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kurzfassung. Eine zuverlässige und e�ektive Detektion von explo-

sionsfähigen Substanzen ist eine der wichtigsten Aufgaben der zivilen

Sicherheit. Oftmals als Gegenmaßnahme zu terroristischen Akteuren ist

die Beseitigung eines potentiellen Explosionssto�es ein essentielles Mit-

tel der Gefahreneindämmung. Die Szenarien können vielfältig sein und

reichen von der Bedrohung des ö�entlichen Lebens an Flughäfen, Bahn-

höfen oder Veranstaltungen, bis hin zur kritischen Infrastruktur höchster

Sicherheit, wie z. B. Atomkraftwerke. Verfahren über die Bestimmung des

Gefahrenpotentials eines unbekannten, verdächtigen Objekts sind viel-

fältig. Die Mindestanforderungen sind hierbei gleich hoch für alle: ein

schneller Entscheidungsprozess in einer zeitkritischen Situation sowie

Verlässlichkeit und ein hoher Abdeckungsgrad bei der Aufspürung ver-

schiedenartiger Explosionssto�e. Für dieses Anwendungsszenario wird in

der Thesis die Weiterentwicklung eines bereits bestehenden Modells aus-

gearbeitet, das für die Detektion von explosionsfähigen Materialien dient.

Der Anwendungsfall wird auf zwei weitere, neue Methodiken gelenkt: der

Detektion hoch-energetischer Explosionssto�e und der Identi�zierung

bestimmter Untergruppen, basierend auf der chemischen Struktur der

Substanzen. Sensordaten aus einem speziellen Messverfahren für explosi-

onsfähige und harmlose Sto�e werden für diesen Zweck verarbeitet. Der

thematische Schwerpunkt wird auf die Extraktion von Merkmalen gelegt,

für die Erstellung eines Prognosemodells. Ziel dieser Thesis ist es, den

bestehenden Entscheidungsprozess der Detektion durch die Erweiterung

neuer Anwendungsfälle sinnvoll zu ergänzen, um einen hohen Detailgrad

über eine unbekannte, potentiell gefährliche Substanz geben zu können.

Die Ergebnisse der Implementierung fallen für beide Anwendnugsfälle

unterschiedlich aus. Während die Detektion von hoch-energetischen Sub-

stanzen gut möglich ist, ist bei der Identi�zierung von Untergruppen nach

chemischer Struktur noch Verbesserungspotential zu sehen.

Schlagworte
Clustering � Data Mining � Energetische Materialien �

Feature Engineering � Zeitreihenklassi�kation
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abstract. Reliable and e�ective detection of explosive substances is

one of the most important tasks of civil security. Often as a countermeasure

to terrorist actors, the elimination of a potential explosive is an essential

means of hazard containment. Scenarios can be varied and range from

threats to the public life at airports, train stations or events, to critical in-

frastructure of highest security, such as nuclear power plants. Procedures

for determining the threat potential of an unknown, suspicious object are

manifold. The minimum requirements are the same for all of them: a fast

decision-making process in a time-critical situation, as well as reliability

and a high degree of coverage in the detection of di�erent types of explo-

sives. For this application scenario, the thesis elaborates on the further

development of an already existing model which is used for the detec-

tion of explosive materials. The use case is directed to two further, new

methodologies: the detection of high-energetic explosive materials, and the

identi�cation of speci�c subgroups, based on the chemical structure of the

substances. Sensor data from a special measurement method for explosive

and harmless substances is processed for this purpose. The thematic focus

will be on the extraction of features for the creation of a prediction model.

The aim of this thesis is to extend the existing decision process of detection

by implementing new use cases in a meaningful way, in order to achieve a

high level of detail about an unknown, potentially dangerous substance.

A di�erence in performance can be seen in the results for both use cases.

While the detection of high-energetic substances is well possible, there is

still potential for improvement in the identi�cation of subgroups according

to chemical structure.

Keywords
Clustering � Data Mining � Energetic materials �

Feature Engineering � Time series classi�cation
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1 | Introduction

1.1 Motivation

Today’s infrastructure is of critical importance for the reliability and maintenance

of modern society, as well as the high degree of globalization. Political or religious

con�icts are part of the present time and, unfortunately, under some circumstances,

can pose a threat to vital components of current social life. Infrastructure like airports,

train stations, and other places of high tra�c movements are, regardless of the motives,

one of the primary destinations of terrorist attacks. Often times such acts are carried

out by placing improvised explosive devices, hidden or disguised, in areas either highly

frequented by a large number of people and/or places of most critical nature, like

e. g. nuclear power plants (Bennett 2018, pp. 37 sqq.). The detection and appropriate

disposal of such explosives is of the utmost importance for the safety of all concerned.

Given a scenario for the detection of an unknown or suspect object in such places,

determining its risk potential is of the highest urgency. The explosive content of such

improvised devices can be found in the form of a powdered, solid, or liquid substance,

visually indistinguishable from other harmless substances. Therefore, a method of

identifying explosives in a reliable and time-critical fashion is needed.

Several possibilities of detecting explosives exist. One possible distinguishing charac-

teristic is the type of approach used in the following two options: library-based systems,

and methods of working in a library-free manner. As an example for a library-based

detection technique, sni�er dogs are used very frequently at airports or other places.

Due to speci�c training, the dog is able to identify explosive substances by the sense

of smell. Although only for substances that were part of the training, which makes

this technique library-based (Konstantynovski 2018, p. 22). The work in this thesis is

based on a library-free method instead. In this case, the technique enables the detection

of explosives by means of Machine Learning. A training dataset is used to create a

statistical model, but unlike a libary-based method, the model is able classify new,

unseen data samples by utilizing various algorithms from the area of Data Mining.

A major part of this thesis is based on the work of Konstantynovski et al. (n. d.). A

signi�cant component of the publication is the contribution to build and improve a

speci�c device, developed as a prototype for the detection of explosives. Equipped

with various kinds of sensors, this device is able to make measurements of samples

for an unknown material and provide meaningful data to be used for further analysis

tasks, i. e. the Machine Learning model. The focus in this thesis is placed on the

further development of analytical methods. The hardware setup will be introduced

and explained, so that a basic understanding is gained. Advancements regarding the

1



1 Introduction 2

analytical tasks should open up new �elds of application not yet covered by the work

done so far regarding this project. Essentially, those tasks consist of two novel use

cases, which are the classi�cation of explosives according to their degree of energetic

potential; and the identi�cation of explosives, based on their chemical structure. This

work will continue to search for alternative ways of working with the provided data to

improve upon the existing results.

The advantages of the device being used for the sampling and data-generating proce-

dure are its compactness and modularity, which leads to simple logistical manageability.

Given the real-life scenario of a potential security threat by an improvised explosive

device or unknown substance, the sampling procedure and evaluation of the data can

be done both, in short time and with high degree of certainty regarding the obtained

results. In addition to the task of detecting an explosive, the two new use cases pro-

vide further insight for the decision process; being able to classify a high-energetic

substances and/or identifying subgroups of chemicals, can be of great usefulness for

the operator of the device. The development of suitable methods to provide an imple-

mentation for both use cases will be the main task of this thesis. The circumstances of

working with sensor data, in the context of the detection device, will require additional

steps to align with the present method of the detection process.

1.2 Related work

The dataset, as well as some parts of the methodology of Konstantynovski et al. (n. d.)

have been adapted and extended for further use. Preceding to this, two additional publi-

cation exist (Konstantynovski et al. 2017 & 2018), with a greater focus on the hardware

setup, including the process of development and improvement for the detection device.

Regarding the analytical task for the sensor data, in common with Maurer et al. (2015),

both publications apply Principal Component Analysis for the use case of identifying

individual substances. Guaman et al. (2019) show a similar approach, but use a combi-

nation of Fisher’s Linear Discriminant Analysis and Principal Component Analysis. On

basis of domain knowledge, with the features extracted from the sensor data, it is possi-

ble to identify groups of multiple samples of a substance in the visualization of the �rst

three or two principal components. The method applied in the publications resembles

to some extent the framework developed in this thesis, i. e. the dimension reduction on

the feature set. However, in the case of the thesis, di�erent ways of implementing and

applying the Machine Learning models result in a more �exible and automatic way of

working with the data, without being too dependent on domain knowledge.

A major part of the work in this thesis revolves around the extraction of features

from sensor data. The method selected for this task was developed and published

for the application in the �eld of time series, i. e. sensor data, by Schäfer (2015b).
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Worth mentioning is the method developed by Lin et al. (2007), which was published

in advance to Schäfer (2015b). While both aim for a symbolic representation of time

series data, a crucial di�erence is the way of approximating the signal. The algorithm

applied in this thesis makes use of a Fourier Transform, while Lin et al. (2007) calculate

mean values instead. An advantage of Schäfer (2015b) is the �exibility in regards to the

level of noise reduction. In case of the Fourier Transform, the number of coe�cients

determine the degree of smoothing, and can be selected freely, while only doing the

calculation once. In contrast to the approach of Lin et al. (2007), where the calculation

for a time series has to be repeated, if the degree of smoothing is changed (Schäfer 2015a,

pp. 34 sq.). Both methods have in common that the outcome contains a discrete data

structure, representing counts of extracted symbols as the result of the approximation.

This opens up new possibilities to apply methods from di�erent �elds of Machine

Learning, not limited to only Data Mining algorithms for time series.

Many publications exist, utilizing this selected algorithm and performing benchmarks

in context of time series classi�cation or similarity search. Some published work exist

speci�cally for the particular combination of two models applied to the results of the

feature extraction process in this thesis. The applied models are a dimension reduction

technique called Latent Dirichlet Allocation, followed by a clustering approach with

 -Means. Twinandilla et al. (2018) show an implementation using both algorithms in

the �eld of Natural Language Processing. Here, the performance of detecting signi�cant

sentences in online news documents is measured by an external validation score. Similar

to the work in this thesis, external metrics are used to determine the optimal number

of clusters. Related to this implementation, Bui et al. (2017) show an empirical study

of various distance measures for the clustering algorithm in combination with the

dimension reduction method. Some additional publications can be found regarding

the application of the method of Lin et al. (2007) and Latent Dirichlet Allocation, as

for example in McLaurin et al. (2014) or Chen & Qi (2019). In context of the dimension

reduction technique and the clustering step applied on the extracted feature set of

the method of Schäfer (2015b), no publications of work exist to the knowledge of

the author.

1.3 Thesis outline

At �rst, the theoretical foundation is provided in section 2 for the methods used

throughout this work. This includes the application of Machine Learning models in the

context of sensor data and the algorithms further applied, to be able to implement a

working solution for the speci�c use cases. Following, section 3 gives an introduction to

the hardware of the detection device, which was used to create the dataset, and explains

its functionality accordingly. In addition, the necessary data pre-processing steps will
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be explained, as well as the methodology used in prior by Konstantynovski et al. (n. d.)

for the binary classi�cation of explosive and benign materials. The rest of this thesis is

structured as follows: section 4 demonstrates the implementation of the new proposed

framework; and section 5 presents the results for the application in context of the

two new use cases. Finally, section 6 draws a conclusion and provides an outlook for

possible future work.



2 | Theoretical foundations

2.1 Chemical principles of explosive materials

Explosive substances appear in various forms as liquid, solid or gaseous. With su�-

ciently high activation energy, heat and gas can be released abruptly (Köhler et al. 2008;

as cited in Konstantynovski 2018, p. 16). This energy can be arti�cially induced. In sec-

tion 3.1, the procedure to evoke a reaction of explosive materials and gain meaningful

data by means of sensor measurements will be described.

For the analysis of the resulting data, there are multiple possible applications. The

substance could be classi�ed as explosive/benign by an algorithm trained with positive

and negative examples. Another use case would be to investigate the similarity be-

tween di�erent substances according to their chemical structure. For this purpose, the

explosives can be divided into categories, e. g. inorganic and organic. Inorganic sub-

stances are, for example, a combination of Nitrates mixed with fuels like coal powder.

Organic substances can mainly be subdivided into Nitrates, Peroxides, Nitratester, and

Nitramine (Agrawal & Hodgson 2007; as cited in Konstantynovski 2018, p. 17). Fur-

ther, explosives can be ranked according to their energetic potential, where especially

the detection of very high energetic substances can be of great importance. In the

later course of this thesis, the dataset
1

will be used for identifying various groups of

substances based on their chemical structure. In addition, explosive substances can be

classi�ed by type of use.

2.2 Applying Machine Learning to sensor data

The data processed in this thesis consists of time series (TS), i. e. sensor data, with values

observed at speci�c points in time. Given the structure of such data, conventional

statistical methods are not applicable, since independent and identical distributed (iid)

samples are not available (Shumway & Sto�er 2017, p. 1). The following sections

provide the concepts of the methods used in this thesis for analyzing such data.

Repeated observations of a random variable G1, G2, . . . , GC can be described as a

collection {GC }, where C is a discrete index. The realization of this stochastic process

is called a TS (Shumway & Sto�er 2017, p. 8). In addition, there are also multivariate

variants of a TS with A components, denoted as GC1, GC2, . . . , GCA (Shumway & Sto�er

2017, p. 19). The dataset, described in detail in section 3, consists of multivariate

sensor data. For each variable, measurements of A = 9 sensors exists. In this case, the

consideration of all 9 components is a key factor for every analytical task applied on

1
A detailed list of all available chemical substances can be found in table A.1 on page 64.

5



2 Theoretical foundations 6

the TS data and needs to be considered. The main task of the thesis is to �nd ways to

work with (multivariate) TS data for the given use cases.

2.2.1 Time series classification

For TS there are multiple scenarios of predicting an outcome based on the data. Forecast-

ing a continuous value like stock prices is seen as often as predicting electricity demand.

The particular application in this thesis is not of a continuous outcome but a qualitative

instead, making it a classi�cation task. Classifying TS data can be divided into di�erent

categories. There are up to six of such subcategories, according to Bagnall et al. (2017):

• Whole series: two TS are compared as a vector or by a distance measure

• Intervals: like whole series but reduced to intervals

• Shapelets: �nding patterns that are representative for the given class

• Dictionary-based: frequency of recurring patterns, based on histograms

• Combination of the approaches

• Model-based: �tting a generative model to each series and comparing them

The selection of a suitable method in this thesis was determined depending on the

produced (data) structure of the generated feature set. An important reason to consider

is that datasets containing TS measurements share the property of high dimensionality,

because of the number of sample points in a TS. For the reason of applying Machine

Learning (ML) algorithms in this thesis, a �exible approach had to be found, allowing

for (i) robust feature representations of TS data; and be able to (ii) reduce the dimen-

sionality e�ectively, without too much loss in information. The reason for this is that

the performance of a ML model is a�ected by the Curse of Dimensionality (Bishop 2006,

pp. 34 sqq.). A feature set with =� ? , where the number of observations is much lower

than the number of features, can lead to a weak performance and an unnecessary high

computational load for the training and prediction task of the model. For this purpose,

a dictionary-based approach has been chosen as a feature extraction procedure. This

type of algorithm represents a TS through symbols as features, allowing for a broader

application of methods, e. g. of the area of Natural Language Processing (section 2.3.1),

while still able to parameterize (setting the value for a hyperparameter) and regulate

the reduction of dimensionality for the obtained feature set.

As an extension to the six methods presented, Ruiz et al. (2021) propose additional

frameworks, suited to work with and classify multivariate TS data directly. However

in this thesis, the actual part of classifying will be done by a separate method. Since

most of the frameworks are too restrictive in the way the classi�ers are implemented,

they are of no use in this case. The emphasis of selecting an approach is placed on the
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extraction procedure of the features themselves and the �exibility to choose and test

freely from a set of matching classi�ers.

The six categories de�ned by Bagnall et al. (2017) can be broken down even further,

depending on the method used. Moreover, it is possible to distinguish between dis-

tance-based (Abanda et al. 2019) and feature-based (Fulcher & Jones 2014) methods

for time series classi�cation. Eventually, even when distance-based methods are ap-

plied, the result is or can often times be a feature vector transformed from the original

distances, as for example shown by Rohit (2016). The concepts di�er predominantly

in the way they extract features; for both procedures, the methods used to classify

data are largely very similar. As an alternative approach, it is also possible to use a

Neural Network architecture for the two tasks of feature extraction and classifying;

Hsieh et al. (2021) show promising results when working with multivariate TS data.

Although for the dataset in this case, the sample size of the available data may be too

small for the training of a Deep Learning model.

The work done so far by Konstantynovski et al. (n. d.) was feature-based using the

obtained feature vectors of each TS for the development of a supervised learning

classi�er. The extraction process relied heavily on domain knowledge for the most part

(further described in section 3.3). The primary task was to use the extracted features

for binary classi�cation of the chemical substances. Though it was also tested whether

it is possible to utilize the feature set to discriminate even further between di�erent

subclasses by applying additional ML methods. Especially the latter will be the main

focus of this work and extends the methods applied on the dataset to the present state.

2.2.2 Bag of Symbolic Fourier Approximation Symbols

In this thesis a dictionary-based algorithm was chosen to extract features from sensor

data. In essence, those algorithms pass a window of prede�ned length across the TS

to extract subsequences. Every subsequence is then discretized through a symbolic

representation. The occurrence of those extracted strings is collected in a histogram,

eventually representing each TS through frequencies of strings/words (Bagnall et al.
2017). The procedure results in a data structure similar to the Bag of Words (BoW)

model, where only the frequency of the words is considered, but not the order of

occurrence (Manning et al. 2009, p. 117). This opens the possibility for the application

of new methods, e. g. one of them being Latent Dirichlet Allocation (LDA) out of the

area of Natural Language Processing, further described in section 2.3.1.

Schäfer (2015b) developed a dictionary-based algorithm called Bag of Symbolic

Fourier Approximation Symbols (BOSS), which was selected in this thesis for the extrac-

tion of features. This procedure makes use of Symbolic Fourier Approximation (SFA) to

extract symbols representing patterns in a TS. The SFA approach (Schäfer & Högqvist
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Fig. 2.1: Extraction procedure for the BOSS model on a sample.
‡

At the top (a), the sample

of a TS is shown for which the histogram (d) is being created. In the �rst step (b), a

overlapping sliding window of a set length is passed across the TS, extracting subse-

quences. For each subsequence (c), a SFA symbol of length 3, consisting of 4 possible

characters {A1, B2,C3,D4}, is being extracted (marked in orange); consecutive sym-

bols (marked in black) are skipped. The histogram representation (d) is built from

the frequency of occurrence of those symbols.

‡
Figure taken from Schäfer (2015b).

2012) combines a Discrete Fourier Transform (DFT) for the approximation of the time

series, i. e. subsequences, and a discretization step for the extraction of symbols. By

applying this concept to the subsequences of the sliding window, the BOSS algorithm

is able to build a BoW model. In contrast, the SFA approach extracts only one single

symbol for the complete length of a TS. Figure 2.1 shows the procedure of generating a

BOSS model on an example of a TS shown in panel (a). In the �rst step (b), subsequences

are being produced for the extraction of SFA symbols. The following step (c) applies the

SFA procedure to all subsequences. Finally, a histogram (d) can be built, representing

the TS through the frequency of occurrence of the SFA symbols (Schäfer 2015b). In a

next step, numerosity reduction is applied so that „[...] the �rst occurrence of an SFA

word is registered and all duplicates are ignored until a new SFA word is discovered“;

this avoids „[...] outweighing stable sections of a signal“ (Schäfer 2015b, p. 10). Visible

in �g. 2.1 (c), the symbols excluded by numerosity reduction are not marked in orange.

The scope of approximation of a subsequence by the DFT may be in�uenced. The

number of coe�cients of the Fourier Transform can be set accordingly. When applying

the BOSS model, the number of the �rst coe�cients is controlled by the hyperparameter
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„word length“, which determines the degree of �ltering. Choosing only the initial

coe�cients of the DFT, therefore a small word length, represents the application of a

low-pass �lter and removes (high-frequent) noise. As a result, the transformed signal

is closer to the trend/shape of the original one (Schäfer 2015b). Compared to other

procedures, the Fourier transformation was preferred as the approximation mechanism

for performance reasons (Schäfer 2015a, p. 39).

The discrete variant of the Fourier Transform (Fourier 1822) can be de�ned according

to Bracewell (2000, p. 260) as

� (a) = # −1
#−1∑
g=0

5 (g) 4−82c (a/# )g

where # represents the number of (sample) points of the signal, i. e. subsequence,

and � (a) the DFT of the original signal 5 (g). At every g ∈ {0, 1, 2, . . . , # − 1} the Fourier

Transform is applied, so that for � (a) a tuple

〈
Rea=1,...,# , Ima=1,...,#

〉
is obtained, nor-

malized by # −1. As an example, the �rst two coe�cients of the DFT are calculated

by

� (a) = 2
−1

(
5 (g = 0) + 5 (g = 1) 4−82c (a/2)

)
for a = {0, 1}

with # = 2, resulting in the two tuples 〈Rea=0, Ima=0〉 and 〈Rea=1, Ima=1〉. In case of the

SFA method, the �rst coe�cient a = 0 is always discarded, since its only representing

the mean of the signal (Schäfer 2015a, p. 40). In the discrete variant of the Fourier

Transform, the number of coe�cients a is �nite and can be limited by the BOSS model

with the hyperparameter „word length“, described in more detail below.

Discretizing by mapping the DFT coe�cients to symbols is done in a quantization

step, after the approximation of the subsequences took place. The quantization assigns

coe�cients of a continuous space to a discrete one, i. e. symbols (Schäfer & Högqvist

2012). Figure 2.2 shows the procedure called Multiple Coe�cient Binning, which is used

for the quantization of the coe�cients in the SFA process. Depending on the word

length ; set by the BOSS model, there are
;/2 coe�cients of the DFT considered in every

subsequence; usually ;�=, where = is constant for the length of the subsequences.

For each real and imaginary part of every coe�cient, the quantization is applied. By

binning the values according to their distribution across all subsequences, a SFA word

can be derived for every subsequence. The number of bins depends on the chosen size

for the set of symbols " ∈ {# ⊆ {A, B, . . . ,Z} |A, B ∈ # }, and thus, depth of available

symbols. At least the �rst two characters {A, B} are always required as the minimum

value for the parameter ; ≥ 2, else, the creation of bins for the discretization step cannot

be done. This is controlled by a hyperparameter of the BOSS model, where a lower

alphabet size results in a higher reduction of noise for the original signal and vice versa.
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Fig. 2.2: Multiple Coe�cient Binning for the quantization of a DFT.
‡

In this example, a word

length of ; = 4 is used for (a) the subsequence. The method adapts to
;/2 coe�cients

for the DFT of all subsequences to calculate (b) the width of the bins. For the tu-

ple

〈
real8 , imag8

〉
of every 8th coe�cient, a binning strategy is applied, e. g. same

number of points in each bin. After the calculation, all binned coe�cients can be

mapped to their corresponding symbol, resulting in the �nal SFA word representa-

tion for each subsequence.

‡
Figure taken from Schäfer (2015b).

The quantization process is applied for each subsequence, resulting in multiple words,

leading to the BoW representation of the TS (Schäfer 2015b, pp. 5 sqq.).

The computational complexity of the BOSS transformation is O(=+F logF), where =

is the length of a TS andF the length of the sliding window for the subsequences. At

the �rst subsequence, the DFT is calculated with a complexity of O(F logF). Since

there are overlapping coe�cients due to the sliding window procedure, all following

subsequences can be approximated by the Momentary Fourier Transform instead,

which has a complexity of ; , the SFA word length; therefore, the complexity is constant

for the length = (Schäfer 2015a, p. 106).

The combination of a low-pass �lter by using the DFT as an approximation mechanism

and the quantization of the subsequences leads to a robust noise-resistant transfor-

mation for TS data. The creation of a histogram through the BOSS approach and the

representation as a BoW model opens up new possibilities to apply various methods for

further data analysis tasks.
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2.3 Clustering and dimension reduction techniques

The thesis so far laid down the foundations to extract features from sensor data. The

following sections will explain the methods used to build a model based on those

features by means of ML. The ML model should be able to generalize well and predict

new, unseen TS data. For this task, the methods primarily used in this thesis are built

up by two steps:

1.) Preprocessing: in order to reduce the dimensionality of the BOSS feature set by

applying LDA.

2.) Unsupervised Learning: clustering the data and leveraging class information for

di�erent use cases on the reduced feature set.

Both methods will be described in the following sections. Section 2.3.1 will review

the LDA method, which was used for the dimension reduction of the BOSS feature set.

Following this, section 2.3.2 gives an introduction to  -Means (KM) for the discovery

and extraction of meaningful structures in the data. A short overview of suitable

metrics for the evaluation of the clustering performance will be given afterwards.

2.3.1 Latent Dirichlet Allocation

In the area of Natural Language Processing and Text Mining, a typical task for a

collection of documents (corpus) is to extract semantic topics, which are initially hid-

den (latent), and use them to annotate the documents. The task is predominantly

implemented by applying LDA, frequently called Topic Modeling. This method is not

only limited to Text Mining applications. Several approaches exist in other scienti�c

disciplines, such as medical/biomedical or geographical areas, and software engineer-

ing (Jelodar et al. 2019).

The assumption behind LDA as a Topic Model is that every document in a corpus

can be represented through a distribution of latent topics and each of those topics

is de�ned by a distribution of words of the documents in the corpus. In essence,

LDA is an unsupervised learning approach and among other things, can be used as

a dimension reduction technique (Jelodar et al. 2019). Figure 2.3 visualizes the LDA

model introduced by Blei et al. (2003) to �nd  topics in a collection of documents � .

The process consists of several latent random variables and one observable, the word

countF3,= for a document 3 of a word =, while the latent variables need to be inferred.

The latter are V: as a  ×+ matrix for the distribution of words over  topics, where+

is the size of the lexicon (number of words); the distribution \3 of topics over documents;

the single topic assignment I3,= of a word = in a document 3 .
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Fig. 2.3: Graphical plate notation for the LDA model.
‡

Every round node is a latent random

variable, while the gray oneF3,= being the exception for the observable word count

of a document. The arrows show dependencies between variables. The rectangles

represent the corpus � of all documents, a speci�c document #3 in the corpus,

and  topics. The LDA model can be adjusted by two priors U , [, and a hyperparam-

eter  for the number of topics.

‡
Figure taken from Ho�man et al. (2013).

The LDA model is a generative process with repeated sampling for every variable

visible inside a rectangle box in �g. 2.3. The particular process can be described as

follows:

1.) Draw V: ∼ D([) for each topic : ∈ {1, . . . ,  }.
2.) For each document 3 ∈ 1, . . . , � :

a) Draw topic proportions \3 ∼ D(U).
b) For each word position = ∈ {1, . . . , # }:

i) Draw topic assignment I3,= ∼ Multinomial(\3).
ii) Draw wordF3,= ∼ Multinomial

(
VI3,=

)
.

The priors for the Dirichlet distribution [ and U in�uence its shape. A higher value

represents a more uniform distribution of topics/words, and a lower a more sparse

one. To estimate the parameters of the model, the exact inference for the posterior

distribution ? (I, \, V |F, U, [) has to be calculated with

? (I, \, V | U, [)
? (F | U, [) =

 ∏
8=1

? (V8 | [)
�∏
3=1

? (\3 | U)
(
#∏
==1

?
(
I3,= | \3

)
?
(
F3,= | V1: , I3,=

))
This step is usually approximated with e. g. Variational Inference @(I, \, V | _, q,W),
where instead substitutions are used for the di�erent distributions. This allows for

a simpler calculation, since the posterior is computationally intensive to solve. By

using the Kullback-Leibler divergence, the similarity between the original distribution

and its substitute can be approximated (Ho�man et al. 2013). Furthermore, the model

shown in �g. 2.3 is a smoothed variant of LDA by using the prior [. This prevents

words that do not occur in the corpus at the time of the creation of the model from

having a probability of zero in new, unseen documents. A precondition of LDA is the

representation of documents as discrete data, i. e. the BoW model. The sensor data in
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this thesis, transformed by the BOSS method, can be used for this approach. Section 4

will show the implementation of both methods combined.

2.3.2 K-Means

The purpose of clustering data can be versatile. Di�erent applications occur of which

according to Jain (2010), the following main categories can be de�ned:

• Underlying structure: gain insights (anomalies, hypotheses, identify features)

• Natural classi�cation: identify similarity among organisms

• Compression: organizing and summarizing data

The use case in this thesis is to gain insights of the underlying structure, speci�-

cally, to cluster the feature set obtained through the application of LDA on the BOSS

representation of the sensor data.

The goal of clustering is to divide a collection of = observations with ? features into

disjoint groups. A partition �1, . . . ,� needs to be found with

�1 ∪�2 ∪ . . . ∪� = {1, . . . , =}

and

�: ∩�: ′ = ∅ for all : ≠ :′

where each observation has to be a member of only one cluster (James et al. 2013,

pp. 385 sq.). All clustering algorithms, regardless of the speci�c method selected, aim

for similarity/isolation within the clusters, while achieving high discriminatory power

between them. Di�erent metrics exist to measure the performance of the clustering

results; section 2.3.3 will give an overview of the metrics used for the evaluation of the

models built in the thesis. This section will primary focus on the introduction of the

KM algorithm and its variation  -Means++ as the selected clustering method.

In general, there are two major groups of clustering algorithms, hierarchical and

partitional. The KM algorithm is a partitional clustering procedure. In contrast to the

hierarchical method, all clusters are searched for simultaneously, while the clusters in

a hierarchical model are found successively instead (Jain 2010). In the �rst step of the

KM algorithm, the hyperparameter for the number of clusters  is chosen. The goal of

KM is to minimize the within-cluster sum of squares

argmin

(

:∑
8=1

∑
G∈(8
| | G − `8 | |2

for all G data points according to the related cluster mean `8 . The standard naïve KM

implementation (Lloyd 1982) proceeds with assigning  data points called centroids
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randomly in the dataset, representing the initial cluster centers. In a next step, each one

of the remaining data points is being assigned to its optimum centroid. This is done by

calculating the squared Euclidean distance for every data point to each : centroid with

(
(C)
8

=

{
G? :

������G? −<(C)8 ������2 ≤ ������G? −<(C)9 ������2 ∀9, 1 ≤ 9 ≤ :}
where G? is a data point, (8 a cluster, and<8 and< 9 are corresponding centroids. This

process is iterative, after each iteration C all centroids are re-assigned again. The initial

centroids will be replaced by the mean value of the respective cluster for C + 1 with

<
(C+1)
8

=
1��� ( (C)8 ��� ∑

G 9∈( (C )8

G 9

After the new centroids have been calculated, the assignment of data points to cen-

troids/clusters repeats itself. The repetitions are done until the maximum number of

iterations is reached or no more changes occur (Aggarwal & Reddy 2014, pp. 89 sqq.).

One disadvantage of naïve KM is the random assignment of the initial cluster cen-

troids. At worst, the starting positions may heavily in�uence the convergence to an

optimum as well as the quality of the result. Arthur & Vassilvitskii (2007) present an

alternative approach called  -Means++, which makes use of careful seeding for the

initialization phase. Instead of setting all centroids at once, the allocation takes place

one after the other. Figure 2.4 shows an example illustration of the initialization phase.

After the �rst centroid has been chosen randomly, the next centroids will be selected

based on the highest probability. The probability for each point is calculated with a

D
2
-weighting, which is de�ned by

D(G)2∑
G∈- D(G)2

where for every data point G the distance to its nearest centroid will be calculated and

weighted by the sum of all distances. Through sampling of the obtained probabilities,

the procedure applies an interpolation step, which has the advantage of being more

resistant against outliers in the dataset. In addition, Arthur & Vassilvitskii (2007) show

an advancement compared to the standard KM algorithm in terms of time to conver-

gence, despite the e�ort of calculation for the initial allocation of the centroids. The

computational complexity of KM++ is lower with O(log:), by comparsion, KM has

O(= : C), whereby : is the number of clusters, = the number of observations, and C the

(maximum) number of possible iterations.

Choosing the number of clusters  for the algorithm can depend on several factors.

Section 4.3 will describe the method used to determine the optimal hyperparameter
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Fig. 2.4: Illustration of the KM++ initialization phase.
‡

In this example, two of the total of

 = 3 initial centroids have already been found, and the last one still has to be deter-

mined. Calculating and sampling the D
2
-weightings for the remaining data points

results in point 〈8, 4〉 with the highest probability as the third missing centroid.

‡
Figure taken from McCa�rey (2015).

setting given speci�c use cases. The KM++ algorithm forms the last piece of the ML

pipeline used in this thesis.

2.3.3 Clustering performance metrics

So far, the KM algorithm and its improved variant have been explained, as well as the

purpose of clustering in general. Given the nature of cluster methods in an unsupervised

learning setting, the parametrization and validation of the model normally does not rely

on known conditions, e. g. class labels, in contrast to supervised learning (Hastie et al.
2009, pp. 485 sq.). Therefore, either domain knowledge needs to be applied, targeted to

solve the speci�c use case, or some kind of performance evaluation can be considered,

aiming to compare di�erent modeling approaches. Various metrics exist, which enable

a quality comparison of the results produced by the clustering model. This section will

present a selection of scores to rank and compare di�erent models, to be able to choose

the best �tting one on basis of the metric evaluation.

The performance of a clustering result can be determined by „[...] procedures that

evaluate the results of cluster analysis in a quantitative and objective fashion“ (Jain &

Dubes 1988, p. 143). Here, a distinction can be made between metrics that evaluate the

structure of a single clustering partition and those that can make use of class labels

for the calculation of the score; these are also called internal and external validation
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measures, respectively (Tan et al. 2019, p. 571). According to Tan et al. (2019, p. 571),

di�erent goals can be achieved when evaluating clusters:

• Clustering tendency: non-random structure in the data

• Correct number of clusters

• Goodness of �t without external information

• Goodness of �t with external class labels

• Comparing two sets of clusters

Whereby 1–3 are strictly internal measures, while item four exclusively makes use of

external information, and the last one can be applied in both cases. The focus in this

thesis is placed on measures using external information, for the reason that class labels

for di�erent use cases are already available.

A major di�erence is that internal indices (validation measures) measure the cluster

cohesion (compactness, tightness) and cluster separation (isolation). In contrast, the

external indices compare the clustering partition to an already existing (external)

one (Tan et al. 2019, p. 572). The possibility of using external indices as a validation

measure has the advantage to obtain „[...] clustering results which can match the

categorization performance by human experts“ (Wu et al. 2009); this is one of the main

goals of the thesis. A wide range of metrics exists, of which an overview of the selection

used will be given.

Four di�erent external indices have been applied to the clustering results. By using

multiple metric scores without relying on a single one, a robust ranking can be imple-

mented, which will be explained in more detail in Section 4. The indices chosen are:

• Rand index (adjusted)

• Mutual Information (adjusted)

• V-Measure

• Fowlkes-Mallows index

The �rst two measures are one of the most widely used when working with known

class labels. Further, both are adjusted for chance, which leads to the following two

advantageous properties: (i) constant value of „0“ if the partitions (clusters & class

labels) are independent (random); and in return (ii) constant value of „1“ for identical

partitions (Romano et al. 2016).

Adjusted Rand index. Introduced by Hubert & Arabie (1985) as an advanced ap-

proach to Rand’s index (Rand 1971). According to Kuncheva & Hadjitodorov (2004),

the adjusted index can be de�ned by

ARI(�, �) =

∑2�
8=1

∑2�
9=1

(
#8 9
2

)
− C3

1

2
(C1 + C2) − C3

∈ [−1, 1]
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where a maximum score of „1“ indicates a perfect clustering result, pure random

labeling is indicated by a score of „0“, and „–1“ indicates non-random patterns worse

than the random one. The index is calculated with

C1 =

2�∑
8=1

(
#8 .

2

)
, C2 =

2�∑
9=1

(
# . 9

2

)
, C3 =

2 C1 C2

# (# − 1)

Two partitions, � and �, are compared. The number of observations in all clusters

is #8 for partition � and # 9 for partition �. The number of clusters in each partition is

denoted as 2� and 2� . An assumption is made, that both partitions are drawn randomly,

in which case the value would be at constant 0. If both partitions are not clustered

independently but identical, the value would be at 1.

Adjusted Mutual Information. Proposed by Vinh et al. (2010) as the Mutual Infor-

mation between two partitions* and + , adjusted by chance, de�ned as

AMI(U,V) = � (U,V) − E{� (U,V)}
max{� (U),H(V)} − E{� (U,V)} ∈ [0, 1]

where both partitions are identical with a score of „1“, and independent/random with a

score of zero. The AMI is calculated with

� (* ) = −
'∑
8=1

08

#
log

08

#
, � (* ,+ ) =

'∑
8=1

�∑
9=1

=8 9

#
log

=8 9/#
08 18/# 2

where � is the entropy of a partition, and � the mutual information between two

partitions. Being an adjusted index, the result value shows the same pattern with a

constant value for identical or independent clusters.

V-Measure. Published in Rosenberg & Hirschberg (2007) to describe the validity of

a clustering result. The V-Measure is the harmonic mean of two additional objectives,

homogeneity and completeness. Both have a di�erent desirability regarding the outcome

of the clustering: homogeneity scores high if the clusters are pure, i. e. each cluster with

observations of the same class only; the completeness measure aims for all members of

a class in the same clusters, independent of other observation from di�erent classes in

that cluster. The V-Measure as the harmonic mean of both, represents the trade-o�

between a clustering partition with every observation gathered into one large cluster

(high completeness), and a partition where all observations are exclusively in their own

cluster (high homogeneity). The de�nitions for homogeneity ℎ and completeness 2 are
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as follows

ℎ =


1, if � (�, ) = 0

1 − � (� | )
� (�) , else.

, 2 =


1, if � ( ,�) = 0

1 − � ( |�)
� ( ) , else.

where � (�, ) = 0, with  being the cluster partition and � the class labels, is the

optimal case for the homogeneity score. A result of zero for the entropy represents

pure clusters. Otherwise, the value gets normalized by the maximum reduction of

entropy � (�). In contrast, the completeness score is interpreted as the opposite of the

homogeneity value. The V-Measure is thus de�ned by

+V =
(1 + V) ℎ 2
(V ℎ) + 2 ∈ [0, 1]

which is the harmonic mean of both, homogeneity and completeness, with a weighting

factor V . For V > 1, completeness has a greater impact, and homogeneity for V < 1. The

value range of the score is similar to the one of Mutual Information.

Fowlkes-Mallows index. Introduced by Fowlkes & Mallows (1983) can be de�ned

according to Halkidi et al. (2001) as

FM =
0

√
<1<2

∈ [0, 1]

where the value range of the score is similar to the one of Mutual Information too. The

index is calculated with

<1 =
0

(0 + 1) , <2 =
0

(0 + 2)

where 0 is the number of observations with identical cluster memberships in both

partitions, 1 the number of observations in an identical cluster in one but not the other

partition, and 2 as the opposite of 1.

For calculating clustering metrics, often times a contingency matrix can be helpful.

The matrix provides a quick evaluation of the results obtained through a clustering

procedure. Table 2.1 shows an example of a contingency matrix. Given a dataset,

two partitions are present. The �rst one % through the application of a clustering

algorithm, containing the clusters, and the other as a known ground truth � with

the class labels to compare against. In % , the number of obtained clusters is denoted

as  , and for � the number of classes as  ′. Each cluster is shown with its number of
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Tab. 2.1: A contingency matrix for the evaluation of clustering results.
‡

The table shows two

partitions, % produced by a clustering algorithm, and � as the known ground truth

containing the class labels. The number of clusters and classes is denoted as  

and  ′, respectively. The number of objects in each cluster %8 for every class � 9 is

denoted as =8 9 . This allows to read the overlap between both partitions.

‡
Own table based on Wu et al. (2009).

Partition �

Partition % �1 �2 . . . � ′
∑

%1 =11 =12 . . . =1 ′ =1.

%2 =21 =22 . . . =2 ′ =2.
...

...
...

. . .
...

...

% = 1 = 2 . . . =  ′ = .∑
=.1 =.2 . . . =. ′ =

contained observations for every %8 cluster and each class� 9 as =8 9 (Wu et al. 2009). This

allows for a simple display of overlap between both partitions.

The section provided an overview of cluster evaluation methods, which are being

used in this thesis. Based on the scores provided, the models can be ranked and the

best one picked according to its performance. The class labels used for the external

validation measures depend on certain use cases, presented later on in section 4.
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This section uses the publication of Konstantynovski et al. (n. d.) as the single source

of explanation, if not stated otherwise. This speci�cally includes everything regarding

the hardware setup and the description of di�erent data analysis methods for the exper-

iments. The data worked with in this thesis was made available by DLR-PI
1

(„German

Aerospace Center“).

3.1 Experiment design and device setup

To get an understanding of the data-generating process, it is �rst necessary to show

the procedure of sampling and collecting data with the device. The experiment consists

of speci�c steps, which are identical for every sample that is being tested. These steps

follow a �xed time schedule which in�uences the structure of the data, described

in later sections. Therefore at �rst, the course of the experiment will be explained

accordingly. For the hardware perspective, a quick introduction to the device setup

and its sensors will be shown afterwards.

3.1.1 Data-generating process

Given a substance of unknown nature, hereafter also referred to as analyte, several

ways of determining its risk value, e. g. danger of explosion, can be taken. For the

device used in this case, a standardized procedure is applied, which ensures consistent

data quality across all experiments.

For every analyte, multiple samples are taken. One individual sample is a dissected

subset of the analyte. Every sample will be part of the decision process for the analyte.

The process can be broken down into four essential steps:

1.) take # samples of an analyte

2.) run the experiment with the device for every sample G= ∈#
3.) apply a predictive model, e. g. binary classi�er, on the data obtained from

each sample

4.) the majority vote of all samples determines the outcome (explosive/benign) for

the analyte

As an example for this binary classi�cation scenario: an unknown substance would be

declared as explosive, if at least 6 out of 10 samples are detected as positive/explosive

by the predictive model. The prediction takes place in an o�ine setting, after the

experiments ended and the data has been saved persistently to disk.

1
Deutsches Zentrum für Luft- und Raumfahrt e. V., Institute for the Protection of Terrestrial Infras-

tructures.

20
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An important assumption is that measurement errors, be it by the operator or the

device itself, cannot be fully excluded. For this reason, it is required to do the sampling

of the analyte multiple times, e. g. from 3 up to 10 times. This ensures an error reduction

if in one or some of the samples sensor errors occur during the experiment or di�erent

types of hardware and/or software faults happen. A single sample measurement of an

analyte is also referred to as a run. For every analyte, each run takes place independently

and successively, one after the other, with the important fact that the samples originate

from the same single analyte/substance. This leads to

G1, G2, . . . , G= ∈ R9

where every run G8 includes measurements from nine sensors. Hence, each run has a

multivariate property.

To be able to make measurements of a sample, some sort of chemical reaction needs

to be triggered. For this purpose, the sample gets heated in a speci�c chamber of

the device. The reaction to the thermal activation can then be measured with the

sensor setup. A custom software on the device controls all steps needed to start and

end a run. Table 3.1 shows the time sequence for an experiment with the device.

In essence, the schedule can be broken down to three sections, where each section

consists of di�erent steps. In the �rst section within the interval of [0, 119] seconds, the

device performs a self-test, checking the sensors and other critical system components.

Tab. 3.1: Time sequence used to perform an experiment run (time in seconds). In the �rst

section up to step 5, a self test for the system is being done. Within the second part

of step 6–8, the actual measurement of the sample takes place. The last two steps

start a self-cleaning procedure.

Step nr. Time [s] Description Cumulative time [s]

1 10 Flushing the reaction chamber 10

2 30 Flushing the gas sensor chamber 40

3 1 Sampling blank 41

4 30 Measuring blank sample 71

5 48 Flushing the gas sensor chamber 119

6 12
Thermal activation of the sample, homoge-

nization of the gas phase

131

7 1 Sampling 132

8 30 Measuring the sample 162

9 360 Flushing both chambers 522

10 60 Flushing the gas sensor chamber 582
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During (119, 162] seconds, the thermal activation of the sample takes place. Especially

this section is of most use for the data analysis part further described in section 3.3.

In (162, 582] seconds, the last two steps are being used to clean the chambers and pipes.

3.1.2 Description of the hardware

The device which has been used for the experiments can be seen in �g. 3.1. In the

reaction chamber the thermal activation of the sample takes place. Attached to this

chamber are three physical sensors: pressure, and the photodiodes for infrared and

ultraviolet light. The emitted gas �ows via pipes to another chamber, where Metal-

oxide (MOX) gas sensors are located. The MOX sensors are a particular subcategory,

which are able to detect even small amounts of gases, and are especially inexpensive to

produce (Konstantynovski 2018, p. 1). This kind of setup comes with a high degree of

modularity and extensibility; being able to quickly replace defective sensors or other

hardware components allows for a robust operational capability.

The complete sensor setup can be found in table 3.2. In the case of gas sensors,

multiple manufacturer models have been deployed. Not every sensor responds to the

same type of gas. For example S7, S8 and S9 are able to detect Nitrogen Oxide, while

S5 responds to Methane (Konstantynovski 2018, p. 67). Given the circumstances of an

Fig. 3.1: Photographic view of the device electronics.
‡

Physical sensors and gas sensors

are separated from each other. While the latter comes with its own chamber, the

physical sensors are attached directly to the reaction chamber.

‡
Figure taken from Konstantynovski et al. (n. d.).
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Tab. 3.2: Di�erent sensors which are built into the detection device. The �rst three sensors

measure physical activities (pressure and light) and are attached to the reaction

chamber, in which the thermal activation of the sample takes place. The remaining

six gas sensors are located in a separate chamber and measure the concentration of

di�erent types of gases in the air.

ID Type Target Name

S1 light ultraviolet BPW21R

S2 pressure excess pressure AK2

S3 light infrared PT511-2

S4 gas NOG , O3 UST-5333

S5 gas CH4 AS-MLK

S6 gas NOG UST-Kosta 6

S7 gas NOG UST-Cologne

S8 gas NOG AS-MLN

S9 gas NOG UST-7333

unknown substance, the combination of di�erent gas sensors is necessary to achieve

the broadest possible coverage.

Regarding the time sequence schedule shown in table 3.1, physical and gas sensors

di�er in the length of the recorded measurements. While gas sensors output data over

the whole time frame of the experiment (582 seconds), physical ones only measure

in the interval [119, 122) seconds, starting from step 6 onward for 3 seconds, stopped

shortly after the thermal activation of the sample takes place. Additionally, both sensor

types operate at di�erent frequencies. Physical sensors record with 10.000 Hz and gas

sensors with 500 Hz. This leads to di�erent time lengths, which needs to be considered

for the data preparation steps described further in section 3.2.2.

3.2 Overview of available data

In total, 27 analytes were sampled with the device, of which 21 are explosives and

6 are benign substances.
1

This data was used by Konstantynovski et al. (n. d.) for the

development of a decision-making algorithm in a supervised learning setting. The

algorithm is able to distinguish between harmful explosive substances and benign ones

with a very high detection rate. For this classi�cation task, a train and a test set have

been used. The train set consists of 13 explosive and 4 benign analytes. For each of

the substances 10 runs have been conducted. In contrast, the test set consists of 8

explosives and 2 benign analytes with only 3 runs for each substance.

1
A detailed listing of all analytes can be found in table A.1 on page 64.
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3.2.1 Dataset structure

The data obtained through the experiments consists of sensor responses in form of

multiple TS. For every single one of the nine sensor responses, a TS gets written to a

table. Each table holds one run. Given the experiment size of 27 analytes, there are

in total 170 runs for the training set and 30 for the test set. The test set holds up to

270 single TS and the training set up to 1.530. The data in its raw version can be seen

in table 3.3. Combining measurements for gas and physical sensors in the same table

Tab. 3.3: An example of the raw data of the sensor responses. The time duration di�ers from

physical (C1,2,3) to gas (C4,...,9) sensors. Therefore, missing values („n. a.“) occur for

physical sensors. Furthermore, the timestamps for the start of the recordings are

not equal between the two groups.

TimeC=1 SensorC=1 TimeC=2 SensorC=2 . . . TimeC=9 SensorC=9 Run Analyte

119,0000 8831 119,0000 40146 . . . 0,000 23746 1 -

119,0001 8823 119,0001 40104 . . . 0,002 23832 1 -
...

...
...

...
...

...
...

...

121,9999 9437 121,9999 41501 . . . 59,998 23780 1 -

n. a. n. a. n. a. n. a. . . . 60,000 23773 1 -
...

...
...

...
...

...
...

...

schema leads to inconsistent results. The sensor response of the physical sensors gets

recorded in the time frame of [119, 122) seconds instead of 0–582 seconds. In addition,

the frequency of 10.000 Hz is higher by a factor of 20. This results in di�erent lengths

for the TS, which makes a new data format necessary before continuing to work with

the data.

3.2.2 Data preparation

This section will illustrate the process of transforming the raw data into a more usable

format. The steps explained in particular are:

1.) New data layout

2.) Interpolation of outliers

3.) Downsampling

Every single one of the three steps are fundamental when working with the dataset

and will be explained brie�y.

To work with the data, the tables need to be converted �rst. Therefore, a single,

uniform time index column needs to be provided to avoid redundancy. The TS should

either be stored in a wide or long table format to achieve a tidy data format. This
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simpli�es the handling for following steps, like data analysis or the extraction of

features (Wickham 2014). The wide format prefers rows with (sensor) values of the

same point in time. This requires a split between the two groups of physical and gas

sensors into separate tables, because of di�erent time index values. The result would

be identical to table 3.3, only with a single time column instead, and two resulting �les

(S1–S3 & S4–S9). Alternatively, the long format can be used, of which an example can

be seen in table 3.4. This allows to store TS of arbitrary length in one table. Using this

Tab. 3.4: Long data format for the TS measurements. This data format allows to store TS of

arbitrary length in one table.

Analyte Run Sensor Time Value

- 1 S1 119,0000 8831

- 1 S1 119,0001 8823

...
...

...
...

...

- 1 S9 582,0000 24654

format has the advantage of storing both sensor types in the same table schema, as

opposed to two di�erent �les.

When running experiments with the device, some sort of signal disturbance can

occur, which may manifest itself through (unwanted) noise. The reasons for this

are diverse. It is important to clean the sensor signal of any disturbance, as good as

possible. By doing so, the valid part of the sensor response should not be a�ected by

the procedure, but the corrupt parts should be diminished e�ectively. Cleaning the

signal of unwanted noise will be especially important for the extraction of features or

other methods applied to the data (Reimann & Schütze 2013, pp. 84 sq.). As an example,

�g. 3.2 is showing the same signal before and after the removal of an interference. The

plot on the top shows a disturbance in the sensor response at the very beginning. On

the bottom, the pattern has been removed and is not visible anymore. To detect those

kind of outliers in the signal, the Grubbs Test (Grubbs 1950) is applied to subsections

of the sensor response. The two-sided test is used to detect outliers in both directions

and it is de�ned by

� >
# − 1
√
#

√√√
C2
U/(2# ), #−2

# − 2 + C2
U/(2# ), #−2

with a signi�cance level ofU = 0,05. The statistical test needs to be applied to subsections

of the signal, which have to be large enough to detect valid outliers, but not chosen

too large, so that no outliers are found anymore by the test. The sample size was set

to # = 500 data points, after trying various values and inspecting the quality of the

results. Given the signi�cance level U and the sample size # , the procedure is applied
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Fig. 3.2: An outlier caused by interference in the sensor response (arbitrary unit on y-axis).

Both plots showing the sensor response of the pressure sensor for the �fth run of

the analyte Geosit. The �rst one (A) shows a signal interference right at the start

at 119 seconds, causing an unusual high peak in the recorded measurements. In

the plot on the bottom the pattern is not visible anymore, it has been removed by

applying an interpolation procedure.

to the complete TS. For this purpose, a sliding window was used, which increments by

50 indices. Starting from the beginning {G1, . . . , G500}, to {G51, . . . , G550} until the end of

the TS. Every identi�ed outlier will be replaced by interpolating the value according to

| G8−1 − G8+1 |
2

+min(G8−1, G8+1)

where G8 is the given outlier. This is a pre-processing step that should be applied to

the data prior to any other step, since single or multiple outliers could distort the

application of the averaging methods followed next (Reimann & Schütze 2013, p. 84).

After the removal of outliers, all TS undergo a reduction of the sampling rate,

i. e. change of frequency. This will allow faster processing times and a further re-

duction of remaining noise as a result. The procedure for the reduction of the sampling

rate is split up according to the two sensor types. For physical sensors, the original

frequency rate of 10.000 Hz will be reduced to 500 Hz; for gas sensors, the sampling

rate gets reduced from 500 Hz down to 2 Hz. This is done by aggregating data points in
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Fig. 3.3: Downsampling of a sensor response (arbitrary unit on y-axis). The plots show

a signal of the UV sensor (S1) for the �rst sample of the analyte HMTD. On the

bottom (B) the downsampling procedure has been applied.

a moving window for the full length of the TS, similar to the step of identifying outliers,

although without overlapping windows. The arithmetic mean will be calculated for

each window as an aggregation function. The targeted sample rate can be reached

by setting the window size accordingly. For gas sensors, a window size of # = 250

will result in a sampling frequency of 2 Hz. The window size for the physical sensors

needs to be set to # = 20 for a reduction of the sampling rate down to 500 Hz. After

the reduction step, the length of the TS for physical sensors went down to 1.500 values

from 30.000. Likewise, the data points for the measurements from gas sensors were

reduced from 291.000 to 1.164. Figure 3.3 visualizes an example of the downsampling

procedure. The top panel (A) shows the signal of the UV sensor (S1) for the �rst run of

the analyte HMTD. On the bottom (B), the downsampled version is visible.



3 Dataset 28

3.2.3 Sensor response

To visualize the data produced by the experiments, each sensor response
1

of a run can

be plotted as a single TS. Figure 3.4 gives an example for the gas sensor UST-7333 (S9).

The plot shows the measurement for the �rst run of the analyte Pikramid. The orange

dashed lines represent the transition between all three main sections of the experi-

ment (table 3.1). In this example, shortly after the thermal activation, a clean response

from the sensor to the gas emissions can be seen at around 130 seconds. Also noticeable

is the strong increase of the signal showing at around 520 seconds, at the time when

the self-cleaning procedure starts and the chambers are getting �ushed. This indicates

the recovery of the sensor back to its usual state.

An example for the sensor response given by physical sensors can be seen in �g. 3.5.

The plots show the response of the UV light (A) and pressure (B) sensor to a sample

from the analyte PETN. The strong increase in the signal happening shortly after

120,5 seconds indicates a clear reaction of the sample to the thermal activation. For the

pressure sensor, a decrease after the signal peak can be observed. In contrast to this,

the UV sensor shows a smaller, second peak at around 121 seconds. This is due to the

remaining glow of the heater in the reaction chamber.
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Fig. 3.4: A typical response from a gas sensor. The plot shows the measurement of

UST-7333 (S9) for the �rst run of the analyte Pikramid. Marked in orange are the

transitions between the three di�erent sections of the time sequence schedule.

The response to the heating of the sample, as well as the recovery of the sensor is

visible at around 130 and 520 seconds, respectively.

1
All sensor values (y-axis) shown in this thesis are without unit and on an arbitrary scale, based on

the electronic hardware circuit of the device.
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Fig. 3.5: A typical response from physical sensors. Both plots show the measurements for

the �rst sample of the analyte PETN. On the top panel, the sensor response of the

UV light sensor can be seen; the bottom panel shows the response of the pressure

sensor.

In some cases, a gas sensor might not show a valid response, due to the type of gas

being emitted or to some kind of malfunction. This can be determined by e. g. plotting

the signal. The response is often times easy to distinguish from a clear response and

can be spotted by eye. Figure 3.6 gives an example of sensor UST-5333 (S4) showing

no response. The plot is taken from the �rst run of the analyte Geosit. All data

points scatter around the mean value of the signal, which suggests that no valid sensor

response is produced. Especially when extracting features from TS data, it isimportant to

identify measurements with no valid sensor response for reasons covered in section 3.3.

3.3 Previous methodology

So far, the procedure to classify an analyte according to its explosion hazard was done

by extracting features of points in time for each sensor response. A classi�er was

developed by Konstantynovski et al. (n. d.) based on those extracted features, achieving

high detection rates. This section will mainly focus on the extraction part of said

features. The later course of the thesis will provide an alternative way of feature

engineering (introduced in section 2), extending the current work of binary classi�ers,

applied to a di�erent use case.
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Fig. 3.6: Sensor showing no response to the sample. The measurement originates from sen-

sor UST-5333 (S4) for the �rst run of the analyte Geosit. Looking at the y-axis it can

be seen that all data points scatter around the mean value of the signal, indicating

no valid pattern.

The part of extracting features relied mostly on domain knowledge, such as the

functionality of the hardware and sensors or certainty about the quality of di�erent

sensor responses. Initially, it is required to do an inspection of the data at �rst and

decide on a proper extraction process. The inspection of the TS should correctly identify

sensors showing no valid response, as exempli�ed in �g. 3.6. Many possibilities exist to

detect non-valid signals in MOX gas sensors. In the course of the thesis, a method has

been developed, showing promising results when comparing the very beginning of the

signal response (step 1) with the phase of thermal activation and sampling (step 6–9).

For both sections, the Signal-to-Noise Ratio (SNR) can be determined, which is de�ned

by
`/f. In a second step, the values can be used for the calculation of a threshold with

SNR[0,10] − SNR[119,522]
SNR[0,10]

whereby a signal with a result of ≥ 0,5 is declared as valid. Figure B.1 on page 65 shows

an example for the validation of the sensor response for two di�erent analytes. The

�rst 10 seconds (Step 1) of the signal are chosen as a reference, since the chamber of

the gas sensors is still empty. The sensor output of this interval is regarded as noise

and can be compared to steps 6–9 to detect any signi�cant di�erence in terms of SNR.

If by this procedure a sensor output was declared as not valid, every feature extracted

of this speci�c TS signal got set to the numeric value of „0“ afterwards.
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Up to �ve features were de�ned for the extraction process. Depending on the sensor

type, only a subset of two features were extracted. For any TS produced by gas sensors,

the complete feature set was considered. Physical sensors relied on only the �rst two

in total. The features de�ned by Konstantynovski et al. (n. d.) are:

a) global extremum of the 1
st

derivative

b) time in seconds for reaching (a)
c) value at 121 seconds corrected by the baseline value at 71 seconds

d) value at 149 seconds corrected by the baseline value at 71 seconds

e) time taken to recover to 50 % of the value at 162 seconds

Given the number of 3 physical sensors and 6 gas sensors, 36 features in total could

be extracted for each run of an analyte, since each run is multivariate and consists of

9 TS measurements. This process is visualized in �g. 3.7. The plots show an example

for both sensor types of the analyte TNEB. It can be seen that a prior inspection of

the signal is necessary; using the features extracted from non-valid signals would lead

to a distortion in the feature set. Table 3.5 shows an example of the feature set with

arbitrary values. For each run of every analyte, all 36 extracted features are being

concatenated into a single vector, enabling the use of conventional ML methods.

Fig. 3.7: Example for the feature extraction procedure.
‡

The two plots in the top demon-

strate the extraction of the �rst two features (a) and (b) for both sensor types. For

feature (c) and (d), the plot in the bottom left shows the required baseline value (8)
and the two di�erent points in time (9) and (10). The last plot gives an overview

for the extraction of the remaining feature (e) with the baseline-corrected point in

time (13) and the duration (14) to recover to 50 % of its value (15).
‡

Figure taken from Konstantynovski et al. (n. d.).
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Tab. 3.5: Example of the feature set concatenated into single vectors. The table shows arbi-

trary values for the features as concatenated vectors for the runs of two analytes -

and . . For each run = every feature 9 of a sensor 8 is �attened into a single vector.

This results in a feature vector with 36 variables of all 9 sensors of every sample of

an analyte. In addition, the labels are given for a binary classi�cation task.

Sensors

S8=1 S8

Analyte Run F9=1,8=1 F9=2,8=1 . . . F9,8=1 F9=1,8 . . . F9,8 is explosive

X X==1 123 99 . . . 120 30 . . . 50 1

X X==2 40 0 . . . 80 26 . . . 70 1

...
...

...

X X# . . . . . . . . . . . . . . . . . . . . . 1

Y Y= . . . . . . . . . . . . . . . . . . . . . 0

The obtained features were used to build a binary classi�er to distinguish between

explosive and harmless substances. The train and test set, as shown in table A.1 on

page 64, has been used to create and validate the supervised algorithm. The classi�er

consists of three successive steps. For each step a complete screening of all features

searches for those that are able to exclude the False Positive error type. To �nd the

best possible threshold value for each feature, the Receiver Operating Characteristic

curve (ROC) can be analyzed. Figure 3.8 shows an example of feature (a) for the pressure

sensor. The screening procedure results in a Recall of ~70 %, while still having a False

Positive rate of zero. The Recall can be used as a score for this feature to rank against all

remaining features in this step. Out of this subset of features with a False Positive rate

of zero, the highest scoring, according to its Recall, will get selected. After each step,

every sample classi�ed as explosive can be disregarded, since False Positives have been

fully excluded. For the remaining samples, the screening procedure will get repeated

up to the last third step. Every sample not determined explosive after the last step is

declared a benign substance.

The three features selected along with the corresponding threshold values were used

to validate the classi�er on the test set. Here, a detection rate of 90 % was achieved, with

one False Positive misclassi�ed. As a possible improvement for the training set, Cross

Validation could be used. This gives the opportunity to evade problematic scenarios

like over�tting the training set and would lead to a more robust implementation of

the algorithm (Hastie et al. 2009, pp. 241 sqq.). To avoid data leakage in this case, a

grouped variant of  -fold or Leave-One-Group-Out for the samples of an analyte

should be selected (Guts 2018). Further strati�cation of the folds would take care
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Fig. 3.8: Determining a classi�er value with the ROC chart. The example shows all quali�er

values and the optimal one (red dot) of feature (a) for the pressure sensor. This

value is determined by searching for the highest possibly Recall, in this case ~70 %,

with a False Positive rate of zero.

of the class imbalance. Alternatively, a 50:50 ratio of positive and negative exam-

ples in both sets should be achieved, to avoid the need of strati�cation or any other

re-balancing countermeasures.
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The implementation of the methods proposed for the dataset (section 2) will be ex-

plained in the following sections. The use of ML algorithms can be versatile, and

intended use cases are often times very di�erent across the various domains (Martínez-

Plumed et al. 2019). In general, the planned execution of those algorithms on a dataset

is also called a (Machine Learning) pipeline, where data is transformed sequential over

multiple de�ned steps. Various guidelines and patterns exist for building those kinds of

pipelines. This thesis will make use of one of the most common approaches (Nisbet et al.
2018, p. 40): CRoss-Industry Standard Process for Data Mining (CRISP-DM), developed

by a consortium of industrial companies, and �rst introduced by Chapman et al. (2000).

The process paradigm serves as an independent guidance for robust implementations

and applications of ML in an industrial setting. Figure 4.1 shows an illustration of this

approach. The model is divided into six successive stages:

i) Business Understanding

ii) Data Understanding

iii) Data Preparation

iv) Modeling

v) Evaluation

vi) Deployment

As indicated by the �gure, CRISP-DM shows an iterative pattern. This is in some part

due to the nature of ML, being dependent on constant training with more or new data to

achieve reliable predictions/results. The arrows visible in �g. 4.1 point out dependencies

between particular stages/steps. Given the current progress, some stages are under

permanent change and need regular adjustments based on feedback of di�erent stages

in the up- or downstream of the process path. Excluded from this is the last and �nal

step „Deployment“, which completes the Data Mining project.

The use of CRISP-DM in this thesis is applicable especially to pre-processing tech-

niques introduced in section 3. Furthermore, the methods described in section 2 can be

assigned to their corresponding stage. In case of the �rst stage of CRISP-DM, „Business

Understanding“, already several related publications exist, describing the problem

statement in a detailed way (Konstantynovski et al. 2017; Konstantynovski et al. 2018;

Konstantynovski et al. n. d.). The proposed solutions and goals can be summarized

as a binary classi�cation problem. For that purpose, a speci�c device was built and

improved over time, to be able to produce meaningful data (see section 3.1). This data

consists of TS for which particular in section 2.2 several methods have been introduced

for the application on the datasets. Regarding „Data Preparation“, section 3.2 has shown

34
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Fig. 4.1: The CRISP-DM diagram
1

as an iterative process. Di�erent stages indicate successive

steps to be taken. The process illustrates the approach of a Data Mining project

in an iterative manner. It may be necessary to apply knowledge gained through a

certain stage in retrospective to past steps, and rede�ne the outline of those steps

again.

steps to transform the data to a more usable format and apply the necessary prepro-

cessing on the signals, e. g. downsampling, and interpolation of outliers. Following

this section with stage 3, „Data Preparation“, continues from here on, providing a new

method, suitable to work with the ML algorithms selected in this thesis. Afterwards,

the BOSS procedure proposed in section 2.2.2 for the extraction of features is shown

in context of the dataset. For stage 4, the modeling approaches are shown in their

implementation, containing the concepts of LDA and KM introduced in section 2.3. In

addition, a small overview is given of methods that were implemented but not capable

of reaching the same level of performance. Separately, section 5 will conclude with

the evaluation (stage 5) and discussion of the results. Regarding the „Deployment“ at

stage 6, the outlook in section 6 can point to possible ways of working in a real-case

scenario with the framework developed in this thesis.

1 https://commons.wikimedia.org/w/index.php?title=File:CRISP-DM_Process_Diagram.png&oldid=506972775, last ac-

cessed May 31, 2021.

https://commons.wikimedia.org/w/index.php?title=File:CRISP-DM_Process_Diagram.png&oldid=506972775
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4.1 Preprocessing

The structure of the available dataset described in section 3 consists of multiple runs

for a single analyte. This is due to the reason that in some samples impurities occur,

or hardware failures are happening during a run, i. e. sensor malfunction. As a re-

sult, the signals of an individual sensor may have a strong deviation across the runs

of the corresponding analyte. Several possibilities exist to reduce the in�uence of

erroneous data in the overall result. Section 3.3 presented a method for identifying

outliers based on the application of the SNR on speci�c intervals of the signal.
1

For

the application of the methods introduced in section 2 of this thesis, an alternative

approach has been taken: given multiple runs of an analyte, an aggregation is ap-

plied to reduce the TS down to a single entity; a method called Soft-DTW is used as

a geometry measure for a weighted averaging procedure. Soft-DTW was published

by Cuturi & Blondel (2017) and is a variant of Dynamic Time Warping (DTW) for the

calculation of a distance/similarity measure between TS pairs.

The DTW method tries „[...] to �nd an optimal alignment between two given (time-

dependent) sequences under certain restrictions“ (Müller 2007, p. 69). DTW between

two TS G and ~ can be de�ned as

DTW(G,~) = min

�∈�=,<
〈�,Δ(G,~)〉

where Δ(G,~) is a cost matrix with the alignment matrix � for both sequences. The

objective is to �nd an optimal warping path in the alignment matrix with the lowest

possible cost between both sequences. As a result, every sample point needs to be

compared, leading to a computationally complexity of O(#"), with # and " being

the total number of points of each sequence (Müller 2007, p. 72). Figure 4.2 shows

an example of DTW applied on di�erent signals of the pressure sensor for two runs

of the analyte TATP. In the top panel (A) both signals are visible, as well as the

alignment between them. Panel (B) shows the alignment matrix with the optimal

warping path found.

In contrast to DTW, the Soft-DTW (S-DTW) variant of Cuturi & Blondel (2017) uses

a soft-min operator W , which acts as a regularization parameter for the degree of

smoothing for the path �nding process. The S-DTW method is de�ned as

DTWW (G,~) = min
W
{
〈�,Δ(G,~)〉, � ∈ A=,<

}
with W = 0 being „default“ DTW without smoothing, and a larger W value corresponding

to a stronger degree of smoothing. In case of the data in the thesis, this is of great impact

1
See also �g. B.1 on page 65 for an exemplary visualization.
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Fig. 4.2: Visualization of DTW applied on two sensor responses.
‡

Both signals are being

produced by the pressure sensor for di�erent samples of the analyte TATP. In (A)
the obtained alignment between the signals is visible; (B) shows an alignment

matrix including the optimal warping path found.

‡
Visualizations created with Giorgino (2009).

for a clean result of the aggregation step. The S-DTW procedure can be implemented

as an aggregating clustering mechanism given the measurements for each sensor of

an analyte. This aggregation technique is called DTW Barycenter Averaging (DBA)

and was introduced by Petitjean et al. (2011). The DBA approach is an iterative method,

which applies DTW on each sequence pair to create an average representation. In a

second step, the overall mean gets updated, based on those representations. Figure 4.3

shows an example for the result of the procedure applied on sensor UST-5333 (S4)

for all samples/runs of the analyte HMTD. The �rst plot (A) displays all 10 sensor

responses, reduced to the interval of [119, 522) seconds. The self-test procedure [0, 119)
and chamber �ushing part [522, 582] are disregarded for all gas sensors. This is due to

the fact that only the bare reaction of the sample to the thermal activation is crucial

for the subsequent feature extraction task. The second plot (B) shows the result of the

Barycenter Averaging procedure for the runs.
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Fig. 4.3: Preprocessing by clustering sensor responses. The example shows all 10 runs of the

analyte HMTD for sensor UST-5333 (S4). The interval for gas sensors is reduced

to [119, 522) seconds, disregarding the self-test and chamber �ushing part of the ex-

periment schedule (table 3.1). In the top panel (A) each individual sensor response

is shown. The bottom panel (B) is displaying the result of the averaging procedure.

All TS are scaled to ` = 0 for each case (not shown in top panel) before continuing

with the aggregation step.

A key advantage of Barycenter Averaging in conjunction with S-DTW is the �exibility

of adjusting the W hyperparameter.
1

For the dataset in this thesis, a value of W = 10

has been chosen after inspecting the results of di�erent quali�er values. Since the TS

are equal in length (number of data points) for a speci�c sensor type (physical/gas),

simpler approaches have been considered; for example calculating the arithmetic mean

between each data point index across all runs. Compared to Barycenter Averaging,

several disadvantages occurred, e. g. the missing smoothing capabilities, or the �exibility

of adjusting to (time) shifted signals like with DTW.

The averaging procedure is the last component of the pre-processing pipeline, after

the outliers have been removed and the downsampling took place. The application

1
The Python implementation of Tavenard et al. (2020) has been used for the DBA procedure.
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of DBA is applied for all runs of an analyte grouped on each sensor. The decision to

reduce the amount of multiple measurements/runs down to a single TS for each sensor

of an analyte was made, because of the following reasons:

i) Smoothing out leftovers of noise in the sensor responses

ii) Expel any erroneous run by means of aggregation

iii) Get an average representation of each sensor by using the (Barycenter)

clustering approach

The transformed and aggregated dataset as a result of this pre-processing pipeline

forms the basis for the extraction of features. This corresponds to a portion of the stage

„Data Preparation“ of the CRISP-DM model. The next section will conclude this stage

with the creation of the feature set.

4.2 Feature extraction

In section 2.2.2 the BOSS algorithm has been introduced. The dictionary-based approach

is able to transform each single TS measurement into a BoW representation. Features in

the shape of symbols, i. e. strings of characters, are extracted from a rolling subsequence

across the full length of the signal. The application of this approach, being a method

of the area of ML, can be divided into two elementary steps: �t and transform. In

the �tting procedure the calculation of bins (bin widths) for the coe�cients of the

DFT takes place; ensuing the creation of symbols depending on the data provided.

Usually, for the majority of ML algorithms, the development of the model is done

by using a training and a test dataset, for the tuning and validation of performance,

respectively. In this thesis, the split of the available data into a train and test set

has been adopted from Konstantynovski et al. (n. d.).
1

This is due to the reason to

achieve comparability and being able to extend the work done so far using the same

preconditions. Further, the reasoning for the respective selection of substances in both

sets has been adjusted to the binary classi�cation scenario: analytes in the test set are

of a very particular (chemical) composition, making predictions more di�cult when

the model has been �tted with the more common types of substances to be found in

the training set.

A transformation of the data, i. e. the feature extraction part, for the training and the

test set, takes place after the model has been �tted on the training data. This step is

repeated for every individual sensor of the 9 in total. It is necessary to only �t the model

once (for each sensor) on the training set, as a common basis to obtain an identical

collection of symbols for the test set. Re-�tting the model again on the test set would,

in some cases, lead to symbols not present in one set or the other, thus, missing values.

1
Table A.1 on page 64 lists the complete data, divided into a train and test set.
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Fig. 4.4: Histograms of the BOSS transformation for Geosit and Urotropine. The Barycenter

and histogram for Geosit are visible in the top panel (A+B); Urotropine is shown at

the bottom (C+D). Both Barycenters display a highly identical pattern, which also

becomes clear when looking at the histograms of the the BOSS transformation.

The �tting and transformation of the Barycenter TS data is done group-wise on each

sensor. Figure 4.4 shows an example of the result for the transformation of the analyte

Geosit (top) and Urotropine (bottom) for sensor UST-5333 (S4). Both Barycenters (B+D)
show a very similar pattern, indicating no valid response of the sensor (as discussed in

section 3.2.3). The BOSS model is able to capture this similarity, which can be seen when

comparing both histograms (A+C). Another additional example is viewed in �g. 4.5.

Here, two Barycenters of TNT (top) and Tetryl (bottom), both very much alike, are

shown for the same given sensor. The histograms indicate a high similarity between

both TS. In contrast, compared to �g. 4.4, the distribution of symbols/features varies

between both groups. As can be seen in the examples, the BOSS transformation is able

to capture di�erent patterns and similarities in the TS data.

Regarding the customization of the BOSS model, the following hyperparameters were

applied for the application on the dataset of this thesis:

• word_size = 3

• window_size ∈ {0.15, 0.25}
• window_step = 1

• n_bins = 4
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Fig. 4.5: Histograms of the BOSS transformation for TNT and Tetryl. The Barycenter and

histogram for TNT are visible in the top panel (A+B); Tetryl is shown at the bot-

tom (C+D). Both Barycenters display a highly identical pattern, which also becomes

clear when looking at the histograms of the BOSS transformation.

An overall word size with a value of „3“ (string length) has been used. For physical

sensors, each subsequence was created with a window size of „0.15“, which corresponds

to a fraction of 15 % of the amount of all sample points in the TS. For gas sensors, the

window size has been increased to 25 %. The step size of the sliding window was

left at the default value of one sample point. The rationale for the selection of the

value for the word size hyperparameter is based on the observation that, most of

the time, only a few di�erent patterns of sensor responses existed. A higher word

size would lead to a redundant, unnecessary complex (feature) representation, and

a lower value is generally preferred for this hyperparameter (Schäfer 2015a, p. 118).

By inspecting and comparing results of several hyperparameter values for the BOSS

model
1

across all analytes for di�erent sensors, the most suitable value could be found.

This step relied partly upon the „Data Understanding“ stage of CRISP-DM, which included

an extensive data review process. Another customization of the BOSS model could

have been made via the hyperparameter n_bins, which corresponds to the depth of

available characters {A1, B2, . . . ,Z26} in the collection for the discretization/binning

of the coe�cient values. No measurable improvement could be determined when

1
The Python implementation of Faouzi & Janati (2020) has been used for the creation of the BOSS

model.
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comparing the results while increasing or decreasing the default value of „4“, implying

characters A–D. Regarding the window size hyperparameter for the subsequences, the

value was increased for the gas sensors, because of di�erent time scales between both

sensor types. The frequency for the downsampled gas sensors was 2 Hz, and for the

physical ones 500 Hz (section 3.2.2). Due to the nature of gas sensors, any pattern in

the signal, i. e. concentration of various gases in the air, extends over a larger time

range, when compared to physical phenomena, e. g. a sudden spike in pressure, or

�ashes of light. Therefore, the length of the subsequence (window size) should be

adjusted according to the circumstances, to be able to cover (visible) patterns in the TS

measurement (Schäfer 2015a, p. 118).

The obtained feature set has the same structure like the one described in section 3.3

at table 3.5. For every analyte, all feature vectors from all 9 sensors have to be concate-

nated into a single vector. Table 4.1 shows an excerpt of the BOSS transformation for

the training set. The numeric value for every available symbol (sorted alphabetically)

Tab. 4.1: Excerpt of a feature set generated by the BOSS model. The results of the transfor-

mation on the training set is shown. The count value for each extracted symbol,

with respect to the corresponding sensor, is contained in a (sparse) feature matrix.

An additional column containing labels with class memberships ~ ∈. is given for a

supervised learning scenario or, in this case, to be used as external information in a

clustering evaluation.

Symbols

AAA AAB DDC

Analyte S1 . . . S9 S1 . . . S9 . . . S1 . . . S9 Label

AN 8 . . . 0 3 . . . 0 . . . 0 . . . 0 ~

BP 0 . . . 0 0 . . . 0 . . . 0 . . . 0 ~
...

...

Tetryl 0 . . . 0 0 . . . 0 . . . 0 . . . 0 ~

Tovex 1 . . . 0 2 . . . 0 . . . 0 . . . 0 ~

is listed with its corresponding sensor (S1, S2 ... S9). In total, 64 symbols have been

extracted for each individual sensor. After concatenating every vector into a single

one for every analyte, the matrix grows in size up to 576 columns (features).

This section concludes the „Data Preparation“ stage of the CRISP-DM model. The

created feature set contains discrete numeric values, representing counts of symbols; it

shares the same properties as the BoW model. The next section will demonstrate the

application of LDA and KM utilizing this data structure to solve speci�c use cases in the

„Modeling“ stage. The methods used for the creation process of a model, as well as the

di�erent use cases will be presented in the next section.
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4.3 Application scenarios and selection of models

The provided features in the train and test set, containing the concatenated vectors for

each analyte, will be used for the creation of the LDA model. This �rst step in the ML

pipeline, after the preprocessing took place and the BOSS features have been generated,

serves as a technique for reducing the dimensionality of the (sparse) BoW representation,

as well as extracting new features from the data, i. e. latent topics. The reduction of

the number of features is a necessity when working with a clustering algorithm like

KM (Curse of Dimensionality, section 2.2.1), which will be applied subsequently to the

LDA method. The new representation obtained through the Topic Modeling approach

will be used in a clustering step with KM, utilizing di�erent class labels depending on

the selected use case; therefore, the use cases will be explained accordingly.

Figure 4.6 shows a schematic view of the data and ML pipeline deployed for the work

in this thesis. At the point of reaching the stage of �tting both models, LDA and KM,

the process is split up for the speci�c use cases.

Raw sensor 
data

pre-processing

Standardized
data

BOSS transformation

BoW
representation

LDA &
KM

model

fitting predict

Use case

Results

Fig. 4.6: Schematic view of the deployed data and ML pipeline. The pipeline shows the

process of preparing the raw sensor response data for the transforming step with

the BOSS method. Afterwards, depending on the given use case, both models, LDA

and KM, are �tted and evaluated by comparing the performance of using clustering

metrics in conjunction with the (external) class labels.

4.3.1 Use cases

In total, two use cases have been de�ned, based on the application of domain knowledge.

Both are being implemented independently, and only share the feature set of the BOSS

transformation as a common ground. The creation process comprises a pipeline, which

performs the training and evaluation part of the model in dependence of the supplied

class labels. The work done so far in the publications related to this dataset, focused on

the binary classi�cation setting of explosive and non-explosive substances. Section 3.3

presented the 3-step classi�er algorithm developed by Konstantynovski et al. (n. d.)

regarding this task. Further, some approaches have been made to identify individual

substances or groups of substances in terms of their chemical structure and similarity

among each other. Konstantynovski et al. (n. d.) tested Principal Component Analysis
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as a dimension reduction technique to obtain a 3-dimensional representation (�rst three

components) to visualize and search for any signi�cant patterns, i. e. groups/clusters.

This thesis will continue with the implementation of methods for the identi�cation

task of chemical substances.

In addition to the objective of a binary classi�cation scenario, two possible use

cases arise, through the expertise of domain knowledge, for the chemical substances in

the dataset:

A) Identi�cation of high-energetic explosives

B) Assigning substances into groups of similar chemical structure

For both cases, only the train set has been used. This is due to the reason that the

identi�cation and clustering of substances contained in the test set is less meaningful,

given the rather special chemical compositions. Nevertheless, section 5.1.2 added an

evaluation for the new proposed methods to test their usefulness as a binary classi�er

for the distinction between explosive and benign analytes.

The �rst case (A) of identifying high-enegetic substances can be understood as a

gradation of the explosive potential. Figure 4.7 shows a taxonomy of the explosives,

in which high-energetic
1

substances are listed as „primary explosives“, while lesser

energetic substances are known as „blasting explosives“ or „propellant charges“. The

following groups of analytes can be assigned for this use case:

i) very high-energetic: HMTD & TATP

ii) high-energetic: PETN

iii) explosive: AN, BP, RDX, Semtex, Tetryl & TNT

iv) insensitive explosives: Geosit, Pikramid, TNEB & Tovex

The assignment of the groups can be adapted to numeric labels as shown in table 4.1, in

order to evaluate the performance of ML models with the speci�c clustering performance

metrics of section 2.3.3. As for the second use case (B), the substances can be sorted

into the following 7 (chemical) groups:

a) Anorganic salt: AN, Geosit & Tovex

b) Nitro aromatic: Pikramid, TNT & TNEB

c) Nitramine: RDX & Tetryl

d) Nitrate ester: PETN

e) Peroxide: HMTD & TATP

f) Plastic explosive: Semtex

g) Sulfur, charcoal and potassium nitrate: BP

1
The di�erence between high and very high energetics is rather neglectable but listed for the sake of

completeness.
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Given the di�erent class labels, two pairs of the combination of LDA and KM will be

�tted separately to the dataset. Once trained, each pair is able to predict new, unseen

data, adapted to a speci�c use case.

The next section will present the speci�c implementation of both methods, LDA and

KM, to build a uni�ed ML model for the classi�cation of an analyte. The evaluation of

the results will be done in section 5.

Explosible
substances

Explosives
Explosive substances
not manufactured as

explosive
Primary explosives

Pyrotechnics

Blasting explosives

uniform

mixture

Propellant charge

Rocket fuels

Gunpowder

Fig. 4.7: Taxonomy of explosives by type of use.
‡

As an example, high-energetic substances

are listed as „primary explosives“. There are no substances from the categories

„pyrotechnics“ and „rocket fuels“ in the existing dataset for this thesis.

‡
Own �gure based on Konstantynovski (2018, p. 17).

4.3.2 Selected methods

This section will outline the reasons of selecting the ML methods LDA and KM.
1

The BoW

based sensor data, transformed by the BOSS model, has been used for the application

of LDA. The clustering procedure KM was used for the classi�cation of analytes in a

subsequent step, based on the obtained topics of the LDA method. A Grid Search was

utilized to �nd the optimal hyperparameter values for both algorithms, and to �t the

models according to the given use case.

1
The Python implementation of Pedregosa et al. (2011) has been used for the creation of both models.
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The reason for choosing LDA as one of the essential methods in the work of this thesis

was largely dependent on the BoW model obtained through the BOSS transformation.

As described in section 2, the representation of documents in the form of a BoW model

is one of the most common approaches in the area of Natural Language Processing

and Text Mining. The LDA method provides a way of reducing the dimension of this

structure, while extracting hidden, unknown topics, providing semantic relevance. In

contrast to the TS data in this thesis, which is being transformed via the BOSS method

into a BoW representation, there is no semantic meaning present, out of any topic

extracted. However, the LDA method can still be useful, without the need of semantic

relevance, and especially to reduce the dimensionality of the feature set in an e�cient

way. Alternative ways of working with this kind of discrete data structure exist, as

for example Singular Value Decomposition or Non-Negative Matrix Factorization.

Although compared to LDA, both methods do not grant the same degree of freedom in

regards to the hyperparameter combinations, when choosing or searching for the best

�tted model. The advantage of LDA in this case are two priors [ and U , allowing for a

higher granularity and in�uence on the ML model during the creation phase. For the

application of LDA in this thesis, the following hyperparameters have been de�ned for

the search space:

•  B n_components ∈ {2, 3, . . . , 32}
• U B doc_topic_prior ∈

{
 −1, 1, 2, . . . , 24

}
• [ B topic_word_prior ∈

{
 −1, 1, 2, . . . , 24

}
Both additional hyperparameters U and [ can (optionally) be set for the implementation

of LDA. As described, the data in this thesis does not provide any semantic indications

regarding the extracted topics, and therefore no prior knowledge for both, the topic-

word or document-topic distribution. For this reason, a hyperparameter search for

both priors has been included, in addition to the number of topics. In the default case

for both priors, a normalized value
1/ is used, depending on the number  of topics.

The decision of choosing an additional unsupervised learning algorithm as a predictor

for the class membership was mainly due to the reason of �exibility regarding the

number of resulting classes, i. e. clusters. Using a clustering method provides the ability

to freely de�ne a broad hyperparameter range for the number of groups/classes the ML

model can create in a given use case. This allows for a more versatile model, as opposed

to setting a �xed number of topics or clusters equal to the number of classes. In terms

of the implementation for KM, the hyperparameter  for the number of clusters was

not set to a �xed value for the search procedure, but a prede�ned search space, similar

to the implementation of the LDA model. This approach does not limit the amount

of possible clusters. Although regarding the number of clusters produced by KM, the
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minimum value would at least be at two clusters, and the maximum limited by the

number of observations # − 1.

Using this kind of implementation, the result may obtain more clusters than possible

classes. In the case of the data in this thesis, the use cases de�ned groups of analytes

based on domain knowledge. Although given the latent structure of the feature repre-

sentation and the nature of chemical substances, allowing more clusters than classes

might lead to a more robust result, since there still might exist some subgroups that are

not covered by the class labels. As long as the resulting clusters are homogeneous and

the clustering partition still provides an adequate completeness, this approach can lead

to a better performance. By using the unsupervised approach, instead of a supervised

one, a more �exible implementation is reached.

This section concludes the „Modeling“ stage of CRISP-DM. Section 5 will present the

evaluation of the results obtained in the Grid Search procedure. Several alternatives to

Grid Search exist, for example Random Search or more sophisticated approaches, like

Bayesian Optimization, which might have some performance advantages regarding

e�ciency and computational load. For the hyperparameter search in this thesis how-

ever, Grid Search, as a comparatively simpler method, was chosen, since the de�ned

hyperparameter space is rather shallow and less complex. Moreover, an advantage of

Grid Search is the evaluation of all possible hyperparameter combinations and there-

fore guaranteed �nding of the best possible quali�er values for the hyperparameters

provided in the search space.



5 | Results and evaluation

This section represents the „Evaluation“ stage of CRISP-DM and provides the results for

di�erent classi�cation scenarios, as well as a comparison between the di�erent models

created. At �rst, the performance of the selected methods will be shown in context of

the respective use case. Afterwards, a discussion of the results concludes this section.

5.1 Performance of selected methods

5.1.1 Identification of substances

In contrast to the detection of explosives, the identi�cation of chemical substances

is implemented after the classi�cation between explosive and benign analytes took

place. Since an already reliable solution exist, the models created for both use cases of

identifying analytes do not include any non-explosive materials; assuming that these

benign substances have already been sorted out in the process chain. This leads to an

increase in performance and simpli�cation of the model creation process, since fewer

classes have to be considered.

The V-Measure has been taken as a �rst indication for the goodness of the clustering

partition. Being the harmonic mean between homogeneity and completeness, the

V-Measure is more easier to interpret, compared to the other available scores. In

addition, the model with the lowest number of  clusters has been chosen, in the case

of a tie, avoiding unnecessary complexity.

(A) High-energetic explosives. The assignment of four possible class labels in this

use case was listed in section 4.3.1. All 13 explosives in the training set have been used

for this objective. Table 5.1 shows the result of the hyperparameter search. At the

top, the best scoring entry shows a slightly better score than the following entries. In

particular, the homogeneity score („h.“) is able to reach the maximum value. In return,

the completeness metric („c.“) is worse, compared to the other two. It has been decided

to choose the �rst entry for the hyperparameter combination. Although the other two

entries show better results for the remaining metrics, a higher homogeneity score is of

greater impact. This results in the following six clusters:

i) Geosit, Pikramid, TNEB & Tovex

ii) AN, RDX & TNT

iii) HMTD & TATP

iv) PETN

v) Semtex

vi) BP & Tetryl

48
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Tab. 5.1: Grid Search for the case of identifying high-energetic explosives. An excerpt of

the top three and the last result shows the performance by ranking the entries

according to their V-Measure score.

Hyperparameters

 -Means LDA Scores

Nr.   U [ Rand Mut. Inf. V-M. h. c. F.-M.

1 6 5 4 0,20 0,59 0,72 0,84 1,00 0,72 0,71

2 3 5 3 0,20 0,67 0,78 0,83 0,71 1,00 0,80

3 3 7 2 0,14 0,67 0,78 0,83 0,71 1,00 0,80

...
...

...
...

...
...

...
...

...
...

...

213.125 2 9 18 5,00 −0,09 −0,15 0,05 0,04 0,07 0,33

As opposed to the prede�ned number of four classes, two additional groups emerged.

First of to notice, is that insensitive explosives in cluster (i), the high-energetic ex-

plosive (iv), and both very high-energetics (iii) still remain in their own clusters. In

contrast, the group of the remaining explosives is split up accross cluster (ii), cluster (v),
and cluster (vi). At least the membership of AN in cluster (ii) can not be recognized

in the context of the use case, since this kind of substance should not be rated on

the same level of energetic potential like RDX and/or TNT, but below, isolated in a

single cluster. Regarding the remaining last two clusters (v) and (vi), all three analytes

should be combined into one cluster, which would increase the overall completeness

score of the clustering partition. Although, as an important �nding, all insensitive

explosives (lowest degree of energetic potential) and high-energetic substances could

be clearly separated from the rest.

In addition, it has been tested if a higher granularity can be applied to this use case.

For the class of the remaining explosives, a division into 3 subgroups can be made,

resulting in a total of 6 classes. Those new groups of classes are: (1) TNT & RDX; (2) BP,

Semtex & Tetryl; and (3) AN. The �rst two represent the highest degree of energetic

potential within this selection, beneath the high-energetic explosives, and the last

one can be placed above the insensitive explosives. Table 5.2 shows the result of

the Grid search procedure for the case of the expanded grouping, ranked after the

V-Measure („V-M.“) score. The �rst entry indicates a good performance score, compared

to the other 2 alternatives. The hyperparameters of the �rst entry have been adapted for

the model creation of the expanded variant of this use case. As a result, the following

clustering partition has been obtained:

i) Geosit, Pikramid, TNEB & Tovex

ii) RDX & TNT
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iii) HMTD & TATP

iv) PETN

v) Semtex

vi) BP & Tetryl

vii) AN

As can be seen, it is possible to isolate AN to its own cluster. There are no more

di�erences between this partition and the other one from before; Semtex (v) is still

separated from the actual group (vi) originally assigned by the class labels.

Tab. 5.2: Search results for the expanded use case of high-energetics. The result table has

been sorted according to the V-Measure metric.

Hyperparameters

 -Means LDA Scores

Nr.   U [ Rand Mut. Inf. V-M. h. c. F.-M.

1 7 5 4 0,20 0,89 0,89 0,96 1,00 0,92 0,90

2 7 6 4 0,17 0,89 0,89 0,96 1,00 0,92 0,90

3 8 5 4 0,20 0,67 0,75 0,91 1,00 0,84 0,74

...
...

...
...

...
...

...
...

...
...

...

213.125 2 9 18 5,00 −0,09 −0,20 0,07 0,05 0,14 0,19

The topics created by LDA can be visualized using a speci�c procedure called LDAvis,

developed by Sievert & Shirley (2014). Using this approach it is possible to see the

closeness and similarity between all topics and the most relevant terms, i. e. symbols,

in each individual topic. In this thesis, the interpretation of extracted symbols is

more di�cult compared to words/terms of natural language, due to lack of semantic

meaning. However, there may be multiple symbols of a speci�c sensor which occur

very frequently. Therefore, at least very predominant sensors can be interpreted as a

sign of importance for a given topic.

For the topic comparison and interpretation of symbols, the topic with the highest

probability has been assigned to each analyte. Since LDA produces a distribution of topic

memberships, this intermediate step is helpful for comparing topics. Figure 5.1 shows

the visualization of LDAvis
1

for the high-energetic use case. It is apparent that each topic

is well separated and there is no overlap between topics, which means that each topic

contains its own distinct set of symbols. Using the described hard-cluster approach by

assigning each analyte to the topic with the highest probability, the visualization can

be used as a �rst indicator for the goodness of the clustering partition. Only topic 3,

containing all four insensitive explosives, shows a clear result in this case. The rest of

1
The Python implementation at https://pypi.org/project/pyLDAvis/ has been used for LDAvis.

https://pypi.org/project/pyLDAvis/
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Fig. 5.1: Result of LDAvis for high-energetic materials. All topics are well separated from

each other.

the topics are mixed up between the high-energetic and remaining explosives, thus,

can only be properly separated by the subsequent KM algorithm. One factor worth

emphasizing is that the top-10 most relevant symbols in topic 3 originate solely from

gas sensors. In contrast, the top-10 for topic 2 has only one symbol of a gas sensor

present, but nine of physical sensors. In addition, no analyte was assigned to topic 1

using this hard-clustering approach.

(B) Similar chemical structure. For the use case of identifying substances of

similar chemical structure, section 4.3.1 de�ned seven groups for the explosives in

the train dataset. Table 5.3 shows the result of the Grid Search procedure for the

hyperparameters. Values of di�erent rankings have been tested for the implementation.

The (adjusted) Mutual Information („Mut. Inf.“) score has been chosen as the criteria in

this case, selecting the hyperparameters of the �rst entry for the implemented model.

Di�erent hyperparameters ranked by the remaining scores could not lead to satisfying

results. Overall, it was not possible to achieve a clustering partition with maximum

homogeneity, while still providing a low number of clusters. For this use case, the

following clustering partition has been received:

i) TNT

ii) Pikramid & TNEB

iii) Geosit & Tovex

iv) TATP

v) AN
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vi) BP

vii) PETN, RDX & Tetryl

viii) HMTD

ix) Semtex

It can be seen that cluster (vii) is impure. In addition, the partition in its entirety features

many clusters with only one member, resulting in a high homogeneity score („h.“),

and a lower completeness („c.“). Besides Semtex (ix) and BP (vi), all other groups are

incomplete and spread across the clustering partition. This use case is the most di�cult

one for the modeling approach, since the de�nitions of similar chemical structures are

not as unambiguous when compared to the the �rst use case, in which substances were

ranked after their (measurable) energetic potential.

Tab. 5.3: Results of the grid search for the use case of chemical structures. The performance

of the results has been determined by the (adjusted) Mutual Information score.

Hyperparameters

 -Means LDA Scores

Nr.   U [ Rand Mut. Inf. V-M. h. c. F.-M.

1 9 18 5,00 0,06 0,42 0,49 0,86 0,92 0,81 0,47

2 8 16 8,00 0,06 0,42 0,46 0,84 0,88 0,80 0,47

3 8 18 7,00 0,06 0,42 0,46 0,84 0,88 0,80 0,47

...
...

...
...

...
...

...
...

...
...

...

213.125 3 28 0,04 2,00 −0,14 −0,25 0,22 0,17 0,34 0,06

The quality of the results of LDAvis di�er compared to the use case from before.

Figure 5.2 shows the visualization of the topics obtained for the second use case.

Regarding the topic memberships, BP is the only member of topic 2, and well separated

from the rest, identical to the given class labels of the use case. In addition, the top-10

symbols in this topic originate from gas sensors only. Both Anorganic Salts, Geosit

and Tovex, are the only members of topic 3, although AN is missing as the third and

last member. Another topic worth mentioning is topic 16 containing the two Nitro

Aromatics Pikramid and TNEB, but without the third member TNT. Compared to the

predictions with KM, it can be seen that those two missing analytes, AN and TNT,

could not be correctly assigned in the subsequent clustering step either. Topic 10 in

particular, is the biggest topic with up to six members. The two analytes, HMTD and

TATP, are both assigned to separate, single topics.
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Fig. 5.2: Topics for the second use case visualized by LDAvis. Some overlapping is visible,

while some of the other topics are well separated.

5.1.2 Binary classification task

In this thesis, the work was focused on identifying substances based on the two

given use cases. As an addition, the developed method was tested in its capability to

distinguish between explosive and benign analytes. This was done to allow a perfor-

mance comparison with the binary classi�er of Konstantynovski et al. (n. d.). Table 5.4

shows an excerpt of the best three and worst scoring hyperparameter combinations

in the Grid Search procedure on the training set. First, the results were sorted by

Tab. 5.4: Hyperparameter search results for the binary classi�cation task. For the rank-

ing of the models, V-Measure has been chosen as a �rst indicator. The scoring

in this case is uniform across all scores, therefore the lowest value for both, the

hyperparameter  (clusters) and  (topics), was taken as an additional, second perfor-

mance indicator.

Hyperparameters

 -Means LDA Scores

Nr.   U [ Rand Mut. Inf. V-M. h. c. F.-M.

1 3 5 0,20 19,00 0,50 0,67 0,7 1 0,54 0,76

2 3 5 0,20 20,00 0,50 0,67 0,7 1 0,54 0,76

3 3 5 0,20 21,00 0,50 0,67 0,7 1 0,54 0,76

...
...

...
...

...
...

...
...

...
...

...

290.625 2 25 0,04 0,04 −0,03 −0,07 0,0 0 0,00 0,61
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the V-Measure („V-M.“), which has been predominantly used as an indicator for the

trade-o� between a clustering partition showing high homogeneity („h.“), while still

having a good overall completeness („c.“). All metrics clearly show a very uni�ed

scoring across the top rated models. As an additional criterion, the list was sorted in

ascending order by the number of cluster  (clusters) produced by the KM model, and

the number of topics  (topics) of the LDA model, to �lter out unnecessary complex

models (high number of clusters and/or topics), while still reaching the same level of

performance. In this case, the values of the 1
st

entry shown in table 5.4 were used,

resulting in the following clustering partition:

i) AN, BP, HMTD, PETN, RDX, Semtex, TATP, TNT & Tetryl

ii) Geosit, Pikramid, TNEB & Tovex

iii) Abrasive Cleaner, Sugar, Urea & Urotropine

As can be seen, no explosives and benign analytes are members of the same cluster,

leading to the highest possible homogeneity score of „1“. This has signi�cant impor-

tance for this use case, since a False Negative would have great consequences in the

decision-making process for the risk potential of an unknown substance. Another fact

to note is that while only two classes have been assigned (binary scenario), at least

three clusters led to the best performing model(s). Here, a similarity to use case (A) is

visible, in which insensitive explosives were de�ned as an isolated group in advance,

found in cluster (ii). All benign analytes remain together in their own, separate clus-

ter (iii), and the remaining explosives in cluster (i). The class labels assigned for this

use case consisted only of the two numeric values „1“ and „0“ for explosive and benign

substances, respectively. The pattern found here, of multiple (hidden) subgroups, was

described in section 4.3.2 as an advantage of the unsupervised approach, i. e. a variable

number of resulting classes.

For the binary classi�cation task, the test set was used as an additional validation

step. The performance compared to the 3-step classi�er algorithm was much worse,

and the capability of the model to distinguish explosive from benign substances can

not be recognized. Although it could be proven that the approach can lead to useful

results and further improvements, e. g. increase in size of the training samples, might

help.

5.2 Discussion

The evaluation showed very promising results regarding the �rst use case of identifying

high-energetic substances. This can be bene�cial in a real-life scenario, where those

substances with a high-energetic potential pose a particular danger. The second use

case was more di�cult to implement, since when compared with the �rst use case or
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the detection of explosive materials in general, the provided de�nitions do not grant the

same degree of discriminatory power. Especially for some analytes, multiple (cluster)

memberships may be possible, since details about the chemical structure of a substance

are often times not as deterministic. The de�nitions of the chemical groups presented

here are of the most general case. Variations are possible, but the performance shown

is a good indicator of the overall capability of the modeling approach. In addition, the

demonstration of the ability to apply the methods to the detection task of the binary

classi�cation scenario showed interesting results on the train set, but could not reach

an adequate performance when the �tted model was applied on the test set.

Like displayed in CRISP-DM, the results of the evaluation in�uence one of the earliest

stages, „Business Understanding“, to outline achievable goals of the project. In the

case of this thesis, the results and perspectives are shown and set in context of the

performance capabilities for the de�ned use cases. Especially for future work, an

increase in the available size of the dataset would probably be one of the easiest steps

to introduce, providing the highest potential on the outcome regarding the results.

The process chain of predicting/classifying a substance is based on the assumption of

pre-selecting the explosives out of all available analytes in the dataset. This can be done

by applying the already existing classi�er for this dataset, developed and published

independently from this work, introduced in section 3.3. Therefore, the developed ML

pipeline of this thesis can be implemented in a present decision-making framework.

Regarding the training/�tting procedure of the models chosen, there may be room

for improvement, especially in terms of the Grid Search procedure. Several more time

e�cient methods exist, that could be used instead, since the optimization procedure

for the hyperparameter search is independent of the ML models selected. However, no

increase in performance could be achieved as the implemented Grid Search already

covers the complete search space.

For the evaluation of the hyperparameters, most of the time, the V-Measure has

shown its potential as a reliable indicator for the clustering performance. The trade-o�

between homogeneity and completeness serves as a good insight about the quality of

the clustering partition. All remaining metrics were mostly used as a fallback.
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The aim of this thesis was to develop a framework for processing sensor data to be able to

classify unknown substances based on their chemical structure and energetic potential.

For this purpose, the necessary prerequisite steps have been shown, regarding the data

preparation and converting the raw data into a more usable (data) format. In addition,

the need of preprocessing has been demonstrated in context of the various sensor

responses, e. g. the interpolation or downsampling steps. Especially the averaging

method introduced for the implementation of the new proposed framework di�ers

greatly from the procedures applied in already existing publications regarding this

dataset. Several approaches of working with this data are possible. Especially for the

preparation and pre-processing stage, the chosen methods can vary greatly in their

implementation and are not �nalized. Depending on the context of use and the time

requirements, even better results may be obtained for the data cleaning stage of the

sensor signals. For the application of the methods chosen in this thesis, a suitable

set of tools could be found, which enabled a satisfying quality of the results for the

processed data.

A large contribution in this thesis was based on the development of an alternative

way for extracting features from sensor data without relying too heavily on domain

knowledge. In this context, the BOSS transformation has been applied on the TS data.

One of the greater advantages of this method is the ability to be able to regulate the

degree of noise reduction as well as complexity of the extracted pattern and obtained

feature set. This allows for an exploratory approach to be able to �nd the most suitable

hyperparameters for the given sensor data. The use of this approach has enabled

several new opportunities. One of the biggest advantages is the representation of TS

data through the BoW model. Many ML approaches have been developed to work with

this kind of discrete data structure, one of them being LDA, which was applied in the

context of this thesis. The LDA algorithm has a comparatively high degree of �exibility,

while transforming the feature set of the BOSS model into a lower dimensional space.

In combination with the KM algorithm, a search procedure has been performed to

�nd the best set of hyperparameters in combination for both models. In conjunction

with external class labels, given the speci�c use cases, the unsupervised approach

could be leveraged as a classi�er, using the resulting clusters as predictions for the

class membership.

The results obtained through this ML pipeline were mixed. For the use case of

classifying analytes according to their energetic potential, a good performance could

be achieved. Regarding the identi�cation of analytes based on their chemical structure,

a weaker performance was shown. Likewise for the additional test of the capability

56
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of detecting explosive analytes, a good model performance could only be achieved on

the training set, but applied on the test set, the predictions were not reliable. As an

outlook, there might still be a lot of room for improvement regarding the capabilities

of the proposed framework. As for the use case of chemical structures, increasing the

sample size of the available dataset might already lead to a signi�cant improvement.

Regarding the detection of explosives, in addition, it could be bene�cial to balance the

train set with an almost equal ratio of benign to explosive analytes, and avoid any

disadvantages of an unbalanced dataset in terms of the application of ML concepts.

Finally, in regards to the „Deployment“ stage of CRISP-DM, various ways exist for

implementing the proposed framework into the decision process for a real-life scenario.

As mentioned in previous sections, the application for the two use cases is intended

after the detection of explosives took place. An already existing solution, developed

for the available dataset in this thesis, is able to achieve reliable results in terms of the

binary classi�cation scenario. Therefore, the creation of new ML models was focused

on the provided use cases and the explosive substances only. The deployment of the

framework can be realized in an o�ine setting. The training/�tting of the models

will be done with the available data. Any predictions for new data will be done in

an identical o�ine setting, requiring the pre-processing pipeline as well as the �tted

feature transformation for every new observation.
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Appendix

A – Tables

Tab. A.1: Listing of all analytes.
‡

The table represents the train (left) and test set (right). The

top part contains the explosives; the bottom are benign substances.

‡
Table taken from Konstantynovski et al. (n. d.).

Train Test

Nr. Name Abbr. Nr. Name Abbr.

1. ammonium nitrate AN 1.

5,5-bis(2,4,6-

trinitrophenyl)-2,2-

bis(1,3,4-oxadiazole)

TKX-55

2.
hexamethylene triperox-

ide diamine

HMTD 2.
bis(3,4,5-trinitropyrazol-

1-yl) methane

BTNPM

3.
cyclotrimethylene

trinitramine

RDX 3.
2,6-diamino-3,5-dinitro

pyrazin-1-oxide

LLM 105

4.
pentaerythritol tetrani-

trate

PETN 4. hexanitro isowurtzitane CL-20

5. Semtex 1A Sem 5.

dihydroxylammonium

5,5-bistetrazol-1,1-

diolate

TKX-50

6. triacetone triperoxide TATP 6.
potassium 1,5-

di(nitramino)-tetrazole

K2-DNAT

7.
trinitro phenyl methyl

nitramine

Tet 7.

dihydroxylammonium

5,5-bis(3-nitro-1,2,4-

triazolat-1N-oxide)

MAD-X1

8. black powder BP 8.
1-amino-1-(1H-tetrazol-

5-yl)-azoguanidine

Tetrazene

9. trinitro toluene TNT

10. 2,4,6-trinitro aniline Picramide

11.
nitro glykole + ammo-

nium nitrate

Geosit 3

12.

methyl ammonium

nitrate + ammonium

nitrate

Tovex SE

13.
2-ethyl-1,3,5-trinitro

benzene

TNEB

14. urea Urea 9. sodium iodide NaI

15. abrasive cleaner Abr 10. glyoxime Glyoxime

16.
hexamethylene

tetramine

Urt

17. sucrose Su
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B – Figures
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Fig. B.1: Two samples producing di�erent response patterns for UST-5333. The intervals of

the �rst 10 seconds (step 1) and 119–522 seconds (step 6–9) are colored in orange

and green, respectively. To measure the validity of a given sensor response, the SNR

gets calculated and compared for each step interval. The bottom plot (B) shows a

valid response for the �rst sample of the analyte Semtex; the top (A) is showing the

�rst run of the analyte Geosit, indicating no valid response.
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