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KURZFASSUNG

Die COVID-19-Pandemie hat das gesellschaftliche Leben der Menschen seit
dem Ausbruch im Januar 2020 verdndert. Der Ausbreitung der Krankheit
durch Aerosole von infizierten Personen wurde von Regierungen weltweit
entgegengewirkt. Unternehmen miissen interne Prozesse anpassen, was
zu Kapazitidtseinschrankungen fithren kann. In dieser Arbeit wird ein
Framework vorgestellt, mit welchem das Infektionsrisiko in einem sozialen
Teilsystem, wie beispielsweise einem Unternehmen, bestimmt werden
kann. Grundlage dafiir sind Interaktionsdaten der Personen des Teilsys-
tems. Das Interaktionsprotokoll dieser Arbeit wurde iiber sechs Wochen
in einer Firma in Italien mit Hilfe von Bluetooth Sensoren aufgezeich-
net. Unter Verwendung von arbeitsplatzspezifischen Reproduktionszahlen
und Infektionszeitraumen aus der Literatur, werden systemspezifische
Infektionsdynamik-Metriken fiir SARS-CoV-2, SARS-CoV-2-B.1.1.7 und In-
fluenza berechnet und verglichen. Die Ergebnisse zeigen, dass fiir das
betrachtete soziale System SARS-CoV-2-B.1.1.7 ein 2,6-fach hoheres Infek-
tionsrisiko pro sozialer Interaktion aufweist als die urspriingliche Variante.
Auflerdem fithrt SARS-CoV-2-B.1.1.7 zu 3,4-mal so vielen Sekundarfallen
(920) wie SARS-CoV-2 (270), wenn keine Gegenmafinahmen ergriffen wer-
den. Soziale Distanzierung erweist sich als wirksame Gegenmafsnahme fiir
das betrachtete soziale Subsystem, welche eine Reduktion der Sekundar-
talle der britischen Mutation auf 360 und fiir SARS-CoV-2 auf 69 ermoglicht.
Es konnte auch gezeigt werden, dass gezielte Gegenmafsnahmen, die auf
topologischen Netzwerkeigenschaften fiir einen kleinen Teil der Individuen
innerhalb des Systems basieren, die Anzahl an Ereignissen bei welchen
eine Person viele weitere Personen auf einmal infiziert um 25% reduziert
werden konnen, indem fiir 15% der Personen im betrachteten sozialen Un-
tersystem soziale Distanzierungsmafinahmen eingefiihrt werden (bezogen
auf SARS-CoV-2-B.1.1.7). Das Framework kann fiir jede Infektionskrankheit
verwendet werden, die durch soziale Interaktionen tibertragen wird. Es
ermoglicht Entscheidungstrdagern, verschiedene Interventionen zu bew-
erten, soziale Strukturen besser zu verstehen und Individuen innerhalb des
sozialen Subsystems zu identifizieren, die besonders gefdhrdet sind oder

potentiell viele weitere Personen anstecken.

Schlagworte — COVID-19; Infection Model; Social Interaction; Social Net-

work Analysis.
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ABSTRACT

The COVID-19 pandemic has changed people’s social lives since the out-
break in January 2020. The transmission of the disease through aerosols
from infected individuals has been counteracted by governments world-
wide. Companies have to adapt internal processes, which can lead to
reduced capacity. This thesis presents a framework for determining the risk
of infection in a social subsystem, such as a company. The basis for this is
interaction data of the persons of the subsystem. The interaction protocol
of this work was recorded over six weeks in a company in Italy using Blue-
tooth sensors. System-specific infection dynamics metrics for SARS-CoV-2,
SARS-CoV-2-B.1.1.7, and Influenza are calculated and compared using spe-
cific workplace reproduction numbers and infection periods reported in the
literature. The results show that for the social system considered, SARS-
CoV-2-B.1.1.7 has a 2.6 times higher risk of infection per social interaction
than the original variant. Moreover, SARS-CoV-2-B.1.1.7 leads to 3.4 times
as many secondary cases (920) as SARS-CoV-2 (270) if no countermeasures
are taken. Social distancing turns out to be an effective countermeasure
for the social subsystem under consideration, allowing a reduction of sec-
ondary cases of the British mutation to 360 and for SARS-CoV-2 to 69. It
was also shown that targeted countermeasures based on topological net-
work properties for a small fraction of individuals within the system can
reduce the number of events in which an individual infects many more
individuals at once by 25% by introducing social distancing measures for
15% of the individuals in the social subsystem under consideration (related
to SARS-CoV-2-B.1.1.7). The framework can be used for any infectious
disease transmitted through social interactions. It allows decision makers
to evaluate different interventions, better understand social structures, and
identify individuals within the social subsystem who are particularly at risk

or transmitting infection.

Keywords — COVID-19; Risk model; Infection Model; Social Interaction;
Social Network Analysis.
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1 Introduction

According to the World Health Organisation (WHO), diseases are becoming a
current major international issue, especially infectious diseases that threaten
health, economy and security [SV11]. As of December 2020, lower respiratory
infections remained the world’s most deadly communicable disease, ranked
as the 4th leading cause of death. An example of a lower respiratory infec-
tion spreading rapidly worldwide is the Severe-Acute-Respiratory-Syndrom-
Coronavirus-2 (SARS-CoV-2).

On December 31, 2019, the WHO China Country Office was informed of cases
of pneumonia of unknown etiology detected in Wuhan, a metropolis of one
million people in Hubei province. A novel coronavirus (SARS-CoV-2) was iden-
tified as the causative virus by Chinese authorities on January 7 2020. The
original site of infection was the Wuhan wholesale fish and seafood market,
from where the virus spread first to neighboring countries and then nearly
around the world within a few weeks. The cumulative number of confirmed
SARS-CoV-2 infections is more than 114.1 million worldwide by March 1, 2021.
The number of coronavirus-related deaths rose to more than 2.5 million by that
date [DDG20]. The SARS-CoV-2 pandemic has not only changed the social
lives of people around the world [Cha*20a] [Sun"20] but also overwhelmed
many health systems due to many life-threatening infections [And*20]. While
2020 was a challenging year, 2021 looks to be difficult with the emergence of
multiple variants of SARS-CoV-2. The race to vaccinate the world will need to
respond to the pathogen’s constant evolution to evade immunity [Fon*21]. The
WHO'’s growing concerns with epidemiological threats have two main reasons,
according to a report [Org07] by the organization: First, migrations, increasing
antimicrobial drug resistance, and health system failures continue to thwart
implemented intervention plans. And secondly, the interconnectivity of people
around the world. While problems such as antibiotic resistance or infrastructural
problems in the health sector can only be solved in the long term and through
structural changes, governments around the world have focused on containing
the spread of the virus through general restrictions such as lockdowns and
quarantine. Despite their efficacy, large-scale quarantine and population-wide
lockdown strategies are far from optimal, and interventions at smaller scale,
selectively targeting individuals at higher risk of spreading the disease, are more
desirable [Cen*21].
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Epidemiological models are often used by governments to help them decide on
further measures to combat the virus. The aim of these models is to estimate the
further course of infection, considering the measures taken [Fer*20a] [Hel*20]
[RWC20] [ZC20].

In the current Corona pandemic, most of the models used by governments are
mainly based on the SIR model introduced by Kermack et al. [KM27] or one of its
further developments. SIR model (Susceptible-Infected-Removed model) is the
term used in mathematical epidemiology to describe the spread of infectious
diseases. Individuals in a given community are classified into one of three
compartments, and constant rates describe the transfer of individuals between
these groups. Models of the SIR type are widely accepted in epidemiology
because of their simplicity and comprehensibility [Kiih*20]. For example the
model used by Kiihn et al. [Kith*20] to simulate the SARS-CoV-2 outbreak in
Germany is based on the SIR model. This model has been taken into account by
the German Federal Government when deciding on further measures [RM21].
These models are used when making predictions about infection trajectories
for large populations (social systems) with many different subsystems about
which detailed information is not necessarily available [Fer*20b] [SPN20] [FF20].
An alternative to compartmental models is Agent-Based-Model (ABM). This
framework allows to define behaviors at the individual and societal levels,
describe the characteristics of the pathogen, and simulate the evolution of the
infectious disease on a synthetic population [Eub*04]. However, this requires
a great amount of detailed data about the population. Furthermore building,
testing, and refining such models is time-consuming and rarely possible during
deployment in the fight against an ongoing epidemic [Ven*18].

It is evident that different methods are currently being used to model the course
of infection of the SARS-CoV-2 pandemic. The ever-changing threat posed by
the virus through mutations means that some aspects of the pandemic may
persist in the medium or long term [RWC20]. It is therefore necessary to make
social and economic processes resilient in order to return to the normal life
before the pandemic.

In addition to the health, environmental, and social challenges facing humanity;,
the coronavirus outbreak is disrupting the global economy. The lockdown
measures and distance regulations imposed have interfered with industrial
processes to such an extent that companies in various industries have had to
close down for extended periods of time. Although many companies were
able to maintain internal processes through home office, such a regulation is

not possible in industries such as manufacturing, where employees must be
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physically on site. For these companies it is necessary to find a solution with
which the internal processes can be continued with minimal risk of infection
to the workforce. An understanding of the transmission routes of infectious

disease is therefore required.

According to recent research results by Robert-Koch-Institut (RKI) [Haa20] and
Zhang et al. [Zha*20], respiratory ingestion of virus-containing liquid particles is
seen as the main route of transmission for SARS-CoV-2. Hence, social interaction
data, which describe the contact patterns of individual persons within the
system under consideration, could be suited for modeling the infection course
of SARS-CoV-2.

The dataset used in the thesis was collected through body-worn Bluetooth tags
and include all social interactions between two individuals that occurred less
than 1.5 meters apart and lasted longer than 15 seconds. The definition of these
thresholds is consistent with the previously mentioned research by Haas et al.
[Haa20] and Zhang et al. [Zha*20]. In addition, the work of Jayaweera et al.
and Kriegel et al. provides evidence that SARS-CoV-2 has a realistic chance of
surviving in air for a period of several hours [Jay*20]. According to the RKI,
prolonged exposure in small or poorly ventilated spaces can increase aerosol
transmission even beyond a distance of two meters, making the total duration of
contact between two people a more important parameter than the exact distance
during the interaction. For this reason the assumption is that the number of
detected proximity contacts between two individuals is a surrogate for how long
they have been in close proximity. This detailed dataset on individual person-
to-person connections within a social subsystem was collected as part of the
Infection Resilience by Targeted Action against Transmission (ResTAat) project
at the Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (German Aerospace
Center) (DLR). It forms the basis for an investigations in a network graph, that
maps all social interactions between different individuals. Within this graph,
the individuals of the social subgroup under consideration are represented as
nodes and the connections between these particular individuals are represented
as edges between the various nodes [WF94] (an example of such a graph is
shown in figure 1.1). Paremeters such as the frequency of social interaction can
be stored as a value on the respective edge. What exactly is counted as social
interaction must be defined in each research context. Valuable information can
be derived from the topology of the resulting graph alone. For example, Figure
1.1 represents the correspondence between different scientists. In addition to
the frequency of correspondence between researchers, which can be read from
the thickness of the edge, the size of the individual nodes can also be used to
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FIG. 1.1: Example of a social network graph depicting the collaboration of selected
scientists between 1922 and 1930. In total, the network contains 887 nodes and
10363 edges. The thickness of the edges indicates how often the scientists
collaborated with each other and the size of the node indicates how many
colleagues each scientist collaborated with in total. The color indicates the
membership of a scientific network (white = member, blue = no member).
Figure according to Grandjean [Gral4]

identify which scientists have received or sent the most letters. Such simple
information is very important for evaluating the significance of individual
network nodes within the network and, depending on the context, provides
approaches for further investigation. For example, if the graph in Figure 1.1
were examined in the context of an infectious disease and the edges represented
personal meetings of scientists, the size of each node could be seen as a coarse
indicator of the individual’s risk of infection, as increasing numbers of social
interactions increase the likelihood of infection of a disease transmitted through

social interactions.

1.1 Aim of the thesis

This approach is taken up in the context of this thesis. The central research ques-
tion of this thesis is how a protocol of social interactions within a complex social
(sub)system can be used to calculate the risk of infection for an infectious disease
that is transmissible through social interactions within that system. Counter-
measures to contain the disease are then derived from this framework. Wearing

masks and social distancing are considered as countermeasures. Both measures
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are integrated into the framework. It is also investigated whether characteristics
of contacts, such as duration of contacts between two individuals, provide infor-
mation about the likelihood of infection and whether the topological properties
of the resulting network graph allow inferences about infection dynamics. Using
a company as an example, this could isolate individuals particularly at risk of
infection before they either become infected themselves or infect others. Another
goal is to generalize the framework proposed in this work so that it can be used
to model other social interaction-transmitted diseases in other social subsystems.
To enable such a general application of the model, individual social contacts
and social subsystems need to be defined in the context of this work. According
to Machens et al. [Mac"13], the establishment of countermeasures is in social
subsystems is relevant to the containment and long-term control of socially

transmitted diseases.

The findings on the course of infection and the countermeasures derived from
them in this thesis relate exclusively to the social subsystem under considera-
tion. Inference to other systems or scalability to, for example, the population
of an entire country need to be validated. Likewise, site-specific parameters
of social interaction such as ventilation or activity at the respective site are
not taken into account in the context of this thesis for calculating the risk of

infection.

1.2 Agenda

This thesis is divided into six chapters. After the introduction, Chapter 2 first
presents the methods used in the field of epidemic modeling and then classi-
ties them based on their application in research. After presenting the results
of related research approaches, Chapter 3 introduces the dataset used with its
specific characteristics. Based on these data and previous research in the field,
the infection model is then derived. In addition, this section presents possible
mitigation intervention options and their consideration in the model. Chapter
4 then describes all the experiments and simulations performed with the re-
spective software implementations before all results are described, compared
with the literature and discussed in Chapter 5. Finally, the results obtained are
interpreted and, based on this, a conclusion is drawn for this thesis and further
research approaches in Chapter 6.



2 Theoretical Background

The motivation of this chapter is to demonstrate the need for models to deter-
mine the risk of infection in a population or a specific part of that population.
Since this thesis is focused on infectious diseases transmitted by proximity con-
tacts, section 2.1 first defines the basic concepts and objectives of SNA. It is
shown what SNA can be used for and which prerequisites have to be fulfilled.
In section 2.2, different approaches for modeling a pandemic are presented.
In particular, the use cases for each of these models and their advantages and
disadvantages are described. Subsequently, the introduced models are discussed
2.3. Section 2.4 concludes the chapter by presenting similar research. In detail,
approaches based on social interaction data within complex systems and used

for modeling infectious diseases are considered here.

2.1 Social Network Analysis

Interest in social network graphs, such as those shown in Figure 1.1, has in-
creased significantly over the past several years [Eir"18]. To keep terminologies
and definitions consistent, this section gives an introduction to graph theory in

a social context.

2.1.1 Definition of the subject

Nowadays the data generated from many real world applications are repre-
sented as a network of interconnected objects. The main objective is to extract
more information than the traditional way of investigating independent objects.
Of course, it increases the complexity of handling data as well. One of the major
class of data networks is social networks. A social network can be constructed
from relational data and can be defined as a set of social entities, such as people,
groups, and organizations, with some relationships or interactions between
them [Tab*18]. Examples of social networks are given in Table 2.1. Graph theory
is the branch of mathematics devoted to the study of graphs and networks.
Graphs and networks are defined by a set of vertices V and a set E of relations
between the vertices. The simplest relation is an edge defined as a pair of vertices
(a,b) with a € Vand b € V. A graph consisting of vertices and edges is called a
simple graph or simply a graph. Another relation is an arc, defined as a pair of
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Example Application

Follower networks Instagram, Facebook, Twitter etc.
Electronic interaction networks E-Mails, Phone calls, Whatsapp, Snapchat etc.
Co-authorship networks Science direct, Nature, NEJM etc.

TAB. 2.1: Examples of social networks. In all networks, individuals represent the nodes
and the connection between them represents the respective relationship.

Vertex |A BCD
A

B
C
D

I I II

FIG. 2.1: A directed and unweighted graph G (II) represented by an adjacency matrix
(I) and an adjacency list (III). Directed links are represented by an arrow and
indicate from whom the link originates compared to undirected edges. Figure
according to Tabassum et al. [Tab*18].

vertices with a direction a — band a € V,b € V. A graph consisting of vertices

and arcs is called a directed graph or digraph.

Figure 2.1 shows an example of a small directed graph. The edges of a directed
graph can only be traversed in one direction and are often represented as arrows.
Directed edges often are used to model asymmetric relations and relations such
as "depends on", "implies", "must be performed before" or "is better than". Undirected
graphs (with undirected edges), on the other hand, can only model symmetric
relationships and relations such as "are friends", "are neighbors", or "are connected".
Besides the visual representation of the graph Figure 2.1 II, two notation options
are given in I and III. Figure part I shows the adjacency matrix of the graph.
This matrix contains the information which nodes of the graph are connected
by an edge. It has a row and a column for each node, resulting in an n * n
matrix for n vertices. The list in Figure 2.1 III, contains a set of all neighbors

(in undirected graphs) or successors (in directed graphs) for each vertex in G.

A network is a graph with capacities assigned to the relationships between
vertices. For example a weighted graph G = (V, E) is attributed by a function w
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that assigns a weight w(e), typically w(e) > 0, to each edge e € E. In a social
network perspective this w(e) could be a discrete or continuous attribute, for
instance the total contact time or the number of emails written.

In the graphical representation of networks, the values of the weights w of the
graph G are distinguished by line weight or value, line sign or line type [de 09].
Examples of value differentials in a social context include intensity, frequency;,
valence, or type of social relationship. The set of possible relationships per node
is potentially infinite [MS06].

The social network perspective provides a set of methods for analyzing the
structure of whole social entities as well as a variety of theories explaining the
patterns observed in these structures. Analyses of this kind of graph structures
are summarized under the term SNA. The focus of SNA investigation is on
the relationship between the individual entities, rather than on the entities
themselves. In fact, the goal of this technique is to examine both the contents and
patterns of relationships in social networks in order to understand the relations
among actors and the implications of these relationships [Ste19] [WF94]. It can
be useful to identify local and global patterns, locate influential entities, and
examine network dynamics. Therefore it is most valuable for characterizing
population-level outcomes when there are relational features that play a role in
the behavior of networked individuals [Ber05] [WF94] [LHO7]. Edge weighting
provides a way to fully capture the richness of the data [Les*09] and ensures
that in a network with weighted edges other nodes take a central role than in
a network with unweighted edges, even if both networks are topoloigically
identical [OP09].

The mentioned ,central role of a node” by Opsahl et al. [OP09] within the
network can be calculated by different SNA algorithms. However, each of these
algorithms places value on different characteristics of the network and must
therefore be interpreted in the overall context of the network or applications
[Ryd*05].

In the following, A always represents the adjacency matrix of the network graph
G and A;; represents the number of contacts between Node iand j. Accordingly,
the edge between i and j has the weight or affinity of A;;. As before, V notes
the set of verticies of graph G and n corresponds to the number of rows in the
adjacency matrix.
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* Degree Centrality:
It assigns an importance to each node within the network based on the
number of connections of that node. Thus, 6 connections correspond to
an importance of 6, etc. Consequently, the metric is the simplest measure
of node connectivity and can be used to find highly connected people,
people who are likely to have the most information, or people who can
quickly connect to the broader network. For example, targeting these
nodes with high degreee centrality may be an effective way to contain a
pandemic if the underlying network does not have a distinct community
structure [L1o*05]. If this distinct community structure is present it is not
these highly interconnected nodes that are responsible for the majority of
infections in the network, but the so-called community bridges, which may

have fewer connections overall, but link several communities [Mor*96].

n

CDegree (J) = Z Ai,j (2-1)
j=1

¢ Betweeness Centrality
This metric takes these intra-community connections into account. The
measure calculates the number of times a nodes is on the shortest path
between other nodes, which gives an indication of the flow around the
system. The betweenness centrality of a node v is given by the expression:
035(v)

Chetween (V) = Z ——

2.2)
iz O

with oy; as the total number of shortest paths from node i to node j and
oij(v) as the number of those paths that pass through v.

* Eigenvector Centrality

The third measure identifies the nodes that have influence on the entire
network, not just those that are directly connected to it. Eigenvector
centrality computes the centrality for a node based on the centrality of its
neighbors. This metric also takes into account how well connected a node
is and how many links its connections have through the network. This
makes this measure particularly suitable for applications within a network,
where a maximum effect should be achieved with minimal resources
[CF10] [S]10].
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FIG. 2.2: Comparison of Degree-Centrality, Bewteeness-Centrality, and
Eigenvector-Centrality. The arrangement of vertices is the same for all three
graphs and high values mean "importance" in terms of the associated metric.

The relative centrality x for the two connected verticies 1 and j is calculated

as follows: | |
Xi:X.Z. Xj :XZAi'j*Xj (23)
jeM(1) jeG

with M(i) as a set of neighbor verticies of i and A as a constant.

An overview of the three metrics presented is provided in Figure 2.2. The ver-
tices layout is the same for all three graphs, showing that from left to right,
fewer and fewer nodes have high values for each metric. Degree-Cenrality and
Eigenvector-Centrality seem to consider partially similar nodes as important.
Betweeness-Centrality marks different nodes as salient compared to the other two
graphs. Therefore, several nodes in this network have a high degree, but only a
few nodes have a high degree and influence on larger parts of the network.
These metrics provide a good basis for describing the properties of a network,
but represent only a selection of the best-known topological properties.
Applications with real-world networks often involve developing their own met-
rics or adapting existing ones. The reason for this is that the available measure-
ment methods or data sets can only capture the contact network that is really rel-
evant for the application to a certain degree of detail [S]10].
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2.1.2 Communities in a social network

A network community is a subset of vertices v .C V with similar degree of
relationship between the subset members, but dissimilar with members outside
the subset. Social networks show significant community structure and social
processes such as homophily and transitivity result in highly clustered and mod-
ular networks [S]10]. The ability to capture this relationship between different
groups or individuals allows graphs to represent social systems in detail [For10].
Such clusters or communities can be viewed as relatively independent compart-
ments of a graph, playing a role similar to, the tissues or organs in the human
body. For this reason, the methods to uncover and understand these important
network (community) structures on multiple topological and temporal scales are
of particular interest [Agg11]. Quality functions that quantify the goodness of a
given network division into communities formalize the concept of communities.
Some of these quality metrics are more common than others, such as Normalized
Cuts [SMO01] and Modularity [NG04], but none has achieved universal acceptance
since no single metric is applicable in all circumstances.

It is known that modularity has a resolution limit and therefore is not able to
detect small communities [For06]. However, being aware of these peculiarities,
modularity can very well be considered a robust and useful measure that, ac-
cording to Gorke et al. [Gor™13], closely agrees with intuition on a wide range
of real-world graphs. The metric is therefore assessed as appropriate for this
work. Modularity is often used because of its independence from the number of
clusters and has become an essential element of many clustering methods. In
this algorithm, the farther the subgraph corresponding to each community is
from a random subgraph (i.e., the null model), the better and more meaningful
the discovered community structure is judged to be. According to Newman et al.
[NGO04] the modularity Q is defined as

kiki
Q= ﬁ Z <Aij — 2;?) Y (ci, ¢5) (2.4)

Y

where m is the number of edges, Aj; is the adjacency matrix of G, k; is the degree

of i and

1, ifiandj arein the same community
Y(ci, ¢5) = (2.5)

0, otherwise.
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FIG. 2.3: Randomly generated undirected geometric graph G = (V, E) with number of
nodes (vertices) |V|= 200 and number of edges |E|= 837. Geometric graphs
resemble human social networks in many ways. They often exhibit
community structures, i.e., densely connected groups of nodes are formed.
Here these communities are color coded. Corresponding graph to Fig 2.2

After a evaluation metrics for the classification of the graph G into different
clusters (communities) has been introduced, an algorithm for the recognition
of communities is now presented. This algorithm was developed by Girvan
and Newman [NG04]. The Girvan-Newman method focuses on the concept of
betweenness, which is a variable expressing the frequency of the participation
of edges to a process. The measure is the number of shortest paths between all
vertex pairs that run along the edge. It is an extension to edges of the popular
concept of site betweenness, introduced by Freeman [Fre77] and expresses the
importance of edges in processes like information spreading, where information
usually flows through shortest paths [For10]. This metric is used to identify
edges that connect different communities. It is therefore assumed that edges
between communities have higher Betweenness-Values than edges within a com-
munity. These edges should then be capped in order to decompose the social
network into its constituent communities.

The general form of the algorithm is as follows:

1. Compute betweenness score for all edges in the network using any measure-

ment method.
2. Find edge with the highest score and remove it from the network.
3. Recalculate betweenness for all remaining edges.

4. Repeat process from step 2.
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An example of the division of a graph into different communities (clusters) is
shown in Figure 2.3. In total, the graph was divided into nine communities by
Girvan-Newman's method. From a purely visual point of view, the division of the
communities makes sense, since it appears that the nodes within a community
are more strongly connected to each other than to the rest of the graph. The
modularity for this example is 0.755. Comparatively, the modularity for the same
graph where 20 of the 200 nodes were assigned to random communities is only

0.614. This comparison graph is shown in the Appendix A.1.

In this section, the fundamentals, metrics, and algorithms from the topic area
of SNA that are important for this thesis were presented. These basics are
important because network graphs and methods from SNA also lend themselves
to modeling infectious diseases in social systems [BG11]. This possibility, along
with other models for infectious disease modeling, will be addressed in Chapter
2.2.

2.2 Infection Models

Models for predicting the course of infections in complex systems (social sys-
tems), have been widely used in public health at least since the SARS-CoV-2
pandemic. According to Luke et al. [LS12], these systems consist of heteroge-
neous elements that interact with each other. Likewise, these systems have
emergent properties that cannot be explained by individual elements and adapt
to changing circumstances. Public health is beginning to use results from
systems science studies to shape practice and policy, for example, in prepar-
ing for global pandemics. In studies of complex systems in a social context,
three systems science methods have become established over the past several

years:
1. System dynamics (SD)
2. Social-Network-Analysis (SNA) (cf. Section 2.1)
3. Agent-based-modeling (ABM)

Although there is some overlap, these three methods each approach the study
of complex systems in different ways. According to Osgood [Osg07], each of
these methods is appropriate with respect to certain properties of the social
systems under consideration. Table 2.2 provides an overview. For example, ABM
and SNA are both more appropriate for describing how individual actors in a
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System property SD SNA ABM

Model breadth X

Dynamic systems in real time X X
Interactions of individual actors X X
Complex relational structures X

TAB. 2.2: Primary strengths of each system science method according to [LS12] and
[Osg07].

system interact with each other compared to SD, according to Luke et al. [LS12].
That said, SD, SNA, and ABM all have rich, multidisciplinary conceptual and
technical histories. Recent developments in computer and modeling technology
have further benefited the models.

2.2.1 Epidemiology basics

Basic epidemiological jargon

* Rp: The baseline reproduction number indicates the average number of
people infected by an infectious person when no member of the population

is immune to the pathogen (susceptible population).

* Superspreading event and Superspreader: In infectious disease epidemi-
ology, a superspreading event is a sudden, "explosive" transmission event
in which certain infected individuals, called superspreaders, infect an un-
usually large number of subsequent cases with a bacterial or viral pathogen,
while most infected individuals infect few or no others. Thus, the number
of people directly infected by a superspreader is significantly higher than
the baseline replication number Ry. Thresholds need to be defined for each

application.

Path of infection According to current research, the SARS-CoV-2 virus is trans-
mitted by respiratory ingestion of virus-containing liquid particles transmitted
[Haa20] [Zha*20]. Social interactions, such as conversations at close distance,
hugging, or several people being in poorly ventilated rooms, are therefore the
main routes of transmission. In detail, these particles are aerosols (i.e.small
airborne particles and microdroplets with @ < 5nm), which are also produced
during normal breathing and talking. Activities such as singing or shouting
significantly increase the emission of such particles [Lel"20]. In addition these
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aerosols have, according to Jayaweera et al. [Jay*20] and Kriegel et al. [Kri20] a re-
alistic chance of surviving and hovering in the air for an extended period of time.
As a consequence, virus contamination of common objects or aerosolization of

the virus in an enclosed space may occur.

Following factors play a crucial role in calculating the risk of an infection of a

social interaction via the aerosol transmission route:
¢ Duration of contact
¢ Distance during contact
* Location of contact (within the subsystem)

* Environmental parameters of the contact location

2.2.2 System dynamics for infectious diseases

System Dynamics is a common modeling approach used to capture nonlinearity
in complex systems. It is based on the premise that complex behaviors of a
system (e.g., population prevalence of an infection) result from the interplay
of feedback loops, stocks, and fluxes that all occur within the bounded system
[Agg™20]. The approach focuses on modeling the relationships among the
various key elements of each system and developing a top-down representation
of the system as a whole. This is done using a series of "stock and flow" diagrams,
where each stock represents the set of a particular entity and a flow represents
the change in the set of a particular entity [RS08].

One type of system dynamics model commonly used in the field of epidemi-
ology is the SIR model. The simple but basic SIR framework, was developed
by Kermack et al. [KM27] as early as 1927 and is still used today to provide
important insights into the evolution of a new epidemic in an idealized suscep-
tible population with random mixing. The basic SIR model has three groups:
susceptible (S), infectious (I), and removed (R). Each of these groups represents a
population variable containing the number of individuals in the population in
that infectious state. Thus, the sum N = S 41+ R is a collectively exhaustive
representation of the entire population (N). It is parameterized by the infec-
tious period %, the baseline reproduction number R, (the number of secondary
cases for each infection in a fully susceptible population), and the contact rate
B =v*Rp.

Figure 2.4 shows an example of the progression of an infectious disease within
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FIG. 2.4: SIR model overview with the three groups into which the entire population
under consideration is divided in the upper left and the differential equations
describing the transit of the persons between the groups in the upper right.
The graph shows the number of persons per time step for each of the three
groups. The total population is 1000 persons, the contact rate 3 = 0.2 and the
infectious period y = ]1—0. 160 days were simulated in total. Blue dashed line
shows the curve for the case when 3 is raised to 0.4. This is for comparison
only.

a population of 1000 people. It can be seen that the decrease in susceptible
individuals and the increase in recovered (immune) individuals are somewhat
opposite. This is explained by the green line, which accounts for the number
of infected individuals per time point. Other interesting observations are that
about 20% of people are still susceptible (i.e. have not been infected) and about
80% are immune to the disease after 160 days. At this point, no more people are
infected, so no further infection can occur in this system. The blue line shows
how drastically the progression of infected persons changes when (3 is changed
from 0.2 to 0.4. The time period in which people are infected in the system
is extremely shortened, which leads to a much higher maximum number of
simultaneously infected people.

In recent years, various advancements of this model have been presented for
different infectious diseases. For example, since most infectious diseases have
a latent period between being infected and becoming infected, the SEIR-model
with the exposed group (E) was presented. After infection, individuals migrate to
this group at a rate B * S * & and remain there for an average period of (]—I before
moving to group 1. Again, because in many respiratory infections immunity
after recovery is transient, and recovered individuals lose this immunity again,
in a further development the SEIRS model was presented in which individuals
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return to group S after an average period of protection of %

With these and other compartments (groups) along with additional more compli-
cated flows between them, including aspects such as birth, death, and age, more
complex disease transmission scenarios can thus be modeled.

2.2.3 Social-Network-Analysis for infectious diseases

There is an extremely close relationship between epidemiology and network
theory that dates back to the mid-1980s [MA87] [Klo85]. In most cases, the
graphs used in this field are constructed in such a way that the individuals
represent nodes and the edges between the individuals represent parameters
such as contact, number of contacts, or some other value for a social interaction.
In section 1.1, a similar example was given with the social contacts of scientists
in Figure 1.1. Hence, it is the connections between individuals (or groups of
individuals) that enable the spread of an infectious disease. These connections
define a natural network from which, in turn, insights into epidemiological
dynamics can be gained. Methods from the field of SNA are therefore used
to characterize social networks and to draw conclusions about how network
structures may influence the risk exposure of members of the network [EIS™12].
Social Network Analysis can be ideal for understanding social contagion as
well as the influences of social interaction on population health. In particu-
lar, understanding the structure of the transmission network allows for better
predictions of the likely distribution of infection and early growth of infection
(post-invasion) and allows for simulation of the overall dynamics [Dan*11].

However, the interaction between networks and epidemiology goes even further.
Because the network defines potential routes of transmission, knowledge of its
structure can be used in the context of disease control. For example, contact trac-
ing aims to identify likely transmission network links of known infected cases
and thus treat or contain their contacts, reducing the spread of infection. Contact
tracing is an effective public health measure because it uses the underlying trans-
mission dynamics to target control measures rather than relying on a detailed
understanding of the etiology of the infection [DH20]. Another example of the
potential use of the social network graph is the identification of, with respect
to infectious disease, peculiarly pivotal individuals or communities. These can
be either particularly vulnerable due to their position within the network (for
example, if they have a lot of contact with other individuals), or very critical
to the entire network due to the fact that they have a lot of contact with many
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FIG. 2.5: Comparison of random and scale-free networks. (I) Example random network
with 100 nodes and 300 links. All nodes have similar numbers of links. (II)
Example scale-free network with 100 nodes and 300 links. Most nodes have
few links, with a few nodes having many links. (III) Degree distributions for
two classes of networks. Degree and associated color scale always refers to
the respective graph.

different individuals (infecting many individuals) [EIS"12]. The latter gennate
group of people in a network have the potential to become super-spreaders due
to their position, by virtue of the definition given in 2.1.1. According to Drosten
[DH20], the super-spreaders are the driving force behind the epidemic. In any
case, the methods presented in chapter 2.1.1 and 2.1.2 can help to identify such
parts of the network.

As an example, two graphs are shown in Figure 2.5, where in the random graph
(I) each node has approximately the same degree. This means that in this graph
each node has approximately the same number of connections to other nodes.
However, small differences with respect to size and color still exist. A strong
contrast is the Scale-Free graph (II). Scale-free graphs are complex networks
whose number of connections per node is distributed according to a power law.
That is, the fraction P(k) of nodes in the network having k connections to other

nodes goes for large values of k as
P(k) ~ k™ (2.6)

where k is a parameter whose value is typically in the range 2 < k < 3 [Onn*07].
This distribution can be clearly seen since most of the connections are dis-
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tributed among a few nodes. In the context of infectious diseases, this could
mean that very few people within the network caused the majority of infec-
tions. This is also emphasized by the degree distribution shown in Figure 2.5
(II0).

2.2.4 Agent-Based-Modeling for infectious diseases

ABMs are stochastic computer simulations of simulated "agents" or individuals
in simulated space, over simulated time [EIS™12]. They offer the possibility to
describe complex behaviors by simulating each individual separately. A prob-
lem that is hard to describe globally can often be described locally on the level
of the participating entities. With the help of a simulation the global behaviour
can then be modeled. These models allow macro-level behavioral patterns to be
developed from explicitly described behaviors, interactions, and movements of
agents in their environment. Because the conceptualization and parameteriza-
tion of the model is "bottom-up," these models are ideal for assessing emergence,
or macro-level patterns that emerge from micro-level behavior [Bon02]. To
achieve this complexity or heterogeneity must be added to the simple model.
This can be done in several ways. Heterogeneity can be introduced into the
system by considering more different individuals. In a pandemic simulation,
one can start by adding an age distribution to the agents and changing the
update rules depending on the age of the agent. Another important point where
heterogeneity can be introduced is in the interactions. If well-mixed random
interactions are assumed, social structure in behavioral models can be imple-
mented. Often it can make a big difference whether agents act with random
contacts or always with the same group of contacts [DBU12].

According to Auchincloss et al. [AD08] agent-based approaches are particularly
appropriate when:

1. Individual agent behavior is complex, with learning and adaptation, feed-
back loops, and/or reciprocity.

2. When heterogeneous environments can affect agent behavior and interac-

tion, and agents are not spatially or temporally fixed.

3. When interactions between agents are complex and nonlinear, and affect
agent behavior.
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Properties Definition
Heterogeneous Agents are ?llowed to differ from one another on important
characteristics
Spatial Agents are located in some explicitly define space
Interactive Agents can interact locally with one another and their envi-
ronments
Dynamic Agents are assumed to have imperfect knowledge

Models are recursive, are allowed to change nonlinearly,

Bounded rationality o e
and exhibit nonequilibrium

TAB. 2.3: Core properties that collectively underlie most agent-based models according
to Luke et al. [LS12]

The resulting key properties of agents and agent-based models are listed in Table
2.3.

To implement these properties, agent-based modeling requires that the inves-
tigator explicitly describe and program agent characteristics and update rules
during implementation. This includes the specification of agent characteristics
and behaviors, as well as their changes over time (e.g., learning and adaptation).
Agents can be nested in social networks that influence the degree and character
of interaction between agents, and social interaction can be programmed to
influence future behavior [EIS*12]. In addition, researchers can explicitly define
the space in which agents are located over time and the influence of that space
on agent behavior over time [DBU12]. ABMs are particularly well-suited for
research concerned with understanding social processes, where agent behavior
is a complex function of agent attributes and characteristics, environments, and
interaction between agents over time. The main reason for this is that they main-
tain the centrality of the individual agent and its attributes, characteristics, and
behaviors in the production of population-level phenomena [Ven*18]. Research
has been able to integrate geographic information systems and social network
information into agent-based models [Del™10] . In addition, ever-improving
computational resources enable the use of extremely large sets of agents in
simulations, including synthetic populations of entire communities or nations
[Cue20] [CCW10].

These capabilities are another reason for the particular success of agent-based
modeling in healthcare. Here, ABM are often used to study epidemics and
infectious disease dynamics [Cue20] [Ven"18] [Cha*20b]. The goal here is to
study disease transmission at different levels, from individual communities to

global pandemics [Eps09]. Agent-based models of epidemics have helped move
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epidemiology beyond the traditional SIR model and have demonstrated the
importance of examining the role of social networks, transportation systems,
local geography, and various behavioral responses to changing contexts in the
spread of disease [Eps*08] [Eub*04] [YAEOS].

Thus, ABM is focused on the individual characteristics and interactions in time
and space. It also allows researchers to run multiple simulations under different
model conditions to isolate the effects of specific conditions on the outcomes of
interest.

2.3 Model discussion

To develop infectious disease prediction models, studies commonly combine
elements from different systems methods to model the interaction between the
behavior of individual agents with social networks [CMM10] [Klo*94] [Chr*05]
and with the system dynamics of epidemics [SPN20]. As we are witnessing in
the current SARS-CoV-2 pandemic, infectious diseases have significant public
health, health care, macroeconomic, and societal implications. Many factors,
including increasing antimicrobial resistance, increasing human interconnect-
edness, and changing human behavior, make prevention and control matters
of national policy an international challenge. The availability of options to con-
trol and prevent the emergence, spread, or reemergence of pathogens warrants

continuous evaluation using a variety of methods.

Applications of system dynamics in infectious diseases range from early stud-
ies that emphasized describing the dynamics of disease spread to more recent
work that is more focused on testing potential impacts of infectious disease
control strategies. Early examples of SD in infectious diseases, as applied to the
AIDS epidemic, focused on describing the dynamics of the disease transmission
process and characteristics of Human-Immunodeficiency-Viruses (HIV), such
as incubation period [HS91]. Models have provided particularly meaningful
results when data is available to allow a test of model validity [Fer*05].

With respect to SARS-CoV-2, the SIR model is often extended to a SEIR model
that accounts for an additional exposed (E) stage in which individuals are
infected but not yet contagious. Many additional parameters, including spa-
tial heterogeneity [Kiih*20], clustering [Luo*20], age heterogeneity [RWC20]
[Ivo™20] [ZC20], and even meteorology [Jia"20] have been incorporated into
the SIR and SEIR frameworks to increase the predictive power of these models.
While these extensions increase the predictive power of the model based on
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the respective research results, it remains unclear whether the human interac-
tion network is sufficiently accounted for as the main transmission pathway.
Thus, the SIR model and its partial hybrid advancements are well suited for
inferring infection dynamics such as Ry, predicting the macroscopic dynamics of
infections and deaths, and evaluating various nonpharmaceutical interventions
aimed at containing the microscopic dynamics of person-to-person infections
[RSW20]. However, individual social interactions are not represented. Neither
at the local scale (i.e., egocentric networks) nor at the global scale (the topology
of the resulting network). Criticizing this neglect, Manzo et al. [Man20] state that
the widely used compartmental models in the current Corona pandemic can
only lead to one type of intervention, i.e., interventions that indifferently affect
large subsets of the population or even the entire population. In this regard,
Hermann et al. [HS20] notes that the type of models used cannot evaluate tar-
geted interventions that might surgically isolate specific individuals and/or cap
specific human-to-human transmission pathways. It is important to note here
that a major reason for using these models in the current pandemic is, first, the
lack of data on individual interactions at, for example, the country population
level and, second, the development of SNA or ABM models takes much more

time that is often not available in the current situation.

The individual social interactions form the basis for studies using SNA. These
aim to capture the complex interplay between individual behavior and social
contexts at large scale. Social network analysis in the context of infectious disease
focuses on characterizing social networks to draw inferences about how network
structures may influence the risk exposure of network members. Cauchemez et
al. [Cau™11], for example, were able to quantify how Influenza transmission is
influenced by social networks following an HIN1 (influenza) outbreak that began
in an elementary school and spread to a semi-rural community in Pennsylvania.
Using social interaction data and SNA methods, the authors showed that sitting
next to an ill person or being the playmate of an ill person did not significantly
increase the risk of infection. However, the structuring of the school into classes
and grades strongly influenced prevalence.

Such detailed information about infection progression is important for design-
ing appropriate interventions. Complementing this, the results of Christley et al.
[Chr*05] show that SNA measures such as degree centrality are good for predict-
ing individuals’ risk of infection. Because individuals near the center of a social
network become infected earlier on average during the course of an outbreak
than those on the periphery. Consequently, identification of more central indi-
viduals in populations can be used to inform surveillance and infection control
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strategies and detect infection outbreaks early. El Sayed et al. [EIST12] therefore
concludes that network analysis can be ideal for understanding social contagion
as well as the influences of social interaction on population health. However,
network analysis requires network data, which may affect generalizability, and
causal inference from current network analytic methods is limited.

According to El Sayed et al. [EIS*12], the main limitation of using SNA in epidemi-
ology is the implicit trade-off between the use of network analytic techniques
and the generalizability of network data. It is criticized that social network
analysis requires data on the relationships between individuals in addition to
data on the characteristics of individuals in networks. Traditional sampling
methods that aim to improve the generalizability of studies by randomly sam-
pling across environments are therefore not conducive to the use of network
approaches because the data on relationships obtained from these methods are
not of sufficient completeness or quality to support them. Cost and feasibil-
ity constraints therefore often force researchers to balance tradeoffs between
the analytic advantages of social network approaches and the importance of
generalizability when designing epidemiologic studies. Another problem in
building models based on personal social contacts and information is privacy.
This is therefore relevant for both social network creation and ABM. Collecting
the required data deeply interferes with the privacy of individuals and deters
many people. However, in an industry setting, the company may mandate the
collection of such data by employees.

ABM can promote population-level inference from explicitly programmed micro-
level rules in simulated populations over time and space [EIS"12]. Agent-based
models have been used to simulate various infectious diseases [Dan*11]. Lee et
al. [Lee™10c] modeled vaccine allocation policies in the face of an HIN1 epidemic
to examine priority recommendations for high-risk individuals versus highly
infectious children when vaccines are scarce and to draw comparisons among
outcomes such as seizure rates, hospitalizations, and total costs.

Members of the same research group [Lee10b] identified problems with school
closure strategies to control influenza outbreaks and found that short closures
are counterproductive and that only longer closures provide the time needed to
implement long-term effective vaccination programs.

Another study [Lee*10a] used influenza models to examine the impact of work-
place HIN1 vaccination strategies and found that programs targeted to larger
tirms were more efficient and effective than those distributed to a larger number
of smaller workplaces. ABMs are useful for assessing health determinants at

multiple levels of influence that, when combined with social interaction, can
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Properties ABM SNA sSD
Model complexity -- 0 + +
Parameterization - + +
Required computing power -- 0 +
Infection dynamics ++ 0 +
Inferences for individuals ++ + -
Development time - + + 4+
Derivation of countermeasures + + + _
Suitable for large populations ++ 0 +

TAB. 2.4: Comparison of methods for modeling infectious diseases in complex systems
after own presentation. Scale from —— worse than others to ++ better than
others and 0 as neutral, always in comparison to the other two methods.
Dependencies on, for example, data set size or available infrastructure are
neglected.

contribute to population health. ABMs allow exploration of feedbacks and inter-
actions between exposures and outcomes in the etiology of complex diseases.
They can also provide opportunities for counterfactual simulations. However,
appropriate implementation of ABMs requires a balance between mechanistic
rigor and model parsimony, and the precision of the results of complex models
is limited [Dan™11].

In this sense, the process of implementing the model should be adapted to
the issues of interest to avoid unnecessary complexity. However, model fitting
can be logically problematic, since a priori purposeful model fitting implies the
exclusion of factors that should not have an obvious impact on the outcomes of
interest. However, a central argument for agent-based approaches is the ability
of these models to provide emergent phenomena based on the aggregation of
complex micro-level processes to provide a macro-level overview. Compared to
SNA and SD, building a model to model an infectious disease is the most costly

and complex.

A summary of the three presented methods for modeling infectious diseases in
complex systems, together with the evaluation of each strength and weakness is
shown in Table 2.4. The evaluation is based on the scientific publications that
were analyzed within the scope of this thesis. In each row of the table, the three
methods are compared based on one criterion. The evaluation is therefore to be
seen as a comparison.

ABMs are a powerful tool to model an infectious disease within a social system
[EIST12]. Due to a parameter-rich model and a detailed data basis, not only
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can good statements be made about the infection dynamics, but also single
individuals or groups of individuals can be indexed that play a major role in
the infection dynamics. However, these advantages come at the price of very
high demands on the modelers, the data and the available infrastructure. The
development of such a model for large populations is theoretically possible,
but practically, compromises often have to be made with respect to the level
of detail in areas due to complicity. As can be seen in the table, SD performs
well wherever ABM has weaknesses. Even with superficial population data,
few parameters, and limited infrastructure, an infection model can be built in
a short time to map infection dynamics. Of course, these advantages come at
the expense of the model’s informativeness or generalizability. It is also difficult
to draw conclusions about individual persons or groups of persons and their
respective role in the observed social system or influence on infection dynamics.
A middle ground of these two methods is offered by SNA. Although more
detailed data are required than for SD, it is not necessary to collect individual
person characteristics, as is the case with ABM. For example, simple interaction
protocols are sufficient to calculate the influence of individual persons on the rest
of the network. The complexity, the required hardware resources and also the
development time is also between ABM and SD. Depending on the application
and the data, social networks in epidemiology with respect to different prop-
erties may represent a compromise between SD and ABM. Interaction data of
individuals within a system are particularly suitable for social network creation

and allow the detection of temporal structures [Onn*07].

2.4 Related Work

With respect to the SARS-CoV-2 virus, a variety of modeling techniques have
been studied to date. Whether compartmental homogeneous mixture models,
contact networks, or agent-based models: So far, most of these analyses have
used simulated data [HKO21]. Yet studies have already shown that detailed
models of social dynamics (microdynamics) are important for understanding
dispersal. This finding has been addressed in several researches and how the
use of a real contact network changes the understanding of infection dynamics,
containment measures and infection risk [Cen*21] [Mac*13] [SSL16] [Mos*08]
[Sat™20]. For these studies, dynamic social networks of densely connected
populations (individuals) and their interactions (in close proximity) were used in
the network of real person-to-person proximity. With this type of data, Hambridge
et al. [HKO21] demonstrate, that while frequent testing can dramatically reduce
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spread, this has limited impact when mask wearing and social distancing are
not widespread. Moreover, even moderate levels of immunity can significantly
reduce new infections, especially when combined with other interventions.
The data used were recorded through configured smartphones and analyzed
using a discrete-time, stochastic SEIR compartmental model. At each time
step, individuals moved to the next compartment or remained in their current
compartment. Because prolonged exposure has been shown to increase the risk
of infection, the infection model is set up so that the number of interactions is
the dertminate of virus spread.

Sattler et al. [Sat*20] have also recognized the potential of digital contact tracking,
based on Bluetooth Low Energy (BLE), and the importance of exposure duration
to efficiently contain and delay infectious disease outbreaks such as the current
SARS-CoV-2 pandemic. A machine learning-based approach is proposed that
can be used to reliably detect individuals who have spent enough time in
close proximity to be at risk of infection. Specifically, the infection risk of each
interaction between two people was classified into two groups (high risk, low
risk) based on the duration and the respective distance.

Although infectious diseases are mainly transmitted through social interaction,
recent research provides reason to believe that the location or environment of
the social interaction is also important in creating a meaningful infection model
[KH21]. For the risk of infection via aerosol particles in enclosed spaces, the in-
haled dose is crucial which, according to Kriegel et al. depends on source strength
(emission rate), breathing activity (source and receiver), aerosol concentration in
the environment and the duration of stay in the environment. Source strength
and breathing activity depend on the activity in the environment.

Buonanno et al. follow exactly this approach and calculate the risk of infection
based on the characteristics of the place where the contact occurred. In detail,
the aerosol exposure at a given location is calculated as a function of numer-
ous parameters such as room size, air circulation / fresh air rate or activity
(listening, singing, physically strenuous activities). The decisive factor for the
risk is therefore when one was in the same room with whom and who was
infected there and when. With the proposed approach, it was possible to model
retroperspectively the high infection rate in two outbreaks in a restaurant, and
during a choir rehearsal.

According to Buonanno et al, outbreaks with high case rates are not caused by a su-
perspreader, but rather by the coexistence of conditions, including emission and
exposure parameters, that lead to a superspreading event. With respect to the
different risks of infection in different locations Lelieveld et al. [Lel*20] and Kriegel
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Environment Occupancy Countermeasure R <1
Theater, Museum 30% Mask 0.5
Public transport ) Mask 0.8
Shopping 10gm / person Mask 1.1
Fitness center 30% Mask 14
Multi-person office 20% Mask 1.6
Restaurant 50% - 2.3
School 50% Mask 29
School 50% - 3.4
Multi-person office 50% - 8.0
School 100% - 11.5

TAB. 2.5: SARS-CoV-2 contagions via aerosol particles. Evaluation of indoor spaces in
terms of situational Ry value with an infected person inside. In each case, x
times the risk is given compared to a situational Rs < 1. The R, value means
the number of infected persons with an infected person present at the same
time.

et al. [KH21] reach similar conclusions. A section of the infection risk at different
locations according to Kriegel et al. is shown in Table 2.5.

A hybrid approach that considers both the different probabilities of infection at
different locations (Point of Interest (POI)) and the social interaction patterns
was presented by Chang et al. [Cha*20a]. Although the study aims to describe
the risk of infection for income-dependent populations, this can be general-
ized to individual communities in a subpopulation or to individuals in that
subpopulation without further problems. In this approach, infection risk is cal-
culated using a metapopulation SEIR model that integrates POI characteristics
(for example, type of location, ventilation, number of people per epoch, etc.)
and a fine-grained dynamic mobility network for the ten largest metropolitan
statistical areas in the United States.

Thus, both the residence time of individual nodes and the frequency of interac-
tion of two nodes at a given location per epoch are considered. This approach
enables analyses such as the identification of particularly infectious locations or
the detection of individuals who are at increased risk due to frequent visits to the
most exposed locations on the one hand, but who also serve as unavoidable virus
transporters between two different locations on the other. In addition, research
findings include evidence that a small minority of "superspreaders" POls are
responsible for a majority of infections and that limiting maximum occupancy at

each POl is more effective than uniformly reducing mobility.
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social network

As described in section 2.2.1 airborne infectious diseases such as Influenza or
SARS-CoV-2 are transmitted via proximity contacts between individuals. The
models presented in section 2.4 are each suitable for a specific application and
each pursue different objectives. The available data basis is decisive for the
development of a suitable model for determining the risk of infection. Proximity
contacts take place in different contexts. At home between family members,
in the public transportation, shopping centres and at school or workplaces.
The focus in this thesis is on close contacts within an organizational unit. The
characterization of proximity contacts is therefore a prerequisite to quantify the
risk of infection. For this reason, this chapter will describe the available data
(Section 3.1) and then the model approach for calculating the risk of infection

between two persons (Section 3.2).

3.1 Interaction data within the ResTAat project

In detail, anonymous close contact data were collected in a manufacturing com-
pany in Italy. Each employee carried a button device (token) during working
hours, which reports a distance alarm when the distance between two button
devices (ergo two workers) is less than 1.5 meters for more than 15 seconds.
These threshold values correspond to the standard configuration of the buttons
used, but can be selected freely for each application. With reference to current
research results on the transmission of SARS-CoV-2 [Jay*20] [KH21] [Zha*20],
these values were considered plausible. The buttons communicated with gate-
way beacons via Bluetooth technology and calculated the distance to buttons in
the vicinity via RSSI signal strength. A similar approach using modified smart-
phones was used by Hambridge et al. [HKO21]. Recorded near-contact alarms
were sent to a backend server via gateways. These gateways were installed
at various locations within the plant site. The exact physical location of the
gateways is known. The used button hardware from the company secufy records
the social interactions anonymously and in compliance with data protection
regulations. The software backend used is from the company safefactory.

Figure 3.1 I shows the schematic structure of the infrastructure used and Figure
3.1 I shows the button devices used. The raw data extracted from the safefactory
backend contains a total of 279445 near contact alarms between 621 workers. The

28
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Distance between two
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F1G. 3.1: Schematic of the hardware used to record the interaction data and a token.
The battery-powered tokens are attached to the clothing of the various
individuals and act autonomously. They give a haptic signal when the
distance between them falls below the minimum distance. Illustration of the
token was taken from page https://secufy-sos.com/pages/secufy-sos.
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FIG. 3.2: All logged near contact alarms over time. Green plot shows the number of
critical social interactions per day and the magenta plot shows the cumulative
distribution. In both cases 44 days were considered.

time period considered is from May 24, 2020, 03:03:51 to June 22, 2020 22:44:19.
Table 3.1 shows a small sample of the available unprocessed interaction data.
Figure 3.2 shows the near-contact alarms over the considered period. It can be
seen that the number of alarms per day varies. On weekdays, up to 30000 near
contact alarms occurred, while on weekends the number of critical social inter-
actions is almost zero. The cumulative distribution in the lower part shows that
over the considered period the distribution of contact alarms is approximately
constant, except for the sharp slope within the first five considered days. Since
infected people are contagious only for a certain period of time, the fluctuations
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id deviceid  devicetime beaconid day gateway

138404553 ISA_4 13  2020-05-24 03:03:51.037 ISA_4 43 145 bz2139
138404560 ISA_4 27  2020-05-24 03:03:52.533 ISA_4 49 145 bz2130
138404562 ISA_4 133 2020-05-24 03:03:52.550 ISA_4 492 145 bz2138
138404567 ISA_4 90  2020-05-24 03:03:54.045 ISA_4 30 145 bz2129
138404581 ISA_4 243 2020-05-24 03:03:58.594 ISA_4 55 145 bz2131

TAB. 3.1: Extract of the social interaction dataframe containing all logged proximity
alerts within give time-range. Deviceid (primary) and beaconid (secondary)
describe the tokens involved in the interaction.

. Contact duration per Gateway
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FIG. 3.3: Close contact duration based on the exact timestamps for each of the
gateways used. All gateways show a similar distribution, only by the APP as
gateways seems to show a larger amount of outliers. The global contact
duration average is 6.09 seconds.

in the interaction patterns shown may introduce uncertainty in the calculation
of the outbreak size. For example, a person who becomes infectious on Fridays
and is infectious for three days may only infect people within the company on
that same day. If this person becomes infectious on Tuesday, a larger number
of secondary cases can be expected, since the infected person is present in the
company for three days. The close contact alarm is triggered when persons
are closer than 1.5 meters for more than 15 seconds. However, the tokens are
programmed in such a way that other tokens in the vicinity are still detected
and reported to the gateways. This data can be used to calculate the average
time that people were closer than 1.5 meters. Figure 3.3 shows an overview of
the average contact duration broken down for each gateway installed in the
considered social subsystem. The global average contact duration is about 6
seconds and similar at all gateways. Thus, there is no gateway, or monitored

location, within the company where people spend an above-average amount of
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between 20 and 100 connections between 300 and 600 connections
—— between 100 and 300 connections —— more than 600 connections

FIG. 3.4: Interaction network of the recorded data within the production company in
Italy. Edges are only displayed if there are at least 20 close contact alarms
between the two account points. The color of the edges describes the number
of near contact alarms. The size of the nodes shows the eigenvector centrality
of the respective node. The entire period over 44 days was included.

time. Since the average contact duration is below the threshold for alarms, no
alarm was triggered in most close contact encounters. The distribution of social
interactions across gateways is approximately even. Therefore, it is assumed that
interactions are evenly distributed within the social system and that clustering
does not occur at different locations on the site.

The data provides person-based interaction logs. As, apart from the number of
contacts between two individuals (later also called agents), only the physical
position of the transmitting gateway is known, epidemiological observation
in social networks is possible on the basis of the criteria presented criteria in
Tabular 2.4. An example of network topology visualization is described in Figure
3.4. All 279445 near contact alarms between the 621 workers within the 45 days
considered are mapped. The displayed graph is undirected but has weighted
edges. The color coding of the edge e between the nodes (i,j) indicates how
many social interactions i and j had with each other within the time period. Also
the size of the vertex v shows the eigenvector centrality, which is an indicator for

the influence of v on the whole rest of the network. It can be seen that few edges
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have a high weight, but multiple nodes have influence on larger parts of the
network. Since the connection between agents is undirected, an alarm between
agents A and B that originates from agent A will equally increase the weight of
the edge between agent A and agent B, as an alarm that originates from agent
B will.

A—-B=B—->A (3.1)

3.2 Disease transmission via proximity contacts

The dataset described in the previous chapter provides a temporal network of
social interactions for modeling the spread of airborne infectious diseases. In
this context, a primary case is an infected individual, and a secondary case is an
individual that became infected after contact with the primary case. Specifically,
in the context of this work, the primary case is assumed to have been infected
outside the system under consideration and therefore to have "imported" the
disease. The number of potential cases depends on the time window considered.
All persons who had contact with the primary case while it is infectious are
potential cases. From the perspective of infectious disease transmission, the
relevant time window is the infectious period, T, the time interval in which the
infected individual transmits the disease. For Influenza, T = 1. For SARS-CoV-2,
T = 3. For Severe-Acute-Respiratory-Syndrom-Coronavirus-2 variant, first iden-
tified in the United Kingdom (SARS-CoV-2-B.1.1.7), T = 4.

It is assumed that the number of detected close contacts between two individ-
uals is a surrogate for how long they have been in close proximity. Disease
transmission is then encoded in the probability of infection per contact p. Here,
p is an effective parameter that depends on disease-related factors and the oper-
ational definition of close proximity. Such encoding allows the model to be used
for different infectious diseases, such as Influenza or Severe-Acute-Respiratory-
Syndrom (SARS), on the one hand, and to use different thresholds for triggering
a close contact alarm (distance between individuals or contact duration) on the
other. Once p is specified, the probability of disease transmission after n contacts
with an infectious individual by the probability that the disease is transmitted

in at least one of the contacts is defined as

Po=1—(1—p)" (3:2)
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Therefore, the probability of infection depends on the number of contacts of
the primary case. Accordingly, the contagiosity T also has an effect on P, asn
dependson T.

3.2.1 Probability of disease transmission during the infectious period

An extract of the underlying data is shown in Table 3.1. The infectious disease
transmission model takes as input the contact records for a workplace with n
individuals over a period of m days. The n x m matrix Cj;q therefore describes
the number of close contact alerts between the pair of individuals (i,j) on day d
forie [l,..n]Jand d € [1,..,m]. Assuming that primary case i becomes infected
on day d and remains infected for d 4 T, the transmission probability from i to j
can be calculated considering formula 3.2 with

d+T ~ |
Pisj,a(p,CT) =1 — (1 —p)&i-a Gk, (3:3)

where i,j € [1,...,nJand d € [1,..., m— T]. To simplify subsequent implemen-
tation, the number of near-contact alarms between two individuals in the time

interval [d, d + T] becomes

AT
Dyq(T) = Z Ciji (3.4)
k—d
Pisj,a(p,D,T) =1—(1—p)Puall, (3.5)

The result is a table of pairwise social interactions and the associated risk of
infection per time-interval A for A € [A,,...,A—1]. However, we will use the
matrix Cjjq in the remainder of this section.

Since the number of infections is needed for the following risk calculation,
each infection probability is converted into a binary variable infection event
which describes whether an infection has occurred or not during the considered
connection of two agents for period d + T.

Infection event = 1 for Z < Py, q and Infection event = 0 for Z > Pi_,; 4 with
Z as a random variable following the discrete uniform distribution between
0 and 1. Due to the dependence of Pi_,; 4 on Cjjq(T), the probability of an
infection event increases with the number of contacts of the considered agent
pair. Summing up the infection events for d € [1,...,m — T] and taking the average
of these values, the reproduction number Rp, as a function of p, C,and T can
be obtained.
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Ru(p.C.T) =~ 5 Pija(C/T) 36)
ijd
Formula 3.6 shows the expected reproductive number as a function of disease
transmission rate per contact for different infection periods T based on proximity
alerts. By inverting this relationship, we can determine the transmission rate
per contact p so that Ry, is consistent with Ry. The transmission rate per contact
is therefore the solution of the equation

RM(p/CIT) — RO/ (37)

given C,T and Ry of the infectious disease.

3.2.2 Secondary cases and their distribution

The described dependence of Ry with the interactions of the agents and the
infection probability per contact allows the calculation of the distribution of the
secondary cases with regard to the mentioned parameters. Using the random
variable Z presented in formula 3.6, the number of infection events over the time
period d can be calculated for each interaction pair (i,j). Thus, to obtain the sec-

ondary cases, a Bernoulli test is performed for which holds:
Xija € {0,1}, (3.8)

with probability of success given by P;_,; 4. The individual number of secondary

cases for each individual i is obtained with
Yia =) Xya, (3.9)
j

for d € [0,....m — T]. The distribution of the number of secondary cases (k) is

therefore
.I n m
Pe=—x (Z 8y (Z Yid> ) , (3.10)
i=1 d=0
with
1, ifx=k
Oy x = (3.11)

0, otherwise.

In addition, to prevent random extreme values and resulting erroneous conclu-

sions, 10000 numerical simulations of Py were performed.



3 Model for infection probability per contact in a social network 35

With the distribution of secondary cases and the information contained therein,
the rate of super-spreading events can be quantified. The number of secondary
cases depends on the number of potential cases, which in turn depends on the
temporary near contact network. According to the definition in chapter 2.2.1 a su-
per spreading event occurs when the set threshold of secondary cases is exceeded.
There is no general consensus in the literature about the number of required
secondaries for such an event [Ada*20] [She*04] [LEK20] [Has™20] [WC20], but
this threshold is set to 10 in the context of this thesis. The rate of super-spreading
events (S-index) is therefore associated with the tail of the distribution of P,. The
weight of the tail therefore quantifies the S-index.

S-Index = Y Py (3.12)
k>10

Because the S-index is determined by both the infectious disease and the temporal
network of close contacts, different diseases as well as different social subsystems
can be compared.

3.2.3 Model interventions

The modeling approach presented allows the establishment of countermeasures
to contain the infectious disease. The WHO [Wor21] recommends wearing
masks and keeping a greater physical distance from others during social inter-
actions. Wearing masks lowers the emission of aerosols and thus decreases the

probability of transmission,
P — H*P, (3.13)

with 0 < n < 1, which leads to
Ph=1—(1—pxu)™ (3.14)

Social distancing is modeled to the extent that some of the social interactions
present in the interaction data are not considered. In detail, with binomial
sampling

Ciq ~ Bin (Cyja; 95 Cija) (3.15)

given q as the probability that the proximity contact will take place after social
distancing.
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The graph approach, with its community analysis methods presented in Chapter
2.1.2, also allow the above countermeasures to be applied not only to the total
population N of the social system under consideration, but also to the subset
S C T. The altered risk of infection can thus be computed for both S and
N.



4 Application of methology

In this chapter, the implementation of the individual subsections of the model
from Section 3.2 is presented and the technical resources used are discussed in
more detail. Subsequently, the infectious diseases Influenza and SARS-CoV-2
as well as the mutation from Great Britain SARS-CoV-2-B.1.1.7 are described
and the characteristic parameters for the modeling are presented. Finally, the
turther software-side experimental setup and the performed modeling are de-

scribed.

4.1 Development stack

The infection model developed in this thesis within the ResTAat project is used
for different infectious diseases and different social systems. The implementa-
tion is therefore done in such a way that only the underlying interaction data
and the infectious disease specific parameters need to be adjusted to perform
calculations. An overview of the most important technologies and libraries used
is given in Figure 4.1. All computations were performed on a Dell Precision

Network X

Network Analysis in Python

[m
(I

docker

Workstation

(¢)

FIG. 4.1: Development stack for the infection model. The operating system on the Dell
workstation is Ubuntu 20.04 LTS, Docker was used in version 19.03.13 and
Python in version 3.8.3. The versions of all libraries used as well as the
complete Docker container is described in appendix B.

7920 Tower workstation with 192 GB RAM and an Intel(R) Xeon(R) Platinum
8260 CPU. Depending on the amount of interaction data, the calculations can be

computationally intensive. All applications have been programmed in Python.

37
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FIG. 4.2: Data processing diagram according to own representation..

To ensure the execution of the model in different hardware environments, all
Python programs have been executed in Docker containers. The data basis was
several .csv files which contain all logged social interactions. In addition to the
libraries Pandas and Numpy, which are widely used in the field of data science
to organize the data, all graph-related calculations were implemented with the
library Networkx. This offers a seamless integration of Pandas DataFrames or
Numpy arrays and facilitates the use of SNA algorithms.

The process implemented with these tools to determine the risk of infection
is shown in Figure 4.2. The framework shown in magenta consists of a data
preparation step and the infection model from section 3.2. Outlined in green
are the required inputs. The output of the process is information about the
infection dynamics within the social system under consideration. These can
vary depending on the application and further processing of the data according
to the infection model.

4.2 Data cleaning and data processing

Chapter 3.1 has already discussed how a close contact alarm is defined and the
basic characteristics of the interaction data of the employees of the Italian pro-
duction company. In this section, it is described how the raw data is processed
and detailed characteristics and topological structures extracted. The individu-
als in the system under consideration carry identifiable tags. Via the gateways
distributed in the enterprise (cf. 3.1), social interactions that exceed thresholds
are sent to the backend. In detail, the interaction protocols were recorded in
two different buildings of the company. The thresholds here are defined as 1.5
meters between tags and 15 seconds duration. A proximity alarm is therefore

sent to the backend when two people are closer than 1.5 meters for more than
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FIG. 4.3: Gateway distribution in the two buildings near the city of Bastia Umbra, Italy
(IIT). The gateway distribution in I seems uniform over the whole area of the
building. In image II the gateways are focused on the left part of the building.

15 seconds. An overview of the spatial distribution of the gateways and the two
buildings is provided in Figure 4.3, where II and III show a close-up of the two
buildings. Since the tags also communicate with the gateways without a second
tag being in the vicinity, the raw data also contains entries that did not lead
to a close contact alarm. These have to be filtered out if only the near contact
alarms are considered. The data provided by safefactory was extracted from sev-
eral databases and includes a total of four .csv files. These files must be linked
together in a first step. If the data is provided via an Application Programming
Interface (API), the same linking steps can be performed. All tags and all gate-
ways contain Unique identifier (UID) numbers, which serve as links between
the tables. The four tables can be described as follows:

* proximity.csv
This table contains the complete communication protocol of all tags with all
gateways. Both proximity alarms and individual communication between

tag and gateway is contained. The following columns are included:
— id: Identifier for the entry in the table.

— deviceid: UID of the tag from which the near contact alarm or the

connection to the gateway originates.
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— devicetime: Timestamp of the entry.

— beaconid: UID of the connection partner. Contains a different tag
UID for near contact alarms and a gateway UID for individual com-
munication (no near contact alarm). This column is used for filtering

proximity alarms.

— attributes: Contains an attributsstring of the different hardware pa-
rameters and in case of a near contact alarm the UID of the gateway
through which the alarm was sent to the backend.

* beacons_tags_info.csv
This table contains the linkage of all UIDs that describe a unique tag
like ISA_4_192 and occur in the deviceid column of the proximity.csv table.
Another column contains an attribute string that is not needed.

* isa_beacons.csv
This table contains the linkage of all UIDs that describe a unique tag like
ISA_4_213 and occur in the beaconid column of the proximity.csv table.

Another column contains an attribute string that is not needed.

¢ controller_beacon_info.csv
This table contains the link of all UIDs that describe a unique gateway like
bz2131 and occur in the beaconid column of the proximity.csv. In addition,
for each gateway the exact physical position of the gateway is described in
the Longitude and Latitude columns.

Figure 4.4 shows the schematic structure of the tables and the performed joins.
The following conditions apply:

1. The deviceid column from proximity.csv must always contain a tag. Gate-
ways do not initiate a contact, but only appear as a receiver beacon in the
beaconid column in proximity.csov.

2. The beaconid column in the proximity.csv table contains either a gateway or
a tag. Therefore, to connect the UID from this column, the isa_beacons.csv
and controller_beacon_info.csv tables must be joined in a first step.

3. Tables isa_beacons.csv and beacons_tags_info.csv overlap in some UlIDs, but

both also contain values that do not appear in the other table.
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Through condition 3 the two tables isa_beacons.csv and controller_beacon_info.csv
are concatenated in a first step. The resulting table contains all unique UID val-
ues that can occur in the beaconid column in the proximity.csv table and describe
whether it is a tag or a gateway. Figure 4.4 shows an example for a gateway
and for a tag in the proximity.csv table. This can be recognized either by the
UID or by the value in the attributes column. In contrast to the tags, gateways
do not have a parameter for appid in this column, which encodes the gateway

through which the transmission was sent. In this example it is gateway bz2139.

isa_beacons.csv controller_beacon_info.csv

uid tag_name uid gateway
135665268 | ISA 4_62 90352322 bz2129
135665131 | ISA 4 419 90352368 bz2134

!

135665268 ISA_4_62

beacon_tags_info.csv

uid tag_name
90352368 bz2134
87595457 ISA_4_62
135669663 ISA_4_210
id deviceid devicetime beaconid attributes
2020-05-19 Mo
136073587 | 87595457 11:10:59 90 90352322 {"appid": "}
2020-06-30 {"appid":"com.safectory.controll
153590187 [ESEEREEs 15:01:41.26 el erpush.12262_bz2139"}

proximity.csv

FIG. 4.4: Schematic representation of the table links. All values in columns deviceid and
beaconid in table proximity.csv are replaced with the tag and gateway names
from the three tables controller_beacon_info.csv, isa_beacons.csv and
beacons_tags_info.csv.

Entries like the one with id = 136073587 from the proximity table are therefore
not needed for the later infection model, because they do not represent a near
contact alarm, but only a connection from tag to gateway. Therefore, these
are filtered out. After filtering the table contains only social interactions that

resulted in proximity alerts. These are now aggregated on a daily basis. Table
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amount date day device beacon
0 53 2020-05-24 145 ISA_4.13 ISA_4 43
1 347 2020-05-25 146 ISA_4.13 ISA_4 43
2 1 2020-05-25 146 ISA_4_133 ISA_4_38
3 2 2020-05-25 146 ISA_4_167 ISA_4 95
4 73 2020-05-25 146 ISA_4_167 ISA_4_143

TAB. 4.1: Pairwise display of proximity alarms caused by two agents each. Next to the
number of contacts, the corresponding tag is shown.

Proximity alerts overview for all tags
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FIG. 4.5: Proximity alarms of the different tags. Y-axis represents only a selection of all
unique tag ID. Color scale on the right side shows the number of near contacts
per day and ranges from 0 to more than 500.

4.1 shows for each day which individuals triggered how many proximity alarms.
For example, tag ISA_4 13 and tag ISA_4_43 triggered 53 alarms on 5/24 /2020
and 347 on 5/25/2020. A visualization of the alarms triggered per day and
tag is shown in Figure 4.5. It can be seen that most tags consistently report
proximity alarms over the entire time period. Especially in the first days there is
an accumulation of close contacts. Likewise, one can see the weekends when
few proximity alarms are recorded. It appears that each tag has many proximity
alarms on a few days and few on most days. No tag can be identified in this plot
that has triggered an unusually large number of alarms. The data format from

Table 4.1 forms the basis for the creation of the interaction graph, respectively
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FIG. 4.6: Example of an interaction graph showing all connections between two agents
with weighted edges. The value of this weight is based on the number of
proximity alarms triggered by a pair of agents. The color coding is shown at
the bottom left.

also for the infection model. Here, the weight of the undirected edges of the
graph encode the number of social interactions of the respective vertex pair.
In the sample visualization 4.6 for 05/30/2020, this weight is illustrated by
the color and type of the connection. With respect to the number of proximity
alarms, the day shown represents a below average day with 141 connections.
Across all days, the average value for proximity alarms is 556 with a standard
deviation of 477. However, the distribution of edge weights across vertices
is a representative of the entire graph. In this regard, one can see that few
connections between two agents have a value greater than 20 and that the graph
is divided into several small groups of agents, most of which are not connected
to each other. A temporary graph like this can be created for any time interval
within the time period under consideration. The next chapter describes how
the functions presented in chapter 3.2 are applied to this structure and how
both the risk of infection per contact and the distribution of secondary cases are
calculated.
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4.3 Infection model implementation

The mathematical functions presented in Section 3.2 describe a general frame-
work for calculating the risk of infection per contact based on the reproduction
number of an infectious disease and for estimating the resulting secondary cases.
Therefore, the implementation is done in a function with several input parame-
ters, which allow both the characterization of the considered infectious disease
and include the countermeasures described in function 3.15 and 3.13. The data
basis is the network structure of proximity alarms per day with the structure
described in Table 4.1. The inputs and outputs of the function are shown in
the black box diagram 4.7. In detail, the inputs can be characterized as follows:

Main function
run()

Social interaction data (cf. Table 4.1) Pandas DataFrame

social_distancing | float
mask_usage _ | float

infectious_period | integer
infection_risk | float

n_realizations | integer
sampling | bool
RO _ | float

float | RO_effective

numpy array | infection_events

float | infection_risk_effectiv

vV V°v v

numpy array | secondary_cases

FIG. 4.7: run() function to determine the risk of infection per contact and calculate the
secondary cases for an infectious disease. The input parameters for
characterizing the infectious disease and the framework conditions for the
simulation are shown in green. The outputs of the function are shown in
magenta. Inside always the type of the parameter.

* social_distancing: Implementation of function 3.15. Describes the pro-
portion of social interactions that are considered. Value between 0 and 1,
where 1 means all interactions are considered and 0 no interactions are

considered.

* mask_usage: Implementation of function 3.13. Scaling factor for risk of
infection per contact. Value between 0 and 1, where 1 means that the risk
of infection is unaffected and 0 means that there is no longer any risk of

infection. Default value 1.
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¢ infectious_period: Indicates how long infected persons are contagious.
Any value greater than or equal to 1. Default value 3.

¢ infectious_risk: Risk of infection per contact. Default value 0.01.

* n_realizations: Number of simulations to generate the secondary cases.
Default value 1.

¢ sampling: Bool value, specifies whether the infection risk is sampled using
the passed Ry or not. If True, then a value for Ry suitable for the infectious

disease must be passed. Default value False.

* RO Reproduction number for the considered infectious disease. Only used
if sampling is True. Default value 1.

The output variables of the run() function can be described as follows:

* RO_effective: Calculated reproductive number based on the infection
model and interaction data. Result of the function 3.6.

* infection_events: Returns the matrix Xjjq (cf. formula 3.9). This contains
the information whether the social interaction of the couple (i,j) within

the time period d led to an infection or not.

* infection_risk_effective: Returns the risk of infection per contact calcu-
lated from the disease-specific reproduction number Ry. If sampling is False,
then the default infection risk 0.01 or the passed input infection risk is

returned.
* secondary_cases: Distribution of secondary cases.

In a first step in the run() function, the whole considered time period M is
divided into equal time intervals A using the infectious_period parameter T. As
shown in Figure 4.8, the division of the time intervals is done on a daily basis
and there are overlaps of the intervals if T is greater than 1. The size of the time
intervals and the number of proximity alarms within these time intervals thus
depends on M and on T with [Ay,...,Ap_1] for m € M.

For each A, a temporal network of social interactions is created, which represents
all proximity alarms between two individuals within this interval. Importantly,
the edges of the resulting undirected graph map the sum of all proximity alarms
between a pair. The weighted adjacency matrices of the temporal graphs for
[Ao,...,Am—7] are then combined and disaggregated on a per-day basis. The
resulting matrix corresponds to Djjq obtained in formula 3.4. The matrix is
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FIG. 4.8: Own representation of overlapping time intervals for total time period M and
infection time period T = 3.

similar to Table 3.1, but contains pairwise proximity alarms multiple times
due to the overlapping time intervals (depending on the infection parameter
T).

Approximating the risk of infection per social interaction from a given repro-
duction number Ry, was implemented using the fsolve function from the SciPy
library and can be computationally intensive depending on the amount of data.
Specifically, the function fsolve calculates a reproduction number Ry based on
the interaction data for different p and matches it with the given reproduction

number Ry. This is until

+1.49%10-8

M Ro. (4.1)

Social Distancing was implemented using the sample function from the Pandas
library and returns a random sample of elements from the proximity alarms. The
parameter social_distancing specifies the fraction of the elements to be returned.
Mask wearing is implemented by multiplying the risk of infection per contact p
(irrespective if sampling True or False) by the mask_usage parameter.

The detailed implementation of the formulas 3.7, 3.13 and 3.15 is shown in code
snippet B.1. These parameters are then used to calculate the risk of infection
for each row in the matrix Dj;q according to formula 3.2. The numpy function
np.where is used to decide whether an infection event has occurred or not. Here,
the previously calculated infection risk for the pair under consideration is com-
pared with the random variable also contained in the row of the matrix. If the
random variable is smaller, an infection event occurred, if the random variable

is larger, no infection event occurred.
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Virus Ro Ro, workplace Infectious period
2019 Influenza 1.7 [Bal*09] 0.34 1 [Cor*12]
SARS-CoV-2 24[Li"20] 0.48 3 [Li*20]
SARS-CoV-2-B.1.1.7 4.8 1.1 4 [Kis*21]

TAB. 4.2: Overview of input parameters: Characteristics for infectious diseases, based
on literature references in parentheses. The reproductive number of
SARS-CoV-2-B.1.1.7 is reported as 1.74 [Gra*21] or 2.24 [Vol*21] times higher
than that of SARS-CoV-2. Therefore, the average 2 between the two reports is
used as factor.

The calculated values are entered in the Djjq matrix. The comparison is repeated

n_realizations times whereby two characteristics are calculated:

e RO _effective: Mean value of the sum of all infection events for each real-

ization.

* secondary_cases: Mean values for secondary cases per day over all real-

izations.

RO_effective and secondary_cases are then returned together with the infection risk
per contact p (infection_risk_effective) and the matrix Dyjq (infection_events). The
latter contains the information about infections that have occurred and is the

basis for further analyses.

4.4 Infectious disease parameters

In the context of this work, two different infectious diseases are considered -
SARS-CoV-2 and Influenza. For SARS-CoV-2, both the variant identified at the
beginning of 2020 as the trigger of the COVID-19 pandemic and the

british variant11, SARS-CoV-2-B.1.1.7, are considered.

For a comparison, the characteristic reproduction number Ry and the infectious
period must be defined in each case in order to be able to determine the disease-
specific infection risk per contact by sampling. Furthermore the recorded social
interactions of persons take place during working hours. The proportion of
contacts at work with respect to the total number of contacts of a person is given
as 21% [Mos™08], 25% [FWC12], 16% [Fat*20] and 20% [ETd16]. Therefore, a
value of 20% is assumed and consequently the absolute value of the reproduction
numbers is also scaled 20% of the original value, which can be obtained in Table
4.2.



5 Evaluation of the results

This chapter presents the results of the infectious diseases studied. For this
purpose, the infection probabilities per social interaction calculated with the
framework presented in chapter 3 and the resulting secondary cases are pre-
sented first 5.1.1. Then, the structure of these secondary cases, the impact on
the network and possible countermeasures are presented in 5.1.2. These re-
sults are then compared to the literature (5.2) and discussed (5.3) based on
this.

5.1 Descriptive representation of results
5.1.1 Diseases

For each of the infectious diseases considered, SARS-CoV-2, Influenza, and
SARS-CoV-2-B.1.1.7, the risk of infection per social interaction was calculated
based on the respective reprodution number presented in Table 4.2. The results
obtained are as follows:

Virus RO, workplace Infectious period transmission rate p
2019 Influenza 0.34 1 0.1342
SARS-CoV-2 0.48 3 0.0432
SARS-CoV-2-B.1.1.7 1.1 1 0.1128

TAB. 5.1: Summary of transmission rate p per close contact for SARS-CoV-2, Influenza,
and SARS-CoV-2-B.1.1.7 in relation to the respective reproduction number Ry
and infection period T.

Influenza has the highest risk of infection per social interaction among the three
different diseases. This may sound counterintuitive, but this value can be ex-
plained by the shorter infection period that implies a higher transmission rate to
generate the reproduction number. According to reports from the RKI [RKI21]
in April 2021, the proportion of the Corona variant B.1.1.7 in Germany is now
72%. Therefore, the calculated ~ 2.6 times higher transmission rate of the British
mutation is an important insight. The three transmission rates determine for
each infectious disease the number of secondary cases resulting from the po-
tentially infected persons. Figure 5.1 therefore shows the number of potentially
infected individuals for each day (Figure Section I) and the number of secondary

48
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FIG. 5.1: Overview of potential and secondary infection cases. Both plotted over the
period considered with the respective number per day on the Y-axis. Directly
related to the number of social interactions per day (see Figure 3.2).

cases per day in Figure Section II. Each of the three transmission probabilities re-
sults in its own distribution of potentially infected persons and secondary cases.
Because of the longer infection period, more people are at risk for SARS-CoV-2
and SARS-CoV-2-B.1.1.7 than for Influenza. The one-day longer infection period
actually differentiates the UK mutation somewhat from SARS-CoV-2. The spike
between days 145 and 150 in both parts of the figure is due to the higher than
average proximity alarms during this period (see Figure 3.2). Also seen are the
weekends marked in Figure 3.2 with very few potential cases. Intuitively, an
average of 12648 potential cases per day sounds like a lot, but distributed among
the 621 employees, this corresponds to approximately 5 minutes of close contact
per employee per day. This is considered realistic for a production environment
in the context of this thesis. In Figure Section II, a correlation of secondary cases
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FIG. 5.2: Distribution of secondary cases per day for SARS-CoV-2, SARS-CoV-2-B.1.1.7
and Influenza.

to potential cases at risk can be seen, which is to be expected based on the func-
tion definitions. However, it is intriguing to note that the UK variant generates
significantly more secondary cases than would be expected from Figure Section I.
The significantly higher risk of infection identified earlier appears to be reflected
here. Figure 5.2 shows that the distributions of secondary cases of the diseases
under consideration have fat tails. This is consistent with reports [FF20] of these
infectious diseases and means that a very large number of secondary cases were
generated on very few days. It appears that SARS-CoV-2 has a slightly higher
propensity to generate high secondary cases per day than Influenza. However,
the difference between the British mutation and the other two diseases is signifi-
cant. SARS-CoV-2-B.1.1.7 has a flatter distribution resulting in a higher average
number of secondary cases per day. Also, there are higher maximum values in
the edge of the distribution of SARS-CoV-2-B.1.1.7.

These maximum values above a certain threshold are referred to as Super-
Spreading-Event (SSE) according to the definition in Chapter 2.2.1. To quantify
these SSEs and to identify Super-Spreader (SS) in the network, a threshold of 10
caused secondary cases per day was set in Equation 3.12. Accordingly, the total
number of these SSEs per day describes the S-index (V). Therefore, the basis of
calculation is no longer the secondary cases per days, but the secondary cases per
person per day shown in Figure 5.3. Individuals infected with SARS-CoV-2 and
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Influenza infect a similar average number of individuals per day (5.3 II). How-
ever, the S-index of SARS-CoV-2 is 270, more than twice the S-index of Influenza
(107). The broader distribution of the number of secondary cases of the UK
mutation means that many of mild outliers (within 1.5xIQR) have caused SSE.
Compared with this, only a few outliers infected with Influenza and SARS-CoV-2
caused SSE.

These initial findings indicate that while individuals infected with SARS-CoV-2
within the subpopulation under consideration infect on average about the same
number of individuals as individuals infected with Influenza, the S-index of
SARS-CoV-2 is twice that of Influenza. The British mutation of SARS-CoV-2 is
very different from Influenza and SARS-CoV-2 because many more people are
infected and the S-index of this variant (920) is ~ 9 times that of Influenza and
approximately 4.5 times that of SARS-CoV-2 (see Table 5.2). Another metric is
Y which describes the average size of the SSE. This value, together with V¥,
provides information about whether there are many SSEs with smaller sizes or
tew SSEs with very many secondary cases. The infectious diseases considered
in this report show similar values for ¥, but SARS-CoV-2-B.1.1.7 has a larger
standard deviation (8y). This suggests that although the UK mutation tends to
have more SSE with a high number of secondary cases, the significantly higher
absolute number of secondary cases of this disease compared with SARS-CoV-2
and Influenza is explained by the higher number of SSEs. Not by the severity of
the SSEs.
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F1G. 5.4: Overview of the effectiveness of countermeasures. All results were calculated
on the same interaction data. Part I describes the distributions of secondary
cases caused per agent and day. The dashed line marks the set threshold for
SSE. II shows the resulting reproduction numbers for the different infectious

diseases as a function of the measures implemented. Ry scaled to the
workplace (20%).

5.1.2 Countermeasures

To address this, the effect of countermeasures presented in Formulas 3.13 and
3.15 was examined. Figure 5.4 shows the results. In figure part I, it can be
observed that both mask wearing and social distancing lower the number of
secondary cases caused per agent per day. It is noticeable that the mean value
as well as the third quartile of the two measures taken have similar values for
all three diseases. However, as shown in Table 5.2, the measures differ in the
outliers, hence in the quantity (¥) and magnitude of SSE (¥). For all diseases
considered, social distancing leads to the lowest number of SSEs, with the lowest
mean. A graphical representation of these distributions is shown in A.2. These
differences in the tails of the distributions result in clearly different reproduc-
tion numbers of the measures, as seen in part II, although the distributions of

the countermeasures in I are very similar. It appears that for the social sys-
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B.1.1.7 SARS-CoV-2 Influenza

- M SD - M SD - M SD

Yo 920 540 360 270 124 69 107 36 12
Y 1886 16.73 1551 1551 13.64 1248 13.09 1261 11.5
oy 1047 827 676 6.09 382 362 374 3.08 131

TAB. 5.2: Overview of the S-Index (V) with ¥ as average and oy as standard deviation. -
indicates no counter measures, M represents mask wearing and SD
represents social distancing.

tem considered, social distancing is the better countermeasure and results in a
lower reproduction number for all infectious diseases calculated and therefore
a safer work environment for the workforce. Based on these results and the
high proportion of the UK SARS-CoV-2 variant in total infections confirmed
by recent research [RKI21], only social distancing is used as a countermeasure
for further analyses in this thesis and only the british mutation is considered.

5.1.3 Influence of communities and individuals

With these prerequisites in place, the topological structure of the social interac-
tion graph was now examined, agents critical to the system were identified, and

targeted countermeasures for parts of the graph were evaluated.

It is suspected that the gateway positions drawn in Figure 4.3 influence the
number of proximity alarms recorded. Figure 5.5 confirms this assumption and
shows the distribution of alarms among the different gateways in both produc-
tion halls. In production hall 1, the gateways at the edge of the hall seem to pick
up fewer alarms than the more central gateways (Figure part I). One gateway
stands out and picked up significantly more alarms than the others. However,
for privacy reasons, no further information could be obtained about the reason
for the contact clustering at this location in the production hall. Production hall 2
has fewer installed gateways and covers only about half of the total area (Figure
part II). It is assumed that the unmonitored area is an area where no interactions
can take place. For example, this area could be covered by a high bay or large
production machinery.

One gateway in hall 2 has recorded a particularly high number of proximity

alarms. Also in comparison to production hall 1 this gateway forms an extreme
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FIG. 5.5: Overview of proximity alarms per gateway. Total number is indicated by the
size of the bars and the color. I shows production hall 1. II production hall 2
and III both halls in relation.

value (figure part III). Again for data protection reasons, the exact reason for this
extreme value could not be determined at this point. The majority of the alarms
were recorded within the first few days of the period under consideration (cf.
5.1). It cannot be ruled out that false measurements or incorrect operation of the
Bluetooth tags by the workers occurred.

Apart from this extreme value in Hall 2, it can be concluded on the basis of the
results obtained that there are more or less proximity alarms in some areas of
the total production area. Since workers usually follow certain patterns in their
daily work and normally always deal with a similar group of colleagues, one
would expect the formation of a community structure. For verification, the inter-
action graph over the complete period was divided into different communities
using the Girvan-Newman method presented in Chapter 2.1.2. The division with
the highest calculated modularity of 0.45 is shown in Figure 5.6. The graph is
divided into 9 communities. One unconfirmed conjecture would be that the nine
communities represent different departments of the company or different shifts.
The number of agents per community is evenly distributed between 29 and 115.
The total degree of all agents within a community varies from 1 to 139. These
results confirm the assumed community structure and show that some commu-
nities are more connected through more inter-community connections. Since
according to Saramaki et al. [SM15] and Golder et al. [GM11] social interactions can
unfold on many time scales, taking on structures and regularities ranging from
changes every minute to annual rhythms, it makes sense to examine temporary

structures as well. In the following, the previous findings on communities are
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Modularity: 0.45

FIG. 5.6: Community structure over the entire period. The different communities are
marked in color. The size of the individual vertices indicates the respective
degree.

therefore repeated for different temporal intervals and all agents are classified
using the SNA metrics from Section 2.1.1.

5.1.4 Temporal structures

Due to the structure of the interaction data, the amount of data and the industrial
context, one week (7 days) is chosen as interval size for the investigation of the
temporal structures. Figure 5.7 shows the distributions of the temporary graph
into communities for each week between May 24, 2020 and June 30, 2020. The
weeks start on Mondays and end on Sundays. The structures shown are similar
to that of the graph over the entire period, but differ in part in the number of
communities which varies from 6 to 9. One can see from the edges drawn in
gray that there are weeks on which the inter-community is more pronounced
(weeks 22, 24, 26) than on other weeks. In the context of the social system under
consideration, the hypothesis is put forward that the communities represent
different departments that have more or less contact with each other. Due to the
lack of personal information, this proposition cannot be verified.

It can also be observed that the modularity of each week is higher than the
modularity for the whole graph (i.e. 5.6). This indicates that the division of the
entire period into individual intervals separates the communities better from
each other. It is interesting to note that smaller intervals, such as on a daily or

hourly basis, resulted in worse modularities. Of course, the optimal interval
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FIG. 5.7: Temporal community structures with the interval size of one week.
Communities are again color coded as in 5.6 and the size of each point reflects
the degree of different verticies.

size always depends on the data under consideration. Likewise, the community
structure by definition depends on the social interactions of the agents within
the community which is represented by the size of the respective circle. As
previously shown, the risk of infection correlates with the number of contacts,
which infers that individuals in a community have a different risk of infection. It
follows that there are also differences between communities with respect to the
risk of infection. Figure section I in 5.8 shows the different infection risks within
communities. The presumed difference between communities with respect to
members’ risk of infection is confirmed. Because the number of communities
per week varies, comparison over multiple weeks is difficult. However, it is
noticeable that, for example, Community 7 has an above-average infection risk
and Community 1 has a below-average infection risk. If we also look at the
average number of individuals within a community (II), we see that Community
8 has the lowest average number of individuals, but generates the highest risk of
infection in week 25. Similarly, Community 2 has the highest average number of
individuals, but registers a lower than average risk of infection per week. These
findings suggest that it is not the number of people per community that matters,

but which people are in a community.

To investigate this, the "importance" of each agent within the temporal graph
and the respective community was calculated for each time interval. In the
context of infectious diseases, the importance means how at risk the person

is or what kind of danger this person poses to others. Figure 5.9 shows the
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FIG. 5.9: SNA metric calculation for the temporal graphs. Color coded are Degree
Centrality (DC - magenta), Betweeness Centrality (BC - orange) and Eigenvector
Centrality (EC - sea green). For each metric, column IX also shows the ranking
position per day. The lower this value, the more important the agent is for this
metric. The final table on the right hand side concatenates all the weekly
tables together. Column sum shows the sum of all IX of a row.

experimental setup implemented in Python, which is based on the SNA metrics
Degree Centrality, Betweeness Centrality and Eigenvector Centrality presented in

Chapter 2.1.1. Calculating the average placement per agent and week gives
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AgentID Occurrence Avg. Importance

1 ISA_4_369 3 65

2 ISA_4 392 3 74.3
3 ISA_4 760 1 107
4 ISA_4 433 2 112.5
5 ISA_4 43 6 118

TAB. 5.3: Excerpt of the most important agents within the social system calculated from
the three equally weighted SNA metrics Degree Centrality, Betweeness
Centrality, and Eigenvetcor Centrality. The Occurrence column indicates in how
many weeks the corresponding agent triggered at least one close contact. The
entire table captures a ranking of each agent within the system.

the mentioned "importance". Table 5.3 shows the most important agents of the
social system calculated using the three equally weighted metrics over the entire
period. The average is calculated because not every agent triggers close contacts
every week and is only calculated for the weeks in which the respective agent
was active in the system. It can be seen that the two most important agents
triggered at least 1 proximity alarm only in half of the periods considered. Also,
agent ISA_4_760 occurs only in one of the considered weeks, but in this one it
has an important position within the temporal graph. Therefore, the interaction
pattern seems to be more decisive than the pure frequency of interactions.

As a final investigation, it was evaluated whether measures that apply exclu-
sively to the most important 50 agents in the system have significant impact
on infection dynamics within the system. Such an approach has the advantage
in the production environment that the existing processes are less affected by
the measures, since most workers are not affected by the measures without
ideally being exposed to a higher risk. Only the UK SARS-CoV-2-B.1.1.7 variant
is considered and social distancing as a countermeasure. Figure 5.10 shows that
targeted countermeasures applied to only about 15% of the agents within the
social system can reduce the number of secondary cases. Figure part I shows
that secondary cases per day for targeted actions are about halfway between
social distancing and no actions. However, it is particularly interesting to see
the right margin of the distributions in II. One can see that targeted measures
for the most important agents according to SNA metrics, maximum values of
secondary cases per day can be reduced by about 25%.
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FIG. 5.10: Overview of the effectiveness of countermeasures for SARS-CoV-2-B.1.1.7.
Figure I shows the effectiveness of targeted countermeasures compared with
no countermeasures and social distancing with reference to secondary cases
per day. Figure II shows the distribution of secondary cases for the same
categories. This graph can be compared with 5.1 and 5.2.

5.2 Comparison to literature

To better place the results in the context of current research, they are com-
pared with current research results. The calculated transmission probability
for SARS-CoV-2 (0.0432) and the UK mutation (0.1128) in the workplace relate
specifically to the underlying social system, but are within a range of values
used and calculated in various papers (0.04 — 0.2) [Tan*20] [CMA20] [Kith*20].
The approaches by Kuhn et al. [Kith™20], for example, divide individuals into
age groups and assign each group its own risk of infection. Likewise, other
work makes the risk of infection dependent on environmental parameters such
as ventilation, number of people in a room, or temperature [BMS20] [Cha*20b].
Although only a uniform risk of infection was considered in this work, the find-
ing that SARS-CoV-2-B.1.1.7 leads to more secondary cases due to the longer
infection period is consistent with recent studies by Kissler et al. [Kis™21].

With respect to the containment of an infectious disease, to the best of our
knowledge, no comparable work could be found comparing social distancing
and mask wearing based on interaction data. The demonstrated advantage of
social distancing compared to mask wearing therefore needs to be validated

on further datasets. However, in social network analysis based epidemiology,
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there are studies on the identification of individuals who have a large impact
on the infection dynamics within the network. Manzo et al. [MR20] were able
to show that targeted countermeasures can effectively stop infectious diseases
through targeted interventions in a minority of highly networked individuals.
Countermeasures were also applied to 15% of individuals. These individu-
als were selected in the same manner as the study in this paper using SNA
metrics. Salathe et al. [S]10] demonstrated that in networks with strong com-
munity structure, vaccination interventions targeting individuals that bridge
communities are more effective than those targeting only strongly connected
individuals. Although communities were identified in the present work, the
countermeasures were not targeted to the connectivity indiviudals between
them.

5.3 Discussion

This work highlights the importance of social subsystems, such as a workplace
in this example, capturing the proximity contact patterns of its members. It also
demonstrated how such anonymously collected data can be used to simulate the
spread of infectious diseases and associated containment strategies. The design
of the framework makes it possible to simulate the spread of a wide variety of
infectious diseases transmitted by airborne particles. Only interaction data of
the system under consideration and infection-specific parameters such as the
reproduction number and the infection time are required for this. Important
information about the disease such as the S-index or the risk of infection per
contact can be estimated. For SARS-CoV-2, the transmission rate is estimated
to be 0.0432 and the S-index is estimated to be 270. Assuming that the higher
reproduction number for the British mutant is confirmed, the much higher infec-
tion risk of 0.1128 and the much higher S-index of 920 are alarming. However, it
was not possible to determine whether these estimated parameters are specific
to the social system under consideration or also apply to other subpopulations.
This needs to be validated with further data sets. The same applies to the results
of the simulated countermeasures. Here, social distancing was found to be
more efficient than wearing masks. Reducing contacts by half through social
distancing lowers the average S-index value to 69 for SARS-CoV-2 and to 360 for
SARS-CoV-2-B.1.1.7. In a real social system, the combination of both measures
is recommended and is also currently mandated by governments in many coun-
tries [Haa20].

Although the simplicity of the model allows for good comparability between
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infectious diseases and the evaluation of these differences, it also limits the
significance of the absolute resulting values. It has already been demonstrated
that SARS-CoV-2 and the UK mutant have different infection dynamics depend-
ing on location. For example, social interaction indoors carries on average a
significantly higher risk of infection than interaction outdoors. Currently, the
presented framework does not take this difference into account. However, the
used backend solution of the company safefactory offers the possibility to extract
and include the exact locations of the interaction as well. It was also assumed
in the present work that each individual has an equal risk of infection. This
also limits the validity, since according to current studies [Luo*20] [Ada*20],
people with lung diseases or older people have a higher risk of infection than
healthy, young people. Including a prevalence for infection risk may be one way
to address demographics and risk distribution.

Also shown was that the inclusion of network characteristics can lead to more
efficient countermeasures. Social distancing applied only to the top 15% indi-
viduals identified by SNA metrics was able to reduce the maximum S-index
values for SARS-CoV-2-B.1.1.7 by about 25%. This is an indication that when
resources such as vaccine are scarce at the onset of a previously unknown infec-
tious disease, targeted interventions can be a useful means of infection control.
The metrics used for this are standard metrics for SNA and not specifically
developed for epidemiology with social networks. Research results from Salathé
et al. [S]10] and Christley et al. [Chr*05] showed that specific disease metrics can
be expected to yield even better results.

Also worth considering in this context is contact duration. Namely, if contact du-
ration is inversely proportional to the number of contacts, then shorter average
contact duration could be associated with lower risk of coronavirus infection
and spread (assuming transmission probability is negatively correlated with

contact duration).

The analysis of temporary structures within the interaction data has shown that
the social behavior of employees leads to the formation of different communities.
These communities have different infection risks. The exact reason for this could
not be determined due to a lack of information about the individuals. However,
the assumption is that the increased number of social interactions of different
individuals or groups, is due to the tasks within the company. Although different
interval sizes for the temporary interaction graphs were tested, whether the
selected size of 7 days is the optimal size cannot be evaluated. This always

depends on the investigation and the context. More fine-grained groups can
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be observed with finer intervals and potentially promote further insights into
the topology of the graph. Yet, analysis of the temporal structures within the
interaction data was able to show that there is a different risk of infection
in different groups of people (communities). In addition, it was shown that
the communities within the considered company have different amounts of
contact with each other. Eliminating the connections between communities

could prove to be a worthwhile research approach to reduce the risk of infection.



6 Conclusion

In this chapter, the results of the work are summarized. Based on the find-
ings, ideas for further work are presented. For this purpose, the research
questions and their answers are first discussed in section 6.1. The achieved
goals are presented and a compact overview of the results is provided. Finally,
in section 6.2 suggestions for future work are presented. These represent, on
the one hand, extensions of the framework and, on the other hand, consid-
erations for further investigation possibilities of infection dynamics in social
networks.

6.1 Summary of achieved results

1. How can the risk of infection within a social system be determined on

the basis of near-contact interaction data?

In this work, a framework for modeling the spread of infection in a social system
based on social interaction data was presented. Using this model and an infec-
tious disease specific reproduction number Ry and the infectious period T, the
transmission rate of SARS-CoV-2, Influenza and the UK mutant of SARS-CoV-2
could be determined within the system under consideration. According to these
results, the higher reproduction number of the British mutant compared to the
other two diseases is not due to a higher risk of infection, but is primarily due
to the longer infection period in this disease. With reference to the available
interaction data, the infection dynamics of the three diseases could be simulated
and the expected progression of secondary cases estimated. It was clearly seen
that the British mutation leads to significantly more secondary cases and in
addition the SSE in this disease reach significantly higher maximum values
than both other diseases. The framework could also be kept general enough to
be used for other airborne infectious diseases. The only condition is the same
format of the data basis.

2. How can information about infection dynamics in a social system be

used to derive the effectiveness of different countermeasures?

Simulations can be performed with the developed model. Different counter-
measures lead to different numbers of secondary cases under the use of dif-

ferent parameter sets. Depending on the modeling objective, the distribution
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of these secondary cases can be analyzed and the effectiveness of the differ-
ent countermeasures can be inferred. As a countermeasure for the spread of
infection in the system under consideration, social distancing proved to be ef-
fective, especially with regard to the reduction of the maximum values of SSE.
Furthermore, the temporal structures of the graph were investigated by the
simulations performed. With a one-week interval size, different communities of
the graph could be identified which are stronger or weaker connected to each
other and have internally different infection risks for the members. Further
possible countermeasure are therefore the separation of the connections between
the individual communities or countermeasures which affect only individual

communities.

3. Are there individuals or a group of individuals within the system who
are particularly at risk of infection due to their contact patterns or who
have a particularly negative impact on infection dynamics? If so, how
can these be identified?

It has been shown that SNA metrics such as Degree Centrality, Betweeness Central-
ity and Eigenvetcor Centrality can identify individuals important for the network
structure and that countermeasures targeting this small fraction of individuals
in the graph can be effective. Especially with respect to vaccination, this could be
a promising approach to achieve a large impact with few resources and to slow
down the infection dynamics. The identified nodes could also be used as an
"early warning system" due to their intersectional position within the system and
indicate a possible new infection. More fundamentally, quantifying the influence
of single individuals on the entire network or the complete (temporary) graph,
however, allows decision-makers to better understand what is happening in
terms of infection within the company. Reactive as well as preventive decisions
can be made. Ideally, this lowers the risk of infection and protects the members
of the system from infection.
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6.2 Continuing work

The presented framework calculates the risk of infection and thus the occur-
rence of secondary cases based on the number of social interactions. A research
approach could therefore be to enrich the model with further parameters. This
could include environmental parameters of the exact location of the interaction
(similar to Buonnano et al. [BMS20]) or the inclusion of infection-specific tem-
porary prevalences. It is expected that this will allow the risk of infection to
be modeled more accurately and the behavioral patterns of individuals to be
mapped even better. This would lead to a more accurate fit of the model to
the social system under consideration. Furthermore, the previously described
approach of community-based countermeasures offers possibilities to extend
the infection model. An approach similar to that of Salathé et al. [S]10] could
be considered. In general, research findings by Manzo et al. [Man20] show that
complex social networks explore sophisticated interventions that target specific
categories or groups of individuals and are expected to have collective benefits.
Identifying a new metric to determine the most important nodes within the
network, comparable to the Christley et al. [Chr*05], also offered potential for fur-
ther research. The combination of temporal structures of the graph and infection
dynamics in particular offers an exciting field. Results in this direction could
greatly improve the message about the utility of countermeasures in specifically
considered social subsystems.

Another approach could be to apply the existing model to a different data set
and compare the results. To enable this comparison it is important that the same
hardware solution is used and the same parameters for the infectious diseases
are used.
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Appendix

A Figures

FIG. A.1: Randomly generated undirected geometric graph G = (V, E) with number
of nodes (verticies) ‘V|: 200 and number of edges |E ‘ = 837. In this example,
20 nodes were assigned to a random community, which explains the unclean
separation of these communities.
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FIG. A.2: Distribution of SSE for the two countermeasures taken. S-index > 10 applies.

81



Appendix 82

B Code

The model developed in this thesis was implemented with the software stack
presented in chapter 4.1. All code used (JupyterNotebooks) is located on the SD
memory card included with this thesis.

CoODE B.1: Implement countermeasures and estimate system-specific reproduction

numbers.

# social distancing
if social_distancing != 1:
connections = connections.sample(frac=social_distancing)

# Count amount of persons in social network

agents_a = c_rate['primary'].unique()

agents_b = c_rate['secondary'].unique()

n_agents len(list(set().union(agents_a, agents_b)))

— =
— © © ® N o G oA W N =
in

# Calculate infection_risk given a reproductive number
def infec(contacts, infection_risk):
return 1-(1l-infection_risk)==*contacts

= s
G W N

def reproductive_number(infection_risk):
c_rate['infection_probability'] = c_rate['amount'].apply(lambda x:
—infec(x, infection_risk))
17 return c_rate['infection_probability'].sum()/(n_days*n_agents)

-
=N

19 # calculate infection_risk given a reproductive number

20 if sampling:

21 def match_reproductive_number(infection_risk):

2 return reproductive_number(infection_risk) - Ro

23 infection_risk = fsolve(match_reproductive_number, 0)[0]

25 infection_risk_eff = infection_riskxmask_usage
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C Data

The data used in this thesis were recorded as part of the ResTAat project of the
DLR. For data protection reasons, the data may not be published. Requests to
view or use the data should be addressed to Eva Brucherseifer
(eva.brucherseifer@dlr.de) or Daniel Lichte (daniel.lichte@dlr.de).
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