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A B S T R A C T

Over the last decades many mechanical tasks have been automated to a cer-
tain degree by machines. In recent years, the trend has shifted to automate
more complex tasks, while imitating the human ability to make intuitive
decisions using Machine Learning (ML). Many ML algorithms are known to
need a lot of curated and labeled data to be trained. The industry can often
easily provide raw data, but lacks the knowledge needed to apply it to ML.
This poses the challenge of acquiring relevant data and processing it to a
degree where it becomes usable for ML tasks. For the industry, labeling is
much harder than just providing the raw data. The reason for this is, that la-
beling in the industry often requires human experts, who are always scarce
and expensive. This gives an incentive to improve the labeling process so
that it can be done by non-experts or machines, with minimal expert super-
vision. This work proposes a concept, namely the Data Refinery (DR), to ef-
ficiently label data by exploring and exploiting semantic information, based
on Deep Metric Learning (DMeL). This is not achieved without human ex-
pertise, but instead with a decreased effort, thus simplifying an quickening
the process of acquiring relevant data. For this purpose two DRs were imple-
mented which only differ in their selection strategy. One DR selected data
samples to show to a human based on a score (DR-S) and the other randomly
without considering the score at all (DR-R). The idea behind the score was to
know in advance which data samples are valuable for training. The results
indicate that DR-S, in contrast to DR-R, specifically adds new data samples for
training in classes where it underperformed. Contrary to the expectations,
this did not lead to an overall improvement of DR-S when compared with
DR-R, but to a similar performance for a classification task. Regardless, the
goal of the case study was not to train a state of the art classification model
for a given task, but to efficiently mine data for such a model. Even though
the success of the case study is only moderate performance wise, the new
approach of the DR as a concept proves to be a promising way to acquire
specific data that can be used to create curated data sets. Such curated data
sets, are not only valuable for the industry but can be used for all kinds of
ML tasks throughout all industries.



Z U S A M M E N FA S S U N G

In den letzten Jahrzehnten wurden viele mechanische Aufgaben bis zu einem
gewissen Grad durch Maschinen automatisiert. In den letzten Jahren hat
sich der Trend dahingehend verschoben, komplexere Aufgaben zu automa-
tisieren und dabei die menschliche Fähigkeit, intuitive Entscheidungen zu
treffen, mit Machine Learning (ML) zu imitieren. Es ist bekannt, dass viele
ML Algorithmen eine Menge kuratierter und gelabelte Daten benötigen, um
trainiert zu werden. Die Industrie kann meist leicht Rohdaten zur Verfügung
stellen, aber es fehlt ihr an Wissen, um diese auf ML anzuwenden. Daraus
ergibt sich die Herausforderung, relevante Daten zu beschaffen und sie so
weit zu verarbeiten, dass sie für ML Aufgaben nutzbar werden. Für die Indus-
trie ist das labeln viel schwieriger als die Bereitstellung der Rohdaten. Der
Grund dafür ist, dass das labeln in der Industrie oft menschliche Experten
erfordert, die immer knapp und teuer sind. Dies gibt einen Anreiz, den
Labelings-prozess so zu verbessern, dass er von Nicht-Experten oder Maschi-
nen mit minimaler Expertenaufsicht durchgeführt werden kann. Diese Ar-
beit schlägt ein Konzept vor, die sogenannte Data Refinery (DR), um Daten
effizient zu labeln, indem semantische Informationen erforscht und genutzt
werden, basierend auf Deep Metric Learning (DMeL). Dies geschieht nicht
ohne menschliches Fachwissen, sondern mit einem verringerten Aufwand,
wodurch der Prozess relevante Daten zu beschaffen, vereinfacht und beschle-
unigt wird. Zu diesem Zweck wurden zwei DR implementiert, die sich nur in
ihrer Selektionsstrategie unterscheiden. Die eine DR wählt Datenmuster, die
einem Menschen gezeigt werden sollen, anhand eines Scores aus (DR-S), die
andere zufällig, ohne den Score überhaupt zu berücksichtigen (DR-R). Die
Idee hinter dem Score war, im Voraus zu wissen, welche Datenproben für
das Training wertvoll sind. Die Ergebnisse zeigen, dass DR-S im Gegensatz zu
DR-R gezielt neue Datenproben für das Training in Klassen hinzufügt, in de-
nen es unterdurchschnittlich abschneidet. Entgegen den Erwartungen führte
dies nicht zu einer Gesamtverbesserung von DR-S im Vergleich zu DR-R, son-
dern zu einer ähnlichen Leistung bei einer Klassifikationsaufgabe. Unab-
hängig davon war das Ziel der Fallstudie nicht das Trainieren eines State-
of-the-Art-Klassifikationsmodells für eine bestimmte Aufgabe, sondern das
effiziente Mining von Daten für ein solches Modell. Auch wenn der Erfolg
der Fallstudie in Bezug auf die Performance nur mäßig ist, erweist sich der
neue Ansatz des DR als Konzept als vielversprechender Weg, um spezifis-
che Daten zu gewinnen, die zur Erstellung kuratierter Datensätze verwen-
det werden können. Solche kuratierten Datensätze sind nicht nur für die
Industrie wertvoll, sondern können für alle Arten von ML Aufgaben in allen
Branchen verwendet werden.



Die Unterschiedlichkeit der Herangehensweisen ist nie der Anlaß, das Gespräch
abzubrechen, sondern bildet die Basis wechselseitiger Faszination.

— Heinz Von Foerster - Physiker, Kybernetiker und Philosoph [31]
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

Over the last decades many mechanical tasks have been automated to a
certain degree by machines [4]. In recent years, the trend has shifted to
automate more complex tasks, while imitating the human ability to make
intuitive decisions using ML e.g. in autonomous driving [35], breast cancer
classification [18] or predictive maintenance [3]. These decisions are based
on semantic information, referring to the contextual meaning of data. Hu-
mans in fact are excellent at extracting semantic information out of data,
they do it all the time. Humans learn to make intuitive decisions by experi- Note: Even by

reading this work
semantic
information is
extracted

ence and training, increasing their expertise on a topic and leading them to
become experts in said topic. A well-trained radiologist for instance can de-
tect small but potentially dangerous abnormalities on an x-ray image. Hence,
the radiologist has learned to distinguish and extract important semantic in-
formation from the data encoded in the image. The medical sector is not
the only area where such intuitive decisions are eminent parts of daily tasks.
There are other sectors, like the industry, where extracting semantic informa-
tion for decision-making is valuable.

Many ML algorithms are known to need a lot of curated and labeled data to
be trained. The industry often could easily provide raw data, but lacks the
knowledge needed to apply it to ML [16]. This poses the challenge of acquir-
ing relevant data and processing it to a degree where it becomes usable for
ML [34]. A common way to provide this information is through labeling. For
the industry, labeling is much harder than just providing the raw data. The
reason for this is, that labeling in the industry often requires human experts,
who are always scarce and expensive. This gives an incentive to improve
the labeling process so that it can be done by non-experts or machines, with
minimal expert supervision.

This work proposes a concept, namely the Data Refinery (DR), to efficiently
label data by exploring and exploiting semantic information, based on Deep
Metric Learning (DMeL). The goal is to reduce the labeling effort from ex-
perts and non-experts alike. The proposed concept is first applied in an in-
dustrial setting to create Feature Extractors (FE), which use Deep Computer
Vision (DCV) to detect semantic information in images with the aim to then
discriminate objects via clustering. Hence, this thesis provides a scheme of
experts, non-experts, and machines working successfully in tandem to gen-
erate curated data sets for ML tasks.
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1.2 setting

This section gives an overview of the legal framework of the German "Pfandsys-
tem" (deposit-refund system) and part of the resulting industry in which the
concept of this work was conceived.

Germany has a deposit-refund system called "Pfandsystem" for collecting
and returning package materials, especially bottles. It is defined in the Ger-
man law "Verpackungsgesetz (VerpackG)" (packaging act). The idea of the
act is to reduce trash, reuse material, and, hence, to protect the environment1.
Basically, for some glass or Polyethylene Terephthalate (PET) bottles there is
a deposit ("Pfand") to be payed as a fee on top of the regular price. The fee
ranges from 0.08€-0.25€ depending on the type of bottle. The consumer pays
the fee with the product price and later gets the fee back when returning the
bottle. Note: This is only

the basic idea of the
"Pfandsystem".
There is more to it
and for curious
minds reading the
"Verpackungsge-
setz" is
recommended.

The "Pfandsystem" is applied to two main types of packaging: (1) "Mehrwegver-
packungen" (reusable packaging). (2) "Einwegverpackungen" (single use pack-
aging), which means the packaging is not reusable but the materials of the
packing are, to a certain percent, recycled.2

Figure 1.1: "Mehrwegkreislauf" (reusable cycle) using the example of beer bottles.

1 § 1 VerpackG
2 § 3 VerpackG
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The concept of "Mehrwegverpackungen" comes with a logistical effort. Fig-
ure 1.1 shows the "Mehrwegkreislauf" (reusable cycle) using the example of
beer bottles in more detail. 1 The cycle starts with the customer a , return-
ing an empty bottle to a store b . 2 The store b passes the bottle on to a
market for bottle trading c . 3 Eventually, the bottle is delivered to a brew-
ery d . Inside the brewery d a new cycle begins: (I) bottles are delivered
and stored in the brewery. Then a (II) "Leergutkontrolle" (empties inspection)
will be held, which is the process of inspecting the bottle and determining
the type of the bottle. In (III) the sorting robot is located, where the bottle is
sorted with the information from (II). After the sorting from (III), the bottle
is cleaned (IV), inspected (V), refilled (VI), labeled (VII), etc.3 4 The refilled
bottle is shipped from the brewery d to a wholesale market e . 5 At some
point the refilled bottle is returned to a store f . 6 A new customer a buys
the refilled bottle from the store f and the cycle starts over again. Every
part of the cycle comes with its own challenges, one of the many challenges
is the correct identification of bottles, since there are many different types.

Schulz Systemtechnik GmbH4, a German automation company, provides a
solution for the "Leergutkontrolle", namely the Crate Inspector (CrI), that per-
forms a Bottle-Type Recognition (BT-R) task. The next section will lay down
the technical details of the CrI and its capabilities.

1.2.1 Crate Inspector

Schulz Systemtechnik GmbH has developed a solution for the BT-R task
namely, the Crate Inspector (CrI). The CrI was designed by Schulz Systemtech-
nik GmbH, not only to recognize bottles ("Leergutkontrollen"), but also to
be able to perform empty crate controls ("Leerkastenkontrollen"), full crate
controls ("Vollkastenkontrollen") and crate logo controls ("Kastenlogokon-
trollen"). By doing so, the CrI reaches a performance of up to 6K crates per
hour. Note: Depending on

the type of crates, a
performance of up to
144K bottles per
hour is possible.

The task of the CrI, with respect to the "Leergutkontrolle" is: to predict the
type of bottle inside a crate without unpacking the bottle from the crate. In this
work, this task will be referenced to as the Bottle-Type Recognition (BT-R)
task. The type of bottle is determined by the shape, color, and size of the
bottle. The paper logo on the bottle is not a determining factor. There is
a widely used variety of different standard bottle shapes, like euro-bottle,
NRW-bottle, longneck, and many more. Most of them have white, green or
brown as standard colors and a standard volume of 0.33L or 0.5L. Although
the "Mehrwegkreislauf" encourages standards, some breweries favor their
own designs. The brewery Beck’s e.g., uses a standard white bottle with
their logo as a relief on it. But there are more unique bottles then the ones Note: Beck’s relief

can lead to strange
things. [29]3 Not all steps inside the brewery are shown in Figure 1.1.

4 https://www.schulz.st/
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from Beck’s. Breweries sometimes use colors like blue (Veltins V+ Energy)
or unique volumes like 0.4L (Heineken). Every geographical region can have
their own variation of unique bottles. This complicates the sorting task, es-
pecially when new bottle-types are released in the future.

Figure 1.2: Schematic Drawing of the Crate Inspector. A technical Computer-
Aided Design (CAD) of the CrI provided by Schulz Systemtechnik GmbH.

Figure 1.2 gives a deeper understanding of what the CrI is in technical terms
and how it is constructed. In Figure 1.2 a crate 1 is transported to the CrI via
the front conveyor belt 10 , which manages the amount of crates transferred
to the Confidence Interval (CI). A height detector (photoelectric barriers) 2

checks if something is in the crate that could damage the machine. If 2

detects no foreign object, the crate is transferred to the back conveyor belt
9 . Ultrasonic sensors 3 measure the height of the individual bottles. The

cameras 4 and 5 take pictures from every row of the crate. The cameras
in Figure 1.2 at 4 provide pictures from the diagonal and camera 5 from
the vertical perspective. All cameras take pictures, first with normal light
conditions and then with Ultraviolet (UV) light. The light is provided by an
illumination system 6 . Additional pictures are taken from the logo of the
crate by another camera 7 . The photoelectric sensors located at 8 measure
the length of the crate and provide additional information about the position
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of the crate on the conveyor belt. All collected information is processed by a
computer located at 11 . The computer can display information on a screen
for a operator 12 .

Another way to look at the Crate Inspector (CrI) is as a system with in- and
outputs as shown in Figure 1.3. Inputs to a system have different levels of
importance to the given system in respect of the output. In Figure 1.3 only
the most important inputs to the CrI are illustrated and Table 1.1 ranks those
inputs.

inputs type importance

Bottle-Crate Object of Interest ***

Images via Cameras Sensor ***
Ultrasonic Data Sensor ***
Photoelectric Data Sensor *

Calibration Config ***
Configuration Config **

Light Environment ***
Temperature Environment **

Table 1.1: A ranking of the most important inputs for the CrI. The importance is
represented by stars. The most important input is assigned three stars
(***).

The main input, as shown in Figure 1.3 to the CrI is the crate (orange arrow
on the left). The crate can contain up to 24 bottles. Each bottle in the crate can
potentially be any bottle-type. The bottles can also have all kinds of condi- Note: The

bottle-type
distribution is
mainly dependent
on the geographic
region

tions: polluted, moldy, broken, etc. But usually most of them are intact. The
CrI uses the sensors (camera, ultrasonic, photoelectric) to observe the crate
and the bottles inside (blue arrows). The sensors generate information from
the bottles like measurements and images. The collected information is then
used to determine properties like height, color, basic shapes, etc.

An algorithm determines which properties are needed for a certain classifi-
cation regarding the BT-R task. The algorithm (yellow box) is written in C++
and all classification rules have to be defined and written in that algorithm
by a human expert. This comes with a lot of effort to (1) determine the right
properties, (2) implement appropriate extraction of those properties from
the available data, and (3) generalize (1) and (2) for all relevant bottle-types.
But there is even more to consider: because of the nature of the algorithm,
the classification is sensitive to external influences. Those influences can be
changes in light, temperature, vibration, etc (red arrows on the bottom). On
top of that, there is the calibration and configuration (green arrows) of the
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CrI and its parts (i.e., slight changes in the camera angle or position can have
immense influence on the classification). Also, the configuration is often de-
pendent on the customer and which bottles the customer needs.

Figure 1.3: System Analysis of the Crate Inspector. The Crate Inspector (CrI) as a
system with in- and outputs

Schulz Systemtechnik GmbH has managed these challenges and installed
the CrI at over 34 customer sites worldwide. This comes with a lot of effort
though and poses challenges on adapting the CrI to ever increasing customer
demands. Such challenges include the sensitivity of the system to changes in
the camera and lighting setup and the ever increasingly variety of different
bottle brands and types. In contrast to the current software for the CrI, which
heavily relies on traditional Computer Vision (CV), this work proposes that
an alternative approach, utilizing ML and Deep Computer Vision (DCV) tech-
niques has the potential to alleviate some of the challenges described above.

The Section 1.2.2 Raw Data, takes a closer look at the outputs from the CrI,
which can also used as an input for a ML approach. In Section 2.2 Concept,
the process of acquiring relevant data for such a ML approach is presented.
In Section 2.1 Fundamentals, the necessary basic principles underlying the
concept are explained.

1.2.2 Raw Data

The CrI described in Section 1.2.1 produces a lot of raw data which can be
used for ML. This section provides a exploration of the produced raw data.
Table 1.2 provides a list with the available raw data for one bottle-crate. The
data is split into four types: image-data, sensor-data, metadata and given
prediction of the CrI for the BT-R tasks.
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file-name type description

*-Autostore-1.png Image-Data Configuration 1

*-Autostore-2.png Image-Data Configuration 2

*-Autostore-3.png Image-Data Configuration 3

*-Autostore-4.png Image-Data Configuration 4

*-Autostore-5.png Image-Data Configuration 5

*-Autostore-6.png Image-Data Configuration 6

*-Autostore-7.png Image-Data Configuration 7

*-Autostore-8.png Image-Data Configuration 8

*-Autostore.ini Metadata Additional Information

*-Autostore-9.csv Sensor-Data Ultrasonic Measurements

*-Autostore-SaveData.ini Prediction Classification Prediction

Table 1.2: List of Raw Data Files generated by the Crate Inspector

In Figure 1.4 all images from all the cameras and lighting settings taken
by the CrI are shown. Figure 1.4a and Figure 1.4b show the crate from a
vertical perspective, with two different standard settings for lighting, with
Figure 1.4a slightly brighter than Figure 1.4b. In these images, the mouths
of the bottles are clearly visible. For the attentive observer of both images, it
is additionally recognizable that Figure 1.4b shows the crate has slightly ad-
vanced on the conveyor belt. It is also of note that the images are composed
of four individual images, one for every row of the crate. This is true for all
images presented in Figure 1.4 except for Figure 1.4e, which consists of just
a single image, which shows the logo of the crate.

In Figure 1.4c and Figure 1.4g the crate is shown in two different diagonal
perspectives and with standard lighting settings. The neck and some parts
of the bottles shoulders are especially well visible here. For bottles with a
paper label on the neck, this label is also visible.

Figure 1.4d and Figure 1.4h show the crate with the two identical diagonal
perspectives just as shown in Figure 1.4c and Figure 1.4g but with Ultravi-
olet (UV) lighting. The UV light shows properties from the bottles that were
hidden before. In the upper right corner on Figure 1.4h there are two bottles
glowing green. This implies the bottles have a special UV protective finish.
UV protection is required for beer in white bottles. Otherwise, the beer could
continue to ferment.

Another, previously hidden property can be observed on the left side in the
Figure 1.4h. There are three bottles with a green glowing mark in the re-
gion of the upper neck. This mark is an identification mark applied by the
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manufacturer to unambiguously identify the bottle. Although UV can reveal Note: In Figure 1.4h,
the mark for
Krombacher Pilz
0.5L and Köstritzer
0.5L are visible.

hidden properties on a bottle, most bottles don’t have UV specific hidden
properties.

There are two more images illustrated in Figure 1.4, which will not be used
in this work: Figure 1.4e which, as mentioned before, shows the logo of
the crate, and Figure 1.4f which shows all bottles in a "fish eye optic". The
special fish eye optic helps to better identify properties on the shoulders, e.g.
identify Beck’s relief.

(a) Image Configuration 1 (b) Image Configuration 2 (c) Image Configuration 4

(d) Image Configuration 6 (e) Image Configuration 7 (f) Image Configuration 8

(g) Image Configuration 3 (h) Image Configuration 5

Figure 1.4: Image-Data provided by the Crate Inspector. All images depict the
same crate in different angles. All Images were taken by the CrI.
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The sensor-data from the ultrasonic sensors are used to calculate the height
of the bottles in the crate. This process is error-prone and the calculation
rather complicated. For the CrI the height is one of the main properties used
to classify the bottles.

This Section 1.2.2 has given an overview of the available raw data created
by the CrI. In the Section 3.2, this work will explain how the raw data was
prepared for the proposed approach of obtaining curated data sets by ap-
plying the Data Refinery (DR). In the next Section 2.1, Fundamentals, the
necessary basics for understanding the concept (Section 2.2) behind the DR

are presented.



2
T H E O RY

In this chapter, the fundamentals (Section 2.1) which build the basis for this
work, the concept of the Data Refinery (DR) (Section 2.2), and related work
(Section 2.3) are introduced.

2.1 fundamentals

2.1.1 Machine Learning Program Paradigm

A. L. Samuel, a pioneer on Machine Learning (ML), foresaw and explained
the ML program paradigm in a paper from 1959: "Programming computers
to learn from experience should eventually eliminate the need for much of
this detailed programming effort" [23]. Nowadays we distinguish between
"traditional programming" and Machine Learning (ML). The main difference
is, as depicted in Figure 2.1 that in traditional programming, a human is
programming a detailed program, and in combination with input (data) an
output is generated. In contrast to this, ML receives the output plus the input
and a program, a function, or an algorithm is generated or "learned" by the
machine.

Figure 2.1: Scheme of the Machine Learning Program Paradigm.

In the context of this work, a human expert is not needed to explicitly pro-
gram an algorithm which can recognize different bottle-types and instead
has to provide a sufficient amount of input and corresponding output data
(labels).
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2.1.2 Computer Vision

The concept of Computer Vision (CV) aims to "[...] come up with a compu-
tational model of the human visual system" to automatically "[...] perform
some tasks which the human visual system can perform" [22]. Larry Roberts
is considered the father of CV because of his PhD thesis from 1960. Hence,
CV is not new, a fairly extensive topic and yet quite difficult. One reason CV

is considered difficult is that the human visual system is remarkably good
at certain tasks, like face-recognition, so that a CV system can not keep up.
[22]

Nowadays, CV is distinguished between traditional or analytical CV and
Deep Computer Vision (DCV), which uses Machine Learning (ML). A lot of
"low level" vision tasks for analytical CV like edge detection are incorpo-
rated into Deep Computer Vision (DCV) over time, which made the whole
Computer Vision (CV) process easier to handle. One of the most known and
successful developments of DCV are Convolutional Neural Networks (CNN).

2.1.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) allows to automatically analyze an
image with less effort than analytical CV. The architecture of the Convolu-
tional Neural Network (CNN) consists of two main parts: a convolutional
part, also called Feature Extractor (FE) and a fully connected part, also called
classification part. In Figure 2.2 a simple architecture of a CNN is given.

Figure 2.2: Simple Convolutional Neural Network Architecture. Simplified repre-
sentation of the architecture of an Convolutional Neural Network.

An image fed as a input to a CNN is first passed through a convolutional
layer as shown in Figure 2.2. The convolutional layer traverses the image
via different filters. Every filter creates a version of the image (a channel).
All channels go through a pooling layer which reduces the dimensions of
the channels. This alternating between convolutional layer and pooling layer
continues for a predetermined number of times. After the last pooling layer,
the resulting channels are flattened (i.e., reshaped into a regular vector). This
vector, sometimes also called feature embedding, is then fed to the fully
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connected part, which is another basic type of Artificial Neural Network
(ANN). In the end the output neurons are used to classify the image into one
out of a number of predetermined classes.

2.1.4 Open-Set

For most classification/recognition tasks a ML algorithm is trained on data
where all possible target classes are known from the beginning. This can be
problematic for real world use cases however, where the task may change
over time and thus not all target classes are known at training time. The
Bottle-Type Recognition (BT-R) task, explained in Section 1.2.1 is once such
use case. Depending on shifts in the market, such as the introduction of
newer bottle-types a particular customer of the CrI may want to adjust to,
may change which bottle-types need to be classified. If a standard CNN were
to be trained for said customer, that later wants to recognize a new bottle-
type, the CNN would have to be fitted with a new output layer with an
additional neuron for the new bottle-type. This in turn requires retraining
the CNN as a whole. In effect this would lead to an architecture adjustment
and retraining process for every new bottle-type or other change in the task.
Open-Set detection aims at dealing with this problem when not all classes
are known at training time by changing the training regiment. [6].

One approach to solve this problem is to learn a Feature Space (FS). Instead
of learning a discrete classification, a continuous space is learned which en-
codes features. The FE part of a CNN can be used to create a FS for images.
Section 2.1.5 explains how to train a FS by using Metric Learning (MeL) in
more detail.

To give an intuition of how a FS can be interpreted, one can use the concept of
Desoxyribonucleic Acid (DNA) as an analogy. DNA encodes the information
that determines the phenotype (appearance) of a creature. The information
that determines the color of the iris (eyes) is not encoded in one area of the
DNA, but rather on different parts. The combination of these features deter-
mines the final phenotype of a certain property, like the eye color [33]. A
property like color, which can be interpreted by a human, is encoded in the
FS in a similar way it is encoded in DNA, where the combination of different
features account for a certain color. It is important to note that the individual
features from the FS are not interpretable by humans.

The benefit of an continuous FS versus a discrete classification is that theoret-
ically a endless amount of classes can be encoded. Furthermore, if one wants
to add a new class, retraining is not necessarily required. The downside is
that for the actual classification another algorithm like K-Nearest Neighbors
Algorithm (K-NN) is needed.
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2.1.5 Metric Learning

The purpose of Metric Learning (MeL) or metric embedding learning is to
learn a function f (·) : RQ → RF; which maps semantically similar data
samples from the data space RQ closer together in the target space RF (Fig-
ure 2.3). The function f (·) can be anything ranging from a linear transforma-
tion [15, 32], to a non-linear transformation usually represented by a deep
Artificial Neural Network (ANN) [26]. [9]
The result RF from f (·) is further referenced as Feature Space (FS) and se-
mantically similar data samples are grouped into one class ci all classes be-
long to the set C.

Figure 2.3: Concept of Metric Learning. Simplified presentation of the concept of
Metric Learning.

In recent academic research Deep Metric Learning (DMeL), where f (·) is
a deep ANN, showed great success specifically for Computer Vision (CV)
tasks [12]. Especially for face recognition [26], where the number of different
classes (faces) is high and the number of images per class is low. This is also
known as "few-shot learning". The next Section 2.1.5.1 introduces the triplet
loss, a way to learn or train the function f (·) for DMeL.

2.1.5.1 Triplet Loss

A loss function L is an essential part of Machine Learning (ML) tasks. In
essence, ML tasks are optimization problems (i.e., basically, "a number" be-
comes either maximized or minimized). The loss resp. loss function, defines
exactly "the number" to be optimized.

Let d : RF ×RF → R+ be a function which measures the distance between
two samples in the FS. For clarity the shortcut d(xi, xj) = d( f (xi), f (xj)) is
used. Furthermore let xa (anchor) be a sample in RF, with the class ci ∈ C,
xp (positive) a sample in RF which also has the class ci, and xn (negative) a
sample in RF which has the class cj,j 6=i ∈ C (i.e., a different class then the
class from xa and xp). [9] Now a loss function is needed L : RF×RF×RF →
[0, ∞) that: (1) yields a big number if d(xa, xp)� d(xa, xn), (2) a low number
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if d(xa, xp) > d(xa, xn), and (3) 0 if d(xa, xp) ≤ d(xa, xn). Equation 2.1 defines
such a function; the triplet loss.

L(xa, xp, xn) = max(0, d(xa, xp)− d(xa, xn)) (2.1)

One extension of the triplet loss function is the margin parameter m. It is
added to the d(xa, xp), so that in some cases, even if d(xa, xp) < d(xa, xn)

the triplet loss yields a value > 0. The triplet margin loss is shown in Equa-
tion 2.2 and is applied in this work.

L(xa, xp, xn) = max(0, m + d(xa, xp)− d(xa, xn)) (2.2)

Over the learning period, the ML task tries to minimize the output of the
Equation 2.2, in order to learn an optimal function f (·). This is successful
when d(xa, xp) is minimized and d(xa, xn) is maximized (i.e., xa and xp are
mapped close together and xn further away from xa in the FS (RF)). A visual
intuition of this is given in Figure 2.4.

(a) Before Training (b) After Training

Figure 2.4: Feature Space and Triplets. In 2.4a the distance d(xa, xp) ( ) between
points in the same class ( ) is higher, than the distance d(xa, xn) ( )
from different classes ( and ). After learning the metric embedding
from the data; the d(xa, xp) is reduced and the d(xa, xn) is increased. If
the training is successful, d(xa, xp) < d(xa, xn), as shown in 2.4b.

It is important to highlight the following: a ML model in a training phase
learns more if the triplet loss (L) is high. Over the course of training, the L
should converge towards 0. But all this is dependent on which triplets were
build from the data samples. The number of all possible triples for a data
set with n samples is O(n3). Using all triplets for a large n is impracitcal for
ML model training [5]. Hence the idea is to build mostly so called "hard" or
"semi-hard" triplets (i.e., triplets with L� 0 or L > 0).

The Figure 2.5 shows an example of hard, semi-hard and easy triplets. In
Figure 2.5a, a easy triplet is shown. The negative sample xn is further away
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(a) Example of one easy Triplet where L =
0

(b) Example of one hard Triplets where
L� 0

Figure 2.5: Example of hard, semi-hard and easy Triplets. 2.5a shows a easy triplet,
with no new information to learn. In 2.5b a hard triplet is shown, which
has new information to learn. For an optimal function f (·); the sample
xp has to be mapped closer to xa and xn further away from xa. This figure
is inspired by [12].

to the anchor xa than the positive sample xp. The triplet loss would yield
L = 0 for such an example (i.e., nothing can be learned). Figure 2.5b shows
an example for a hard triplet. The negative sample xn is closer to the anchor
sample xa than the positive sample xp. The triplet loss yields L � 0. Hard
triplets are valuable for training because the impact on learning is high.
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2.1.6 Human-in-the-Loop

Human-in-the-Loop (HITL) describes the process of utilizing humans high-
level cognitive power to tackle particularly difficult tasks a computer system
can’t solve on its own [20]. This is often used for difficult visual object recog-
nition tasks [11, 20] and will also be applied in this work.

To give an example of how such a process can work, one can examine Hutch-
sion David: Visual Recognition with Humans in the Loop. In his own words: "We
present an interactive, hybrid human-computer method for object classifica-
tion. The method applies to classes of objects that are recognizable by people
with appropriate expertise (e.g., animal species or airplane model), but not
(in general) by people without such expertise. It can be seen as a visual
version of the 20 questions game, where questions based on simple visual
attributes are posed interactively. The goal is to identify the true class while
minimizing the number of questions asked, using the visual content of the
image." [11]

Figure 2.6: Visualization of a Human-in-the-Loop System. "Visualization of the ba-
sic algorithm flow. The system poses questions to the user, which along
with computer vision, incrementally refine the probability distribution
over classes" [11]. (Figure taken from [11])

The Figure 2.6 (out of [11]) visualizes the process; first a CV system ana-
lyzes the image of a bird, to calculate a probability distribution over the
bird classes. Then the system asks specific questions a human will then give
answers to. Every answer refines the probability distribution over the bird
classes. Thus a computer system and a human solve a task together.

2.1.7 Expected Utility

When using a HITL approach, decisions have to be made on which ques-
tions are presented to a human worker. It is often not possible to have a
human worker answer every question due to the sheer amount of poten-
tial questions. This introduces a decision-making problem that has to be
resolved somehow. This work uses the concept of Expected Utility (EU) for
evaluating decisions under uncertainty. It can incorporate preferences over
decisions and originates in economics where it is used to model human
decision-making.
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The concept of expected utility is best illustrated by example. Suppose there
is a lottery with a probability (p) of 50% to win 100€ and 50% to win 0€. In
the context of EU the "win" is called outcome (o) (i.e., 50% probability for an
outcome of 100€ and so on). Furthermore there is a second lottery with a
probability of 50% to yield an outcome of 50€ and 50% probability to yield
an outcome of 50€. Lottery one is called X and lottery two X′, which lottery
is better?

X = 〈o, p〉 =
〈[

100€
0€

]
,
[

0.5
0.5

]〉
(2.3)

X′ = 〈o, p〉 =
〈[

50€
50€

]
,
[

0.5
0.5

]〉
(2.4)

The expected value E is calculated as a weighted sum in Equation 2.5 and
Equation 2.6, for both lotteries E is the same: 50€.

E(X) = ∑
i

pi ∗ oi = 0.5 ∗ 100€ + 0.5 ∗ 0€ = 50€ (2.5)

E(X′) = ∑
i

pi ∗ oi = 0.5 ∗ 50€ + 0.5 ∗ 50€ = 50€ (2.6)

But still there are some people who will prefer lottery X′ over X, because it
is a safe bet to gain 50€. Those people can be called "risk averse", they will
always prefer the safe option. Some other people will prefer lottery X over
X′, because they like the thrill of gambling. Those people can be called "risk
seeking".1 EU provides a way, in form of a utility function U, to incorporate
those preferences; risk averse, risk seeking and so on. For this the outcomes
are not directly used in the weighted sum, but are re-evaluated. To calculate
an example of a risk averse preference, the square root can be used as utility
function U to re-evaluate the outcomes. Equation 2.7 calculates this for X
and Equation 2.8 for X′.

EU(X) = ∑
i

pi ∗U(oi) = 0.5 ∗
√

100€ + 0.5 ∗
√

0€ = 5 (2.7)

EU(X′) = ∑
i

pi ∗U(oi) = 0.5 ∗
√

50€ + 0.5 ∗
√

50€ ≈ 7.07 (2.8)

Now EU(X) yields a utility of 5 and EU(X′) a utility of 7.07. With this, lot-
tery X′ has a higher utility then X and thus lottery X′ is the natural choice
for a risk averse person.

1 There are also people who are "risk neutral" which see lottery X and X′ as equal.
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It is important to note that the outcome is no longer a value in euro, but
in utility and that the utility function U defines how something is valued.
There are various commonly used utility functions, able to capture all kinds
of preferences. Equation 2.9 shows a more general definition of EU.

EU = ∑
i

pi ∗U(oi) (2.9)

This section just gave a simple introduction to the EU suitable for its use in
this work. There’s a lot more literature [2, 25] which gives a more complete
picture of this topic for the interested reader.

2.1.8 Multi-Class Classification Validation

To validate the performance of a ML model, the confusion matrix, also
known as error-matrix is often used [28]. Table 2.1 shows the confusion
matrix for a binary classification task. Assumed a model is trained for a
classification task, which can detect if a cat is depicted in a picture or not.
The amount of times the model predicts a cat is in a picture and this is
actually true is called True Positive (TP). The amount of times the model
predicts there is no cat in a picture and this is actually true is called True
Negative (TN). The amount of times the model predicts a cat is depicted in a
picture, but in truth, there is no cat in the picture is called False Positive (FP).
FP is also known as Type I error. The amount of times the model predicts
there is no cat in the picture, but in truth, a cat is in the picture is called
False Negative (FN). FN is also known as Type II error.

True Condition
Condition Positive Condition Negative

Pr
ed

ic
te

dC
on

di
ti

on

Predicted
Condition

Positive

True Positive
(TP)

False Positive
(FP)

Type I Error
Predicted
Condition
Negative

False Negative
(FN)

Type II Error

True Negative
(TN)

Table 2.1: The Confusion Matrix for a Binary Classification Task.

To validate the cat-model, TP, TN, FP and FN are calculated on a test set to
form the confusion matrix (i.e., on pictures the model has not seen before).
The confusion matrix functions as a base for all kind of validation metrics.
One such metric is accuracy as given in the Equation 2.10.

ACC =
TP + TN

TP + TN + FP + FN
(2.10)
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Accuracy is a good metric if the test set is balanced but it cannot handle in-
balanced data. Assumed 90% of pictures in the test set are pictures of cats, a
model which just predicts that there is a cat in every picture in the test set,
would reach 90% accuracy. Better metrics for in-balanced data are precision
and recall.

Precision is the ratio between TP and all the times the model predicted a cat
on a picture (TP+FP). Precision is also called Positive Predictive Value (PPV).

PPV =
TP

TP + FP
(2.11)

Recall, also called sensitivity or True Positive Rate (TPR), is the ratio between
TP and all the times a cat actually was in a picture (TP+FN).

TPR =
TP

TP + FN
(2.12)

For multi-class classification validation, there are two types of precision and
recall; micro and macro averaging [28]. Micro averaging is calculated over
the total test set and all test samples are treated equally. Supposed a classi-
fication model, which classifies in three classes2; cat (c), dog (d) and mouse
(m), is used. The Table 2.2 shows the prediction of a given test set for such a
classification model.

True Condition c d m d m m c d d

Predicted Condition d d c d c m d m d

Table 2.2: Predicted Condition for the Multi-Class Classification Example which
Classifies in Cat (c), Dog (d), and Mouse (m).

TP are all true predictions the model has given; TP= 4. FP are all the times
a certain animal is predicted, but in truth, there is a different animal; FP= 5.
FN are all the times an animal should have been predicted, but was not. In
column one, a cat should have been predicted, but was not. In column three,
a mouse should have been predicted, but was not and so on. Hence the
amount of FN are also 5. In other words, there is always the same amount of
FN and FP which leads to Micro Precision (MiP) and Micro Recall (MiR) being
equal for micro averaging.

Macro averaging calculates precision and recall for each class and then aver-
ages over all classes. This is illustrated for the example in Table 2.3, macro
averaging weighs every class equally, independent of the amounts of sam-
ples per class.

The right metric to validate a model is always dependent on the use case.
Often one metric is not enough to fully capture the performance of a model.

2 This example is inspired from a blog post created by Simon Hessner. [10]
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Class TP FN FP PPV TPR

Cat (c) 0 2 2 0 0

Dog (d) 3 1 2
3
5

3
4

Mouse (m) 1 2 1
1
2

1
3

Macro Average 0.3667 0.3611

Table 2.3: The Confusion Matrix, Macro Precision and Recall for all Example Classes;
Cat (c), Dog (d) and Mouse (m).

In [28], comprehensive analysis of different performance measurements is
executed by Marina Sokolova.
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2.2 concept

In the Section 1.1 two main problems in the industrial setting were identified.
(1) The industry has a lot of untidy data (Section 2.2.1), that can not be easily
used with state of the art ML algorithms. (2) Acquiring semantic information
is valuable for a lot of applications, but is hard to extract for a machine. In
Section 1.2 one such application; namely the Bottle-Type Recognition (BT-R)
task for the German "Pfandsystem", is described. The problem with the ap-
proach described in the mentioned section is, that the semantic information
and how the machine should interpret them, is given by humans. This leads
to an increasingly complex program, that the human must keep in order.
This work proposes a novel concept, in which a machine learns to extract se-
mantic information and while doing so, is also capable of refining the untidy
data provided by the industry. This is not achieved without human exper-
tise, but instead with a decreased effort, thus simplifying an quickening the
process of acquiring relevant data (Figure 2.7).

Figure 2.7: Schematic Concept of the Data Refinery. Tidy data is used to train a
Feature Extractor (FE). The FE is used to find interesting untidy data
samples to show to a human. The human gives feedback regarding the
shown samples. As a result, a FE can be trained with more tidy data in
the next iteration.

In order to optimize the process and to reduce the effort required from the
human expert, a FE is trained with tidy data, as shown in Figure 2.7. The
trained FE maps data samples with similar features in a Feature Space (FS)
close to each other. With the help of the provided tidy data, the FE is capable
of finding interesting untidy data samples, which are worth showing to a
human. A score function (Section 2.2.3) determines how interesting a data
sample is, the higher the score, the more interesting. A select function (Sec-
tion 2.2.4) is used as a filter to control the score. The goal of this process is
to simplify the task of the human, which is to label only the interesting data,
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tidying it in the process. So that in the next iteration, a FE can be trained with
more tidy data. The whole process can also be performed with no tidy data
provided in the first iteration. For this a FE starts with a random initialisation.
In every step errors can be made so the proper implementation of all steps
determine the performance of the DR.

2.2.1 Tidy and Untidy Data

The DR distinguishes between tidy and untidy data. Tidy data in the context
of the DR is data a human has examined and given semantic information
to (i.e., labeled the data accordingly). This can also include additional infor-
mation. For example: that a data sample does not belong to a specific class,
or that it looks similar to data examples from other classes. Untidy data is
all the data that was not examined by a human and so the properties are
unknown. The untidy data is explored, while the tidy data is exploited. In
this work tidy data is sometimes referred to as labeled or known data, while
untidy data is referred to as unlabeled or unknown data.

2.2.2 Training Process

The training process uses the tidy data to create an FE. This FE aims to cap-
ture the essence of a data sample in a feature embedding. For image-data
advances in CNNs like AlexNet [14], VGGNet [27] GoogLeNet-Inception [30]
and ResNet [7] produced excellent FEs for images. In Section 3.3 an example
for such a training process and the corresponding FE is given.

2.2.3 Score

The idea behind the score is to know in advance which untidy data samples
are valuable for training in the next iteration. Valuable implies how much
can be learned from a untidy data sample regarding the training process.
For training a loss function is used, and in general the higher the loss, the
more can be learned. The score aims to simulate the expected loss for a given
untidy data sample. This is not easy, because some assumptions about the
untidy data sample have to be made. In order to make these assumptions,
the feature space of the tidy data can be used. One way to exploit the fea-
ture space is to put the feature embedding of the untidy data sample in
the feature space and look at the neighborhood. In Section 3.5 one possible
implementation of such a score is given.

2.2.4 Selection

The selection step is responsible for the selection of the untidy data samples
shown to a human. The most straightforward way could be by selecting un-
tidy data samples with the highest score. This is not always the best way.
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For example: there could be a class, one is more interested in compared to
other classes. As a result untidy data samples which could belong to this
class should be selected predominantly. Another possible way to select is to
restrict how often a sample is chosen that could belong to a certain class
per iteration (i.e., repetitively asking about the same data is not efficient).
Weighing untidy data samples by occurrence over iterations by predicted
properties can also be beneficial. In general, selecting a portion with a selec-
tion strategy and the rest randomly can account for unwanted biases.

2.2.5 Human

The human in this process has the job to give feedback to the machine and
by doing so, guiding the training process. The task the machine provides for
a human should be as easy as possible (e.g. a simple binary question if an
untidy data sample belongs to a class or not). The simpler the task, the risk
of error-prone answers is reduced and the human does not necessarily need
to be an expert. An example for the implementation of such a task is given
in Section 3.4.

In Chapter 3 the concept of the iterative Data Refinery (DR) process is applied
to the Bottle-Marketing-Label Recognition (BML-R) task which is similar to
the Bottle-Type Recognition (BT-R) task from Section 1.2.
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2.3 related work

In the aspect of Deep Metric Learning (DMeL) and Human-in-the-Loop (HITL),
Yin Cui’s et. al. work "Fine gradient categorization and data set bootstrap-
ping using deep metric learning with humans in the loop" fits best to the
approach followed in this work. Yin Cui’s work aimed to tackle the three
challenges imposed on Fine-Grained Visual Categorisation (FGVC) by using
bootstrapping and a generic iterative framework for FGVC. Similar to this
work, Yin Cui extended a data set (bootstraps) with the help of human work-
ers. A data set of flowers was obtained from Instagram. Then a model was
trained via DMeL using triplet loss. In every round new images with a high
confidence score on their model were sent to humans for labeling.

The main differences to this work lied in the way the images were chosen to
be shown to a human and in the training process. Yin Cui’s confidence score
indicated a probability that an image belonged to a certain class. All data
samples with a confidence score higher than a threshold of 50% were shown
to a human. The human labeler answered a binary question: if the predic-
tion was true (true positive) or not (false positive). The false positives were
used as hard negatives for triplet generation. In contrast this work showed
data samples to a human which indicated a possible high triplet loss for
the next iteration as explained in the previous section (Section 2.2). Another
difference was that the data sets Cui used were a self mined set originating
from Instagram and a benchmark data set for FGVC, whereas this work used
a data set obtained from the industry.

Yin Cui demonstrated that a random triplet generation strategy (triplet-
naive) performed poorly in comparison to a triplet sampling strategy with
hard negatives. Furthermore, incorporating the hard negatives found by hu-
mans in training boosted the performance of a model by 3.5%. An additional
performance boost of 3.5% could be observed when the new data samples
which were labeled as true positives by humans were added to the training
process.
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M E T H O D O L O G Y

This section presents a case study to evaluate the Data Refinery (DR) men-
tioned in Section 2.2 on a similar Bottle-Type Recognition (BT-R) task as de-
scribed in Section 1.2; the Bottle-Marketing-Label Recognition (BML-R) task.
The one essential difference to the BT-R task from the mentioned section
was, that the classes for the recognition were enlarged so that not only the
bottle-type, but also the bottle-marketing-label, could be recognized. With
the bottle-marketing-label this work refers to the paper label a bottle has in
a grocery store (i.e.; "Beck’s Gold no Alk.", "Bitburger Radler", "Bitburger
Pils no Alk." and so on). The following sections describe the realized case
study and the implementation of the DR and its elements.

3.1 case study

The case study aimed to show that a DR á la Section 2.2, in combination
with a corresponding score and selection step could efficiently mine untidy
data for the given BML-R task. For this purpose two DRs were implemented
which only differ in their selection step. One DR selected untidy data sam-
ples to show to a human based on a score and the other randomly without
considering the score at all. In this work the DR, which used a score sam-
pling strategy is referred to as Data Refinery Score Sampling (DR-S) and the
DR which used a random sampling strategy is referred to as Data Refinery
Random Sampling (DR-R).

Both DRs consisted of 10 iterations. The iterations 1− 9 passed through all
DR steps; training, score, select, and human. The iteration 10 passed through
an additional training step to see the effects of the last labels provided by the
human step from iteration 9. For the purpose of evaluating the performance
of DR-S and DR-R, a simple K-NN based classifier was used on the Feature
Space (FS) of the Feature Extractors (FE), trained by the DRs for each iteration.
A detailed explanation of the performance evaluation is given by Section 3.7.
Section 3.2 Data Preparation, Section 3.3.1 Feature Extractor, Section 3.3 Fea-
ture Extractor Training, Section 3.4 Human Task, Section 3.5 Score Calcula-
tion, and Section 3.6 Selection explaining the implementation details of the
different DR elements for this case study.

3.2 data preparation

With the ML program paradigm the main work shifted from writing a pro-
gram, to preparing data for the ML process. Therefore this section provides
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an overview of the data preparation process.

Initially, the raw data described in Section 1.2.2 were indexed; every crate
and bottle was given a Universally Unique Identifier (UUID). The Index also
included meta-information from each bottle, most importantly the height of
the bottle. Afterwards, the bottles in the raw images given by the CrI were
cropped out. This was done for the image configurations 1-6.

Figure 3.1: Example of a Data Sample. Example for a data sample without the
height. A sample consisted of 6 different images of one bottle. Each im-
age of the bottle had the dimensions 3x260x260 and was cropped from
the image configurations 1-6 (Figure 1.4).

The 6 images from one bottle together with the height from that bottle cre-
ated a sample, illustrated in Figure 3.1. In total 183084 samples were created
in this way from data provided by a CrI, located in a brewery in Germany.
The raw data needed for this was obtained in approximately 2h by the CrI.
Subsequently to the creation of the samples, a core data set was obtained
from the samples.

3.2.1 Core Data Set

The result of the data preparation process was the "core data set". The core
data set provided mainly two types of information (1) a list of bottle samples
with their corresponding labels "true labels". (2) A list of bottle samples with
explicit negative examples for a corresponding class "explicit negatives". The
true labels were later used as anchors or positives and the explicit negatives
were used as hard negatives for Metric Learning (MeL) with triplets.

Previously the bottle-marketing-label was mostly ignored by the CrI, now
the bottle-marketing-label determines the given true label for a data sample.
The process of obtaining the core data set took about three weeks and do-
main knowledge was needed. Utmost care was taken, that the bottles picked
for a class, captured the variants of the class. In Figure 3.2 an example of
a "diverse" class is given. To accelerate the entire process, meta-information
provided from the CrI and a pre-trained ResNet 18 were used to obtain the
core data set. Additionally a web-app was created to easily explore the raw
data.
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Figure 3.2: Example of a "Diverse" Class. Each yellow square shows a bottle with
image configuration 3. All bottles belong to the same target class. Impor-
tant for all target classes was a certain diversity (i.e., all bottles from one
target class have to be in different crates, in different positions, have a
different rotation, and so on). The bottles from the target class shown in
the figure fulfill this request.

• True Labels
As a result, 4294 true label samples from 140 target classes were ob-
tained. This was about 2.4% of all samples. The mean of samples in all
target classes was 31, with a high standard deviation of 24. Figure 3.3
shows the distribution of true label samples per target class.

Figure 3.3: The Class Distribution of the True Labels. A enlarged version of this
figure is included in the Appendix D (Figure D.1).

• Explicit Negatives
5308 explicit negative samples from 88 target classes were obtained.
The mean for samples in all target classes was 62, with an even higher
standard deviation of 45. Figure 3.4 shows the distribution of explicit
negative samples per target class. The reason for the discrepancy of
target classes from explicit negative samples and true label samples
lied in the fact that subclasses were introduced after the process of ob-
taining the core data set was completed. For training, the true label
target classes for one class, could also be used as a negative for all
other classes.
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Figure 3.4: The Class Distribution of the Explicit Negative. A enlarged version of
this figure is included in the Appendix D (Figure D.2).

3.3 feature extractor

As mentioned in Section 2.2, FEs were trained in every iteration with the tidy
data from the DR process. For the presented case study the first iteration of
DR-R and DR-S were trained with the same sub-set of the core data set. After
the first iteration, the training set for DR-R and DR-S distinguished themselves
from each other due to the different selection strategies. The architecture of
all trained FEs and the overall training process were identical for DR-R and
DR-S. In this section the architecture of the FEs and the training process with
its parameters is explained in the context of the case study.

3.3.1 Feature Extractor Architecture

In ML-driven Deep Computer Vision (DCV), Convolutional Neural Networks
(CNN) are popular Feature Extractors (FE) for image processing. Hence, the
FE used was in essence a CNN. The architecture of the FE is given in Fig-
ure 3.5. The image data of a sample was fed to three ResNet 18 [7] which do
not share any weights and were cut before their full connected part. Image
configuration 1 and 2 were fed into the first ResNet, image configuration 3

and 4 were fed to the second ResNet and image configuration 5 and 6 to the
third ResNet. The result of all ResNets were concatenated and the resulting
vector was normalized. After that three full connected layers with a PReLU
[8] as their activation function followed, which reduced the dimension of the
calculated vector to 300. In the beginning of the second part of the FE, the
height for a data sample was concatenated with the result vector of the first
part. Then two fully connected layers and a L2 loss followed. The full con-
nected layers encoded the height and the L2 loss was responsible that the
height information was only used when necessary. In the end the vectors
with and without the height information were added together to form the
output vector of the FE.
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Figure 3.5: The Architecture of the Feature Extractor.

For this case study all three ResNets used were pre-trained and their param-
eters were frozen.

3.3.2 Feature Extractor Training

The training of a FE is based on ML and the triplet loss function. The train-
ing process tries to create a Feature Space (FS), where for every triplet the
anchor and positive data sample are closer together than the anchor and the
negative data sample, as described in Section 2.1.5.

Algorithm 1 describes the process necessary to train one FE, as implemented
for the case study. In step 1 (line 1.6) a validation and training set was created
from the core data set D.1 After that in step 2 (line 1.7) the triplets were built.
This was done for the validation and training set to build validation and
training triplets. For clarity the process of building triplets is only described
once. First, a class ci out of all classes C was uniformly drawn (line 1.9). After-
wards an anchor (xa) and positive (xp) sample with the class ci was randomly
selected out of the true label list provided by the core data set Dtrue labels (line
1.10). Next, the negative (xn) data sample was selected. If explicit negative
samples were known for the given class ci in Dexplicit negatives, a random data
sample from Dexplicit negatives with class ci was selected (line 1.14). The param-
eter p determined the probability with which an explicit negative sample
was seeked. Else a different data sample with a class cj 6= ci ∈ C was ran-
domly drawn from Dtrue labels (line 1.20). The triplet generation repeated until
a maximum number of n triplets were built. Finally a FE f was trained un-
til an early stopping criteria was eventually met (line 1.24). Early stopping
periodically checks an early stopping criteria and if no improvement after a

1 In the first iteration the core data set, in the following iterations the updated core data set
was used.
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given amount of periods (also known as patience) is observed, the training
is stopped.

For training the anchor (xa), positive (xp), and negative(xn) samples were fed
to the FE f to get their feature embedding. The feature embedding, f (xa),
f (xp), and f (xn) were then used by the triplet loss. The resulting loss is back
propagated to all layers of the FE f and their corresponding parameters are
updated through stochastic gradient descent [13].

Algorithm 1 Data Refinery Feature Extractor Training Process (Simplified)

1: Input: D . core data set with |C| classes (Section 3.2.1)
2: Parameter: n . max number of triplets
3: Parameter: p . probability for picking a explicit negative sample
4: Output: f . feature extractor (Section 3.3.1)
5: function Train(D)
6: Step 1→ split D in train and validation set
7: Step 2→ build triplets . this is done for validation and train set
8: repeat
9: Step 2.1→ select a random class ci ∈ C

10: Step 2.2→ select xa, xp from Dtrue labels with class ci
11: Step 2.3→ select xn
12: if case 1: (pick xn from Dexplicit negatives) then . has probability p
13: if explicit negative known for ci then
14: Step 2.3.1→ select xn from Dexplicit negatives with class ci
15: else
16: Step 2.3.2→ go to case 2!
17: end if
18: else case 2: (pick xn from Dtrue labels) . has probability (1− p)
19: Step 2.3.3→ choose other class cj 6= ci ∈ C
20: Step 2.3.4→ select xn from Dtrue labels with class cj
21: end if
22: until max number (n) of triplets are build
23: while early stopping criteria not met do
24: Step 3→ train f with train triplets . deep metric learning
25: end while
26: return f
27: end function

In this case study 500k training triplets and 3k validation triplets were built.
The probability p to select a explicit negative sample was set to 80%. Early
stopping was conducted with a patience of 8 and the early stopping criteria
was the Triplet Accuracy (T-ACC), as given in Equation 3.1. T-ACC indicates
the relative frequency with which an anchor is closer to its positive data
sample than to its negative data sample for all triplets in the validation set.
The T-ACC was calculated and compared after every 10K triplets trained. The
training process was done for 16 FEs in every iteration for DR-R and DR-S.
Each iteration new FEs were trained. To parallelize the training Azure Ma-
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chine Learning Pipeline with the HyperDrive [19] functionality was used.

T-ACC =
1
n

n

∑
i=0

(d( f (x(i)a ), f (x(i)p )) < d( f (x(i)a ), f (x(i)n ))) (3.1)

3.4 human task

In this section, the human task or the "question" a DR was asking a human
is explained in the context of the case study. The task was identical for DR-S

and DR-R.

Figure 3.6: Human Labeling Task. An example for the human task. The "question"
was: does the bottle in the middle (red box) belong to: (A) "Hansa Pils"
(yellow box), (B) "Club Mate" (blue box) or neither to A nor to B? The
answer was: the bottle belongs to (A) "Hansa Pils".

Figure 3.6 shows an example from a human labeling task regarding the
BML-R. The image is separated into three color-coded parts. The part on the
top (yellow) is marked with the letter A and the part on the bottom (blue)
with the letter B. The part in the middle (red) consists of six pictures of one
bottle, all taken in different angles and lighting conditions. Each part A and
B consists of two bottles depicted in the same way as the bottle in the red
part. A and B are example bottles for two different bottle classes (or groups)
which are known. The class of the bottle in the middle is unknown. On the
right hand side the measured height for the bottle in the middle and the
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mean height for group A, respectively group B, is given.

The "question" the system was asking the human was: "To what group does
the bottle in the middle belong to?" The human was presented with three
answer options2: (1) the bottle belongs to group A, (2) the bottle belongs
neither to group A nor to group B, or (3) the bottle belongs to group B.

The task was kept simple, so that a non-expert could execute the task. A hu-
man can quickly look at the bottles and then answer if he believed whether
the bottle in the middle looks like a bottle from group A, B, or neither. More
information about all possible classes would help, but was not needed to
answer the task. After the human made a decision, the bottle in the middle
automatically became labeled and the core data set updated. If (1) or (3) was
picked as an answer, the bottle in the middle got the respective true label
and the explicit negative label. For answer (2) the bottle in the middle got
the label from the bottle group A and B as a explicit negative label.

For the case study a video introduction, a summary of the task and occa-
sionally updates per mail were provided to the human workers. In total 30
workers with different experience levels executed 500 tasks per iteration for
DR-R and DR-S each.3 The answers given by the human workers were not
systematically reviewed, before they were used to create new labels for the
unknown data samples.

3.5 score calculation

As mentioned in Section 2.2, the score determined how interesting a data
sample is. Interesting data samples are data samples a DR "believes" it can
learn the most from. This section explains how the score in the context of
the case study was implemented.

The DR uses ML to train FEs, for this a triplet loss function is used. A triplet
consists of an anchor, positive and negative data sample. The most valuable
triplets are those who yield a high triplet loss, namely hard or semi-hard
triplets where the most can be learned, as explained in Section 2.1.5.1. The
scores purpose is to find unlabeled (untidy) data samples which can be used
to generate hard triplets for the next iteration. For example, data samples
that belong to a certain class, but might look a bit different when compared
to the tidy data known to belong to that class. Another example are data
samples that might look similar to a class, but do not belong to it.

In Algorithm 2 the inner workings of the score function is illustrated. In step
1 (line 2.7) the features for all tidy samples were calculated by the FE f . FL

2 Technically a human could also skip a task if he is unsure.
3 To organize the workers the online annotation service www.zillin.io was used.
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denoted the set of all resulting feature vectors. In step 2 (line 2.8) the features
for all unknown (untidy) samples were calculated by f . FU denotes the set
of all resulting feature vectors. Step 3 (line 2.9) calculated the score for every
element x ∈ Fu. First the K nearest neighbors x had in FL, were determined
(line 2.11). After that, all different classes Kc in K were identified (line 2.12).
If there were at least two different classes in Kc, a human task as described
in Section 3.4 could be generated (line 2.13).

Algorithm 2 Data Refinery Unlabeled Data Scoring (Simplified)

1: Input: U . set of unlabeled (untidy) data samples
2: Input: f . feature extractor Section 3.3.1
3: Input: L . set of labeled (tidy) data samples Dtrue label
4: Parameter: k . number of k nearest neighbors
5: Output: S . list of EUs (score) for all tasks
6: function Score(L, U, f )
7: Step 1→ FL = f (l) . calculate features for all l ∈ L
8: Step 2→ FU = f (u) . calculate features for all u ∈ U
9: Step 3→ calculate Expected Utility (EU) . score

10: for x in FU do . for every sample x ∈ FU
11: Step 3.1→ K = k-NN(x, FL, k) . k-nearest neighbors algorithm
12: Step 3.2→ get all different classes in neighborhood K: Kc
13: if |Kc| >= 2 then . if at least 2 classes in neighborhood K
14: for every possible human task(x) do . Section 3.4
15: Step 3.1.1→ calculate expected probabilities p̂1, p̂2, p̂3
16: Step 3.1.2→ simulate expected outcome ô1, ô2, ô3
17: Step 3.1.3→ extend S by ∑3

i=1 p̂i ∗U(ôi) . EU
18: end for
19: else
20: Step 3.x→ extend S by 0 . |Kc| < 2
21: end if
22: end for
23: Return S
24: end function

Technically there could be more than one task for an untidy sample x, but in
this case study only one task per x was considered in the calculation. Only
the task with the two most frequent classes in the neighborhood K were
used.

Every human task was considered as a simple lottery in the context of the
score. A lottery is defined as a set of outcomes (o) and their corresponding
probabilities (p) (Section 2.1.7). The outcomes for the score were the differ-
ent losses a FE can expect in the next iteration, depending on the different
answers a human could give in the current iteration. The probabilities were
how likely a certain answer was.
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There were three probabilities for a given lottery (task): p1 = P(x belonged to
class K(i)

c ); p2 = P(x belonged to K(j)
c ); or p3 = P(x does not belong to either

K(i)
c or K(j)

c ). The true probabilities were not known, but could be estimated
by the DR. For p1 the relative frequency of class K(i)

c in the neighborhood K
was the estimated probability p̂1. For p2 the relative class frequency of K(j)

c
in the neighborhood K was p̂2. For p3 the combined relative class frequen-
cies of all classes neither K(i)

c or K(j)
c in the neighborhood K was p̂3 (line 2.15).

For the outcomes one needed to consider the different triplet losses the DR

could expect. For outcome o1, where x was K(i)
c , x could be used for a triplet

as an anchor or positive for the class K(i)
c and as a negative for class K(j)

c .
For outcome o2, where x was K(j)

c , x could be used as a anchor or positive
for class K(j)

c and as a negative for the class K(i)
c . Outcome o3, where x does

not have the class K(i)
c or K(j)

c , x could be used in a triplet as a negative
for K(i)

c and K(j)
c . To estimate the different outcomes, the different possible

losses for o1; o2; and o3 were calculated s times, with corresponding random
labeled (tidy) data samples. The average over the different simulated losses
for o1; o2 and o3 were the estimated outcomes ô1; ô2; and ô3 (line 2.16).

To calculate how valuable an unknown data sample x was for a DR: the es-
timated probabilities and estimated outcomes were inserted in the Expected
Utility (EU) function (line 2.17).

EU = ∑
i

pi ∗U(oi) = p̂1 ∗U(ô1) + p̂2 ∗U(ô2) + p̂3 ∗U(ô3) (3.2)

In summary, the score considered the human task a simple lottery. To com-
pare lotteries, the score calculated the individual EU for every lottery (task).
The outcomes were the expected losses the FE could expect for the different
possible answers. The probability for an answer was estimated by the neigh-
borhood an unlabeled sample had in the Feature Space (FS) of the known
samples. In the end, the human worker played the "Lotto-Fee4" (lotto-fairy)
and announces the "winning" answer.

In the case study the parameter K for the number of nearest neighbors was
12, the number of simulations s for the estimated outcomes was 250. The
number of unknown (untidy) samples was 25K and the utility function U
was the square root in order to follow a risk averse strategy. The process of
calculating a score was done for 16 FEs for DR-R and DR-S in each iteration. All
parameters were equal (as described), only the 25K untidy samples and the
tidy samples were different for DR-R and DR-S and varied in every iteration.

4 Lotto-Fee (lottery-fairy) is the German name for a person that announces the winning num-
bers for the state lottery in national TV.
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In the next section the different selection strategies for DR-R and DR-S are
explained.

3.6 selection

As mentioned before, the goal of the case study was to show that a DR á
la Section 2.2 in combination with a corresponding score and selection step
could efficiently mine untidy data. In the last section the score step was ex-
plained, which was identical for DR-S and DR-R. This section explains how
untidy data samples, which were shown to a human, were selected.

For DR-R the score was not used. DR-R picked random untidy data samples
and the corresponding human tasks were created. For DR-S all scores from
all 16 FEs for one iteration were normalized in the interval [0− 1]. For every
untidy data sample x the normalized score was summed up. DR-S used the
top n of the summed up values to determine for what samples a human
task should be generated. Hence, the different FEs created a quorum which
samples were valued the most among all FEs.

In this case study 500 human tasks per iteration were generated for DR-R

and DR-S each. There was one limitation for DR-S: it could not ask the same
question more than 30 times per iteration because without this limitation
DR-S would ask the same question multiple times. The reason for this was
that per iteration, there was only one training period and the selection of the
questions took place after that.

3.7 performance validation

For the validation of the experiments, a classification based on a confidence
score was performed. For this a test set was created out of the core data set
(Table 3.1). After the creation of the core data set 25% of samples per class
were randomly picked for the test set if the total number of samples in one
class was > 10. All classes with a total number of samples < 10, were not
used for the test or training set. In total, the test set consisted of 920 samples
and is referred to as core data test set.

name n bottle-type bottle-marketing-label

Core Data Test Set 973 33 121
Core Data Training Set 3130 33 121

Table 3.1: Test and Training Data Set
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3.7.1 Classification

The confidence score described in [5] was used as the base for the classi-
fication of the core data test set. The main difference to [5] was, that the
confidence score was not performed on pre-trained anchor points based on
manifolds for all classes, but on all classes observed in the K nearest neigh-
bors for a given test sample.

Suppose N categories (classes), limited by the K nearest neighbors for a
given input query sample, are identified in a feature space of a test set.
The j-th neighbor for category i is represented as uij, where i = 1, 2, . . . , N,
j = 1, 2, ..., K. First, the feature embedding from the input query sample is
extracted from a model f (x), then the confidence score for category i is gen-
erated (Equation 3.3)

pi =
∑K

j=1 e−γ‖ f (x)−ui,j‖

∑l=1
N

(
∑k

j=1 e−γ‖ f (x)−ul,j‖
) (3.3)

The predicted label for x was the category with the highest confidence score
argmaxi pi. γ was a parameter controlling the "softness" of label assignment
and closer neighbors played more significant roles in soft voting. If γ → ∞,
only the nearest neighbor was considered and the predicted label was "hard"
assigned to be the same as the nearest neighbor. On the other hand, if γ→ 0,
all the neighbors were considered to have the same contribution, regardless
of their distances between f (x). [5]

Notice that because classification took place in a high dimensional Feature
Space (FS) the category selected for classification could be any collectively
known information of a sample in the FS (i.e., if the color of the samples in
the FS is known, the classification could yield a color prediction for a query
sample). All this works, without explicit training on the category on which
the prediction was performed on or with any extra effort. The only condition
is; that the information for the category used for calcification was encoded
in the FS.

In this work classification was based on two main categories; "bottle-marketing-
label" and "bottle-type". The category bottle-marketing-label was, as men-
tioned, the label a bottle has in a grocery store (i.e., "Beck’s Gold no Alk.",
"Bitburger Radler", "Bitburger Pils no Alk.", and so on). The category bottle-
type was the type of bottle mainly defined by its shape, color, and size, as
mentioned in Section 1.2. The bottle-marketing-label was used for training
and bottle-type is the classification category used by the Crate Inspector (CrI)
to sort bottles. Categories like; "bottle-color", "bottle-size" and "bottle-height"
can also be used for classification. Examples for this can be viewed in Ap-
pendix B.
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R E S U LT S

The Crate Inspector (CrI) recognizes bottle-types mainly by height measure-
ments and looking at images from bottle-crates using traditional CV. This
is complicated and a lot of human effort and highly specific knowledge is
needed. In the last decades, new CV methods have been invented and mainly
optimized in a scientific environment and with artificial benchmark data
sets. Those methods show great potential in lowering the effort of humans,
to generalize and to potentially surpass the performance of traditional CV in
highly specific domains. But there’s one problem; applying these kinds of
new methods to "real world data" is not trivial. One reason for this is that
real world data is untidy. Hence the real world data has to be processed
before it can be applied to new methods (i.e., like mineral oil has to be pro-
cessed in a refinery before it can be used in an engine to drive a car). In
Section 2.2 this work proposed a concept for such a "refinery" namely the
Data Refinery (DR). Chapter 3 showed how the DR was implemented in the
context of a case study, and this section described the results from this case
study.

4.1 overall performances per iteration

As mentioned before, the goal of the case study was to show that the DR á
la Section 2.2, in combination with the corresponding score and select step,
can effectively mine untidy data for the given BML-R task. For this the Data
Refinery Score Sampling (DR-S) and Data Refinery Random Sampling (DR-R)
which only differ in the selection step, were implemented. Both DRs had ten
iterations and for every iteration 16 different Feature Extractor (FE)s were
trained. The performance measurements can be viewed in the tables con-
tained in Appendix A where the mean and the Standard Deviation (SD) from
the 16 FEs for every iteration are included.

Figure 4.1a shows the mean (solid line) and the mean ± the SD (dotted
line) in every iteration (x-axis) for the Micro Precision (MiP) (y-axis) over the
trained FEs for the DR-R (blue) and DR-S (red). In the first iteration the DR-R

started with about 58% and the DR-S with 61%. In iteration two DR-R and
DR-S dropped about [3− 4%]. DR-S fully recovered from the drop in the next
iteration and DR-R recovered in iteration four. After iteration five, DR-S and
DR-R had no significant in- or decreases over the following iterations.

Figure 4.1b shows the mean (solid line) and the mean ± the SD (dotted line)
in every iteration (x-axis) for the Micro Recall (MiR) (y-axis) over the trained
FEs for the DR-R (blue) and DR-S (red). The plot is identical to the previously
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described plot Figure 4.1a, because precision and recall are identical for mi-
cro averaging. This phenomena is explained in Section 2.1.8 and originates
from the fact that for multi-classification micro averaging FP=FN.

Figure 4.1c shows the mean and the mean± the SD for Macro Precision (MaP),
in the same fashion as established in Figure 4.1a and Figure 4.1b. In the first
iteration DR-R started at 53% and DR-S started slightly higher at about 56%.
In the second iteration a decrease of [3 − 4%] was observed for DR-R and
DR-S. The time DR-S required to recover was one iteration. DR-R needed two
iterations to fully recover and surpass its previously best performance. The
highest MaP score of DR-S was observed in the seventh iteration, being around
60%. DR-R dropped a bit in the same iteration and achieved its highest MaP

score in iteration nine with about 58%.

Figure 4.1d shows the Macro Recall (MaR) for DR-R and DR-S in the same
manner as in the previously described plots. It showed the same character-
istics for the first four iterations as Figure 4.1c, but with slightly decreased
performance values. The best MaR score is now achieved by DR-R in iteration
nine with 56%. For DR-S no significant changes were observed after iteration
four.

In Summary: all Plots showed different performance values in the initial iter-
ation for DR-R and DR-S. For the second iteration all plots showed a decrease
in performance for DR-R and DR-S. After iteration four, respectively five, not
much of an improvement of the performance of DR-R or DR-S was observed in
any plot. The next section looks into the new data samples that were added
in every iteration for DR-S and DR-R.
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(a) Micro Precision (b) Micro Recall

(c) Macro Precision (d) Macro Recall

Figure 4.1: Overall Performances per Iteration for Data Refinery Score Sampling
and Data Refinery Random Sampling. The four plots show the Micro
Precision (MiP), Micro Recall (MiR), Macro Precision (MaP), and Macro
Recall (MaR) for DR-S and DR-R per iteration for the BML-R task. Enlargend
Figures can be viewed in Appendix D (Figure D.6, Figure D.5).

4.2 new data samples per class over the iterations

In the end of every DR iteration, humans answered "questions" in form of
tasks as described in Section 3.4. The answers to those "questions" were used
to label previously unlabeled data. This newly labeled data was then added
to the tidy data used in the next iteration to train new FEs. Over all itera-
tions a total of about 2600 new data samples were added to true labels and
about 6K were added to explicit negatives in the core data set for each DR.
Figure 4.2 and Figure 4.3 show to which class the most fresh data samples
(true labels) were added per iteration for the DR-R and DR-S.

In Figure 4.2, the y-axis shows the relative class frequency and the x-axis the
different classes. The red dot represents the class frequency of iteration one,
which was used to determine the order of the classes on the x-axis from low-
est to highest class frequency. Hence, iteration one functioned as a baseline
to show differences in class frequencies over the iterations. Every iteration is
represented by a unique symbol and color (as shown in the legend).



4.2 new data samples per class over the iterations 41

As an example for an increase of a relative class frequency over the iteration,
one can examine class "Leerfach" (empty compartment), on the far right side
of Figure 4.2. In iteration one (red dot) the relative class frequency of class
"Leerfach" was 0.04 for the training set of this iteration. Iteration two (brown
triangle) lied above the red dot which indicated an increase in relative class
frequency for "Leerfach". This observation continued and became more pro-
nounced with every following iteration. This trend concluded in a relative
class frequency of 0.053 in iteration ten (pink hexagon) for "Leerfach".

Figure 4.2: Change in the Relative Class Frequency of Bottle-Marketing-Label
Classes in the Random Training Set over Iteration. The red arrows
mark the classes that were examined in the following chapters (Most
Interesting Classes (MIC)). An enlarged representation of the image is
shown in Appendix D (Figure D.3)

As an example for a decrease of relative class frequency over the iteration,
one can examine class "Leerfach", on the far right side of Figure 4.3. In it-
eration one (red dot) the relative class frequency of class "Leerfach" is, as
expected, 0.04 for the training set of this iteration. Iteration two (brown tri-
angle) lied beneath the red dot which indicated a decrease in relative class
frequency for "Leerfach". This observation continued and became more pro-
nounced with every following iteration. This trend concluded in a relative
class frequency of 0.022 in iteration ten (pink hexagon) for "Leerfach".

The classes that showed significant increases in the relative class frequency
over every iteration will be further referred to as Most Interesting Classes
(MIC). In Figure 4.2, which shows the new data obtained by DR-R, the classes:
"Sester Koelsch 0.5L", "Brinkhoff no Alk", "Schoefferhofer Weizen no Alk
0.5L", "Gilden Koelsch 0.5L", "Jever Pilsner Fun no Alk 0.5L", "Wicküler
0.5L", "Dortmunder Kronen Pilsener", "Warsteiner Herb no Alk", "Hansa
Export", "Dortmunder Kronen Pilsener 0.5L", "Jever Pilsner Fun no Alk",
"Schoefferhofer Weizen Naturtrueb 0.5L", "Brinkhoff No.1", "Jever Pilsner
0.5L", "Hansa Pils", "Becks Pils", "Leerfach", "Warsteiner Herb" are the MIC

for DR-R. In Figure 4.3, which shows the new data obtained by DR-S, the
classes: "Ritter Export 0.5L", "Ritter Pils 0.5L", "Bitburger Pils", "Krombacher
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Pils no Alk", "Krombacher Radler", "Warsteiner Herb no Alk", "Hansa Ex-
port", "Dortmunder Kronen Export 0.5L", "Krombacher Pils", "Dortmunder
Kronen Pilsener 0.5L", "Brinkhoff No.1", "Veltins 0.5L", "Hansa Pils", "Becks
Pils" are the MIC for DR-S. The performance of the mentioned classes over the
iterations are presented in the next section.

Figure 4.3: Change in the Relative Class Frequency of Bottle-Marketing-Label
Classes in Score Training Set over Iteration. The red arrows mark the
classes that were examined in the following chapters (MIC). An enlarged
representation of the image is shown in Appendix D (Figure D.4)

4.3 individual class performance for some selected classes

This section takes a closer look at the individual performances of the differ-
ent MIC for DR-R and DR-S.

Figure 4.4 depicts the precision from the 18 different classes which were the
MIC for DR-R (i.e., the classes DR-R was most interested in adding new data
samples to). The x-axis depicts the iterations, while the y-axis shows the
mean precision over all trained FE in one iteration. The performance compar-
ison between DR-R and DR-S regarding the MIC chosen by DR-R was presented.
The left plot shows the performance for DR-R on those classes, while the right
plot shows the performance of DR-S on those classes.

The left plot shows that the precision for all classes started in the first iter-
ation within the range of [35%− 100%]. For some classes, a dip in iteration
two, similar to the one seen in overall class performance (Figure 4.1) was ob-
served. There was not much of an improvement for nearly all of the classes
over the ten iterations. Except for "Warsteiner Herb no Alk" (pink), which
started at 51% and ended at 61%. One class, namely "Leerfach" (dark blue),
stayed at 100% over all iterations.

The right plot depicts for the majority of classes there was a slight increase
in performance over all iterations. A slight decrease or no change was ob-
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served in the remaining classes. The drop in iteration two was also notice-
able in some classes. This was especially profound in "Jever Pilsner Fun no
Alk 0.5L" (blue).

Figure 4.4: Mean Precision for Most Interesting Classes chosen by Data Refin-
ery Random Sampling regarding the Bottle-Marketing-Label task. A
enlarged figure is included in Appendix D (Figure D.7).

Figure 4.5 shows the precision from the 14 different classes which were the
MIC for DR-S (i.e., the classes DR-S was most interested in to add new data
samples to). The x-axis shows the iterations, while the y-axis depicts the
mean precision over all trained FEs in one iteration. The performance com-
parison between DR-R and DR-S regarding the MIC chosen by DR-S is shown.
The left plot shows the performance for DR-R on those classes, while the right
plot shows the performance of DR-S on those classes.

The left plot displays that the performances started within the range of
[20− 60%]. Compared to Figure 4.4, a lot of variation for the performance of
the classes was observed between the iterations. For the majority of classes
shown, there was no in- or decrease of performance noticeable, when com-
paring iteration one and ten. Only for a few classes there was an increase in
performance, this was most noticeable for "Warsteiner Herb no Alk" (red).

The right plot shows for most classes that there was an increase in perfor-
mance from iteration one to ten. Most notably were the cases of "Ritter Ex-
port 0.5L" and "Ritter Pils 0.5L" which had a high volatility in regards to
performance over the ten iterations and yet ended with a significant spike in
performance in its last run. From ∼ 24% in the first iteration to ∼ 58% in the
final iteration. The most noticeable decrease in performance was observed in
the class "Krombacher Pils no Alk" (yellow) from ∼ 23% in the first iteration
to ∼ 16% in the final iteration.

In Summary, DR-R showed not much of an improvement in performance of
either classes DR-R or DR-S considered MIC. DR-S on the other hand, showed
an improvement in performance for MIC chosen by itself.
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Figure 4.5: Mean Precision for Most Interesting Class chosen by Data Refinery
Score Sampling regarding the Bottle-Marketing-Label-Recognition
task. A enlarged figure is included in Appendix D (Figure D.8).

4.4 human annotation time over iterations

The focus of the previous sections lied in the evaluation of the different FEs
performances for DR-R and DR-S. This section focused on the human step of
the DR. To be more specific, it examined how long it took a human to answer
a "question" in the form of a task (Section 3.4), DR-R, respectively DR-S, was
asking.

Figure 4.6 shows the average time (y-axis) it took a human to answer a task
for DR-R (red) or DR-S (blue), per iteration (x-axis). The x-axis was cut off after
35s. It is important to note, that the human workers did this task as a side
task along with their normal workload if they had time to spare. Because of
this, there were many extreme outliers. To account for this 5% of the highest
measured times were not included in this evaluation.

Figure 4.6: Human Annotation Time Over Iterations.

The annotation time for the first iteration of DR-R shows a median of about 9s.
For the following iterations annotation time was decreased with the fourth it-
eration showing a slight increase, before reducing again. Until iteration four,
DR-R showed quite a bit of variance. For the iterations five through nine, the
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variance was reduced, compared to the previous iterations. The mean anno-
tation time lied around 5s for iterations five through nine.

For the first iteration the median annotation time for DR-S lied around 12s
and dropped beneath 6s for the following, second iteration. In contrast to
DR-R, the variance in annotation time was quite high in every iteration, with
the highest variation in iteration one. After iteration four the median lies
above the median of DR-R for all following iterations, with iteration seven
being the only exception.

This chapter presented the results of the case study. An improvement of
individual classes DR-S determines MIC could be noted. This is in contrast
to DR-R where almost no such individual improvements were observed. It
could also be observed that the time humans needed to answer a "question"
asked by DR-R was decreased over the iterations. This could not be shown for
"questions" asked by DR-S where the annotation time fluctuated. In the most
cases, the median annotation time required to answer a "question" asked
by DR-S was higher than the compared annotation time of DR-R. An overall
improvement for Micro Precision (MiP), Micro Recall (MiR), Macro Precision
(MaP), and Macro Recall (MaR) over the iterations was not shown in either
DR-S or DR-R.
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D I S C U S S I O N A N D C O N C L U S I O N S

The results discussed in Chapter 4, indicate that there is a problem in the DR

process as executed for the presented case study. The three following indica-
tors, and the reason why this problem may have occurred, are discussed in
the following section.

The overall perfomance plot Figure 4.1 in Section 4.1 showcases that DR-R

and DR-S start with different perfomances in the first iteration, while both
of them had the exact same training data set at this point of the case study.
This could be caused by the fact that only a maximum of 500K triplets were
generated from the initial training set. Another reason could be that due to
early stopping, training times for the FEs differ.

The average training times in the first iteration for DR-R (6:00h) and DR-S

(6:20h) differ slightly which does not provide sufficient reasoning to solely
explain the discrepancy in performance. It is more likely that training time
was not long enough for the FEs to fully converge and that DR-R and DR-S

did not have a lot of overlap in the generated triplets besides the fact that
the generated triplets came from the same training data set. Hence, further
investigation is needed.

The plot Figure 4.1 from Section 4.1 also shows no significant improvement
over the iterations. Over the iterations, the DR process generates more data,
this should increase performance because one commonly accepted principle
of machine learning is: "More data is better".1 One cause could be the fact,
that the training time and triplets created were not enough to use the full
potential of the newly acquired data. It is also possible, that the new data
which was generated by human workers is error-prone, because the answers
of the humans were not validated. This would resonate with another ML

principle: "garbage in, garbage out (GIGO)" [24].

Finally, another cause, although it might play a smaller role compared to
the other reasons previously discussed, could be that the three pre-trained
ResNet 18, used in the FEs were frozen. This means that the weights of those
ResNets were not updated in training. The reason for this could be that spe-
cific features from the training image data might not have been incorporated
by the FEs.

The plot Figure 4.1 from Section 4.1 shows another interesting, yet unex-
pected result: The dip in performance observed in iteration two for DR-R and

1 This principle is not always true, the wrong data can lead to worse performance.
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DR-S. In the second iteration DR-R and DR-S had more data for training, but
still drop in performance. In the presented case study it was not fully pos-
sible to evaluate why this happens. Most likely the explanation lies in the
structure of the core data set and the algorithm used to build triplets. In
Section 3.3 the training algorithm, which includes the triplet generation is
explained.

In the training algorithm the step 2.3 (1.11) shows how to select a negative
for a triplet. The parameter p, which was set to 80%, determines how likely
it is that an explicit hard negative is chosen. But p was not the only factor,
there also had to be an explicit negative sample for a given class in the core
data set. As described in Section 3.2, explicit negatives were not available
for every class in the core data set. As a result of this the amount of triplets
with hard negatives was 0% instead of 80% for some classes in the first it-
eration. At the end of the first iteration, new explicit negative samples were
added for all classes. This made the training process more difficult. Adding
only a few explicit negative samples for the classes in question resulted in
an increasing frequency in which they were used as hard negative examples
in the second iteration. So every error a human caused, had a significant im-
pact in this iteration. The influence of human error on the classes in question
would decrease over the iterations, because of the increase in data added.

Even though the cause of the dip cannot be fully explored, it poses as an
opportunity to evaluate if the goal of the case study is met. If the goal is met,
DR-S should ask for more examples in the classes where it under performed.
One indication for the successfully met goal is, that DR-S is able to recover
from the dip in performance after one additional iteration in contrast to DR-R

which needs two iterations.

To further strengthen this point, one can examine the class "Jever Pilsner Fun
no Alk 0.5L". In Figure 4.4 from Section 4.3, the precision from DR-S over the
iterations for selected classes is shown in the right plot. The dip is clearly
visible for "Jever Pilsner Fun no Alk 0.5L" (blue) and drops from 75% in
iteration one to 39% in iteration two, finally recovering to 76% in iteration
three. If DR-S behaves as proposed, it should ask for more examples of "Jever
Pilsner Fun no Alk 0.5L" in iteration two which will change the relative class
frequency in iteration three for the training set of this class. If one looks at
the Figure 4.3 for relative class frequency, an increase in iteration three (green
square), followed by a decrease in the following iterations for the class "Jever
Pilsner Fun no Alk 0.5L" can be observed.

The same effect can be seen in other classes for DR-S with and without the
dip in performance. Most prominent is the class "Leerfach" where DR-S adds
almost no new data samples. This is in a stark contrast to DR-R, which adds
more data in every iteration, ignoring the fact that "Leerfach" already has a
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precision and recall of 100% since iteration one.

It is not yet explored why there is no overall improvement over the iterations
for DR-S observed (Figure 4.1). It is most likely that a faulty training process,
which is unable to utilize the provided data, insufficient model parameter
optimization and poorly optimized training time play a major role as dis-
cussed previously.

Figure 4.6 of Section 4.4 shows the average annotation time a human needs
to complete a task given by DR-R and DR-S. After iteration four, the iterations
before can be viewed as a "training period" for the human to learn the task,
the average time and the variance for tasks given by DR-S is higher in almost
all iterations when compared to tasks given by DR-R. This indicates that the
human required more time to answer the task given by DR-S, because the
question was harder.

Figure 5.1 shows an example of a task asked by DR-S after iteration four. The
task asks if the bottle in the middle is a "Krombacher Pils 0.33L" bottle (A)
or a "Bitburger Pils 0.33L" bottle (B). The answer to the question is not easy,
especially with the label not fully visible and the bottle located at the side of
the crate.

Figure 5.1: Human Task Example 1. Example 1 of a question asked by DR-S after
iteration four: does the bottle in the middle belong to "Krombacher Pils
0.33L" (A) or to "Bitburger Pils 0.33L" (B) or neither? Answer: the bottle
belongs to (B).



discussion and conclusions 49

In Figure 5.2 another question asked by DR-S after the fourth iteration is
shown. The question is, whether the bottle belongs to "Sol 0.33L" (A) or
"Veltins V+ Curuba 0.33L" (B). The bottle in the middle has no logo, so it
is possible it is a "Veltins V+ Curuba 0.33L" with a missing logo or an en-
tirely different bottle. This backs the question if a "Veltins V+ Curuba 0.33L"
without a logo does belong in the category "Veltins V+ Curuba 0.33L" or in a
different, new category. This depends on the use case. For the CrI, "Veltins V+
Curuba 0.33L" and the bottle in middle are standard white bottles and "Sol
0.33L" is a special white bottle not to be confused with the standard white
bottles.

Figure 5.2: Human Task Example 2. Example 2 of a question asked by DR-S after
iteration four: does the bottle in the middle belong to "Sol 0.33L" (A) or
to "Veltins V+ Curuba 0.33L" (B) or neither? Answer: it is unclear, as the
answer depends on the use case.

Figure 5.3 shows a peculiar case which could be easily missed. If one would
only look at the image, it is easy to see that the image in the middle does
not contain a bottle and thus belongs to the class "Leerfach" (A). However,
a second look and focus on the height measurements (right side) indicates
an error in the machines measurement apparatus. The Crate Inspector (CrI)
measured a height of 238, but the height of a "Leerfach" is always around
55. With this question asked, DR-S challenges the given information and so
detects errors in the data generation process. This can not only be used for
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error detection, but also to account for content shift problems.

Figure 5.3: Human Task Example 3. Example 3 of a question asked by DR-S after
iteration four: does the "bottle" in the middle belong to "Leerfach" (A) or
to "Veltins 0.33L" (B) or neither? Answer: it belongs to A.

Some more examples of "questions" are provided in the Appendix C.



5.1 side note data refinery versus crate inspector 51

5.1 side note data refinery versus crate inspector

During the evaluation of this study one further interesting question arose.
"Would a Feature Extractor (FE) with a K-NN classifier attached, reach a sim-
ilar or even better performance than the Crate Inspector (CrI) regarding the
Bottle-Type Recognition (BT-R) task?" This may be up for further research
adding to the outcomes of this work.

Before examining the results in more detail, there is one problem that has to
be addressed. There is no strict statistically founded baseline for the perfor-
mance of the CrI. At the end of the case study, there was an attempt, even
though no solid baseline was given, to at least estimate the performance of
the CrI, which was used as a comparison to DR trained FEs. For this purpose,
two FEs from the last iteration of the DR-R and DR-S with the respectively
highest performance in that iteration were evaluated on 10K data samples
obtained before the generation of the core data set.

Suppose, the CrI is 100% accurate in the prediction of a bottle-type for all
10K given bottles, then the Micro Precision (MiP) of the DR-R trained FE was
77.46% and 70.91% for the DR-S trained FE. But to estimate the real perfor-
mance of the CrI and the two FEs, two Spot Checks (SC); for the DR-R trained
FE (SC 1) and for the DR-S trained FE (SC 2) were performed. With the goal
of a 95% Confidence Interval (CI) (i.e., a margin of error e = 0.05) and a
confidence level of 95% (i.e., a z-score of z = 1.96) by a total population N of
10K samples and a SD p = 0.5, Equation 5.1 returns a sample size for a Spot
Check (SC) of about 370. This was generously rounded up to a sample size
of 400 for both SCs.

Sample size =

[
z2 ∗ p(1− p)

]
/e2

1 + [z2 ∗ p(1− p)] /e2 ∗ N
(5.1)

The SC manually checked for each of the 400 samples per SC; if the CrI and
if the FEs (DR-R or DR-S) recognized the bottle-type correctly, or if CrI and the
FEs fail to recognize the bottle-type of a given sample. The result of both spot
checks is given in Table 5.1. It can be seen, that the estimated performance
of the CrI for SC 1 lies around 89.59% (86.57± 92.61), for spot check SC 2

around 87.66% (84.38± 90.93) and that the DR-R trained FE seems to reach
the CrI performance-wise with 87.40% (84.10± 90.70). In contrast to the DR-S

trained FE, which shows the worst performance among the three.

Notice, that because each CrI is configured for a customer who needs to rec-
ognize specific bottle-types, the performance for those bottle-types is much
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higher. For easier compatibility the overall performance (micro precision) of
all known bottle-types (classes) is used in this section.

spot check micro precision confidence interval n

(SC 1) DR-R FE 87.40% 84.10± 90.70 389
(SC 1) CrI 87.66% 84.38± 90.93 389

(SC 2) DR-S FE 78.43% 74.42± 82.49 394
(SC 2) CrI 89.59% 86.57± 92.61 394

Table 5.1: SC out of the 10K test samples to estimate the performance for the CrI
and the best FE for DR-R and DR-S from the last iteration of the case study.
Per SC 400 samples were checked, some of them could not be unambigu-
ously identified. N specifies how many samples could be unambiguously
identified. In addition to the Micro Precision (MiP) the 95% CI is given.
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5.2 conclusion

There is often a gap between the untidy data the industry has and the tidy
data needed to efficiently train novel Machine Learning (ML) algorithms. In
this work, a novel concept, namely the Data Refinery (DR) is proposed to
tackle this gap by using the human ability to extract important semantic
information and the ability of Deep Computer Vision (DCV) in combination
with Deep Metric Learning (DMeL) to quickly examine large amounts of data.
A case study was conducted to compare two different DRs which only dif-
fered in the aspect of which untidy data samples were selected to show to a
human, so they could be labeled.

One DR randomly picked data samples (DR-R), the other DR calculated a
score which reflects how valuable this data sample for a training process is
(DR-S). The results indicate that DR-S, in contrast to DR-R, specifically adds
new data samples for training in classes where it underperformed. Contrary
to the expectations, this did not lead to an overall improvement of DR-S when
compared with DR-R, but to a similar performance of ∼ 60% for Micro Pre-
cision (MiP). When the results of this case study are compared with other
deep metric learning works, it underperformed [5]. The main reasons for
this, could be that in the Related Work (Section 2.3), only experts labeled the
human tasks and the training was up to 10 times longer. Regardless, the goal
of the case study was not to train a state of the art classification model for a
given task, but to efficiently mine data for such a model.

Even though the success of the case study is only moderate performance
wise, the new approach of the DR as a concept proves to be a promising way
to acquire specific data that can be used to create curated data sets. Such
curated data sets, are not only valuable for the industry (i.e., Bottle-Type
Recognition (BT-R)), but can be used for all kinds of ML tasks throughout all
industries.

Before this concept can be applied, the parts of the case study that proved
to be problematic should be revised. Also, certain aspects of the general con-
cept, as an example: the score function, should be optimized or alternative
options reviewed.



6
O U T L O O K

The implementation of the DR, in the context of the presented case study rep-
resents a prototype. The case study indicates that the principle idea of the
DR can work. It also showed there are problems with the implementation.
The most obvious issue is with the training process, as stated before. Besides
the optimization of the training process, optimization is required for other
elements of the DR as well.

One such element requiring optimization, is the score function. In the case
study Expected Utility (EU) is used to estimate the utility of a given untidy
data sample. In the case study, there was no investigation on which param-
eters for EU would be optimal. For example: in order to follow a risk averse
strategy, the utility function used, was the square root. It is not clear whether
the risk averse strategy is the most effective for reaching the goal of the case
study or not. In future studies, it should be investigated which strategy is
most promising and which function is best to map this strategy. Further-
more, if there is a better way than a simple lottery and EU to estimate the
value of untidy data samples, should be illuminated.

Another element to improve is the human step. In this case study, the human
was assumed to be infallible but in truth, making errors is unavoidable for a
human. The answers given by humans must be reviewed, but this in not all:
if curated data is the enabler for state of the art machine learning for a wide
range of tasks on a big scale, the labeling job should be valued more. This
means label workers need to be trained more extensively and given enough
time to adequately answer the tasks. A future study could lay the focus on
the human step in the environment of the DR. The examples of optimiza-
tion discussed are only a fraction of possible opportunities to improve the
concept and implementation of the DR.

6.1 data refinery concept extension for open set classifica-
tion

The DRs main job was to detect interesting data samples a human should ex-
amine and label. In this work, a non-optimized K-NN based classifier, which
was not part of the DR concept, was used to classify data samples. This was
done to measure if the different underlying data sets showed an impact on
the performance. For open set classification the DR was just thought of as
the first step to get new data and their feature embeddings for classification.
The next step is a "transformation" which transforms the Feature Space (FS)
of the DR to a FE for a specific task. In the context of this work, this could
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mean that a FS is optimized for either a Bottle-Type Recognition (BT-R) or
Bottle-Marketing-Label Recognition (BML-R) task.

After that, there is another step: which mainly deals with uncertainty after a
classification took place in the specialised FS. This step incorporates external
information not known to the previous steps. Such information in context
to the BML-R could be, the geographical location of the CrI and the resulting
drinking habits of the consumers there. Other examples are: in what crate
a bottle stands, to what class neighbouring bottles were predicted to and
so on. This information statistically analyzed has the potential to guide the
classification decision in case of uncertainty.

6.2 further fields of application and improvements for the

cri

The job of the CrI is to recognize glass bottles so that they can be sorted,
cleaned and refilled. For this the CrI is using traditional CV and expert knowl-
edge. As stated before, this is quite complex and costly especially when new
bottle-types are added and must be recognized. In this work it could be
shown that the DR with the random sampling strategy can reach the esti-
mated overall performance of the CrI examined in this case study by using
Deep Computer Vision (DCV). This indicated that DCV is applicable to the
BT-R task performed by the CrI. In future implementations this could result
in less complex, less costly and easy scaleable and generalized solutions re-
garding the BT-R task.

To improve the symbiosis of ML and CrI, the sensors of the CrI could be up-
graded. For example the cameras used by the CrI have a relatively low reso-
lution because of restrictions in the traditional CV process that is used. Those
restrictions do not apply in the same sense to the DCV approach. With this
upgrade more details are visible on the images which may generate more
features, that could lead to a better discrimination between similar classes.

Thinking beyond the BT-R task, the CrI in combination with DCV could be
used to recognize other objects that fit on the conveyor belt. In combination
with the DR, curated data sets for all kind of objects could be created.

6.3 further applications regarding the pfandsystem

According to Statista, 7 European countries plan to implement a "Pfandsys-
tem" until 2023. Additionally, 8 more countries are discussing such an imple-
mentation [1]. In Germany, the idea of the expansion of the "Pfandsystem"
to wine and juice bottles is considered [36]. With the protection of the en-
vironment in mind, more deposit systems will be introduced in the future,
where the "Pfand-objects" must be classified and sorted upon return.
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A more precise classification of "Pfandflaschen" could also help to create
more transparency in the "Pfandsystem". The unclaimed "Pfand" (Pfand-
schlupf) from the year 2015 for "Einwegpfand" (single use Pfand) alone, ac-
cumulates to 180€ Mio according to Naturschutzbund Deutschland (NABU)
[21]. The study assumes that of 18 billion disposable bottles per year (4.5€
billion deposit), only about 4% are not returned. The accumulated "Pfand-
schlupf" in the sector of "Einwegpfand" since its implementation up to 2015
is estimated to be about 3.5€ Billion. The presented numbers are only esti-
mates, because of the lack of transparency. There is a ongoing dispute on
who should profit from this money.

6.4 data refinery as a tool beyond image recognition

The DR is not restricted to the "Pfandsystem" or mainly using images. The
concept of the DR can also be applied to other types of data. For example:
audio, where the question the DR asks a human is in form of audio samples.
Obtaining curated data sets in this way can be used to train state of the art
machine learning algorithms under real world conditions. To validate this,
new case studies with different data types must be conducted.



Part II

A P P E N D I X



A
P E R F O R M A N C E TA B L E S

The complete data collected for this work is contained on the included CD.
The Tables that are included in the Appendix for completeness, show the
overall performance (Micro Precision (MiP), Micro Recall (MiR), Macro Preci-
sion (MaP), Macro Recall (MaR), Micro F1-Score, and Macro F1-Score) of Data
Refinery Score Sampling (DR-S) and Data Refinery Random Sampling (DR-R).

Iteration MiP Mean MiP SD MiR Mean MiR SD F1 Mean F1 SD

1 0.5829 0.0403 0.5829 0.0403 0.5829 0.0403

2 0.5372 0.0704 0.5372 0.0704 0.5372 0.0704

3 0.5565 0.0499 0.5565 0.0499 0.5565 0.0499

4 0.6043 0.0648 0.6043 0.0648 0.6043 0.0648

5 0.6134 0.0680 0.6134 0.0680 0.6134 0.0680

6 0.6187 0.0526 0.6187 0.0526 0.6187 0.0526

7 0.6091 0.0438 0.6091 0.0438 0.6091 0.0438

8 0.6138 0.0392 0.6138 0.0392 0.6138 0.0392

9 0.6308 0.0630 0.6308 0.0630 0.6308 0.0630

10 0.6093 0.0546 0.6093 0.0546 0.6093 0.0546

Table A.1: Micro Performance for Data Refinery Random Sampling.

Iteration MaP Mean MaP SD MaR Mean MaR SD F1 Mean F1 SD

1 0.5255 0.0510 0.4957 0.0507 0.4916 0.0509

2 0.4935 0.0706 0.4562 0.0651 0.4523 0.0680

3 0.5122 0.0496 0.4717 0.0518 0.4646 0.0531

4 0.5658 0.0718 0.5235 0.0694 0.5201 0.0719

5 0.5656 0.0696 0.5304 0.0700 0.5259 0.0707

6 0.5773 0.0628 0.5397 0.0615 0.5354 0.0626

7 0.5595 0.0494 0.5218 0.0460 0.5189 0.0470

8 0.5714 0.0424 0.5338 0.0423 0.5273 0.0423

9 0.5899 0.0699 0.5552 0.0655 0.5482 0.0703

10 0.5647 0.0573 0.5297 0.0562 0.5203 0.0583

Table A.2: Macro Performance for Data Refinery Random Sampling.
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Iteration MiP Mean MiP SD MiR Mean MiR SD F1 Mean F1 SD

1 0.6032 0.0480 0.6032 0.0480 0.6032 0.0480

2 0.5619 0.0549 0.5619 0.0549 0.5619 0.0549

3 0.6023 0.0589 0.6023 0.0589 0.6023 0.0589

4 0.6147 0.0701 0.6147 0.0701 0.6147 0.0701

5 0.6135 0.0656 0.6135 0.0656 0.6135 0.0656

6 0.6199 0.0513 0.6199 0.0513 0.6199 0.0513

7 0.6290 0.0636 0.6290 0.0636 0.6290 0.0636

8 0.6268 0.0452 0.6268 0.0452 0.6268 0.0452

9 0.6203 0.0471 0.6203 0.0471 0.6203 0.0471

10 0.6183 0.0559 0.6183 0.0559 0.6183 0.0559

Table A.3: Micro Performance for Data Refinery Score Sampling.

Iteration MaP Mean MaP SD MaR Mean MaR SD F1 Mean F1 SD

1 0.5541 0.0516 0.5196 0.0495 0.5170 0.0496

2 0.5274 0.0610 0.4855 0.0565 0.4828 0.0584

3 0.5537 0.0587 0.5160 0.0565 0.5116 0.0588

4 0.5711 0.0754 0.5310 0.0711 0.5281 0.0731

5 0.5692 0.0715 0.5207 0.0657 0.5207 0.0683

6 0.5710 0.0505 0.5282 0.0531 0.5241 0.0530

7 0.5955 0.0623 0.5337 0.0655 0.5372 0.0659

8 0.5779 0.0509 0.5299 0.0503 0.5279 0.0512

9 0.5856 0.0496 0.5252 0.0440 0.5262 0.0460

10 0.5725 0.0608 0.5213 0.0592 0.5202 0.0613

Table A.4: Macro Performance for Data Refinery Score Sampling.



B
F E AT U R E S PA C E P L O T S

The following plots show a t-SNE [17] representation of the FS from the score
model 14 iteration 8. The data samples obtained from the core data set are
presented. All plots highlight different properties.

Figure B.1: Feature Space with the Property UV Protection Highlighted. Red im-
plies the bottle has no UV protective finish. Blue implies the bottle has a
UV protective finish.

Figure B.2: Feature Space with the Property UV Marker Highlighted. Red implies
that the image is only black. Blue implies the bottle has a special UV
marker from the manufacturer to unambiguously identify the bottle.
Green represents a image that is not black but no specific marker can
be identified.
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Figure B.3: Feature Space with the Property Color Highlighted. Red represents
brown bottles, green represents blue bottles, blue represents green bot-
tles and purple represents white bottles.

Figure B.4: Feature Space with the Property Volume Highlighted. Red represents
empty compartments, green represents the volume 0.33L, blue repre-
sents the volume 0.4L and purple represents the volume 0.5L.
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Figure B.5: Feature Space with the Property Height Highlighted. The different col-
ors represent the different heights measured by the Crate Inspector.

Figure B.6: Feature Space with the Property Bottle-Type Highlighted. The differ-
ent colors represent the different properties of bottle-type.
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Figure B.7: Feature Space with the Property Bottle-Marketing-Label Highlighted.
The different colors represent the different properties of Bottle-
Marketing-Label.



C
Q U E S T I O N S A S K E D B Y T H E D ATA R E F I N E RY

The following figures show more examples from the human tasks or "ques-
tions" asked by the Data Refinery Score Sampling (DR-S). Some of the shown
questions were also asked by Data Refinery Random Sampling (DR-R), but in
less frequent matter.

Figure C.1: Human Task Example 4. Example 4 of a question asked by DR-S: does
the bottle in the middle belong to "Ritter Pils 0.5L" (A) or to "Ritter
Export 0.5" (B) or neither? Answer: the bottle belongs to (B). The only
difference between the bottles are the green, resp. red rings on the paper
label on the neck of the bottles.
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Figure C.2: Human Task Example 5. Example 5 of a question asked by DR-S: does
the bottle in the middle belong to "Riter Export 0.5L" (A) or to "Krom-
bacher Pils no Alk. 0.5L" (B) or neither? Answer: the bottle belongs to
(B). The logos of the bottles are different, but they both have red rings
on the paper label on the neck.

Figure C.3: Human Task Example 6. Example 6 of a question asked by DR-S: does
the bottle in the middle belong to "Becks Gold Relief 0.33L" (A) or to
"Becks Gold 0.33L" (B) or neither? Answer: the bottle belongs to (A).
Both bottles are "Becks Gold". The only difference is one has the Becks
relief on the shoulders, the other one doesn’t.
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Figure C.4: Human Task Example 7. Example 7 of a question asked by DR-S after
iteration four: does the bottle in the middle belong to "Veltins 0.5L" (A)
or to "Hasseröder 0.5L" (B) or neither? Answer: the bottle belongs most
likely to (A). Because of the difficulty of this question, some of the label
workers referred to this question as the "Endgegner" (final enemy).



D
E N L A R G E D F I G U R E S

This Appendix contains some enlarged figures shown in this work.



enlarged figures 68

Fi
gu

re
D

.1
:T

he
C

la
ss

D
is

tr
ib

ut
io

n
of

th
e

Tr
ue

La
be

ls
.



enlarged figures 69

Fi
gu

re
D

.2
:T

he
C

la
ss

D
is

tr
ib

ut
io

n
of

th
e

Ex
pl

ic
it

N
eg

at
iv

es
.



enlarged figures 70

Fi
gu

re
D

.3
:

C
ha

ng
e

in
th

e
R

el
at

iv
e

C
la

ss
Fr

eq
ue

nc
y

of
B

ot
tl

e-
M

ar
ke

ti
ng

-L
ab

el
C

la
ss

es
in

th
e

R
an

do
m

Tr
ai

ni
ng

Se
t

ov
er

It
er

at
io

ns
.



enlarged figures 71

Fi
gu

re
D

.4
:C

ha
ng

e
in

th
e

R
el

at
iv

e
C

la
ss

Fr
eq

ue
nc

y
of

B
ot

tl
e-

M
ar

ke
ti

ng
-L

ab
el

C
la

ss
es

in
th

e
Sc

or
e

Tr
ai

ni
ng

Se
t

ov
er

It
er

at
io

ns
.



enlarged figures 72

(a
)

M
ic

ro
Pr

ec
is

io
n

(M
iP

)
(b

)
M

ic
ro

R
ec

al
l(

M
iR

)

Fi
gu

re
D

.5
:O

ve
ra

ll
Pe

rf
or

m
an

ce
s

pe
r

It
er

at
io

n
fo

r
D

at
a

R
efi

ne
ry

Sc
or

e
Sa

m
pl

in
g

an
d

D
at

a
R

efi
ne

ry
Sa

m
pl

in
g.

Th
e

tw
o

pl
ot

s
sh

ow
th

e
M

ic
ro

Pr
ec

is
io

n
(M

iP
),

M
ic

ro
R

ec
al

l(
M

iR
)

fo
r

D
R

-S
an

d
D

R
-R

pe
r

it
er

at
io

n
fo

r
th

e
BM

L-
R

ta
sk

.



enlarged figures 73

(a
)

M
ac

ro
Pr

ec
is

io
n

(M
aP

)
(b

)
M

ac
ro

R
ec

al
l(

M
aR

)

Fi
gu

re
D

.6
:O

ve
ra

ll
Pe

rf
or

m
an

ce
s

pe
r

It
er

at
io

n
fo

r
D

at
a

R
efi

ne
ry

Sc
or

e
Sa

m
pl

in
g

an
d

D
at

a
R

efi
ne

ry
Sa

m
pl

in
g.

Th
e

tw
o

pl
ot

s
sh

ow
th

e
M

ac
ro

Pr
ec

is
io

n
(M

aP
),

an
d

M
ac

ro
R

ec
al

l(
M

aR
)

fo
r

D
R

-S
an

d
D

R
-R

pe
r

it
er

at
io

n
fo

r
th

e
BM

L-
R

ta
sk

.



enlarged figures 74

Fi
gu

re
D

.7
:

M
ea

n
Pr

ec
is

io
n

fo
r

M
os

t
In

te
re

st
in

g
C

la
ss

es
ch

os
en

by
D

at
a

R
efi

ne
ry

R
an

do
m

Sa
m

pl
in

g
re

ga
rd

in
g

th
e

B
ot

tl
e-

M
ar

ke
ti

ng
-L

ab
el

ta
sk

.



enlarged figures 75

Fi
gu

re
D

.8
:

M
ea

n
Pr

ec
is

io
n

fo
r

M
os

t
In

te
re

st
in

g
C

la
ss

es
ch

os
en

by
D

at
a

R
efi

ne
ry

Sa
m

pl
in

g
Sc

or
e

re
ga

rd
in

g
th

e
B

ot
tl

e-
M

ar
ke

ti
ng

-L
ab

el
ta

sk
.



B I B L I O G R A P H Y

[1] René Bocksch. Infografik: Pfandsysteme in Europa. Statista Infografiken.
2020. url: https://de.statista.com/infografik/21881/aktive-und-
geplante-einweg-pfandsysteme-in-europa/ (visited on 03/06/2021).

[2] R. A. Briggs. “Normative Theories of Rational Choice: Expected Util-
ity.” In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta.
Fall 2019. Metaphysics Research Lab, Stanford University, 2019. url:
https://plato.stanford.edu/archives/fall2019/entries/rationality-

normative-utility/ (visited on 02/25/2021).

[3] Thyago P. Carvalho, Fabrízzio A. A. M. N. Soares, Roberto Vita, Roberto
da P. Francisco, João P. Basto, and Symone G. S. Alcalá. “A systematic
literature review of machine learning methods applied to predictive
maintenance.” In: Computers & Industrial Engineering 137 (Nov. 2019),
p. 106024. issn: 03608352. doi: 10.1016/j.cie.2019.106024. url:
https://linkinghub.elsevier.com/retrieve/pii/S0360835219304838

(visited on 03/10/2021).

[4] Edward Cone and James Lambert. How Robots Change the World. June
2019. url: https://resources.oxfordeconomics.com/how-robots-
change-the-world.

[5] Yin Cui, Feng Zhou, Yuanqing Lin, and Serge Belongie. “Fine-Grained
Categorization and Dataset Bootstrapping Using Deep Metric Learn-
ing with Humans in the Loop.” In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:
IEEE, June 2016, pp. 1153–1162. isbn: 978-1-4673-8851-1. doi: 10.1109/
CVPR . 2016 . 130. url: http : / / ieeexplore . ieee . org / document /

7780499/ (visited on 01/07/2021).

[6] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. “Recent Ad-
vances in Open Set Recognition: A Survey.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2020), pp. 1–1. issn: 0162-
8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2020.2981604. arXiv:
1811.08581. url: http://arxiv.org/abs/1811.08581 (visited on
03/07/2021).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
Residual Learning for Image Recognition.” In: arXiv:1512.03385 [cs]
(Dec. 10, 2015). arXiv: 1512.03385. url: http://arxiv.org/abs/1512.
03385 (visited on 02/25/2021).

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving
Deep into Rectifiers: Surpassing Human-Level Performance on Ima-
geNet Classification.” In: arXiv:1502.01852 [cs] (Feb. 6, 2015). arXiv:

https://de.statista.com/infografik/21881/aktive-und-geplante-einweg-pfandsysteme-in-europa/
https://de.statista.com/infografik/21881/aktive-und-geplante-einweg-pfandsysteme-in-europa/
https://plato.stanford.edu/archives/fall2019/entries/rationality-normative-utility/
https://plato.stanford.edu/archives/fall2019/entries/rationality-normative-utility/
https://doi.org/10.1016/j.cie.2019.106024
https://linkinghub.elsevier.com/retrieve/pii/S0360835219304838
https://resources.oxfordeconomics.com/how-robots-change-the-world
https://resources.oxfordeconomics.com/how-robots-change-the-world
https://doi.org/10.1109/CVPR.2016.130
https://doi.org/10.1109/CVPR.2016.130
http://ieeexplore.ieee.org/document/7780499/
http://ieeexplore.ieee.org/document/7780499/
https://doi.org/10.1109/TPAMI.2020.2981604
https://arxiv.org/abs/1811.08581
http://arxiv.org/abs/1811.08581
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


bibliography 77

1502.01852. url: http://arxiv.org/abs/1502.01852 (visited on
03/03/2021).

[9] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In Defense of
the Triplet Loss for Person Re-Identification.” In: arXiv:1703.07737 [cs]
(Nov. 21, 2017). arXiv: 1703.07737. url: http://arxiv.org/abs/1703.
07737 (visited on 10/12/2020).

[10] Simon Hessner. Why are precision, recall and F1 score equal when using
micro averaging in a multi-class problem? – Simon’s blog. July 19, 2018.
url: https://simonhessner.de/why-are-precision-recall-and-
f1-score-equal-when-using-micro-averaging-in-a-multi-class-

problem/ (visited on 02/19/2021).

[11] David Hutchison et al. “Visual Recognition with Humans in the Loop.”
In: Computer Vision – ECCV 2010. Ed. by Kostas Daniilidis, Petros Mara-
gos, and Nikos Paragios. Vol. 6314. Series Title: Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 438–451. isbn: 978-3-642-15560-4 978-3-642-15561-1. doi: 10.1007/
978-3-642-15561-1_32. url: http://link.springer.com/10.1007/
978-3-642-15561-1_32 (visited on 02/25/2021).

[12] Kaya and Bilge. “Deep Metric Learning: A Survey.” In: Symmetry 11.9
(Aug. 21, 2019), p. 1066. issn: 2073-8994. doi: 10.3390/sym11091066.
url: https : / / www . mdpi . com / 2073 - 8994 / 11 / 9 / 1066 (visited on
03/11/2021).

[13] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization.” In: arXiv:1412.6980 [cs] (Jan. 29, 2017). arXiv: 1412.6980.
url: http://arxiv.org/abs/1412.6980 (visited on 02/24/2021).

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
classification with deep convolutional neural networks.” In: Commu-
nications of the ACM 60.6 (May 24, 2017), pp. 84–90. issn: 0001-0782,
1557-7317. doi: 10.1145/3065386. url: https://dl.acm.org/doi/10.
1145/3065386 (visited on 03/08/2021).

[15] Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. “Person Re-
identification by Local Maximal Occurrence Representation and Metric
Learning.” In: arXiv:1406.4216 [cs] (May 6, 2015). arXiv: 1406 . 4216.
url: http://arxiv.org/abs/1406.4216 (visited on 10/22/2020).

[16] Stephen C-Y. Lu. “Machine learning approaches to knowledge syn-
thesis and integration tasks for advanced engineering automation.”
In: Computers in Industry 15.1 (Jan. 1, 1990), pp. 105–120. issn: 0166-
3615. doi: 10 . 1016 / 0166 - 3615(90 ) 90088 - 7. url: https : / / www .

sciencedirect.com/science/article/pii/0166361590900887 (visi-
ted on 03/10/2021).

[17] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using
t-SNE.” In: Journal of Machine Learning Research 9 (2008), pp. 2579–2605.
url: http://www.jmlr.org/papers/v9/vandermaaten08a.html.

https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1703.07737
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://doi.org/10.1007/978-3-642-15561-1_32
https://doi.org/10.1007/978-3-642-15561-1_32
http://link.springer.com/10.1007/978-3-642-15561-1_32
http://link.springer.com/10.1007/978-3-642-15561-1_32
https://doi.org/10.3390/sym11091066
https://www.mdpi.com/2073-8994/11/9/1066
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://arxiv.org/abs/1406.4216
http://arxiv.org/abs/1406.4216
https://doi.org/10.1016/0166-3615(90)90088-7
https://www.sciencedirect.com/science/article/pii/0166361590900887
https://www.sciencedirect.com/science/article/pii/0166361590900887
http://www.jmlr.org/papers/v9/vandermaaten08a.html


bibliography 78

[18] Abdullah-Al Nahid and Yinan Kong. “Involvement of Machine Learn-
ing for Breast Cancer Image Classification: A Survey.” In: Computa-
tional and Mathematical Methods in Medicine 2017 (2017), pp. 1–29. issn:
1748-670X, 1748-6718. doi: 10.1155/2017/3781951. url: https://www.
hindawi.com/journals/cmmm/2017/3781951/ (visited on 03/10/2021).

[19] Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Rodrigo
Fonseca. “HyperDrive: exploring hyperparameters with POP schedul-
ing.” In: Proceedings of the 18th ACM/IFIP/USENIX Middleware Confer-
ence. Middleware ’17: 18th International Middleware Conference. Las
Vegas Nevada: ACM, Dec. 11, 2017, pp. 1–13. isbn: 978-1-4503-4720-4.
doi: 10.1145/3135974.3135994. url: https://dl.acm.org/doi/10.
1145/3135974.3135994 (visited on 10/28/2020).

[20] Orod Razeghi and Guoping Qiu. “Object Recognition with Human in
the Loop Intelligent Frameworks.” In: arXiv:1912.05575 [cs] (Dec. 11,
2019). arXiv: 1912.05575. url: http://arxiv.org/abs/1912.05575
(visited on 02/25/2021).

[21] Sascha Roth and Sibille Heine. Das Geschäft mit dem Einweg-pfand. Jan.
2017. url: https : / / www .nabu . de / imperia / md / content/ nabude /

abfallpolitik/170207_nabu_infopapier_einwegpfand.pdf.

[22] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks —
the ELI5 way. Medium. Dec. 17, 2018. url: https://towardsdatascience.
com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53 (visited on 03/08/2021).

[23] A. L. Samuel. “Some Studies in Machine Learning Using the Game of
Checkers.” In: IBM Journal of Research and Development 3.3 (July 1959),
pp. 210–229. issn: 0018-8646, 0018-8646. doi: 10.1147/rd.33.0210.
url: http://ieeexplore.ieee.org/document/5392560/ (visited on
01/07/2021).

[24] Hillary Sanders and Joshua Saxe. “GARBAGE IN, GARBAGE OUT:
HOW PURPORTEDLY GREAT ML MODELS CAN BE SCREWED UP
BY BAD DATA.” In: (July 27, 2017), p. 6.

[25] P. J. H Schoemaker. Experiments on Decisions under Risk. OCLC: 1059410782.
Dordrecht: Springer Netherlands, 2013. isbn: 978-94-017-5040-0. url:
https://public.ebookcentral.proquest.com/choice/publicfullrecord.

aspx?p=5555560 (visited on 02/26/2021).

[26] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet:
A Unified Embedding for Face Recognition and Clustering.” In: 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2015), pp. 815–823. doi: 10.1109/CVPR.2015.7298682. arXiv: 1503.
03832. url: http://arxiv.org/abs/1503.03832 (visited on 10/22/2020).

[27] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition.” In: arXiv:1409.1556 [cs]
(Apr. 10, 2015). arXiv: 1409.1556. url: http://arxiv.org/abs/1409.
1556 (visited on 03/08/2021).

https://doi.org/10.1155/2017/3781951
https://www.hindawi.com/journals/cmmm/2017/3781951/
https://www.hindawi.com/journals/cmmm/2017/3781951/
https://doi.org/10.1145/3135974.3135994
https://dl.acm.org/doi/10.1145/3135974.3135994
https://dl.acm.org/doi/10.1145/3135974.3135994
https://arxiv.org/abs/1912.05575
http://arxiv.org/abs/1912.05575
https://www.nabu.de/imperia/md/content/nabude/abfallpolitik/170207_nabu_infopapier_einwegpfand.pdf
https://www.nabu.de/imperia/md/content/nabude/abfallpolitik/170207_nabu_infopapier_einwegpfand.pdf
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://doi.org/10.1147/rd.33.0210
http://ieeexplore.ieee.org/document/5392560/
https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5555560
https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5555560
https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


bibliography 79

[28] Marina Sokolova and Guy Lapalme. “A systematic analysis of per-
formance measures for classification tasks.” In: Information Processing
& Management 45.4 (July 2009), pp. 427–437. issn: 03064573. doi: 10.
1016/j.ipm.2009.03.002. url: https://linkinghub.elsevier.com/
retrieve/pii/S0306457309000259 (visited on 02/18/2021).

[29] D. Sommerfeld. Kuriose Zwitterwesen: Nanu, wie kommt das Kölsch in die
Pils-Flasche? Express.de. Mar. 13, 2010. url: https://www.express.de/
koeln/kuriose-zwitterwesen-nanu--wie-kommt-das-koelsch-in-

die-pils-flasche--18065166 (visited on 11/12/2020).

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. “Going Deeper with Convolutions.” In: arXiv:1409.4842
[cs] (Sept. 16, 2014). arXiv: 1409.4842. url: http://arxiv.org/abs/
1409.4842 (visited on 03/08/2021).

[31] Heinz Von Foerster and Bernhard Pörksen. Wahrheit ist die Erfindung
eines Lügners: Gespräche für Skeptiker. Elfte Auflage. OCLC: 936800414.
Heidelberg: Carl-Auer-Systeme-Verl, 2016. 167 pp. isbn: 978-3-89670-
646-1.

[32] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. “Distance
Metric Learning for Large Margin Nearest Neighbor Classification.”
In: (2009), p. 8.

[33] Désirée White and Montserrat Rabago-Smith. “Genotype–phenotype
associations and human eye color.” In: Journal of Human Genetics 56.1
(Jan. 2011). Number: 1 Publisher: Nature Publishing Group, pp. 5–7.
issn: 1435-232X. doi: 10.1038/jhg.2010.126. url: https://www.

nature.com/articles/jhg2010126 (visited on 03/09/2021).

[34] Thorsten Wuest, Daniel Weimer, Christopher Irgens, and Klaus-Dieter
Thoben. “Machine learning in manufacturing: advantages, challenges,
and applications.” In: Production & Manufacturing Research 4.1 (Jan. 1,
2016). Publisher: Taylor & Francis, pp. 23–45. issn: null. doi: 10.1080/
21693277.2016.1192517. url: https://doi.org/10.1080/21693277.
2016.1192517 (visited on 03/10/2021).

[35] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda.
“A Survey of Autonomous Driving: Common Practices and Emerging
Technologies.” In: IEEE Access 8 (2020), pp. 58443–58469. issn: 2169-3536.
doi: 10.1109/ACCESS.2020.2983149. url: https://ieeexplore.ieee.
org/document/9046805/ (visited on 03/10/2021).

[36] tagesschau.de. Verpackungen in Gastronomie: Schulze plant Mehrweg-Pflicht.
tagesschau.de. Nov. 19, 2020. url: https : / / www . tagesschau . de /

wirtschaft/mehrweg-schulze-101.html (visited on 03/06/2021).

https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://linkinghub.elsevier.com/retrieve/pii/S0306457309000259
https://linkinghub.elsevier.com/retrieve/pii/S0306457309000259
https://www.express.de/koeln/kuriose-zwitterwesen-nanu--wie-kommt-das-koelsch-in-die-pils-flasche--18065166
https://www.express.de/koeln/kuriose-zwitterwesen-nanu--wie-kommt-das-koelsch-in-die-pils-flasche--18065166
https://www.express.de/koeln/kuriose-zwitterwesen-nanu--wie-kommt-das-koelsch-in-die-pils-flasche--18065166
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1038/jhg.2010.126
https://www.nature.com/articles/jhg2010126
https://www.nature.com/articles/jhg2010126
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1109/ACCESS.2020.2983149
https://ieeexplore.ieee.org/document/9046805/
https://ieeexplore.ieee.org/document/9046805/
https://www.tagesschau.de/wirtschaft/mehrweg-schulze-101.html
https://www.tagesschau.de/wirtschaft/mehrweg-schulze-101.html

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Algorithm
	Acronyms

	 Thesis
	1 Introduction
	1.1 Motivation
	1.2 Setting
	1.2.1 Crate Inspector
	1.2.2 Raw Data


	2 Theory
	2.1 Fundamentals
	2.1.1 Machine Learning Program Paradigm
	2.1.2 Computer Vision
	2.1.3 Convolutional Neural Network
	2.1.4 Open-Set
	2.1.5 Metric Learning
	2.1.6 Human-in-the-Loop
	2.1.7 Expected Utility
	2.1.8 Multi-Class Classification Validation

	2.2 Concept
	2.2.1 Tidy and Untidy Data
	2.2.2 Training Process
	2.2.3 Score
	2.2.4 Selection
	2.2.5 Human

	2.3 Related Work

	3 Methodology
	3.1 Case Study
	3.2 Data Preparation
	3.2.1 Core Data Set

	3.3 Feature Extractor
	3.3.1 Feature Extractor Architecture
	3.3.2 Feature Extractor Training

	3.4 Human Task
	3.5 Score Calculation
	3.6 Selection
	3.7 Performance Validation
	3.7.1 Classification


	4 Results
	4.1 Overall Performances per Iteration
	4.2 New Data Samples per Class over the Iterations
	4.3 Individual Class Performance for some Selected Classes
	4.4 Human Annotation Time over Iterations

	5 Discussion and Conclusions
	5.1 Side Note Data Refinery versus Crate Inspector
	5.2 Conclusion

	6 Outlook
	6.1 Data Refinery Concept Extension for Open Set Classification
	6.2 Further Fields of Application and Improvements for the CrI
	6.3 Further Applications Regarding the Pfandsystem
	6.4 Data Refinery as a Tool Beyond Image Recognition


	 Appendix
	A Performance Tables
	B Feature Space Plots
	C Questions Asked by the Data Refinery
	D Enlarged Figures
	 Bibliography


