,p+1 ≤
∑
k∈Kf

0

kvδfkp +
∑
k∈Kr

0

kδrkp ∀p ∈ P \ {p|I|} (BLMFV13)

δp+1 ≤ δp ∀p ∈ P \ {p|I|} (BLMFV14)

δfkp ∈ {0, 1}, δ
r
kp ∈ {0, 1}, γ

f
iknp ∈ {0, 1}, γ

r
iknp ∈ {0, 1}, δp ∈ {0, 1} (BLMFV15)

Note that the term ”Fewer Variables” refers to the total number of variables in the model
formulation, which is smaller compared to BLM, as the sets Kf

0 and Kr
0 have much fewer

elements compared to K, while the number of different types of variables (see BLMFV15) in-
creased, of course.

The number of different patterns shall be minimized (BLMFV1). Constraint BLMFV2 ensures

the exact demand fulfilment. The variables γfiknp and δfkp resp. γriknp and δrkp are connected
by the constraints BLMFV3 and BLMFV4 resp. BLMFV5 and BLMFV6. In addition, the width W
of the master roll and the number K of knifes is observed. The uniqueness of the item mul-
tiplicity n of width i and the uniqueness of the pattern multiplicity k in pattern p is ensured

39

2.2. Heuristic Approaches

for both variables γfiknp and γriknp by the constraints BLMFV7 and BLMFV8. Note that the
pattern p is used (i. e., δp = 1), if the patterns is applied with any multiplicity k (constraints
BLMFV9 and BLMFV10), which is enforced to be unique additionally. The constraint BLMFV11
is of great importance, as it ensures the identical pattern composition of pattern p for both
types of variables γfiknp resp. γriknp, while the pattern multiplicity k can be varying. Note
that it is important to allow for the dummy multiplicity k = 0 of a pattern p in order to
fulfil the equation, even if the pattern does not contribute anything with regard to the range
of the remainders ri or with regard to the range of the quotients fi. The model is completed
by the symmetry breaking constraints BLMFV13 and BLMFV14 and by the constraint BLMFV12
(see Note 4) for numerical improvement.

Note that the upper and lower bounds on the pattern multiplicity introduced in Section
2.1.2 can only by applied on the variables γfiknp and δfkp with regard to the quotients fi. The
numerical performance of BLMFV is discussed in Section 3.3.

40

2.3. Setup Minimization & Cutoff Reduction

2.3. Setup Minimization & Cutoff Reduction

There are often several optimal solutions to the pattern minimization problem, but with
a varying number of master rolls m to be used (see also Example 1). Some of the so-
lutions have unnecessarily large cutoff, because it is not considered at any point in the
models and heuristics presented so far. One advantage of the compact model formulation
developed in Section 2.1.3 is the easy adaptability. In order to find an optimal solution
to the pattern minimization problem (primary goal), while cutting as few master rolls as
possible (secondary goal), one can simply adapt the objective function or add constraints
to the model formulation. Note that the cutoff reduction is equivalent to the reduction of
the number of master rolls being cut, if the overproduction of the order widths is handled
as cutoff (therefore we will use both terms synonymously). In order to avoid introducing
a further variable for the cutoff per pattern, we will focus on the number of master rolls
to be cut which can already be expressed by the variable δkp introduced in Section 2.1.2.

At first, we are going to present the exact approaches BLMPG-NR1 and BLM-NR1. Both
have in common, that the setup minimization problem is solved to optimality initially
(based on the BLMPG resp. BLM formulations introduced in Subsection 2.1.2 resp. 2.1.3).
The number of master rolls is reduced afterwards by adapting the objective function while
adding an additional constraint to observe the minimal number of patterns.

The monolithic model formulations BLMPG-NR2 resp. BLM-NR2 presented afterwards
both reduce the number of patterns as well as the number of master rolls being cut
simultaneously by adding a penalty term to the objective.

Finally, we suggest a modification of the heuristic approaches Greedy3 resp. DDA,
referenced as Greedy3* resp. DDA-NR1 hereafter, in order to include the reduction of
master rolls being cut.

Exact Approaches: BLMPG-NR1 and BLM-NR1
The optimal solution zopt of the setup minimization problem obtained by solving BLMPG

resp. BLM initially is used to warm start the solution process of the model BLMPG-NR1
(defined by the new objective function BLMPG1∗, constraints BLMPG2 - BLMPG4 of the BLMPG

formulation and completed by the additional constraint BLMPG5) resp. the model BLM-NR1
(defined by the new objective BLM1∗ and the constraints BLM2 - BLM11 of the BLM for-
mulation). In both models, we try to minimize the number of master rolls to be cut
by

min m =
∑
p∈P

∑
k∈K

kδkp. (BLMPG1∗ resp. BLM1∗)

The minimal number of different patterns to be used is observed by adding the con-
straint BLMPG5 to the model BLMPG-NR1, i. e.,∑

p∈P

∑
k∈K

δkp = zopt. (BLMPG5)

Note that this constraint is not added to the model formulation BLM-NR1, as we can
simply reduce the set of patterns by defining P = {p1, . . . , pzopt}, also leading to a de-
crease in terms of variables and constraints. In addition, we can improve the lower bounds
on the pattern multiplicity motivated by Lemma 3 in the formulation BLM-NR1, due to
a better upper bound zup on the minimal number of patterns (in particular, the upper
bound is zopt itself).

41

2.3. Setup Minimization & Cutoff Reduction

Exact monolithic Formulations: BLMPG-NR2 and BLM-NR2
In this approach, pattern and cutoff minimization are combined directly in a monolithic
model formulation, i. e., the number of patterns as well as the number of master rolls is
observed by the objective function BLMPG1∗∗ resp. BLM1∗∗, defined as

min z +m = min
∑
p∈P

∑
k∈K

δkp︸ ︷︷ ︸
∈ Z+

0

+
1

DT

∑
p∈P

∑
k∈K

kδkp︸ ︷︷ ︸
∈ (0; 1)

. (BLMPG1∗∗ resp. BLM1∗∗)

To prefer pattern minimization (primary goal - the first double sum defines the number
of different patterns to be used) over cutoff minimization (secondary goal), the second
term defines the number of master rolls to be cut must be scaled down, e. g., by using the
inverse of

DT =
∑
i∈I

Di

as scaling factor. Note that the second double sum is scaled down to a value between
0 and 1, since the number of master rolls to be cut is equals DT in the worst case.

Heuristic Approach: Greedy3*
This approach is based on the Greedy3 heuristic suggested in Section 2.2.2, as the results
of Greedy3 are superior compared to Greedy1 and slightly better compared to Greedy2.
There are only very limited options to modify the heuristic in order to observe the number
of master rolls being cut as secondary objective, as the pattern multiplicity cannot be
changed after the generation of a pattern. However, one can reduce the multiplicity of the
currently generated pattern easily by adding a penalty term within the objective function.
Note that this modification is the only derivation compared to Greedy3. In particular, we
redefine the objective function G2A1 in the following way:

max IP =
∑
i∈I′

χi︸ ︷︷ ︸
∈ Z+

0

− 1

1 + max
i∈I′

Di

∑
k∈K

kδkpz︸ ︷︷ ︸
∈ (0; 1)

. (G2A1∗)

The primary objective is to maximize the number of order widths being fulfilled exactly
by the current pattern z, while solutions with a greater amount of master rolls being cut
by applying the current pattern are penalised by subtracting a value between zero and one
(a higher pattern multiplicity will reduce the objective value more than a pattern with a
lower multiplicity). Note that adding one within the denominator is of great importance,
as otherwise the solver might return a solution with IP = 0 by generating an empty
pattern with multiplicity zero, instead of fulfilling a single order width by a pattern with
multiplicity maxi∈I′ Di. In this case, the algorithm will not terminate while increasing the
number of patterns incrementally.

The numerical results indicate that one has to do a trade-off between reducing the
number of patterns and reducing the number of master rolls, i. e., there is a decrease of
the number of master rolls being cut, while the number of patterns increases moderately
(see also Section 3.3).

This observation can be explained: Each pattern which is generated in the first it-
erations fulfils several order widths exactly in general. If there are several order widths

42

2.3. Setup Minimization & Cutoff Reduction

within the currently generated pattern, reducing the pattern multiplicity by increasing the
item multiplicity of the orders being part of the current pattern becomes very unlikely.
However, in the later iterations, the currently generated pattern often fulfils only a single
order width exactly, e. g., by adding an order with width 400 and demand 22 with the item
multiplicity one to the pattern which will be used 22 times. If the width of the master roll
is equals 1000, the item multiplicity will be equals two and the pattern multiplicity will
be equals eleven when running Greedy3*. In consequence, less master rolls are being cut.
However, as the recently generated pattern in this example has only 200 units of width
left, adding further order widths in later iterations to this pattern becomes very unlikely,
probably leading to the moderate increase in terms of z (number of patterns).

Heuristic Approach: DDA-NR1
It is worth to modify the DDA approach in order to reduce the number of master rolls
being cut as secondary objective, as it can be done quite easily (while the solution times
increase) and the reduction of master rolls being used is quite significant for some problem
classes.

In the DDA approach, we basically solve to less complex instances derived of the original
instance based on the BLM formulation. The idea for reducing the number of master rolls is
straightforward: After solving the first derived sub-instance (with demand levels equivalent
to the remainders), we warm start the model BLM-NR1 with the obtained solution of the
pattern reduction problem, introduced above, in order to reduce the number of master
rolls to be cut in this part of the solution. Afterwards, the second derived sub-instance
(with demand levels equivalent to the quotations) is solved. Again, we warm start the
model BLM-NR1 based on the data and the obtained solution for the second sub-instance
in order to reduce the number of master rolls. Finally, combining both solutions generates
a feasible solution to the original problem instance, but the number of master rolls to be
cut is (much) smaller in general compared to the solution of the unmodified DDA approach.
Note that the number of patterns might differ slightly compared to DDA due to the duplicate
checking, as the pattern structure varied probably by solving BLM-NR1 afterwards.

43

3. Numerical Experiments

In the first Section of this Chapter, we will briefly describe the problem characteristics,
i. e., the number of order widths, the range of widths and demand levels as well as the
background of the instances in the benchmark classes which are used to evaluate our ap-
proaches presented in Chapter 2. Some details of the GAMS implementation are mentioned
in Section 3.2. In Section 3.3, we will finally discuss and compare the numerical results of
our approaches on the benchmark classes among each other and with further approaches
published in literature.

3.1. Benchmark Data

The benchmark data is subdivided into five classes named Kallrath, Vanderbeck, Fiber,
Belov and Foerster & Wäscher, each of them consisting of several instances. Note that
the instances in the Kallrath, Vanderbeck and Fiber class are from real-world appli-
cations, while the instances in the Belov and Foerster & Wäscher class are generated
using a tool called CUTGEN, a problem instance generator for the one-dimensional cutting
stock problem coded by T. Gau and G. Wäscher (see [10]). Also note that the Belov

and Foerster & Wäscher classes are further subdivided into several subclasses due to the
large amount of instances in these classes. In total, we dispose of 2060 instances of the
one-dimensional cutting stock problem for setup minimization across all classes, which is
a (much) greater amount than in most publications in literature.

Kallrath Instances
The first benchmark set consists of 25 real-world instances of the paper industry. The
number of order widths ranges from 1 to 50 (see [5], p. 12). There is a limit on the number
of knifes for most instances in this set. The instances can be accessed from the website 1

and are already available as GAMS files. Numerical results for this benchmark class are
presented in [5] and [6].

Vanderbeck Instances
This benchmark set consists of 16 real-world instances. For a short description on their
background see [3], p. 24. Vanderbeck describes these instances as a representative se-
lection of the hardest one-dimensional cutting stock problems that arise in practise ([3],
p. 24.). Note that this assessment may no longer apply today, as it originally referred to
the year 2000. There is no limit on the number of knifes. These instances have been
transformed manually from text files into the GAMS format.

Fiber Instances
The problem instances of this benchmark class and the following description are taken
from the website 2, Section

”
Test instances in a chemical fiber company“. Numerical re-

sults have been published among others in [7]. There are 39 instances in total (however,

1https://www.sciencedirect.com/science/article/pii/S0377221714002562
2https://sites.google.com/site/shunjiumetani/benchmark

https://www.sciencedirect.com/science/article/pii/S0377221714002562
https://sites.google.com/site/shunjiumetani/benchmark

3.1. Benchmark Data

the website mentioned 40 for some reason). The number of order widths ranges from 6 to
29, while the demand levels ranges from 2 to 264. The width of the master roll is either
5180 or 9080, while the widths of the orders range from 500 to 2000. There is no limit
on the number of knifes. These instances have been transformed manually from text files
into the GAMS format. The real world background is an application in a chemical fiber
company in Japan.

Belov Instances
The problem instances of this benchmark class are taken from the website 3, Section

”
One-

dimensional setup minimization“. See also [8] and [9] for reference. There are 180 problem
instances in total, subdivided into nine classes each consisting of 20 problem instances,
which have been converted from text files into the GAMS format by a Python parser, es-
pecially written for this purpose only. Table 3.2 summarizes the problem characteristics
based on the description in [8], p. 11. The width W of the master roll is equals 10000 and
the number of knifes is unrestricted.

Class |I| min wi max wi min Di max Di

bel20 1 20 100 7000 1 100
bel50 2 50 100 2000 1 100
bel50 3 50 100 4000 1 100
bel50 4 50 100 7000 1 100
bel50 5 50 2000 4000 1 100
bel50 6 50 2000 7000 1 100
bel50 7 50 100 7000 1 10
bel50 8 50 100 7000 50 100
bel150 9 150 100 7000 1 100

Table 3.2.: Problem Data Characteristics - Belov Class

Foerster & Wäscher Instances
This class is by far the benchmark set with the highest amount of problem instances; 1800
in total, subdivided into 18 classes each consisting of 100 instances. The problem instances
are taken from the website 4, Section

”
Randomly generated test instances“. The data is

generated by CUTGEN, a problem instance generator-tool for one-dimensional cutting stock
problems and have been converted from text files into the GAMS format by using the parser
mentioned above. Computational results have been published among others in [7] and [11]
for reference. Table 3.5 summarizes some problem characteristics (see [7], p. 12). The
width W of the master roll is equals 10000 for each class. There is no limit on the number
of knifes.

3http://www.math.tu-dresden.de/~capad/cpd-ti.html
4https://sites.google.com/site/shunjiumetani/benchmark

45

http://www.math.tu-dresden.de/~capad/cpd-ti.html
https://sites.google.com/site/shunjiumetani/benchmark

3.1. Benchmark Data

Class |I| min wi max wi ∅Di

type01 10 10 200 10
type02 10 10 200 100
type03 20 10 200 10
type04 20 10 200 100
type05 40 10 200 10
type06 40 10 200 100
type07 10 10 800 10
type08 10 10 800 100
type09 20 10 800 10

Class |I| min wi max wi ∅Di

type10 20 10 800 100
type11 40 10 800 10
type12 40 10 800 100
type13 10 200 800 10
type14 10 200 800 100
type15 20 200 800 10
type16 20 200 800 100
type17 40 200 800 10
type18 40 200 800 100

Table 3.5.: Problem Data Characteristics - Foerster & Wäscher Class

46

3.2. Implementation

3.2. Implementation

The model formulations and heuristic approaches (see Table 3.6) proposed in Chapter 2
are implemented with GAMS 25.2.0 (General Algebraic Modeling System).

Approach Short Description Exact

PG Model for Pattern Generation (using the CPLEX Solution Pool Option) -
BLMPG Binary Linear Model based on complete Pattern Generation 3

BLMPG-NR1 Solving BLMPG initially, reducing the Number of Master Rolls subsequently 3

BLMPG-NR2 Observing the Number of Patterns and Master Rolls in the objective of BLMPG 3

BLM Binary Linear Model for Setup Minimization with exact Demand Fulfilment 3

BLM-NR1 Solving BLM initially, reducing the Number of Master Rolls subsequently 3

BLM-NR2 Observing the Number of Patterns and Master Rolls in the objective of BLM 3

BLMEP Model based on generated Efficient Patterns combined with free Patterns 3

BLMFV Binary Linear Model similar to BLM but with Fewer Variables 3

BLMPG-MMR Formulation similar to BLMPG, but observing multiple Types of Master Rolls 3

BLM-MMR Formulation similar to BLM, but observing multiple Types of Master Rolls 3

Greedy1 Greedy Algorithm based on the G1A Model 7

Greedy2 Greedy Algorithm based on the G2A Model 7

Greedy3 Greedy Algorithm based on the G3A Model 7

Greedy3* Greedy Algorithm based on the G3A Model including cutoff reduction 7

DDA Demand Dividing Algorithm 7

DDA-NR1 Demand Dividing Algorithm including cutoff reduction 7

G3-BLM Combining Greedy3 with the BLM formulation 3

DDA-BLM Combining DDA with the BLM formulation 3

Table 3.6.: Overview on the different Approaches

The instances of the Kallrath benchmark set were already stored as GAMS files, while
the Vanderbeck and Fiber instances have been converted to the GAMS format manually.
For the great amount of instances in the Foerster and Wäscher and Belov benchmark
set, a simple parser is written with Python and called from the GAMS Embedded Code

Facility in order to convert the text files automatically. The orders widths will be sorted
in descending order according to their demands levels when using the parser.

The following example code defines the data of the instance C3 of the Kallrath bench-
mark set, i. e., the set of orders I, the demand levels Di, the width of the single orders wi

and of the master roll W and the number of knifes K. Note that some labels in the code dif-
fer from the notation used in this document, e. g., the length of the master roll is named L.

1 Set i(∗) ’set of order widths’ /
2 ’A1’
3 ’A2’
4 ’A3’ /;
5

6 Parameter w(∗) ’width of order width i’ /
7 ’A1’ 500
8 ’A2’ 550
9 ’A3’ 600 /;

10

11 Parameter D(∗) ’demand (number of pieces of width i)’ /
12 ’A1’ 8
13 ’A2’ 4
14 ’A3’ 2 /;

47

3.2. Implementation

15

16 Scalar L ’length of the master roll’ / 2440 /;
17 Scalar MAXKNIFE ’upper bound on the number of knifes’ / 7 /;
18 Scalar CTRKNIFE ’if the number of knifes is restricted by MAXKNIFE’ / 1 /;

Based on those data files, the following GAMS code determines the sets P, K and N ,
which have been defined in the beginning of Chapter 2. Those sets are used in all ap-
proaches. They are stored in separate files which are included into the model file later on.

1 $onEcho > generateSets.gms
2 $include ".\data\data SR\C%instance%.gms";
3

4 Scalar maxP, maxK, maxN;
5 maxP = card(i);
6 maxK = smax(i, D(i));
7 maxN = min(smax(i, floor(L/w(i))),MAXKNIFE$CTRKNIFE + 99$(not CTRKNIFE));
8

9 File out%instance% / .\data\sets\Sets SR %instance%.gms /
10 put out%instance%;
11 put ’Set p / p1∗p’maxP:<10:0 ’ /;’/;
12 put ’Set k / 1∗’ maxK:<10:0 ’ /;’/;
13 put ’Set n / 1∗’ maxN:<10:0 ’ /;’/;
14 putClose;
15 $offEcho
16

17 $onEcho > makeGenerateSets.gms
18 Set instance / 1∗7 /;
19

20 File generateAll / .\generateAll.gms /;
21 put generateAll;
22

23 loop(instance,
24 put ’execute "gams generateSets.gms −−instance=’instance.tl:15’";’ /;
25);
26 putClose;
27 $offEcho
28

29 $call gams makeGenerateSets.gms
30 execute ’gams generateAll.gms’;

Executing the previous code generates the data files defining the sets for the instances C1
- C7 (which can be specified in the GAMS set directly within the model makeGenerateSets
in line 18). Note that this model should be executed only once, i. e., when new data
instances are added. The file written for the instance C3 defining the sets P, K and N
will look as follows.

1 Set p / p1∗p3 /;
2 Set k / 1∗8 /;
3 Set n / 1∗4 /;

At this point, only the implementation of the BLM formulation is presented, as the dif-
ferent codes are to extensive at this point. Note the time stamps in the code below in
line 4 and line 116. The elapsed solution time includes the time for the data input, the
preprocessing time (e. g., for variable fixing), the model generation time and the actual
time to solve the model. Note that the time for calculating the sets P, K and N is not

48

3.2. Implementation

included, as it is marginal of course.

1 $set instance 3
2 $set timeLimit 3600
3

4 Scalar starttime; starttime = jnow;
5 $include ".\data\data SR\C%instance%.gms";
6 $include ".\data\sets\Sets SR %instance%.gms";
7

8 Binary Variable
9 y(p,k,i,n) ’if p contains i exactly n times and p is used exactly k times’

10 v(p,k) ’if p is used exactly k times’;
11

12 Variable nP ’number of patterns’;
13

14 Scalar loNR ’lower bound on the number of rolls’;
15 loNR = ceil(sum(i, w(i)∗D(i))/L);
16

17 Parameter
18 loP(p) ’lower bound on the multiplicity of p’
19 lo(p) ’dummy parameter used for the calculation of loP’;
20

21 lo(’p1’) = ceil(loNR);
22 loop((p,i)$(ord(p) > 1 and ord(p) < card(p)),
23 if(ord(p) = ord(i) + 1,
24 lo(p) = lo(p−1) − D(i);
25);
26);
27

28 loP(’p1’) = ceil(loNR/card(p));
29 loop((p,i)$(ord(p) > 1 and ord(p) < card(p)),
30 if(ord(p) = ord(i) + 1,
31 loP(p) = ceil(lo(p)/(card(p) − ord(i)));
32);
33);
34

35 ∗ Variable fixing
36 loop(p,
37 loop(k,
38 loop(n,
39 loop(i,
40 if(ord(k) < loP(p),
41 v.fx(p,k) = 0;
42 y.fx(p,k,i,n) = 0;
43);
44 if(D(i) < loP(p),
45 y.fx(p,k,i,n) = 0;
46);
47 if(ord(p) = ord(i) and ord(k) > D(i),
48 y.fx(p,k,i,n) = 0;
49 v.fx(p,k) = 0;
50);
51 if(ord(n) > min{FLOOR[L/W(i)],D(i)}
52 or (CTRKNIFE = 1 and ord(n) > MAXKNIFE)
53 or ord(n) > D(i),
54 y.fx(p,k,i,n) = 0;
55);
56);
57);
58);

49

3.2. Implementation

59);
60

61 Alias (s,p);
62

63 Equation
64 BLM1 ’calculation of nP (number of patterns)’
65 BLM2(i) ’exact demand fulfillment of width i’
66 BLM3(p,k) ’observing the width of the master roll’
67 BLM4(p,k) ’observing the number of knifes’
68 BLM5(p) ’symmetry breaking constraint’
69 BLM6(p) ’symmetry breaking constraint (descending pattern multiplicity’
70 BLM7(p,i) ’ensuring the uniqueness frequency and multiplicity’
71 BLM8(p) ’ensuring the uniqueness multiplicity’
72 BLM11(s) ’see note 3 in the document’;
73

74 BLM1..
75 nP =e= sum(p, sum(k, v(p,k)));
76

77 BLM2(i)..
78 sum(p, sum(k, sum(n, ord(n)∗ord(k)∗y(p,k,i,n)))) =e= D(i);
79

80 BLM3(p,k)..
81 sum(i, sum(n, ord(n)∗y(p,k,i,n)∗w(i))) =l= L∗v(p,k);
82

83 BLM4(p,k)$(CTRKNIFE = 1)..
84 sum(i, sum(n, ord(n)∗y(p,k,i,n))) =l= MAXKNIFE∗v(p,k);
85

86 BLM5(p)$(ord(p) < card(p))..
87 sum(k, v(p+1,k)) =l= sum(k, v(p,k));
88

89 BLM6(p)$(ord(p) < card(p))..
90 sum(k, ord(k)∗v(p+1,k)) =l= sum(k, ord(k)∗v(p,k));
91

92 BLM7(p,i)..
93 sum((n,k), y(p,k,i,n)) =l= 1;
94

95 BLM8(p)..
96 sum(k, v(p,k)) =l= 1;
97

98 BLM11(s)..
99 sum(k, ord(k)∗v(s,k)) =g= loNR − sum(i$(ord(i)<ord(s)), D(i))

100 − sum((p,k)$(ord(p)>ord(s)), ord(k)∗v(p,k));
101

102 Model BLM / BLM1, BLM2, BLM3, BLM4, BLM5, BLM6, BLM7, BLM8, BLM11 /;
103

104 option
105 mip = cplex
106 optCr = 0
107 threads = 4;
108

109 MinNP.resLim = %timeLimit%;
110 $onEcho > cplex.opt
111 names no
112 $offEcho
113 MinNP.optFile = 1;
114 $log Solving %instance%
115 solve MinNP using mip min nP;
116 Scalar elapsed; elapsed = (jnow − starttime)∗24∗3600;

After solving an instance, the following solution report is created to display and verify

50

3.2. Implementation

the results. Note that the GAMS code generating the solution report is not presented at this
point nor in the appendix, as it is extensive and varies slightly for every model formulation.

1 Solution Summary Total 1 2
2 −−−
3 delta (p used): 2 1 1
4 Number Rolls : 5 4 1
5 −−−
6 Widhts Width aip Out(i) D(i)
7 A1 500 2 0 8 8
8 A2 550 1 0 4 4
9 A3 600 0 2 2 2

10 −−−
11 Max 7 cuts: 3 2
12 Used: 7400 1550 1200
13 Offcut: 4800 890 1240
14 −−−
15 Total: 12200 2440 2440

The minimum number of different setups for the instance C3 is two. The first pattern,
containing the order A1 two times and the order A2 once, will be used four times in total,
the second pattern containing the order A3 two times will be used only once. There are
also some additional input data, among them the number of cuts and the cutoff for each
pattern and the number of master rolls used in total.

By running the following code, several instances (entered in line 7) are solved auto-
matically in turn, while also generating a compact solution report listening all instances
with their solution status and the cutting plan for each instance. One can specify the time
limit in seconds per instance and the model resp. heuristic solution approach in the first
two lines.

1 $set timeLimit 3600
2 $set model BLM
3

4 $onEcho > makeTestRun.gms
5 Set instance
6 /
7 1∗7
8 /;
9

10 File executeTestRun / executeTestRun.gms /;
11 put executeTestRun;
12

13 loop(instance,
14 put ’execute "gams %model% −−instance=’ instance.tl:15 ’ −−timeLimit=’%

timelimit%’";’ /;
15);
16 putClose;
17

18 Execute ’del results%model%.txt’;
19 File results / results%model%.txt /;
20 put results;
21 put ’Instance nP relGap absGap solStatus solTime’ /;
22 $offEcho
23

24 $call gams makeTestRun.gms lo=%gams.lo%

51

3.2. Implementation

25 $ifE errorLevel<>0 $abort Error generating test run!
26

27 $call gams executeTestRun.gms lo=%gams.lo%
28 $ifE errorLevel<>0 $abort Error executing test run!

After solving the seven instances of the Kallrath benchmark set specified above, the
following report is created, summarizing the number of patterns and the number of master
rolls being cut, solution status, absolute and relative gap and the solution time for each
instance:

1 Instance nP nR relGap absGap solStatus solTime
2 1 1.00 1 0.00 0.00 1.00 0.18
3 2 2.00 21 0.00 0.00 1.00 0.18
4 3 2.00 4 0.00 0.00 1.00 0.17
5 4 4.00 707 0.00 0.00 1.00 27.54
6 5 2.00 5 0.00 0.00 1.00 0.18
7 6 4.00 33 0.00 0.00 1.00 3.31
8 7 6.00 73 0.00 0.00 1.00 1.51

All instances specified in this example are solved to optimality, as the relative gap (rel-
Gap) resp. the absolute gap (absGap) are equal to zero. In addition, the solution status
equal to 1 indicates optimality and successful termination.

Although each approach generates a feasible solution theoretically, note that the fea-
sibility of a solution, stored within the parameters up and aip, is always checked after
solving an instance just in case. The following code adds a note to the solution report, if
the demand is not fulfilled exactly or if the width of a patterns exceeds the width of the
master roll or if the number of cuts exceeds the number of knifes.

1 Parameter
2 used(p) ’width of the pattern p’
3 aip(i,p) ’frequency of width i in pattern p’
4 cuts(p) ’number of cuts in pattern p’
5

6 used(p) = sum(i, sum(n, Sum(k, ord(n)∗y.l(p,k,i,n)∗w(i))));
7 aip(i,p) = sum(n, sum(k, ord(n)∗y.l(p,k,i,n)));
8

9 Parameter
10 errorD(i) ’over− or underproduction of width i’
11 errorW(p) ’if a pattern is not valid’;
12

13 errorD(i) = abs(D(i) − sum(p, u(p)∗aip(i,p)));
14 errorW(p) = 1$(used(p) > L or (cuts(p) > MAXKNIFE)$(CTRKNIFE = 1));
15 if(sum(i, errorD(i)) > 0 or sum(p, errorW(p)) > 0,
16 put ’No feasible solution!’;
17);

52

3.3. Results

3.3. Results

The numerical experiments have been performed on an Intel i5-7200 2.5GHz with 8GB
RAM, using four threads. As mentioned before, the model formulations and heuristics
are implemented with GAMS 25.2.0 and solved by CPLEX 12.8.0.0 (running on default
setting, even so aggressive Probing seems to be beneficial). The elapsed time in seconds
includes the data import, pre- and post-processing steps, model generation and the actual
model solution time. Note that it is important not only to concern the actual model solu-
tion time reported by the solver, because some instances are solved quite fast, e. g., with
the BLMPG formulation, but the pre- and post-processing time takes up a multiple of the
time in order to handle a large amount of generated patterns.

Table 3.7 summarizes the different approaches for which we present and discuss nu-
merical results. In addition, we compare our results to those published in literature. Note
that Greedy3 as well as the approaches with suffix NR1 are superior in comparison with
the additional approaches like Greedy1 or BLM-NR2 summarized in Table 3.6.

Approach Short Description Exact

BLMPG Binary Linear Model based on complete Pattern Generation 3

BLMPG-NR1 Solving BLMPG initially, reducing the Number of Master Rolls subsequently 3

BLM Binary Linear Model 3

BLM-NR1 Solving BLM initially, reducing the Number of Master Rolls subsequently 3

BLMFV Binary Linear Model similar to BLM but with Fewer Variables 3

Greedy3 Greedy Algorithm based on the G3A Model 7

Greedy3* Greedy Algorithm based on the G3A Model including cutoff reduction 7

DDA Demand Dividing Algorithm 7

DDA-NR1 Demand Dividing Algorithm including cutoff reduction 7

G3-BLM Combining Greedy3 with the BLM formulation 3

Table 3.7.: Overview on the different Approaches

Basically, we will distinguish between two settings:

1. In order to obtain optimal solutions for all real-world problems, we are going to solve
the instances of the Kallrath, Vanderbeck and Fiber benchmark class by running
the model formulations BLMPG (if applicable) and BLM with a time limit of 86400
seconds on each instance. In addition, the results of the Greedy3 and DDA heuristics
(with v = 10) are added for comparison. The results are presented within the Tables
3.8, 3.9 and 3.10. Afterwards, the results of the approaches BLMPG-NR1, BLM-NR1,
Greedy3* and DDA-NR1 for minimizing the number of different patterns (primary
objective) and for minimizing the number of master rolls being cut (secondary ob-
jective) are presented (see Tables 3.11, 3.12 and 3.13). The time limit per instance
is 86400 seconds, too.

2. In the second setting, we include all 2060 instances distributed over 30 classes. The
time limit per instance is 3600 seconds. Table 3.14 summarizes the results for the
approaches BLMPG, BLM, Greedy3 and DDA (with v = 10) on pure setup minimization,
while Table 3.16 summarizes the results for the approaches BLMPG-NR1, BLM-NR1,
Greedy3* and DDA-NR1 (with v = 10) for minimizing the number of different pat-
terns (primary objective) and for minimizing the number of master rolls being cut
(secondary objective). Except for Greedy3 resp. Greedy3*, some approaches might

53

3.3. Results

not be applicable on several classes, e. g., as it is not possible to generate all patterns
for BLMPG or as the solver does not find a (promising) feasible solution within one
hour based on the BLM formulation. In the worst case, BLM terminates during model
generation due to an out of memory abort, e. g., when trying to solve problem in-
stances with 150 order widths. If an instances cannot be solved to optimality within
the given time limit, the current solution found will be reported as result and the
execution is terminated.

The results of some other approaches like G3-BLM and BLMFV will be discussed separately
later on.

In order to interpret the following result tables appropriately, we have to make some
remarks in advance. As they apply to all tables, they will be listed exclusively here:

- The average number of patterns per benchmark class is denoted by z, the average
number of master rolls being cut is denoted by m.

- If the number of patterns is optimal, the value for z is bold. This also applies to
whole benchmark classes, i. e., if all instances within a class are solved to optimality,
the average number of patterns z will be bold, too.

- The average number of patterns will be cursive and bold resp. cursive, if at most
10 % resp. at most 50 % of a benchmark class are not solved to optimality.

- Both previous remarks also apply to the number m of master rolls being cut. How-
ever, note that we focus on pattern reduction primarily, i. e., the value of m or m
will only be marked as optimal, if the corresponding value of z resp. z is optimal
at first. Also note that even in case the value for m or m is marked as optimal, the
value is in general much worse than the optimal solution of the pure cutoff reduction
problem, as pattern reduction is the primary objective.

- The superscript a resp. b indicate, that the calculation is based only on a subset of
the instances of a specific class, i. e., only for the first 20 out of 100 instances resp.
for the first 5 out of 20 instances. This is a restriction for practical reasons, as we
lack of time to compute some results for classes where the average solution time is
high.

- If an approach is in general not applicable, i. e., the majority of the instances of a
class cannot be solved with a specific approach, e. g., as it is by far not possible to
generate all patterns in advance for BLMPG, the instance/class is marked by a 7.

- If an approach is in general applicable, i. e., the majority of the instances of a class
can be solved (not necessarily to optimality within 3600 seconds) with a specific
approach (but not all instances), the instance/class is marked by a . Therefore,
we exclude those results from the overall comparison in order to be on the safe side.
Some examples are: 21 out of 25 instances of the Kallrath class can be solved
to optimality quite fast with BLMPG (see Table 3.8) or 9 out of 10 instances of the
bel20 1 class (see Table 3.2 resp. 3.14) are solved with a small relative gap on
average within 3600 seconds by BLMPG, while the tenth instances is aborted due
to an out of memory error. Both fields will be marked by a in Table 3.14 and
3.16. Note that the monolithic formulation BLM is in general applicable, however,
complex instances are still hard to solve (at least within 3600 seconds). If there are
no promising results after 3600 seconds, i. e., there is no significant improvement

54

3.3. Results

compared to the upper bound |I|, the fields will also be marked by a (e. g., for
most of the Belov classes and some of the Foerster & Wäschher sub-classes).

It’s obvious that the last two remarks also depend on the system (hard- and software) and
that the evaluation (i. e., 7 vs.) and the handling of the results are a matter of con-
sideration in many cases, e. g., we could also enter the worst case number of patterns |I|
for the tenth instance of bel20 1 in order to calculate the mean pattern count of this class.

Setup Minimization - Real-world Instances
Table 3.8 summarizes the results of the BLMPG, BLM, Greedy3 and DDA approaches on the
instances of the Kallrath class. In particular, the number z of different patterns, the
number m of master rolls and the solution time in seconds for each instances is reported.

BLMPG BLM Greedy3 DDA
Instance z m sec z m sec z m sec z m sec

C01 1 5 1 1 1 0 1 1 0 1 1 0
C02 2 17 1 2 21 0 2 17 0 2 17 0
C03 2 5 1 2 4 0 2 6 0 2 4 0
C04 4 690 4 4 707 28 4 1008 3 7 567 2
C05 2 5 1 2 5 0 2 5 1 2 5 0
C06 4 26 3 4 33 4 4 33 1 4 35 1
C07 6 78 1 6 73 2 7 77 2 8 73 1
C09 4 31 2 4 34 1 5 41 1 5 35 1
C10 5 39 1 5 32 1 5 39 2 6 37 1
C11 8 56 1 8 56 2 8 56 2 8 56 1
C12 6 39 2 6 46 1 7 37 1 6 36 3
C13 4 66 14 4 66 1 4 77 1 4 66 1
C14 4 7 6 4 7 1 5 9 1 4 7 1
C15 7 33 4 7 33 5 8 55 2 8 53 4
C16 8 20 1 8 21 1 8 20 2 8 20 1
C17 5 7 2 5 7 0 6 10 1 5 7 1
C18 10 103 8 10 124 231 11 128 3 11 115 5
C19 7 3 6 2 3 6 1 3 6 2
C27 7 6 28 91 7 30 3 7 44 11
C28 19 31 1 19 32 2 21 34 6 19 32 3
C29 24 119 1 24 119 0 24 119 5 24 119 2
C32 7 9 22 11 10 23 3 9 29 8
C42 7 11 35 34 12 37 4 11 35 26
C49 15 469 80 15 468 30768 18 756 9 18 483 9
C50 15 480 449 15 477 38565 19 583 9 18 584 11

Table 3.8.: Computational Results: Kallrath Class - Setup Minimization

Note that BLMPG is not applicable on four instances, as the number of generated pat-
terns is far too large (at least several hundreds of thousands).

At first we are going to compare the exact model formulations BLMPG and BLM. As can
be seen, the model based on complete pattern generation (if applicable) is superior in
terms of solution time compared to BLM, however, all instances can be solved to optimality
based on the BLM formulation with z = 7.36. The first 23 instances of low or medium
complexity are solved in short time (at most 231 seconds on C18, but in general within ten
seconds). Though, the solution time rises significantly to about ten hours when solving
the instance C49 or C50, since both are very complex, i. e., the number of orders is greater
than 30 and the demand levels are high on average.

It is of great interest to compare the results of the linearised model formulation BLM

55

3.3. Results

with the MINLP formulation presented in 2.1.1 in order to evaluate the obtained perfor-
mance improvement of the novel model formulation. Results for the MINLP formulation
based on the Kallrath class are computed in [6] (published in 2015, solver: BARON). While
most of the first thirteen instances of low complexity can be solved within a few seconds,
too, the solution time increases drastically for the majority of the last twelve instances
of medium or high complexity (except for C17, C19 and C29, which are solved in a few
seconds as well). In particular, C15 and C16 are solved in about 7000 resp. 10000 seconds,
C18 and C42 cannot be solved within 86400 seconds (absolute gap: 5 resp. 1 pattern).
The instances C27, C28 and C32 are solved in around 2200, 10000 and 1800 seconds, while
no feasible solution was found for C49 and C50 within 86400 seconds.

Even so we have to take in count that there are newer solver versions available today,
we can postulate that the BLM formulation is more performant by the factor 104 (approxi-
mately) in terms of solution time (on instances with medium or high complexity) compared
to the MINLP formulation based on those results.

Except for the instances C28, C49 and C50, the Greedy3 algorithm computes optimal
or near optimal solutions with an absolute gap smaller or equal two in under ten seconds
for all instances, while the DDA procedure provides optimal or near optimal solutions ex-
cept for the instances C04, C07, C49 and C50 in short solution times as well. The average
number of patterns for Greedy3 resp. DDA is equals to 8.12 resp. 8.00, i. e., DDA provides
slightly better results on average on this class.

The Exhaustion Method (see [5] for reference, published in 2014) provides results with
an average pattern count at around 7.60. We cannot determine an exact value for com-
parison, as the results differ on three instances slightly, e. g., we found the optimal value
of C07 to be 6 (in accordance with [6]) instead of 4 reported in [5]. On the other hand,
we found the optimal solution of C19 to be 3 (in accordance with [6]), while the optimal
solution is claimed to be equals 4 in [5]. Apart from this marginal differences, it can be
said that the Exhaustion Method provides slightly better solutions compared to Greedy3

and DDA on this class (0.5 patterns less on average). In addition, the number of master
rolls tends to be lower (see also Table 3.11 for a comparison with Greedy3* and DDA-NR1).
On the other hand, note that the solution time is 52 seconds on average compared to two
seconds of Greedy3 and four seconds of DDA. Also take in mind that the effort required to
implement the Exhaustion Method is greater.

Table 3.9 summarizes the results of the BLMPG, BLM, Greedy3 and DDA approaches on
the instances of the Vanderbeck benchmark class. Note that BLMPG is not applicable on
eight out of sixteen instances, as the number of generated patterns is far too large.

56

3.3. Results

BLMPG BLM Greedy3 DDA
Instance z m sec z m sec z m sec z m sec

d43p21 7 9 45 123 10 51 3 11 47 21
d16p6 8 43 1 8 41 7 8 48 2 9 58 5
11p4 7 4 189 34634 7 606 12 5 185 5
7p18 4 141 22 4 107 67 5 429 2 6 149 1

d33p20 7 7 31 54 9 45 2 7 31 7
12p19 4 26 108 4 25 37 5 39 1 5 27 1
14p12 7 5 64 849 6 136 5 6 69 2
30p0 7 7 95 19755 9 337 10 9 105 9
kT01 3 15 4 3 24 1 3 19 1 3 21 1
kT02 15 71 2 15 71 7 17 80 4 17 70 4
kT03 6 78 2 6 119 3 7 77 1 8 73 1
kT04 8 41 3 8 51 9 8 48 2 9 58 7
kT05 6 55 1 6 55 1 6 85 1 7 55 1
kT06 7 3 67 1440 4 57 5 4 57 3
kT07 7 4 68 631 5 165 4 5 115 3
kT09 7 5 117 2501 6 232 10 5 144 3

Table 3.9.: Computational Results: Vanderbeck Class - Setup Minimization

All instances which can be formulated according to the BLMPG formulation are solved
to optimality in short time. Fourteen out of sixteen instances can be solved to optimality
in short or acceptable time based on the BLM formulation, while the solution times for the
instances 11p4 and 30p0 are high (several hours), as the demand levels and/or the number
of orders are high on average.

The heuristic approaches provide results in short time (far under 30 seconds in gen-
eral) with optimal or near optimal solutions (absolute gap smaller or equal two, except for
Greedy3 on instance 11p4), while Greedy3 with an average pattern count of 7.19 performs
slightly better compared to DDA with an average value of 7.25 patterns. However, also
note that the number of master rolls to be cut in the solutions computed by Greedy3 is
approximately twice the size on average compared to those computed by DDA (secondary
objective).

To the best of our knowledge, only F. Vanderbeck (Branch & Cut & Price, see [3])
and G. Belov & G. Scheithauer (Branch & Price, see [8]) provide computational results
for this benchmark class. Although both authors stipulate exact demand fulfilment, the
comparability is limited, as both approaches minimize the number of different patterns
based on the optimal solution mopt of the classical cutoff reduction model, i. e., there is a
further constraint to limit the total pattern multiplicity like∑

p∈P
µp ≤ mopt,

where µp denotes the multiplicity of pattern p. In contrast to this, we focus on mini-
mizing the number of different patterns primarily. Consequently, our optimal solutions on
pure setup minimization with an average value of 6.13 are better in terms of z compared
to [3] with an average value of 7.31 and [8] with an average value of 7.50, at the cost of
higher values of m on average (m = 73 compared to mopt = 58

”
used“ in the Vanderbeck

and Belov approach). Note that both authors cannot prove there solutions to be optimal
on several instances. However, the strengths of Vanderbeck’s and Belov’s methods only
becomes clear if you take in mind the computational time and the dates of publication. In
particular, the average computational time of Vanderbeck resp. Belov is around 437 sec-

57

3.3. Results

onds resp. 142 seconds on far inferior systems in terms of hard- and software (Vanderbeck
in 1999, Belov in 2003) compared to the average computational time of BLM with 3758
seconds (note the influence of the two outliers on this average value). On the other hand,
the implementation effort of Vanderbecks’s or Belov’s approach is far higher compared
to the comfortable implementation of BLM, Greedy3 and DDA with an algebraic modelling
language. We will resume the comparison once our heuristics have been adjusted in order
to minimize m as secondary objective (see Table 3.12).

Table 3.10 summarizes the results of the BLMPG, BLM, Greedy3 and DDA approaches on
the instances of the Fiber benchmark class. Note that BLMPG is not applicable on 14 out
of 39 instances, as the number of generated patterns is far too large.

As can be seen that all instances which can be formulated according to BLMPG are solved
to optimality in short or acceptable time (the longest solution time is around 1000 seconds
for the instance fiber19 5180). The results of BLM are very convincing on this benchmark
class, as there are no outliers compared to the previous benchmark classes. In particular,
each instances can be solved to optimality with an average pattern count of 4.51 in under
3600 seconds, which is quite acceptable.

The heuristic approaches Greedy3 and DDA provide results in short time (at most 12
seconds per instance) with optimal or near optimal solutions (absolute gap smaller or
equal two), while Greedy3 with an average pattern count of 5.23 performs slightly better
compared to DDA with an average of 5.49 patterns. However, as already noticed on the
previous benchmark class, take in mind that the number of master rolls to be cut in the
solutions computed by Greedy3 is again approximately twice the size on average compared
to those computed by DDA (secondary objective).

Computational results on this benchmark class have been published by several authors,
among them Umetani Et al. back in 2003, see [7] and Cui Et al. in 2015, see [19].
However, the problem definition investigated in [7] (the number of patterns is fixed to a
specific value while the quadratic derivation of the produced item levels from the demands
levels is minimized) differs to much from our problem description in order to carry out a
meaningful comparison. We found the problem definition by Cui closer to ours, but there
are also some major differences. The authors in [19] allow for unlimited overproduction
while they observe both, the number of master rolls and the number of different patterns
within the objective. In addition, both terms are multiplied with the cost per master roll
resp. pattern (weighting factors), i. e., the objective is to minimize the total material and
setup cost. The average pattern count reported in [19] of 7.9 is significant higher than
the optimal pattern count of 4.51 calculated with BLM for the pure setup minimization
problem. Also the heuristics Greedy3 and DDA provide solutions with fewer patterns on
average (z = 5.23 and z = 5.49 in three resp. two seconds on average). On the other hand,
the solutions reported in [19] are much better in terms of m. In particular, 61 master rolls
are cut on average compared to 98 by BLM and 222 resp. 131 computed by Greedy3 resp.
DDA. Those significant differences are probably best explained by preferring solutions with
lower material costs over solutions wit lower setup cost by adjusting the weighting factors
in the objective. Note that the heuristics Greedy3* and DDA-NR1 compute solutions much
closer to the value m = 61 with an almost constant pattern count (see discussion in relation
to Table 3.13). The average computation time of the results in [19] is 1.5 seconds on a
system similar to ours.

58

3.3. Results

BLMPG BLM Greedy3 DDA
Instance z m sec z m sec z m sec z m sec

fiber06 5180 4 84 3 4 49 4 4 89 1 5 44 1
fiber06 9080 3 23 14 3 21 2 3 26 2 4 35 1
fiber07 5180 3 34 2 3 45 2 3 48 1 4 55 0
fiber07 9080 3 21 7 3 39 3 4 165 1 4 35 1
fiber08 5180 3 197 4 3 141 5 4 225 1 4 387 1
fiber08 9080 3 54 13 3 70 4 3 205 1 4 382 1
fiber09 5180 4 117 2 4 80 3 4 89 2 5 88 1
fiber09 9080 4 39 13 4 57 3 4 78 1 4 83 1
fiber10 5180 4 86 4 4 109 4 5 175 2 5 245 2
fiber10 9080 3 45 31 3 42 8 4 177 1 4 145 1
fiber11 5180 4 251 10 4 155 6 4 142 2 5 69 3
fiber11 9080 3 55 168 3 55 9 4 263 2 4 57 2

fiber13a 5180 5 65 7 5 65 12 6 132 2 6 77 1
fiber13a 9080 4 55 84 4 35 13 4 43 1 4 45 2
fiber13b 5180 4 44 29 4 47 3 4 129 1 4 125 2
fiber13b 9080 7 3 116 3 4 119 1 4 124 2
fiber14 5180 4 92 19 4 92 3 4 158 1 5 86 1
fiber14 9080 7 3 29 15 4 109 2 4 76 1
fiber15 5180 4 106 5 4 105 15 5 306 2 5 112 1
fiber15 9080 3 35 53 3 102 6 4 296 2 4 204 2
fiber16 5180 6 134 466 6 97 351 8 250 4 7 121 2
fiber16 9080 7 5 64 362 5 103 3 6 67 3
fiber17 5180 5 86 48 5 88 238 6 220 3 5 88 2
fiber17 9080 7 4 57 183 5 201 4 5 66 2
fiber18 5180 6 280 100 6 332 159 6 339 3 6 317 2
fiber18 9080 7 4 56 253 5 303 3 6 73 4
fiber19 5180 6 272 1086 6 469 694 7 205 4 7 491 2
fiber19 9080 7 4 90 293 5 254 4 5 137 2
fiber20 5180 6 33 39 6 41 21 6 67 2 7 37 4
fiber20 9080 7 4 24 13 4 24 1 5 23 4
fiber23 5180 7 172 90 7 165 511 8 503 5 8 162 2
fiber23 9080 7 5 109 1077 7 477 7 6 87 3
fiber26 5180 7 323 574 7 197 2472 8 957 10 9 236 5
fiber26 9080 7 5 142 1707 6 626 12 6 299 6

fiber28a 5180 7 6 113 517 7 252 5 8 89 5
fiber28a 9080 7 5 56 429 6 219 4 6 53 7
fiber28b 5180 7 8 147 2585 10 557 7 9 142 4
fiber29 5180 7 7 71 208 8 73 4 9 74 3
fiber29 9080 7 5 38 72 6 37 4 6 59 4

Table 3.10.: Computational Results: Fiber Class - Setup Minimization

To the best of our knowledge, we can provide optimal solutions with respect to the
pure setup minimization problem with exact demand fulfilment for all instances of the
benchmark classes Kallrath, Vanderbeck and Fiber for the first time in literature by us-
ing the BLM formulation. Those optimal solutions are computed in short resp. acceptable
time for problem instance of small or medium complexity, while there are some outliers
of high complexity, which can only be solved to optimality based on a monolithic model
formulation after several hours.

Both heuristics, Greedy3 and DDA, provide solutions with small absolute resp. relative
gap in terms of z in short time on all problem instances.

59

3.3. Results

Setup Minimization & Cutoff Reduction - Real-world Instances
Table 3.11 summarizes the results of the BLMPG-NR1, BLM-NR1, Greedy3* and DDA-NR1

approaches on the instances of the Kallrath benchmark class. Note that e. g., the minimal
value for m for the instance C4 of 456 reported by DDA-NR1 is not marked as optimal (even
so it is the smallest one), as the corresponding number of patterns for this solution is
not optimal. The approach BLMPG-NR1 is not applicable on 4 out of 25 instances, as the
number of generated patterns is far too large.

Minimal number of master rolls solutions constrained by the minimal number of pat-
terns can be calculated with BLMPG-NR1 on all instances except for C19, C27, C32 and C42.
There is a significant increase in terms of solution time, most obvious for the instances
C18, 49 and C50 (from seconds resp. minutes to several hours). The average number of
master rolls compared to the solutions of pure setup minimization computed by BLMPG is
reduced from 111 to 94 (approximately 15 %).

Most of the instances can be solved with BLM-NR1 in reasonable time, except for C4

and C18 the increase of solution time compared to BLM is acceptable. Note that we do not
provide solutions for C49 and C50. The estimated solution time per instance is about one
day. The number of master rolls being cut is reduced by approximately 24 % compared to
BLM based on the first 23 instances.

BLMPG-NR1 BLM-NR1 Greedy3* DDA-NR1
Instance z m sec z m sec z m sec z m sec

C01 1 1 1 1 1 0 1 1 1 1 1 1
C02 2 13 2 2 13 0 2 17 0 2 17 1
C03 2 4 1 2 4 0 2 4 0 2 4 1
C04 4 457 14 4 457 5707 4 545 3 5 456 4
C05 2 5 2 2 5 1 2 5 0 2 5 1
C06 4 17 5 4 17 7 4 18 1 4 25 1
C07 6 66 2 6 66 10 7 68 2 7 71 1
C09 4 27 2 4 27 2 5 28 2 6 32 1
C10 5 27 2 5 27 3 5 31 1 6 36 1
C11 8 51 1 8 51 4 9 60 2 8 51 2
C12 6 36 3 6 36 5 7 36 2 6 36 3
C13 4 44 25 4 44 7 4 66 1 6 44 3
C14 4 7 10 4 7 3 5 8 2 4 7 1
C15 7 31 8 7 31 10 8 36 3 8 37 8
C16 8 19 2 8 19 3 8 20 3 8 19 2
C17 5 7 4 5 7 1 6 8 1 5 7 1
C18 10 98 215 10 98 3175 12 114 3 12 111 10
C19 7 3 6 2 3 6 1 3 6 2
C27 7 6 27 121 7 28 2 7 34 13
C28 19 31 1 19 31 3 20 33 4 19 31 4
C29 24 119 2 24 119 1 24 119 5 24 119 1
C32 7 9 21 92 10 23 3 9 29 11
C42 7 11 32 90 13 38 4 11 34 35
C49 15 445 17185 19 459 8 18 449 20
C50 15 460 4633 19 499 8 18 459 15

Table 3.11.: Computational Results: Kallrath Class - Setup & Cutoff Minimization

The heuristics Greedy3* resp. DDA-NR1 still provide optimal or near optimal solutions
in terms of z (the average pattern count increased slightly from 8.12 to 8.24 for Greedy3*
resp. from 8.00 to 8.04 for DDA-NR1), while the number of master rolls being cut is reduced
by approximately 29 % from m = 128 to m = 91 on average compared to Greedy3 resp.
by approximately 14 % from m = 99 to m = 85 on average compared to DDA. The results

60

3.3. Results

are slightly worse than the average number of master rolls being cut when applying the
Exhaustion Method (m = 83, see [5]).

Table 3.12 summarizes the results of the BLMPG-NR1, BLM-NR1, Greedy3* and DDA-NR1

approaches on the instances of the Vanderbeck benchmark class. Note that BLMPG-NR1

is not applicable on 8 out of 16 instances, as the number of generated patterns is far too
large. However, minimal number of master rolls solutions constrained by the minimal
number of patterns can be calculated for all eight instances. The solution time for 12p19
increased drastically (up to half a day), while the other instances are solved to optimality
in acceptable time. The average number of master rolls compared to the solutions of pure
setup minimization by using BLMPG is reduced from 59 to 50 (approximately 15 %).

Most of the instances can be solved with BLM-NR1 in reasonable time. Note that we
do not provide solutions for 11p4 and kT09, as the estimated solution time per instance
is about half a day (like for the instance 30p0). The number of master rolls being cut is
reduced by approximately 13 % from m = 62 to m = 54 compared to BLM based on the
instances solved by BLM-NR1. The heuristics Greedy3* resp. DDA-NR1 still provide optimal
or near optimal solutions in terms of z (the average pattern count increased slightly from
7.19 to 7.38 for Greedy3* resp. decreased slightly from 7.25 to 7.19 for DDA-NR1), while
the number of master rolls being cut is reduced by approximately 54 % from m = 154 to
m = 71 on average compared to Greedy3 resp. by approximately 19 % from m = 78 to
m = 63 on average compared to DDA.

By the Table 3.9 we have discussed our results on pure setup minimization compared to
the results of Vanderbeck and Belov (see [3] and [8]). Considering the results of Greedy3*
with z = 7.38 and m = 71 computed within four seconds on average resp. of DDA-NR1 with
z = 7.19 and m = 63 within seven seconds on average, we have found nearly equivalent
solutions compared to the results of Vanderbeck with z = 7.31 and m = 58 resp. compared
to Belov with z = 7.5 and m = 58, but in much shorter time (on a more powerful system)
and - of greater importance - with much more simpler approaches. Though, take in mind
again that the problem definitions differ as Vanderbeck and Belov search for a minimal
pattern solution based on the minimal cuttoff solution.

BLMPG-NR1 BLM-NR1 Greedy3* DDA-NR1
Instance z m sec z m sec z m sec z m sec

d43p21 7 9 43 124 11 45 3 11 43 21
d16p6 8 40 5 8 40 13 8 40 2 9 46 10
11p4 7 5 153 15 5 105 7
7p18 4 95 632 4 95 92 5 158 3 6 97 2

d33p20 7 7 30 82 8 36 3 7 31 8
12p19 4 24 46254 4 24 171 6 24 1 5 27 1
14p12 7 5 56 377 6 67 6 6 58 3
30p0 7 7 91 40201 10 95 10 9 94 12
kT01 3 14 10 3 14 2 3 16 1 3 21 1
kT02 15 71 3 15 71 14 18 85 3 17 70 29
kT03 6 66 2 6 66 9 7 68 1 7 71 1
kT04 8 40 5 8 40 10 8 40 2 9 46 9
kT05 6 50 2 6 50 5 6 55 1 7 55 1
kT06 7 3 67 1267 5 57 4 4 57 2
kT07 7 4 67 160 6 76 3 5 65 3
kT09 7 6 120 9 5 114 5

Table 3.12.: Computational Results: Vanderbeck Class - Setup & Cutoff Minimization

61

3.3. Results

Table 3.13 summarizes the results of the BLMPG-NR1, BLM-NR1, Greedy3* and DDA-NR1

approaches on the instances of the Fiber benchmark class. Note that BLMPG-NR1 is not
applicable on 14 out of 25 instances, as the number of generated patterns is far too large.
We found the solution time of two additional instances to high, about half a day each
(estimated). Most of the remaining 23 instances can be solved to optimality in reasonable
time, except for fiber19 5180. Based on these instances, the average number of master
rolls can be reduced from 96 to 55 by approximately 43 %.

By applying the BLM-NR1 approach, we are able to solve the extended problem to opti-
mality for all instances. However, the solution time increases by a factor of ten for some
instances. The average number of master rolls being cut can be reduced from 98 to 63 by
approximately 36 %.

BLMPG-NR1 BLM-NR1 Greedy3* DDA-NR1
Instance z m sec z m sec z m sec z m sec

fiber06 5180 4 34 5 4 34 7 4 47 1 5 37 1
fiber06 9080 3 19 63 3 19 4 4 20 2 4 24 1
fiber07 5180 3 34 3 3 34 3 3 34 1 4 34 1
fiber07 9080 3 19 12 3 19 5 3 39 1 4 23 1
fiber08 5180 3 106 8 3 106 8 4 137 1 4 385 1
fiber08 9080 3 48 30 3 48 7 3 48 2 4 52 2
fiber09 5180 4 55 5 4 55 10 5 56 2 5 55 1
fiber09 9080 4 29 34 4 29 8 5 29 2 4 33 1
fiber10 5180 4 70 10 4 70 14 5 84 2 5 75 1
fiber10 9080 3 42 74 3 42 16 4 49 2 4 43 1
fiber11 5180 4 81 21 4 81 21 4 81 1 5 69 1
fiber11 9080 3 47 667 3 47 13 4 73 2 4 45 1

fiber13a 5180 5 56 19 5 56 75 6 67 1 6 56 2
fiber13a 9080 4 32 747 4 32 17 6 37 3 4 34 1
fiber13b 5180 4 28 70 4 28 4 4 29 1 4 35 1
fiber13b 9080 7 3 16 4 4 16 1 4 23 1
fiber14 5180 4 49 30 4 49 9 4 55 1 5 56 1
fiber14 9080 7 3 29 10 4 29 1 4 33 1
fiber15 5180 4 58 11 4 58 14 5 59 2 5 76 2
fiber15 9080 3 34 160 3 34 12 4 35 2 4 34 2
fiber16 5180 6 84 2465 6 84 2603 8 85 3 7 91 2
fiber16 9080 7 5 47 515 7 50 3 6 56 3
fiber17 5180 5 84 157 5 84 515 6 98 3 5 85 2
fiber17 9080 7 4 47 61 5 58 4 5 53 2
fiber18 5180 6 98 2629 6 98 2325 6 104 3 6 185 2
fiber18 9080 7 4 56 203 5 80 3 6 58 3
fiber19 5180 6 135 16264 6 135 929 8 135 4 7 141 2
fiber19 9080 7 4 90 209 6 76 5 5 77 2
fiber20 5180 6 33 98 6 33 52 6 35 2 7 37 5
fiber20 9080 7 4 19 14 4 24 1 5 19 5
fiber23 5180 7 145 28740 8 159 5 8 161 3
fiber23 9080 7 5 83 1341 8 167 6 6 86 4
fiber26 5180 7 192 21835 8 217 9 9 195 6
fiber26 9080 7 5 107 2226 6 155 10 6 109 6

fiber28a 5180 7 6 95 1694 8 103 4 8 87 8
fiber28a 9080 7 5 48 968 6 51 4 6 50 7
fiber28b 5180 7 8 119 7718 9 257 7 9 128 7
fiber29 5180 7 7 62 245 8 63 4 9 63 3
fiber29 9080 7 5 35 815 6 36 6 6 39 4

Table 3.13.: Computational Results: Fiber Class - Setup & Cutoff Minimization

62

3.3. Results

The heuristics Greedy3* and DDA-NR1 still provide optimal or near optimal solutions
in terms of z (the average pattern count increased slightly from 5.23 to 5.45 for Greedy3*
and remains constant at 5.49 for DDA-NR1), while the number of master rolls being cut is
reduced by approximately 66 % from m = 222 to m = 76 on average compared to Greedy3

resp. by approximately 43 % from m = 131 to m = 75 on average compared to DDA.
By the Table 3.10 we have discussed our results on pure setup minimization compared

to the results of Cui (see [19] for reference). Considering the results of Greedy3* with
z = 5.45 and m = 76 resp. of DDA-NR1 with z = 5.49 and m = 75 compared to the
average values of Cui with z = 7.9 and m = 61 (which is close to the optimal value of the
pure cutoff reduction problem on average), we have found solutions with significant less
different patterns on an acceptable cost of 15 additional master rolls to be cut on average.
The average computation time is 3 seconds on both heuristics compared to 1.5 seconds of
Cui (on a similar system).

Note the following two important remarks, as they will also apply for the evaluation
with respect to the Tables 3.14, 3.15 and 3.16 based on all benchmark instances:

1. A different weighting of setup vs. material cost in the approach of Cui (see [19]) may
lead to solutions closer to our solutions in terms of z while the number of master
rolls being cut increases.

2. As Cui allows for overproduction while we enforce exact demand fulfilment, the
number of different patterns and the number of master rolls being cut on an in-
stance reported by Cui can both be better (lower) than even the optimal solution
with respect to our problem definition of exact demand fulfilment with pure setup
minimization (and cutoff reduction as secondary objective).

63

3.3. Results

Setup Minimization - Computational Results for all Classes
Table 3.14 summarizes the results of the BLMPG, BLM, Greedy3 and DDA approaches on all
benchmark classes. The average pattern count z, the average number m of master rolls
being cut and the average computation time per instance in seconds are reported.

The results for the Kallrath, Vanderbeck and Fiber classes have been already dis-
cussed and compared to results publishes in literature, see the notes in relation with the
Tables 3.8, 3.9 and 3.10. Note that the average value z is slightly worse for the BLM for-
mulation on the Kallrath and Vanderbeck class as reported before, since the execution
is terminated after 3600 seconds, while there are two instances in both classes which are
solved to optimality only within several hours.

BLMPG BLM Greedy3 DDA
Class z m sec z m sec z m sec z m sec

Kallrath 7.60 104 306 8.12 128 2 8.00 99 4
V.beck 6.44 70 815 7.19 153 4 7.25 79 5

Fiber 4.51 98 315 5.23 222 3 5.49 131 2
bel20 1 13.85 507 7 16.80 404 13
bel50 2 7 15.50 374 50 13.20 291 340
bel50 3 7 22.20 696 40 22.50 547 359

bel50 4 7 30.50 1179 29 37.70 958 669
bel50 5 27.95 1036 19 32.20 813 805
bel50 6 33.10 1256 3327 36.35 1541 16 48.20 1242 706
bel50 7 7 20.85 95 868 25.25 116 7 20.95 97 553
bel50 8 7 30.25 1772 38 39.25 1440 726

bel150 9 7 7 80.30 3451 259 7

type01 3.11 15 3 3.80 21 1 3.64 17 2
type02 7 5.60a 195 3326 5.48 281 7 5.65 146 4
type03 7 4.56 25 58 5.74 33 2 5.61 30 6
type04 7 8.47 418 28 8.09 252 68
type05 7 7.02 48 2316 9.08 60 5 8.45 53 53
type06 7 13.85 705 114 12.16 478 2282

type07 6.77 55 2 6.77 57 2 7.37 64 1 8.29 57 1
type08 7.80 560 272 9.00 736 4 11.25 569 3
type09 11.72 102 35 11.72 103 71 13.16 118 3 14.98 103 7
type10 15.95 1317 12 20.08 1041 60
type11 21.15 a 199 2602 23.74 221 6 27.33 191 103
type12 27.82 2289 44 36.55 1884 1886

type13 8.04 70 1 8.04 72 1 8.46 75 2 9.31 71 1
type14 8.89 702 4 9.55 809 3 11.74 717 2
type15 14.31 130 2 14.31 131 41 15.27 144 3 17.54 129 5
type16 16.06 1310 226 17.88 1534 7 22.67 1328 39
type17 25.55 241 4 26.00 a 246 1753 28.06 272 6 32.35 239 93
type18 30.45a 2433 3215 32.15 2817 22 43.53a 2378 1395

Table 3.14.: Computational Results: Summary - Setup Minimization

As can be seen, six classes can be solved to optimality using the BLMPG formulation in
very short time on average. In addition, over 90 % of the instances of the classes type08

and type16 can be solved to optimality in reasonable time. The relative gap is mostly
under 15 % for the instances of the bel50 6 and type18 class, some of them are solved
to optimality using the BLMPG formulation. Most of the instances in class type01 can be
solved to optimality within minutes, however the solution time comes to several hours for

64

3.3. Results

some instances due to a huge amount of generated patterns.
Several classes like Fiber, type01 and type03 can be solved to optimality in short time

on average by using the BLM formulation, while the relative gap is small on average for the
Vanderbeck, bel50 7, type05, type11 and type17 classes (at which some instances are
solved to optimality). As can be seen, the BLM formulations performs bad on most Belov
classes due to a large amount of order widths and high demand levels and on the Foerster
& Wäscher sub-classes ending by an even number, as the demand levels are very high, too.
The Greedy3 heuristic is applicable on all instances/classes, providing solutions in very
short time on most classes on average. As far as we can compare the results with the
optimal or near optimal solutions in the first two columns, the heuristic provides in gen-
eral solution with small absolute gap (often less than one or two pattern worse except for
bel50 7) resp. with small relative gap (at around 13 % on average) on all classes. One
drawback is the number of master rolls being cut, which is by far the highest on most
classes compared to the other approaches.

The DDA heuristic is applicable on most classes, although the solution times per in-
stance are significantly higher on several classes compared to Greedy3, as we are basically
solving the formulation BLM twice but on much smaller sub-instances. Note that the so-
lution quality strongly depends on the problem data characteristics. In particular, DDA
performs very well/best, if the widths ordered are small on average (like for the classes
type01 - type06, bel50 2 and bel50 7), while the results get slightly worse on instances
with medium sized widths on average like type07, bel50 3 or on the real-world instances
in terms of z. If the widths are broad on average, DDA should not be applied. As can be
seen, the solutions returned by DDA are significant worse compared to Greedy3, e. g., seven
pattern worse on bel50 4 and twelve patterns worse on bel50 6 (while there is nearly no
improvement compared to the upper bound of 50 for this instances). In case of type18,
DDA provides solutions with z = 43.53, i. e., the solution quality is even worse than the
upper bound of 40. Note that DDA provides preferable solutions with significant lower
values of m compared to Greedy3.

Results for the Belov classes have been published in [8] and [9], both by G. Belov and
G. Scheithauer. As already noted before, the comparability is limited (although exact
demand fulfilment is considered), as Belov and Scheithauer search for a minimal pattern
solution based on the optimal solution of the cutoff minimization problem. We obtain the
most meaningful comparison, if we concentrate on the best results in terms of z, either
published in [8] or [9], while observing especially those results where the authors allow some
increased material input (i. e., 5 % more master rolls may be used compared to mopt), as
this leads to better solutions in terms of z, since the problem definition gets closer to
our pure pattern reduction problem with exact demand fulfilment while not observing the
number of master rolls being cut. In particular:

- bel20 1: The best average solution found in [8] is z = 14.5 bounded by m = 366,
compared to z = 13.85 and m = 507 provided by Greedy3.

- bel50 2: The best average solution found in [9] is z = 20.65 bounded by m = 259,
compared to z = 13.20 and m = 291 provided by DDA.

- bel50 3: The best average solution found in [9] is z = 27.60 bounded by m = 528,
compared to z = 22.20 and m = 696 provided by Greedy3 resp. z = 22.50 and
m = 547 provided by DDA.

- bel50 4: The best average solution found in [8] is z = 34.15 bounded by m = 922,

65

3.3. Results

compared to z = 30.50 and m = 1179 provided by Greedy3.

- bel50 5: The best average solution found in [9] is z = 34.70 bounded by m = 745,
compared to z = 27.95 and m = 1036 provided by Greedy3 resp. z = 32.20 and
m = 813 provided by DDA.

- bel50 6: The best average solution found in [9] is z = 41.70 bounded by m = 1149,
compared to z = 36.35 and m = 1541 provided by Greedy3. The best results in
terms of z is computed by BLMPG with z = 33.10 and m = 1256.

- bel50 7: The best average solution found in [9] is z = 22.10 bounded by m = 93,
compared to z = 25.25 and m = 116 provided by Greedy3 resp. z = 20.95 and
m = 97 provided by DDA. The optimal solution in terms of z computed with BLM is
close to z = 20.85 and m = 95.

- bel50 8: The best average solution found in [9] is z = 35.55 bounded by m = 1388,
compared to z = 30.25 and m = 1772 provided by Greedy3.

- bel150 9: The best average solution found in [8] is z = 95.30 bounded by m = 2790,
compared to z = 80.30 and m = 3451 provided by Greedy3.

The computational time of Belov’s and Scheithauer’s approach does not exceed 300
seconds, just like Greedy3 (where the computational time for most instances is less than
60 seconds). In summary, our approaches provide significantly better solutions in terms
of z, at the cost of a higher number of master rolls being cut. However, on some classes
like bel50 2, bel50 3 or bel50 7, the increase in terms of m is within an acceptable range.

Results for the Foerster & Wäscher instances (type01 - type18) have been published
among others in [14], [15], [18], [19] and [20]. As Cui Et. al (see [19], published in 2015)
provides the most recent and - as far as we know - best results, we will focus on this paper
for comparison basically. In addition, the paper summarizes the results of [14] and [20].
However, as already stated within the remarks by Table 3.13, the comparison suffers from
different objectives and problem statements, as the authors allow for overproduction while
observing both, the number of master rolls (material cost) and the number of setup (setup
cost) within the objective. As a results, the solutions in terms of z (and m) might be better
than even the optimal solutions for our problem definition. For instance, Cui reports an
average value of z = 6.40 compared to the optimal solution of our problem definition with
exact demand fulfilment of z = 6.77 for the class type07 (further: z = 7.52 on type13

compared to our optimal solution of z = 8.04 or Cui on type14 with z = 8.10 compared
to our optimal solution of z = 8.89). Also note that our optimal solutions for m based on
the optimal solutions of the pattern minimization problem are worse compared to the re-
sults by e. g., Cui, who reports m = 50.24 on type07 compared to our optimal solution of
m = 52.25 (further: m = 63.47 on type13 compared to our optimal solution of m = 65.84).

In order to shorten the comparison for the 18 classes (with 100 instances each), we
calculate the mean of means m resp. z for Greedy3 (abbreviation Gr3) and compare
the results with the mean of means of the approaches provided in literature (see Table
3.15, first row corresponds to m, second row to z). Note that the results of Greedy3*
(abbreviation Gr3*) are added for comparison (see Table 3.16 for a more detailed solution
report).

66

3.3. Results

Gr3 Gr3* YL[14] LY1[15] LY2[15] LY3[15] CZ[18] CZ[19] CZ[20]

661.89 582.39 500.24 510.04 525.74 525.50 – 489.91 490.72
14.16 14.65 15.37 14.84 14.56 14.68 15.82 13.34 15.57

Table 3.15.: Comparison of the Results on the Foerster & Wäscher Instances

The initials of the authors in addition to the reference are used to identify the results
of the approaches in literature. Note that there are three algorithms provided in [15]. We
could not identify the number of master rolls being cut for Cui[18].

As can be seen, Greedy3 provides the second best mean of means with respect to the
number of patterns, while the number of master rolls being cut is by far the worst (high-
est). At the cost of an increase in terms of z, the number of master rolls can be reduced
by applying Greedy3*. The average computation time per instance is within seconds for
all approaches.

Despite the limited comparability due to the varying problem statements, especially
if we consider that Cui provides solutions better than our optimal solutions (see notes
above), we found the results of the Greedy3 heuristic to be remarkable (also take in mind
again the simplicity of our approach).

Note that DDA also provides better solutions in terms of z in general compared to the
results in literature based on the classes type01 - type06, but with significantly lower
values of m compared to Greedy3, though still higher compared to the results in literature
and in case of class type06 with far higher solution times.

Setup Minimization & Cutoff Reduction - Computational Results for all Classes
Table 3.16 summarizes the results of the BLMPG-NR1, BLM-NR1, Greedy3* and DDA-NR1 ap-
proaches on all benchmark classes. The average pattern count z, the average number m
of master rolls being cut and the average computation time per instance in seconds are
reported.

The results for the Kallrath, Vanderbeck and Fiber classes have been already dis-
cussed and compared to results publishes in literature, see the notes in relation with the
Tables 3.11, 3.12 and 3.13. Note that we do not provide the average values for these
classes with respect to the exact model formulations BLMPG-NR1 resp. BLM-NR1, as not all
instances can be solved within 3600 seconds (but most of them). For the same reason, no
results of e. g., BLMPG-NR1 on type18 are reported, as the average computation time for
determining the minimal pattern solution is already close to 3600 seconds for BLMPG. Thus
we cannot expect a noticeable reduction in terms of m within the short remaining time.

By applying the BLMPG-NR1 formulation, all instances of four classes can be solved to
optimality, i. e., at the cost of higher computation times (but still acceptable), the number
of master rolls can be reduced significantly. A great percentage of the classes type09,
type14 and type16 can be solved to optimality, too. The classes type01 and type03

can be solved to optimality by using the BLM-NR1 formulation. However, the amount of
instances solvable by a monolithic formulation within 3600 seconds decreases observable.

Only the Greedy3* heuristic is applicable on all instances. The average pattern count
(mean of means) on the nine Belov instances increases from z = 31.35 to z = 32.42 in
comparison with Greedy3, i. e., by approximately 3.4 %, while the number of master rolls
being cut decreases from m = 1186 to m = 1102, i. e., by approximately 7 %. The average

67

3.3. Results

pattern count (mean of means) computed by Belov and Scheithauer (note that we only
observed the best results spread over [8] and [9] for comparison) is z = 36.25 bounded
by m = 916. The results of Greedy3* (i. e., the mean of means) for the 18 Foerster &

Wäscher classes have already been discussed by table 3.15. While the average number
of patterns for these classes increases from z = 14.16 to z = 14.65 using Greedy3*, i. e.,
by approximately 3.5 %, the number of master rolls being cut decreases on average from
m = 662 to m = 582, i. e., by approximately 12 %.

Despite from marginal differences, the DDA-NR1 heuristics provides constant solutions
in terms of z, while the number of master rolls being cut is reduced observable on most
classes, at the cost of higher computation times compared to DDA. For this reason, DDA-NR1
provides better results on the classes type01 - type06, Kallrath, Vanderbeck, bel50 2,
bel50 3 and bel50 7 compared to Greedy3*, while there are in total fewer results re-
ported for DDA-NR1 compared to Table 3.14 for DDA, as exceeding the time limit of 3600
seconds gets more likely.

BLMPG-NR1 BLM-NR1 Greedy3* DDA-NR1
Class z m sec z m sec z m sec z m sec

Kallrath 8.24 91 3 8.04 85 6
V.beck 7.38 71 4 7.19 63 7

Fiber 5.45 76 3 5.49 75 3
bel20 1 14.45 453 6 16.70 373 22
bel50 2 7 16.70 297 55 13.20 268 389
bel50 3 7 23.30 586 36 22.50 513 911

bel50 4 7 30.85 1110 27
bel50 5 29.35 864 19
bel50 6 37.25 1429 15
bel50 7 7 25.70 114 6 20.95 93 1680
bel50 8 7 32.55 1702 35

bel150 9 7 7 81.60 3367 227 7

type01 3.11 12 4 3.98 15 1 3.64 15 2
type02 7 6.04 143 7 5.65 117 5
type03 7 4.56 22 57 6.18 27 2 5.61 28 7
type04 7 9.93 258 29 8.09 232 71
type05 7 9.48 50 5 8.45 48 55
type06 7 16.16 498 170 12.10a 432 2521

type07 6.77 52 3 6.77 52 5 7.45 59 2 8.26 55 2
type08 8.93 593 3 11.17 520 6
type09 11.72 98 193 11.72 98 215 13.30 111 3 15.08 100 12
type10 16.39 1114 11 20.12 977 177
type11 24.07 214 6 27.40 185 461
type12 29.10 2152 40

type13 8.04 66 2 8.04 66 4 8.43 72 2 9.39 68 2
type14 8.89 654 66 9.58 722 3 11.67 660 4
type15 14.31 124 3 14.31 124 181 15.29 138 4 17.54 125 10
type16 16.45a 1317 1600 18.13 1379 7 22.71 1245 138
type17 25.55 234 14 28.21 266 6
type18 33.11 2672 22

Table 3.16.: Computational Results: Summary - Setup & Cutoff Minimization

68

3.3. Results

Comparison of the G3-BLM Approach with BLM and Greedy3
In this section, we are going to compare the results of the exact approach G3-BLM (reminder:
the solution returned by Greedy3 is used to warm start the exact formulation BLM) to the
results of the exact formulation BLM (see Table 3.14) in order to evaluate the performance
improvement in terms of z and solution time by exploiting a good initial solution. In
addition, the results of Greedy3 itself are observed in order to evaluate the additional
performance improvement in terms of z by solving BLM subsequently. The solution process
is terminated after 3600 seconds. Table 3.17 summarizes the results of G3-BLM and the
improvements compared to BLM and Greedy3. Note that several classes are missing, as
the solution times of BLM are to high (i. e., there will be no significant improvement of the
initial heuristic solution), while we could report the initial solution found by Greedy3 of
course. The absolute deviations of BLM and Greedy3 compared to the results computed
by G3-BLM are denoted by z′, m′ and sec′. A negative value indicates an improvement.

G3-BLM BLM Greedy3
Class z m sec z′ m′ sec′ z′ m′ sec′

Kallrath 7.64 127 308 +0.04 +23 +2 -0.48 -1 +306
V.beck 6.44 94 709 0.00 +21 -18 -0.75 -60 +705

Fiber 4.51 100 228 0.00 +2 -87 -0.72 -122 +225
bel50 7 20.85 96 379 0.00 +1 -489 -4.40 -20 +372
type01 3.11 15 3 0.00 0 0 -0.69 -6 +2

type02 4.90 194 2667 -0.70 -1 -659 -0.58 -87 +2660
type03 4.56 26 12 0.00 +1 -46 -1.18 -7 +10
type05 6.80 47 230 -0.22 -1 -2086 -2.28 -13 +225
type07 6.77 58 3 0.00 +1 +1 -0.60 -6 +2
type09 11.72 104 42 0.00 +1 -29 -1.44 -14 +39

type11 20.35 a 188 1437 -0.80 -11 -1165 -3.39 -33 +1431
type13 8.04 72 3 0.00 0 +2 -0.42 -3 +1
type14 8.99 755 862 – – – -0.56 -54 +859
type15 14.31 132 27 0.00 +1 -14 -0.96 -12 +24
type17 25.3a 239 1088 -0.70 -7 -665 -2.76 -33 +1082

Table 3.17.: Computational Results of G3-BLM - Setup Minimization

There is a slightly improvement in terms of z compared to BLM on some benchmark
classes. Certainly, the reduction in terms of runtime compared to BLM is more significant
and of greater importance, e. g., the average runtime can be reduced by approximately
90 % for instances of the class type05 while most of the instances of class type14 can be
solved to optimality by applying G3-BLM in contrast to BLM. However, note that there is no
observable impact on some classes like type01 or type13 compared to BLM. In conclusion,
one should apply G3-BLML instead of BLM to get an optimal solution, as there is a slightly
improvement in terms of z being computed in much shorter time in general.

At the cost of a significantly increase in terms of solution time compared to Greedy3,
the number of patterns and master rolls being cut can be reduced clearly on all investi-
gated benchmark classes, e. g., in case of bel50 7, the average pattern count is reduced
by 4.40.

Comparison of the BLM and BLMFV Formulations
First numerical experiments indicate that the BLMFV formulation provides superior results
on a (small) subset of instances, e. g., the solution time for C4 of the Kallrath class is
reduced from 28 seconds to 5 seconds, for 11p4 of the Vanderbeck class from 34634 seconds

69

3.3. Results

to 2733 seconds (enormous reduction) and a significant higher number of instances of the
type02 class can be solved to optimality within 3600 seconds compared to BLM. These
instances are characterized by high demand levels and small widths for all orders (possible
explanation: the large number of variables due to the high demand levels is reduced in
the BLMFV formulation, while the solver has no troubles in finding feasible solutions due
to the small widths). However, further computational experiments must be performed in
order to verify this finding. In general, the results are significantly worse in terms of z
and solution time compared to the BLM formulation.

70

4. Conclusions and Further Research

The cutting stock problem with setup minimization and exact demand fulfilment has
been investigated from a different angle, i. e., instead of designing increasingly sophis-
ticated solution techniques like Branch & Cut & Price involving decompositions methods
and applying branching- and cutting strategies, we have exploited progresses in hard- and
software technology and problem specific properties in order to develop several performant
top-level and easy to implement approaches suitable to either solve the problem to opti-
mality or to provide good heuristic solution.

In particular, novel exact linear model formulations (BLMPG, BLM and BLMFV) have been
presented appropriate to solve problem instances of low and medium complexity to op-
timality in reasonable time. Additionally, we have presented novel exact linear model
formulations (BLMPG-MMR and BLM-MMR) for the setup minimization problem with multiple
types of master rolls.

The numerical results on instances for the single type of master roll problem indicate
that three classes of real-world problems, consisting of 80 instances in total, can be solved
to optimality using the BLM formulation within a time limit of 3600 seconds on each in-
stance, except four instances with high complexity for which the solution time rises up
to ten hours. Further numerical experiments have been executed on 27 classes frequently
used in literature, consisting of 1980 instances in total. For eight classes, we can provide
optimal solution for each single instance using one of the model formulations within the
time limit of 3600 seconds on each instance. The vast majority of five additional classes
can be solved to optimality, too. On three classes, the average computational time rises
up to approximately 3600 seconds, while we cannot provide optimal solutions in general,
but often with small relative gap. The eleven classes remaining are far to complex to be
solvable by a monolithic model formulation.

To the best of our knowledge, we can provide optimal solutions for the pure setup
minimization problem with exact demand fulfilment for the first time in literature on the
instances mentioned above, except for some problems of the real-world classes, where op-
timal solutions have been known before.

For more complex instances, we have developed the heuristic approaches referred as
Greedy3 and DDA. While the idea of the Greedy3 heuristics is quite simple, the numerical
results, i. e., the number of patterns and the solution time, are very convincing on nearly
all benchmark classes. In general, Greedy3 provides solutions with small absolute gap
compared to the optimal solutions we have calculated (one or at most two patterns worse)
resp. with small relative gap (approximately 13 % on average), while the approach is appli-
cable on all instances with short solution times as well (at most 259 seconds on extremely
large instances, but mostly far under ten seconds per instance). However, Greedy3 tends
to calculate solutions with a high consumption of master rolls being cut.

The solution quality of DDA depends much more on the problem instance characteris-
tics. On the subset of instances with small widths on average, the solutions returned by
DDA are superior compared to Greedy3, while the solution quality decreases drastically, if
the widths ordered are broad on average. A further disadvantage besides the limited range
of usability on some classes is the long average running time on several classes compared

4. Conclusions and Further Research

to Greedy3. However, the DDA solutions are throughout preferable in terms of material
consumption, i. e., the number of master rolls being cut is lower compared to the Greedy3

solution.

The comparability with our results to those in literature is limited, as most authors
investigate a deviating problem definition e. g., by observing both, the number of patterns
and master rolls within the objective, while allowing overproduction. Take in mind that
the problem becomes easier when allowing for overproduction, i. e., some authors provide
solutions even better than our optimal solutions. Nevertheless, as we focus on setup min-
imization primarily, the results of Greedy3 and DDA (on instances with small widths on
average) are in general significantly better than the results in literature with respect to
the number of patterns, while the solutions provided in literature are mostly superior with
respect to the number of master rolls being cut (which is not considered in the pure setup
minimization problem with exact demand fulfilment).

In order to reduce the number of master rolls as secondary objective, we have added
some modifications to our approaches for pure setup minimization. By solving the model
formulations BLMPG-NR1 resp. BLM-NR1, we are able to calculate optimal solutions for this
extended problem on 76 out of 80 real-world instances, leading to a significant reduce of
material usage. However, while the solution time is still acceptable (less than one hour) for
the majority, a greater amount of instances is solvable only within several hours compared
to BLMPG resp. BLM. The estimated computational time rises up to one day for solving
each of the remaining four instances. In addition, we can provide optimal solutions for
this extended problem on the vast majority of all instances of nine benchmark classes,
using either the BLMPG-NR1 or BLM-NR1 formulation, with average solution times far under
3600 seconds. However, the monolithic formulations are inappropriate in general to solve
this more challenging problem on classes with higher complexity. Nevertheless, we can
provide optimal solutions for the minimal number of master rolls problem constrained by
the minimal number of patterns for the first time in literature on a significant amount of
instances.

At the cost of solution time, the DDA-NR1 extension is suitable to reduce the number of
master rolls being cut compared to DDA, while the number of patterns remains constant
in general. However, significant less instances can be solved within 3600 seconds using
DDA-NR1 compared to DDA due to the increase in terms of solution time. Also note that
the DDA-NR1 approach should only be applied on instances with small widths on average,
just like DDA. By applying the Greedy3* heuristic, the number of master rolls being cut
can be reduced, while the number of patterns increases moderately. There is no significant
difference in terms of solution time compared to Greedy3.

Although the adapted approaches are suitable to reduce the number of master rolls,
the results provided in literature are in general clearly superior in terms of material usage,
while we still provide preferable solutions in terms of setup cost (taking in mind again the
differing problem definitions and - most of all - the simplicity of our approaches).

In conclusion, an instance should be solved based on the BLMPG formulation, if all
patterns can be generated in advance. The BLM (or BLMFV) formulation should be used, if
the instance is in general of small or medium complexity, but it is not possible to generate
all patterns. In case the monolithic formulation should not be applied, use the DDA heuristic
if the widths are small on average (and the demand levels are high), otherwise use the
Greedy3 heuristic, since this approach provides solutions in very short time with small
gap in general.

72

4. Conclusions and Further Research

Further Research
There are several promising points and extensions which could not be (completely) inves-
tigated resp. integrated. Among other things, it is worth to tighten the upper and lower
bounds on the pattern multiplicities in order to reduce the solution time for models like
BLM. Also one should perform additional numerical experiments with the DDA approach
for different values of the divisor v and for the monolithic model formulation BLMFV, see
Note 8 for some more detailed remarks. A repair heuristic being applied on worse solutions
calculated by DDA for the sub-instances might be beneficial, as one can easily imagine sce-
narios in which the number of patterns can be reduced by a simple reorganisation. On the
implementation site, it would be worth to add a preprocessing step to the code in order
to decide automatically which approach should be used based on the problem instance
characteristics.

Additional subjects of much greater scope are the development of top-level heuristics
like Greedy3 but for the one-dimensional cutting stock problem with pure setup mini-
mization and exact demand fulfilment in case of multiple types of master rolls and an
approach based on the Greedy3 heuristic, but with major modifications in order to turn
the heuristic into an exact approach (already generated patterns may change completely).
With regard to the last point, we suggest to observe only a subset of all order widths in
each iteration (which is determined by solving an auxiliary problem) in order to shorten
the solution time in each iteration by reducing the number of variables and by applying
tighter bounds.

73

List of Figures

2.1. Master-roll in the paper industry. 4
2.2. Schematic pattern resp. setup representation. 5

List of Tables

3.2. Problem Data Characteristics - Belov Class 45
3.5. Problem Data Characteristics - Foerster & Wäscher Class 46
3.6. Overview on the different Approaches . 47
3.7. Overview on the different Approaches . 53
3.8. Computational Results: Kallrath Class - Setup Minimization 55
3.9. Computational Results: Vanderbeck Class - Setup Minimization 57
3.10. Computational Results: Fiber Class - Setup Minimization 59
3.11. Computational Results: Kallrath Class - Setup & Cutoff Minimization . . 60
3.12. Computational Results: Vanderbeck Class - Setup & Cutoff Minimization . 61
3.13. Computational Results: Fiber Class - Setup & Cutoff Minimization 62
3.14. Computational Results: Summary - Setup Minimization 64
3.15. Comparison of the Results on the Foerster & Wäscher Instances 67
3.16. Computational Results: Summary - Setup & Cutoff Minimization 68
3.17. Computational Results of G3-BLM - Setup Minimization 69

Acronyms

BLM Binary Linear Model. 12

BLM-MMR Binary Linear Model with Multiple Types of Master Rolls. 19

BLM-NR1 Solving BMP initially while reducing the Number of Master Rolls being cut
subsequently. 41

BLM-NR2 Binary Linear Model based on BLM observing both, the Number of Patterns
and the Number of Master Rolls being cut (whihin the Objective). 42

BLMEPG Combining the Generation of efficient Patterns with free Patterns, formulated
as Binary Linear Model. 21

BLMFV Binary Linear Model with Fewer Variables. 39

BLMPG Binary Linear Model based on complete Pattern Generation. 11

BLMPG-MMR Binary Linear Model based on complete Pattern Generation and Multiple
Types of Master Rolls. 18

BLMPG-NR1 Solving BMPLG initially while reducing the Number of Master Rolls being
cut subsequently. 41

BLMPG-NR2 Binary Linear Model based on BLMPG observing both, the Number of Pat-
terns and the Number of Master Rolls being cut (whihin the Objective). 42

DDA Demand Dividing Algorithm. 33

DDA-NR1 Adaption of the DDA Algorithm in order to reduce the Number of Master Rolls
being cut. 43

G1A Binary Linear Model being solved repeatedly by Algorithm Greedy1. 24

G2A Binary Linear Model being solved repeatedly by Algorithm Greedy2. 27

GAMS General Algebraic Modeling System. 53

Greedy3* Adaption of the Greedy3 Algorithm in order to reduce the Number of Master
Rolls being cut. 42

MILP Mixed Integer Non Linear Programming. 2

MINLP Mixed Integer Non Linear Programming. 2

PG Model for Pattern Generation (solved with CPLEX Solution Pool). 10

Bibliography

[1] Gilmore, P. and Gomory, R.: A Linear Programming Approach to the Cutting Stock
Problem, Operations Research 9, 849-859, 1961.

[2] Belov, G. and Scheithauer, G.: A branch-and-cut-and-price algorithm for onedimen-
sional stock cutting and two-dimensional two-stage cutting, European Journal of Op-
erational Research, 171:85-106, 2006.

[3] Vanderbeck, F.: Exact Algorithm for Minimising the Number of Setups in the one
dimensional Cutting Stock Problem, Operations Research, 48(5):915-926, 2000.

[4] Johnston, R. and Sadinlija, E.: A New Model for Complete Solutions to One-
Dimensional Cutting Stock Problems, European Journal of Operational Research
153:176?183, 2004.

[5] Kallrath, J., Rebennack, S., Kallrath, J. und Kusche, R.: Solving Real-World Cutting
Stock-Problems, European Journal of Operational Research, 238:374-389, 2014.

[6] Banbal, E. and Kallrath, J.: Exact Optimization of real-world cutting stock problems
with GAMS, Advances in Decision Technology and Intelligent Information Systems,
Vol. XVI (Ed. K. J. Engemann, G. E. Lasker): IIAS, pp. 21-25, 2015.

[7] S. Umetani, M. Yagiura and T. Ibaraki: One dimensional cutting stock problem to
minimize the number of different patterns, European Journal of Operational Research,
146, 388-402, 2003.

[8] Belov, G., Scheithauer, G.: The number of setups (different patterns) in one-
dimensional stock cutting (Technical Report), Institute of Numerical Mathematics,
Technische Universität Dresden, 2003.

[9] Belov, G., Scheithauer, G.: Setup and open-stacks minimization in one-dimensional
stock cutting, INFORMS Journal on Computing, 19, 27–35, 2007.

[10] T. Gau and G. Wäscher: CUTGEN1: A Problem Generator for the Standard One-
dimensional Cutting Stock Problem, European Journal of Operational Research, 84,
572-579, 1995.

[11] S. Umetani, M. Yagiura and T. Ibaraki: One-dimensional cutting stock problem with a
given number of setups: A hybrid approach of metaheuristics and linear programming,
Journal of Mathematical Modelling and Algorithms, 5, 43-64, 2006.

[12] McDiarmid, C.: Pattern Minimisation in Cutting Stock Problems. Discrete Applied
Mathematics 98, 121–130, 1999.

[13] Haessler, R. W., Sweeney, P. E.: Cutting Stock Problems and Solution Procedures,
European Journal of Operational, Research 54, 141–150, 1991.

Bibliography

[14] Yanasse, H. H., Limeira, M. S.: A hybrid heuristic to reduce the number of different
patterns in cutting stock problems, Computers & Operations Research, 33: 2744–2756,
2006.

[15] Lima Cerqueira, G. R., Yanasse, H. H.: A pattern reduction procedure in a one-
dimensional cutting stock problem by grouping items according to their demands, Jour-
nal of Computational Interdisciplinary Sciences 1(2): 159-164, 2009.

[16] Kallrath, J.: Polylithic modeling and solution approaches using algebraic modeling
systems, Optimization Letters. 5. 453-466. 10.1007/s11590-011-0320-4, 2011.

[17] Adjiman, C. S. J.: Global Optimization Techniques for Process Systems Engineering,
PhD Dissertation, Dept. of Chemical Engineering, Princeton University, Princeton,
NJ, 1999.

[18] Cui, Y., Zhao, X., Yang, Y., Yu, P.: A heuristic for the one dimensional cutting stock
problem with pattern reduction, Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture, 222, 677–685, 2008.

[19] Cui, Y., Zhong, C., Yao, Y.: Pattern-set generation algorithm for the one-dimensional
cutting stock problem with setup cost, European Journal of Operational Research 243:
540–546, 2015

[20] Cui, Y., Liu, Z.: C-Sets-based sequential heuristic procedure for the one-dimensional
cutting stock problem with pattern reduction, Optimization Methods and Software, 26,
55–167, 2011.

[21] Foerster, H., Wäscher, G.: Pattern reduction in one-dimensional cutting stock prob-
lems, International Journal of Production Research, 38: 1657–1676, 2000.

[22] Verband Deutscher Papierfabriken: Papier Kompass, https://www.vdp-online.

de/test-and-review/internal-demo/pages/showroom-advance/news/read/

article/papier-kompass.html.

78

https://www.vdp-online.de/test-and-review/internal-demo/pages/showroom-advance/news/read/article/papier-kompass.html
https://www.vdp-online.de/test-and-review/internal-demo/pages/showroom-advance/news/read/article/papier-kompass.html
https://www.vdp-online.de/test-and-review/internal-demo/pages/showroom-advance/news/read/article/papier-kompass.html

A. Notation

Appendix A summarizes the notation and their definition of all symbols being used. In
particular, the general notation - as for the basic problem input data (e. g., width W of the
master rolls, number K of knifes) - is presented in Section A.1, the sets and the indices
being used are summarized in Section A.2. The syntax being used for the parameters
and decision variables in the model formulations and heuristic approaches can be seen in
Section A.3 and Section A.4, resp.

A.1. General

W ∈ R+ Width of the master rolls.

K ∈ N Number of knifes.

z ∈ N Number of different setups/patterns.

m ∈ N Number of master rolls being cut.

mlo ∈ N Lower bound on the number m of master rolls being cut.

mopt ∈ N Optimal (minimal) number of master rolls being cut.

zlo ∈ N Lower bound on the number z of patterns.

zup ∈ N Upper bound on the number z of patterns.

zopt ∈ N Optimal (minimal) number of patterns.

v ∈ N Divisor used in the DDA, DDA-NR1 and BLMFV approaches.

e ∈ (0; 1] Efficiency rate.

IP ∈ N Number of order widths which can be fulfilled exactly by the current pattern.

z ∈ R+ Average pattern count of a specific class (arithmetic mean).

m ∈ R+ Average number of master rolls being cut of a specific class (arithmetic mean).

z ∈ R+ Mean of means for the pattern count.

m ∈ R+ Mean of means for the number of master rolls.

A.2. Sets and Indices

i ∈ I Set of orders: I =
{
i1, . . . , i|I|

}
.

i ∈ I ′ Set of orders which are not fulfilled exactly yet: I ′ ⊆ I.

p ∈ P Set of patterns: P =
{
p1, . . . , p|P|

}
. Sometimes we also use the index s ∈ P.

j ∈ J Set of different types of master rolls: J =
{
j1, . . . , j|J |

}
.

k ∈ K Set of pattern multiplicities: K = {1, . . . , maxi∈I Di}.
n ∈ N Set of item multiplicities: N = {1, . . . , min [maxi∈I bW/wic ;K]}.

A.3. Parameter

p ∈ Pg Set of generated patterns (only efficient patterns): Pg = {p1, . . . , p|Pg |}
p ∈ Pf Set of free patterns: Pf = {p1, . . . , p|Pf |}

k ∈ Kf
0 Set of pattern multiplicities for the quotients: Kf

0 := {0, 1, ...,maxi∈If fi}.
k ∈ Kr

0 Set of pattern multiplicities for the remainders: Kr
0 := {0, 1, ...,maxi∈Ir ri}.

A.3. Parameter

wi ∈ R+ Width of order i.

Di ∈ N Demand level of order i.

Wj ∈ R+ Width of master roll type j.

ls ∈ Z Lower bound on the multiplicity of pattern s.

up ∈ N0 Multiplicity of pattern p.

aip ∈ N0 Item multiplicity of order i in pattern p.

Cj ∈ N0 Capacity (stock level) of master roll type j.

epj ∈ {0, 1} Indicates whether pattern p can be applied on master roll type j.

Imax
p ∈ N Maximum number of different widths in pattern p.

Pmax
i ∈ N Maximum number of patterns containing order width i.

γgip ∈ N0 Item multiplicity of order i in pattern p (generated).

W r ∈ R+
0 Remaining length of the recently generated pattern.

Kr ∈ N0 Remaining number of knifes of the recently generated pattern.

W r
p ∈ R+

0 Remaining length of pattern p.

Kr
p ∈ N0 Remaining number of knifes of pattern p.

fi ∈ N0 Quotients when using the Di = fiv + ri demand representation.

ri ∈ {0, . . . , v − 1} Remainders when using the Di = fiv + ri demand representation.

A.4. Decision Variables

µp ∈ Z+
0 Pattern multiplicity of p.

αip ∈ Z+
0 Item multiplicity of order i in p.

δp ∈ {0, 1} Indicates whether p is used.

γi ∈ Z+
0 Item multiplicity of order i in the currently generated pattern.

δkp ∈ {0, 1} Indicates whether p is used exactly k times.

µpjk ∈ {0, 1} Indicates whether p is applied exactly k times on j.

γiknp ∈ {0, 1} Indicates whether p contains i exactly n times and is used exactly k times.

υpj ∈ {0, 1} Indicates whether p can be applied on j.

ηp ∈ {0, 1} Indicates whether p is used.

χi ∈ {0, 1} Indicates whether the order i is satisfied exactly.

80

A.4. Decision Variables

γinp ∈ {0, 1} Indicates whether the order i is added with item multiplicity n to p.

δfkp ∈ {0, 1} Indicates whether p is used exactly kv times.

γfiknp ∈ {0, 1} Indicates whether p contains i exactly n times and is used exactly kv times.

δrkp ∈ {0, 1} Indicates whether p is used exactly k times.

γriknp ∈ {0, 1} Indicates whether p contains i exactly n times.

81

B. Selected Optimal Patterns

Appendix B contains four optimal solutions on the setup minimization problem with a
single type of master roll (for demonstration purposes only). The solution method is re-
ported next to the instance name. Note that we have already explained how to interpret
the solution reports appropriately within Section 3.2. However, the solution report for the
fifth instance (C12MMR) is explained in place, as the instance refers to the setup minimiza-
tion problem with multiple types of master rolls (being solved by BLM-MMR).

Instance C4 solved by BLM-NR1:

Solution summary Total 1 2 3 4

delta (p used): 4 1 1 1 1

Number Rolls : 457 211 188 39 19

Widhts Width aip Out(i) D(i)

A1 36 2 1 0 0 610 610

A2 31 0 2 0 1 395 395

A3 14 1 0 0 0 211 211

A4 45 0 0 2 1 97 97

Max oo Cuts: 3 3 2 2

Used: 41524 86 98 90 76

Offcut: 4176 14 2 10 24

Total: 45700 100 100 100 100

Instance 7p18 solved by BLMPG:

Solution summary Total 808 1434 1790 1921

delta (p used): 4 1 1 1 1

Number Rolls : 141 1 24 112 4

Widhts Width aip Out(i) D(i)

A1 542 1 0 3 0 337 337

A2 720 0 1 1 0 136 136

A3 494 0 2 0 2 56 56

A4 593 2 1 0 2 34 34

A5 710 0 1 0 1 28 28

A6 718 1 1 0 0 25 25

A7 536 1 0 0 1 5 5

Max oo Cuts: 5 6 4 6

Used: 368910 2982 3729 2346 3420

Offcut: 208626 1114 367 1750 676

Total: 577536 4096 4096 4096 4096

B. Selected Optimal Patterns

Instance Fiber17 5180 solved by BLMPG:

Solution summary Total 143 917 4487 6609 6976

delta (p used): 5 1 1 1 1 1

Number Rolls : 84 10 20 4 44 6

Widhts Width aip Out(i) D(i)

A1 500 2 0 1 4 1 206 206

A2 1000 0 1 0 3 0 152 152

A3 1040 2 1 0 0 0 40 40

A4 915 0 1 1 0 1 30 30

A5 950 0 1 0 0 0 20 20

A6 1200 0 1 0 0 0 20 20

A7 900 0 0 0 0 3 18 18

A8 930 0 0 3 0 0 12 12

A9 1020 1 0 0 0 0 10 10

A10 1050 1 0 0 0 0 10 10

A11 600 0 0 0 0 1 6 6

A12 923 0 0 1 0 0 4 4

Max oo Cuts: 6 5 6 7 6

Used: 422402 5150 5105 5128 5000 4715

Offcut: 12718 30 75 52 180 465

Total: 435120 5180 5180 5180 5180 5180

Instance type07 4 solved by BLMPG:

Solution summary Total 1 5 111 172 1065 1274

delta (p used): 6 1 1 1 1 1 1

Number Rolls : 48 20 10 8 1 3 6

Widhts Width aip Out(i) D(i)

A1 738 1 0 0 0 0 0 20 20

A2 129 0 1 1 0 0 0 18 18

A3 24 0 0 0 0 0 3 18 18

A4 704 0 1 0 0 0 0 10 10

A5 54 0 0 0 0 1 1 9 9

A6 792 0 0 1 0 0 0 8 8

A7 557 0 0 0 0 0 1 6 6

A8 298 0 0 0 0 0 1 6 6

A9 675 0 0 0 0 1 0 3 3

A10 394 0 0 0 2 0 0 2 2

Max oo Cuts: 1 2 2 2 2 6

Used: 39319 738 833 921 788 729 981

Offcut: 8681 262 167 79 212 271 19

Total: 48000 1000 1000 1000 1000 1000 1000

83

B. Selected Optimal Patterns

Instance C12MMR solved by BLM-MMR:
The notation C12MMR indicates that this instance corresponds to the instance C12 of the
Kallrath benchmark set, but that we have just added two types of master rolls with width
W1 = 2835 resp. W3 = 5265 to the already existing type with width W2 = 4050 (i. e.,
|J | = 3) and some random stock levels Cj for testing purposes on our models BLMPG-MMR
resp. BLM-MMR only.

1 Solution Summary Total
2 −−−
3 p used: 5 1 1 1 1 1 Out(j) C(j)
4 −−−
5 MR1 2835 0 0 2 0 0 2 25
6 MR2 4050 0 0 4 5 0 9 35
7 MR3 5265 7 6 0 0 4 17 20
8 −−−
9 #p used: 7 6 6 5 4

10 −−−
11 Widhts Width aip Out(i) D(i)
12 A1 1620 2 0 0 0 1 18 18
13 A2 1700 1 0 0 0 0 7 7
14 A3 800 0 0 1 0 0 6 6
15 A4 850 0 1 0 0 0 6 6
16 A5 900 0 0 0 1 0 5 5
17 A6 1050 0 0 0 1 0 5 5
18 A7 1100 0 0 0 1 0 5 5
19 A8 1150 0 0 0 0 1 4 4
20 A9 1720 0 1 0 0 1 10 10
21 A10 1800 0 0 1 0 0 6 6
22 A11 1860 0 1 0 0 0 6 6
23 −−−
24 Max 3 cuts: 3 3 2 3 3
25 Used: 4940 4430 2600 3050 4490
26

27 MR1 2835 X
28 MR2 4050 X X
29 MR3 5265 X X X X X
30

31 Total cutoff: 21655

The minimal number of patterns is equal to five. Note that the optimal solution of the
single type of master roll problem is one pattern worse. Lines 5-7 indicate how often and
on which master roll type the patterns are applied. In addition, the total consumption
and the available stock levels for each master roll type is reported. Line 9 summarizes
the total pattern multiplicity, e. g., p3 will be used 6 times in total. The large X (added
for control purposes, see lines 27-29) indicates, that the pattern can be applied on this
master roll type, e. g., the pattern p3 can be applied on all master roll types, while p1 can
be applied on the widest type only.

84

	Introduction
	Cutting Stock Problems - Setup Minimization
	Exact Model Formulations
	Mixed Integer Non Linear Model Formulation
	Binary Linear Model based on complete Pattern Generation
	Monolithic Binary Linear Model Formulation
	Multiple Types of Master Rolls

	Heuristic Approaches
	Combining Generation of efficient Patterns with free Patterns
	Greedy Algorithms
	Partitioning Algorithms

	Setup Minimization & Cutoff Reduction

	Numerical Experiments
	Benchmark Data
	Implementation
	Results

	Conclusions and Further Research
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Notation
	General
	Sets and Indices
	Parameter
	Decision Variables

	Selected Optimal Patterns

