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Abstract (English)

Congestion is a major and increasingly limiting factor for mobility on motorway networks.

Using floating car data, congestion states were usually predicted for road segments that

were identified by an additional map-matching tool. Not using a map-matcher, 12 billion

floating car data observations were cell-wise grouped into two direction classes representing

two directions of a motorway. To the best knowledge of the author, the direction distinctive

grid-based approach for assigning floating car data to motorway segments is proposed for

the first time in this study. The well-known random forest classification algorithm was util-

ised for developing and forecasting models for single segments and the segment’s collective

of 1,000 motorway segments and 45 million observations. Evaluation was based on the met-

rics 𝐹1-score, misclassification rate, and Bookmaker Informedness. Heuristics based on the

average velocity of all motorists at specific points on the motorways served as ground truth

for forecasting a segment’s congestion state into one of the two classes: free-flowing and

congestion. Whole grid forecasting models delivered better results in comparison to single

segment models for four highly congested motorway segments. Major influential factors for

the five-minute forecast of the segment collective were features regarding the velocity and

the traffic count. Whole grid models are seemingly capable of adding value to the conges-

tion state forecast in 5, 10, 20, 30, and 60 minutes in the future in the whole of North

Rhine-Westphalia by considerably exceeding the 𝐹1 and Bookmaker Informedness baseline

scores for the 1,000 sample segments. The computational effort was more than 30% lower

when using the direction distinctive grid-based approach in comparison to a map-matcher

approach for assigning road segments to 2.6 million floating car data observations.

Keywords: traffic congestion, FCD, grid, direction-distinctive, segment, ITS, RF
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Abstract (German)

Stau ist ein starker und limitierender Faktor für die Mobilität auf Autobahnen. Bei der

Nutzung von floating car data werden üblicherweise Stauvorhersagen auf Straßensegmenten

gemacht, welche durch einen sogenannten map-matcher mit den floating car data-Punkten

verknüpft werden. Ein map-matcher wurde in dieser Arbeit nicht genutzt, sondern die 12

Billionen gruppierte floating car data-Punkte wurden richtungsunterscheidenden Zellen in

einem Netz zugeordnet, welche zwei Richtungen einer Autobahn darstellen. Nach bestem

Wissen der Autorin wurde der Ansatz zum ersten Mal in dieser Arbeit vorgeschlagen.

Der bekannte random forest Klassifizierungsalgorithmus wurde angewandt, um Vorhersa-

gemodelle für einzelne Segmente und für alle 1000 Segmente im Verbund mit 45 Mil-

lionen Beobachtungen zu entwickeln. Die Evaluationsmetriken 𝐹1-score, misclassification

rate und Bookmaker Informedness wurden zur Evaluierung herangezogen. Auf der mittleren

Geschwindigkeit aller Fahrzeuge an spezifischen Punkten basierende Heuristiken dienten als

ground truth Stau-Labels mit den Klassen frei-fließender Verkehr und Stau. Für vier ein-

zelne Segmente mit viel Stau führten auf 700 verschiedenen Segmenten basierende Vorhersa-

gemodelle zu besseren Ergebnissen als Modelle für einzelne Autobahn-Segmente. Im Mo-

dell mit den vielen verschiedenen Segmenten waren Geschwindigkeits- und Fahrzeuganzahl-

Variablen die stärksten Einflussfaktoren. Solche Modelle scheinen einen zusätzlichen Wert

für Stauvorhersagemodelle für bis zu 60 Minuten in der Zukunft generieren zu können, da

sie für den betrachteten Datenkorpus erheblich besser waren als baseline-Modelle des 𝐹1-

scores und der Bookmaker Informednesss. Der Rechenaufwand war bei dem Ansatz von

richtungsunterscheidenden Zellen in einem Netz zur Generierung von Segmenten deutlich

geringer als bei dem genutzten map-matcher Ansatz bei 2,6 Millionen floating car data

Beobachtungen.

Schlagwörter: Stau, FCD, Netz, richtungsunterscheidend, Segment, ITS, RF
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1. Introduction

The introductory part of this work explains why the topic of forecasting traffic congestion

states is relevant, why the grid-based approach was examined and what questions can be

answered using which methods. A short thesis outline is presented as well.

1.1 Motivation

Almost every motorist has encountered a traffic-congested motorway that is time-consuming

and disruptive to plans. The buildup of traffic congestion is due to a higher demand on

available road capacity [5]. It can also lead to enlarged CO2 emissions. Obviously, motor-

ists would like to avoid getting stuck on a traffic-congested road. Drivers can be warned of

traffic congestion via radio or a navigation system. Such systems gather congestion inform-

ation from, for example, a machine learning (ML) congestion state classification algorithm.

Identifying and forecasting traffic congestion is one of the aims of intelligent transportation

systems (ITSs). ITSs comprise topics improving transportation efficiency through state-of-

the-art methods and technologies, e.g. ML algorithms. Forecasting traffic congestion is a

non-trivial problem since it is influenced by many parameters and has a spatiotemporal

nature. Moreover, motorists in the same traffic situation might even classify the congestion

state differently due to their different interpretation of the traffic situation.

This work focuses on the motorway network, which is a congestion-prone road network with

generally the most throughput. The North Rhine-Westphalia (NRW) state is used as an ex-

perimental area for this work. It is the most congestion-troubled state in Germany - in 2019,

36 % of Germany’s traffic congestion and slow-moving traffic events were located in NRW [6].

Floating car data (FCD) is a traffic information data source and floating car data (FCD) ob-
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servations are gathered through global positioning system (GPS). Many existing congestion

state determination methodologies use a map-matcher. Map-matchers need a geographic

information system (GIS) map that divides the road network into road segments. A road

segment represents a carriageway part on the motorway in this work since the work focuses

on motorways. A map-matcher is generally used for mapping FCD points onto road net-

work segments. ML models can be subsequently utilized to forecast congestion states for

each motorway segment.

A disadvantage of the map-matcher approach is that the additional map-matching tool

needs to be provided and maintained. Moreover, the GIS map can be outdated and that

might then well lead to wrongly assigned road segments. Furthermore, using predefined road

segments of the road network can lead to not enough FCD on road segments for generating

feature values. Additionally, the assignment process itself uses a complex ML algorithm.

1.2 Objective

This study evaluates the potential of forecasting traffic congestion states for carriageway

segments with a scalable ML model based on motorway grid cells. Motorway carriageway

segment boundaries were defined by the boundaries of grid cells. The motorway carriage-

ways inside a cell, or in other words, the segments, were identified through a direction

distinctive grid-based approach. To the best knowledge of the author, the motorway dir-

ection distinctive grid-based approach is proposed for the first time to forecast congestion

states on motorways in this study.

A scalable ML model is developed using a high FCD volume. Segments are assigned to FCD

through the direction distinctive grid-based approach. The potential is evaluated based on

model performances with a different number of regarded motorway segments. Forecasting

is performed for the following future time periods: 5, 10, 20, 30, and 60 minutes. The com-

putational effort of assigning segments to FCD points is compared between the motorway

direction distinctive grid-based approach and the map-matcher approach. The evaluated

segments are distributed on the whole NRWs area. This leads to the validity of the res-

ults for a diverse spatial spectrum of motorways. Heuristics based on the average vehicle

velocity, gathered by a traffic detector on a carriageway point, determine the ground truth

16



congestion state for the according motorway segment. Segment boundaries are determined

by cell boundaries. The evaluation results are intended to be compared with congestion

state prediction methodologies using the map-matcher for assigning FCD to segments and

using other ML algorithms.

Grid cells are modelled direction distinctive in this work to relate to the carriageways of a

motorway. In other words, two direction classes are generated for each grid cell that have

opposite motorway directions. Forecasting congestion states based on segments gathered

through motorway direction distinctive grid cells is a map-matcher alternative which re-

solves shortcomings as described in the section above. Furthermore, the motorway direction

distinctive grid-based approach relies on a much simpler basic structure. Features are de-

rived from FCD grouped by segment. The additional challenges of the motorway direction

distinctive grid-based approach lie mainly in the distinction of different motorway segments

inside a cell and on the impact on feature values of additional FCD points that are not

recorded on a motorway. Therefore, robust features must be generated for forecasts.

In this study, congestion states are separated into two classes: free-flowing and congestion.

The reason for this is that only one data source was available for gathering ground truth

labels that made the distinction between the two classes. Moreover, the assumption of a

major FCD volume from motorways inside cells is made in this work. It is further assumed

that traffic detectors, which do not record congestion, observe free-flowing traffic.

1.2.1 Research questions

The research questions accompanying this work are:

• How can FCD be related to carriageway segments of motorways in a grid-based set-

ting?

• What are the differences of the five-minute forecasting performance varied between

the single segment and whole grid setting using the motorway direction distinctive

grid-based approach for highly congested motorway segments?

• Which engineered features are seemingly valuable for forecasting congestion states us-

ing the motorway direction distinctive grid-based approach in the whole grid setting?
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• Which congestion-state forecasting time periods seem to be valuable in the whole grid

setting using the motorway direction distinctive grid-based approach?

• Can the motorway direction distinctive grid-based approach compete with map-matcher-

based approaches regarding the forecasting performance?

• Is the computational effort of the motorway direction distinctive grid-based segment

gathering approach lower than the effort of the map-matcher approach?

1.2.2 Contributions

A data processing pipeline was established utilizing FCD and ground truth data to form a

huge data corpus. ML models were developed and evaluated based on the data corpus. The

experimental steps are outlined below.

Experimental setup:

• Gathering of ground truth congestion state data set

• Development of a data preparation pipeline based on a direction distinctive grid-based

segment gathering

• Development of features based on FCD aggregations

Experimental results:

• Description of important model features through

– Visualisations

– Expert knowledge

• Testing of model performances for the

– Single segment model

– Whole grid model

• Comparison of the computational time between segment assignments for the direction

distinctive grid-based and the map-matcher approach

18



1.2.3 Research boundaries

The following research boundaries were set for this work:

• Differentiation of congestion states into free-flowing and congestion class

• Utilisation of FCD set to forecast congestion states

• No benchmark data set available for FCD data

1.3 Thesis outline

The fundamentals of the thesis are outlined in Chapter 2. They comprise selected automated

traffic data acquisition methods, the FCD structure and FCD aggregation methods, the

machine learning induction methodology for a binary classification task, and evaluation

metrics for a binary classification task.

A literature review can be found in Chapter 3. Key aspects regarding ML congestion state

estimation for road segments are identified, condensed, and thoroughly described. Several

field studies are described in detail to show the diverse spectrum of experimental setups and

to interpret the results according to their setups. Traffic congestion detection based on grid

cells is addressed by selected case examples. A differentiation of the grid-based and map-

matcher approach is made, and a discussion on further developing the grid-based approach

for referring to motorway segments is presented.

Chapter 4 describes the utilized methodology in detail. Key aspects are the general model

development framework, grid-based specifics including the direction distinctive grid cell

approach as well as the ML methodology.

In Chapter 5, the experimental setup is outlined including a brief profile of the computer

infrastructure. The raw and processed data are presented for receiving a thorough overview

of the utilized database in the ML models.

Experimental results in Chapter 6 are divided into descriptive insights, forecasting of traffic

congestion states, and a comparison of the computational effort using the motorway direc-

tion distinctive grid-based and map-matcher approach.

Chapter 7 comprises the conclusion of the thesis. A summary as well as a discussion and

suggested future work are provided.
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2. Fundamentals

The fundamentals of this work are presented in this chapter. They comprise selected auto-

mated data acquisition methods that are needed to gather traffic information, to form

features as well as the target variable. Features are aggregated based on grid cells in this

work and the basic grid-based approach is hence described. The alternative map-matcher

approach is outlined as well. Utilized ML algorithms are presented afterwards to understand

the modelling setup. Model evaluation is as important as the ML method itself and utilized

evaluation metrics are therefore outlined.

2.1 Selected automated traffic data acquisition methods

Automatic traffic data acquisition forms the foundation of automatically determining traffic

congestion states with data-driven approaches. Amongst many data acquisition methods, a

popular traditional as well as a popular modern method are introduced.

On the whole, traditional traffic information data sources use detectors located along the

roadside [7]. According to Leduc [7], the induction loop technology is a conventional method

from this class and basically consists of a data recorder and a sensor placed on or in the road.

Leduc further illustrates that induction loops are embedded in roadways through a square

formation that generates a magnetic field as can be seen in Figure 2-1a. The information is

then transmitted to a counting device placed on the side of the road as can be seen in the

figure as well. Two induction loops in a row, so-called double induction loops, are utilized to

measure the vehicle’s velocity since they have lower measurement error margins compared

to single induction loops [8].

Compared to traditional data gathering methods such as induction loop detectors, floating

car data (FCD) provides a sample of road user data. In contrast, traffic detectors are able
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(a) Single induction loop [9] (b) FCD gathering through GPS [7]

Figure 2-1: Selected automated traffic data acquisition methods

to capture every vehicle at specific points. Nevertheless, FCD has several advantages such

as lower cost, wider coverage, and higher mobility [10]. It can furthermore locate a vehicle

across its entire route [7]. FCD is collected through the GPS signal of road users from e.g.

mobile devices as can be seen in Figure 2-1b. The position as well as the velocity and the

heading, or in other words the compass direction, can be determined through GPS.

2.2 Floating car data

FCD is the main data structure used in this work and therefore described thoroughly in this

section. An FCD sample with the typical columns id, latitude, longitude, datetime exact, ve-

locity, and heading can be seen in Table 2.1. Different motorists can be distinguished through

their id values. The latitude and longitude determine the location and the heading refers to

the movement’s compass direction in the interval of [0, 360) degrees. The first observation

in Table 2.1 belongs to a motorist with id 1, driving 80 km/h at 2019-08-01 00:00:23 with

Id Datetime exact Latitude Longitude Velocity Heading
1 2019-08-01 00:00:23 51.404660 7.473666 80 225

1 2019-08-01 00:01:15 51.402817 7.467361 91 226

1 2019-08-01 00:02:01 51.401985 7.465269 94 221

...

2 2019-08-01 00:00:58 51.654835 7.035406 107 93

...

Table 2.1: Sample floating car data set

21



Figure 2-2: Excerpt of a floating car data id trace

the GPS coordinates 51.404660 and 7.473666 and a heading of 225 degrees, corresponding

to the southwest travelling direction. A second and third observation from the motorist with

id 1 is shown and the motorist can have an arbitrary number of subsequent observations,

represented by the three dots. The next line shows the first observation belonging to a

motorist with id 2. The final line represents numerous observations from various motorists.

Figure 2-2 follows a trace of one id or, in other words, of one motorist on the A3 motorway.

The blue markers represent the corresponding latitude and longitude values of the FCD

points. Near to the fourth marker from the top is a text box showing the remaining FCD

feature values. One can see that the vehicle had a velocity of 124 km/h, drove there in

June 2020 in the heading direction of 310 degrees, approximately corresponding with the

northwest direction.

2.3 Floating car data aggregation approaches

Two approaches for assigning FCD points to spatial areas are presented. FCD points can

be grouped based on the spatial areas as exemplarily shown in Section 2.3.2.

2.3.1 Map-matcher approach

A map-matcher matches FCD points to road segments. Zeidan et al. [11] stated that map

matching is a key processing task in practically all analyses of urban location data as

otherwise the findings cannot be related to urban infrastructure. The map-matcher approach
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depends on a geographic information system (GIS) map recording motorways, main roads,

and other road types. The GIS map represents road segments digitally through geometrical

shapes. Figure 2-3a exemplarily shows motorway segments that are separated by blue lines.

Segments are distinguished for both motorway carriageways on their own as throughout this

work. The car symbols represent FCD points. The orange car drives on motorway segment

X, the purple car drives on motorway segment Y, and the black car drives on motorway

segment Z as shown in the diagram. A complex ML algorithm is used to assign FCD points

to segments. A detailed description of map-matcher algorithms is beyond the scope of this

work.

in segment X
in segment Y
in segment Z

Segment Y

Segment X

Segment Z

(a) Map-matcher approach

c1

c4

c2

c5

c3

c6

in cell c1

in cell c1

in cell c2

(b) Basic grid-based approach

Figure 2-3: Floating car data aggregation approaches

2.3.2 Grid-based approach

Spatial data such as data from induction loops and floating car data (FCD) can be grouped

into disjoint grid cells based on latitude and longitude values. The grid’s cell size can be

statically allocated. A cell can have various geometric shapes such as rectangle, square,

hexagon, or diamond.

The example provided in Figure 2-3b uses rectangular cells instead of segments for aggreg-

ating FCD points. The rectangular cells are represented by dashed blue lines and each cell

has an index value in its top-left corner. FCD points, represented by the car symbols, are

assigned to cells based on their rounded latitude and longitude value. The orange and the

purple car are assigned to cell 𝑐1. The black car is assigned to cell 𝑐2. Generally, FCD points
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Index Features
Datetime Cell middle Avg velocity %50 Velocity

2019-08-01 00:00:00 51.40, 7.47 88 91

2019-08-01 00:05:00 51.40, 7.47 90 101

...

2019-08-01 00:00:00 51.65, 7.04 98 105

...

Table 2.2: Grid-based floating car data aggregation

can be located anywhere inside a cell’s boundaries to be allocated to that cell.

FCD can be grouped based on its cell assignment. Furthermore, cell feature values can be

extracted from temporal and cell-wise grouped FCD values. Table 2.2 presents temporal

and grid-based aggregated features based on the composite datetime and cell middle index.

The datetime is the five-minute window of the datetime exact feature from FCD as seen in

Table 2.1. The cell middle variable describes the midpoint of a cell, attained by rounded

latitude and longitude values from Table 2.1. The avg velocity and %50 velocity, the median

velocity, are displayed as exemplary features. The feature values in the first line with the

composite index 2019-08-01 00:00:00, 51.40, 7.47 were computed by only regarding the first

three FCD observations from Table 2.1. The average velocity of the three FCD points was

88 km/h and the median velocity was 91 km/h. The second observation in the table shows

feature values for the same cell in the following five-minute window. The other written-out

observation displays feature values for the time window of the first observation but has a

different cell index.

2.4 Machine learning induction methodology for binary clas-

sification

This section outlines ML models that can yield to forecasts for binary classification prob-

lems such as the binary congestion state determination. Binary ground truth labels for the

congestion state determination formed a research boundary in this work since only ground

truth data was available having two congestion states. The utilised data corpus for ML
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Figure 2-4: Decision tree [3]

models in this work was based on features and ground truth labels derived from FCD and

induction loop records respectively. Decision trees (DTs) are presented first as the base

for the subsequently described random forest (RF) modelling approach that was used for

developing forecasts in this work.

2.4.1 Decision tree

A decision tree is a recursive machine learning (ML) model that can also be interpreted by

non-expert users and serves as a solid induction method. The decision tree (DT) procedure

was developed in the last century by several independent scientists from the statistical and

machine learning field [12].

A decision tree is formed by a root node, internal nodes, leaf nodes and branches, as can be

seen in Figure 2-4a. The root node of Figure 2-4b shows the split criterion 𝑥 < 𝑎, which is

the split leading to maximum information gain (IG). The maximum IG corresponds to the

most homogeneous split subsets regarding the target variable. Branches represent a split

criterion’s values based on the observations. The majority ground truth class of observations

from a leaf node is set as prediction class for these observations.

Several decision tree learning algorithms have been developed, such as the popular ID3, C4.5

and CART. DTs can be modelled in a distributed environment as well. The machine learning

library (MLlib) of Spark 2.3.2, which is subsequently used, is therefore described in more
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detail regarding DTs. MLlib supports the DT binary classification task using categorical

and continuous features [13, 14]. It further uses a greedy algorithm for generating binary

splits at each node through maximizing the IG. The IG is based on an impurity measure.

For classification, the gini impurity is one option and defined in [14]. Training is performed

distributedly on partitions of observations. The algorithm scales approximately linearly

regarding several important parameters. Details can be found in [14].

Decision trees are capable of capturing non-linearities and feature interactions. Feature

importances demonstrate the impact of the features on the target variable and can be

interpreted especially by domain experts. The feature importance scores of a ML model are

normalized to result in a sum of 1.

Hyperparameters of decision trees in PySpark are the maximal depth of the decision tree,

minimal observations per node and the minimal IG. The impurity measure and binary

classification threshold can be chosen as well.

2.4.2 Random forest

As the wording suggests, a random forest (RF) is an extension of the DT that utilizes several

distinct DTs to gain predicting power in reducing the risk of overfitting. It is a bootstrap

aggregating (bagging) ensemble model derived from DT individual models.

To form a RF, several decision trees are developed based on parts of the original data set,

whereby each part, the tree-wise bootstrap sample, is chosen randomly. Furthermore, a

random subset of the features is provided at each node of a tree. The single trees are not

post-pruned and may be overfitted to their share of the data set. A combination of the

single predictions is generally more robust than a DT prediction regarding overfitting. It

can be seen analogous to human’s knowledge of the crowd.

The RF algorithm of Spark’s MLlib [15] is subsequently utilized and therefore shortly de-

scribed. The algorithm supports both categorical and continuous features for the classifica-

tion task. The decision tree implementation outlined in the section above is used. Different

trees are trained in parallel.

Hyperparameters of DTs are used as hyperparameters for an RF as well. RFs in PySpark

additionally have a hyperparameter specifying the number of trees.
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Figure 2-5: Confusion matrix [4]

2.5 Evaluation metrics for binary classification

Evaluation metrics used for evaluating binary classification problems such as the congestion

state forecast with labels free-flowing and congestion are introduced. Binary classified data

points can be assigned to one of four fields in the confusion matrix of Figure 2-5: true

positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) (cf.

whole section to [16]).

Selected metrics for binary classification based on the confusion matrix are displayed be-

low. The misclassification rate and accuracy measures form the relation: accuracy = 1 −

misclassification rate. In the case of highly unbalanced classes, the misclassification rate

(mcr) is very low when deterministically predicting the majority class. Both precision and

recall do not regard TN and generally cannot be optimized at the same time due to their

contradictory nature. The recall is equal to the true positive rate (tpr). When considering

highly unbalanced target data, either the recall or the precision are generally on a very low

level. A ML model generally leads to many FP if the negative class is the majority class.

A model generally leads to many FN if the positive class is the majority class. The true

negative rate (tnr) is generally quite small when the negative class is the majority class. The

F-score combines precision and recall through their harmonic mean. Precision and recall are

set to be equally important if the parameter 𝛽 ∈ [0, ∞) equals 1. If the F-score is utilized for

highly unbalanced target data, the values lie on a relatively low level since either the recall

or the precision measure has small values. The Bookmaker Informedness (BM) combines

the tpr and the tnr and subtracts one. The BM evaluation values are generally not on a
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higher or lower level when imbalanced target classes are faced.

misclassification rate = FP + FN
TP + FP + TN + FN ∈ [0, 1]

accuracy = TP + TN
TP + FP + TN + FN ∈ [0, 1]

precision = TP
TP + FP ∈ [0, 1]

recall = TP
TP + FN ∈ [0, 1]

tnr = TN
TN + FP ∈ [0, 1]

𝐹𝛽 = (1 + 𝛽2) precision × recall
(𝛽2 × precision) + recall ∈ [0, 1]

BM = TP
TP + FN + TN

TN + FP − 1 ∈ [−1, 1]
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3. Literature review

This review focuses on studies in the traffic congestion domain and excludes works from

related fields such as traffic volume prediction. The review is separated into two main parts

presenting the popular field of traffic congestion detection for road segments and the traffic

congestion detection for grid cells as this approach was further developed in this work.

3.1 Traffic congestion detection for road segments

ML approaches towards traffic congestion detection for road segments are presented in

this section. Only FCD from road segments was used for generating features on the road

segments. Firstly, findings from literature are condensed and selected studies are presented

in order to show their variety secondly. Thirdly, obstacles for comparing different studies

are outlined.

3.1.1 Machine learning traffic congestion state determination character-

istics

The determination of congestion states itself is a field of subliminal debate. Kerner [17]

proposed three congestion states in his three-phase traffic theory. Studies on determining

traffic congestion states differ in their number of congestion states as experiment settings

in Section 3.2.2 show. To the best knowledge of the author, the number of congestion states

in congestion state determination models range from two [18] up to five [19].

Modelling approaches can be divided into deterministic and non-deterministic/ stochastic

techniques [20]. Deterministic methods comprise DT, RF, and logistic regression (LR) (cf.

[21, Ch. 4.4]), whereas, for example, fuzzy techniques (cf. [22]) are non-deterministic meth-

ods. According to Jabbarpour et al. [23], non-deterministic congestion state modelling ap-
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proaches outperform deterministic approaches by no vulnerability to the random nature

of vehicle congestion but require higher computational capacity. Furthermore, no agreed-

upon definition for congestion state assignment exists [24]. In Ma et al. [25], the assignment

of ground truth traffic congestion states was based on a single indicator, speed, using a

threshold of 20 km/hour. Fouladgar et al. [26] found the setting of a threshold for the

whole network inappropriate since it could be different for different parts of the network

according to him. Huang et al. [27] opposed using a single traffic indicator due to possibly

different congestion states having the same traffic indicator value. Illustrating their line

of thought, a mean velocity of 40 km/hour on a motorway segment could, for example,

either refer to congestion or to free-flowing traffic in bad weather with storms and hail.

The determination of congestion states is ordinary in our linguistic usage. Nevertheless, the

human classification of a traffic situation in congestion states can differ, as described in [28].

The following paragraph examines the microscopic and macroscopic perspective of traffic

data for ML models. Microscopic models are based on the knowledge of a single vehicle;

macroscopic models use information from the entirety of vehicles [29]. According to Chen

et al. [30], the traffic congestion state in a given time slot is the result of both global and

local effects on the macroscale and microscale. They therefore argue that including both

perspectives might improve evaluation performances. At the microscale, the variation of

congestion states could be observed with precise details, while it would be hard to discover

the global trend of large temporal scope according to them. In contrast, at the macroscale,

the global trend of congestion levels could be easily revealed, while many details would be

lost [30].

Characteristics of traffic data are presented in this paragraph. Traffic data is spatiotemporal

data, whereby it implies the congestion state as well as other variables such as the mean

velocity and the number of vehicles in an area. Guo et al. [19] stated that observations from

nearby locations are strongly correlated with each other, referring to spatial correlation.

Observations at adjacent time periods are strongly correlated and correlation diminishes

when the temporal distance increases, referring to temporal autocorrelation [19] and local

coherence [30] respectively. According to Chen et al. [30], traffic congestion levels also ex-

hibit a temporal periodicity on workdays. Cheng et al. [32] showed experimentally that the
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autocorrelation structure of the road network is dynamic and heterogeneous in both space

and time by using both global and local autocorrelation measures.

Satisfying the traffic congestion data peculiarities described in the paragraphs above can be

reached with different techniques for ML models. The techniques are presented for receiving

an overview of the broad range of approaches for satisfying the spatiotemporal peculiarities.

Firstly, the existing data set can be enriched through feature engineering. Fundamentally,

ML models are able to use additionally generated features for modelling. Secondly, some

models have supplementary opportunities for adapting to spatiotemporal data. For example,

the filters as well as number of connections and nodes can be specified for artificial neural

networks (ANNs) in order to illustrate the spatiotemporal characteristics. Thirdly, hybrid

models that combine several models from different ML model classes, can be generated to

better meet the spatiotemporal structure of the data.

A few examples of methodologies are presented addressing congestion state determination.

Weighted exponential moving averages of consecutive time periods were used to address the

temporal correlation at the macroscopic level in Pattara-Atikom et al. [28]. In generating

features for a DT through the sliding window technique for consecutive time periods, the

temporal correlation was addressed at the macroscopic level as well in Thianniwet et al.

[33]. Chen et al. [24] generated the Moran quadrant feature that analysed spatiotemporal

correlations. They further proposed a mixed forest model combining classification and re-

gression trees. Chen et al. [30] used time series folding to address the temporal and seasonal

correlation and multi-grained learning for capturing multiscale congestion patterns. They

incorporated values from previous time periods through generating a 2-D matrix input

called time series folding. For capturing temporal dependencies as well as macroscale and

microscale congestion behaviour, they applied a series of convolutions on the input matrix.

Popular features for congestion state determination models are presented below. Zhang et

al. [18] found that the flow, occupancy, velocity, and ramp flow features dominated the lit-

erature for capturing and predicting traffic conditions. Chen et al. [24] identified traffic flow

parameters like flow rate, occupancy and velocity as usual evaluation indicators for traffic

congestion. According to Huang et al. [27], vehicle velocity and traffic volume are among

common features to determine traffic congestion.
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Method, Now- Rebalancing # Cong. # Obs. Measures
work casting target ratio states mcr RMSE

DT [33] Now Equal 3 448 9.71% 0.217
proportions

RF [34] Now - 1 3 1124 12.50% -

RF [24] now - 1 5 2 M2 - 0.524

Fuzzy [35]3 Now - 1 3 4402 11.21% -

CNN [30] 10 Min. - 1 3 3 M - 0.551

...

CNN [30] 60 Min. - 1 3 3 M - 0.536

Table 3.1: Evaluation results of selected reviewed studies

Congestion states generally have an imbalanced class-distribution as, for example, the exper-

imental data sets in [26] and [33]. Even though, rebalancing the data set was only described

in a few studies such as in Thianniwet et al. [33] and Fouladgar et al. [26].

3.1.2 Selected machine learning case examples

This section exemplarily reviews several study designs to grasp their experimental setting in

detail and classify their evaluation results. The reviewed studies were designed to predict (at

the instantaneous time) or forecast (for future time periods) categorical traffic congestion

states. They used numeric or categorical features derived from manual or automated data

sources such as FCD or induction loops. Studies from different modelling perspectives were

reviewed to demonstrate different methodological settings and the diverse spectrum of study

setups. Table 3.1 briefly presents evaluation results of the studies. Results of [33], [34], and

[35] should be regarded with special care due to small sample sets.

Evaluation results are described but due to a varying number of congestion states, often

reported measures such as mean absolute error (MAE), mean squared error (MSE) and

root mean squared error (RMSE) cannot be properly compared between all studies. It is

hence additionally referred to the mcr as evaluation measure. Even so, this measure can

be problematic considering an imbalanced class distribution. Examining the case, where
1not mentioned
2projected
3experiment B (reaches highest evaluation value)
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only 1% of the observations belong to the congested state, a model always predicting free-

flowing traffic still has an mcr of only 1%. Impedovo et al. [36] argued that it was difficult

to identify and select the best algorithms to be adopted regarding traffic state estimation

through videos. They argued that proposed systems had often been different at many stages

and had adopted different data sets and testing conditions. Their argument also applies to

the field of traffic congestion state prediction, as the usage of very different experimental

setups in the exemplary studies shows. The studies are still enriching as insights into their

experimental setup can be helpful for other studies.

Thianniwet et al. [33] proposed using a classification decision tree with three target categor-

ies for forecasting the congestion state. Data was collected through a GPS signal as well

as through a video camera onboard a vehicle riding on several strongly congested roads in

Bangkok, Thailand. The experiment was performed for approximately three hours which

led to 448 observations in total after balancing the data set. Model features were the moving

average velocity at time 𝑡, 𝑡 − 1, and 𝑡 − 2 with a sliding window of three and the moving

average velocity at time 𝑡 with a sliding window of five. The ground truth congestion states

were generated with a majority voting of eleven car drivers. The evaluation value of the

mcr was 9.71%.

A random forest classifier was used as a traffic congestion state forecasting model in Liu

and Wu [34], based on approximately 1,000 data points from different road segments of

the Shanghai traffic management information department in China. The random forest was

based on the environmental features: Weather conditions, time period, special conditions of

roads, road quality, and holiday. The target variable was the future traffic congestion state

consisting of three classes. The classes were labelled through a threshold function of the

congestion coefficient, 𝑇 −𝑇0
𝑇0

, with 𝑇 indicating the actual travel time and 𝑇0 the optimum

travel time. The mcr was 12.5% regarding only 24 data points used as test data set.

Chen et al. [24] proposed a mixed forest model combining classification and regression trees

to forecast the traffic congestion state, captured on five levels. The mixed classification forest

consists of decision trees with a categorical target variable, congestion state, and continuous

target variable, congestion coefficient. The target of the regression decision trees is classified

and a mutual prediction of all trees is made through the mixed forest. The authors further

proposed using the feature Moran quadrant, which analyses the spatiotemporal state of
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urban road traffic. FCD data of taxis in the city of Chengdu in China were utilized for

model training and evaluation. The study focused on 20 road segments around the Chengdu

North railway station with one segment used for testing purposes. The Moran quadrant,

a time factor, speed and congestion status at that time were the features for forecasting

congestion states. The ground truth congestion states were generated through fuzzy C-

means clustering (FCM) including the features average velocity and congestion coefficient.

Between other measures, the false positive rate (fpr) of 4.17% was reported. The mixed

forest was compared to the prediction models classified forest, post-classification forest,

DT, bayesian algorithm, k-means, and support vector machine (SVM) and achieved the

best result regarding the fpr.

Fuzzy techniques were proposed by Pongpaibool et al. [35] to forecast the traffic congestion

state. The authors used tuned fuzzy logic and adaptive neuro-fuzzy techniques in order to

emulate human expertise in determining the congestion state, which consisted of three levels.

Data was collected through a video on a segment of a busy three-lane road in Bangkok,

Thailand in a time period of almost three hours. Possible features were extracted from the

video and comprised lane-wise vehicle volume and average speed reported every 30 seconds.

The labels were produced through a majority vote of ten car drivers who watched the

aforementioned video. The mcr was 11.21%.

Chen et al. [30] proposed using deep convolutional neural networks (CNNs) for short-term

and long-term traffic congestion prediction (PCNN) in order to capture similar congestion

patterns in neighbouring and seasonal time slots as well as exploiting multiscale properties

of traffic congestion states. In the research, three congestion states were defined and the

data was gathered through structured vehicle passage records (VPRs) from surveillance

cameras containing vehicle ID, location, and timestamp. 614 road segments in Jinan, China

were captured. The timespan was six weeks but due to preprocessing, some time periods

were disregarded and the final number of observations was approximately 3 million. PCNN

used congestion states as features and the target was the traffic congestion state forecast for

10, 15, 30, or 60 minutes. The ground truth congestion state was computed by thresholding

the congestion coefficient and yielded to 64% normal traffic (first congestion state level).

Unfortunately, only MAE, RMSE, and mean relative error (MRE) were provided lacking

the mcr. The model’s evaluation results were compared to and outperformed the results of

historical average (HA), LR, auto-regressive integrated moving average (ARIMA), seasonal
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auto-regressive moving average (SARIMA), k-nearest neighbours (K-NN), multilayer per-

ceptron (MLP) and long short-term memory (LSTM).

In conclusion, the described studies vary in their feature data gathering approaches, ground

truth gathering approaches, feature space, ML model, and number of congestion states.

3.1.3 Study comparison obstacles

Results of scientific works are generally compared to assess the scientific approaches. Obstacles

when comparing results of different databases and study setups are addressed in this section.

Research articles concerning traffic congestion state prediction and forecasting rely neither

on benchmark data sets nor use published data predominantly, for example [24], [30], and

[35]. Furthermore, researchers publish the utilized data very rarely. As a consequence, it is

more difficult to compare the evaluation results of competing methodologies. One of the few

open-source benchmark data sets proposed in a study is the Citywide Traffic Congestion

Condition [37] by Fouladgar et al. [26]. It consists of information from stationary detectors.

Loder et al. [38] constructed a large data set which is based on stationary detectors as

well. An advantage of relying on stationary traffic detectors is the information gathering

from the whole population of motorists on a point of the road. In contrast, an advantage

of using FCD instead of stationary traffic detector data to forecast congestion states is

the availability of data beyond stationary points. Forecasting models based on FCD can

generally be utilised for much broader areas than models based on stationary traffic detector

data. It was therefore relied on the FCD data source to generate features in the approach

of this work. The data format as well as the information content differs between FCD and

stationary detector data. It could therefore not be relied on the proposed benchmark data

sets.

As addressed in the previous section, existing scientific work has a large variety in their

study setups that was not compensated for by evaluation metrics. Therefore, no reliable

comparison between studies could be made.

Publications use worldwide data sources for developing and evaluating modelling approaches,

amongst them China [24], [19], [34], [29], Taiwan [39], and the USA [26]. Measures such as
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the density of motorways per square kilometre of land area, the allowed vehicles and the

recommended velocity can differ from country to country [40]. Transferring ML models and

evaluation results throughout the globe has not yet been studied systematically.

3.2 Traffic congestion detection using grid cells

Traffic congestion detection methods using grid cells were seldomly developed in the past

as only a few published studies in this field show. In the first section, studies using the grid-

based approach are presented. In contrast, studies from Section 3.1 relied on road segments

which are linked to FCD using a map-matcher. Differences between the grid-based and

the map-matcher approach are therefore discussed secondly. Lastly, further developing the

grid-based approach to determine congestion states for road segments is discussed.

3.2.1 Selected case examples

The case examples detecting traffic congestion in grid cells utilised the basic grid-based

approach as presented in Section 2.3.2.

Liu et al. [10] categorized FCD from the core traffic area of Beijing into grid cells. They

stated that selecting an appropriate cell size was crucial to overcome data density restrictions

as well as to cover sufficiently small road segments. A traffic operation performance index of

range [0, 100], in which the value zero indicated free-flowing traffic and 100 indicated strong

traffic congestion, was computed for each cell. The index was built through a normalization

of the cell’s free-flow speed divided by the current average speed. The results were visualised

and an evaluation of the measure was not performed.

Zhao et al. [29] proposed a grid-based traffic flow influence concept and a corresponding

traffic congestion diffusion model to characterise the congestion diffusion process in both

spatial and temporal domains. They developed and evaluated a diffusion model to forecast

the congestion state which was separated into congested and smooth classes. The ground

truth labels were computed through thresholding the crowdedness value, which was based on

the min-max scaled instantaneous velocity. The experimental area was the city of Shenzhen

in China. The city’s map was overlayed by a grid. Forecasting a grid cell’s congestion state

took the situation in the cell as well as in the neighbouring cells into account. The authors
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Characteristics Basic grid-based approach Map-matcher approach
Dependencies No GIS map

Segment size Manually definable Pre-defined

Complexity of approach Simple Complex

FCD allocation to segments - <100%

Table 3.2: Differentiation between the grid-based and the map-matcher approach

found that the mcr converged to a upper threshold with the rising of the future time period.

The model had a F1-score of 89% in one district (an area including multiple cells) when

forecasting the congestion state for the next time period. Unfortunately, a time period was

not specified in terms of minutes and the class proportions of congestion and smooth classes

were not mentioned.

3.2.2 Differentiation between the grid-based and the map-matcher ap-

proach

A map-matcher is regularly chosen to aggregate FCD for generating features of a data

corpus used for forecasts. The grid-based approach is an alternative to the map-matcher

processing procedure. Different characteristics leading to advantages and disadvantages of

both approaches are outlined in Table 3.2.

Grid cells can be produced directly from the FCD features latitude and longitude. No further

information is needed. The map-matcher approach has the disadvantage of needing a high-

quality GIS map (cf. [10]) holding information about segments, which can be outdated.

The segments assigned by a map-matcher are pre-defined by the GIS map. However, the

segment size of the grid-based approach generally refers to the grid’s cell size and can be

chosen manually. This can mitigate data sparsity issues when only a small amount of FCD

observations is recorded in an area (cf. [29]). Derived from that, the computational effort

decreases since fewer observations belong to the data corpus (cf. [29]).

The grid-based approach is fairly simple to understand and to implement. It can generally be

relied on the infrastructure used to develop ML models. A map-matcher involves a complex

estimation model, such as a hidden Markov model (HMM) (cf. [41]). The model can assign

FCD points to road segments of the GIS map. It is a tool used in addition to the model
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development framework.

FCD allocation to grid cells is 100% accurate, given that the GPS locations of FCD are

entirely correct. But the grid cells do not correspond to motorway carriageway segments.

That is a disadvantage if congestion states of roads of the motorway network is of interest.

A map-matcher estimates assignments of FCD points to segments and is naturally less than

100% accurate. Even so, it is a sophisticated method for assigning FCD to road segments.

Utilizing the advantages of the grid-based approach as outlined in this section and being

able to assign FCD to motorway segments at the same time needed a further development

of the grid-based approach.

3.2.3 Discussion

Having less dependencies and a simpler approach in addition to disposing the map-matcher

tool, a closer look was taken at the grid-based approach. As stated in the previous section,

FCD cannot be allocated to road segments in the grid-based approach. Figure 2-3b shows

that once more since the orange and purple car are allocated to the same cell. Even so,

the allocation of FCD to motorway segments is crucial when determining traffic congestion

states for motorway carriageway segments, which is the objective of this work. Therefore,

a method distinguishing between the two motorway carriageways inside a cell, a motorway

direction distinctive grid-based approach is needed. For the majority of cells, two direc-

tions based on two carriageways of a motorway exist. Therefore, each FCD point in a cell

should additionally be assigned to a direction class. Figure 3-1 displays the approach. The

direction class is a binary variable with the values 0 and 1. The orange and purple car,

symbolising FCD points, are still assigned to the same cell but differ in the assigned direc-

tion class. Every FCD point in a cell is either assigned to direction class 0 or direction class 1.

The transferability of results from scientific literature determining traffic congestion states

with the map-matcher approach to the motorway direction distinctive grid-based approach

is examined in this paragraph.

Several studies mentioned in Section 3.1 used FCD to extract features. The feature values

were computed based on the composite index of predefined road segment and time window.

The assignment of FCD to segments was achieved through a map-matcher. In contrast,

the motorway direction distinctive grid-based approach uses observations of the according
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Figure 3-1: Motorway direction distinctive grid-based approach

direction class within the whole grid cell for computing feature values. This usually adds

noise to the feature values.

Once a data corpus with features and ground truth is installed, the data structure type

is the same between the motorway direction distinctive grid-based and the map-matcher

approach except for a differing number of variables forming the composite index. The data

corpus can be utilised for developing an ML model. Findings of studies that used predefined

road segment can therefore be transferred to this work.
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4. Methodology

This chapter describes and explains the utilized methodology. The ML pipeline includ-

ing a data processing and a model development step is outlined. Grid-based specifics are

important for this work and therefore presented in a separate section. Especially the seg-

ment assignment step with the help of direction distinctive grid cells is fundamental for

the approach of this work. Performed descriptive analyses of the data corpus are described

shortly. The choice of a basic inference model as well as its hyperparameter settings are

justified, utilized techniques to generate model insights are described briefly and the choice

of evaluation metrics is justified. Lastly, the methodology for comparing the computational

effort of the segment assignment step between the direction distinctive grid-based and the

map-matcher approach is described.

4.1 Model development framework

The ML pipeline used in this work is outlined in Figure 4-1 and therein utilized symbols rely

on the ISO 5807 norm. The upper box shows the data processing flow including the input

data. As can be seen in the figure, feature information was gathered from FCD comma-

separated values (CSV) files and ground truth as well as a few features were extracted

from extensible markup language (XML) files. The basic structure of FCD was described

in Section 2.2, details regarding the utilized input data can be found in Section 5.2.1.

Both input data types were processed and merged to form the data corpus. The segment

assignment methodology for FCD is described in the following section due to its novelty and

importance for the congestion state forecast. The data processing steps and the generated

data corpus itself are described thoroughly in Section 5.2.2.

The data corpus was explored with the tools described in Section 4.3. Additional features

were derived from analysing the data and ML model results. This feature engineering part is
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Figure 4-1: Machine learning pipeline diagram

shown through the left box in the middle section of Figure 4-1. ML models were developed

for single motorway segments as well as for all segments having ground truth data as shown

through the middle and right box in the middle section of the figure. In other words, models

were built based on data of a single segment or all segments in a collective. Details regarding

the train-test split in the two settings are described in section 4.2.3.

Model development and evaluation steps are shown in the lower box of Figure 4-1 and were

performed for both cell settings. The train data set was resampled, otherwise the ML model

would have learned to only forecast the majority free-flowing class. Model evaluation was

based on the test data set with the original proportions of the two congestion state classes
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since they represent the real conditions of the forecasting scenario. Details regarding the

ML methodology can be found in Section 4.4.

4.2 Motorway direction distinctive grid-based specifics

The direction distinctive grid-based approach required some prerequisites, which are de-

scribed in Section 4.2.1. The direction-distinctive grid cell modelling is a fundamental com-

ponent of the grid-based approach for motorway segments and characterizes this work. The

approach is presented and illustrated by an example in Section 4.2.2. The section 4.2.3 out-

lines the performed train-test split in two cell settings for the utilized spatiotemporal data

corpus.

4.2.1 Prerequisites

Statical, disjoint rectangles were chosen as the geometrical shape of the uniform grid. This

cell structure was selected since it is a basic shape which could be easily generated through

rounding the latitude and longitude FCD variables. The size of each rectangle was set to

approximately 110 m × 70 m first for being close to the 100 m × 100 m that worked best in

the explorative analyses of Liu et al. [10]. Due to data sparsity issues it was switched to a

larger size of approximately 1.1 km × 0.7 km. Implications from the wider cell size include

congestion state forecasts at a lower granularity. Generally, the author expects better model

performances with decreasing cell sizes that rely on data not being sparse.

It can generally be shown that most FCD points in a motorway-encompassing cell are re-

corded along the motorway. The FCD points on motorways thus dominate the observations

inside a motorway-encompassing cell. A binary direction class variable was established ad-

ditionally to the cell index to differentiate between motorway carriageway segments inside

a cell. No distinction was made between observations from the motorway or other road

types when accepting a minor share of noise from FCD points from other road types than

the motorway. As a consequence, it was majorly relied on features that are robust to noisy

data. For example, three observations were made inside a cell. Two observations belonged

to vehicles on the motorway having velocities of 90, and 100 km/h respectively. One ob-

servation belonged to a vehicle riding on a small residential street having a velocity of 15

km/h. The mean velocity was then approximately 68 km/h and the median was 90 km/h.
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This brief example shows that the median is more robust to the noise from observations of

streets other than motorways.

4.2.2 Direction distinctive grid cell modelling

Distinguishing between motorway directions inside grid cells is described due to its novelty

and fundamental importance when forecasting traffic congestion states for motorway seg-

ments in grid cells. The following paragraphs describe the direction distinctive modelling

procedure for grid cells and present an example of determining motorway directions for

FCD points.

Firstly, FCD points were grouped cell-wise according to their heading values, or in other

words according to their compass direction. Secondly, the mode of the heading values was

taken as one of the two direction classes of the motorway part lying inside a cell. This

implies the previously outlined assumption that most FCD points were recorded on the

motorway. Thirdly, the other direction class was formed by the mode’s counterpart of ±180

degrees. Lastly, FCD was categorized into the two direction classes according to the min-

imal distance to the mode or to the mode’s counterpart.

Figure 4-2a shows a direction class extraction example for the cell within the blue box. The

blue marker represents the traffic detector location gathering ground truth labels and the

white box near to the marker shows the allocated direction class and its heading mode.

The orange arrow represents the mode with a heading of 80 degrees referring to direction

class 0, which is the direction with ground labels. The purple arrow represents the mode’s

counterpart with a heading of 260 (80 + 180) degrees, referring to direction class 1. If the

mode was 180 degree or higher, the mode’s counterpart would have been associated with

direction class 0. The dashed line illustrates the heading boundary between the two direction

classes. In other words, an FCD point was assigned to direction class 0 if its heading value

was in the interval [350, 360) or [0, 170). It was assigned to direction class 1 if its heading

value was in the interval [170, 350).

Figure 4-2b illustrates the assignment of direction classes to several FCD points in the dis-

played cell. A vehicle symbol represents an FCD point and the vehicle’s rotation shows the

heading of the FCD point. Vehicles with orange colour were assigned to direction class 0
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(a) Direction classes (0: orange, 1: purple) for one
cell

(b) Direction classes for FCD sample

Figure 4-2: Assignment of grid cell motorway segments to floating car data

and purple vehicles were assigned to direction class 1. Table 4.1 presents the FCD points

with assigned direction classes. The table has the column cell middle, which is the same for

all observations since all regarded observations belong to the same cell. The column heading

mode is the mode of all heading observations within the cell. The mode cannot be derived

from the sample observations in the table since it relied on a larger dataset. The binary

Id ... Heading Cell middle Heading mode Direction class
Orange, top ... 85 51.45, 7.03 80 0

Orange, 2nd from top ... 60 51.45, 7.03 80 0

Orange, 3rd from top ... 145 51.45, 7.03 80 0

Orange, last from top ... 10 51.45, 7.03 80 0

Purple, top ... 255 51.45, 7.03 80 1

Purple, 2nd from top ... 227 51.45, 7.03 80 1

Purple, 3rd from top ... 231 51.45, 7.03 80 1

Purple, last from top ... 296 51.45, 7.03 80 1

Table 4.1: Assignment of direction classes to a floating car data sample
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feature direction class was derived from the heading of an FCD point and the heading mode.

The direction class assignment process of the first observation is described exemplarily. The

first observation in the table belongs to the top orange vehicle symbol in Figure 4-2b and

was assigned to direction class 0. The observation had a heading of 85 degrees and a distance

of 5 degrees to the mode of 80 degrees as well as a distance of 175 degrees to the mode’s

counterpart of 260 degrees. The observation was assigned to the mode’s direction class of 0

since the distance to the mode was smaller.

Once the according direction class is assigned to each FCD point, aggregation follows the

example given in Section 2.3.2 with the composite index of datetime, cell middle, and ad-

ditionally the direction class. Through using the direction class variable in the composite

index, the index refers to time intervals of motorway segments instead of time intervals of

grid cells.

4.2.3 Train-test split for different segment settings

A train-test split is a basic operation in the ML field. This work used spatiotemporal data

and the spatial component was given through direction distinctive grid cells. The train-test

split in the spatiotemporal context of this work is outlined in the following paragraph.

Models were developed for two different segment settings, single segments and the collect-

ive of segments, so-called whole grid setting. The approximate split proportions for both

segment settings were: 70% training, and 30% test data.

Single segments were split into a train and a test data set based on its timestamp as can

be seen on the left side of Figure 4-3. The blue rectangle represents a single cell with one

direction class, referring to a motorway segment. Inside the cell, a timeline from August 2019

to February 2020 is displayed, characterising the examined time period. Since the congestion

state proportions seem to differ monthly (cf. Section 6.1), cross-validation was performed

for single segment models. Each month of data led to one cross-validation data subset. As

presented in the figure, the first train data set consisted of data from September 2019 to

February 2020 and the first test data set consisted of observations from August 2019. Each

month was gone through this way and the final test data consisted of observations from

February 2020.
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Figure 4-3: Train-test split in the single segment setting (left) and the whole grid setting
(right)

The whole grid setting contained various cells and the train-test split was based on distinct

cells, as shown on the right side of Figure 4-3. Most cells contained only one segment or,

in other words, only one direction class. The area surrounded by black contours defines

the state NRW. Rectangles inside the area represent exemplary cells. Cells with light green

contours characterise cells belonging to the train data set and cells with dark green contours

characterise cells belonging to the test data set. The cell that was displayed exemplarily

in the single segment setting belongs to the train data set in the whole grid setting of the

figure. The cells were randomly assigned to the train and test data set based on a seed.

4.3 Descriptive insights

The data corpus was explored regarding its spatiotemporal nature. The features and the

target were examined through the following descriptive analyses:

• Descriptive plots of target regarding time and spatial component

• Statistical characteristics of features

• Correlation analysis between two numeric features respectively
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• Connection analyses of each feature with the target

• Histograms of selected numeric and categorical features with respect to the two target

classes

These analyses were selected due to a wide coverage of describing the spatiotemporal nature

of the target variable, of demonstrating basic characteristics as well as associations between

the features, and of describing associations between features and the target.

4.4 Machine learning methodology

The utilized ML inference model is justified along with the pursued feature engineering

strategy in this section. The data resampling method and model hyperparameter settings

are presented and vindicated, and strategies to generate model insights are outlined. Quality

criteria for the encountered binary classification problem are justified lastly.

4.4.1 Machine learning inference modelling

The number of congestion states in this work was predefined through the labels free-flowing

and congestion of the ground truth data, leading to a binary classification problem. Ground

truth labels were gathered with the help of deterministic heuristics. The ground truth

congestion state labels have therefore a deterministic nature. It was hence relied on a de-

terministic congestion state determination algorithm. The random forest (RF) modelling

approach, which is suitable for binary target data, was selected due to its light-weight and

scalable nature and relatively well predictive power. A benefit of utilizing an RF is the good

implementation ability for the big data infrastructure as described in Section 5.1. More

complex algorithms such as neural networks would have been extremely intense regarding

the computational effort since large data volumes were used in this work. Moreover, the RF

is a basic and well-known ML inference model that was utilized by a few other studies in

the traffic congestion state prediction domain as well (cf. Section 3.1.2).

The feature engineering strategy is described in the following paragraph. The existence of

temporal autocorrelations of traffic data was stated by Guo et al. [19] and Chen et al. [30]

in Section 3.1.1 of the literature review. The existence of temporal autocorrelations justifies

the forecasting approach with instantaneous feature values as used in this work.
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The data corpus contained features on the macroscopic level. Information of the single

FCD points were condensed to information of its entirety in defined groups. Deciding for

the macroscopic level instead of the microscopic level was based on the extremely smaller

computational effort when utilising large volumes of FCD. Furthermore, as a potential ana-

lysis of the motorway direction distinctive grid-based approach, discovering global trends in

the macroscopic perspective could reveal the usefulness of the approach. The basic features

mentioned in 3.1.1 were generated and incorporated in the data corpus when possible. Tem-

poral and spatial connections of the congestion state data as well its temporal periodicities

were taken into account through generating model features representing these characterist-

ics. Major influential features could be identified through their feature importance scores.

4.4.2 Data resampling and hyperparameter settings

Like in other scientific works (cf. Section 3.1), rebalancing the data corpus is considered.

Resampling as a valid approach for imbalanced data was used in this work since the de-

veloped RF models would have disregarded the minority congestion class otherwise. The

oversampling method was chosen to compensate for the imbalanced target. Observations

with the congestion target class were oversampled for the train and the test data set re-

spectively until the class proportions of 20% congestion and 80% free-flowing classes were

reached. Undersampling would have led to very few observations caused by the strongly

imbalanced target and was therefore disregarded.

Hyperparameter settings contribute to the predicting performance of an RF model. Utilized

values of hyperparameters as described in Section 2.4 are therefore presented. Hyperpara-

meter values were utilized as pointed out in Table 4.2. The default setting was selected for

every hyperparameter value due to the huge dataset. A search for each hyperparameter sep-

arately or a grid-search would have been too much consuming regarding time and resources.

Choosing the default hyperparameter setting seemed to be a reasonable choice due to no

further knowledge about reasonable hyperparameter values.
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Hyperparameter Setting Characteristics
Max. depth of DT Default 5

Min. obs. per node of DT Default 1

Min. IG of DT Default 0

Impurity measure Default Gini

Number of trees for RF Default 20

Binary classification threshold Default 0.5

Table 4.2: Utilised hyperparameter values

4.4.3 Model characteristics

The variety of possible descriptive analyses of model results is large. A few meaningful

analyses were relied on for a good model overview. The following steps were performed to

attain model insights:

• Histograms of values from confusion matrix for selected features

• Descriptive plots of forecasting performance regarding spatial component

The histograms were selected due to a comparability with results from the ground truth

data corpus description as well as interesting findings. The descriptive plots were selected to

account for the discovered variety of performance values for different motorway segments.

4.4.4 Quality criteria for machine learning models

The quality of ML models was measured by their forecasting performance. It was only relied

on the evaluation results of the test data set with original proportions of target classes. The

reason for this is that the evaluation of the original test data set reflects the real conditions

a ML model encounters. As a standard evaluation metric for classification tasks and often

reported measure in investigated works from Section 3, the mcr was used for comparing res-

ults. The F-score was additionally relied on as a standard evaluation metric. Studies from

Section 3.1 did not report this measure. It was assumed that neither wrongly predicting

congestion nor wrongly predicting free-flowing was generally worse than the other. There-

fore, the 𝐹1-score was chosen as evaluation measure. The congestion class of interest was

chosen and thus used as reference class. According to Luque et al. [42], both the mcr and
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the F1-score are biased when using imbalanced instead of balanced data. They suggested

using, for example, the null-biased BM as evaluation metric. This measure was additionally

relied on in this work to compare results especially for different target class shares.

Evaluation measure baseline values are presented to compare the predicting power of the

RF models to a threshold of a naive model.

The naive baseline model leading to the 𝐹1 baseline score always forecasted the congestion

class. The score for the test data with original proportions (0.3% congestion class) was

computed as follows:

𝐹1 = 2 precision × recall
precision + recall = 2 0.003 × 1

0.003 + 1 = 0.006.

The baseline model with the mcr evaluation measure always forecasted the free-flowing

class. The model’s mcr is much better than the rate of a model that would always forecast

the congestion class. The baseline model leads to an mcr of 0.003 (99.7% free-flowing class)

for the test data.

The baseline model using the BM as evaluation measure always forecasted the free-flowing

class and was computed as follows:

BM = TP
TP + FN + TN

TN + FP − 1 = 0 + 1 − 1 = 0.

Always forecasting the congestion class led to the same result, only the first and second

summand were swapped. The baseline value was the same for the resampled data set and

the data set with original class proportions due to the null bias characteristic of the BM

regarding imbalanced target data.

The prediction of the current congestion state was performed additionally for a categoriza-

tion of the results besides using the baseline models. The evaluation values of the instant-

aneous time serve as upper boundary for the developed forecasting models. The reason for

this is that the feature values at the instantaneous time have a greater informative impact

for the instantaneous congestion state determination than feature values at 5, 10, 20, 30,

and 60 minutes before.
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Experiments in the whole grid modelling setting were executed three times to account for

model variations and the mean and standard error were reported. Experiments in the single

segment setting relied on cross-validation results from seven subsets (cf. Section 4.2.3). When

comparing the single segment and the whole grid setting, whole grid models were executed

seven times for having an equal number of runs. When comparing the segment settings,

cells of the single segments regarded in the single segment setting were deterministically

put into the test data set of the whole grid setting and the remaining cells were assigned

randomly to either the train or the test data set.

4.5 Methodology for measuring the computational effort of

segment-assignment approaches

The computational intensity of the segment-assignment step was compared between the

motorway direction distinctive grid-based approach and the map-matcher approach since

the two approaches are very different. The differences of the basic grid-based approach and

the map-matcher approach were presented in Section 3.2.2. These differences apply to the

direction distinctive grid-based approach and the map-matcher approach as well, except that

the direction distinctive grid-based approach leads to a differentiation of the two motorway

carriageways in a cell. An FCD sample was relied on for measuring the computation time of

the two segment-assignment approaches. The computational effort of the subsequent steps

in the ML pipeline, which were described in Section 4.1, was not examined since exactly

the same steps can be utilized after assigning segments to FCD.

Measuring the runtime is a valid method to capture the computational intensity. Experi-

ments have been executed three times to account for variations and the mean and standard

error were reported.
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5. Experimental setup

The computer infrastructure is described in the first part of the experimental setup. The

data processing step from initial data sets to the data corpus generation is presented in the

second part.

5.1 Computer infrastructure

This work relied on the infrastructure provided by the cooperating company urban mobility

innovations. The programming language PySpark, which was executed on a spark cluster

using Spark 2.3.2, was utilized due to its scalability properties for big data. The huge input

data and the generated data corpus were stored in a hadoop distributed file system (HDFS).

For the data processing part, eight to 16 kernels with four to 12 GB memory each were used.

One kernel had four executors. The ML part was less computationally intense and only two

kernels with four GB memory each and four executors per core were utilized. Ipyleaflet [43]

was used for geographic visualisations.

The computational intensity of the motorway direction distinctive grid-based and map-

matcher segment-assignment step was measured on a system with the following allocated

resources: virtual machine with an ubuntu operating system, AMD Ryzen 7 3700U processor

with 8 threads and a base clock of 2.3GHz, and 6 GB memory. The open-source barefoot

map-matcher [41] was used for measuring the computational intensity of the map-matcher

segment-assignment step. The additional settings for the map-matcher server were ten server

connections and eight threads.
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5.2 Data processing

The data set for generating ground truth labels as well as two features is presented first

to get an impression of the validity of the ground truth. FCD is shortly referred to as well

since most features were derived from it, it was described thoroughly in Section 2.2. The

data corpus is presented secondly as utilized for analyses in the following chapter.

5.2.1 Initial data sets

In the following paragraphs, the utilized target and feature data sets are presented. The

ground truth target variable and two features were extracted from the Verkehrsinforma-

tionszentrale Nordrhein-Westfalen (VIZ.NRW) data set in the XML file format. Floating

car data (FCD) was mainly utilised to extract features that were fed into the RF models.

The characteristics of the two data sets are shown in Table 5.1. The NRW area was decided

upon since this state was most troubled by congestion in Germany. In 2019, 36% of traffic

congestion events were located in NRW [6]. Data from August 2019 to February 2020 was

regarded in this work. Each minute, an XML file was generated containing information on

the congestion state at traffic detector locations. Per day, 1,440 files were released with a

volume of approximately 90 MB. The total number of regarded files was approximately 300

thousand and the total volume was approximately 19 GB. An FCD point was generated

approximately every 15 seconds for a tracked vehicle. Approximately 58 million FCD obser-

vations were recorded per day with an approximate volume of 6 GB. Approximately twelve

billion observations with an approximate volume of 1.2 TB were regarded in total.

Data set VIZ.NRW (XML files) FCD
Area North Rhine-Westphalia

Time span August 2019 - February 2020

Time interval 1 Minute 15 Seconds

Number per day 1,440 files 57,941,021 obs.

Volume per day 90 MB 5.6 GB

Total number 306,720 files 12,341,437,588 obs.

Total volume 19 GB 1.2 TB

Table 5.1: Characteristics of the utilized raw data sets
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Data set of Verkehrsinformationszentrale North Rhine-Westphalia

The VIZ.NRW data set was chosen to serve as ground truth data set since it was the

only one available for research purposes without a fee. Instantaneous traffic messages are

available to the public through web scraping the VIZ.NRW [44] data set on the data platform

openNRW. The congestion state ground truth target can be extracted from the XML files

of VIZ.NRW as well as a feature containing information of crashes and a feature containing

information of construction sites. The VIZ.NRW data set as used in this work was not web

scraped but gladly received from Landesbetrieb Straßenbau NRW since the regarded time

period would have been only up to three months otherwise. The extracted traffic congestion

states were classified as slow-moving and congestion. Both congestion information types

can generally be published by the police to VIZ.NRW. Only the congestion type can be

obtained by observing the velocity of vehicles with vehicle detectors. The velocity is then

received through two consecutive induction loops positioned inside the road. A congestion

message is generated if the mean velocity falls below 30 kilometres per hour for more than a

five-minute interval. Sending congestion messages discontinues if the mean velocity is above

45 kilometres per hour for more than a five-minute interval. The observed data revealed that

only very few incidents belonged to the slow-moving class compared to the congestion class.

This did not seem to represent reality and was most likely due to the fact that this traffic

state was only captured by the police. Therefore the slow-moving class was disregarded in

further analyses.

A traffic detector generates traffic incident messages at one road point of a motorway

segment. The whole motorway segment was assigned to the gathered ground truth label

since the behaviour is spatially autocorrelated as stated in [19]. Data analysis showed that

there were approximately 1,000 traffic detectors recording traffic congestion incidents. In the

absence of congestion incidents, the traffic state was assumed to be free-flowing. Therefore

the target variable consisted of two traffic congestion states. The target variable was created

in a one-minute time interval by VIZ.NRW. Only motorway segments with at least one

congestion event in the observed time span were regarded. There were a few cases when

multiple traffic detectors have been associated to the same direction class of a cell. Traffic

congestion messages belonging to the traffic detector with minor congestion messages were
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Figure 5-1: Cell (50.87, 6.97) and direction class 1

eliminated. This led to a reduction of approximately 4 thousand congestion messages. An

exemplary traffic detector along with its according grid cell is shown in Figure 5-1. The

figure shows a blue-marked traffic detector from which congestion incidents are reported on

the A1 motorway. The traffic-detector-surrounding cell was illustrated by a blue box. The

textbox shows that the traffic detector was assigned to direction class 1 with a heading of

246 degrees, corresponding to the west-southwest direction.

Floating car data set

Provided by the cooperating company urban mobility innovations, FCD used in this work

was captured through the GPS signal of road users using a traffic-relevant app on their

mobile devices. It therefore described a sample of road users. Every FCD point contained the

following columns: id, latitude, longitude, datetime, velocity, and heading. An FCD sample

was thoroughly described in Section 2.2.

FCD has been analyzed intensively by urban mobility innovations. Through this process,

it is assumed that the utilized data is biased towards capturing heavy transport road users

at a higher rate. It is not assumed to influence congestion state forecasts. The reason for

this is that the biased FCD observations are still in the range of motorway velocities. It is

further assumed that the coverage of road users is approximately 2%.
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Figure 5-2: Data processing diagram

5.2.2 Data corpus generation

Figure 5-2 shows the processing pipeline’s data flow diagram. The flow started at stored

XML files of VIZ.NRW and CSV files of FCD data.

Amongst other variables, ground truth was extracted from congestion messages of VIZ.NRW’s

XML files in the description column. A sample of the generated data frame can be seen

in Table 5.2. The table contains the publicationTime, the congestion incident description,

and amongst others the location of the start and end of congestion through latitude from,

longitude from, latitude to, and longitude to. The third displayed traffic message was a traffic

congestion message. As part of the processing pipeline, observations containing congestion

messages were selected and aggregated based on distinct five-minute time windows, called

datetime parameter. The heading was engineered based on the location of congestion entry

and removal point and was assigned to a direction class. Each cell midpoint, cell middle,

was extracted through the according approximate latitude and longitude values. The index

of the ground truth congestion states was established from the parameters datetime, cell

middle, and direction class.

Approximately twelve billion FCD observations were considered for generating feature val-

ues that predict the congestion state. FCD was preprocessed by removing observations

with implausible feature values such as negative velocity. The same index was established

as for the ground truth data. The index parameters datetime, cell middle, and direction

class were generated. Afterwards, features were generated for each five-minute interval of a

segment through aggregating according FCD values. This led to approximately 1.4 billion

observations. Several features were extracted and they are presented in Chapter 6.
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PublicationTime ... Description Latitude to ... Longitude
from

2019-08-01 07:19:16 ... A4 Köln Richtung Olpe;
Ausfahrt Kreuz Köln-Ost;
Dauerbaustelle,
Verbindungsfahrbahn gesperrt,
bis 31.12.2020 Mitternacht

50.59458 ... 6.92014

2019-08-01 07:19:16 ... A4 Heerlen/Aachen Richtung
Köln; zwischen
Köln-Klettenberg und Kreuz
Köln-Süd; Gefahr durch
Gegenstände auf der Fahrbahn;
Pappe und Papier

51.40781 ... 7.52615

...

2019-08-01 08:04:16 ... A1 Münster Richtung
Dortmund; zwischen
Kamen-Zentrum und Raststätte
Lichtendorf Nord; Stau

51.51236 ... 7.66717

...

Table 5.2: Sample of ground truth data set

The ground truth labels and the features were merged in order to generate the data corpus

used for modelling. The data corpus contained approximately 66 million observations but

observations with missing feature values were eliminated from the data corpus. Charac-

teristics of the data corpus can be seen in Table 5.3. The number of motorway segments,

derived from the composite index variables cell middle and direction class, was approxim-

ately 1,000. Approximately 63,000 five-minute intervals existed in the time-period between

August 2019 and February 2020. The mean number of five-minute time intervals without

any missing feature values was approximately 42,000 and the total number of observations

in the data corpus was approximately 45 million.

A sample of the data corpus is provided in Table 5.4. The corpus has the index parameters

Data set Data corpus
Number of motorway segments 1,050

Mean number of five-minute intervals per motorway segment 42,479

Number of obs. in data corpus 45 M

Table 5.3: Characteristics of the data corpus
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Index Features Ground truth target
Datetime Cell Dir. Avg %50 ... Current 5 Min. ...

middle class velocity velocity
2019-08-01 08:00:00 51.51, 7.67 1 88 91 ... free-flowing congestion ...

2019-08-01 08:05:00 51.51, 7.67 1 90 101 ... congestion congestion ...

...

2019-08-01 08:00:00 51.65, 7.04 0 98 105 ... free-flowing free-flowing ...

...

Table 5.4: Data corpus sample

datetime, cell middle, and direction class; it has the exemplary features avg velocity and %

50 velocity, and the exemplary current and five-minute near-future target time horizons. At

8:00 on 2019-08-01 in the cell with midpoint 51.51, 7.67 and direction class 1, the average

velocity of FCD points was 88 km/h, the median velocity was 91 km/h, no instantaneous

congestion was reported, and congestion was reported five minutes later. The congestion

target class for five minutes in the future corresponds to the traffic congestion message seen

in Table 5.2. Five minutes later in the same cell and direction class, congestion was reported

at the instantaneous time as well as in five minutes in the future. The third observation in

Table 5.4 belongs to 8:00 on 2019-08-01 in a different cell with the other direction class, and

free-flowing traffic was found in the instantaneous time and the future five-minute interval.
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6. Experimental results

In this chapter, the data corpus was described through analyses and congestion states were

forecasted for the near future. The whole data corpus was used for generating descriptive

insights and approximately 30% of the data corpus observations were used for the forecasting

evaluation in the test data set. Furthermore, the computational effort of the developed

direction distinctive grid-based approach was compared to the effort of a map-matcher.

The results of this chapter were condensed lastly since the information density regarding

the research questions is high in this chapter.

6.1 Descriptive insights

Descriptive and exploratory data analyses were performed to gain insights into the data

corpus. Possible associations were evaluated as they can influence the ML model interpret-

ation. For simplicity, descriptive insights rely on the five-minute future congestion state if

not further defined.

6.1.1 Ground truth target

Several descriptive plots reveal patterns of the ground truth congestion behaviour in the

observed time period of August 2019 to February 2020.

Figure 6-1 shows the monthly number of congestion events in thousands. To describe a data

point, the number of observations in the data corpus having the ground truth congestion

class was approximately 10 thousand in August 2019. One observation referred to a five-

minute time interval of one segment, or more technical, of one direction class of a cell. A

strong variation in the number of congestion events is apparent. Most congestion events

were recorded in November 2019. The total number of congestion events in the regarded

time period is 147 thousand.
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Figure 6-1: Observations with congestion target class in time course
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Figure 6-2: Congestion target class share in the temporal and spatial dimension

Figure 6-2 shows the share of the target label congested (vs. free-flowing) based on the

time and spatial component. November 2019 recorded the highest share with a congestion

rate of approximately 0.5%. By far the most motorway segments had a congestion rate of

0-0.25% during the whole time period, whereas only a few segments recorded 1% or more.

The congestion rate based on all observations was 0.3%. It can therefore be stated that

the target variable had extremely unbalanced classes. Congestion occurred much less often

than free-flowing traffic, matching intuition.

6.1.2 Features

A feature overview is given first to get a better impression of the data. Thereafter, correl-

ations between the metric features are examined to understand possible overlay effects in

the developed ML models.

60



Feature # Classes Mode Mode’s frequency
Weekday 7 Friday 6.7 M

Hour 24 17 2.3 M

UnderConstruction 2 0 43.3 M

IsCrash 2 0 43.2 M

Table 6.1: Summary statistics of categorical features (N=45 M)

Overview of features

Tables 6.1 and 6.2 display statistical characteristics of the categorical and metric features

in the data corpus. The feature values were extracted per observation of the index value,

consisting of datetime, cell, and direction class.

Table 6.1 presents the number of classes of each categorical feature as well as the mode,

outlining the most occurred class along with its occurrence rate.

The weekday feature incorporated seven classes. The most frequent class was Friday, which

occurred approximately 6.7 million times in the data corpus.

The hour ranged from 0 to 23 having 24 classes. The mode was 17 and its frequency

was approximately 2.3 million, implying that approximately 2.3 million observations were

observed between 17:00 and 17:59.

The underConstruction feature with classes 0 and 1 refers to not under construction (class

0) or under construction (class 1). Most observations, approximately 43.3 million, were

recorded from carriageway segments not under construction.

Class 0 of feature isCrash refers to no observed crash. On the contrary, class 1 refers to

crashes. For most of the observations, approximately 43.2 million, no crash was reported.

In Table 6.2, the statistical key figures median, % 15 quantile and % 85 quantile are displayed

for the metric features of the data corpus due to their robustness against outliers.

The quantile feature % 20 velocity is the upper threshold for the lowest 20% velocity values

recorded per datetime interval, cell, and direction class. Its median was 79 km/hour, the

15% quantile for the 20% velocity quantile of an index was 23 km/hour and the 85% quantile

was 114 km/hour. The assumption that most observations were recorded on a motorway

can be maintained, since the minimum velocity is usually 80 km/hour on motorways. And
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Feature Unit of feature 15% Median 85%
% 20 Velocity km/h 23 79 114

% 50 Velocity km/h 52 96 126

% 85 Velocity km/h 83 116 144

Avg velocity km/h 56 94 124

Stderr velocity km/h 7 21 39

Traffic count 5 19 51

Traffic count distinct 2 4 10

Traffic count scaled robust - 0.017 0.007 0.060

Traffic count scaled cell robust - 0.275 0.029 0.531

Traffic count previous 5 19 51

Traffic count north 0 3 28

Traffic count east 0 7 31

Traffic count south 0 2 28

Traffic count west 0 8 31

Table 6.2: Summary statistics of metric features (N=45 M)

the slowest 20% of vehicles have a velocity of almost 80 km/hour as median. The statistical

characteristics of the remaining velocity-related features can be interpreted analogue.

The feature traffic count refers to the number of grouped FCD observations with an accord-

ing index of datetime, cell, and direction class. The 15% quantile traffic count value was

5, meaning that five observations were used to compute feature values. The median traffic

count was 19 and the 85% quantile traffic count was 51.

Traffic count distinct reveals the number of observations from distinct ids of an index value.

Distinct ids are generally linked to distinct vehicles. A traffic count distinct value is less or

equal to the according traffic count value. Its median was 4, the 15% quantile was 2, and

the 85% quantile was 10.

The traffic count scaled robust feature is the robustly scaled traffic count feature. The idea

behind this feature is to capture the varying road infrastructure settings of differing cells.

Traffic count scaled robust subtracts the median traffic count of the entire data corpus

from the observation value and divides the result by the difference of the 90% traffic count

quantile and the 10% traffic count quantile of the entire data corpus. The median value was

0.007, the 15% quantile was -0.017 and the 85% quantile was 0.06.
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Traffic count scaled cell robust is the cell-wise robust scaled traffic count feature. It is

supposed to describe deviations of the traffic count in differing time periods of a cell. The

15% quantile value was - 0.275 and the 85% quantile value was 0.531; the median was 0.029.

Traffic count previous measures the traffic count in the previous five-minute time interval

of a motorway segment. The value had a 15% quantile value of 5 and an 85% quantile value

of 51. The median traffic count previous was 19, as the median traffic count.

Traffic count north illustrates the traffic count of the motorway segment north to the con-

sidered motorway segment. The direction classes of the two neighbouring cells are the same.

The minimal value is zero. It is observed when no FCD has been recorded for the northern

motorway segment in the according time interval. The 15% quantile was 0, the median was

3, and the 85% quantile was 28.

The remaining traffic count values, from cells in the according compass directions of the

regarded cell, can be interpreted just like the feature above.

Correlations between metric features

Several provided metric features are prone to reveal correlations due to causal dependen-

cies. For example, the traffic count and traffic count distinct are causally connected. Strong

correlations should be identified in order to interpret results correctly. Correlations between

features are displayed through the heatmap of Figure 6-3. Medium (0.6 < |𝑐𝑜𝑟𝑟| < 0.75)

and strong correlations (0.75 < |𝑐𝑜𝑟𝑟|) between features are discussed.

The features % 20 velocity, % 50 velocity, % 80 velocity, and avg velocity were medium to

strongly positively correlated. This could have been expected from causal connections of

the features. The feature values were derived from the same set of velocity data per index

entry.

Traffic count, traffic count distinct, and traffic count scaled robust were medium to strongly

positively correlated. This is well explainable since the traffic count measured every obser-

vation and the traffic count distinct measured observations of distinct ids.

The feature traffic count scaled cell robust was medium positively correlated to traffic count

and traffic count scaled robust.

Traffic count previous was strongly positively correlated to traffic count and traffic count

scaled robust, as well as medium positively correlated to traffic count distinct.
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Figure 6-3: Correlations of metric features

6.1.3 Connections between feature and target

The connection between each feature and the current as well as five-minute future conges-

tion state was examined through two different methods and is displayed in Table 6.3. The

congestion state at that time was examined due to expected connections of velocity-related

features and the target. The five-minute congestion state was investigated representatively

for the forecasting target variables as before. The connection between categorical features

and the congestion state was measured by a statistical independence test. The point biserial

correlation coefficient (cc) was used for metric features and the congestion state.
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Feature Type Target current Target 5 min. forecast
Weekday pv <0.01 <0.01

Hour pv <0.01 <0.01

UnderConstruction pv <0.01 <0.01

IsCrash pv <0.01 <0.01

% 20 Velocity cc -0.05 -0.05

%50 Velocity cc -0.06 -0.06

% 85 Velocity cc -0.07 -0.07

Avg velocity cc -0.06 -0.07

Stderr velocity cc -0.01 -0.01

Traffic count cc 0.09 0.08

Traffic count distinct cc 0.05 0.04

Traffic count scaled robust cc 0.09 0.08

Traffic count scaled cell robust cc 0.09 0.08

Traffic count previous cc 0.09 0.08

Traffic count north cc 0.05 0.05

Traffic count east cc 0.04 0.04

Traffic count south cc 0.04 0.04

Traffic count west cc 0.06 0.06

Table 6.3: Connections between each feature and the congestion state

Pearson’s independence test, returning a p-value (pv), was performed for categorical features

with the current congestion state at a significance level of 5%.

The null hypothesis of stochastic independency of the weekday and congestion state could

not be accepted to the 5% significance level. Furthermore, there seems to be a stochastic

dependency between the hour of day and the congestion state. The underConstruction fea-

ture and the congestion state, as well as the isCrash feature and the congestion state are

seemingly interdependent.

The point biserial correlation coefficient ∈ [−1, 1] was computed for a random sample of

the data corpus (5%, 2.2 M obs.) in scikit-learn, since the functionality was not available

in PySpark. The value zero was assigned to the free-flowing class, and the value one was
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assigned to the congestion class. Moreover, a hypothesis test with an assumed correlation

coefficient of zero was statistically significant to the 5% level for each combination.

Each metric feature was only weakly correlated with the congestion state at that time as

well as the five-minute future congestion state. The results for the two target variables differ

only marginally for each combination. The velocity-based features were barely negatively

correlated to the congestion state. Congestion (label 1) was very scarcely linearly associated

with declining velocities. A strong correlation of the % 50 velocity and the congestion state

has been expected due to the ground truth gathering methodology. Ground truth congestion

states have been computed through thresholding the average velocity of all vehicles at

motorway traffic detectors. Traffic count related features were barely positively correlated

to the congestion state. A positive correlation has been expected due to an increasing number

of FCD points originating from a vehicle when spending more time inside a cell. More time

spent in a cell segment is generally causally connected to less flowing traffic situations

on a motorway. Traffic count features from neighbouring cells were slightly correlated to

the congestion state as well. This is in alignment with expectation since the influence of

neighbouring cells depends on the specific cell structure and cannot be generalized to all

cells collectively.

6.1.4 Feature sets

Three feature sets were separated, as shown in Table 6.4. Strongly and medium correlated

features were eliminated (one of them) in feature set 1 (fs1 ) leading to a better interpretation

of feature importances. Every feature, presented in Section 6.1.2, stayed in feature set 2

(fs2 ) to gain additional prediction performance through the additional features. Even if

the additional features were medium to strongly correlated to the base features, they could

add some further information. Feature set 3 (fs3 ) excluded features measuring the traffic

situation at neighbouring motorway segments.

In feature set 1, only one feature was decided on regarding the average velocity and quantile

velocity features. The % 50 velocity feature was favoured over the avg velocity due to its

robustness. Robustness is important since the ground truth average velocity relied only on

vehicles on the motorway segment and the feature velocity values were computed by a small

subset of vehicles which additionally did majorly, but not always travel on motorways but

also on main roads, for example. The traffic count feature was selected as the representative
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Feature Fs1 Fs2 Fs3
Weekday X X X

Hour X X X

UnderConstruction X X X

IsCrash X X X

% 20 Velocity X X

% 50 Velocity X X X

% 85 Velocity X X

Avg velocity X X

Stderr velocity X X X

Traffic count X X X

Traffic count distinct X X

Traffic count scaled robust X X

Traffic count scaled cell robust X X

Traffic count previous X X

Traffic count north X X

Traffic count east X X

Traffic count south X X

Traffic count west X X

Table 6.4: Utilised feature sets

for the traffic count related features.

6.1.5 Visualisation of selected features

Selected fs1 features from Table 6.4 are displayed graphically with respect to the ground

truth target class of the five-minute forecasting time period.

Figure 6-4 shows histograms of the data corpus for features from the time-domain with

respect to the congestion and free-flowing class respectively. The frequency of free-flowing

traffic was lower on Sundays compared to the other weekdays. In contrast, congestion ob-

servations dropped strongly on Saturdays and Sundays. Tuesdays and Wednesdays were

the most congestion-prone weekdays with the rest of the weekdays at a lower level. The
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Figure 6-4: Histograms of time-domain features (N=45 M)

congestion behaviour in the data corpus was weekly periodic, as stated by scientific works

from Section 3.1.1.

The hour of a day seems to lead to a differing FCD coverage which is derived from a differing

frequency of the free-flowing congestion state. At nighttime, from midnight to 05:00, the

frequency dropped strongly in the free-flowing class. Congestion occurred most frequently

around peaks at 08:00 and 17:00. Only very few congestion observations were recorded at

nighttime as well. The feature hour indicates a periodicity of congestion, which is congruent

to findings in Section 3.1.1.

Figure 6-5 shows histograms of the data corpus for selected metric features with respect

to the congestion and free-flowing class. The median velocity peaked between 87 and 105

km/hour for the free-flowing class, which is a decent travelling velocity on motorways. The

low velocities could come from slow-moving traffic, temporarily major load on motorway

surrounding streets, or badly arranged motorway segments. The median velocity for the
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Figure 6-5: Histograms of selected metric features (N=45 M)

congestion class peaked at 23 km/hour and 81 km/hour. The first peak has been expected

since congestion relates to slow velocities per ground truth definition. The second peak was

not expected.

Traffic count histograms differ between the two congestion states. This was expected be-

cause a congested motorway segment results in more FCD observations, which are generally

recorded in a specific time interval.

6.2 Forecasting traffic congestion states

Traffic congestion states were forecasted based on the RF algorithm described in Section

4.4. Models that were developed and evaluated based on a single direction distinctive cell

are presented firstly. The following sections rely on models developed based on the segment’s

collective. The feature importance scores are examined secondly. Evaluation results of the

whole grid models are presented thirdly and interesting model characteristics are shown

lastly.
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6.2.1 Performance evaluation in the single segment setting

RF models developed on a train data set of one motorway segment are utilized to make

forecasts on the same motorway segment in this section. Feature set 2 from Table 6.4 was

utilized for model development if not mentioned differently.

Four segments are presented in their spatial context and evaluation results for single seg-

ment models of the segments are shown in three dimensions. The BM evaluation measure

was relied on since this measure is robust against different proportions of the target classes

in the four segments. The first evaluation dimension regards different time periods in the

single segment setting and the second dimension examines the impact of the features from

neighbouring cells in the single segment setting. In the third dimension, evaluation results

of the single segment model and the whole grid model were compared. Four exemplary

segments that had a congestion share of more than 1%, being among the top 30 segments

with the largest share of the congestion class, were selected for these analyses. The idea

behind relying only on segments with a large congestion share is the justification of the

computationally more expensive single segment models only for segments with much con-

gestion. Moreover, the concentration on a few segments has the advantage of introducing the

direction distinctive cells separately. The analyses indicate the impact of the three dimen-

sions for congestion state forecasts. All three figures show boxplots including the median,

the interquartile range (IQR) and the whiskers. The BM baseline was displayed additionally.

Figure 6-6 shows the four exemplary segments within their cells in their spatial context.

The markers represent the traffic detectors that led to ground truth congestion states and

the arrows characterize the according carriageway directions. Cell (50.87, 6.97) in the blue

rectangle as displayed in Figure 6-6a, incorporates a vertical motorway segment on A555.

The traffic detector is located on the carriageway into the northern direction, corresponding

to direction class 1 as symbolized with the blue arrow, and approximately 48,000 five-minute

intervals belong to the segment. Its traffic arises from the neighbouring southern motorway

segment. Figure 6-6b displays the motorway carriageway segment of A1 in cell (51.08, 7.13)

in the southwest direction, corresponding to direction class 1, with approximately 53,000

observations. Traffic comes from the northern neighbouring cell. The federal highway B51

is located in parallel. The motorway segment of A40 in cell (51.48, 7.18) and direction class
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(a) Cell (50.87, 6.97)
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Figure 6-6: Exemplary motorway segments with an overproportional congestion share

0 into the northeast direction in Figure 6-6c had approximately 49,000 observations and

obtains traffic from its western and eastern cell. Both neighbouring cells are responsible for

forwarding vehicles since the regarded cell incorporates a motorway junction. The motorway

segment of A559 in cell (50.91, 7.06) and direction class 0 of Figure 6-6c into the eastern dir-

ection and approximately 53,000 observations, has traffic coming from the western direction.

Figure 6-7 evaluates whether a performance drop can be observed between the instantan-

eous congestion state prediction and the five-minute forecast. The drop was expected due to

autocorrelations in time (cf. Section 3.1.1). A comparable large drop from the instantaneous

prediction to the forecast can only be seen in Figure 6-7b. It is noticeable that the IQR
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Figure 6-7: Random forest model performance evaluation diagram in the single segment
setting for differing time periods
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Figure 6-8: Random forest model performance evaluation diagram in the single segment
setting for a differing feature space

in the figure was comparable large for the instantaneous prediction. Figures 6-7c and 6-7d

show only a slight decrease in performance and figure 6-9a has even a slightly greater mean

BM value for the five-minute forecast.

Figure 6-8 examines the impact of features from neighbouring segments for the five-minute

forecast of congestion states. Feature set 3 from Table 6.4 was utilised in the right boxplot

in each subfigure. Models for all four segments had a small drop in the mean performance

when not taking the traffic count of neighbouring cells into account. Even so, the impact

of the additional neighbouring segment features was quite small. The results indicate no

impact of the features from neighbouring cells for models with highly congested motorway

segments in NRW.

Figure 6-9 shows evaluation results for the five-minute near-time forecast in the single seg-

ment setting and in the whole grid setting. The figures show no continuously superior per-

formance of the single segment models that was expected due to stronger adaption abilities

to the regarded segment. The mean BM was lower in the single segment setting of Figures

6-9a, c, and d. Only Figure 6-9b shows superior performance of the single segment model

but the segment was generally on a low-performance level as the values close to the baseline

show. The evaluation results of a segment in the whole grid setting had only little variation

showing that similar RF models were developed for different train-test splits. In contrast,

the regarded single segment models had larger variations from different time windows of
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Figure 6-9: Random forest model performance evaluation diagram in the single segment and
whole grid setting

the test data sets. The results indicate no performance improvement by the single segment

models in comparison to the whole grid models and the additional computationally effort

cannot be justified for the four segments.

Generally, it can be seen that the evaluation values were in a quite large range between the

four segments with an overproportional amount of congestion incidents. Motorway segments

in cell (50.87, 6.97) and cell (50.91, 7.06) with direction classes 1 and 0 respectively had

evaluation results on roughly the same high level. The segment in the cell with midpoint

(51.08, 7.13) and direction class 1 had by far the worst performance that was only slightly

better than the baseline for the five-minute forecast. The federal highway (Bundesstraße)

B51 located parallel to the A1 segment might have badly influenced the results. The segment

in cell (51.48, 7.18) and direction class 0 had a medium performance level. The medium

performance could be due to quite noisy features arising from the second motorway at the

motorway junction.

6.2.2 Feature importances in the whole grid setting

Feature importances in the whole grid setting are exemplarily shown for a five-minute fore-

casting model. Features of feature set 1 and feature set 2 of Table 6.4 were utilized to

analyse feature importances. Feature importances are presented in order to dive deeper

into the model decision-making process and for clarifying the model results from a causal

perspective.
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Figure 6-10: Feature importances for the five-minute forecast of feature set 1 based on the
whole grid setting

Figure 6-10 shows feature importance scores of feature set 1. The traffic count seems to

have a major impact on the congestion state forecast. A slightly smaller feature importance

score had the feature %50 velocity. As shown in Section 6.1.3, this influence is seemingly

not linear. The features describing traffic counts of neighbouring cells (traffic count north,

traffic count east, traffic count south, traffic count west) seem to influence the congestion

state as well. This was not expected in the whole grid setting since the impact of neighbour-

ing cells depends highly on the directions of motorway segments from a causal perspective.

The standard error of the velocity seems to have some influence on the congestion state

determination as well. The congestion peak hour 08:00 and the hour after the second de-

crease of congestion incidents, 21:00 (cf. Figure 6-4), seem to influence the model to a small

extent. Saturday and Sunday, in which congestion occurred much less frequently (cf. Figure

6-4), seem to have a small influence on forecasting the congestion state.

Figure 6-11 shows feature importance scores of features from feature set 2. Velocity-related

features as well as traffic count-related features are seemingly of high importance for the

congestion state forecast. Contrary to the feature importances of feature set 1, the scores

are generally lower due to a spread to many correlated features. Traffic counts from seg-
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Figure 6-11: Feature importances for the five-minute forecast of feature set 2 based on the
whole grid setting

ments of neighbouring cells do not seem to be important to determine the congestion state.

This seems reasonable because the whole grid model forecast does not differentiate between

different segments. The weekday and hour do not seem to be important for the congestion

state forecast. Presumably, the timely periodicity was captured by the remaining features.

All in all, traffic count-related features and velocity-related features seem to be of major

importance for forecasting the congestion state.

6.2.3 Performance evaluation in the whole grid setting

Evaluation results based on segments from the whole NRW grid are presented. The evalu-

ation measures 𝐹1-score, misclassification rate (mcr), and Bookmaker Informedness (BM)

are displayed throughout for the test data set with original proportions of the target classes.

Evaluation results of the resampled test data set can be seen in Appendix A. Feature set 2

from Table 6.4 was utilized for model development due to a greater source of information

and thus at least equal model performance in comparison with the other feature sets.

Figure 6-12 presents evaluation results of the RF model in the whole grid setting for five

different time periods in the near future (5, 10, 20, 30, and 60 minutes in the future). The
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Figure 6-12: Random forest model performance evaluation diagram in the whole grid setting

forecasting time period is displayed on the figure’s x-axis. The model’s performances were

measured with the F1-score and mcr on the left y-axis and the BM metric on the right

y-axis. The baseline values as presented in Section 4.4.4 served as lower thresholds for the

RF model evaluation values. The mean and the standard error band are displayed for each

evaluation metric as well. The evaluation values of the developed models can be additionally

seen in Table A.1.

The mean and standard error band of the F1-score were higher throughout, and therefore

better than the baseline F1-score for the test data set. This assigns a value to the forecasting

models regarding the F1-score. Even so, it is noticeable that the mean F1-score decreased

with proceeding forecasting time. The F1 standard error was on a similar level for the dif-

ferent time periods. The mean F1-score of the five-minute forecast was quite close to the

prediction score of the instantaneous congestion state. In other words, only little perform-

ance was lost by forecasting five-minutes ahead on instantaneous information. A relatively

large drop in performance can be seen between the 30-minute forecast and the 60-minute

forecast. The decrease can be explained with the comparatively large margin of 30 minutes.

The F1-score generally ranged in a relatively low level for the developed models and the

baseline respectively. This is due to the highly imbalanced target data that led to a small

precision component of the F1-score since the FP values in this scenario are generally high.

The evaluation values of the mcr metric can be interpreted analogue to F1-scores besides

the fact that the smaller a value gets, the better it is. The mean mcr and its standard error

band were higher throughout for the RF models in comparison to the baseline mcr. The

forecasted congestion state in the five-minute whole grid model was misclassified more often
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in comparison to the baseline. Two explanatory approaches are discussed and are based on

the fact that the baseline mcr of 0,003 was very low. The first explanatory approach refers

to the data quality of the data corpus. Usually, data is not entirely correct but several

sources of possible errors exist. In this work, errors might have crept into the transmission

of FCD or ground truth data directly. Noise might have sometimes been overrepresented in

feature values, and errors might have sneaked into the segment assignment through direction

distinctive cells. The mentioned data quality issues might have already led to a higher mcr

than the baseline of 0,003. The second explanatory approach refers to the impact of wrong

forecasts. Comparable big performance losses can occur through forecasting scenarios of

wrongly forecasting the ground truth congestion class. Due to the highly imbalanced target,

the sheer amount of FP is generally much higher than the amount of FN. In other words,

when a model makes a mistake in its decision process, errors of forecasting ground truth

free-flowing observations as congestion leads to more FP than FN would be generated

when making a mistake in the opposite scenario. The model cannot be expected to avoid

mistakes when forecasting ground truth free-flowing observations. Therefore, the results do

not undermine the informative value of the models.

The mean BM and its standard error band were higher throughout than the baseline value.

In other words, value can be assigned to the RF models regarding this metric. The mean

BM decreased considerably with proceeding forecasting time. The standard error remained

on a similar level for the differing forecasting time periods. The mean BM for the instant-

aneous time and the five-minute forecasting time were relatively close to each other. The

model performance dropped only slightly when using feature information of the preceding

five minutes for the congestion state determination. The mean BM dropped considerably

from the 30-minute forecast to the 60-minute forecast which can be explained by the com-

parable large time interval.

As an overall performance evaluation of forecasting congestion states in the whole grid set-

ting, the joint result of the evaluation metrics is considered. The mcr values were not taken

into account due to reasons outlined above. It was therefore relied on the F1-score and the

BM measure. The mean and the according standard error band of both evaluation measures

was considerably better in comparison to the baseline values. Hence, value can seemingly be

generated by forecasting congestion states in the 5, 10, 20, 30, and 60 minutes near-future
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time periods through utilizing an RF model in the whole grid setting. The forecasting

performance seems to decrease with proceeding forecasting time. A decreased forecasting

performance when time proceeds is reasonable when assuming temporal autocorrelations.

Comparing evaluation results from various studies is prone to biases due to the diverse

spectrum of study setups that was shown in Section 3.1.2. A comparison of results from

this work and works in Section 3.1.2 was made based on the mcr measure. Studies that

used mcr for evaluation had a small sample size (< 2000) which could have led to quite

considerable biases. The mcr for the test data set in the whole grid setting was lower

throughout and therefore better than the mcr from other works (cf. Table 3.1). The mcr

in this work might have been lower in comparison with other studies due to a smaller

number of congestion states and a greater target class imbalance. Even so, the target data

proportions were mainly not reported and it was not relied on unbiased evaluation metrics

for imbalanced data. Amongst others, the differing number of congestion states could have

furthermore influenced the evaluation results. A comparison to studies described in Section

3.2.1 was not made due to the differing target’s spatial area. In this work, forecasts were

developed for motorway segments.

6.2.4 Model characteristics in the whole grid setting

The five-minute forecasting model with seed one of the whole grid setting was selected for

demonstrating characteristics and presenting insights regarding its forecasting performance.

The timely periodic behaviour seems to be captured by the model. Figure 6-13 shows TP

and FN belonging to the left y-axis as well as FP relying on the right y-axis of the features

weekday and hour in the two plots. Both plots show that the periodic congestion behaviour

was captured. The proportions of the three measures TP, FN, and FP roughly correspond

with each other and roughly match the proportions of the ground truth congestion observa-

tions in Figure 6-4 as well. Even so, many wrongly forecasted congestion observations can

be seen. This point was already discussed in the previous section.

Figure 6-14 outlines the histograms of the %50 velocity and traffic count features. The TP

and FN values correspond to the left y-axis and the FP values correspond to the right y-axis
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Figure 6-13: Histograms of confusion matrix characteristics from a five-minute forecast in
the whole grid setting for time-domain features

again in both plots. The proportions of the TP and FP for the feature %50 velocity are

roughly aligned. On the contrary, FN seem to have a different distribution which peaked at

90 km/h. Observations with a median velocity of 75 km/h or above were not assigned to the

congestion class as can be seen in the figure. This raises the question of why observations

with such high velocities were assigned to the ground truth congestion class in the first

place. Possible causes are manifold, including overlapping effects of street segments from

other motorways or roads. The congested motorway segment could also have a time period
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Figure 6-14: Barplots of confusion matrix characteristics from a five-minute forecast in the
whole grid setting for selected metric features

of relief, which did not reach the boundary for assigning free-flowing traffic.

The traffic count feature, analogue to the %50 velocity feature, seems to have a different un-

derlying distribution for FP than for TP and FN. The association of congestion and higher

traffic count values is not as obvious as the relation of slow velocities and congestion. Traffic

congestion generally leads to longer time periods on a motorway segment which corresponds

to more FCD observations and hence to higher traffic count values.
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Figure 6-15: Evaluation values per motorway segment (N = 320) from a five-minute fore-
casting model in the whole grid setting

Furthermore, the BM value was computed separately for each motorway segment in the

test data set of one run of the whole grid setting. It was only relied on this evaluation

metric since it is the only robust one regarding different target class proportions. Different

segments generally have different shares of the congestion and free-flowing target classes.

Figure 6-15 shows the segment-wise evaluation measure of the 320 motorway segments. The

plot shows a strong variation between evaluation values of distinct segments. The plot has

a peak at the value zero coming from segments with very little congestion observations. To

be precise, 56 segments had less than ten times congestion as ground truth target class, a

tpr of zero and a BM value of less or equal to zero. The findings therefore do not question

the model’s benefit assessed in the previous section. The majority of segments (N=219) had

BM values spread between zero and one. Therefore, the forecasting power for five minutes

in the future seems to vary considerably between different segments in the grid. This could

be explained causally by different carriageway segment sizes and spatial surroundings inside

cells. A detailed inspection of strengths and weaknesses for various kinds of segments was

beyond the scope of this work.

6.3 Computational effort comparison between different segment-

assignment approaches

The difference in the computational time of the motorway direction distinctive grid-based

and map-matcher approach was examined. As described in Section 3.2.2, the two approaches

are quite distinct. In the motorway direction distinctive grid-based preprocessing step, FCD
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Characteristics Direction distinctive grid-based Map-matcher based
Volume in GB 57 MB

Number of obs. 2.6 M

Area Broad region of Düsseldorf
(51.124375, 6.543125), (51.398238, 6.939885)

Processing time in min. 13 19

Std. error in min. <1 <1

Table 6.5: Segment assignment computational time for the motorway direction distinctive
grid-based approach and the map-matcher approach

is assigned to road segments based on grid cells and direction classes. A map-matcher assigns

FCD points to road segments through an algorithm based on a GIS map that incorporates

road segments of the road network. Details of the utilized infrastructure can be found in

Section 5.1. It was assumed that the more basic motorway direction distinctive grid-based

approach led to less computational time.

The computational effort was benchmarked for an FCD sample data set of one day with a

volume of approximately 57 MB, as can be seen in Table 6.5. It encompassed approximately

2.6 million observations in the broad region of Düsseldorf, NRW. The motorway direction

distinctive grid-based preprocessing method led to a mean processing time of approximately

13 minutes and a standard error of less than a minute. The map-matcher approach had a

mean processing time of approximately 19 minutes and also a standard error of less than

a minute. As a result, the computational effort of the motorway direction distinctive grid-

based segment-assignment step was more than a 30% less in comparison to the map-matcher

approach. This conclusion is limited to the utilized infrastructure or in other words, results

may differ when utilizing different amount of cores, servers, RAM, et cetera.

6.4 Subsumption of results

Results from the previous sections in this chapter are summarized at a higher level of

abstraction in this part. Furthermore, the gathered results are condensed in the context of

the research questions.

This paragraph explains why inductive reasoning was applied to the regarded data corpus

that was called data sample below. Results that were found for the sample with approx-
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imately 1,000 motorway segments in NRW were generalized throughout for the statistical

population of motorway segments in the whole of NRW. The sample of 1,000 motorway

segments incorporated a large variety of different segment sizes, of different motorways, and

of surroundings of segments inside cells. It is therefore regarded as representative of the

entirety of motorway segments in NRW. The model’s reliability is furthermore drawn from

the comparable small standard errors when using different segments in the train and test

dataset.

Findings based on features and the target of ML models from the five-minute forecasting

time interval were generalized for all regarded near-future time intervals due to temporal

autocorrelations of traffic-related variables (cf. Section 3.1.1). Supplementary, generaliz-

ations are based on the received performance benefit of forecasting congestion states in

even the largest 60-minute time interval and hence occurred autocorrelations between a

60-minute time interval of the traffic variables.

Results of single segment models for selected highly congested motorway segments and

a five-minute forecast indicate that features of neighbouring cells add no value to single

highly-congested segment models in the whole of NRW and a near-time forecast of up to

60 minutes. The results do not fit with the expected spatial correlation (cf. Section 3.1.1)

and causal connection between instantaneous traffic from neighbouring motorway segments

and traffic in the future five-minute interval of the regarded segment. A more sophisticated

approach on single cells might be able to improve the evaluation performances. The results

gave furthermore the indication that single highly-congested segment models should not

be preferred over the more general so-called whole grid model for highly-congested cells in

NRW and a forecasting interval of up to 60 minutes. The given indication is in-line with no

found improvement from neighbouring cells.

Several features that were provided to ML models seem to capture valuable information

to forecast congestion states up to 60 minutes on motorway segments in NRW based on

their feature importance scores. Results for a five-minute whole grid model showed that

velocity-related features and traffic count related features were of high importance. In other

words, the approximated instantaneous velocity of motorists played an important role in

determining the near-future congestion state in five minutes in the regarded data corpus.
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The results are generalized to each forecasting time period due to autocorrelations in time of

the features (cf. 3.1.1) and the segments assumed representativeness for motorway segments

in the whole of NRW. Therefore, velocity-related features seem to be very important for

forecasting congestion states on the motorway network of the whole of NRW and a forecast-

ing interval of up to 60 minutes. This matches intuition since congested traffic is causally

related to lower velocities. Traffic count-related features seem to be of high importance for

forecasting congestion states on NRW motorway segments in the future time interval of up

to 60 minutes as well. Traffic count-related features give an approximate measurement of

the amount of vehicles on a motorway segment. The duration of vehicles on a motorway

segment is causally important for determining traffic congestion states and the traffic count

is assumed to represent the duration.

Whole grid ML models seem to be capable of adding value to congestion state forecasts

in the whole of NRW for an arbitrary time interval of up to 60 minutes. The developed

models appear to be capable of forecasting congestion states for the whole of NRW since

the 1,000 regarded sample motorway segments were spread over the entire area. Developed

models up to a forecasting time of 60 minutes in the future added value to the congestion

state estimation. The closer the forecasting time period was to the instantaneous time, the

better the congestion state forecast has been. The behaviour can be explained by temporal

autocorrelations of features and the target.

A comparison of the evaluation results from this work and other studies is prone to biases

due to the diverse spectrum of study setups (cf. Section 3.1.2). An additionally and widely

utilized benchmark data set could have reduced the impact of differing study setups. As

stated in Section 3.1.3, scientific work in the traffic congestion determination domain does

not predominantly rely on benchmark data sets. Furthermore, no proper benchmark data

set incorporating FCD existed until the time of writing this work. Results of introduced

methodologies by other studies could therefore only be compared to results of this work

based on different data corpora which strongly limited its informative value. Another barrier

for comparing results was the unavailability of a standardized metrics utilization. Moreover,

frequently presented metrics can only poorly adopt to a differing number of congestion

states, to differing target class shares, and further differences in experimental setups.
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For these reasons, the question of whether the developed motorway direction distinctive

grid-based models can compete with ML models based on map-matched street segments

could not be answered. The study setups of scientific works including data source, experi-

mental setup, and label gathering were too diverse for making reliable comparisons on the

study results. Using an additional FCD processing framework incorporating a map-matcher

would have been too consuming in terms of the computational effort and time since the

FCD is of huge volume (cf. Table 5.1).

The computational time for the motorway direction distinctive grid-based segment-assignment

step was more than 30% lower than the spent computational time when using the map-

matcher approach given the prescribed settings and utilizing 2.6 million data points. Moreover,

less computational effort leads to carbon emission saving and contributes to environmental

protection. Excluding the computational time, a disadvantage of the map-matcher approach

is the needed maintenance of a map-matching service. Furthermore, a map-matcher can have

various adjustable parameters which can be cumbersome to tune.
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7. Conclusion

This work evaluated the potential of forecasting traffic congestion states for motorway

segments based on grid cells using a huge floating car data set. The motorway direction

distinctive grid-based approach for linking floating car data to motorway segments is char-

acteristic for this work. It was proposed for the first time in this study to the best knowledge

of the author and utilized throughout for segment aggregations. Besides that, major areas

of interest were differentiating between developing models for one and numerous motorway

segments, generating feature insights, developing forecasting models for different near-future

time periods, and comparing the computational effort for the motorway direction distinctive

grid-based and map-matcher motorway segment assignment step.

7.1 Summary

This section summarizes the findings from other scientific works, the applied methodology

and the utilized data sets. It furthermore emphasizes on the analytical findings of this work.

Several congestion state prediction studies exist in the machine learning field. Details of the

summarized literature review can be found in Chapter 3. Studies using floating car data

usually rely on a map-matcher for mapping floating car data points to road segments. The

basic grid-based approach was pursued by only a few studies which mapped floating car

data points to grid cells. Congestion state forecasts, not for entire grid cells but for motor-

way segments based on grid cells, are proposed for the first time in this study to the best

knowledge of the author. The developed method was named motorway direction distinctive

grid-based approach.

Ground truth labels were gathered for the verification of congestion state forecasting results.
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The two ground truth congestion labels congestion and free-flowing were extracted from

traffic congestion messages that were generated by thresholding mean velocities of traffic

detector records. The labels originally referred to spatial points in North Rhine-Westphalia

and were assigned accordingly to motorway segments. Details of the ground truth data can

be regarded in Section 5.2.1.

Floating car data transformation led to features of the data corpus that were used to fore-

cast congestion states. Each observation in the data corpus contained feature values at a

given time and motorway segment, consisting of a cell and a binary motorway direction

variable. Motorway directions were determined by taking the mode of the floating car data

in each grid cell as one motorway direction (cf. Section 4.2.2). The opposite of the mode was

used as opposite motorway direction in a grid cell. 12 billion floating car data observations

were aggregated based on the time and segment (cell and direction) for generating feature

values. Aggregations of floating car data and further computations formed features such

as the median velocity. Ground truth traffic congestion states were merged to the feature

corpus based on their indices for generating the data corpus of 45 million observations.

The data corpus, as can be exemplarily seen in Table 5.4, was split into a train and a

test data set. So-called whole grid models utilized train and test data sets of disjoint cell

groups incorporating approximately 700 and 300 motorway segments respectively. Models

developed for single motorway segments used cross-validation data subsets based on the

monthly timestamp. Congestion state forecasts were implemented for the near-future time

periods: 5, 10, 20, 30, and 60 minutes. The forecasts relied on the random forest machine

learning model. Due to highly imbalanced congestion state classes, the target class conges-

tion (0.3% share) was oversampled in the train data set. Models were evaluated based on

the F1-score, the misclassification rate, and the Bookmaker Informedness.

Features from neighbouring motorway segments could not improve the evaluation perform-

ance of models developed and evaluated based on an exemplary motorway segment with

a high congestion share for five-minutes in the future. Results hence indicate that a single

segment model with a high congestion share does not improve its performance by relying on

features from neighbouring cells (cf. Section 6.2.1). Furthermore, no superior performance

of single segment models in contrast to whole grid models could be seen in the experiments.
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This is an indication for preferring whole grid models over separate models for each highly-

congested motorway segment in NRW and a forecasting time interval of up to 60 minutes.

The random forest marked several features as important for the five-minute congestion state

forecast in the whole grid setting as analysed in Section 6.2.2. Through induction for the

statistical population of the entirety of motorway segments in North Rhine-Westphalia and

a forecasting time period of up to 60 minutes, the current velocity of motorists seems to play

an important role in determining the future congestion state. Features in the traffic count

feature domain refer to durations of vehicles driving on a motorway segment. This feature

domain seems to be of great importance for forecasting congestion states in the whole of

North Rhine-Westphalia as well. The importance of the mentioned feature domains for fore-

casting congestion states could have been expected from a causal point of view.

Random forest models for several forecasting time periods were developed to represent the

whole of North Rhine-Westphalia’s grid by relying on approximately 1,000 sample motorway

segments with ground truth values. Models for the 5, 10, 20, 30, and 60 minutes near-future

time periods were evaluated as can be seen in Section 6.2.3. The whole grid model for each

described forecasting time period was able to add value to congestion state forecasts. The

model is hence proposed for forecasts of up to 60 minutes on North Rhine-Westphalia’s

motorway segments.

The model evaluation results in this work are based on the motorway direction distinctive

grid-based segment-assignment step. A comparison with evaluation results of models relying

on segment assignments through a map-matcher could not be made in a reliable way (cf.

Sections 3.1.2, 3.1.3). The underlying study setups differed strongly. It was therefore not

possible to compare evaluation measures in a reliable way.

The computational time for assigning segments to 2.6 million FCD points can be reduced

by more than 30% with the prescribed infrastructure (cf. Section 6.3).
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7.2 Discussion

The relevance of the traffic congestion topic and of the proposed approach is stated in this

section. Practical implications of the forecasting approach based on direction-distinctive

grid cells are presented additionally. Limitations based on inductive reasoning and ground

truth data is furthermore outlined.

Forecasts of traffic congestion can be implemented in navigation systems or intelligent trans-

portation systems to warn users of upcoming traffic congestion. Road users could save time

when not being caught in traffic congestion and CO2 emissions could be diminished addi-

tionally. The motorway direction distinctive grid-based approach as used in this work is less

complex, has less dependencies, can adopt better to data sparsity issues and needs mainten-

ance of less tools as opposed to the widely utilized segmentation through a map-matcher. It

is emphasized that this work proposes a machine learning model for forecasting congestion

states in the area of whole North Rhine-Westphalia as justified in Section 6.4.

A few features were found to be of strong importance for forecasting congestion states.

Noise seems to be harmless for these features since they still had a large impact on the

congestion state forecast. The noise arises when using the motorway direction distinctive

grid-based approach by an absence of only regarding data points gathered on motorways as

the map-matcher approach does. The motorways are the road network of interest.

Using grid cells for determining motorway segments is an alternative to relying on predefined

road segments determined by a geographic information system map. Even if the forecasting

performance of the motorway direction distinctive grid-based approach was slightly worse

than the performance when using a map-matcher, several advantages could compensate

for that. The advantages of the motorway direction distinctive grid-based approach are a

slim design and an apparently easy adaption to data sparsity issues. The slim design incor-

porates one less tool in only depending on the PySpark infrastructure and not additionally

depending on a geographic information system map and a complex map-matcher. This could

lead to less maintenance work when putting the machine learning model into production.

Furthermore, the segment assignment through direction distinctive motorway cells would

seemingly need less computational effort.
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A caveat is the utilization of only seven from the twelve months of a year in this work. The

single segment model performances with monthly cross-validated test data indicate a higher

variation in performance results for unseen months. Therefore, applying the whole grid

model between March and July could lead to a bit greater deviations from the performance

results of Figure 6-12.

The methodology proposed in this work can generally be adopted to areas of sparse floating

car data. In this case, models would have to be reevaluated for the customized cell size.

This aspect was beyond the scope of this work.

The motorway direction distinctive grid-based congestion state forecast methodology was

developed in a scalable infrastructure. The near-future forecasts of congestion states can

enrich a navigation system or an intelligent transportation system. Scalability and a slim

application design can become important aspects for forecastings congestion states in com-

parable large regions such as North Rhine-Westphalia.

Limitations of this research are the consideration of a data sample instead of the statistical

population for generating feature values and the possibility that the sample is not represent-

ative. Furthermore, the true target values could differ from the data used as ground truth

for this work since they only consider a deterministic threshold of one traffic indicator for

determining only two congestion states.

7.3 Future work

Important possible fields of future work are outlined below. Opportunities for improving the

data corpus and optimizing the model performance in the future are described. Possibilities

for comparing models of different studies are pointed out. The determination of reasonable

application areas for congestion state prediction models is proposed as well.

Distinguishing between two directions of motorway-encompassing cells seems to work well

in many use cases. Deviations from the normal case might lead to biases in the feature

values. Expanding the data processing step for a more detailed distinction of motorway

directions could lead to additional direction classes in some cases. Using gaussian mixture

models additionally could be an approach to determine the number of motorways and hence
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the number of directions in a cell. Pursuing the direction distinctive grid-based approach, a

more detailed distinction of directions is proposed as it could further improve the forecasts.

Other scientific works ([19], [29]) as well as causal connections indicate performance im-

provements from the usage of traffic information from the nearby traffic network. Even so,

this work did not show considerable improvement. Further developing the usage of features

derived from cells in the neighbourhood should therefore be studied in the future.

Optimizing hyperparameters of the utilized machine learning model was beyond the scope

of this work but it could improve the model’s performance. Comparing various machine

learning model types, including anomaly detection methods, based on a data corpus gen-

erated with the help of grid cells could also lead to improved modelling results. These two

possibilities of adjusting the forecasting methodology in order to gain predicting power

should be studied in the future.

General obstacles for relying on benchmark data sets are the use of non-open-source data

sets in studies as well as heterogeneous data sources such as stationary detectors, FCD, and

image data. Generating benchmark data sets for the diverse kind of data sources is recom-

mended as it could lead to more validity and justification of proposed algorithms. Ideally,

benchmark data sets for different data formats would rely on the same traffic situations. In

this case, even models using different input formats could be compared. Metrics could be

established that were reported standardly in scientific works in this field. It is further an

open question if a metric can account for the various dimensions of different study setups.

That would be a great help in comparing experimental results of different scientific works.

Regarding this work specifically, the forecasting power of the motorway direction distinctive

grid-based approach could not be related to the map-matcher forecasting approach of other

studies. Linking the approaches is a missing piece that should be pursued.

Transferring ML methodologies and evaluation results throughout the globe has not yet

been studied systematically, which might be partly due to lacking benchmark data sets.

Research in this field could lead to a better base for comparing studies with data sources

from a diverse spatial spectrum. It could hence lead to a wider applicability of ML models

developed for specific areas as well.
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A. Performance evaluation results

Table A.1 presents evaluation results of the resampled test data set as well as the test data

set with original class proportions in the whole grid setting.

Time period F1-score (std. err.) Misclass. rate (std. err.) BM (std. err.)
Resampled Original Resampled Original Resampled Original

Baseline 0.33 0.006 0.20 0.003 0 0

Current time 0.57 (0.07) 0.081 (0.019) 0.13 (0.01) 0.033 (0.003) 0.43 (0.08) 0.43 (0.08)
5 Min. 0.56 (0.08) 0.078 (0.018) 0.14 (0.02) 0.033 (0.004) 0.41 (0.09) 0.41 (0.09)

10 Min. 0.54 (0.07) 0.076 (0.018) 0.14 (0.02) 0.033 (0.003) 0.39 (0.08) 0.39 (0.08)

20 Min. 0.50 (0.08) 0.072 (0.018) 0.15 (0.02) 0.032 (0.004) 0.35 (0.09) 0.35 (0.09)

30 Min. 0.47 (0.08) 0.067 (0.020) 0.15 (0.01) 0.031 (0.003) 0.32 (0.08) 0.32 (0.08)

60 Min. 0.35 (0.08) 0.055 (0.016) 0.17 (0.01) 0.026 (0.003) 0.21 (0.06) 0.21 (0.06)

Table A.1: Performance evaluation of the random forest whole grid model
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