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Introduction

The early detection of anomalies in time series will be a crucial part in preventive maintenance and in the Internet
of Things context. The Long Short-Term Memory (LSTM), a variety of Neural Networks, have excelled in the use of
sequence data. The strength of the LSTM architecture lies in its ability to remember individual events over very long,
unknown periods of time and avoid the Vanishing Gradient Problem that occurs with Feedforward and Recurrent Neural
Networks.

The algorithm design provides a semi-supervised approach that trains the selected LSTM architecture on training data
without anomalies. The predicted data points on data with anomalies can then be compared with the actual ones. An
anomaly score is then calculated by the Maximum Likelihood Estimator based on the residuals. The hyperparameters of
the LSTM architecture are determined by Bayesian Optimization.

Theoretical Background

One advantage of neural networks is that they can approximate almost any function. The Universal Approximation
Theorem formalizes this as follows:

F (x) = N∑
i=1

viϕ(wTi x+ bi) (1)

with
|F (x)− f(x)| < ε (2)

Figure 1:LSTM Cell [1]

The strength of the LSTM architecture lies in its ability to remember individual events over very long, unknown periods
of time and avoid the Vanishing Gradient Problem that occurs with Feedforward and Recurrent Neural Networks.

Data
The data set contains the condition monitoring of hydraulic systems. It is based on on multi sensor data of a test bench.
The test bench consists of a primary and a secondary cooling-filtration circuit connected by an oil tank. The system
repeats periodically constant load cycles for 60 seconds and measures process values such as pressures, flow rates and
temperatures. In total, the dataset has 17 input features. During continuous operation, the states of four hydraulic
components are modified quantitatively. The four error types cooler and valve condition, pump leakage and hydraulic
accumulator are graded with several degrees of severity. In addition, there is one flag which indicates whether the test
bench is running stable.[2]

Methodology

The implementation of the LSTM based anomaly detection algorithm is subdivided into the following steps.[3]

1. The training of the algorithm takes place on a training data set TN . This data set has no anomalies and is suitable
for ensuring the highest possible predictive quality for the model.

2. A validation set VN with no anomalies for early stopping. This dataset should prevent the trained model to overfit
on TN and is used a proxy for the generalization error.

3. A validation set VA with anomalies and correct values is for model tuning and setting the threshold of anomaly score.
4. A unseen test or evaluation set EA, with anomalies and correct values, that describes the generalizability of models.

The trained model make predictions on the validation data VN . The resulting residual vectors are used to determine the
parameters with Maximum Likelihood Estimation for a univariate Gaussian Distribution N (µ, σ2). Here pt is used as
an anomaly score and small values indicate a higher likelihood of an anomaly.

In order to detect an anomaly, it must now be determined whether a predicted data point represents an anomaly or not.
The validation set VA are used to learn the threshold τ . For this the Fβ score can be optimized. Fβ takes into account
recall and precision.

Hyperparameter Optimization

The hyperparameters in a Neural network are used to define the LSTM architecture. These cannot be learned by training,
but must be specified in advance. This is a crucial step and can be done with Bayesian Optimization.

No. Hyperparmater Type Domain Description
1 dropoutL1 continuous (0.0-0.8) Layer 1 dropout
2 dropoutL2 continuous (0.0-0.8) Layer 2 dropout
3 dropoutL3 continuous (0.0-0.8) Layer 3 dropout
4 dropoutL4 continuous (0.0-0.8) Layer 4 dropout
5 dropoutL5 continuous (0.0-0.8) Layer 5 dropout
6 learning_rate continuous (1.0e-7 - 0.1) Learning rate
7 units discrete (32,64,128,256,512) Number of neurons
8 batch_size discrete (1,8,16,32,64) Batch size
9 look_back discrete (5,10,15,20,30,40,50) Window size
10 epochs discrete (25,50,100,150,200) Number of epochs
11 layers discrete (3,4,5,6) Number of layers

Table 1:Hyperparameter and Domains for Bayesian Optimization

Results
In addition to the optimized hyperparameters determined by Bayesian Optimization, various
optimizers and activation functions have been tested. The sigmoid activation functions had
a better performance than ReLU. Furthermore the performance of the ADAM optimizer was
better than that of RMSprop.

The Bayesian Optimization results in a model architecture with the following hyperparameters
selection: One input layer, two stacked LSTM layers. The first LSTM Layer with 32 units, the
second with 16 units. After that a dense layer and an output layer. The look back window was
set to 5. The number of epochs were set to at least 20. The lower bound of the learning rate was
set to 1.0−7 and will be reduced by the factor 0.2 if it hits a learning plateau on the validation
data.

The MSE for all 17 input features and one output feature is 3.2824−5. The following visualiza-
tions show that the validation curves converge already after approximately 7 epochs. According
to the central limit theorem, a normal distribution can be assumed for the large residual sample.

Figure 2:Train and Validation MSE

Figure 3:Collective anomalies with anomaly scores

Figure 4:Point anomaly with anomaly scores

The resulting confusion matrix for all evaluated anomalies looks as .
Actual

True False Total
Predicted True 5 5 10

False 14 9 23
Total 19 14 33

This results in a F1− Score of 0.3448.

Conclusion

+ The model was able to learn the feature representation of all 17 input features.
+ The results shown here indicate that the selected algorithm design is able to detect point

anomalies.
+ Bayesian Optimization is able to find important and less important hyperparameters.
+ LSTM is good for time series prediction. However, it is less suitable for anomaly detection.
+ Simpler functions can be better approximated without regularization, more complex

functions need regularization like dropout.
- The results shown here indicate that the selected algorithm design is not able to detect
collective anomalies or a concept drift.

- The look back window size is quite small, large look back windows lead to exploding
gradients. Therefore the advantages of an LSTM model doesn’t count in auto regression tasks
like time series prediction.

- A Bidirectional LSTM did not improve the results.
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