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A B S T R A C T

purpose : Treatment of severe aortic stenosis requires careful assessment
of the aortic root to select an appropriate prosthesis for Transcatheter Aortic
Valve Implantation (TAVI). For this purpose, pre-operative CT images of the
heart are analyzed, and relevant parameters, such as the aortic annulus area
or perimeter, are determined. Two software solutions are presently used at
the German Heart Center Berlin for obtaining these measurements, the fully-
automated HeartNavigator3 (HN) and the semi-automated 3mensio (3m). In
this work, the feasibility of a neural network-based approach is assessed,
which is independent of specific imaging protocols or vendors.

methods : To deduce the aortic annulus area and perimeter, image re-
gions of interest are segmented using a cascade of Convolutional Neural Net-
works, following the U-Net architecture. A U-Net uses so-called transposed
convolutions to predict each voxel’s probability to be part of the sought-after
segmentation. First, the region of interest surrounding the device landing
zone is segmented, second, the aorta, including the aortic valve within that
region, and third, the area around the annulus. From this final segmentation,
the aortic annulus plane is deduced by principal component analysis. Area
and perimeter are obtained from a segmentation of the annulus in this plane.

results : The neural networks were trained using a data set of 90 expert-
annotated CT scans. Segmentation of the aorta within the device landing
zone achieved an F1 score of 0.94 on a test set of seven patients; segmentation
of the annulus in the two-dimensional plane reached an F1 score of 0.95. The
deep learning model calculated an average annulus area of 543.2 mm2 and
an average perimeter of 83.9 mm on an evaluation data set of 100 patients.
Those calculated means differ significantly from the two software solutions’
measurements on the same data set (area: 481.5 mm2 (HN), 463.5 mm2 (3m);
perimeter: 79.3 mm (HN), 77.2 mm (3m)). While the discrepancy between the
two software solutions is consistent with reported inter-observer differences,
the deep learning results deviate more than twice as much from the software
solutions’ measurements.

conclusion : Even with a relatively small training set of 90 CT scans, the
neural network approach enables the reliable assessment of the aortic root.
However, further work is required to optimize the annulus plane detection
for correct annulus measurement. An extended training data set is required
to further improve this method’s applicability and robustness. It should also
include several examples of uncommon cases, such as pre-implanted artifi-
cial valves.

Key words: Deep Learning, Convolutional Neural Network, U-Net, ResNet,
Image Analysis, Segmentation, Medical Data, CT



Z U S A M M E N FA S S U N G

motivation : Zur Behandlung einer schweren Aortenklappenstenose ist
eine sorgfältige Analyse der Aortenwurzel von größter Bedeutung, um ei-
ne geeignete Prothese für eine Transkatheter-Aortenklappen-Implantation
(TAVI) zu wählen. Hierfür werden vor der Operation CT-Aufnahmen des
Herzens betrachtet und relevante Messwerte, wie Fläche und Umfang des
Aortenannulus, berechnet. Am Deutschen Herzzentrum Berlin werden zur
Bestimmung dieser Messwerte bisher die Softwarelösungen HeartNavigator
(HN) und 3mensio (3m) genutzt, die teils manuelles Eingreifen erfordern.
Diese Arbeit erprobt einen voll-automatisierten Ansatz basierend auf neuro-
nalen Netzen, welcher unabhängig von bestimmten Bildgebungsprotokollen
oder Softwareanbietern nutzbar ist.

methoden : Um Fläche und Umfang des Aortenanullus zu bestimmen,
werden zunächst relevante Bildregionen segmentiert. Hierfür wird ein Deep-
Learning-Ansatz mit einer Abfolge von Convolutional Neural Networks ent-
sprechend der U-Net-Architektur verwendet. Das U-Net nutzt transposed con-
volutions (umgekehrte Faltungen), um den Voxeln eines Bildes eine Wahr-
scheinlichkeit zuzuordnen, ob diese zu einer gesuchten Segmentierung ge-
hören. Zuerst wird die Region um die Aortenklappe, in der die Prothese
eingesetzt werden soll, segmentiert, als zweites die Aorta inklusive Aorten-
klappe und zuletzt die Region um den Annulus. Mithilfe einer Hauptkom-
ponentenanalyse wird diejenige Ebene abgeleitet, in der der Annulus liegt.
Anhand der Segmentierung des Annulus innerhalb dieser Ebene werden
letztlich Fläche und Umfang des Annulus bestimmt.

ergebnisse : Die neuronalen Netze wurden mit 90 CT-Aufnahmen trai-
niert, die von Experten annotiert wurden. Die Aortensegmentierung erreich-
te einen F1-Wert von 0.94 auf einem Testdatensatz von sieben Patienten; die
Segmentierung des Annulus erreichte einen F1-Wert von 0.95. Der Deep-
Learning-Ansatz bestimmte durchschnittlich eine Fläche des Aortenannulus
von 543.2 mm2 und einen Umfang von 83.9 mm auf einem weiteren unabhän-
gigen Datensatz von 100 Patienten. Diese Durchschnitte unterscheiden sich
deutlich von denen, die die Softwarelösungen auf demselben Datensatz er-
mittelten (Fläche: 481.5 mm2 (HN), 463.5 mm2 (3m); Umfang: 79.3 mm (HN),
77.2 mm (3m)). Die Diskrepanz zwischen den Softwarelösungen entspricht
etwa der beobachten Diskrepanz zwischen von Medizinern getätigten Mes-
sungen. Die Ergebnisse des Deep-Learning-Ansatzes weichen um mehr als
das Doppelte davon ab.

fazit : Bereits mit einem recht kleinen Datensatz von 90 CT-Aufnahmen
ermöglicht der hierarchische Deep-Learning-Ansatz die zuverlässige Seg-
mentierung der Aortenwurzel. Allerdings muss die Detektion des Aorten-
annulus weiter optimiert werden, um diesen exakt vermessen zu können.



Ein erweiterter Datensatz ist erforderlich, um diesen Ansatz zuverlässiger
und robuster zu gestalten. Dieser sollte ebenfalls einige untypische Fälle,
wie bereits implantierte künstliche Aortenklappen enthalten.

Schlagwörter: Deep Learning, Convolutional Neural Network, U-Net, Res-
Net, Bildanalyse, Segmentierung, Medizinische Daten, CT
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Part I

T H E S I S



1
I N T R O D U C T I O N

The following chapter illustrates the motivation and aim of this thesis - deep
learning support of Transcatheter Aortic Valve Implantation. The structure
of the thesis is briefly described.

1.1 motivation

The human heart beats around 100 000 times a day. With each beat, 70 ml
of blood is pumped through the aorta to supply the oxygen-enriched blood
to the rest of the body [32]. Unfortunately, several conditions can affect the
heart’s ability to function, one of which is known as aortic stenosis. This dis-
ease especially occurs with advancing age. Over the years, the aortic valve
weakens and possibly accumulates calcium deposits from the blood, thus
stiffening the valve cusps. A congenitally abnormal aortic valve further in-
creases the risk of developing the condition. As a result, the blood flow from
the left ventricle to the aorta gets restricted, forcing the left ventricle to work
harder to pump a sufficient amount of blood into the aorta and onward
to the rest of the body. Eventually, this extra work can weaken the heart,
ultimately leading to heart failure. Accompanying symptoms may include
breathlessness, chest pain or fainting. [90]

Nowadays, aortic stenosis is treatable by surgically replacing the defective
valve with a prosthesis [30]. However, some patients might not be fit for
surgery due to lung problems or further comorbidities.

For such cases, a less invasive procedure was developed that generally
does not require the opening of the chest, the so-called Transcatheter Aortic
Valve Implantation (TAVI). In a TAVI, a catheter holding the valve replacement
is advanced mostly through the femoral artery towards the faulty heart valve.
The prosthesis is expanded within the original valve to take over its function
[59].

Nevertheless, this procedure does have its own risks: as there is no direct
access to the heart in contrast to open surgery, it is much harder to fit the
prosthetic valve properly. An undersizing of the valve can lead to paravalvu-
lar leakage, blood flowing between the structure of the implanted valve and
cardiac tissue [30]. In case of oversizing, the implant either does not unfold
properly or even causes a rupture of the surrounding tissue, especially if
the valve is forcibly expanded with a balloon [30]. All cases jeopardize the
implanted valve’s proper functionality and might result in further complica-
tions and required operations. Thus, proper sizing is of utmost importance.
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1.2 aim and scope of the thesis

The proposed thesis aims at supporting exactly this task of valve sizing
by facilitating automatic aortic root analysis. At the German Heart Center
Berlin, two software tools are currently being used to obtain the required
measurements for valve selection, the semi-automated 3mensio and the fully-
automated HeartNavigator3. Both require some manual intervention for op-
timal measurements and depend on specific input formats [56].

In this thesis, a deep learning approach for aortic root analysis is assessed,
which is fully-automated and independent of imaging protocols or vendors.
As a proof of concept, a model obtaining the area and perimeter of the aortic
annulus is developed and benchmarked against the two software tools. An
essential challenge in this benchmarking is the lack of true values for evalua-
tion. The two software packages deliver different measurements, resulting in
a discrepancy of deduced valve size in 18% of the cases [56]. Knobloch et al.
[45] report similar inter-observer differences. It is nontrivial to decide which
value is the most correct. Instead, the evaluation will focus on the compa-
rability of the results between the neural network-based approach and the
two software solutions, to prove the feasibility of the neural network-based
approach.

Such an approach could be the basis for a conceptually simple and fully
automatic model, supporting TAVI device selection. Possible benefits in com-
parison to the current software solutions are vendor independence, repro-
ducibility of results and suitability for different Computed Tomography (CT)
imaging protocols with minimal effort of adaptation.

In order to simplify the task of annulus measurement, it is broken down
into several steps:

• Detection of a uniformly sized bounding box around the so-called De-
vice Landing Zone, the area in which a prosthetic valve shall be placed

• Segmentation of the aorta, including the aortic valve within the bound-
ing box

• Detection of the valve plane, i.e., the plane in which the aortic cusps
are anchored and where the aortic annulus is measured

• Segmentation of the aortic annulus in this resulting two-dimensional
plane and derivation of measurements

For each step, a Convolutional Neural Network (CNN) is trained and eval-
uated against different metrics.

1.3 structure

Chapter 2 first establishes the required medical terms, and a broad overview
of the current approach to aortic annulus measurement for TAVI device selec-
tion will be presented. Further, the machine learning principles considered
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in this thesis are introduced. Based on selected research papers, the state-of-
the-art applications in the medical field are examined. Chapter 3 details the
author’s contributions on applying machine learning techniques to support
optimal aortic valve sizing. Chapter 4 presents the results of each individual
step as well as the comparison to the benchmark. The thesis concludes with
a summary and an outlook on future research opportunities.



2
F U N D A M E N TA L S A N D R E L AT E D W O R K

The first section of this chapter introduces the medical background of the
disease, aortic stenosis, and its possible treatment, Transcatheter Aortic Valve
Implantation (TAVI), concentrating on aspects necessary for understanding
TAVI’s relevance and complexity. The current tools for annulus measurement,
3mensio and HeartNavigator3, are presented.

The second section gives an overview of the used machine learning tech-
niques and exemplifies how they are presently applied for medical use.

2.1 medical background

Selection of a suitable model for TAVI requires sound understanding of the
anatomical conditions. This section establishes the essential medical back-
ground and current technologies used to support valve selection.

2.1.1 Anatomy and Physiology of the Cardiovascular System

The human cardiovascular system comprises the heart, blood vessels and
the blood itself. The heart is responsible for pumping the blood through the
blood vessels to transport oxygen, nutrients, hormones and waste products
around the body. The blood vessels can be divided into three major types, ar-
teries, veins and capillaries. Arteries move blood away from the heart, veins
carry blood towards the heart, and capillaries facilitate the exchange of dif-
ferent elements, such as oxygen, between blood and tissues.

The aorta is the largest artery in the human body. Ascending from the
heart’s left ventricle, it supplies the oxygenated blood to the rest of the
body. With every heartbeat, the aorta stretches to receive a large volume
of blood, then contracts to its original diameter to push the blood into the
off-branching arteries [79].

The heart itself is a double pump, where the left and right side contract
separately. Each side consists of an atrium and a ventricle, making up the
four chambers of the heart [74]. There are four valves within the heart that
allow for a controlled outflow of the blood while restricting the blood from
flowing back. Between the left ventricle of the heart and the aorta sits the
aortic valve [4], as depicted in Figure 2.1.

2.1.2 The Aortic Valvar Complex

The aortic valve controls the blood flow between the left ventricle and the
aorta. Typically, the aortic valve is composed of three cusps, also called
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Figure 2.1: The position of the aortic valve within the heart (based on [4]): The aortic
valve controls the blood flow between the left ventricle and the aorta.

leaflets. However, in 1.3% of the population examined in the United States,
it is found to be congenitally bicuspid [65].

The aortic root is the direct continuation of the Left Ventricular Outflow
Tract (LVOT). It comprises the whole aortic valve from its basal attachment
of the leaflets within the left ventricle, the so-called annulus, to their attach-
ment at the sinutubular junction, the region of the ascending aorta, where
it becomes a tubular structure. The area where a prosthetic valve would be
placed comprises the aortic root, including the annulus and LVOT. This area
is also referred to as the Device Landing Zone (DLZ). Figure 2.2 provides an
overview of the anatomy.

Figure 2.2: The aortic root components between LVOT and aorta (based on [78] and
[12]): The aortic root comprises the whole aortic valve between annulus
and sinutubular junction. The DLZ, the area where a prosthetic valve
would be placed, additionally includes the annulus and the LVOT.
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Several conditions can lead to a malfunctioning of the aortic valve, such
as aortic stenosis.

2.1.3 Aortic Stenosis

Aortic stenosis is one of the most common and most serious valve diseases,
affecting about 2% of the elderly population over 70 years of age, with a mor-
tality rate of above 50% in patients with severe aortic stenosis undergoing
conservative management [84].

Characteristic for this disease is a narrowing of the aortic valve opening,
leading to a restriction of blood flow from the left ventricle to the aorta. A
schematic comparison of a healthy and a stenotic valve can be found in Fig-
ure 2.3. As a result of aortic stenosis, the pressure in the left ventricle might
increase, leading to a thickening of the heart’s walls to maintain adequate
pumping pressure. Without proper treatment, heart function can deteriorate.
In light cases, medical treatment is possible. For patients with severe aor-
tic stenosis, a replacement of the pathological aortic valve with a prosthesis
might be advisable [25].

Figure 2.3: A schematic comparison of a healthy and a stenotic valve (based on [52]):
A healthy valve opens to a cross-sectional area of about 3-4 cm2 while a
stenotic valve reaches an opening of less than 1 cm2.

The most common procedure is open-heart transplantation, where the dis-
eased aortic valve is removed and replaced with a new one [25].

For patients with severe comorbidities that are not fit for open-heart surgery,
a less invasive procedure evolved, the so-called Transcatheter Aortic Valve
Implantation (TAVI).

2.1.4 Transcatheter Aortic Valve Implantation

TAVI is a minimally invasive procedure for transplanting prosthetic aortic
valves. The artificial valve is transported to its destined position via catheter,
generally from the groin area through the femoral artery. Alternative access
paths are possible. The prosthesis is then released inside the faulty aortic
valve at the DLZ and either self-expands or is expanded with a balloon [19,
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77]. In this procedure, in contrast to open-heart surgery, it is impossible to
find the optimal valve by just testing likely fits. Thus, it is vital to determine
the desired model size in advance. Under- or oversizing can lead to dramatic
complications. Undersizing of the prosthesis can result in paravalvular leak-
age or stent migration [30]. Oversizing could even cause annular rupture, all
cases ultimately endangering the patient’s life [59]. As can be seen from the
above complications, it is of utter importance to diligently select a suitable
transplant. In order to properly size a TAVI device, the area and perimeter
of the annulus are required. [61].

CT is seen as the gold standard for aortic root assessment as the basis for
obtaining such measurements [8].

2.1.5 CT Imaging and Software Tools

Computed Tomography (CT) uses computer-processed combinations of mul-
tiple X-ray measurements taken from different angles to produce cross-sectio-
nal images of the body. As a result, CT images allow for visualization of
various structures inside the body. For the present study, cardiac Multi-Slice
Computed Tomography (MSCT) images were obtained using a standardized
protocol, optimized for DLZ analysis [56]. Those multi-slice CTs result in
three-dimensional images, represented by voxel values. A voxel is the three-
dimensional equivalent to the two-dimensional pixel, which is an abbrevia-
tion for picture element.

According to Blanke et al. [8], an electrocardiogram-synchronized CT scan
of the aortic root is required for TAVI planning, using a contrast agent to
visualize blood vessels. The electrocardiogram-synchronization is necessary
to ensure recording of each image at the same moment of the heartbeat. Oth-
erwise, the aortic valve’s movement would lead to a difference in measured
dimensions of the valve, as shown by Horehledova et al. [33]. The CT scans
are available in DICOM1 format, respectively a MeVisLab internal storage for-
mat. For compatibility with the programming language Python, which is
used to develop the deep learning approach, the NIfTI2 format is used by
choice. NIfTI is a standardized file format for saving three-dimensional im-
ages. Originally envisaged for neuroimaging, it is also suitable for other
medical images, such as CTs.

Currently, heart specialists at the German Heart Center Berlin utilize two
software solutions to analyze a patient’s CT scan. The HeartNavigator3 [58]
loads a cardiac MSCT series. The segmentation, the definition of the annu-
lar plane and the measurements of the annulus area and perimeter are
performed fully automatically. 3Mensio [35] requires manual placement of
three markers, indicating the tips of the three leaflets, determining the annu-
lar plane. The annulus can then be measured semi-automatically. Figure 2.4
shows a comparison of the two software solutions’ interfaces. In each case,
the resulting measurements need to be assessed by experts to infer the op-

1 https://www.dicomstandard.org/
2 https://nifti.nimh.nih.gov/
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timal valve selection [56]. The vendors of both software solutions did not
disclose any information on the methods used for segmentation, plane de-
tection and measurement.

Figure 2.4: A comparison of the interfaces of the two software solutions for annulus
measurement, the fully-automatic HeartNavigator (left) and the semi-
automatic 3mensio (right) [56]: Both show a segmentation of the aorta
and the LVOT in three dimensions, where the HeartNavigator differenti-
ates between the two, and the detected annulus plane in two dimensions.
The tips of the valve cusps are shown in the three- as well as the two-
dimensional views.

Measurement of the annulus is non-trivial. Several studies evaluated the
reliability and repeatability of measurements. Meyer et al. [56] observed a
difference in resulting prosthesis size between HeartNavigator and 3mensio
measurements in 18% of the considered patients, with a mean difference of
18 mm2 for the annulus area. Knobloch et al. [45] report mean intra-observer
differences of 1.5-5.7 mm2 and mean inter-observer differences of 5.7-15 mm2

for the annulus area.

2.2 machine learning

As elucidated above, model selection and sizing for TAVI is presently done by
experts visually evaluating different measurements on the patient’s CT scan
while factoring in further patient data. Software tools support this selection
process. Apart from being prone to errors, it also requires a lot of practice
and adherence to research standards [6, 57].

Therefore, this thesis examines how machine learning can be used to as-
sist medical practitioners in implant sizing. In machine learning, a computer
algorithm learns to make predictions based on sample data. With a suffi-
cient amount of examples, the algorithm can reach near-perfect accuracy.
The required number of samples highly depends on the use case and can
range from a few dozen to several thousand. Deep learning is a subfield of
machine learning based on artificial neural networks. In the present study,
deep learning is used to learn different segmentations in a CT scan, finally
allowing for the deduction of the aortic annulus’ area and perimeter.

The following section gives an overview of the used techniques and tech-
nologies.
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2.2.1 MeVisLab

MeVisLab is a proprietary cross-platform software solution, providing a
framework for image processing, especially focused on medical imaging [54].
With its proper support for CT images, MeVisLab was used to prepare and
annotate training images.

The following modules were frequently used:

• MLImageFormatLoad
loads images in .mlimage format

• itkImageFileReader/-Writer
reads/writes Insight Toolkit3 (ITK) formats, such as NIfTI

• Load Base
loads XML marker lists, like valve plane markers or the centerline

• WEMLoad
loads segmentations, saved as Winged Edge Mesh (WEM)

• CSOLoad
loads Contour Segmentation Objects (CSOs)

• Subimage
extracts defined sub-image

• Resample
resamples an image to desired voxel dimensions to standardise the
image’s resolution; this will consequently alter the image’s dimensions

A sample MeVisLab network is displayed in Figure 2.5.

Figure 2.5: A sample MeVisLab network and output: The network shows the mod-
ules MLImageFormatLoad, Resample3D, SubImage, LoadBase, WEMLoad and
CSOLoad. A sample output of each module is displayed.

More specific modules only used for special purposes will be indicated in
the respective sections in Chapter 3 - Methods.

3 https://itk.org/
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While working with MeVisLab, it needs to be distinguished between two
different coordinate systems - voxel and world coordinates. Voxel coordi-
nates refer to the image axes; they reach from zero to the size of the image.
On the other hand, world coordinates refer to some real-world axes. In the
context of CT scans, a point in the CT scanner is chosen as the origin of coor-
dinates. The axes are arbitrarily defined, resulting in real numbered values,
typically stated in millimeters, without any predefined range. Figure 2.6 il-
lustrates this. MeVisLab allows for conversion between the two coordinate
systems [53].

Figure 2.6: Voxel vs world coordinates (based on [1]): Voxel coordinates refer to the
image axes while world coordinates refer to real-world axes, such as
positions in a CT scanner.

2.2.2 Training of Neural Networks

Feedforward Neural Networks (FFNNs) provide the basis for deep learning.
Inspired by the brain’s functionality, a FFNN consists of artificial neurons con-
veying signals through several layers of the network to result in a desired
output. The basic ideas presented in this subsection are extracted from Pat-
tern Recognition and Machine Learning (Bishop [7]) and Deep Learning (Good-
fellow, Bengio, and Courville [27]). In order to comprehend the concept of
a neural network, its basic building block, the so-called perceptron, needs
to be understood. A perceptron, depicted in Figure 2.7, transforms an input
vector x to a scalar output y, by calculating a linear combination between the
input vector elements x1, x2, ..., xn and a set of weights w1, w2, ..., wn and sub-
sequently feeding this into a non-linear activation function. This activation
function allows a network to learn non-linear patterns.

A neural network is then composed of several such perceptrons, which are
arranged into layers, as shown in Figure 2.8. Three main components can be
distinguished:

• The input layer corresponds to the input vector x.

• The hidden layers between the input and the output are mainly re-
sponsible for approximating a mapping between the input vector x
and the desired output y.

• The output layer transforms the internal network state to the desired
output dimension.
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Figure 2.7: The structure of a perceptron [18]: A perceptron calculates a linear com-
bination between input vector elements x1, x2, ..., xn and a set of weights
w1, w2, ..., wn. The resulting sum z is fed into a non-linear activation func-
tion to yield the output a.

Figure 2.8: An example of a Feedforward Neural Network (FFNN) [62]: Several per-
ceptrons are arranged into layers to build a network. An input vector
x1, x2, ..., xn is fed into the network via an input layer. It passes through
several hidden layers, resulting in an output vector y1, y2, ..., ym in the
output layer.

The goal is then to approximate some function f ∗, with y = f ∗(x) by defin-
ing a mapping y = f (x, θ). Specifically, the optimal values for θ need to be
deduced. Here θ represents the aforementioned set of weights w1, w2, ..., wn.

The most common approach for this deduction is the backward propaga-
tion of errors [9]. Iteratively, θ is adjusted to minimize the error between the
actual target value y and the output ŷ. For this, first the input vector x is fed
forward through the network, yielding the output ŷ = f (x, θ). The error be-
tween y and ŷ is calculated with a loss function L(y, ŷ). In order to minimize
this loss, it is backpropagated through the network, and θ is adjusted ac-
cordingly. This is commonly done by applying a gradient descent approach.
Each weight or component of θ is usually randomly initialized. The gradient
of the loss function with respect to each individual weight is calculated, and
the weights are adjusted according to the direction of steepest descent. After
adjustment, the steps are repeated until a defined stopping criterion is met.

A significant drawback of the standard FFNN is the high number of param-
eters that need to be optimized, especially in the case of high dimensional
inputs, like images. Further, spatial relations cannot be retained, which is
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of concern in image analysis. Hence, an alternative approach emerged, the
Convolutional Neural Network (CNN), which is especially suitable for high-
dimensional image input.

2.2.3 Convolutional Neural Networks

The following subsection is largely based on Deep Learning (Goodfellow, Ben-
gio, and Courville [27]) and Deep learning: Technical introduction (Epelbaum
[22]). A CNN applies the same operation to several subsets of the input. This
results in a sharing of weights, significantly lowering the number of trained
parameters while also preserving spatial relations. Each operation generally
consists of three steps, combined into a convolutional block:

1. Convolution
The first layer in a convolutional block typically is a convolutional layer.
A so-called kernel or filter is shifted over the input, repetitively per-
forming a matrix multiplication between the kernel and the subset of
the input to which the kernel is currently applied. This operation de-
tects relevant features within the image, as illustrated in Figure 2.9.

Figure 2.9: The convolutional operation [17]: A filter is shifted over the input im-
age, repeatedly multiplying the pixel representations of the filter and
the sub-image. The larger the resulting number, the more the sub-image
is assumed to correspond to the filter. In this way, relevant features in
the image are detected.
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2. Activation function
Concurrent with the standard architecture of a neural network, the
convolutional layer’s output is activated with a non-linear function.
A typical choice for hidden layer activations is the Rectified Linear
Unit (ReLU) [82]:

f (x) = max(0, x).

ReLU is a piecewise linear function, directly outputting the input if it is
positive, and zero otherwise.

For the output layer, the sigmoid function S (logistic function) is an
appropriate activation if probabilities are expected in the output. It
shows a return value in the range [0, 1].

S(x) =
1

1 + e−x =
ex

ex + 1

Both activation functions are visualized in Figure 2.10.

Figure 2.10: The activation functions ReLU and sigmoid [82]: ReLU is a piecewise
linear function, directly outputting the input if it is positive, and zero
otherwise, typically used for activation of hidden layer outputs. For
the output layer, the sigmoid function is an appropriate activation if
probabilites are expected in the output. It shows a return value in the
range [0, 1].

3. Pooling
A pooling layer concludes the basic convolutional block. Its purpose is
to extract the most dominant features while also reducing the spatial
dimension. Max or average pooling is employed, with max pooling
typically yielding better results. It allows for translational invariance,
since the output of the max pooling layer will generally be the same
if features are slightly translated. Figure 2.11 exemplifies the pooling
operation.

In a CNN, several different kernels are applied per convolutional layer.
Each convolutional block’s output can be fed into several more blocks, each
block yielding higher level features, illustrated in Figure 2.12.

The standard CNN is completed with fully-connected layers generating the
final output.
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Figure 2.11: The pooling operation [68]: Max pooling reduces a sub-image of spe-
cific size (here 2 x 2) to its maximal value. Average pooling reduces the
sub-image to the average of its values.

Figure 2.12: From low level to high level features [49]: The first convolutional layer
detects low-level features, such as edges, the second layer already de-
tects higher level features, such as eyes or noses, and the third layer
detects even more abstract features, such as whole faces.

2.2.4 Losses and Metrics

A neural network is optimized by minimizing its error, represented by a loss
function. Usually, minimization is achieved by backpropagating the error
gradient through the network and adjusting the network’s weights accord-
ingly. Thus, the loss function needs to be piecewise-differentiable. The gra-
dients optimally should be non-zero whenever the prediction and the target
value do not agree and should also increase with an increasing discrepancy.
At any non-differentiable point, a loss function is typically approximated
[27]. A metric, on the other hand, is used to measure the algorithm’s per-
formance in an interpretable manner [34]. It is often defined in such a way
that it is one if prediction and target agree perfectly and zero if there is no
agreement at all.
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In the following subsection, the functions used for model training and
evaluation will be shortly introduced and possible difficulties highlighted.
As will be further discussed in Chapter 3 - Methods, the different subtasks
will be addressed with regression and segmentation approaches.

regression

Suitable loss functions for regression are the L1-norm, the mean absolute
error (MAE) or the L2-norm, the root mean squared error (RMSE) [69]:

MAE =
1
n

n

∑
i=1
|yi − ŷi| , (2.1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (2.2)

with n being the number of samples, y the ground truth values and ŷ the
predictions.

Since those norms on their own do not provide information about the
model quality, they need to be compared against a benchmark for evaluation
purposes. Typical benchmarks are obtained by averaging, random walks or
other very simple models [60].

For training of a neural network, the RMSE is advantageous, as its gra-
dient increases with an increasing error while the gradient of the MAE is
constant. Consequently, with RMSE, the adjustment of the weights will be
proportional to the error. However, this also poses a disadvantage: The RMSE
is much more sensitive to outliers. Thus, in the case of outliers due to cor-
rupted data, the MAE might be favorable [60].

Other loss functions for regression are available, which will not be further
considered but might be an interesting starting point for model improve-
ments [29].

segmentation

The most commonly used loss function for the task of image segmentation
is a pixel-wise binary cross-entropy loss. This loss examines each pixel indi-
vidually, comparing the class predictions to the target mask [26]:

L(y, ŷ) = − 1
n

n

∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi), (2.3)

where y is the target mask (1 if the pixel belongs to the segmentation and 0

otherwise) and ŷ the predicted probability for each of the n pixels to belong
to the segmentation.

This loss can be directly transferred to the three-dimensional case by con-
sidering each voxel. The binary cross-entropy loss is not easily interpretable.
Thus, two metrics are regarded for model evaluation - Intersection–over–
Union (IoU), also called Jaccard Index, and the Dice Coefficient or F1 score,
as based on Metrics to Evaluate your Semantic Segmentation Model [83].
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The IoU is given by the following formula:

IoU =
Precision · Recall

Precision + Recall − Precision · Recall
=

TP
TP + FP + FN

=
Intersection

Union
,

(2.4)
with TP ≡ True Positive, FP ≡ False Positive, FN ≡ False Negative. The
metrics used for calculation of the IoU can be derived from the confusion
matrix:

True Segmentation
positive negative

Predicted
Segmentation

positive TP FP
negative FN TN

Table 2.1: Confusion matrix.

Precision and Recall are then defined as follows:

Precision =
TP

TP + FP,

Recall =
TP

TP + FN.

The IoU describes the area of intersection between the predicted segmen-
tation and the ground truth divided by the area of union between the pre-
dicted segmentation and the ground truth. In the three-dimensional case,
the number of voxels belonging to both the predicted segmentation and the
ground truth divided by the number of voxels belonging to either of the two
is considered. This metric is illustrated in Figure 2.13a.

The F1 score is the harmonic mean of precision and recall.

F1 = 2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
=

2 · Intersection
TotalArea/Volume

(2.5)
It is a specialization of the more generic Fβ score, which applies an ad-

ditional weight β, such that recall is considered β times as important as
precision.

Fβ =
(
1 + β2) Precision · Recall

β2 · Precision + Recall

With regard to image segmentation, the F1 score is given by twice the area
of intersection between the predicted segmentation and the ground truth
divided by the total number of pixels in both segmentations. In the three-
dimensional case, it relates to twice the number of voxels belonging to both
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the predicted segmentation and the ground truth divided by the total num-
ber of voxels in both, illustrated in Figure 2.13b.

(a) Intersection-over-Union (b) F1 score

Figure 2.13: Metrics for semantic segmentation: The Intersection–over–Union (IoU)
and the F1 score are used to evaluate image segmentations. The IoU
divides the area of intersection of the predicted segmentation and the
ground truth by the area of union. The F1 score is given by twice the
area of intersection divided by the total number of pixels in both seg-
mentations.

Both are positively correlated. As shown in IoU vs F1 [46]: "F score tends
to measure something closer to average performance, while the IoU score
measures something closer to the worst-case performance." The IoU tends to
penalize single instances of bad classification more than the F1 score. Thus,
the IoU should be the preferred metric if the model output is required as
input for further steps to prevent completely wrong predictions. At the same
time, the F1 score is favorable if outliers are expected in the data due to
erroneous annotations.

Both metrics are applied to binarized predictions; hence, they cannot be
used as loss functions for continuous network outputs. Different loss func-
tions are available for segmentation, which are also easily interpretable as
metrics. In future work, these might prove to be advantageous in the present
case but will not be further analyzed in the context of this thesis [38, 41]. For
now, the used loss function is confined to binary cross-entropy.

2.2.5 Transfer Learning

In transfer learning, knowledge obtained from one task is reused for another
related task. With regards to CNNs, two main approaches of transfer learning
can be distinguished, according to CS231n: Convolutional Neural Networks for
Visual Recognition - Transfer Learning [88]:

cnns as fixed feature extractor The last fully-connected layer of
a pre-trained CNN is either retrained for the task at hand or replaced with
suitable layers to generate the desired output. In contrast, the weights of the
other layers are frozen and used as a fixed feature extractor.
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fine-tuning the cnn In this case, all layers of a pre-trained CNN are
fine-tuned to the new task starting from the weights obtained from the pre-
training. Potentially, some of the layers could still be kept fixed. As the earlier
layers detect low-level features such as edges, fixing their weights does typi-
cally not impede model accuracy but can speed up the training process.

Overall, transfer learning offers two main advantages: first, it facilitates
feature extraction of low-level features, requiring less training data for fine-
tuning, second, due to the pre-training, models typically generalize better
to previously unseen data. Hence, it is beneficial if the number of training
samples for a specific task is limited, while there is an extensive database for
a similar task.

2.2.6 Ensemble Methods

Ensemble methods construct multiple models and combine them to achieve
one output. This combined output often performs better than a single model,
as shown in several machine learning competitions and explained in theory
[16]. Ensemble methods can either consist of the same base model, trained
on different data sets, or different base models can be combined. Different
strategies for combining the models can be utilized; averaging is the most
straightforward one [20].

2.2.7 Self-training

In self-training, a model is first trained on a labeled data set, then generates
pseudo-labels for an unlabeled data set, and is retrained on the combined
data set with labels and pseudo-labels. The workflow is depicted in Fig-
ure 2.14. The steps can be repeated if desired [75].

Figure 2.14: Self-training workflow [75]: A classifier is trained on labeled data. Af-
terwards, pseudo-labels are generated from the classifier predictions
and the classifier is retrained on the combined data set of labels and
pseudo-labels. It is then evaluated on labeled test data. The pseudo-
label generation and re-training can be repeated if desired.

Zoph et al. [87] showed that self-training can tremendously improve re-
sults over pre-training and data augmentation, especially if the number of
labeled training samples is limited.
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2.3 related work - machine learning advances for tavi

Machine learning and artificial intelligence also found their way into medical
research. A multitude of papers are published, dedicated research journals
have emerged, and books have been printed [14, 21, 72].

Jaegere and Ribeiro [39] reflect on the use of artificial intelligence and
advanced computer modeling in transcatheter interventions for structural
heart disease, highlighting implications for clinical practice. They conclude:

"The advent of Artificial Intelligence provides us with the possi-
bility of processing large and extensive sets of data in such a way
that complex patterns and relationships between variables that
would never be accessible to the human eye and mind will even-
tually come to light. [...] Moreover, Artificial Intelligence, coupled
with advanced simulation modeling, grants us the possibility of
testing an invasive treatment in a patient-specific anatomic set-
ting, thereby predicting which treatment is the most optimal for
a specific patient."

Image-Based Computational Models for TAVI Planning: From CT Images to Im-
plant Deployment (Grbic et al. [28]) follows precisely this approach of cou-
pling machine learning techniques with modeling. TAVI planning is sup-
ported by segmenting the aortic apparatus from CT images, deducing a
model of the aortic anatomy. This model allows for patient-specific selection
of the optimal implant and, finally, simulation of the implant employment.
Several machine learning algorithms are utilized for the individual steps,
such as Marginal Space Learning (MSL). MSL is an efficient algorithm for
object detection in three-dimensional images by incrementally learning clas-
sifiers in marginal spaces of lower dimensions. The problem is broken down
into three subproblems - first, the object’s position is estimated, second, its
orientation, and lastly, its scale. This incremental approach results in high
efficiency [86]. However, the aortic valve segmentation in Grbic et al. [28]’s
approach is currently limited by the usage of generic parameters describ-
ing the thickness in a specific region of the segmented anatomy, impeding
subsequent patient-specific measurements.

Al et al. [2] attempt to support clinicians in TAVI sizing by automatically de-
tecting required landmarks using a colonial walk algorithm, which exploits a
trained regression tree with directions to the target point in order to localize
this point. However, this approach does not provide a segmentation of the
full anatomical structure of the aortic valvar complex. Some characteristics
might, thus, remain undetected.

Many recent approaches use model-based segmentation algorithms. For
example, Lalys et al. [47] presented a comprehensive pipeline for TAVI anal-
ysis, including centerline detection, aorta segmentation, and aortic root seg-
mentation using so-called atlas (average model) registration and deformable
3D snakes. Nevertheless, their approach requires the manual placement of a
seed point in the aortic root region. Furthermore, the model-based approach
might impede patient-specific measurements.
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Also, deep neural networks have been applied to the task of automated
aortic annulus measurement for TAVI. However, the problem was reduced to
the two-dimensional aortic annulus plane [3]. Thus, this approach requires
manual effort for the identification of the annulus plane.

This thesis now further pursues the application of deep neural networks
for aortic root segmentation and annulus measurement from three-dimensio-
nal CT scans. Given the persuading performance of CNN methods in recent
years, such an approach could enable fully automatic segmentation and mea-
surement of any desired anatomical structure given appropriate annotations.
It allows for patient-specific analysis, independent of generic parameters or
models for the underlying anatomy.



3
M E T H O D S

The following chapter portrays the methods used to develop a model for
automatic inference of the aortic annulus perimeter and area from a three-
dimensional CT scan before a TAVI procedure. This goal was split into four
steps:

1. The region of interest around the DLZ is detected.

2. The aorta, including the aortic valve, is segmented. This segmentation
can then be used as additional input for later predictions. Additionally,
the aorta segmentation is valuable for TAVI access planning.

3. The valve plane is identified.

4. The aortic annulus in this plane is segmented and finally measured.

For each step, a so-called U-Net is trained to predict the desired segmen-
tations. The U-Net won several awards in biomedical image segmentation
challenges [66] and was thus the first choice for the present segmentation
tasks. The following section will explain its architecture in detail.

Afterwards, the data basis for training the networks is presented, and
features that influence model development are highlighted.

Finally, each of the four steps is explained in detail, highlighting data
preparation, model specifics and applied postprocessing. Results for each
step will be presented in Chapter 4 - Results.

3.1 the u-net architecture

CNNs have demonstrated tremendous achievements in image classification
tasks, sometimes even exceeding the average human being’s performance
[43]. However, the standard architecture of CNNs does not perform well on
the localization of desired image areas, for instance, segmentation of medical
images. The U-Net architecture solves this demand by reversing the convo-
lutions and thus allowing a pixel-wise class prediction.

This architecture is hence used to reduce the patients’ CT scans to the rele-
vant area around the DLZ and segment the desired structures. It is based on
[67] and illustrated exemplarily for the two-dimensional case in Figure 3.1.
The code basis is derived from [76]. For three-dimensional input images, the
network layers are adjusted accordingly. The U-Net is implemented in Keras1

with the TensorFlow2 backend; for package specifications see Section B.2.

1 https://keras.io/
2 https://www.tensorflow.org/
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Figure 3.1: The U-Net architecture (visualization created with [5]): The U-Net con-
sists of a contracting and an expansive path. The contracting path re-
duces the image dimension while increasing the deduced features. It
contains several blocks, combining convolutional, batch normalization,
activation, max pooling and dropout layers. The expansive path restores
the original image dimension. Its blocks comprise convolutional, trans-
posed convolutional, batch normalization, activation and dropout layers.
Additionally, the output of blocks in the contracting path is concatenated
with the input of the corresponding blocks in the expansive path.

The network consists of a contracting path and an expansive path. The
contracting path corresponds to a standard convolutional network architec-
ture, see Section 2.2.3. In the following, the layers are described for the two-
dimensional case. In three dimensions, the third dimension has the same
size as the other two. Several 3x3 convolutional layers are followed by a
ReLU activation and a 2x2 max pooling for downsampling.

The expansive path alternates 3x3 convolutions with 2x2 transposed, or
also called up-convolutions. Figure 3.2 illustrates the convolution and trans-
posed convolution operations.

The contracting path contains five convolution blocks, where every block
consists of two similar convolutional layers with same padding, maintaining
the input dimensions. This is followed by batch normalization and a ReLU

activation. In batch normalization, the layer input is normalized per batch.
The training data set is subdivided into batches of equal size. During train-
ing, it is iterated over the batches, and the model’s weights are adjusted after
each batch. The first four blocks are respectively amended by max pooling
and dropout layers with a dropout rate of 0.05. The dropout layer randomly
sets input units to 0 with a frequency of the dropout rate at each step dur-
ing training time, which helps prevent overfitting. The number of filters per
convolutional layer, thus the number of extracted image features, is doubled
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Figure 3.2: Convolution and transposed convolution (based on [24] and [71]): The
convolution is responsible for comprehension of the image content by
deduction of relevant image features via application of filters. The trans-
posed convolution localizes the image content by reversing the convolu-
tion and assigning each pixel a probability to belong to a given class.

from block to block at the same time halving the spatial dimensions of the
input with each max pooling layer.

The expansive path reverses this procedure via four transposed convo-
lutional layers. With each transposed convolution, the number of extracted
features is halved. The resulting output is concatenated with the correspond-
ing output of the contracting path. Once more, a dropout layer and another
convolutional layer block follow, maintaining the number of extracted fea-
tures. As the last layer, a 1x1 convolution with sigmoid activation is used,
resulting in a pixel- or voxelwise classification.

Ultimately, this architecture allows for the segmentation of the sought-for
image areas. The U-Net outputs a probability for each voxel to belong to the
segmentation. In each step, this is binarized with a threshold of 0.5 to result
in the final segmentation. The used batch size and the number of filters in
the first convolutional block are listed in Table 3.1. Both are not explicitly
optimized but are limited by the available working memory; for information
on the available hardware, see Section B.1. As loss function binary cross-
entropy is employed. For the valve plane identification, this is weighted by
the inverse class distribution, as described in [85]. The Adam optimizer [44]
is used for stochastic gradient descent.

Early stopping is applied to avoid overfitting, with a learning rate reduc-
tion after five epochs3 and stopping after ten epochs without validation loss
improvement.

3 In one epoch, the full training data set passed once through the neural network.
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Batch Size Number of Filters

Device Landing Zone Detection 2 18

Aorta Segmentation 2 18

Valve Plane Identification 2 18

Aortic Annulus Segmentation 10 24

Table 3.1: Parameter setting for the U-Net training.

3.2 data basis

A data set of 97 patients who underwent a TAVI procedure was randomly
selected from the German Heart Center Berlin TAVI registry. For each pa-
tient, an annotated three-dimensional CT thorax scan is available. The an-
notations, shown in Figure 3.3, were generated by domain experts using a
custom MeVisLab-based software prototype to obtain:

• a mask of the aorta lumen,

• the centerline through the aorta and LVOT,

• cross-sectional contours of the aorta and LVOT perpendicular to the
centerline, and

• three valve plane markers, indicating the hinge points or tips of the
aortic valve cusps.

Figure 3.3: Overview of available annotations: The available expert annotations con-
sist of a mask of the aorta lumen, the centerline of aorta and LVOT, cross-
sectional contours of aorta and LVOT as well as manually placed hinge
point markers.
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The mask of the aorta lumen is used to generate a segmentation mask
of the aorta and aortic valve, excluding the LVOT. In contrast, the cross-
sectional contours are used to obtain conjunct segmentation masks of the
aorta, including the LVOT, as depicted in Figure 3.4. Which of the two is
selected for each individual step is noted in the respective sections within
this chapter.

CSO - including the LVOT WEM - restricted to aorta and valve

Figure 3.4: Segmentations with and without LVOT: The CSO additionally comprises
the LVOT, while the WEM is limited to the aorta and the aortic valve.

Seven patients were randomly selected as an individual test set, while the
remaining 90 patients were split into 75 for training and 15 for validation
in a six-fold cross-validation. To exploit the benefits of ensemble methods
(see Section 2.2.6), the six model outputs are averaged to yield the final re-
sult. The impact of averaging the outputs is assessed in Section 4.2.1. The
cross-validation is used for each of the four steps - DLZ detection, aorta seg-
mentation, annulus plane identification and annulus segmentation.

To maintain the patients’ anonymity, identifying information, such as name,
date of birth or patient identifier, is replaced with a pseudonym. To retain the
patient’s age at the time of the TAVI procedure, it was previously calculated
from the date of birth and the date of admission.

The CT scans used for this thesis have a slice extent of 512 x 512 voxels,
with the number of slices ranging from 321 to 856. The number of slices is
mainly affected by the voxel size (minimum 0.59 x 0.59 x 0.7 mm3, maximum
0.65 x 0.65 x 2 mm3).

Each image is resampled to a uniform voxel size, followed by a reduction
to a sub-image of a specific extent. The details are given in the respective data
preparation sections. The intensities of each input image are normalized to
a range of [0, 1]. Details are given in Listing 3.1.

# subtract the image’s minimum from each voxel value

# divide by the current intensity range

img = (img - np.min(img))/np.ptp(img)

Listing 3.1: Normalization

The image-wise scaling is chosen to ensure gradients of similar magnitude
over different batches, such that each image has approximately the same in-
fluence on neural network weight adjustment during backpropagation. Al-
ternative scalings are discussed in Section 5.3 - Future Work.
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Several peculiarities can impede the deep learning model’s training and
application, some of which are visualized below.

previously implanted prosthetic valves , see Figure 3.5, appear as
a very bright white ring or white dots on the CT, depending on the type of
inserted valve. Due to the scaling of the image to the range between zero
and one (see Listing 3.1), the rest of the image appears dark, aggravating
information extraction.

Figure 3.5: Pre-implanted prosthetic valves appear as a bright white ring or white
dots.

calcification, which is displayed in Figure 3.6, appears white on the CT

scans. As each image is scaled to the range between zero and one, the valve
itself appears darker if calcification is present. This fact and the calcification
itself can impede the detection of the valve. Ideas for taking calcification into
account are presented in Section 5.3 - Future Work.

(a) (Nearly) None (b) Mild (c) Severe

Figure 3.6: Different levels of calcification of the aortic valve.

blurring , as shown in Figure 3.7, can result from movement of the patient
during CT-scanning, or it might be due to resampling a CT image with low
resolution to a higher resolution. Consequently, the valve contours are less
clear.

Figure 3.7: Blurry images.

All aforementioned peculiarities are present in the training data set.
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3.3 data augmentation

Machine learning algorithms typically require an immense number of train-
ing samples to deliver satisfactory results. Brownlee [10] recommends "Ide-
ally, tens or hundreds of thousands for ’average’ modeling problems." In cases
where a large amount of training data cannot be obtained, data augmen-
tation techniques allow for an artificial increase of training samples by mul-
tiplying the input images through suitable transformations like rotations,
translations or reflections [23]. This improves the trained model’s precision
and generalizability, as evaluated in Section 4.2.1.

For this thesis, the augmentation was confined to translation to preserve
the CT scans orientation, as this orientation is standardized. A change in
brightness and contrast was considered. However, it was dismissed immedi-
ately, as the model training in early experiments did not benefit from such
augmentations. In case of three-dimensional segmentations in each epoch
each training sample is randomly adjusted within the following constraints
(visualized in Figure 3.8 in two dimensions):

shift_range = 5

xs = random.randrange(shift_range)

ys = random.randrange(shift_range)

zs = random.randrange(shift_range)

img_shifted = img[xs:x_dim+xs, ys:y_dim+ys, zs:z_dim+zs]

Listing 3.2: Translation

Figure 3.8: One image differently translated: The image is randomly shifted in the
x- and y-direction.

For the two-dimensional segmentation in step 4, no data augmentation
was used due to a sufficient number of training samples, as explained in
Section 3.7.
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3.4 step 1 - device landing zone detection

The above presented U-Net architecture is now used to consecutively seg-
ment interesting areas from the patient’s CT scan, resulting in a pipeline
of hierarchically applied CNNs. First, the CT scan is reduced to a region of
interest around the so-called Device Landing Zone (DLZ).

The DLZ was defined as the area including the aortic valve (i.e., the aortic
annulus and valvular cusps) and the LVOT (until the junction point of the
anterior mitral leaflet). This is the region where the artificial valve will be
positioned during TAVI to replace the faulty valve. Thus, this area’s anatomy
is critical for properly fitting the prosthesis.

The following section presents the data basis and model setup for the DLZ

detection.

Data Preparation

Firstly, the training data was prepared with MeVisLab. Initially, all input CT

scans were resampled to a uniform voxel size of 2 x 2 x 2 mm3 and clipped
to a fixed size of 128 x 128 x 192 voxels. The U-Net architecture requires
unified input dimensions which should be recursively divisible by two [89];
the unified resolution further facilitates common feature extraction across all
input images. The above combination of voxel and image size ensures that
the image contains all relevant anatomical structures while still fitting into
the available working memory (see Section B.1).

Based on the centerline and the valve plane markers, an axis-aligned cu-
bical bounding box of 68 x 68 x 68 mm3 is placed in the image around the
aortic valve. The midpoint of the three valve plane markers is selected as the
midpoint of the bounding box.

This bounding box was then used as mask in a CNN to learn the detection
of the landing zone, that is to say, the detection of the area around the aortic
valve. The data preparation is visualized in Figure 3.9.

Figure 3.9: Data preparation: Basis for the training masks are the original CT scan,
the valve plane markers and the centerline. A uniformly sized bound-
ing box is centered around the valve plane markers. This bounding box
inside the CT scan is used as target mask for the neural network training.
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Model Specifics and Postprocessing

For each voxel in the input CT scan the CNN returns a probability for this
voxel to belong to the uniformly sized bounding box around the DLZ. The
probabilities are binarized with a threshold of 0.5, and a bounding box is
drawn around all predicted voxels. This bounding box is resized to the de-
sired dimensions of 68 x 68 x 68 mm3, with the midpoint being the center
of the predicted bounding box. The postprocessing step is illustrated in two
dimensions in Figure 3.10.

Figure 3.10: Postprocessing: The U-Net outputs voxelwise probabilities of the DLZ.
This is binarized with a threshold of 0.5 and a bounding box is drawn
around it. This bounding box is resized to the desired dimensions cen-
tered around its midpoint.

First experiments showed that the predicted bounding box does not al-
ways perfectly correspond to the desired bounding box. Thus, to ensure all
relevant information is contained within that bounding box, a padding of
6 mm on both sides in x-, y- and z-direction is added to the predicted bound-
ing box, leading to a box of size 80 x 80 x 80 mm3. The padding of 6 mm
was selected to result at a perfect overlay of the ground truth bounding box
on the training data set. Chapter 4 - Results substantiates the decision for
padding. Section 5.1 challenges this approach and mentions alternatives.

3.5 step 2 - aorta segmentation

In the second step, a similar U-Net architecture as in the first step is used to
learn the aorta segmentation within the DLZ.

Data Preparation

The segmentation masks are semi-automatically obtained from MeVisLab.
For the aorta segmentation, the WEM is used, which only contains the aorta,
including the aortic valve, but excluding the LVOT.

For all following steps, the original images are resampled to a uniform
voxel size of 0.6 x 0.6 x 0.6 mm3 before being cropped to the region of the
DLZ. The resampling is again done to ensure maximal resolution under the
hardware limitations. Aspects to consider for optimization of the voxel size
are discussed in Section 5.3 - Future Work.
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The segmentation masks for U-Net training are reduced to the region of
the DLZ in two ways:

• First, they are reduced to the original DLZ bounding box, defined by
the valve plane markers and the centerline.

• Second, they are reduced to the predicted DLZ as an output from step 1.

Thus, each patient in the training data set results in two masks for the neural
network training in step 2. The original DLZs, as well as the predicted ones,
were used for training to improve the model’s generalizability. By training
on the predicted DLZ, applicability to the outcome of step 1 shall be achieved.

Example segmentation masks are shown in Figure 3.11. It can be seen that
the resulting sub-images have slightly different coverage.

Ground Truth DLZ Predicted DLZ

Figure 3.11: Segmentation masks resulting from the ground truth DLZ and the pre-
dicted DLZ from step 1: The predicted DLZ has slightly different cover-
age. In this example, it contains more of the ascending aorta.

Model Specifics and Postprocessing

Throughout the training process, in every epoch, each patient is used once
as a training sample. It is randomly selected whether the original or the
predicted DLZ is considered for each patient in each epoch anew. In Chap-
ter 4 - Results, it is analyzed whether the model’s performance benefits from
taking the predicted DLZ into consideration. For this, one model which is
only trained using the original DLZ is compared to a model that uses both,
original and predicted DLZ for training.

In contrast to the model for step 1, the U-Net weights for this step are not
initialized randomly. The weights obtained from step 1 are used for initial-
ization to exploit already extracted information and speed up convergence.
The results are compared to a model with random initialization in Chap-
ter 4 - Results.

Except for the binarization of the network’s output, no postprocessing is
required in this step.
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3.6 step 3 - annulus plane identification

In the third step, the region around the aortic annulus plane is segmented,
with the goal to deduce the orientation and midpoint of the aortic annulus
and finally enable the annulus measurements.

The aortic annulus is defined as the virtual ring passing through the three
hinge points or tips of the valve cusps. Those would optimally be given by
the valve plane markers. Since the valve plane markers are set manually in
MeVisLab, the positioning will likely not be ideal, as shown in Figure 3.12.
This leads to the assumption that regression might be a good strategy for
learning the valve plane marker positions, as minor deviations would only
lead to a minor increase in error. In contrast, the previously used segmen-
tation approach cannot readily differentiate between slight deviations from
the correct valve plane marker positions and completely wrong predictions.

Figure 3.12: Examples of incorrect marker positions on segmented aortic valves:
Some of the valve plane markers (black) are not positioned at the tips
of the aortic cusps.

regression

Two initial approaches were pursued:

1. Using the coordinates of the three valve plane markers as targets, lead-
ing to nine output variables (x, y, z coordinates for each marker)

2. Using the valve plane markers’ midpoint and the normal vector to the
plane defined by the markers as targets, leading to six output variables
(x, y, z coordinates of the midpoint and normal vector).

For both approaches, a ResNet was employed. ResNet, short for Residual
Network, is a neural network architecture that achieved tremendous results
in several visual recognition tasks [31]. However, the predictions were in-
sufficient. Also, a simple CNN with two hidden layers was tested on both
regression approaches, yielding the same outcome. Regression was thus pri-
marily dismissed, and a segmentation approach was further explored. For
details on the regression approach see Appendix A.
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segmentation

In a first attempt, a U-Net was used to detect the three valve plane markers
by segmentation. A padding of different sizes was added to each of the three
markers in order to increase the marker size. This simplifies the segmenta-
tion task and accounts for the fact that the positioning of the valve plane
markers is not ideal, and at the same time, a minor change only leads to a
minor change in the resulting plane. The padded markers were used as tar-
get mask in the same U-Net architecture as for the previous two steps. The
results again were insufficient, see Appendix A.

The task was further simplified by using the aortic root region within the
annulus as mask, leading to the chosen strategy for step 3, which will be
explained in the following subsections.

Data Preparation

The mask for segmentation of the aortic annulus region is prepared based on
the manually defined valve plane markers. For each CT scan, the plane con-
taining the three valve plane markers is identified. The three-dimensional
aorta segmentation CSO that lies within 15 slices in the direction of the plane
normal is then used to train a U-Net. One slice has a thickness of one voxel.
The CSO also includes the LVOT and is hence used here to yield a segmenta-
tion mask including aortic valve and LVOT, with the annulus plane in the cen-
ter. The resulting mask is visualized in Figure 3.13. This three-dimensional
approach intends to make the segmentation robust against the input uncer-
tainty of the valve plane markers. Additionally, usage of only one slice and
30 slices was evaluated but not further pursued, as justified in Chapter 4 -
Results.

Figure 3.13: Segmentation mask (yellow), aligned along the annulus plane, defined
by the valve plane markers (black) with the aorta segmentation (red)
for reference.
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Model Specifics and Postprocessing

The weights for this step’s U-Net are initialized by the weights obtained from
the previous aorta segmentation step. The number of voxels belonging to the
mask is much smaller than the number of background voxels. On average,
19 500 voxels belong to the mask, in case 15 slices are considered, while 2 mil-
lion voxels belong to the background. In such cases with high imbalance, it
is advisable to use a weighted binary cross-entropy since an unweighted one
will likely predict the more frequent class. A typical weighting is given by
the inverse average class frequency [85]. This was applied here.

Deduction of the Annulus Plane

Principal Component Analysis (PCA) is applied to deduce the annulus plane
from the predicted segmentation. PCA is a dimensionality reduction method,
which reduces a data set to its uncorrelated components that maximize vari-
ance [37]. The PCA is visualized in Figure 3.14.

Figure 3.14: Principal component analysis: The first two principal components max-
imize the variance of the underlying data while being perpendicular
to each other. A plane results from the normal vector orthogonal to
the two principal components. The plane’s midpoint is defined by the
center of gravity of the underlying data.

The diameter of the segmentation mask along the annulus plane exceeds
its height. Thus, the two components with the highest variance describe the
orientation of the annulus plane. Therefore, the vector orthogonal to the two
largest eigenvectors of the PCA is taken as an estimate of the plane’s normal
vector. The center of gravity of the predicted segmentation estimates the mid-
point of the annulus plane. This midpoint and normal vector finally allow for
approximation of the annulus plane. The MeVisLab module XMarkerPCA au-
tomatically calculates both values after conversion of the segmentation mask
to marker positions with the module MaskToMarkers.
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Improvement of the annulus orientation

Initial experiments on the training data revealed two major issues in identi-
fying the correct plane orientation:

• A segmented aortic valve region that is too thick, such that the PCA

does not yield the desired normal vector, as visualized in Figure 3.15,

• Artifacts in the segmentation distorting the PCA, see Figure 3.16.

(a) Segmentation (b) Resulting plane

Figure 3.15: A segmentation that has a comparable height and diameter: The min-
imal and maximal diameter should exceed the height to ensure cor-
rect calculation of the plane’s normal vector in PCA. The plane result-
ing from this inordinately thick segmentation has a wrong orientation,
showing the valve leaflets from the side.

(a) Segmentation (b) Resulting plane

Figure 3.16: Artifact in the segmentation, marked by an arrow. Again the resulting
plane orientation is incorrect, showing the valve leaflets from the side.

To ensure the correct orientation is detected, the predicted segmentation
is masked with the contour of the three-dimensional aorta segmentation
from step 2, illustrated in Figure 3.17. Further, any undesired segments are
removed by only considering the largest connected component. This ensures
that the input into the PCA is more optimally aligned along the annulus
plane, albeit also shifting the center of gravity further into the valve. The
effect of this masking is quantitatively analyzed in Chapter 4 - Results.

Viewing the resulting planes anew shows that the orientation now appears
satisfactory. A sample is shown in Figure 3.19a.
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Figure 3.17: The segmentation of the annulus region is masked with the contours
of the predicted aorta segmentation from step 2. The resulting segmen-
tation is used as input to the PCA for calculation of the valve plane
orientation.

Adjustment of the annulus midpoint

However, the detected midpoint often still lies within the valve and not just
below on the annulus plane, which is used for area and perimeter measure-
ment. As shown in Figure 2.2, the annulus plane is just below the aortic
valve at the leaflet attachments. Figure 3.18 contrasts an annulus plane with
a plane inside the aortic valve. It can be seen that the plane in Figure 3.18b
is positioned inside the valve by the three indentations resulting from the
valve leaflets, marked with arrows.

(a) Annulus plane (b) Plane inside valve

Figure 3.18: A correctly detected annulus plane in comparison to a plane inside the
aortic valve; white arrows mark the leaflet indentations. A cross-section
shows the position of the plane.

Thus, with the current outcome, the plane needs to be shifted further
down to lie on the annulus. This is attempted by again taking into account
the three-dimensional aorta segmentation and selecting the slice just below
the deepest segmented point. Visual examination shows that this generally
leads to a plane below the aortic valve, see Figure 3.19b.
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(a) Before shift (b) After shift

Figure 3.19: Sample of planes resulting from valve plane markers: Before the plane
is shifted according to the aorta segmentation, the planes are located in-
side the valve. After the shift, no indentations from the valve cusps can
be identified, suggesting a positioning of the planes below the aortic
valve.

3.7 step 4 - aortic annulus segmentation and measurement

After the annular plane has been detected in the previous step, the annulus
is segmented and finally measured. A U-Net applying two-dimensional op-
erations is used for the segmentation. Instead of segmenting the annulus in
two dimensions, it would also be possible to directly consider the segmented
region from the previous step in the annulus plane. The two approaches are
compared in Chapter 4 - Results.

Data Preparation

The two-dimensional segmentation masks are obtained by taking 30 consec-
utive slices from the three-dimensional aorta segmentation mask, including
the LVOT of each patient, parallel to the valve plane, as visualized in 3.20. The
most central slice is the one where the valve plane markers are positioned.
This leads to 90 ∗ 30 = 2700 train samples. Data augmentation is omitted
for this step. Each slice has a size of 256 x 256 voxels to ensure recursive
divisibility by two [89], leading to a voxel size of 0.361 x 0.361 x 0.361 mm3.

Figure 3.20: Data preparation for two-dimensional annulus segmentation: 30 con-
secutive slices from the aorta and LVOT segmentation (yellow) parallel
to the valve plane markers (black).
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Model Specifics and Postprocessing

A U-Net with similar layers as for the previous tasks is used, except for the
fact that all operations are now applied in two dimensions.

To ensure the correct area is measured, only the most central connected
component is regarded for measurement, as this should portray the annulus.

The area and perimeter of the annulus resulting from this two-dimensional
segmentation are obtained with MeVisLab. A contour is drawn around the
segmentation, using the MeVisLab module CSOIsoGenerator. The module
CSOInfo then automatically calculates the area and perimeter.



4
R E S U LT S

This chapter first briefly summarizes the data basis for model development
and benchmarking. Thereupon, the trained models for each step are eval-
uated, and the evaluation criteria are presented. Finally, the obtained mea-
surements are compared with the benchmark.

4.1 patient analysis - data basis for model development ver-
sus benchmarking

The training data set for model development comprises 90 patients. An ad-
ditional seven patients are used for the evaluation of each step. The final
pipeline for annulus measurement is benchmarked against the two software
solutions on 100 patients. Each patient was initially randomly selected from
the German Heart Center Berlin TAVI registry.

The considered patients for training, evaluation and benchmarking show
comparable demographics and procedural data, shown in Table 4.1. This
suggests applicability of the developed model to the benchmarking data set.
The procedural data is limited to the interesting aspects for annulus mea-
surement - prosthesis size and pre-implanted aortic valves. For five patients
in the training set, no information could be obtained of the procedural data,
and for three patients, no information at all was available. In the evaluation
set, procedural information for one patient was missing.

mean (std) / count (%)

Training Evaluation Benchmark

(90 Patients) (7 Patients) (100 Patients)

Female 55 (63%) 5 (71%) 54 (54%)

Age [years] 80.6 (9.66) 77.7 (5.09) 79.2 (7.48)

Height [cm] 164 (8.32) 165 (5.05) 167 (8.78)

Weight [kg] 75.6 (17.6) 77.4 (25.0) 76.5 (19.5)

Body mass index
[
kg/m2]

27.9 (5.99) 28.3 (8.38) 27.4 (7.10)

Body surface area
[
m2]

1.85 (0.23) 1.87 (0.31) 1.81 (0.42)

Prosthesis size [mm]:

20 1 (1.2%) 0 (0%) 0 (0%)

23 10 (11.8%) 0 (0%) 17 (17%)

25 3 (3.6%) 0 (0%) 9 (9%)

26 27 (31.8%) 3 (50%) 25 (25%)

27 5 (5.9%) 0 (0%) 12 (12%)
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29 37 (43.5%) 2 (33.3%) 36 (36%)

34 2 (1.2%) 1 (16.7%) 1 (1%)

Previous valve implanted 5 (5.9%) 0 (16.7%) 2 (2%)

Table 4.1: Comparison of patients in the training, evaluation and benchmarking data
set. Each set shows comparable demographics and procedural data.

4.2 trained models

For each step, an individual predictor is obtained by training six structurally
identical models in a six-fold cross-validation and averaging the outputs. De-
pending on the underlying task, different evaluation criteria are applied. In
the following subsections, the criteria are explained and the results evaluated
accordingly.

4.2.1 Step 1 - Device Landing Zone Detection

In the device landing zone detection, a bounding box around the aortic valve
centered around the valve plane markers is found by segmentation.

It should be noted that an optimal overlay of the detected bounding box
to the mask does not necessarily result in optimal information content. Due
to anatomical differences, the truly optimal bounding boxes might be of
different sizes or different orientations. However, for simplicity, a uniform
bounding box was selected, which demonstrates sufficient results.

Evaluation Criteria

The device landing zone detection is achieved by segmenting the respective
region.

Since the DLZ is required in the following segmentation steps, it is es-
sential to avoid completely wrong predictions. As the IoU tends to penalize
single instances of bad classification more than the F1 score quantitatively
(see Section 2.2.4), the device landing zone detection is evaluated against a
modification of the IoU (Equation 2.4).

It is desired to cover the full ground truth bounding box with the pre-
dicted segmentation to ensure that the whole aortic valve is contained in the
resulting sub-image. The ground truth always refers to the respective masks
for each step obtained from the annotated data set. A padding is later added
to the predicted bounding box to ensure full coverage of the aortic valve. For
clarification, this is visualized in Figure 4.2. Hence, for proper evaluation, the
intersection is not divided by the union but by the ground truth bounding
box.

In the following, this metric is called Intersection–over–Ground-Truth (IoGT).

IoGT =
Intersection

GroundTruth
(4.1)
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(a) Perfect without padding (b) Sufficient with padding (c) Insufficient without and
with padding

Figure 4.1: Coverage of the ground truth bounding box (red outline).

It is not directly applied to the predicted segmentation but to the bounding
box obtained after thresholding and reshaping, as explained in Figure 3.4.

Evaluation

Table 4.2 portrays the IoGT on the DLZ bounding boxes for the final model -
the averaged segmentations from all six models in the cross-validation. Ta-
ble 4.3 shows the IoGT for the individual models as well as the average of
their IoGTs.

Training (90 Patients) Test (7 Patients)

IoGT 0.959 0.896

Table 4.2: IoGT on bounding box obtained from final model for step 1.

Model Training (75 Patients) Validation (15 Patients)

1 0.946 0.886

2 0.946 0.885

3 0.962 0.893

4 0.955 0.908

5 0.951 0.854

6 0.951 0.886

avg 0.952 0.885

Table 4.3: IoGT for each model in six-fold cross-validation and the averaged IoGTs.

As can be seen from the IoGT, a full coverage of the ground truth bounding
box cannot be guaranteed. Thus, it was decided to pad the bounding box
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with three voxels in each direction to obtain an IoGT of 1 on the training set,
leading to the following IoGT results:

Training (90 Patients) Test (7 Patients)

IoGT 1 0.995

Table 4.4: IoGT on padded bounding box obtained from final model for step 1.

Model Training (75 Patients) Validation (15 Patients)

1 1 0.962

2 1 0.994

3 0.999 1

4 1 0.995

5 0.999 0.979

6 1 0.989

avg 1 0.987

Table 4.5: IoGT for each model in six-fold cross-validation on padded bounding box
and the averaged IoGTs.

The ground truth bounding box has a volume of 314 500 mm3 (1.25% of the
image), while the padded bounding box has a volume of 512 000 mm3 (2% of
the image). To ensure that the sub-images contain all required information
for the following steps, this volume increase is accepted, and the padded
bounding boxes are used hereafter.

Moreover, the impact of data augmentation is assessed by evaluating a
model that was trained without any augmentation. Tables 4.6 and 4.7 show
the IoGT without padding of the resulting bounding boxes.

Training (90 Patients) Test (7 Patients)

with augmentation 0.959 0.896

without augmentation 0.955 0.885

Table 4.6: IoGT obtained from final model for step 1 with and without data augmen-
tation.

It is evident that the data augmentation improves the outcome and leads
to more robust individual models without any high discrepancy in between
model IoGTs. The results on the test set improve, suggesting enhanced gen-
eralizability. Furthermore, the positive impact of averaging the six model
outputs for a final prediction can be observed by comparing the IoGT of the
averaged model to the average of the individual models’ IoGT.

Consequently, data augmentation and model averaging are utilized for
each step without further assessment for the following steps.
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Model Training (75 Patients) Validation (15 Patients)

1 0.903 0.912

2 0.956 0.866

3 0.971 0.887

4 0.972 0.886

5 0.847 0.771

6 0.954 0.904

avg 0.934 0.871

Table 4.7: IoGT for each model in six-fold cross-validation without data augmenta-
tion.

4.2.2 Step 2 - Aorta Segmentation

In the second step, the aorta, including the aortic valve within the obtained
bounding box, is segmented.

Evaluation Criteria

Several circumstances might impede the segmentation, such as pre-implanted
prostheses, anatomical anomalies or other medical or technical artifacts. For
this task, an optimal solution for the average patient CT is desired while
paying less regard to such exceptional cases. Thus, since the model should
focus less on outliers, the F1 score (Equation 2.5) is the metric of choice, as
explained in Section 2.2.4.

Evaluation

Table 4.8 portrays the F1 score in the case that the models were trained both
on the ground truth DLZ calculated by the valve plane marker positions and
the derived DLZ bounding box from the previous step. Each is enlarged with
a padding to achieve bounding boxes of similar size.

Training (90 Patients) Test (7 Patients)
True DLZ Predicted DLZ True DLZ Predicted DLZ

F1 0.952 0.952 0.947 0.944

Table 4.8: F1 score obtained from final model for step 2 with predicted and ground
truth DLZ.

Table 4.9 shows the results evaluated on the ground truth and the pre-
dicted DLZ in case the models are only trained on the ground truth DLZ.
As was to be expected, the results only differ marginally in case both are
used, as the data augmentation already includes random shifts, which al-
lows for better generalizability. Hence, in the following, the models’ training
and evaluation are confined to the ground truth DLZ for simplicity.
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Training (90 Patients) Test (7 Patients)
True DLZ Predicted DLZ True DLZ Predicted DLZ

F1 0.953 0.952 0.946 0.944

Table 4.9: F1 score obtained from final model for step 2 with ground truth DLZ.

Further, the models’ weights are initialized with the final weights from
the previous step to facilitate pattern recognition within the CT scans. This
is also compared to the results with random weight initialization, which can
be found below.

Training (90 Patients) Test (7 Patients)
True DLZ Predicted DLZ True DLZ Predicted DLZ

F1 0.953 0.951 0.945 0.948

Table 4.10: F1 score obtained from final model for step 2 with ground truth DLZ
with random weight initialization.

The difference in model accuracy resulting from weight initialization is
negligible. However, the number of required epochs for model convergence
is drastically reduced by usage of the weights from the previous step. With
random initialization on average 38 epochs elapse before early-stopping
while the weight initialization with the pre-trained weights reduces this
number to 22.5.

4.2.3 Step 3 - Annulus Plane Identification

In the annotated data set, the annulus plane is determined by the three valve
plane markers. However, those valve plane markers are not always optimally
positioned and proved to be rather difficult to identify within the image.
Consequently, a more extensive mask is employed from which the plane is
deduced by principal component analysis, yielding a midpoint and a normal
vector to the plane.

This final approach is evaluated in detail, while for all other attempts, an
explanation and evaluation can be found in Appendix A.

Evaluation Criteria

All approaches to the annulus plane identification are evaluated by calcu-
lating the Mean Absolute Error (MAE) between the predicted midpoint and
normal vector and the ground truth, obtained from the three valve plane
markers, converting the segmentation task to a regression. Here the ground
truth refers to the midpoint and normal vector obtained from the three valve
plane markers. The midpoint is calculated by taking the mean over the valve
plane marker positions within each image and dividing by the image dimen-
sions. The normal vector is obtained by taking the cross product between
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two vectors connecting the valve plane markers and normalizing the result-
ing vector, see Listing 4.1.

# m is an array containing the indices of the valve plane markers within

the image

midpoint = np.mean(m, axis=0)

orientation = np.cross(m[1]-m[0], m[2]-m[0])

normal_vector = abs(orientation/np.linalg.norm(orientation))

Listing 4.1: Ground truth midpoint and normal vector

The absolute error is favored over the squared error since outliers should
not be excessively penalized, as these might be due to inaccuracies in the
annotation. The errors for both variables are considered independently to
examine plane orientation and position individually. To allow for proper
assessment of the errors, they are contrasted against the errors resulting from
a naive prediction - the arithmetic means of midpoint and normal vector of
the training data set.

Evaluation

Table 4.11 shows the MAE compared to the benchmark for the midpoint and
the normal vector, respectively. An extent of one, 15 and 30 slices is com-
pared. An extent of 30 slices shows the worst result. For an extent of one
and 15 slices, it is further attempted to improve the detected plane orienta-
tion with the following two measures. First, the predicted segmentation is
masked with the three-dimensional aorta segmentation from step 2 (Seg);
second, it is reduced to the largest connected component (Largest CC).

Training (90 Patients) Test (7 Patients)
Midpoint Normal Midpoint Normal

30 Sclices 0.040 0.494 0.054 0.377

1 Slice 0.035 0.320 0.044 0.268

+ Seg 0.052 0.299 0.058 0.290

+ Largest CC 0.052 0.298 0.058 0.290

15 Slices 0.038 0.330 0.039 0.318

+ Seg 0.061 0.283 0.058 0.314

+ Largest CC 0.061 0.283 0.057 0.314

Training mean 0.039 0.376 0.033 0.297

Table 4.11: MAE for step 3 of the averaged model outputs.

It can be seen that the combination of model prediction and aorta seg-
mentation improves the deduction of the normal vector while impairing the
midpoint prediction. Reduction to the largest connected component slightly
improves the results.
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Evaluation on the training set shows the best results for an extent of
15 slices after the additional adjustments. On the test set, however, the re-
sults are worse than the model with an extent of one slice and even worse
than the benchmark. Visual examination, however, shows that this mainly
results from inaccurately placed valve plane markers on the small test set of
only seven patients. After careful consideration, the model with an extent of
15 slices adjusted with the three-dimensional aorta segmentation, reduced
to the largest connected component, is used in the further course.

For future work, it is advisable to reevaluate different extents with a more
extensive annotated data set to optimize the annulus plane detection.

4.2.4 Step 4 - Aortic Annulus Segmentation

The annulus segmentation is approached as a simple segmentation task in
the two-dimensional plane obtained in step 3. For each patient 30 consecu-
tive slices are used for training and evaluation. From this segmentation, the
annulus perimeter and area are measured. This final step is examined on the
benchmark data set in Section 4.3.

Evaluation Criteria

For evaluation of the annulus segmentation the F1 score (Equation 2.5) is
used. Similar to the three-dimensional aorta segmentation in step 2, outliers
should not be overly penalized, but the segmentation should be optimized
for the average patient CT scan.

Evaluation

Table 4.12 shows the F1 score of the two-dimensional U-Nets applied to the
annulus segmentation task.

Training (90 Patients à 30 images) Test (7 Patients à 30 images)

F1 0.921 0.929

Table 4.12: F1 score obtained from final model for step 4.

Compared to the three-dimensional segmentation task (Section 4.2.2), the
results are surprisingly poor. Visual examination reveals incorrectly anno-
tated training data, see for example Figure 4.2a. However, it can be seen that
the models still segment the desired areas, exemplified in Figure 4.2b.

Therefore, the model is improved with a variant form of self-training, see
Section 2.2.7. The predicted segmentations are again used as training input
for the models pre-trained on the annotated data.

Since there is no proper ground truth guaranteed, the models are subse-
quently only evaluated against the test set, for which the annotations have
been manually corrected. It should be noted that also in Table 4.12 the test
set had already been corrected.
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(a) Incorrect annotations (b) Good predictions

Figure 4.2: Despite incorrect annotations, the U-Net predicts the desired annulus
segmentation.

Table 4.13 shows the F1 score of the averaged predictions of the test
set. The results are further improved by utilizing manually annotated valve
planes as training input. For each patient, the plane indicated by the valve
plane markers is used. Each model is retrained on the respective training
subset, starting with the weights obtained from the self-training step. The
resulting F1 score can be found in Table 4.13. Additionally, it is compared to
the annulus segmentation from the previous step by considering the three-
dimensional segmentation in the two-dimensional annulus plane.

Test (7 Patients à 30 images)

Self-training 0.934

Re-annotated annulus 0.952

Segmentation from step 3 0.790

No further training 0.929

Table 4.13: F1 score obtained from final model after further training in comparison
to the annulus plane segmentation obtained from step 3 and the initial
model results without further training.

While the self-training improves the model’s ability to segment the aortic
valve, the properly annotated data still further enhances the model. In com-
parison, the segmentation from step 3 is inferior, and the additional step of
two-dimensional annulus segmentation is adopted for the final pipeline.
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The pipeline’s suitability for medical application is verified in Section 4.3 -
Comparison to the Benchmark by obtaining the annulus perimeter and area
from the segmentation and benchmarking against the two software tools.

4.3 comparison to the benchmark

Meyer et al. [56] evaluated two software solutions for TAVI planning, the
HeartNavigator and 3mensio, by obtaining measurements of annulus perime-
ter and area on 100 patients randomly selected from the German Heart Cen-
ter Berlin TAVI registry. The above presented deep learning model is now
benchmarked against those two software solutions. All four steps explained
in Chapter 3 - Methods are sequentially applied to the same 100 patients’
CT scans. Ultimately, the annulus perimeter and area are deduced and com-
pared to the results obtained from HeartNavigator and 3mensio. The mea-
surements of the two software tools are available as used for “Reliability
and Influence on Decision Making of fully-automated vs. semi-automated
Software Packages for Procedural Planning in TAVI.” [56].

The two-dimensional segmentations obtained from step 4 are reduced to
the connected component in the image center in order to disregard erro-
neous segments. In two cases, the center of the image does not belong to the
segmentation. In those cases, the largest connected component is regarded
as the annulus. The two cases are shown in Figure 4.3.

(a) (b)

Figure 4.3: The largest connected component is considered as annulus: In these two
cases the resulting segmentation does not contain the image center. In-
stead of the central connected component, the largest connected compo-
nent is retained.

By proceeding in this way, measurements can be obtained for each of the
100 patients. The results are compared to the two software solutions in Ta-
ble 4.14.
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N = 100 Tool mean ± std min max

Deep Learning 535.4 ± 108.4 302.4 837.9
Area

[
mm2] HeartNavigator 481.5 ± 96.2 299.9 750.1

3mensio 463.5 ± 88.0 219.9 702.5

Deep Learning 92.5 ± 13.5 70.5 149.4
Perimeter [mm] HeartNavigator 79.3 ± 7.8 63.1 99.7

3mensio 77.2 ± 7.3 52.7 94.5

Table 4.14: Statistics of Deep Learning, HeartNavigator and 3mensio measurements.

In Figure 4.3a the orientation and position of the detected valve is incor-
rect, resulting from an inaccurate input into the PCA, see Figure 4.4. The
segmentation of the annulus area erroneously extends into the aorta, super-
imposing the aorta’s contours. Thus, masking with the contours still results
in an incorrect input to the PCA, distorting the results. No apparent reason
for this incorrect segmentation can be identified.

(a) Aorta segmentation (red)
and incorrect segmenta-
tion of the annulus area
(yellow)

(b) Resulting masked seg-
mentation extending into
the aorta

Figure 4.4: An incorrect segmentation of the annulus area (a) results in an incorrect
input into the PCA (b) for the case of Figure 4.3a.

In Figure 4.3b, the detected plane is plausible, as can be seen from the
cross-section in Figure 4.5a, although it might be optimized by a slight rota-
tion. The detected plane is located on the hinge points of the valve leaflets.
However, the annulus contours cannot be easily identified. Calcification and
blurriness impede the segmentation. In the resulting segmentation after bi-
narization, the center is not recognized as part of the desired segmentation.
As a result, indentations distort the contour.

In the following, a smooth outer contour around the annulus shall be
ensured for all cases. Thus, a two-dimensional convex hull around each seg-
mentation is used for obtaining the measurements anew. The results are
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shown in Table 4.15 and visually exemplified in Figure 4.5b. The segmenta-
tion for the problematic case in Figure 4.3b improves. However, for optimal
annulus segmentation, further fine-tuning is required. Approaches are sug-
gested in Section 5.3 - Future Work.

(a) Cross-section (b) Outer contour with convex hull

Figure 4.5: Cross-section and application of the convex hull for the case of Fig-
ure 4.3b.

N = 100 Tool mean ± std min max

Deep Learning 554.9 ± 115.4 317.4 881.7
Area

[
mm2] HeartNavigator 481.5 ± 96.2 299.9 750.1

3mensio 463.5 ± 88.0 219.9 702.5

Deep Learning 88.3 ± 95.2 69.0 114.7
Perimeter [mm] HeartNavigator 79.3 ± 7.8 63.1 99.7

3mensio 77.2 ± 7.3 52.7 94.5

Table 4.15: Statistics of Deep Learning, HeartNavigator and 3mensio measurements
with convex hull.

To better understand the deep learning model’s suitability, the number
of cases in which the measurements obtained by the model are smaller or
bigger than the respective software solutions’ measurement is assessed.

Deep Learning
smaller bigger

Area
[
mm2] HeartNavigator 15 85

3mensio 11 89

Perimeter [mm] HeartNavigator 6 94

3mensio 1 99

Table 4.16: Comparison of Deep Learning, HeartNavigator and 3mensio measure-
ments with convex hull.

The measurements obtained by the deep learning model are in between
the measurements of the two software tools in ten cases for the annulus area
and in five cases for the annulus perimeter.
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Figure 4.6a shows that the resulting annulus contours are still somewhat
uneven, hence overestimating the annulus perimeter. MevisLab offers a built-
in method for the so-called Laplacian smoothing [55]. In Laplacian smooth-
ing, each vertex of the contour is shifted from its original position by a
smoothing factor towards the average position of the neighboring vertices.
The smoothing range determines the number of neighbors considered. The
smoothing effect can be amplified by repeatedly applying the process in sev-
eral passes [51]. This smoothing technique is exemplarily applied with the
following parameters to counteract the uneven contours:

Parameter Value

Number of Passes 20

Smoothing Factor 0.5
Smoothing Range 3

Table 4.17: Example parameters for Laplacian smoothing.

The effect is visualized in Figure 4.6b and quantitatively reported in Ta-
ble 4.18 and Table 4.19.

(a) Uneven edges (b) Edges after smoothing

Figure 4.6: Effect of Laplacian smoothing: Uneven edges are smoothed, resulting in
a reduced perimeter but also a reduced area.

Figure 4.6a shows the original convex contours, which have some irreg-
ularities. In Figure 4.6b the contours are smoothed, resulting in a reduced
perimeter but also a reduced area.

Linsen [51] highlights a disadvantage of Laplacian smoothing - shrinkage
in volume. The deep learning model frequently overestimates the measure-
ments. Thus, Laplacian smoothing suggests an improvement in predicted
measurements, which also results from the shrinkage and is not only an im-
provement in annulus segmentation. Hence, optimal parameters for Lapla-
cian smoothing cannot trivially be deduced by optimization of the predicted
measurements. Volume preserving alternative smoothing techniques, such
as rescaling to the original volume, are likely more suitable but not in the
scope of this thesis.
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N = 100 Tool mean ± std min max

Deep Learning 543.2 ± 115.4 307.0 869.9
Area

[
mm2] HeartNavigator 481.5 ± 96.2 299.9 750.1

3mensio 463.5 ± 88.0 219.9 702.5

Deep Learning 83.9 ± 9.3 65.0 11.0
Perimeter [mm] HeartNavigator 79.3 ± 7.8 63.1 99.7

3mensio 77.2 ± 7.3 52.7 94.5

Table 4.18: Statistics of Deep Learning, HeartNavigator and 3mensio measurements
after Laplacian Smoothing.

Deep Learning
smaller bigger

Area
[
mm2] HeartNavigator 18 82

3mensio 17 83

Perimeter [mm] HeartNavigator 25 75

3mensio 16 84

Table 4.19: Comparison of Deep Learning, HeartNavigator and 3mensio measure-
ments after Laplacian smoothing.

After smoothing the contours, the deep learning model’s measurements
are in between the two software tools’ measurements in 13 cases for the
annulus area and in 21 cases for the annulus perimeter.

The resulting distribution of the annulus area and perimeter is plotted in
Figure 4.7, compared to the two software tools.

Figure 4.7: Distribution of measurements: The distribution of the deduced area and
perimeter is compared for the two software solutions, HeartNavigator
and 3mensio, and the deep learning model.

The deep learning model shows the broadest range of values. The mini-
mum is close to the minimal value measured by HeartNavigator, both for
area and perimeter, while 3mensio measured a lower minimum. Mean and
maximum are highest for the deep learning model. It can be concluded that
the deep learning measurements do not deviate by a fixed value.
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In fact, over- but also underestimation occurs to different degrees, which is
even more evident from a plot of agreement in Figure 4.8. The agreement be-
tween all three tools is plotted for a randomly selected subset of 30 patients
after application of Laplacian smoothing.

Figure 4.8: Agreement of measurements between the three tools: A boxplot with one
dot for each patient and tool is plotted. Each line connects one individual
patient, measured by the three tools. In several cases HeartNavigator
and 3mensio diverge; on average the deep learning model reports higher
values than the two software solutions.

Cases of agreement, under- and overestimation of the deep learning model
compared to the software tools can be seen. In several instances, Heartnavi-
gator and 3mensio diverge; in most cases, HeartNavigator reports the higher
values. In some of these cases, the values obtained from the deep learning
model are in between the two software tools’ values. The deviations cannot
be ascribed to a fixed bias.

Two cases of pre-implanted prosthetic valves are identified which com-
pound the annulus segmentation. They are depicted in Figure 4.9 with the
measurements obtained from the deep learning model after smoothing and
the two software tools shown in Table 4.20. In retrospect of Figure 3.5, a pre-
implanted valve as in Figure 4.9b had not been part of the training data and
is thus not known to the model.

For the two cases of pre-implanted valves, the measurements of HeartNav-
igator and 3mensio diverge from each other, with the deep learning model’s
predictions leaning towards HeartNavigator.
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(a) Pre-implanted valve as previ-
ously seen in the training data

(b) Pre-implanted valve not previ-
ously seen in the training data

Figure 4.9: Deduced annulus segmentations for the two cases with pre-implanted
valves.

Case (a) Case (b)

Tool
Area[
mm2] Perimeter

[mm]
Area[
mm2] Perimeter

[mm]

Deep Learning 386.7 71.3 755.8 100.9

HeartNavigator 385.8 71.5 639.0 91.1

3mensio 219.9 52.7 507.1 80.1

Table 4.20: Measurements in case of pre-implanted valves.

As a matter of fact, the main difficulty for annulus measurement still lies
in the plane detection. Even after correction with the three-dimensional aorta
segmentation, the detected plane often still lies within the valve, shown in
Figure 4.10, and needs to be further shifted downwards to the annulus plane
between the aortic valve and the LVOT. As no sufficiently annotated data
set is readily available for training, this cannot be easily achieved. Possible
approaches are proposed in Section 5.3 - Future Work.

Figure 4.10: Detected planes within the valve.



5
C O N C L U S I O N

In this concluding chapter, the positive and negative aspects of a neural
network-based approach to annulus measurement are discussed. Impedi-
ments are highlighted, and the suitability for medical application is assessed.
Finally, the conducted work is summarized, and possible future research
tasks are proposed.

5.1 discussion

A cascaded approach of four sequentially applied CNNs, following the U-
Net architecture, was pursued to achieve automatic measurement of aortic
annulus area and perimeter. For each of the four substeps, the CNNs deliv-
ered satisfactory results. U-Nets are, thus, deemed an appropriate model for
segmentation of CT scans.

The cascaded approach yields the advantage that previous results can be
used in the following steps. In this way, the CT images could be reduced
to the DLZ for the following steps, allowing for a higher image resolution
without further memory requirement.

The size of the DLZ bounding box was defined manually by inspection
of the CT images in the training data set. Two factors influenced the deci-
sion: on the one hand, the resulting sub-images need to be big enough to
contain the relevant information for the following steps; on the other hand,
the sub-images need to be small enough to fit into the available working
memory while having the highest possible resolution (for hardware spec-
ifications see Section B.1). The bounding box size was initially chosen to
exactly contain the aortic valve based on a subset of the training set. To
ensure all relevant information is actually contained in the predicted bound-
ing boxes, a padding was later added to the predictions. Optimization of this
step was not considered of high importance for improvement of the overall
deep learning approach, as the current predictions suffice for the following
steps. Thus, this proceeding was accepted for the present work. Alterna-
tively, the U-Nets could directly be trained on the bounding boxes of bigger
size, or they could be trained to predict the bounding box midpoints, and
the resulting sub-image could be chosen accordingly. The latter approach is
not recommended, as step 3 showed that more expansive segmentations are
easier to learn than individual points. Future work could evaluate further
bounding box sizes and resolutions of the resulting sub-images.

Apart from the reduction to the DLZ, the cascaded approach produced the
three-dimensional aorta segmentation, which could be used to improve the
annulus plane detection in step 3. On the contrary, errors of previous steps
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can negatively impact the following steps. Such errors might be reducible
with an end-to-end trained pipeline.

The derived measurements are in a reasonable range compared to the mea-
surements obtained from the two software tools. Nevertheless, the mean of
each measurement is higher. The difference of the means between the deep
learning model and HeartNavigator is 61.7 mm2 for area and 4.6 mm for
perimeter. The difference between the deep learning model and 3mensio is
79.7 mm2 for area and 6.7 mm for perimeter. The difference between Heart-
Navigator and 3mensio is 18.0 mm2 for area and 2.1 mm for perimeter. While
the discrepancy between the two software solutions is consistent with the
inter-observer differences reported by Knobloch et al. [45], the deep learn-
ing results deviate more than twice as much from the software solutions’
measurements.

The measurements are highly dependent on several factors, especially the
position of the detected annulus plane. The accuracy of the model’s pre-
dictions, in turn, depends on the annotations of the training data set. For
this thesis, the training set comprised a relatively small number of 90 cases
and was merely evaluated on seven cases. Further model improvement and
evaluation with more comprehensive data sets is advisable. Further, the an-
notations exhibit several limitations. The valve plane markers are manually
set on the tips of the aortic valve cusps. Perfect manual placement is chal-
lenging to achieve, resulting in less-than-ideal marker positions. Similarly,
the segmentation of the aorta, especially the aortic valve, can be deficient.
One limiting factor is that the aorta segmentation masks only comprise the
aorta’s lumen, not the tissue. The valve itself is, thus, underestimated. The
present results could be further improved by either using a segmentation
mask containing the aortic tissue, or the tissue thickness needs to be consid-
ered for deduction of the annulus position.

Apart from that, calcifications have a significant effect on TAVI device
sizing. Knobloch et al. [45] exclude any calcifications from the annulus area.
Calcifications were not explicitly treated in this thesis, which might explain
the overestimation of the annulus dimensions in cases with calcification. No
information could be obtained on how HeartNavigator and 3mensio treat
calcifications.

The neural network-based approach, in theory, has no restrictions regard-
ing imaging protocols or vendors. Provided the input CTs follow DICOM stan-
dards and contain the DLZ, automatic measurement of the annulus should
be possible. Nevertheless, this could not be tested in detail with the present
data. Data sets for training, evaluation and benchmarking were obtained
from the German Heart Center Berlin, which uses a standardized imaging
protocol and only two manufacturers for CT scanners. Before application
to CT scans obtained from different manufacturers and imaging protocols,
further evaluation on such is advisable. A re-training on the respective CTs

might be required for optimal results.
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In the present study, exceptional cases, such as pre-implanted artificial
valves or bicuspid valves, were not explicitly considered. If several such
cases are incorporated into the training data, likely the neural network-based
model could also be able to treat these cases automatically.

The presently reported measurements shall give a first prospect of the
neural network’s potentialities. Delicate adjustment is required before appli-
cation in the medical field.

5.2 summary

The purpose of this study was to prove the feasibility of a neural network-
based approach to support aortic root analysis. The approach was bench-
marked against two software solutions on the measurement of aortic annu-
lus area and perimeter. A cascade of neural networks, each following the
U-Net architecture, was employed to infer segmentations in four steps: de-
tection of the region of interest around the aortic valve, segmentation of
the aorta, including the aortic valve, detection of the aortic root area, from
which the aortic annulus plane was approximated and segmentation of the
aortic annulus in the two-dimensional annular plane. From this aortic an-
nulus segmentation, area and perimeter were inferred and compared to the
measurements obtained from the two software solutions.

The annular plane was approximated by applying a PCA to the predicted
segmentation of the annulus area, masked with the outer edge of the aortic
valve segmentation.

Evaluation of the neural networks showed promising results for each sub-
step. For all 100 patients considered in the benchmark, annulus measure-
ments could be obtained. The measurements are comparable to the ones
obtained from the two software solutions. However, the area and perimeter
are rather overestimated. The overestimation results from a deficient annu-
lus plane detection, which often yields planes that are still inside the valve
and not right on the aortic annulus.

To conclude, the cascaded neural network-based approach enabled the re-
liable detection and assessment of the aortic root and valve apparatus even
with a relatively small training set. Further improvement of the annulus
plane detection is required to yield optimal annulus segmentations for cor-
rect measurements. Still, the current results suggest neural network-based
aortic root analysis as a promising approach to support fully automatic TAVI
device sizing and selection, independent of a specific patient group or CT
imaging protocol. An extended data set, including uncommon cases, such as
pre-implanted artificial valves or bicuspid valves, could further improve the
applicability and robustness of this method. Further measurements could
be obtained in a similar fashion, such as coronary height, given appropriate
annotations.
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5.3 future work

As already mentioned, the current approach still needs to be improved be-
fore application in the medical field. Besides re-training the model with a
more extensive data set, annotated by medical experts, several other possi-
bilities for model improvement can be pursued.

Annotations: Apart from increasing the number of training samples and op-
timizing the annotations, several modifications of the annotations could fa-
cilitate the correct segmentation of the aortic annulus. Inclusion of the aortic
tissue in the aorta segmentation would allow for the deduction of the an-
nulus plane’s position from the surface of the aortic valve segmentation, as
the annulus lies just below the deepest point of the aortic valve. Examples
of correct annulus planes could help decide whether a detected plane actu-
ally portrays the annulus. In this regard, the plane’s gradient profile might
be worth exploring, compared to typical annulus planes’ profiles. If the de-
tected plane does not resemble the annulus plane examples, the detected
plane could be shifted or even slightly rotated until it resembles the annulus
plane examples.

Moreover, a comprehensive data set of perfectly segmented annuli in the
three-dimensional CT images might well be learnable by a CNN.

Neural Network training: The U-Net architecture proved to be well suited for
segmenting different image regions from CT scans. With a more extensive
training data set, it might be beneficial to explore different options for annu-
lus plane identification anew, such as different extents for the segmentation
masks, directly detecting the valve plane markers via segmentation, or the
regression approaches in Appendix A. For regression of the annulus plane’s
normal vector, it might be beneficial to adjust the considered loss function.
The MAE in the angle resulting from the normal vector, instead of the normal
vector itself, is likely a better measure for the error. Another option would
be to attempt the valve plane detection on the segmented aorta from step 2

instead of the original CT image to exploit the additional information. To fur-
ther utilize ensemble methods, several approaches could be averaged into a
final prediction. The segmentation accuracy might be further improved by
exploring different loss functions or weights for the loss, as well as optimiz-
ers. A more expansive hyperparameter optimization is advisable.

Although a small batch size showed to help in the generalizability of a
neural network [42], a higher batch size generally speeds up convergence,
thus reducing training time and avoiding oscillation around local minima
[70]. Consequently, fine-tuning the batch size can prove useful. Moreover,
with an increase in the number of convolutional filters, it might be possible
to further increase the segmentation accuracy. Batch size and number of fil-
ters both have an influence on the size of the resulting network, which is
limited by the available working memory.
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Memory optimization: With the current combination of batch size, number
of filters and input image size, the available working memory was fully ex-
ploited. For details on the hardware, see Section B.1. Memory optimization
is required to further increase the batch size or number of filters, hence the
neural network size. Different options are available, such as mixed-precision
computing [81] or gradient checkpointing [11]. Due to the satisfactory re-
sults and required time investment, these options were not further pursued
in the present study.

Image preprocessing: Additional potential lies in preprocessing of the net-
work’s input images. Currently, each input image is scaled to the range [0, 1]
to ensure gradients of similar magnitude over different batches. However, in-
formation from different light intensities between images is lost or distorted
by calcifications or light artifacts. A CT-wise scaling might be advantageous.
Instead of scaling to a fixed range, Lecun et al. [48] suggest normalization of
the input to achieve a mean close to zero and a uniform variance. The mean
is here typically taken with respect to the whole data set.

Apart from that, the current choice of the voxel sizes for steps 2 to 4

leads to resampling of the images to resolutions higher than the original
images’ resolution. This is achieved by interpolation, which might introduce
inaccuracies. In future work, it might be beneficial to further analyze this
aspect and potentially restrict the minimal resolution to the original input
images’ resolution.

Further information could be obtained by preprocessing steps, such as
denoising, contrast enhancement or edge detection [36, 40].

Moreover, calcification could be considered in image preprocessing. Ac-
cording to Knobloch et al. [45], calcifications are not part of the annulus area.
Thus, one option might be to remove calcifications from the image. In a sim-
ple manner, this could be achieved by harmonizing bright image regions
with neighboring voxels. Nevertheless, Meyer et al. [56] stated that calcifica-
tion patterns play a significant role in prosthesis selection, hence should not
be disregarded. Optimally, calcifications could be individually segmented to
assess severity and allocation.

Further TAVI support

In an ideal setting, machine learning models could support medical practi-
tioners with automatically derived suggestions for TAVI device model and
size. Research in this field is of high interest, which is also shown by the fact
that part of the work in this thesis is accepted as a lecture presentation for
the CARS 2021 congress 1.

Besides annulus measurements, additional parameters, such as coronary
distances, affect TAVI device sizing [56]. Such parameters could be obtained
in a similar fashion, given appropriate annotations.

1 https://www.cars-int.org/



5.3 future work 60

Ultimately, a machine learning model could be trained on optimal TAVI

procedures, targeted on prosthesis size and model. Different input param-
eters, such as the previously obtained measurements, further patient data
or CT image data could be combined with different models for optimal pre-
dictive power. A mixed data neural network [50] using MedicalNet (see Sec-
tion A.1), a ResNet pre-trained on medical images, for the CT image input
could be a promising starting point. Prediction of likely complications after
TAVI could be achieved in a similar manner.



Part II

A P P E N D I X



A
F U RT H E R AT T E M P T S AT VA LV E P L A N E
I D E N T I F I C AT I O N

Before arriving at the method for valve plane identification described in
Section 3.6, several other approaches were assayed but dismissed due to in-
sufficient results. Still, they pose an interesting opportunity for future work
and will hence be elucidated in the following sections. For each approach, a
single network was trained on 75 patients, with 15 patients used in valida-
tion to allow for early stopping and evaluated on the seven test patients. The
same methods as in Section 3.3 are used for data augmentation.

a.1 medicalnet

MedicalNet [80] is a Pytorch implementation of “Med3D: Transfer Learning
for 3D Medical Image Analysis.” In Med3D Chen, Ma, and Zheng [13] at-
tend to the issue that deep learning performance highly depends on the
number of training samples and transfer learning can drastically improve
the results by pre-training models on huge data sets, such as ImageNet [64].
However, there are fundamental differences between natural and medical
images - two versus often three dimensions, colored versus grayscale - and
also relevant features and task specifications differ [63]. Thus, pre-trained
models on ImageNet cannot be directly transferred to medical applications.
Consequently, Chen, Ma, and Zheng [13] aggregated several data sets from
medical imaging competitions and designed the three-dimensional Med3D
network trained on this aggregated data set, facilitating transfer learning spe-
cialized on medical images. The “Deep Residual Learning for Image Recog-
nition” [31] architecture, ResNet for short, is used for Med3D, which will be
explained in the following section.

a.2 the resnet architecture

Concepts and explanations in this section are primarily based on [15, 31].
Simonyan and Zisserman [73] have shown that the network depth is crucial
for network performance, although simply stacking network layers does not
necessarily lead to improvement. This can be understood by considering
F, the class of functions a specific network architecture can reproduce. By
adding another layer to the network, it will be able to reproduce a class
of functions F′. However, if F /∈ F′ it cannot be guaranteed that the new
network with an additional layer is as good as the previous one. Thus, for
the new model to be at least as effective as the previous model, it needs to be
ensured that the newly added layer can map to an identity function f (x) = x.
With the additional layer, the new model will be able to cover a broader
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space of functions and might, hence, perform even better at approximating
the desired function. This was addressed by He et al. [31], who designed a
so-called residual block to facilitate learning of the identity function.

Figure A.1 shows a regular convolutional block in comparison to a resid-
ual block.

Figure A.1: A convolutional block (left) and a residual block (right) [15].

A regular block, within the dotted-line box, must learn f (x). A residual
block, on the other hand, only needs to learn the residual f (x) − x. If the
desired mapping is the identity function, this can easily be achieved by the
second weight layer approaching zero. The residual connection or shortcut
connection will then propagate the identity further through the network.

To further increase network depth while balancing the required training
time, Seif [69] designed a modification of the residual block, the so-called
bottleneck, depicted in Figure A.2. Instead of skipping two convolutional
layers with an identity shortcut, three layers are skipped in the bottleneck.

Figure A.2: A regular residual block (left) and a "bottleneck" block (right) [15].

Depending on the ResNet’s depth, regular residual blocks are replaced
by such bottlenecks to reduce required training time while still allowing for
better performance, as shown by He et al. [31]. Typical ResNet depths, also
implemented by Med3D, are 10, 18, 34, 50, 101, 152, 200, two of which shall
be utilized in the following sections to identify the valve plane.
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a.3 regression - valve plane markers

In a first attempt, the valve plane shall be found by directly learning the
valve plane marker positions. This was modeled as a regression task.

Methods

The valve plane marker positions were obtained by retrieving the indices of
the valve plane marker masks within the image and dividing them by the
image dimensions. Thus, nine values need to be estimated for each patient,
the x-, y- and z-coordinate of each of the three valve plane markers.

Since the available training data set is limited, transfer learning was uti-
lized with the Med3D pre-trained models. ResNets of depth 10 and 50 were
compared. An even deeper ResNet could not be trained due to insufficient
memory. The available hardware is listed in Section B.1. For reference, a
simple CNN was trained with two convolutional layers, which was not pre-
trained on medical data. The first layer applied 16 filters, the second layer
four filters, each with a kernel size of three, a stride of one and zero padding.
Batch normalization and max pooling with a kernel size of two were applied
after each convolutional layer. Stochastic gradient descent was used to opti-
mize both the simple CNN and ResNet. Early stopping was used, similar to
the U-Net training. For all regression approaches the neural networks are im-
plemented in PyTorch1; for package specifications see Section B.2. The MAE

is used as a loss function and for evaluation.

Results

The midpoint and normal vector are calculated from the three predicted
valve plane markers and compared to the ground truth with the MAE.

Table A.1 shows the results on the train, validation and test set for each
model. It is again contrasted against the error resulting from the training
mean.

Model
Training

(75 Patients)
Validation
(15 Patients)

Test
(7 Patients)

Midpoint Normal Midpoint Normal Midpoint Normal

ResNet-10 0.102 0.887 0.106 0.913 0.087 0.933

ResNet-50 0.122 0.996 0.154 0.667 0.117 1.025

CNN 0.113 0.453 0.107 1.110 0.109 1.195

Training
mean

0.039 0.390 0.043 0.309 0.033

0.297

Table A.1: MAE for each model on the valve plane marker regression.

1 https://pytorch.org/
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Each model’s predictions are worse than the usage of the training mean.
Consequently, all models were rejected.

a.4 regression - midpoint and normal vector

After the previous approach did not yield satisfactory results, it was at-
tempted to identify the valve plane by learning its midpoint and normal
vector.

Methods

The midpoint and the normal vector are calculated using Listing 4.1. Now
six values per patient need to be learned by regression, the x-, y- and z-
component of the midpoint and the normal vector. Again three ResNets and
a simple CNN are compared using the MAE.

Results

Table A.1 shows the results on the train, validation and test set for each
model.

Model
Training

(75 Patients)
Validation
(15 Patients)

Test
(7 Patients)

Midpoint Normal Midpoint Normal Midpoint Normal

ResNet-10 0.112 0.392 0.154 0.486 0.106 0.331

ResNet-50 0.188 0.478 0.139 0.405 0.115 0.281

CNN 0.141 0.342 0.151 0.317 0.141 0.371

Training
mean

0.039 0.390 0.043 0.309 0.033 0.297

Table A.2: MAE for each model on the midpoint and normal vector regression.

Compared to the previous attempt to predict the three valve plane marker
positions, the resulting midpoint prediction has approximately the same
quality according to the MAE, while the normal vector prediction improves.
Still, usage of the training mean prevails, and also this approach is not pur-
sued any further.

a.5 segmentation - valve plane markers

With the previous unsuccessful attempts, regression was dismissed, and it
was attempted to detect the valve plane markers by segmenting the respec-
tive image regions.
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Methods

A U-Net was employed to segment the valve plane markers. To simplify the
segmentation, the region around the valve plane markers was enlarged with
paddings p of different sizes: no padding, a padding of two and a padding
of five in each direction. Again the loss - binary cross-entropy - was weighted
with the inverse class frequency.

For evaluation, the predicted segmentation is binarized with a threshold
of 0.5. The binarization will likely yield more than three possible points for
the valve plane markers. Hence, a k-means algorithm was applied to the
proposed valve plane marker positions to achieve three clusters, of which
the midpoints are assumed to be the valve plane marker positions. Further,
the minimal distance between the valve plane markers was calculated, and
it was assessed whether the cluster midpoints satisfy that minimal distance.
If not, the points that are too close together are averaged, and the next point
with the highest predicted probability is considered. Again the distance be-
tween the points is evaluated. The new point is either taken as a valve plane
marker or averaged with the other point if the minimal distance is not ex-
ceeded. This process is iterated until three points are found that all have at
least the minimal distance to each other. These are assumed to be the valve
plane markers.

Results

From these valve plane marker positions, the midpoint and the normal vec-
tor of the resulting plane are calculated and compared to the ground truth.

Table A.1 shows the results on the train, validation and test set for each
model.

Padding
Training

(75 Patients)
Validation
(15 Patients)

Test
(7 Patients)

Midpoint Normal Midpoint Normal Midpoint Normal

p = 0 0.082 0.602 0.063 0.567 0.076 0.462

p = 2 0.123 0.831 0.132 0.653 0.165 0.894

p = 5 0.106 1.537 0.087 1.664 0.120 1.719

Training
mean

0.039 0.390 0.043 0.309 0.033 0.297

Table A.3: MAE on the valve plane marker segmentation for different paddings of
the markers.

It can be seen that with increasing padding, the prediction of the normal
vector worsens, while the midpoint prediction is less affected by the padding.
Nevertheless, the results cannot surpass the usage of the training mean, and
the models are hence rejected, leading to the final approach, described in
Section 3.6 - Step 3 - Annulus Plane Identification.



B
T E C H N I C A L I N F R A S T R U C T U R E

b.1 hardware

A Linux server with the following hardware specifications was used for
model development:

• 96 GB RAM,

• 2 intel Xeon Gold 5215 @ 1.7 GHz,

• 4 nVidia Titan V 12 GB HBM2 (GV100, SM7.0).

For training and application of the neural networks, the four nVidia GPUs
were employed. Whenever possible, calculations were distributed equally
across all four GPUs.

Depending on the regarded step and the weight initialization, average
training time of one U-Net ranged between 20 minutes and three hours.

b.2 used python packages

The following python packages were used in the context of this thesis:

Package Version

h5py 2.10.0

ipykernel 5.1.4

ipython 7.13.0

ipython_genutils 0.2.0

ipywidgets 7.5.1

jupyter-core 4.6.3

jupyter-tensorboard 0.2.0

jupyter_client 6.1.0

keras 2.3.1

keras-applications 1.0.8

keras-preprocessing 1.1.0

matplotlib 3.2.1

nibabel 3.0.2

nilearn 0.6.2

numpy 1.18.2

opencv-python 4.4.0.44

pandas 1.0.3
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pandas-profiling 2.6.0

pillow 7.1.2

pip 20.0.2

plotly 4.8.1

pydicom 2.0.0

python 3.7.7

python-dateutil 2.8.1

python-editor 1.0.4

scikit-image 0.17.2

scikit-learn 0.22.2.post1

scipy 1.4.1

seaborn 0.11.1

simpleitk 1.2.4

tensorboard 2.1.1

tensorflow-addons 0.9.1

tensorflow-estimator 2.1.0

tensorflow-gpu 2.1.0

torch 1.6.0

torchvision 0.6.0+cu101

Table B.1: Used python packages.
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