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ABSTRACT

In the industry, categorical, numeric discrete and non-controllable in-
puts occur which can not be applied to Bayesian Optimization. But in
order to apply this method in industry, this thesis describes extending
methods formodelling categorical, numeric discrete andnon-controllable
inputs. Therefore, onemethod for each non-conventional attribute was
worked out in order to extend the Bayesian Optimization by them. Fur-
thermore, the investigated extensions were combined to test their func-
tionality in combination. This was done by applying the extensions to
simulated functions. Additionally to noise-free data, some examples
were applied to functions with noisy observations in order to show
how both data are modelled. Because noise in industry is a known
problem, this investigation is a relevant one. For numeric discrete as
well as non-controllable inputs, effective solutions were found. How-
ever, the selected solution for categorical values performed also good,
but depends strongly on initial weights which were set randomly. So
this method needs to be improved. Finally, the Bayesian Optimization
was extended by all three methods and applied to the three inputs cat-
egorical, numeric discrete and non-controllable. It was shown, that the
problems the Bayesian Optimization has in dealing with the selected
non-conventional data can perform good.
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ZUSAMMENFAS SUNG

In der Industrie kommen oftmals kategorielle, diskrete oder nicht- -
steuerbare Einflussgrößen vor,mit denen BayesianischeOptimierungs-
methoden nicht zurecht kommen. Da jedoch in der Industrie die Baye-
sianische Optimierungsmethoden angewendet werden soll, beschäf-
tigt sich diese Arbeit mit Erweiterungsmethoden für diese. Die Erwei-
terungsmethoden sollen die Verfahren anpassen, um auch mit den un-
konventionellen, für die Industrie relevanten Parametern arbeiten zu
können. Hierfür wurden verschiedeneMethoden zur Erweiterung der
BayesianischenOptimierung angewendet undmiteinander kombiniert.
Durch Simulationen wurde die Funktionsweise der Erweiterungen ge-
prüft. Zusätzlich wurden einige Simulationsläufe mit Rauschen verse-
hen, um das Verhalten der Verfahren auf Daten mit Rauschanteil zu
analysieren. Da Rauschen aufgrund von Messungenauigkeiten in der
Industrie ein bekanntes Problem ist, ist die Untersuchung des Verfah-
rens unter dem Einfluss von Rauschen von hohem Interesse. Es konn-
ten Ansätze für numerisch diskret sowie nicht-steuerbare Einflussgrö-
ßen gefunden werden. Für kategorielle Werte wurde ein vielverspre-
chender Ansatz untersucht, der jedoch noch Verbesserungspotential
besitzt, da dieses Verfahren stark von initialen Gewichten abhängt, die
zufällig gewählt werden. Schlussendlich wurden alle drei Ansätzemit-
einander verknüpft und es konnte gezeigt werden, dass die Probleme
des Verfahrens durch Kombination aller drei Anpassungen verschwin-
den können.
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MATHEMAT ICAL NOTAT ION

𝑙 Length scale of the Radial Basis Function.
𝜆 Output scale of the Radial Basis Function.
𝜖𝑛 Random variable with Gaussian distribution representing the

noise in the observed data.
𝜎2

𝜖𝑛
Variance of 𝜖𝑛.

𝑓 (𝑥𝑖) Objective function value for 𝑥𝑖.
𝑔 Function sample or realization of the Gaussian process.
𝑥 Set of variables to be evaluated by the Bayesian Optimization.
𝒳 Domain of 𝑥.
𝑁 Dimension of 𝒳 or number of variables.
𝒳𝑓 finite subset of 𝒳 .
𝒳𝑑 Domain of discrete Variable within 𝒳 .
𝑥𝑖 𝑖-th value of 𝑥.
𝑦𝑖 Noisy observation of 𝑓 (𝑥𝑖).
𝒟 Set of observed train data.
𝑚(𝑥𝑖) Mean function value of the Gaussian process for 𝑥𝑖.
Σ(𝑥𝑖, 𝑥𝑗) Variance function value of the Gaussian process for 𝑥𝑖, 𝑥𝑗.
𝐾(⋅, ⋅) Covariance Function of the Gaussian Process.
𝜇𝑖 Expected value of the Gaussian Process at 𝑥𝑖.
𝜎𝑖 Standard deviation or uncertainty of the Gaussian process at 𝑥𝑖.
𝜇𝜇𝜇 Mean vector consisting of 𝒳𝑓 .
𝜎𝜎𝜎 Standard deviation vector consisting of 𝒳𝑓 .
𝑑(𝑥𝑖, 𝑥𝑗) Distance measure for the inputs 𝑥𝑖, 𝑥𝑗.
𝑑𝑒(𝑥𝑖, 𝑥𝑗) Euclidean distance measure for the inputs 𝑥𝑖, 𝑥𝑗.
𝑐 categorical variable.
𝑐𝑖 𝑖-th category of 𝑐.
𝛼(𝑥𝑖) Acquisition Function value of 𝑥𝑖.
𝛽 Exploration parameter of the Upper Confidence Bound.
𝑥∗ By 𝛼 proposed sample regarding maximum acquisition.
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1
MOT IVAT ION

The process of digitalization opens a tremendous number of oppor-
tunities in manufacturing industry, be it the resulting available data
or the evoking field of Machine Learning [22]. In order to apply Ma-
chine Learning in industry, SCHULZ Systemtechnik GmbH plans to
develop an optimization tool for industry. The optimized target can
be cost, time or energy consumption during production. Especially en-
ergy consumption is very interesting in a timewhere sustainability and
climate change should be taken seriously, see [10]. In order to optimize
the target metric, the machine and process configuration parameters
are evaluated by observing the corresponding target value. By doing
so, finding the configuration which leads to the best target value is de-
sired.

The selected method for this project is the Bayesian Optimization (BO).
Investigating the suitability of thismethod for the selected taskwas not
part of this thesis. However, according to [3] this method was used of-
ten for engineering systems and therefore applied in physical world.
A major problem in applying an optimization method in industry is
the cost of evaluation. When a proposed configuration is evaluated,
this can lead to high costs, either because of the time involved or to
obtain a poor target value that is nevertheless informative. In order
to avoid waste of resource, the number of evaluations should be low
and an intelligent sampling is important. BO is one method that takes
a low evaluation number into account [3]. The first master thesis in
this project was written by Nathan Wollek. He described the concept
of applying BO in industrial plants and worked out diverse ideas and
opportunities, like amortization calculation or visualization and com-
prehensibility[24].

This thesis shows methods which help the BO in modelling parameter
properties which are called non-classical. Note that this term is not nec-
essarily used in this context in literature.

BO basically consists of two components: a surrogate model and an
Acquisition Function (ACQ).Usingpast evaluations, the surrogatemodel
is build to extra- and interpolate the target metric in the entire configu-
ration space to be optimized. It gives prediction about the unknown tar-
getmetric and takes uncertainty of the prediction into account. Usually
a Gaussian Process (GP) is used as surrogate model. Classically, the GP
is applied to continuous inputs and can not handle other types of val-

1



MOT IVAT ION 2

ues, like numerical discrete. The ACQ on the other hand, uses the GP’s
values, to select the next promising machine configuration to be eval-
uated. In doing so, a problem of maximization or minimization is ad-
dressed. Classically, the ACQ is used for only controllable inputs. How-
ever, there are also non-controllable influences or disturbances which
may have an influence on the target metric, like the outdoor tempera-
ture. When choosing the next evaluation, the strategy of exploration or
exploitation can be applied. For example, if there are too few observa-
tions in the configuration space, exploration may be appropriate and
vice versa. In thisway, an intelligent sampling is performed. Consider a
workerwith expert knowledge in an industrial plantwhere the BO is ap-
plied and visualized. Interaction between worker and ACQ could help
minimizing the number of observations, if the worker selects a useful
subarea where to search next by applying his expert knowledge. More-
over, the BO can be used to visualize the influences of different config-
urations observed so far and expert knowledge can be preserved and
transferred to others. This way, a human-supervised semi-automatic
optimization can be performed in addition to automatic optimization,
when the worker interacts with the ACQ, see [24].

Non-classical configuration properties were examined theoretically to
define the main task of this thesis. Non-classical properties are those,
which are either non-continuous, e.g. a level based parameter1, or non-
controllable, e.g. environmental temperature or humidity[2], in man-
ufacturing processes. The BO has problemswhen being applied to non-
continuous as well as non-controllable parameters. Therefore, three
non-classical properties were selected and solution approaches were
examined. The solution approach extend the BO in order tomake it deal
with the non-classical properties. Note that the GP classically models
continuous target metrics. However, there are also other types of target
metrics than continuous valued such as integer valued, e.g. number
of discard. In this thesis, only continuous function values were con-
sidered. In table 1.1 non-classical properties are listed. The rows show
the different properties of the parameters and the columns separate
them into controllable and non-controllable. Examples are presented for
most cells, e.g. a continuous and controllable configuration parameter
is any machine parameter that takes continuous values (such as pres-
sure) and is controllable by humans. An example for a continuous and
non-controllable parameter is the outdoor temperature, which is ob-
servable regarding its current continuous value but is not subject to
human influence. An example for categorical and non-controllable pa-
rameter is the restriction to a certain resource during production, e.g.
a customer, who ordered a muesli product, wants it to be produced
with rye. The properties continuous, numerical discrete and categorical re-

1 https://worldofinstrumentation.com/process-parameters-that-commonly-
measured-in-industry/, last visited on 27.04.2022 at 14:23.

https://worldofinstrumentation.com/process-parameters-that-commonly-measured-in-industry/
https://worldofinstrumentation.com/process-parameters-that-commonly-measured-in-industry/


MOT IVAT ION 3

fer to the type of parameter values. The last two properties delayed and
trivial describe parameters which have a delay between realization of
configuration and reaching the configured value. An example for this
is heating temperature. Consider one of a plant’s stations heats the pro-
duced good. Then regulating the heating temperature takes some time
until the desired heating value is reached. Trivial parameters on the
other hand are those, which have no influence on the optimized tar-
get metric. For some cells, no examples could be found. Of course a
trivial parameter, which is non-controllable, needs no consideration.
For delayed and non-controllable parameters no example could be fig-
ured out. Note that the current outdoor temperature is observable and
therefore not delayed.

property controllable non-controllable
continuous speed of conveyor belt

with continuous values, e.g.
1, 1.1, 1.01, ...[𝑚/𝑠]

(constant) outdoor tem-
perature

numerical
discrete

# workers,
# machines, level-based
parameter values, e.g.:
0.0, 0.5, 1., ...

# sick workers
# broken machines

categorical used material for conveyor
belt, such as plastic or metall,
diameter of a roller, e.g. to flat-
ten flakes

restriction to a certain
grain type when pro-
ducing muesli, or to the
available space (#ma-
chines can not infinitely
increased)

delayed heating/ cooling temperature delayed arrived work-
ers, dynamic change of
outdoor temperature,
e.g. sun rise, sudden
and short rain in sum-
mer

trivial energy supplier has no effect
on discard

——

Table 1.1: List of examples for different input properties regarding control-
lable and non-controllable inputs.

In this thesis no data from physical worldwas used. Instead, simulated
objective functions were applied and the BO was investigated on them.
Furthermore, testing the investigated extensions here would be too ex-
pensive when being applied to real data. Simulations give far more
flexibility when examining the extended BO. The selected parameter
properties were selected from table 1.1 regarding their high number of
examples found in theory. These are:
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° numerical discrete & controllable

° categorical & controllable

° continuous & non-controllable.

The non-classical properties were underlined. As mentioned before,
the classical GP can not model non-continuous values and the classical
ACQ can not be applied to non-controllable inputs. The selected prob-
lems address both restrictions of them. The term classical Bayesian Op-
timization is referred to a BO containing a classical GP, which treats all
inputs as continuous values, and a classicalACQ, which treats all inputs
as controllable. The research question is:

How can the classical Bayesian Optimization be extended, to be applied to
numerical discrete, categorical and continuous non-controllable inputs?

In order to investigate the research question, the Python library pyro2
was used. In this library the GP as described in [23] is implemented.
This implementation was used and further developed.

The structure of this thesis is as follows: First, in chapter 2 the theoret-
ical basics are explained including basic terms. When describing the
GP, [23] was used. Then, the ACQ is introduced and the usage of both
when applying the BO. Furthermore, a transfer solution is introduced,
which was used to model categorical values by the GP. The transfer so-
lution is applied in the field ofNatural Language Processing, where texts
are analyzed based on the co-occurence of words or word sequences.
Then, in chapter 3 the used methodology is described. and in chapter
4 the execution of this. Afterwards, the results are discussed in chapter
5 and the outlook described in chapter 6.

2 For the detailed documentation of pyro, see https://docs.pyro.ai/en/stable/, last
visited on 26.04.2022 at 14:04.

https://docs.pyro.ai/en/stable/


2
THEORET I CAL FOUNDAT IONS

This chapter explains the theoretical background necessary for under-
standing the work described in this thesis. First, some basic terms are
introduced in section 2.1. Afterwards, the Gaussian Process (GP) and
Acquisition Function (ACQ) are described in sections 2.2 and 2.3 re-
spectively. Then in section 2.4 the Bayesian Optimization (BO) is in-
troduced. Finally, a method used as transfer solution for categorical
values is introduced. With this method, the categorical values were
mapped to a numerical space and afterwards applied to a distancemea-
sure. For a definition of distancemeasures, see [18]. The description for
this is in section 2.5. Note that in this chapter only equations that have
been referenced are numbered and the others are not.

2.1 BA S I C T ERMS

PARAMETER In this thesis, the model parameters of the Gaussian Note that the output
scale equals the
variance for 𝑥 = 𝑥′:
RBF(𝑥, 𝑥′) = 𝜎2.

Process are called parameter. These are length scale 𝑙, output scale
𝜆 and the assumed noise variance �̂�2

𝑛 . In some literature the out-
put scale is called signal variance and is symbolized as 𝜎2 [23].
For a better distinction between output scale and the assumed or
true noise variance, the notation 𝜆 was adapted from [5].

INPUT The simulations formachine andprocess configurationparam-
eters are called inputs in this thesis, to distinguish them from the
model parameters. Inputs include controllable andnon-controllable
influences which are considered and adjusted during the opti-
mization process.

VAR IABLE Variables are inputs that are controllable by humans. They
can be continuous as well as numerical and categorical discrete.
Controllable input is a synonym for variable.

CONTEXT Context is a type of inputs, just like variables. But other than
variables, context include the inputs which are not controllable.
Non-controllable input is a synonym for context.

CLASS ICAL BAYES IAN OPT IM IZAT ION In this thesis, a Bayesian
Optimization which can only handle classical inputs, is called
classical Bayesian Optimization. When such a model is applied to
non-classical inputs, varies problems occur.

NON-CLASS ICAL INPUTS In this thesis, the term non-classical refers
to numerical discrete, categorical and non-controllable inputs.

5



2.2 GAUS S I AN PROCE S S 6

2.2 GAUS S I AN PROCE S S

The GPwas originally developed for geological applications, e.g. when
an interpolation between spatial observations was needed[17]. An ex-
ample for this is mining gold. If a gold miner finds gold at location 𝑥0,
digging next to this location results very likely in finding gold again.
The further away the goldminer digs from 𝑥0, themore the uncertainty
of his success grows. Usually, the GP is used for approximation of an
unknown objective function 𝑓 . For this section [23] was used. If no ref-
erence is made, the information was taken from this book, and from
the cited reference otherwise.

A GP is a multivariate normal distribution over functions 𝐺 in a cer-
tain domain 𝒳 ⊂ ℝ𝑁 , meaning one realization of it corresponds to a
function 𝑔 in domain 𝒳 .[17]

𝐺 ∼ 𝐺𝑃
𝑔 ∶ 𝒳 → ℝ

Definition 1 A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.[23]

At every single point 𝑥𝑖 ∈ 𝒳 , the GP consists of a Gaussian distribu-
tion representing the expected value 𝜇𝑖 and variance 𝜎2

𝑖 or standard
deviation 𝜎𝑖:[17]

𝐺𝑃(𝑥𝑖) ∼ 𝑁(𝜇𝑖, 𝜎2
𝑖 ).

In order to estimate the objective function 𝑓 , 𝜇𝑖 represents the predic-
tion at 𝑥𝑖 and the variance corresponds to how certain the prediction is.
The smaller the variance the higher the certainty about the prediction
and vice versa. However, the mathematical definition of the GP does
not consist of infinite Gaussian distributions over its domain, but of
two functions used to calculate themean andvariance for eachpoint[17,
23]:

𝐺 ∼ 𝐺𝑃 (𝑚(⋅), Σ(⋅, ⋅)) .

𝑚 is the mean function and Σ the variance function:

𝑚 ∶ 𝒳 → ℝ

Σ ∶ 𝒳2 → ℝ.

Themean function represents the expected value of the GP at any given
point 𝑥𝑖:

𝑚(𝑥𝑖) = 𝔼[𝐺(𝑥𝑖)] = 𝜇𝑖.
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In order to implement a mean vector programmatically, a finite subset
was passed to themean function to obtain themeanvector. Therefore,𝜇𝜇𝜇
is themean vector calculated from a finite subset of the domain𝒳𝑓 ⊂ 𝒳
with 𝑥𝑓 𝑖 ∈ 𝒳𝑓 :

𝜇𝜇𝜇 = [𝑚(𝑥𝑓 1), 𝑚(𝑥𝑓 2), ...] = [𝜇1, 𝜇2, ...].

The variance function Σ defines the variation at a given point and 𝜎𝜎𝜎 is
the corresponding standard deviation vector calculated from 𝒳𝑓 :

𝜎𝜎𝜎 = [Σ(𝑥𝑓 1), Σ(𝑥𝑓 2), ...] = [𝜎1, 𝜎2, ...].

Both, 𝑚 and Σ are calculated via 𝐾, the covariance function, which
gives information about the similarity between twopoints 𝑥, 𝑥′ ∈ 𝒳[23]:

𝐾 ∶ 𝒳 × 𝒳 → ℝ.

For a detailed description about how 𝑚 and Σ are calculated and the
functionality of Bayesian inference, see [5, 23]. The similarity between
two points 𝑥, 𝑥′ ∈ 𝒳 is used to assume the corresponding function
values 𝑓 (𝑥), 𝑓 (𝑥′). The general assumption is: the smaller the distance
between 𝑥 and 𝑥′, the more likely the similarity between 𝑓 (𝑥) and 𝑓 (𝑥′):

𝑑(𝑥, 𝑥′) = 0 ⇒ 𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) = 0 (2.1)

𝑑(𝑥, 𝑥′) = 𝛿0 ⇒ 𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) ≈ 𝛿0 (2.2)

with 𝛿0 as some small positive number near zero and 𝑑 as a metric
distance measure. The higher the distance, the more uncertain the as-
sumption about the function values of 𝑥 and 𝑥′ become. Note that this
does not leat to a proportional relation between 𝑑(𝑥, 𝑥′) and 𝑑(𝑓 (𝑥), 𝑓 (𝑥′)).
Proportionality would mean, that if the distance between the inputs
increases, the distance between their function values also grows. But
inputs with high distance may result in similar function values with
low difference. Only the uncertainty grows with increased input dis-
tance. The approximation symbol in equation 2.2 symbolizes this un-
certainty.

In figure 2.1 20 samples (dotted lines) of a GP are shown with their
corresponding mean (blue line) and standard deviation (blue area).
The vertical black line marks the test point 𝑥 = 4 where the Gaussian
distribution is defined as:

𝑓prior(4) ∼ 𝒩(0, 12).
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Figure 2.1: 20 function samples from prior of a Gaussian Process before
observing data. The code for this figure was motivated by
https://scikit-learn.org/stable/auto_examples/gaussian_
process/plot_gpr_prior_posterior.html last visited on
21.03.2022 at 12:49.

A look at the other values for 𝑥 shows, this predicted distribution is
everywhere the same. The further away an observation is located from
a test point, themore less this data influences the test point’s prediction.
In case no information is represented via influence, the GP predicts the
corresponding test points by using the default mean value. The same
behavior is observed when no information about 𝑓 is given. Because in
figure 2.1 no observation was made, the GP in this plot is called prior
distribution, prior for short. After observing new data and updating the
GP, the posterior distribution, posterior for short, is obtained[23].
In figure 2.2 the posterior of the GP is shown after observing the func-
tion value 𝑓 (𝑥 = 3.45) ≈ 0.8. It is noticeable that the Gaussian distribu-
tion at 𝑥 = 4 in the posterior is different than in the prior before:

𝑓posterior(4) ∼ 𝒩(0.7, 0.42).

In the posterior, the uncertainty for the test point is reduced. Due to its
distance to the observed sample, there is an influence of the observed
information weighted by the distance to the observed point. Due to
different causes, an observation can be noisy. An example for this kind After observing one

sample, the noise in
the posterior is very
small and may
increase after more
observations.

of cause are measurement inaccuracies of input values and therefore
an inaccurate observation of target values, see equation 2.3:

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑛 (2.3)

with 𝜖𝑛 ∼ 𝒩(0, 𝜎2
𝑛) being independent identically distributed for all

𝑥𝑖 ∈ 𝒳[23]. Note that �̂�2
𝑛 is one of the parameters of the BO and esti-

mates the true noise 𝜎2
𝑛 in the data. The closer the test point is to the

training point, the higher the influence of its covariance and the lower
the uncertainty about the prediction at the test point. Note that due to

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
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Figure 2.2: 20 function samples from posterior of a Gaussian Process after
observing data. The code for this figure was motivated by
https://scikit-learn.org/stable/auto_examples/gaussian_
process/plot_gpr_prior_posterior.html last visited on
21.03.2022 at 12:49.

this noise in the physical world, the equation 2.1 has to be updated, see
equation 2.4.

𝑑(𝑥, 𝑥′) = 0 ⇒ 𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) ≈ 0. (2.4)

Whenmore than one training point is observed, their covariances have
a weighted influence to the estimation about every unobserved test
point in the domain, depending on their distances[5, 17, 23]. Due to
[21], this is also called Kernel Density Estimator.

GP is a supervised learningmethod[23], where labeled data is used for
generating the GP and predicting the objective function 𝑓 . Labeled data
consists of the input and its corresponding output. In manufacturing
processes inaccurate measurements caused by ”mechanical vibrations
and electronic signals”[16] result in noisy data. The formula for noisy
observations was shown in equation 2.3. Therefore, observed data or
training data 𝒟 is defined as: (𝑥𝑖, 𝑦𝑖) (in figure 2.2 the training data
is 𝒟 = {(3.45, 0.79)}). Furthermore, the GP is not based on gradient
information of the objective function [5]. This has the advantage that
also non-differentiable objective functions can be modeled.

Covariance Function

The Radial Basis Function (RBF) (also known as Squared Exponential
covariance function) was used as covariance function[23]:

𝑅𝐵𝐹(𝑥, 𝑥′) = 𝜆2 exp(−𝑑𝑒(𝑥, 𝑥′)
2𝑙2

)

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
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with 𝑙 > 0 as the length scale, 𝜆 > 0. Therefore, the covariance function
takes only positive values. In the simulations, 𝑑𝑒 was used as distance
measure and is defined as follows [12]:

𝑑𝑒(𝑥, 𝑥′) = ||𝑥 − 𝑥′|| =
√
√√
⎷

𝑁
∑
𝑗=1

(𝑥𝑗 − 𝑥′
𝑗)2.

𝑁 corresponds to the domain’s dimension: 𝒳 ⊂ ℝ𝑁 . The length scale
𝑙 is also called smoothing parameter, window size or bandwidth, see [21].
It defines the smoothness of the weighted influences between observa-
tions and test points. Due to [23] the smoothness behaves as follows:
the higher 𝑙, the smaller the distance radius in which the influence of
a sample on its neighbors is still significant; the lower 𝑙, the wider this
radius is. In figure 2.3a this behavior was illustrated. The output scale
defines the strength of the influence between one observation and its
neighbors: the higher 𝜆, the higher the influence[5], see figure 2.3b.
Therefore, the length scale defines the reach in which an influence is
given and the output scale defines this influence’s strength.

(a) (b)

Figure 2.3: Illustration of the Radial Basis Function as a function of the differ-
ence 𝑑 with increasing length scales in panel (a) and increasing
output scales in panel (b). Both figures were taken from [5] and
slightly modificated.

The RBF-values depend on the euclidean distance ||𝑥−𝑥′|| and decreases
monotonically. Covariance functions which depend on the euclidean
distance are isotropic and have identical influence in all directions. If in
the real world, this assumption is false, an anisotropic covariance func-
tion can be applied; an example for an anisotropic kernel is one which
has a different length scale parameter for each dimension.[5, 23]
The used kernel was an RBF with one length scale for all dimensions.
The parameters 𝑙, 𝜆 and �̂�2

𝑛 were estimated by maximizing the a pos-
terior probability of the GP 𝑝(𝑙, 𝜆, �̂�2

𝑛 |𝒟), which is sometimes referred
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to as the marginal likelihood [13, 23]. In order to estimate the model pa-
rameters, a plausible belief about them can be introduced by defining
a prior distribution. The prior is flat if no belief is given and the pa-
rameters are calculated viamaximum likelihood estimation [5]. However,
in the pyro implementation the parameters were trained by applying
Stochastical Variational Inferencewhere the ELBO-function is used as loss
function for the gradient descent algorithm1, see section 2.5.

In figure 2.4 the described structure of the GP is visualized.

Figure 2.4: Structure of the Gaussian Process.

2.3 ACQU I S I T I ON FUNCT ION

The ACQ provides suggestions where the next sample should be taken.
In this thesis, only maximization problems are considered. Two strate-
gies can usually be pursued: exploration and exploitation. Exploration
involves sampling to obtain information in areaswhere fewor nopoints
have been observed. Exploitation corresponds to a sampling of the best
observed function value observed so far. The highest function value is
the best, because onlymaximization is considered. This behavior is also
described as greedy[20]. The ACQ 𝛼 takes the posterior GP’s mean and
uncertainty vectors 𝜇𝜇𝜇 and 𝜎𝜎𝜎 and assigns an acquisition value to each
point in the domain 𝒳 , or due to a finite set 𝒳𝑓 :[5]

𝛼 ∶ 𝒳𝑓 |𝜇𝜇𝜇,𝜎𝜎𝜎 ⇒ ℝ

These values reflect the preference over locations in the domain. In case
of maximization problem, a value 𝑥 is preferred to another point 𝑥′

whenever 𝛼(𝑥) > 𝛼(𝑥′). Therefore, the point 𝑥∗ with the maximum
acquisition value is suggested as the best one leading to eithermaximal

1 https://pyro.ai/examples/svi_part_i.html, last visited on 28.04.2022 at 13:24.

https://pyro.ai/examples/svi_part_i.html
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information gain in case of exploration or best known function value
in case of exploitation[5]:

𝑥∗ = argmax
𝑥∈𝒳

{𝛼(𝑥)} .

In case of aminimization problem, theACQ isminimized. Alternatively,
the ACQ is maximized after changing the sign of its values. Numerous
definitions for the ACQ have been proposed, like Expected Improve-
ment, Probability of Improvement and Thompson Sampling[5]. Be-
cause of its simple interpretability, the Upper Confidence Bound, UCB
for short, was used in this work, see equation 2.5.

UCB(𝑥𝑖) = 𝜇𝑖 + 𝛽𝜎𝑖 (2.5)

With 𝛽 ≥ 0 as exploration parameter: the higher 𝛽, the more explo- Note that the
interpretation of
exploitation may
differ dependent on
the selected
acquisition function.

ration is done and vice versa. In case this parameter is set high, the
uncertainties are stronger weighted. In case 𝛽 = 0, only the mean val-
ues are considered. In figure 2.5 the posterior GP is shown with the
corresponding ACQ. The red triangle in the ACQ plot marks the posi-
tion of the next sample 𝑥∗.

Figure 2.5: Illustration of Posterior Gaussian Process with the corresponding
Acquisition Function.

The ACQ and the GP are cheap to evaluate, compared to the objective
function. Both are generated computationally instead of applying ex-
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pensive to evaluate data. This way, a difficult expensive problem is
reduced to a series of simpler and inexpensive problems.[5]

In figure 2.6 the described structure of the ACQ is visualized.

Figure 2.6: Structure of the Acquisition Function used.

2.4 BAYE S I AN OPT IM I ZAT ION
The aim of the
Bayesian
Optimization is not
to approximate the
objective but to find
its optimum by
approximating
length scale.

The BO is a method which consists of the two components: surrogate
model (here: Gaussian Process) and Acquisition Function. First, the
prior of the GP is given. Its outputs 𝜇𝜇𝜇,𝜎𝜎𝜎 are used by the ACQ to select
the next proposed sample 𝑥∗. Second, the function value 𝑓 (𝑥∗) = 𝑦∗

is observed and 𝒟 gets updated due to this new observation. The GP
is updated to the posterior, considering the new observation made. In
the next iteration, the posterior GP is considered as prior and so on. The
GP approximates important information of the physical world, where
data is observed. In figure 2.7 this cycle is illustrated.

Figure 2.7: Structure of the Bayesian Optimization method.

2.5 WORD EMBEDD ING

Embeddingmeansmapping values from one space into another, called
embedding space 𝑢. Themainmotivations for doing this are dimension
reduction and metric representation.[7] In this work, Embedding was
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used to transform categorical values into a continuous metric space,
where similar categories are close to each other and vice versa[1], so
that the euclidean distance can be applied. The transformation to the
𝑢-space was mainly motivated from Word Embedding used in Natural
Language Processing. Therefore, this solution is a transfer solution.[1]

Figure 2.8: Conversion of a category to a One Hot Vector and the activation
of the embedding’s corresponding input neuron.

InWord Embedding, single words are representedwith numerical vec-
tors containing continuous values. These vectors are called Embedding
Vectors and allow the application of the mathematical operations sum-
mation and subtraction. One popular examples for this is:[14]

𝑊𝐸(king) − 𝑊𝐸(man) + 𝑊𝐸(woman) ≈ 𝑊𝐸(queen).

With 𝑊𝐸(⋅) as the function, which maps single words or One Hot Vec-
tor (OHV)s to the embedding space. Consider a network containing
adaptive parameters 𝑤𝑤𝑤 like in figure 2.8: a neural network is shown,
with 𝑁 input neurons {𝑛(𝑖)

𝑛 }
𝑁
𝑛=1

, 𝐿 hidden neurons {𝑛(ℎ)
𝑙 }

𝐿

𝑙=1
and𝑀 out-

put neurons {𝑛(𝑜)
𝑚 }

𝑀
𝑚=1

with𝑁 >> 𝐿. In figure 2.8, 𝐿 equals 3. The input
layer consists of the input neurons, the output layer consists of the out-
put neurons and so does the hidden layer, which consists of the hid-
den neurons. After finishing the training, the hidden layer generates
the embedding vector, which represents the inputs numerically[14].
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In this presentation ofWord Embedding, the inputs arewords, like Cat,
Dog or Airplane, and the outputs are so called entities which describe
word categories, such as Person, Animal or Country. Therefore, the
words with the same entity were mapped together. One example for a
training sample could be (𝐶𝑎𝑡, 𝐴𝑛𝑖𝑚𝑎𝑙). After transforming the input,
the sample may look like this: (OHV(𝐶𝑎𝑡), 𝐴𝑛𝑖𝑚𝑎𝑙). Every entity has
its own output neuron, see figure 2.8. These give information about
the word’s assumed entity. For example, if a word is assumed to be
an Animal, the second output neuron gets the highest value. The ideal
output values 𝑦1 for the input Cat could be [0, 1, 0, ..., 0] with all output
neurons producing the value 0 and only the second neuron producing
1.

The theoretical background about the neural network’s training was
taken from [9]. During training, the weights are updated due to the
algorithm of Back Propagation. But first, a Forward Propagation is done.

Forward Propagation means, the inputs are passed through the net-
work until reaching the output layer, see figure 2.8. For this, the inputs
are converted into a numerical representation, usually a OHV. OHVs
have elements 𝑒 ∈ {0, 1} with exactly one element being 1: ∑𝑁

𝑛=1 𝑒𝑛 = 1.
This way, every input value is encoded with a unique vector:

Cat = [1, 0, 0, ..., 0]
Dog = [0, 1, 0, ..., 0]

...
Airplane = [0, 0, 0, ..., 1].

The number of elements in the OHV corresponds to 𝑁, the number of
different inputs or words. These vectors are needed to apply them to
the embedding. Since exactly one element always takes the value 1, ex-
actly one input neuron is activated, namely the one that receives the
value 1, see the green input neuron in figure 2.8. The other input neu-
rons stay inactive (grey) due to the 0s achieved. The element 1 at the
activated input neuron 𝑛(𝑖)

1 is multiplied with the weights 𝑤𝑙𝑛 on its
path and passes a signal to each hidden neuron, see green arrows in
𝑤𝑙𝑛 in figure 2.8. The first hidden neuron achieves the value 1 ⋅ 𝑤11,
the second hidden neuron achieves the value 1 ⋅ 𝑤21 and the third the
value 1 ⋅ 𝑤31. Afterwards, the hidden neurons apply these signals to
their activation functions.

An activation function can lead to two possible states: inactive and ac-
tive, and often has restricted output domain, e.g. [0, 1]. Thereby, low
signal values are mapped to low output values by the activation func-
tion if a critical value is not reached andvice versa. Activation functions
are often non-linear. If a linear mapping is desired, no activation func-
tion needs to be applied. Usual activation functions for binary prob-
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lems are the sigmoid function and the tanh-function. For multi cate-
gorical output, the soft max is often used [15]. Next, the outputs of the
hidden layer’s activation functions aremultipliedwith theweights𝑤𝑚𝑙
on their further path, see green arrows in 𝑤𝑚𝑙 in figure 2.8. After the
Forward Propagation is finished, the network’s outcome ̂𝑦𝑖 is observed
and the error compared to the true output value 𝑦𝑖, can be calculated.
For this, a loss function 𝐸 is used. Other names for the loss function
are error function and cost function. The loss function often calculates
the difference between predicted and true outcome of the input. Exam-
ples for this are the Mean Squared Error for regression problems and
the cross entropy loss for multi categorical classification problems [4].
Now, the Back Propagation can be applied.

Back propagation runs in the opposite direction of Forward Propaga-
tion: from output to input layer, see figure 2.8. During Back Propaga-
tion, the gradient of the loss function 𝐸 is calculated. The gradient 𝜕𝐸

𝜕𝑤𝑤𝑤
is a vector of all partial derivatives of the weights 𝑤𝑖 ∈ 𝑤𝑤𝑤 in the embed-
ding and point in 𝑉-dimensional space in the direction of the strongest
increase of 𝐸(𝑤𝑤𝑤), with 𝐾 as the whole number of weights. For further
information about batching options, see [8]. The minimum of the loss
function is searched due to the gradient’s negative direction. This algo-
rithm is called Gradient Descent:

Δ𝑤𝑤𝑤 ∼ −𝜂 𝜕𝐸
𝜕𝑤𝑤𝑤.

𝜂 is the learning rate and regularizes the step size during this search. If
𝜂 is defined to be too large, there is a risk of skipping the optimum due
to too large steps. On the other hand, if the learning rate is too small,
the search for the optimum progresses very slowly.

If the Back Propagation step is finished, the weights 𝑤𝑖 ∈ 𝑤𝑤𝑤 are up-
dated due to:

𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖.

After the predefined stop criterion for the training is reached, the train-
ing process is finished. A stop criterion is for example when the de-
sired number of training iterations or a sufficient prediction precision
is reached. Then, the output layer can be removed and the words can
be represented by the hidden neuron, as symbolized in figure 2.8 with
𝑢(Cat) by applying Forward Propagation.



3
METHODOLOGY

In this chapter the methodology applied in chapter 4 is described. If
the Bayesian Optimization (BO) shall be used for optimization tasks in
industry, the problem that arises here is the inability of the Gaussian
Process (GP) to model non-continuous inputs. Beside this, the second
problem is, the Acquisition Function (ACQ)’s inability to handle non-
controllable inputs. Therefore, the aim is to investigate extensions for
the classical BO in order to find solutions for these problems. Non-
continuous parameters are meant to be both, numerical or categori-
cal. Here, no distinction was made between categories with a natural
order, i.e. ordinal, and those without, i.e. nominal. Therefore, all cate-
gories are considered as nominal. The selected non-classical inputs are
the following three:

1. numerical discrete, controllable

2. categorical discrete, controllable

3. continuous, non-controllable.

The properties leading to problems, when the classical BO is applied,
are underlined. First, for all three of them, a property description was
made. Second, the symptoms and causes of these problems where ana-
lyzed individually by applying the classical BO on them. In case of cat-
egorical variable, the classical BO was not investigated, because no rea-
sonable information transfer can be made between categories, see 4.3.
Therefore any method, that considers similarities between categories
has a better performance than the classical BO. For categorical vari-
ables, first the symptoms and causes were explained. After defining
the symptoms and cause of problem, the classical BO was extended by
the corresponding solution approach,which should consider the inves-
tigated non-classical property. The solution approaches were worked
out from literature or based on new assumptions. For numerical dis-
crete variables, the paper [6] was examined, for continuous context
the paper [11] and for the categorical variables, a transfer solution was
investigated, which was taken from Word Embeddings, see section
2.5. The reason for investigating solution approaches individually was,
that diverse papers show solutions for single problems. Therefore, first
individual methods were worked out. The theories of [6] and [11] are
described in sections 4.1 and 4.2. It was investigated whether the ana-
lyzed problems still occur after extending the BO. Last but not least, all
three non-classical properties were combined in one objective function
and the classical BOwas extended by the three solution approaches and

17



METHODOLOGY 18

applied to this objective function. The idea of combining them in the
last step was to investigate the effectiveness of the solution approaches
in combination.

The data used for this investigation was simulated. This has the advan-
tage of considering different problems independent of a data set and
therefore finding general solution approaches. Simulated data gives
more flexibility than a data set which represents a certain plant. More-
over, the true value of noise,which is also estimated by the BO, is known
and can therefore be compared with the estimation. But first, the sim-
ulation of the non-classical inputs are described. Numerical discrete
values were rounded up or down, based on an algorithm, which maps
a continuous value to an interval where every interval has a numeric
representation, for more information see appendix A. Continuous con-
text were called via a generator method in python. Generators return
in every call another value. Therefore, the generator’s current value
is observable but not controllable, just like the context, see section 2.1.
Last but not least, the categorical values were simulated by assigning
a ground truth value from the objective’s domain space, one for each
category. The true values for categories were considered as unknown
to the BO. For every single problem another objective function was de-
fined, see appendix A. For numerical discrete variable, a 1D objective
function was used during execution, see section 4.1. In case of context
and categorical variable, a 2D objective function was applied for each.
This was necessary to show the problem behavior and/ or the func-
tionality of the solution approaches. The simulated objective functions
were selected based on two properties:

1. Beside a globalmaximum, at least one localmaximummust exist.

2. The function has to be smooth and not wiggly, so that the as-
sumptions from equations 2.4 and 2.2 can be followed.

The term wiggly was adapted from [5] and describes high changes of
function values in a small input domain. In order to compare the per-
formance of classical and extended BO, the solution for the analyzed
problems were investigated by analyzing several plots of the BOs. Fur-
thermore, the model complexity regarding the covariance function’s
length scale 𝑙were compared. In chapter 4 noise-free data 𝜖 ∼ 𝒩(0, 0.0)
wasused and in the appendix noisy data, 𝜖 ∼ 𝒩(0, 0.5) or 𝜖 ∼ 𝒩(0, 0.8),
was used. Therefore, the assumed noise in data was also compared to
the true noise. The trade off parameter 𝛽 was also listed. Because 𝜆
refers to the covariance function, it can not be interpreted very well. It
only gives information about the direction of the covariance but none
about its strength. Therefore, 𝜆 was not listed beside the other param-
eters.



4
EXECUT ION

In this chapter, the Bayesian Optimization (BO) is applied to the se-
lected non-continuous inputs and extendedby the solution approaches.
In sections 4.1, 4.2 and 4.3 the problems of the classical BOwhen being
applied to numeric discrete variables, categorical variables and continuous
context are analyzed. Then, the realization of the solution approach for
the corresponding problem is described. The classical BOwas extended
for the solution approach and shown on plots. The plots include the 1st
iteration with the initial samples and one iterated sample. The initial
samples were set randomly, except for numeric discrete, there the sam-
ples were set manually to show the undesired behavior of classical BO.
For some problems more iterations are shown to show different behav-
iors. Each of these sections begins with a description of the input prop-
erty. Then, the symptoms and cause of the problem, classical BO has
in dealing with the appropriate non-classical inputs, is explained. Fi-
nally, in section 4.4 all simple non-classical cases are combined to test
the effectiveness of the combined solutions. Furthermore, noise-free
and noisy data were examined for all applications. The initial samples
are the same for classical, extended BO as well as noise-free and noisy
data. With other words: The initial input samples in one section are
identical. Further considerations are made in chapter 5, where results
are discussed including the consideration of model parameters. The
plots in this chapter only include noise-free data. In appendix B sup-
plementary plots including noisy data are presented and discussed in
chapter 5.

4.1 NUMER I C D I S CR E T E VAR IAB L E

An input is considered as numeric discrete if it has level-based numeric
values. Numeric data are generated via measurement or counting, i.e.
the total number of an entity [19]. This definition describes both, con-
tinuous and numeric discrete data. Examples for numeric data from
industry are pressure and temperature [16] for continuous and total
number of machines or workers for numeric discrete data, see chapter
1. In case a machine parameter has numeric discrete values, they are
level-based and therefore non-continuous. One example for a numeric
discrete machine parameter is an air conditioner with level-based val-
ues, e.g. with precision 0.5°C. In this case, a value of 24.25°C is not able
to be realized. For simplicity, integer valued variables were considered
when regarding numeric discrete inputs.

19
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If a numeric discrete variable ismodelled by a classical BO theGaussian
Process (GP) does not consider the level-based values. Distances be-
tween single input values are considered instead of calculating dis-
tances between the levels. In the following, the levels are described as
intervals. Intervals have one integer value which represents the whole
interval. This representation is applicable to metric distance measures
such as the euclidean distance and was used for function observation.
Due to [6], a sequence of repeatedly selecting the same interval during
exploration is possible if a numeric discrete variable ismodelled as con-
tinuous one.Multiple selections of one interval may be favorable, if the
algorithm converges after finding the global optimum. However, dur-
ing exploration phase, when there is much to discover, this behavior
is undesired. Consider an interval 𝐼𝑎 with the observed sample 𝑥′ ∈ 𝐼𝑎
and the interval representation 𝑎. Then, evaluating the proposed sam-
ple which belongs also to this interval 𝑥∗ ∈ 𝐼𝑎 results in observing the
exact same function value as 𝑓 (𝑥′) = 𝑓 (𝑎) if the data are noise-free and
a slightly different one if it is noisy. There is almost no information
gain, except the noise variance. However, the target of optimization is
to find the evaluation which leads to the best function value. Regard-
ing evaluation costs, this undesired behavior is expensive and wastes
resources such as time and money.

For this section, 𝛽 was set to 4. In case this parameter was set too low,
the following example could not be presented: in figure 4.1 a classical
BO with mean prediction and prediction uncertainty (top: blue curve
and blue area) is shown together with a level-based objective function
(green line). The objective was defined as shown in A.1. The observa-
tions are marked as circles, orange for initial samples and black for the
evaluated one. The evaluated sample was proposed during the last it-
eration. The Acquisition Function (ACQ) (bottom: red curve) has the
maximum value at 𝑥∗ = 7.2, which is proposed as next sample to eval-
uate (red triangle). This value belongs to the interval 𝐼7, see equation
A.2 for the definition of the intervals. The discreteness of the objective
function is not considered by the GP and therefore not considered in
the ACQ. The next proposed sample belongs to a yet unknown interval.
The undesired behavior which occurs if a classical BO is applied to a
numeric discrete variable, is not observable in figure 4.1. But after iter-
ating 4 more times, a sample from a known interval is proposed even
though the maximum observed function value does not belong to this,
see figure 4.2. At the 5th iteration, the discreteness of the input variable
is still not considered. The test point with the second highest acquisi-
tion value is located at 𝑥∗′ = 10 and with the third highest value at
𝑥∗″ = 4.7. The last one belongs to the interval 𝐼5 where the global opti-
mum is located but the point with the second highest acquisition value
does not.
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Figure 4.1: 1st iteration of classical Bayesian Optimization applied to numeric
discrete variable. The mean prediction (blue line) and prediction
uncertainty (blue area) of the Gaussian Process are shown in the
upper figure. The objective function (green line) is also visualized.
Initial (orange) and iterated samples (black) aremarked as points.
In the lower figure, the Acquisition Function (red line) is shown.
The proposed sample is marked as red triangle.

Neither in figure 4.1 nor in 4.2 all observations are catched by themean In order to get the
example shown in
figure 4.2, the 𝛽
parameter was set to
4 for all models
applied to the
numeric discrete
variable.

prediction. In order to select the model parameters considering the
training points, the most simple model is selected and therefore an au-
tomated Occam’s razor performed, see [23]. This is discussed in 5.1
together with the model parameters. The plots for the 1st and 5th iter-
ation of the classical BO applied to noisy data are shown in the figures
B.1 and B.2 respectively. In these plots, the mean predictions catch all
observations and assumes low noise. This behavior is discussed in sec-
tion 5.1. The difference of modelling noise-free and noisy data is, that
the observations do not lie directly on the objective function.

As mentioned in section 2.2, the covariance function depends on the
distance measure 𝑑 which is classically applied to single input values.
The problem here is that the discrete intervals should be considered.
Suppose 𝑥, 𝑥′ are values of a numeric discrete variable in domain 𝒳𝑑 =
{𝐼1, 𝐼2, ...} with 𝑥 ∈ 𝐼𝑖 and 𝑥′ ∈ 𝐼𝑗. Then, the distance 𝑑(𝑥, 𝑥′) should be
zero if 𝑥 and 𝑥′ belong to the same interval and non-zero otherwise:
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Figure 4.2: 5th iteration of classical BayesianOptimization applied to numeric
discrete variable. This plot shows a symptom that may occur if the
discreteness of the input is not considered.

𝑑(𝑥, 𝑥′) = 0 ⟺ 𝐼𝑖 = 𝐼𝑗

𝑑(𝑥, 𝑥′) ≠ 0 ⟺ 𝐼𝑖 ≠ 𝐼𝑗.

In case of 𝐼𝑖 ≠ 𝐼𝑗, the distance 𝑑(𝑥, 𝑥′) should be higher, the further away
these intervals are due to the assumption based on similarity (see equa-
tions 2.4 and 2.2).

In order to consider the level-based values, the GP was modified. The
input values were all mapped to intervals. These intervals were mod-
elled by the GP. Each interval got a unique representing value. For this,
a discrete transformer 𝑇 was defined, which considers the levels of the
discrete variable, see equation A.2. Afterwards, the corresponding rep-
resentations were passed to the euclidean distance measure 𝑑𝑒. In this
way, the distances between intervals were considered :

𝐾(𝑇(𝑥), 𝑇(𝑥′)) ⟶ 𝑑𝑒(𝑇(𝑥), 𝑇(𝑥′)).

This approach was taken from [6]. In figure 4.3, the GP’s structure was
extended for the discrete Transformer 𝑇. Because now the GP consid-
ers the discrete property of the input, the ACQ does the same when
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Figure 4.3: Structural Bayesian optimization extended by discrete trans-
former 𝑇.

calculating the acquisition values based on mean and standard devia-
tion vectors, see section 2.3. The cause was fixed by doing so and thus
the symptoms no longer occur. In figure 4.4, the 1st iteration of the ex-
tended BO is shown on noise-free data. The upper figure, again shows
the GP (blue line and blue area) and the discrete objective function
(green line). The initial samples (orange circles) and the iteration sam-
ple (black circle) are the same as the classical BO’s 1st iteration, see fig-
ure 4.1. In the lower figure, the ACQ (red line) is illustrated together
with the next proposition 𝑥∗ = 4.51 ∈ 𝐼5 (red triangle). Every interval
has no more than one observation, so no resources were wasted. Fur-
thermore, every interval has one mean and one uncertainty value. The
unobserved intervals have high acquisition values and are therefore
preferred to the observed ones, see section 2.3. The mean prediction
barely misses some observations. For example in interval 𝐼2, the blue
and green line do not overlay. They differ slightly. And even though
the data were noise-free, the observed intervals have a non-zero un-
certainty. This means, the observed data are assumed to be noisy. The
samewas observed for classical BO at both iterations, see figure B.1 and
B.2. For more information see the parameter discussion in section 5.1.
In figure B.3 the 1st iteration of extended BO applied to noisy data is
visualized. In this plot, the mean prediction at unobserved intervals is
always near zero. This behavior is discussed in section 5.1.
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Figure 4.4: 1st iteration of extended Bayesian Optimization applied to nu-
meric discrete variable. Here, the discreteness of the input is con-
sidered by Gaussian Process and Acquisition Function.

4.2 CONT INUOUS CONTEX T

An input is considered as context if it is observable but not subject to
human influence. Its domain can be continuous, but also categorical or
numeric discrete. The solution approach presented here considers con-
tinuous context. Examples for contexts are environment temperature
(continuous), restriction of resources during production (categorical)
and number of sick workers (numeric discrete). The numeric values
of a continuous context is directly applicable to the distance measure
used in the classical GP. The only difference between continuous con-
text and continuous variable is the option of controllablility. If there is
a context influencing the objective function, two symptomsmay occur:

1. In figure 4.5 the 1st iteration of the classical BO applied to contin-
uous variable is shown. Even though in the simulation a continuous
context had also influence on the target metric, it was not considered.
The 20 initial samples were set randomly. One sample was observed
by evaluating the proposed sample, see right most point at 𝑥 = 5. The
model acts smooth while the uncertainty in the data is non-zero at ob-
served points. The ACQ proposes the right most value, which is equal
to the last observed one. The context was simulated to change its value
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after each iteration and the influence on the target varies almost un-
controllably. The observed samples have despite small distances high
variation in their function values. Consider the samples 𝑥1 ≈ 2.66 and
𝑥2 ≈ 2.75, the distance on the 𝑦-axis is high despite the small distance
on the 𝑥-axis. This is in contradiction to the assumptions about the data
(equations 2.2 and 2.4). In figure B.7 the first iteration of the classical
BO applied to noisy continuous variable without considering the con-
text is shown.

Figure 4.5: 1st iteration of classic Bayesian Optimization applied to contin-
uous context (𝜎2

𝑛 = 0.0). In this plot, there is high variation in
the observations, despite small input distances, see 𝑥1 = 2.66 and
𝑥 = 2.75 because the continuous context was not considered.

2. If the context is considered by the GP the ACQ classically does not
distinguish between controllable and uncontrollable inputs. There is
no guarantee about the proposed sample being feasible. Suppose, the
current context has the value 3.54. But the ACQ optimizes the next pro-
posed point’s values regarding the whole input domain and suggests
𝑥∗ = (2.3, 5.4) even though the value of 5.4 for the context is not feasi-
ble.

As mentioned before, the difference between contexts and variables
is that the former, unlike the latter, is uncontrollable. Until now, ev-
ery input modelled by the GP was controllable and therefore the pro-
posed samples were all feasible. The acquisition values immediately
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depend on the mean and standard deviation vectors generated by the
GP. Both are taken as they are and no distinction into controllable or
non-controllable is made. Therefore, this direct transfer of the men-
tioned vectors has to be modified in order to make the distinction and
thus solve the problem. Due to the cause of the problem, in both, GP
and ACQ, the approach from [11] was realized: an Acquisition Func-
tion called Context Upper Confidence Bound (C-UCB). The GP models
both, variable and context. The resulting mean and standard deviation
vectors were restricted regarding feasibility and afterwards passed to
the ACQ. Feasibility here means, that the vectors were restricted to the
current context value and therefore the search space for the ACQ con-
sists of values which can be achieved via variable control. The context
value itself remains unchanged when the next point is suggested.

Figure 4.6: Heatmap of a 2D objective function with continuous variable on
the 𝑥- and continuous context on the 𝑦-axis. The current context
value is marked as as green line.

In case of 1D input including one context, this makes less sense. There-
fore, a 2D objective function was defined in figure 4.6, see A.3. There is
a heatmap shownwith a controllable continuous variable on the 𝑥-axis
and continuous context on the 𝑦-axis. Note that in order to search the
whole 2D domain, the 𝛽 parameter was increased to 10. For lower val-
ues, close points are proposed and evaluated repeatedly but 10 leads to
almost equally distributed samples for exploration. The function value
is color coded. The current context value is shown as green horizontal
line. The context varies its value automatically after each observation
and was simulated in a stepwise sinusoidal manner: In the middle of
the range, the derivative is high, near the edges it is low. The context
values commutes fromone end of the context’s domain to the other. Ev-
ery observation consists of two values: 𝑥- and 𝑦-value for controllable
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and non-controllable inputs respectively. This objective function was
also used for classical BO. In figure 4.7, the extended BO applied to this
objective function is visualized at 1st iteration. The last observed con-
text value is −0.62. Restricting the feasible values to this context value,
the next point (red point) results in 𝑥∗ = (4.0, −0.62). The assumed
noise variance is low near the observed points (black points), see fig-
ure 4.7b. Actually, after restricting the ACQ to the context value, it gets
one dimensional, see figure 4.8. In figure B.8, the 1st iteration for noise
data is shown.

(a) (b)

(c)

Figure 4.7: 1st iteration of extended Bayesian Optimization applied to contin-
uous variable and continuous context (𝜎2

𝑛 = 0). In panel (a) the
2D mean prediction of the Gaussian process is shown. Panel (b)
presents the 2D prediction uncertainty and panel (c) the Acqui-
sition Function. The current context value (green horizontal line
−0.62) and the observations (orange and black) are also shown in
all panels.
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Figure 4.8: Acquisition function after restricting to the context value −0.62.

4.3 CATEGOR I CAL VAR IAB L E

An input is considered as categorical if it is non-numeric data, see sec-
tion 4.1. Categorical entities are distinguished into ordinal and nom-
inal. Ordinal categories have natural order, e.g. coearseness of sieve
with values Note that the actual

values of 1𝑚/𝑠,
2𝑚/𝑠 and 5𝑚/𝑠 are
unknown to the user
and therefore not
directly applicable to
the Gaussian process.
Only the values 1,2,3
or slow, medium, fast
and the property of
non-equidistance are
known.

1. rough ∶ 0.8 cm

2. medium ∶ 0.5 cm

3. fine ∶ 0.3 cm.

The categories have a natural order regarding the fineness. The values
0.8 cm, 0.5 cm and 0.3 cm are fictive examples for diameter of the sieve
holes. However, no information about the influence of this category on
the target metric can be measured and therefore these values can not
represented numerically. Nominal categories have no such order, e.g.

type of grain ∈ {wheat, rye, spelt}

as resources for producing muesli. In this thesis, no distinction was
made between ordinal and nominal categorical inputs and both are
simply referred to as nominal. Distances between categories can not
be calculated with euclidean distance. The categories must be numer-
ically represented. The numeric representations must be close to each
other, if two categories behave similar regarding the objective and fur-
ther away otherwise. For example, suppose the categories are encoded
as One Hot Vector (OHV)s, see section 2.5. The distance between two
unsimilar vectors has always the same value, in case of euclidean dis-
tance measure this value is √2. Only in case of identical vectors, the
distance is 0:

𝑑𝑒 (OHV(𝑐𝑖),OHV(𝑐𝑗)) = √2 ⟺ 𝑐𝑖 ≠ 𝑐𝑗
𝑑𝑒 (OHV(𝑐𝑖),OHV(𝑐𝑗)) = 0 ⟺ 𝑐𝑖 = 𝑐𝑗.
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Therefore, no gradation is done if categories are converted toOHVs: vec-
tors are either non-identical or identical. If two vectors are non-identi-
cal but similar, they are not recognized as such but only as unsimi-
lar, even though this information is highly important for an efficient
modelling. If 𝑛 categories are considered to be independent of each
other, just like in case of OHV, 𝑛 GPs are generated (one for each cate-
gory) resulting in high waste of resources and the lack of information
transfer between categories. Another option is tomanually assign a nu-
meric representation 𝑟𝑖 for each category 𝑐𝑖 without knowing the true
similarities between them. In this case, categories with similar repre-
sentations 𝑑(𝑟𝑖, 𝑟𝑗) ≈ 0 are assumed to have similar function values
𝑑(𝑓 (𝑟𝑖), 𝑓 (𝑟𝑗)) ≈ 0 without any certainty about the correctness of the
representations. Due to the lack of information transfer between cat-
egories, both options would not perform information transfer, there-
fore, the classical BO was not applied to categorical inputs. Only the
extended BOwas applied in order to examine whether the information
transfer was considered. The categories need to be mapped to a metric
space intelligently, with similar categories having similar numeric rep-
resentations. Similar representations lead to small distances and vice
versa. Suppose producing muesli from rye behaves similar to produc-
ing it from spelt and very unsimilar from producing it from wheat.
Then, for both, rye and spelt, the numeric representation should be
similar, e.g. 4.5 and 4.8. Conversely, their representation must be un-
similar to wheat, e.g. wheat: −2.2.

Similar to the solution approach for numeric discrete variables in sec-
tion 4.1, the categorical variables were transformed before being ap-
plied to the covariance function’s distance measure. For this, the cat-
egories were converted into numeric representations, as is the case in
Word Embedding, see section 2.5. First, the values of the categorical
variable 𝑐𝑖 ∈ 𝑐 were converted to OHVs. Second, the OHVs were passed
to an embedding, which was placed at the entry to the Radial Basis
Function (RBF). Third, the covariance function including the embed-
ding was trained by applying Back Propagation and Gradient Descent,
see section 2.5. When initializing the GP, the training data consist of
the initial points: the input data are the variable values and the output
data are the corresponding observed function value of the unknown
objective. In figure 4.9, this structure is illustrated. Beside the categor-
ical variables, others, e.g. numeric discrete 𝑥𝑑 ∈ 𝒳𝑑 and continuous
variables 𝑥𝑖 ∈ 𝒳\{𝒳𝑑, 𝑐}, can be applied. 𝑇 is the discrete transformer
described in section 4.1 and was also included in this figure, to show
the similar realization between embedding and discrete transformer.
The neuron, which outputs the embedding representation 𝑢(𝑐𝑖) (or-
ange) can be interpreted similar to the hidden layer’s output in section
2.5. During training of the covariance function (blue dotted box), the
weights 𝑤𝑙𝑛 were adjusted automatically to the used training data. The
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embedding updates its weights 𝑤𝑙𝑛 whereby the RBF updates its pa-
rameters 𝑙, 𝜆. The assumed noise variance �̂�2

𝑛 is estimated after setting
𝑙 and 𝜆.

Figure 4.9: Structure of covariance function extended by embedding.

Due to the embedding being trained together with the RBF, the two
components are not separablewhen being applied. This structuremust
be preserved during evaluation and further iterations. To avoid infor-
mation loss, see section 2.5, no activation function was used in the em-
bedding. The output 𝑢 is mapped linearly into the metric space so the
representations can drift as the distances increase. In case of 1D cate-
gorical input, all categories are assumed to be independent, due to the
OHV representations being orthogonal to each other. Therefore, in 1D
space, each category has to be observed at least once to being repre-
sented properly in metric space and no information transfer between
the categories can be done. In case of 2D inputs including categorical
and continuous variables, information could be transferred between
the categories. When the continuous variable has a similar outcome
for two categories, these two are assumed to be similar. Therefore, the
following example is 2 dimensional.

In figure 4.10, the simulated objective function is illustrated. This is
the same objective function used in section 4.2 for context. The colored
horizontal lines represent the 5 categories, whereby categories 1 & 2
(green and red) were simulated to be similar, like the categories 3 & 4
(blue and violet). The fifth category (pink) was simulated unsimilar
to the others. The categories were assigned the following values on the
𝑦-axis:
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Figure 4.10: Heatmap of a 2D objective function with 5 categories, visualized
by horizontal lines.

category 1 ∶ 1.8
category 2 ∶ 1.7
category 3 ∶ 0.4
category 4 ∶ 0.3
category 5 ∶ −1.8.

However, these values must not be trained by the embedding, it is only
important that the relative similarities and unsimilarities are recog-
nized. No more than 5 different values on the 𝑦-axis can be selected
due to five categories. This means, the values between the categories
are not feasible and can not be selected by the ACQ. This was realized
by passing the OHVs. Therefore, the combinations between categorical
and continuous values got an acquisition value and the one with the
highest value was selected as proposed sample.
In figure 4.11 the 1st iteration of the extended BO is shown including
mean prediction, uncertainty and acquisition values. The categories
1 and 2 are mapped close to each other. Category 3 was mapped be-
tween the two and category 4. And category 5 is placed further away
from all of these. The ACQ suggests a sample in category 5 (see the grey
diamond at the same height as category 5). The color code smoothly
transitions between the categories. The data point at (2.6, [0, 0, 0, 0, 1])
has influence on a wide radius. These plots was generated by mod-
elling two extended BOs: One which treats the 𝑦-axis as categorical as
described and one that treats it as continuous. The last one was gen-
erate the shown the mean plot’s color code in the whole domain. Be-
cause this is the 1st iteration, the similar categories may come closer
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Figure 4.11: 1st iteration of extended Bayesian Optimization applied to con-
tinuous and categorical variables (𝜎2

𝑛 = 0). The 2D mean predic-
tion and the 2D uncertainty plot are shown together with the cat-
egory observations (colored points). The Acquisition Function
is shown together with the next sample to evaluate (grey dia-
mond).

with higher iterations. This was discussed in section 5.3. In figure 4.12
the 1st iteration of extended BO applied to noisy data is shown. The
categories 1 (green), 3 (blue) and 5 (pink) does not affect any other
category nor are they effected. The categories 2 (red) and 4 (violet) do
effect each other even though they were simulated unsimilar: an un-
desired information transfer is performed. This behavior was further
discussed in section 5.3.
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Figure 4.12: 1st iteration of extendedBayesianOptimization applied to contin-
uous and categorical variables (𝜎2

𝑛 = 0.8). The 2D mean predic-
tion and the 2D uncertainty plot are shown together with the cat-
egory observations (colored points). The Acquisition Function
is shown together with the next sample to evaluate (grey dia-
mond).

4.4 COMB INED PROBL EMS

In this section, the three problems of numeric discrete, categorical dis-
crete and context variable were combined. The first variable is a clas-
sical continuous variable, the second is a numeric discrete and, due to
the simplicity of visualizing, the third is a categorical context variable.
An example for categorical context is the restriction to a resource, see
table 1.1. Suppose muesli has to be produced but the customer wants
it to be made with wheat. So during production, an optimization, that
takes the categorical value type of grain being equal to wheat into ac-
count, has to be done.

When applying the BO to these variables, all corresponding solution
approacheswere implemented. Themotivation of doing this, was to in-
vestigate whether unknown problems occur in this combination. The
investigated papers [6] and[11] consider single problems. The combi-
nation of different solution approaches using Bayesian optimization
has not been done in this form before. In figure 4.13, four objective
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(a) (b)

(c) (d)

Figure 4.13: 4 objective functions, one per context category. The different pan-
els (a)-(d) show the objectives for categories 1-4 respectively.
Note that categories 1 and 2 are slightly different regarding the
function values, as well as categories 3 and 4. None of them are
identical.

functions are shown with continuous variable on the 𝑥-axis and nu-
meric discrete variable on the 𝑦-axis. These were used in this section
to sample the evaluations from. Objectives 1 and 2 represent the true
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course of categories 1 and 2 as well as the objectives 3 and 4 repre-
senting categories 3 and 4. However, no two objectives are identical
but have slightly different scales regarding the function values, see the
color codes. Therefore, categories 1 and 2 are relatively similar to each
other but not identical as well as categories 3 and 4.
The BO was randomly initialized with 20 samples per category. The
context was simulated as follows: First, for 4 iterations, the context was
restricted to category 1. Then, for 4 iterations the context was restricted
to category 2 and so on until all 4 categories were iterated 4 times. In
figure 4.14 the plots formodelling the categories 1 and 2 during 1st iter-
ation are shown includingmean prediction and prediction uncertainty.
The grey diamond in mean prediction 1 and uncertainty 1 symbolizes
the proposed sample, see figures 4.14a and 4.14c. The corresponding
ACQ is shown in figure 4.15. Furthermore, in figure 4.16 the mean pre-
diction and uncertainty for categories 3 and 4 are visualized.

The numeric representations of categories 1-4 during 1st iteration are
printed in the corresponding figures (see title of mean plots) and are
as follows:

𝑟1 ∶ 1.1303
𝑟2 ∶ 1.2073
𝑟3 ∶ −1.5711
𝑟4 ∶ −1.5561

with 𝑟𝑖 as the representation for category 𝑖. As already mentioned, the
categories 1 and 2 were simulated similar to each other and unsimilar
to the others. These two got positive representations. Conversely, the
categories 3 and 4were simulated to be similar to each other andunsim-
ilar to the others. These two got negative representations. All similar
categories were already represented close and further away from the
unsimilar ones. Consider in figure 4.14d the uncertainty of category 2
at location ([8.5 − 10], 𝐼8) with the interval 𝐼8 = [7.5, 8.5]: the uncer-
tainty of the prediction is low (bright blue in the middle of a white
ares), even though there was no observation made. Looking at the un-
certainty plot of category 1, see figure 4.14b, shows the reason why: at
the location 𝑥 = (9.5, 9.3) an initial sample was observed. The infor-
mation about this sample updated the mean prediction and its uncer-
tainty of category 2 because of its close representation to category 1.
Conversely, in the mean prediction for category 1 there is a red area lo-
cated at ([3.5, 5], 𝐼4 ∪ 𝐼4) (see figure 4.14a). In this area, no sample was
observed. However, this information was transferred from category 2,
which had 1 initial sample in this area. Compared to other areas, where
neither category 1 nor category 2 were observed, the mean prediction
for both is set to the default value of zero (bright blue). The correspond-
ing uncertainties are high (red). A similar information transfer is ob-
servable between the categories 3 and 4. Consider the left upper and
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lower corners in figure 4.16d where the uncertainty for category 4 is
shown. There is low uncertainty despite no samples observed.

The 1st iteration of the extended BO applied to noisy data is shown
in figure B.10 and B.11. The resulting representations here are:

𝑟1 ∶ −1.3399
𝑟2 ∶ −3.3005
𝑟3 ∶ 2.2173
𝑟4 ∶ 2.1414.

For a discussion of the results, see section 5.4.
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(a) (b)

(c) (d)

Figure 4.14: 1st iteration of extended Bayesian Optimization applied to the 3
non-classical inputs (𝜎2

𝑛 = 0). The plots include mean prediction
and uncertainty for categories 1 and 2. The continuous variable is
shown on the 𝑥-axes and the numeric discrete one on the 𝑦-axes.
The orange points are the initial points and the black ones were
evaluated after iterating. The grey diamond is the next proposed
sample by the Acquisition Function, see figure 4.15, and is only
shown in the current context category’s plots. The categories 3
and 4 are shown in figure 4.16.
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Figure 4.15: 1st iteration of the extended Bayesian Optimization’s Acquisition
Function (𝜎2

𝑛 = 0). The corresponding mean predictions and un-
certainties are shown in figures 4.14 and 4.16. The context’s value
was restricted to category 1.
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(a) (b)

(c) (d)

Figure 4.16: 1st iteration of extended Bayesian Optimization applied to all 3
problems (𝜎2

𝑛 = 0). The plots include mean prediction and un-
certainty for categories 3 and 4. The continuous variable is shown
on the 𝑥-axes and the numeric discrete one on the 𝑦-axes. The Ac-
quisition Function and plots for categories 1 and 2 are shown in
figures 4.15 and 4.14



5
RE SULT S & D I SCUS S ION

In this chapter, the results of chapter 4 are discussed. The goal was to
findmethods for selected problems,whichweremotivated from indus-
try. These problems were applying the Bayesian Optimization (BO) to
variables with numeric discrete and categorical values as well as non-
controllable inputs, which were called context. In order to achieve this
goal, the classical BO was extended by three solution approaches each
solving one problem. Finally, the three non-classical properties were
combined in a 3D variable space and the BO was extended for all three
solution approaches.

5.1 NUMER I C D I S CR E T E VAR IAB L E

The problem that occurred when the classical BO was applied to a nu-
meric discrete variable, was the Gaussian Process (GP)’s inability to
treat the values as discrete intervals. Therefore, the GP calculated the
distance between individual points instead of intervals. In order to
solve this problem, a discrete transformer 𝑇 was placed in the covari-
ance function. This transformer mapped the input values to discrete
intervals and assigned a unique representation to them. Afterwards,
these representations were passed to the distance measure 𝑑. 𝑇 has to
be defined application specific, dependent on the discreteness of the
input. This solution was taken from [6].

However, the observed sampleswere assumed to be noisy, even though
they were not (for classical BO see figures 4.1 and 4.2 and for extended
the figure 4.4). Conversely, noisy observations were assumed to be
noise-free (for classical BO see figures B.1, B.2 and for extended see fig-
ure B.3). Therefore, in the following themodel parameters length scale
and assumed noise variance are considered in more detail. The selec-
tion of these two parameters was based on the trade-off between them.
Regarding [23], a low length scale leads to a quickly varyingmean pre-
diction which catches all observations. In this case, the assumed noise
variance is near zero.
In the opposite, a high length scale leads to a smooth mean prediction
which does not catch all observations and an increase of the assumed
noise variance is the consequence. 15 iterations for all BO applied to
numeric discrete variable were executed and the course of the length
scales and assumed noise variances are shown in figure 5.1 and 5.2 re-
spectively. After #iteration = 5, the extended BO in the upper plot has
an almost constant 𝑙 value (#iteration ≥ 5). From there, 𝑙 was for ex-

40
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Figure 5.1: Length scales for 15 iterations (𝜎2
𝑛 = 0). The vertical red lines

mark the iterations of interest for classical (dotted) and extended
Bayesian Optimization (solid) at (5) and (14) for the upper and
(7) and (9) for the lower plot.

Figure 5.2: Assumed noise variances of 15 iterations. The vertical red lines
mark the iterations of interest for classical (dotted) and extended
Bayesian Optimization (solid) at (5) and (14) for the upper and
(7) and (9) for the lower plot. The horizontal black line marks the
true noise variance (𝜎2

𝑛 = 0).

tended BO always higher than for classical. However, the lower model
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complexity was sufficient to catch all observations, see 5th in figure 5.4.
The noise level for this model was assumed to be near zero, except in
the beginning. However, 𝜎2

𝑛 = 0.5 (black horizontal line in figure 5.2)
was not reached by any model. The figures from section 4.1 were also
taken from these iterations.

The iterations of interest were marked on these plots with a red solid
vertical line for the extended BO and red dotted vertical line for the
classical one. They were selected either to show the method did not
converge (for classical BO applied to noise-free data (#iteration = 14))
or to show it did (all others). It was not systematically shown that all
courses either converge or not. But in case, these plots show a pattern,
which looks like convergence, corresponding iterationswere examined
in more detail. In figure 5.1, the convergence pattern for extended BO
applied on noise-free data is visible, see #iteration = 5. The course of
the length scale does not change for further iterations. In figures 5.3
and 5.4 the 4th and 5th iterations are shown.

Figure 5.3: 4th iteration of extended Bayesian Optimization applied to nu-
meric discrete variable (𝜎2

𝑛 = 0). The mean prediction (blue line)
and prediction uncertainty (blue area) of theGaussian Process are
shown in the upper figure. The objective function (green line) is
also visualized. Initial (orange) and iterated samples (black) are
marked as points. In the lower figure, the Acquisition Function
(red line) is shown. The proposed sample is marked as red trian-
gle.
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At the 4th iteration, the proposed sample (𝑥∗ = 6.51 ∈ 𝐼7) is not the
optimal one but belongs to an unobserved interval. However, the op-
timal function value was already observed. During the next iteration,
see figure 5.4, the uncertainty about the mean prediction is near zero
everywhere and the objective function was approximated almost per-
fectly. There is a slightly difference between mean prediction and true
function value observable for 𝐼2. The next proposed sample is the opti-
mal one which was already observed. For further iterations, this sam-
plewas proposed and evaluated. Therefore, the extended BO applied to
noise-free data converged. A look at figure B.4 shows that the classical
BO (noise-free data) did not converge at 14th iteration: the proposed
sample is not the highest observed so far. The remaining iterations are
shown in figure B.6 (classic BO 7th iteration) and B.5 (extended BO 9th
iteration). Both were converged.

Figure 5.4: 5th iteration of extended Bayesian Optimization applied to nu-
meric discrete variable after convergence (𝜎2

𝑛 = 0).

In figure B.3, the 1st iteration of extended BO is shown (noisy data). In
this figure, the mean prediction for unobserved intervals are all zero.
The length scale is, at this iteration, smaller than 1, see length scale
course in figure 5.1. This parameter defines the radius of the influence
for an observation. The smallest distance between two intervals is 1.
Therefore, the minimal distance is higher than the length scale no ob-
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servation from one interval has an effect to another. In this case, a de-
fault mean value is assigned, which is 0 for the used model[23].

5.2 CONT INUOUS CONTEX T

Two problems can occur when the classical BO is applied to a target
metric, which is disturbed by a continuous context. Note that the con-
text changes its current value automatically, see section 4.2.

1. The GP does not consider the context and models only the control-
lable inputs. In this case, there is high variation in data, because the
context influence is not modelled. This example is shown in figure 4.5.
The mean prediction there is smooth and the uncertainty is high at the
observed points. The Acquisition Function (ACQ) proposes a sample
which was already observed during last iteration. This can be caused
by the uncertaintywhich does not shrink to zero at the observed points.
This behavior is undesired regarding resource consumption (proposed
sample was close to an observed one) and the modelling (high varia-
tion in data, smooth mean prediction).

2. The GP considers both, continuous context and variable. In this case,
not all modelled inputs are controllable. The ACQ does not distinguish
between those and proposes the next evaluation by adjust the values
for context and variable. This can lead to not feasible propositions. The
proposed sample and the evaluated one are not identical. A similar be-
havior is described in [6]: When the classical GP is applied to numeric
discrete variable and the ACQ suggestes the next sample, this sample is
rounded to an integer. Then, proposed samples are not identical with
the realized evaluations. TheGP considers only the evaluated value and
the ACQmay repeatedly propose the same sample. This behavior again
results in resource waste regarding time and money.

A similar reaction as in figure 4.5 when the classical BO was applied to
a variable without considering the context, is described in [5]. In that
example, the data contains heavy tailed, non-Gaussian noise which is
falsely modelled as Gaussian noise. Then, there is high variance in the
observed function values but different from the classical BO shown in
figure 4.5, ”the posterior GP is heavily effected by the outliers”. How-
ever, the GP in figure 4.5 is smooth and less effected by the strong vary-
ing data.

The solution for this problemwas taken from [11]. The vectors of theGP
are not passed directly to the ACQ, instead restricted vectors are passed.
This restriction was based on the current context’s value and therefore
only includes values of the controllable variables. Thismethod is called
Context Upper Confidence Bound (C-UCB). Both GPs of the extended
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BOs had a similar mean predictions as the objective function regarding
observed areas.

Figure 5.5: Length scales for 30 iterations of extended and classical Bayesian
Optimization applied to numeric discrete variable (𝜎2

𝑛 = 0).

Figure 5.6: Assumednoise variances of 30 iterations. The horizontal black line
marks the true noise variance (𝜎2

𝑛 = 0.5).

In figure 5.5 and 5.6 the model parameters length scale and assumed
noise variance for 30 iterations are shown. The number of iterations
were increased compared to section 5.1, because of the higher input di-
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mension. The length scale of the extended BO was for noise-free data
always lower than for classical BO. The assumed noise variance for the
extension was lower for both, noise-free and noisy data and higher for
the classical methods. This fits the trade-off between 𝑙 and �̂�2

𝑛 , see sec-
tion 5.1. For both, the true noise variance was not assumed correctly
(see black horizontal line in figure 5.6). The fall down of the length
scale for classical BO applied to noisy data showno interesting behavior
regarding the performance of the model. The model complexity was
increased but the assumed noise was still high. However, there is no
convergence observable and therefore no interesting iterations were
marked. The causes for the lack of convergence can be the low number
of observations. Maybe after increasing the number of iterations or ini-
tial points, a convergence can be achieved. In order to show the fitting
progress, the 30th iteration of extended BO for noise-free data is shown
in figure 5.7. The iteration points are almost equally distributed over
the whole input domain. The mean prediction is similar to the objec-
tive function, see figure 4.6. However, the observations are for high and
low context values closer than in between. This behavior is caused by
the sinusoidal simulation of the context where the deviation is lower at
the edges and higher between them. The 30th iteration for noisy data
is shown in the appendix in figure B.9.
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(a) (b)

(c)

Figure 5.7: 30th iteration of extended Bayesian Optimization applied to con-
tinuous variable and continuous context (𝜎2

𝑛 = 0). In panel (a)
the 2Dmean prediction of the Gaussian process is shown together
with the current context value (green horizontal line 2.06) and the
observations (orange and black points). Panel (b) presents the 2D
prediction uncertainty and panel (c) the Acquisition Function.

5.3 CATEGOR I CAL VAR IAB L E

The problem that occurred when the classical BO was applied to a cat-
egorical variable, was the definition of distances or similarities. Cat-
egories are not numeric data and therefore not applicable to metric
distance measures. They need to be numerically represented in order
apply them to distance measures. The distances between variable val-
ues are important due to the assumption that small distances in in-
put domain lead to small distances in output domain. The selected
approach was motivated from Natural Language Processing, where
words are represented numerically, see section 2.5. First, an embedding
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(a simple linear net without activation function) was implemented at
the entry of the covariance function. Second, at each iteration, the ob-
servations were used as training samples and the covariance function
was trained together with the embedding. During the training process,
the embedding’s weights and the Radial Basis Function (RBF)’s length
scale and output scale parameters were adjusted. After finishing train-
ing, the output neuron of the embedding gives information about the
numeric representation for each category. Because embedding and RBF
are trained together, they are not separable during application. The
problem being solved here, wasmapping the categories into numerical
space. In figure 4.11 the 1st iteration of extended BO applied to noise-
free data is shown. The representations of categories 1 and 2 are close.
This is correct regarding the simulation, see figure 4.10. The category
3 is located between categories 1 & 2 and category 4. However, these
four categories effect each other. This effect was not simulation. How-
ever, there are not much observation made in categories 3 and 4. In
figure 4.12 the extended BO applied to noisy data is shown. The cat-
egories 1, 3 and 5 have no effect on any other category, see the color
code. But the categories 2 and 4 were represented almost identically
even though they were simulated unsimilar. Length scale and output
scale for noise-free and noisy data are shown in figure 5.8 and 5.9. For
noise-free, the length scale was higher than for noisy data. After the
9th iteration, the extended BO applied to noise-free data shows a con-
vergence pattern. The vertical red line marks the iteration of interest.
For noisy data, the iteration of interest are 9 ans 26.

Figure 5.8: Length scales for 30 iterations. Red line marks the iteration of in-
terest (9) and (26).
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Figure 5.9: Assumed noise variances of 30 iterations. The horizontal black
lines mark the true noise variance. Red line marks the iteration
of interest (9) and (26).

In figure 5.10 the 8th iteration is shown. The proposed sample there
is not the global optimum, see figure 4.10 and belongs to category 3
(blue). The distances between the categories are similar to the 1st iter-
ation, see figure 4.12. During the next iteration the proposed sample is
near the optimum, see figure 5.11. The categories are now represented
slightly different. The categories 1 and 2 are still very close. But the cat-
egories 3 and 4 moved closer and are represented almost identically.
Even though thiswas not simulated (theywere slightly different scaled
regarding the function values), their similarity was recognized. The
category 5 has still high distance to the others. The proposed sample
belongs to the far highest function value observed so far. For further
iterations no other sample is proposed and the BO converged.
For noisy data the 26th iteration is the iteration of interest. Until then,
the categories 4 and 2 were represented very similar, even though they
were not, see figure 5.12. So there is no convergence observed. But after
the 28th iteration, they were mapped further away, see figure 5.13. The
correct representation was reached after a high number of iterations
(28). The assumption about this is, that the categories 2 and 4 were not
recognized as promising categories. They were assumed to lead to no
high function values, which is important for maximization problems.
After mapping these categories to different representations they did
not effect each other anymore. The length scale plot gives information
about the model complexity: the wrongmodel (noisy data) hat higher
model complexity than the correct one (noise-free data).
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Figure 5.10: 8th iteration of extended Bayesian Optimization applied to con-
tinuous and categorical variables (𝜎2

𝑛 = 0.0): not converged yet.
The 2D mean prediction and the 2D uncertainty plot are shown
togetherwith the category observations (colored points). TheAc-
quisition Function is shown togetherwith the next sample to eval-
uate (grey diamond).
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Figure 5.11: 9th iteration of extended Bayesian Optimization applied to con-
tinuous and categorical variables (𝜎2

𝑛 = 0.0): converged.
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Figure 5.12: 26th iteration of extended Bayesian Optimization applied to con-
tinuous and categorical variables (𝜎2

𝑛 = 0.8).
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Figure 5.13: 28th iteration of extended Bayesian Optimization applied to con-
tinuous and categorical variables (𝜎2

𝑛 = 0.8).
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5.4 COMB INED PROBL EMS

After implementing and testing the approaches for every single non-
classical variable, all of them were combined in a 3D variable space.
The variables were classic continuous and numeric discrete variable
and categorical context. The categorical context had 4 possible cate-
gories, whereby the first and the secondwere simulated similar as well
as the third and the fourth. The BO used here was initialized with 80
samples, 20 for each category. The number of initial samples was taken
high compared to the other investigations, so that similarities between
categories can be recognized in a 3D input space. The combination of
the problems was taken to examine whether new problems occur. For
noise-free data, the extended BO mapped similar categories close to
each other during first iteration. For noisy data, only the similarities
for categories 3 and 4 were recognized at 1st iteration. In the figures
5.14 and 5.15 the length scale and the noise for each iteration is shown.
For this 3D example, 15 iterations were performed.

Figure 5.14: Length scales for 15 iterations. The red line marks the iteration of
interest (2).

For noise-free data, the length scale is almost constant. During the 1st
iteration, the similarities and unsimilarities were recognized correctly.
However, for noisy data, there is a iteration of interest at 2nd iteration.
In figure 5.17 and 5.18 the 2nd iteration for noisy data is shown and in
figure 5.16. The similar categories 1 and 2 are mapped closer than at
1st iteration:
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Figure 5.15: Assumed noise variances of 15 iterations. The horizontal black
line marks the true noise variance. The red line marks the itera-
tion of interest (2).

𝑟1 ∶ −2.2644
𝑟2 ∶ −2.3761
𝑟3 ∶ 2.2885
𝑟4 ∶ 2.1703.
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Figure 5.16: Acquisition function of 2nd iteration. The corresponding mean
predictions and uncertainties for categories 1-4 are shown in fig-
ures 5.17 and 5.18
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(a) (b)

(c) (d)

Figure 5.17: 2nd iteration of extended Bayesian Optimization applied to all 3
problems (noisy data). The plots include mean prediction and
uncertainty for categories 1 and 2. The continuous variable is
shown on the 𝑥-axes and the numeric discrete one is shown on
the 𝑦-axes.
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(a) (b)

(c) (d)

Figure 5.18: 2nd iteration of extended Bayesian Optimization applied to all 3
problems (𝜎2

𝑛 = 0.5). The plots include mean prediction and un-
certainty for categories 3 and 4. The continuous variable is shown
on the 𝑥-axes and the numeric discrete one is shownon the 𝑦-axes.



6
OUTLOOK

In this chapter, an outlook is given for further work.

In order to vanish the problemwith categorical values, where the simi-
larities are not recognized correctly,multiple starts of the training could
be used. This way, different random initializations of the embedding
are realized and therefore the orders of the categories vary. If then be-
tween two similar categories no unsimilar one is placed, the embed-
ding has a very good representation of them after a sufficient number
of samples. In doing so, the parameter length scale can be an indicator
for a good or bad representation, dependent on the model complex-
ity. If two unsimilar categories, which have an unsimilar course, were
effecting each other, the length scale is assumed to be very low. The
lower the length scale the higher the model complexity. In order to
find a good fit by applying multiple starts, a low complexity could be
considered when finding the best fit for the categories.

Furthermore, no distinction between nominal and ordinal categorical
inputs was made. Considering ordinal categories, if there is a reason-
able assumption that the similarities of the categories have the same
order as the representations, this order should be taken into account
when initializing the weights of the embedding. Of course, this as-
sumption may not always be valid, because the similarities may have
nothing to do with the categories’ order. In case extreme categories
(those which are furthest away) behave similar, this approach would
not perform good. Therefore, the assumption about the similarities
considering the natural order has to be verified.

Solution approaches for other non-classical inputs can be worked out,
such as delayed inputs.Also, a performance analysis about the Bayesian
Optimization (BO) regarding input dimension and model parameters
𝛽, initial number of samples, etc. can be done in order to get the best
performance for diverse dimensions.

Another option is to automatically adjust the trade-off parameter 𝛽 af-
ter each iteration. In the current implementation, this parameter is set
once. But a dynamical adjusting could lead to higher performance and
faster convergence. Furthermore, an investigation about the best per-
forming Acquisition Function can be made.
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A
OB J ECT IVE FUNCT IONS

The objective function1 with one numerical discrete variable used in
section 4.1 was defined as follows:

𝑓 (𝑥) = sin(𝑇(𝑥)) ⋅ sin(4) ⋅ √𝑇(𝑥) ⋅ 4, (A.1)

with 𝑇 as discrete transformer. 𝑇 maps the input value to a closed in-
terval if the discrete representation 𝑥𝑑 ∈ 𝒳𝑑 is even and to an open
interval otherwise. 𝑇 also describes the definitions of intervals 𝐼𝑖 for
numeric discrete variables:

𝑇(𝑥𝑖) = 𝐼𝑑 =

⎧{{{{
⎨{{{{⎩

[𝑥𝑑 − 0.5; 𝑥𝑑 + 0.5], if 𝑥𝑖 ∈ [𝑥𝑑 − 0.5; 𝑥𝑑 + 0.5]
and 𝑥𝑑 is even,

(𝑥𝑑 − 0.5; 𝑥𝑑 + 0.5), if 𝑥𝑖 ∈ (𝑥𝑑 − 0.5; 𝑥𝑑 + 0.5)
and 𝑥𝑑 is odd

(A.2)

In case of sampling with noise, 𝜖𝑛 was defined as follows:

𝜖𝑛 ∼ 𝒩(0, 0.5).

The objective function2 with continuous variable and continuous con-
text used in section 4.2 was defined as follows:

𝑓 (𝑥1, 𝑥2) = 3 ⋅ (−𝑥1 + 3.5)2 ⋅ exp [−(𝑥1 − 2.5)2 − (𝑥2 + 1)2]
− 10(−0.5 + 0.2𝑥1 − (𝑥1 − 2.5)3 − 𝑥5

2)

⋅ 1
3 exp [−(𝑥1 − 1.5)2 − 𝑥2

2] .
(A.3)

The objective function for categories 1 and 2 in the 3D example used in
section 4.4 were similar to the one described in equation A.1, but with
the two inputs continuous and numerical discrete variables instead of

1 This function was motivated by http://clerc.maurice.free.fr/pso/Alpine/
Alpine_Function.htm, last visited on 12th April 2022 at 13:23.

2 This function was motivated by https://www.math.uwaterloo.ca/~hwolkowi/
henry/reports/talks.d/t09talks.d/09waterloomatlab.d/optimTipsWebinar/
html/optimTipsTricksWalkthrough.html, last visited on 12th April 2022 at 15:45.
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one variable and the constant 4. The formula is shown in equation A.4,
𝑇 is again the discrete transformer.

𝑓 (𝑥1, 𝑥2) = sin(𝑥1) ⋅ sin(𝑇(𝑥2)) ⋅ √𝑥1 ⋅ 𝑇(𝑥2). (A.4)

Note that these functions were used for simulating the objective func-
tions. It may be necessary to compress these horizontally to gain the
same results as shown.
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Figure B.1: 1st iteration of classical Bayesian Optimization applied to noisy
numeric discrete variable. The mean prediction (blue line) and
prediction uncertainty (blue area) of the Gaussian Process are
shown in the upper figure. The objective function (green line) is
also visualized. Initial (orange) and iterated samples (black) are
marked as points. In the lower figure, the Acquisition Function
(red line) is shown. The proposed sample is marked as red trian-
gle.
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Figure B.2: 5th iteration of classical Bayesian Optimization applied to noisy
numeric discrete objective.
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Figure B.3: 1st iteration of extended Bayesian Optimization applied to noisy
numeric discrete objective. Note that themean prediction at unob-
served intervals has value near zero.
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Figure B.4: 14th iteration of classical Bayesian Optimization applied to nu-
meric discrete objective: not converged yet.

Figure B.5: 9th iteration of extended Bayesian Optimization applied to noisy
numeric discrete objective: converged.
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Figure B.6: 7th iteration of classical Bayesian Optimization applied to noisy
numeric discrete objective: converged.

Figure B.7: 1st iteration of classical Bayesian Optimization applied to noisy
objective with context (𝜎2

𝑛 = 0.5).



SUP P L EMENTARY P LOT S 69

(a) (b)

(c)

Figure B.8: 1st iteration of extended Bayesian Optimization applied to con-
tinuous variable and continuous context (𝜎2

𝑛 = 0.5). In panel (a)
the 2Dmean prediction of the Gaussian process is shown together
with the current context value (green horizontal line 0.91) and the
observations (orange and black). Panel (c) presents the 2Dpredic-
tion uncertainty and panel (c) the Acquisition Function.
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(a) (b)

(c)

Figure B.9: 30th iteration of extended Bayesian Optimization applied to con-
tinuous variable and continuous context (𝜎2

𝑛 = 0.5). In panel (a)
the 2Dmean prediction of the Gaussian process is shown together
with the current context value (green horizontal line −2.22) and
the observations (orange and black points). Panel (b) presents the
2D prediction uncertainty and panel (c) the Acquisition Function.
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Figure B.10: 1st iteration of extended Bayesian Optimization applied to all 3
problems (𝜎2

𝑛 = 0.5). The plots include mean prediction and un-
certainty for categories 1 and 2. The continuous variable is shown
on the 𝑥-axes and the numerical discrete one on the 𝑦 axes.
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Figure B.11: 1st iteration of extended Bayesian Optimization applied to all 3
problems (𝜎2

𝑛 = 0.5). The plots include mean prediction and un-
certainty for categories 3 and 4. The continuous variable is shown
on the 𝑥-axes and the numerical discrete one on the 𝑦 axes.
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