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Abstract

Heating in private households accounted for 26% of total energy
consumed in Germany in 2020, which is a major contributor to the
emissions generated today [1]. Heat pumps are a promising alternative
for heat generation and are a key technology in achieving our goals
of the German energy transformation which includes the reduction of
gas emissions by 55% until 2030, compared to 1990 [2,3]. Today, the
majority of heat pumps in the field are controlled by a simple heating
curve [4], which is a naive mapping of the current outdoor temperature
to a control action. An alternative approach is Model Predictive
Control (MPC) which was applied in multiple research works to heat
pump control. However, MPC is heavily dependent on the building
model, which has several disadvantages. Motivated by this and by
recent breakthroughs in the field, this work applies deep reinforcement
learning (DRL) to heat pump control in a simulated environment.
Through a comparison to MPC, it could be shown that it is possible
to apply deep reinforcement learning to archive MPC-like performance
while having reduced model dependency. This work extends other
works which have already applied DRL to building heating operation
by performing an in-depth analysis of the learned control strategies
and by giving a detailed comparison of the two state-of-the-art control
methods.
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Zusammenfassung

Das Heizen in privaten Haushalten hat im Jahr 2020 26% des
gesamten Energieverbrauchs in Deutschland ausgemacht [1]. Dies
stellt einen wesentlichen Beitrag zu den heute erzeugten Emissionen
dar. Wärmepumpen sind eine vielversprechende Alternative für die
Wärmeerzeugung und dadurch eine Schlüsseltechnologie zur Erreichung
der Ziele der deutschen Energiewende, die eine Reduzierung der Treib-
hausgasemissionen um 55% bis 2030 im Vergleich zu 1990 vorsieht [2,3].
Ein Großteil der heute im Einsatz befindlichen Wärmepumpen wird über
eine einfache Heizkurve gesteuert [4], die eine einfache Abbildung der
aktuellen Außentemperatur auf die einzuhaltende Vorlauftemperatur
darstellt. Ein alternativer Ansatz ist die modellprädiktive Regelung
(Model Predictive Control, MPC), die in zahlreichen Forschungsarbeiten
zur Steuerung von Wärmepumpen eingesetzt wurde. MPC ist jedoch
stark von einem Gebäudemodell abhängig, was mehrere Nachteile mit
sich bringt. Aus diesem Grund und aufgrund der jüngsten Durch-
brüche auf dem Gebiet, wird in dieser Arbeit Deep Reinforcement
Learning (DRL) auf die Wärmepumpensteuerung in einer simulierten
Umgebung angewendet. Durch einen Vergleich mit MPC konnte gezeigt
werden, dass es möglich ist, mit Deep Reinforcement Learning eine MPC-
ähnliche Leistung zu erzielen und gleichzeitig die Modellabhängigkeit zu
verringern. Diese Arbeit leistet einen Beitrag zu anderen Arbeiten, die
DRL bereits auf den Heizungsbetrieb von Gebäuden angewendet haben,
indem eine eingehende Analyse der erlernten Regelungsstrategien und
ein detaillierter Vergleich der beiden Regelungsmethoden durchführt
wird.
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Nomenclature
General

E∗[·] expectation when acting optimally

Eπ[·] expectation when acting according to policy π

MDP

A(s) set of possible actions when in state s

S set of possible environment states in the MDP

a realization of an action

a′ realization of successor action of s after incrementing t

At any action at timestep t

Gt the return, which defines the sum of discounted future rewards from
the current time step t on

r realization of a reward

Rt+1 any reward at timestep t+ 1, after taking an action at timestep t

s realization of a state

s′ realization of successor state of s after incrementing t

S0 any initial state

St+1 any state at timestep t+ 1, after taking any action at timestep t

ST any terminal state

t discrete timestep ∈ N0, which gets incremented after the agent takes
an action

Policies and Value Functions

π policy which is used to select actions
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π(a|s) policy written as probability distribution over actions given the state

π∗ a policy which acts optimal

Q∗(s, a) optimal action-value function, which determines the expected future
return by being in state s and taking action a and acting optimally
from there on

Qπ(s, a) action-value function, when acting according to policy π after taking
action a

V∗(s, a) optimal state-value function, which determines the expected future
return by being in state s and acting optimally from there

Vπ(s, a) state-value function when acting according to π

Deep Reinforcement Learning

L() loss function to be minimized during training of a neural network

J() objective function to be maximized during trainig

α learning rate

θ trainable parameters of a neural network (weights and biases)

∇θJ(θ) gradient of the objective function with respect to the parameters of
the neural network

It must be noted that the notations and therefore this nomenclature is based
on [5].
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1 Introduction
One goal of the German energy transformation is to reduce greenhouse gas
emissions by 55% by 2030, compared to 1990 [2]. In 2020, room heating in
private households accounted for 26% of total energy consumed in Germany.
Unfortunately, as of 2020, 68% of this heating energy was generated by heating
systems that rely on fossil fuels such as oil or gas, making heat generation in
private households a major contributor to the emissions generated today [1].

Heat pumps, on the other hand, are an attractive alternative to be used
for room heating in private households, as they exploit heat from natural
energy sources such as ambient air or groundwater and bring it to a higher
temperature level using electrical energy, so that it can then be used to supply
heat to buildings [6]. Therefore, heat pumps can be used for emission-free
room heating if the electricity used to operate the heat pump comes from
renewable energy sources. This makes heat pumps one of the key technologies
for achieving the goals of the ongoing energy transition [3].

While the penetration of heat pumps in Germany is steadily increasing [7],
most heat pumps in the field are controlled by a simple heating curve [4].
The heating curve presents a static mapping from the current outdoor
temperature to a control action of the heat pump. While this approach is
easy to implement and maintain, it has potential for improvement as other
factors, like a forecast of the outdoor temperature, do not have any influence
on a heat pump controlled by a heating curve but could improve the control
strategy in terms of energy efficiency and comfort [4]. Additionally, due
to the increasing share of renewable energy sources, the electricity supply
is becoming more dependent on external factors such as the weather [8].
Therefore, it is becoming more and more important to be able to balance the
supply and demand of electricity. This can be done by time-based electrical
prices, which serve as an incentive to regulate the electricity demand, thus
the name demand response (DR) [9]. As of today, time-based varying
electrical prices were not applied to residential customers on a larger scale
in Germany [9]. Anyhow, it is expected and is reasonable that varying
electricity prices will be available for residential customers in the future [8,9].
More advanced control strategies are needed to exploit the variable prices by
shifting the heating load to low price periods, while also incorporating other
factors such as the weather forecasts.

As a result, model predictive control (MPC) has been applied to heat
pump control in the past years. The basic idea of MPC is to make use
of a simplified building model to predict the effect of control actions. As
promising as this sounds, this also introduces a strong dependency on the
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model which is used by MPC. This dependency entails disadvantages that
are described in more detail in section 3.2.2. Overall, in recent years, the
work on MPC used for heat pump control has increased. However, so far it
has not gained acceptance in practice [10–12].

Motivated by the recent breakthroughs achieved by deep reinforcement
learning, the goal of this work was to apply deep reinforcement learning to
heat pump control. The concepts were implemented and evaluated solely in
simulation, which was provided by the Fraunhofer Institute for Solar Energy
Systems (ISE). Based on this, the following three research questions were to
be answered:

1. Is it possible to apply deep reinforcement learning to learn efficient
heat pump control strategies in the simulation provided?

2. How well is it working compared to MPC and the heating curve?

3. Can it be extended to a demand response scenario?

This work was carried out in collaboration with the Fraunhofer ISE and
extends other works which have already applied deep reinforcement learning
to heat pump control mainly by (1) providing another working example, (2)
performing a detailed evaluation of the learned heating strategies, and (3)
performing a comparison between MPC and deep reinforcement learning.

The rest of the work at hand is structured as follows: Chapters 2 and 3
provide the fundamentals of deep reinforcement learning and heat pumps.
Chapter 4 lists related works which have applied deep reinforcement learning
to control heat pumps or related heating systems. Chapter 5 describes
the simulation framework which was used in this work and specifies the
research questions in more detail. Chapter 6 describes the technical concept
of how deep reinforcement learning was applied. Chapter 7 provides high
level implementation details of the presented solution. Chapter 8 describes
experiments that were conducted in order to evaluate the functionality of the
proposed solution. A discussion and final conclusion are made in chapters 9
and 10.
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Agent Environment
Action

Reward, State

Figure 1: Basic functionality of reinforcement learning. The agent interacts with
the environment by choosing actions. As a result it receives a reward and
state information of the environment. The image is derived from [13,14].

2 Fundamentals of Reinforcement Learning
The following chapter provides the necessary fundamentals to understand
the methods used in this thesis. In 2.1 the reader is given an overview of
the basic functionality of reinforcement learning. Section 2.2 describes how
the concepts of deep learning are applied to reinforcement learning, resulting
in deep reinforcement learning (DRL). Thereby, it is assumed that the
reader already has knowledge of techniques of supervised learning, especially
about deep neural networks. Section 2.3 categorizes different approaches of
reinforcement learning. Finally, in section 2.4 the reader is given an overview
of recent advantages in the field of reinforcement learning.

It must be noted that the intention of this chapter is to explain the
fundamental concepts of reinforcement learning as well as to give a basic
picture by explaining different approaches. This involves explanations of
dynamic programming 2.1.2 and temporal difference learning 2.1.3, which
are no longer state of the art to be used purely in practice. However, they
are described as their core ideas are still fundamental for more modern
algorithms. The reader who is primarily interested in the methods used in
this work is referred to sections 2.1.1, 2.2.2 and from there onwards.

2.1 Reinforcement Learning

Deep reinforcement learning targets the learning of strategies through in-
teractions between an agent and an environment [15]. Figure 1 shows this
basic relationship. As described in [13,14,16], the agent interacts continually
over discrete time steps t ∈ N0 with the environment by choosing an action
At ∈ A(s). As a response, the agent gets information about the new envi-
ronment state St+1 ∈ S and a scalar reward Rt+1 ∈ R. The reward serves as
feedback on the quality of a certain action in a given state. The goal of the
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agent is to maximize the sum of rewards over time. [13,14,16]
This fundamental concept will be explained in more detail in this section.

Please note that the explanations, definitions, derivations and notations from
this section and its subsections are if they are not explicitly cited otherwise,
based on Sutton and Barto [13].

2.1.1 Markov Decision Process

The Markov decision process (MDP) [17] serves as a mathematical formal-
ism of sequential decision making problems. It is used to formally define
environments in reinforcement learning. The terms MDP and environment
are often used interchangeably in the literature. In this work, the term MDP
is used when describing the formal properties and the term environment
when referring to implementation aspects of reinforcement learning. In the
following, the components which are used to define the MDP are listed and
described in more detail.

State Space The state space S defines the possible states St ∈ S that the
MDP can evolve into. A state is used to describe the MDP at a given
time step. A fundamental concept of states in MDPs is the Markov
property, which defines that “The future is independent of the past
given the present”, as cited in [14, p. 4]

P[St+1|St] = P[St+1|S1, S2..., St]. (1)

Therefore, in order for the Markov Property to not be violated, a state
at time step t must “include information about all aspects of the past
agent–environment interaction that make a difference for the future” [13,
p. 49]. Only episodic MDPs are considered in this work. Unlike con-
tinuing MDPs, episodic MDPs contain terminal states ST with a final
time step T . Any initial state is denoted as S0. An interaction between
environment and agent which stretches from S0, A0, S1, A1..., ST , AT is
called an episode.

Action Space The action space A(s) defines the possible Actions At ∈ A(s)
the agent can take in a given state. Taking an action triggers a state
transition and results in a new MDP state St+1. Action spaces can
be categorized by their action type, which can be either discrete or
continuous. In continuous action spaces, an action can take any real
number in a specified interval. On the other hand, the actions in
discrete action spaces can only take discrete values.
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Reward Function After taking an action, the agent not only receives
information about the new MDP state but also a scalar reward Rt+1 ∈
R. The calculation of the reward given can be expressed as a function
r(s, a, s′), which depends on the current state s, the successor state
s′ as well as the action a taken to transfer from the current to the
successor state. The return Gt defines the sum of discounted future
rewards from the current time step t on:

Gt =
∞∑

i=t+1
γi−t+1Ri = Rt+1 + γRt+2 + γ2Rt+3 + ... (2)

= Rt+1 + γGt+1. (3)

The sum is discounted by factor γ ∈ [0, 1] which is used to define how
much impact future rewards have compared to immediate rewards.
The higher γ, the more impact future rewards have on the return. In
the case where γ = 1, rewards in the far future would have the same
impact on the return as immediate rewards [14]. Equation 3 shows
the recursive relationship of Gt which will be later used to derive the
Bellman optimality equation in section 2.1.2.

Transition probability As mentioned before, taking an action causes the
MDP to transfer into a new state. In stochastic environments, random
dynamics are involved during state transitions. Therefore, the MDP
can transition into a set of different possible successor states s′ ∈ S
and experience a different reward r, given the same state s and action
a. The transition probability

p(s′, r|a, s) = P[St+1 = s′, Rt = r|At = a, St = s] (4)

defines the probability, that the MDP evolves into the successor state
s′ and experiences reward r, if the agent chooses action a in state s.
In contrast, in deterministic environments where no random dynamics
during state transitions are involved, the successor state s′ can be
calculated based on s and a deterministically.

The components described above define an environment for reinforcement
learning. The agent chooses actions based on a policy π to interact with
this environment. More formally, a policy π specifies the behaviour of an
agent by defining a probability distribution of actions based on the current
state [14]:

π(a|s) = P[At = a|St = s]. (5)
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The goal of the agent is to find a policy, which maximizes the return (2). A
policy, which acts optimally for a given MDP is denoted as optimal policy π∗.
To be able to evaluate and find policies that are optimal, value functions can
be used to assess “how good it is for the agent to be in a given state” [13, p. 58].
The state-value function Vπ(s) determines the expected future return by
being in state s and following policy π from there on:

Vπ(s) = Eπ[Gt|St = s]. (6)

Likewise, the optimal state-value function V∗(s) determines the expected
future return by being in state s and by acting optimally and not according
to a certain policy π from there.

Derived from the state-value function, the action-value function Qπ(s, a)
estimates the return when taking an action in a particular state and following
policy π afterwards:

Qπ(s, a) = Eπ[Gt|St = s,At = a]. (7)

The action-values are commonly named Q-values. If assumed to act optimally
after taking action a, the action-value function is denoted as Q∗(s, a).

In case the optimal action-value function Q∗(s, a) is known, acting opti-
mally can be done by simply following a greedy policy, which chooses the
action which maximizes Q∗(s, a) in each time step:

π∗ = arg max
a

Q∗(s, a). (8)

Or in simple words, acting optimally can be done by choosing the best
possible action in a given state. [13, 14,17]
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2.1.2 Dynamic Programming

According to (8) an optimal policy can be easily obtained once the optimal
action-value function Q∗(s, a) is known. Given the strong limitation that
the environment is fully known, dynamic programming can be applied to
calculate Q∗(s, a) by utilizing the Bellman optimality equation [18], which
was derived in [13, p. 63] as

Q∗(s, a) = E∗[Gt|St = s,At = a]
= E∗[Rt+1 + γGt+1|St = s,At = a]
= E[Rt+1 + γV∗(St+1)|St = s,At = a]
= E[Rt+1 + γmax

a′
Q∗(St+1, a

′)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)(r + γmax
a′

Q∗(s′, a′)).

(9)

The Bellmann optimality equation exploits the recursive definition of the
return Gt (3), as well as the relationship between the optimal state-value
and action-value functions, defined by

V∗(s) = max
a

Q∗(s, a). (10)

The optimal state-value equals the optimal action-value of the best action.
This allows defining a recursive relationship of the optimal action-value
function Q∗(s, a). Therefore, Q∗(s, a) can be calculated for each state-action
pair iteratively, which is according to the concept of dynamic programming.
The results of the calculations are stored in a tabular manner in Q-tables
and updated iteratively until convergence. It is important that a strong
restriction on the full knowledge of the MDP must be given in order to apply
dynamic programming. This involves the knowledge about all transition
probabilities, the complete state, and action space, as well as the reward
function. [13]

2.1.3 Temporal-Difference Learning

In reality, it is rare that the properties of the MDP are fully known. Therefore
the transition probabilities and reward function cannot be directly substituted
into the Bellman optimality equation (9) to calculate Q∗(s, a). In this case,
Temporal-Difference (TD) learning can be used. In TD learning, value
functions like Q∗(s, a) are estimated iteratively based on experiences, which
are collected by the agent due to interaction with the environment1. It is

1The same applies for other value functions like V∗(s), Vπ(s) and Qπ(s).
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important to note, that the updates of the estimated value functions take place
at every time step and not only after finishing one episode, which differentiates
TD learning from Monte Carlo learning. As a result, reinforcement learning
can be applied without prior knowledge of the environment’s reward function
and transition probabilities as they are estimated by interaction. A more
detailed idea of TD, the concept of exploration as well as the distinction
between on and off-policy algorithms will be explained based on the following
two TD learning algorithms:

SARSA Based on the main idea of TD learning, SARSA iteratively esti-
mates Qπ(s, a) (7) by interaction with the environment. Qπ(s, a) is
represented in form of a Q-table, which stores the estimated Q-values of
each state-action pair. The estimated Q-values are iteratively updated
using the following update rule:

Qi+1(St, At)← Qi(St, At)+α

Rt+1 + γQi(St+1, At+1)︸ ︷︷ ︸
TDtarget

−Qi(St, At)


︸ ︷︷ ︸

TDerror

. (11)

The parameters used in the update (St, At, Rt+1, St+1, At+1) are the
reason for the name SARSA. The subscript i indicates the incremental
update. The subscript π is omitted in the above equation to prevent
overloading of notations. The update is parametrized by a step size
or learning rate α ∈ (0, 1]. It defines the rate of impact every sampled
experience has on the approximated Q-value. Since the concept of
a SARSA TD update is central for the understanding of other RL
algorithms, a more detailed explanation follows: By interacting one step
with the environment, a tuple of the parameters St, At, Rt+1, St+1, At+1
is collected, which makes one experience. Based on the experience and
by applying the idea derived from the Bellman equation (9), a more
accurate approximation of Qπ(St, At) can be made by the TD target
(see equation 11). The ultimate goal is to minimize the TD error (11).
Finally, the estimation of Qπ(St, At) is updated relative to the TD
error and the learning rate α.
When estimating Q-values with SARSA using a purely deterministic
greedy policy (8), there is a high risk that many state-action pairs
will not be visited. This leads to biased estimations of the Q-values
as some parts of the environment remain unexplored. Therefore, to
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ensure exploration, a ε-greedy policy can be used, which takes a random
action with probability ε at every time step. [13]

Q-learning Another example for a TD algorithm is Q-learning [19]. The
update rule in Q-learning is defined as follows:

Qi+1(St, At)← Qi(St, At) +α[Rt+1 + γmax
a

Qi(St+1, a)−Qi(St, At)]. (12)

The update rule seems similar to that of the SARSA algorithm (11).
But is different, as it approximates the optimal action-value function
Q∗(s, a) by always using the maximum Q-value (12) as TD target, even
though another policy might be followed by the agent. Because of this,
the optimal policy used to estimate the Q-values differs from the one
used by the agent to interact with the environment, which must include
an exploration element and is therefore not optimal. Considering
that, Q-learning is an example of an off-policy algorithm. In contrast,
SARSA uses the same policy for interacting with the environment as
well as for estimating the Q-values. Therefore, SARSA is an example
for an on-policy algorithm. [13]

2.2 Deep Reinforcement Learning

The algorithms in 2.1.2 and 2.1.3 can be classified as tabular solution methods,
as they use tables to represent Q(a, s) [20]. As a result, those methods
suffer from the “curse of dimensionality” [18], as their computational and
storage requirements grow exponentially with the size of the action and state
space [15]. In many scenarios of practical interest, the state and action space
quickly exceed the limit of what is manageable by using tabular methods [20].
As an example, the game of backgammon has over 1020 different states [15],
and even a higher number of state-action pairs which had to be maintained
by a Q-table and thus stored in memory. Even if it would be possible to
maintain a table large enough for all state-action pairs to fit in, the time
required for the agent to experience every possible state-action pair in order
to estimate its Q-value would be immense [15]. Deep neural networks, on the
other hand, are known for their generalization capabilities. Therefore, the
problems just listed above can be solved by the use of deep neural networks
to approximate the value functions [20]. As value functions are used, those
methods are also called value-based methods. Deep Q-learning [21] was the
first algorithm according to this concept and is presented in section 2.2.1.
Alternatively, instead of approximating the value functions, deep neural
networks can be also used to approximate an optimal policy directly [20].
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This approach is called policy gradient methods and is described in section
2.2.2. Lastly, Actor-critic methods combine the ideas of both approaches and
are additionally presented in section 2.2.2. In all cases, deep neural networks
are used in combination with reinforcement learning and hence the name
deep reinforcement learning [20].

2.2.1 Deep Q-Learning

In deep Q-learning [21], a deep neural network with parameters θ, denoted
as Q(s, a; θ), is used as approximation of the optimal action-value function.
To be able to train Q(s, a; θ), the concept of a TD update (11) is applied.
Therefore, the loss function, which is to be minimized during training of the
deep neural network can be defined as follows [21]:

L(θi) = E[(Rt+1 + γmax
a

Q(St+1, a; θi)−Q(St, At; θi))2]. (13)

Derived from the main ideas of supervised learning, backpropagation is used
to compute the gradient of L(θi) with respect to the parameter vector θi,
which is denoted as ∇θL(θi).2 By taking a stochastic gradient decent step
θi+1 = θi − α∇θL(θi), the parameters θ are updated in the direction which
minimizes L(θi) [21].

Additionally, the deep Q-learning algorithm introduced in [21] made use
of an experience replay memory [22]. The experience replay memory stores
experiences that are collected by the agent through interaction with the
environment. Instead of training Q(s, a; θ) based on online experiences while
interacting with the environment, the network is trained based on mini-
batches drawn at random from the experience replay memory. This introduced
two main advantages, which stabilizes the training of Q(s, a; θ) [21]. Firstly,
the correlation between training samples in one training batch is reduced.
Secondly, experiences can be used multiple times for training [21].

2.2.2 Policy Gradient Methods

Value-based methods presented in section 2.2.1 aim to learn a value function
and use a policy that selects actions based on the approximated Q-values. In
contrast, policy gradient methods learn a parametrized policy directly [20].
Similar to (5) the policy to be learned is a probability distribution over
actions given the state and parameters θ, defined as [20]:

π(a|s, θ) = P[At = at|St = st, θt = θ]. (14)
2Analogue to (11), the subscript i denotes a step count which is incremented after every

update.
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For sake of readability, in the following, an action taken based on a state by
a policy is simply named decision. Like in section 2.2.1, it is assumed that a
deep neural network is used as an approximator and θ denotes its parameters.
During training, the parameters of the network are updated with the goal
to maximize expected rewards. This is quantified by an objective function,
which serves as a scalar performance measure, which is defined as [20]:

J(θ) = Vπθ(S0) = E[G0]. (15)

J(θ) utilizes (6) but differs, as it only considers cases when starting from a
start state 3 [20]. For simplification, discounting (3) is neglected by setting
γ = 1 . In case the gradient of the objective function ∇θJ(θt) with respect to
θ is known, maximizing the objective function and thus the expected reward
can be done by utilizing gradient ascent4 [23]:

θi+1 = θi + α∇θJ(θi). (16)

The goal and at the same time biggest challenge of policy gradient methods
is to find estimates for ∇θJ(θ) [24]. The difficulty here is that the expected
return of an episode and therefore ∇θJ(θ) depend not only on the policy but
also on the environment dynamics (4), which are unknown [23]. Anyhow,
based on ideas presented in [25], the gradient can be estimated independent
of the environment dynamics in a model free manner by5

∇θJ(θ) = E[
T∑
t=0
∇θ log π(At|St, θ)G0]. (17)

In order to estimate the gradient according to (17), information are collected
by interaction with the environment and averaged over N episodes [26]:

∇θJ(θ) ≈ 1
N

N∑
i=0

T∑
t=0
∇θ log π(At|St, θ)G0. (18)

The term G0 represents the observed return, and therefore the goodness of
an episode. Intuitively, the log probabilities of decisions made by π in the
collected episode are increased relative to the goodness of the episode [24].
Interacting for multiple episodes and by performing multiple gradient ascent

3In literature the terms rollout or trajectories are commonly used and donated with τ .
4Gradient ascent works analogue to gradient descent, but differs in the direction of the

update.
5A detailed derivation of the gradient estimation (17) can be found in [20,23,24]
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steps using the estimated gradients, increases the probability of taking
decisions that maximize the objective function in the long run [24].

Complementary to definition (17), a baseline b can be subtracted from
the return in order to reduce the variance of the gradient estimation [24, 25].
Additionally, the causality principle is applied which states that rewards
experienced at any time step t∗ < t do not depend on actions taken from
time step t on [23, 27]. This leads to the following estimator of the policy
gradient [24]:

∇θJ(θ) = E[
T∑
t=0
∇θ log π(At|St, θ)(Gt − b(St))]

= E[
T∑
t=0
∇θ log π(At|St, θ) Advt].

(19)

Any function can be used as b, but choosing the state-value function Vπ(s)
(6) has shown to be effective [24,28]. As Vπ(s) is an estimate of the expected
future return and Gt is the observed future return, their difference can be
interpreted as how much better a decision was than expected [24]. Thus,
the gradient updates are weighted by an advantage denoted as Advt, which
gives positive weighting to decisions that are better than expectation and a
negative weighting to decisions that are worse [24].

The methods presented above estimate the gradient necessary to maximize
the objective function J(θ) independent of the environment dynamics. The
main ideas presented in this section are derived from [25,27] and are known
as vanilla policy gradient method. Even though the ideas have been presented
some time ago, they still build the theoretical foundation of more advanced
reinforcement learning algorithms [24].

Actor-Critic The vanilla policy gradient method (19) requires the return of
an episode to estimate the advantage and therefore the gradient. Thus,
it must complete a full episode before the gradient can be estimated 6.
Actor-Critic methods enable advantage estimation and thus learning
at every time step [20]. Based on [27] and the idea of the TD error
(section 2.1.3), the advantage can be estimated by

Advt = Rt+1 + γVπ(St+1)− Vπ(St). (20)

Analogue to the policy π(a|s, θ), the value function Vπ(s, w) can be
approximated by a neural network with parameters w, which is used

6As vanilla policy gradient requires a full episode, it is a Monte Carlo method.
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to estimate the advantage according to (20) [20]. As explained before,
the advantage suggests the direction for the gradient update when
acting according to π(a|s, θ), thus its name critic. A neural network
for π(a|s, θ) is often called policy network, whereas a neural network
for Vπ(s, w) is often called value network. [20, 23]

PPO Proximal policy optimization (PPO) [29] is a state-of-the-art policy
gradient method that has already been applied for complex problems.
For example, OpenAI five builds on PPO and was the first AI that was
able to defeat the world champion in an esports game [30]. PPO was
designed with the goal to balance complexity and simplicity [29], which
makes it robust to the choice of hyperparameters such as the learning
rate. PPO builds on the basic ideas of trust region policy optimization
(TRPO) [24], which was designed with the aim of providing stability
during training by constraining the size of the policy updates [29,31].
The primary goal is to prevent destructively large policy updates [29].
PPO also aims to limit policy updates in a way to ensure training
stability, but unlike TRPO it does not add hard constraints, which
makes PPO easier to implement [32]. In addition to this central
idea, PPO uses estimates of the advantage for the policy update in
an actor-critic style, like it was presented above [29]. Lastly, unlike
standard policy gradient methods which use each experience only once
for gradient estimation, PPO enables the use of multiple training epochs
on the collected experiences. This is done by alternating between
interaction with the environment, where experiences are collected
and optimization, where the experiences are used for policy updates
[29]. Intuition about the training procedure of PPO is given by the
pseudocode 1. This pseudocode is based on [29].

Algorithm 1 PPO, Actor-Critic and Single Actor Style
for iteration=1,2, ... do

Run policy πθold in the environment for T time steps
Compute advantage estimates Adv1,Adv2, ...,AdvT
Optimize with K epochs
θold ← θ

end for
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2.3 Taxonomy

As the previous chapters have already made clear, reinforcement learning
consists of a wide variety of algorithms and approaches. The goal of this
section is to categorize and thus provide an overview. In addition, the section
is intended to help to place the concepts used in this work into the big
picture of (deep) reinforcement learning. Figure 2 places (deep) reinforcement
learning in the field of machine learning and shows a classification of different
approaches. Thereby, it is once again made clear that the concepts used
in this thesis belong to the class of model free deep reinforcement learning.
Model free methods treat the environment as a black box and solely learn
by experiences collected by interaction. Model based methods, on the other
hand, use or learn a model to reason about the future and therefore plan
their actions [33]. As promising as this sounds, model free methods are
easier in implementation and more widely used [34]. Besides the branching
points shown in 2, (deep) reinforcement learning algorithms can be further
subdivided by the following properties:

On-policy or off-policy The distinction of either learning on-policy or
off-policy was already explained in section 2.1.3, by taking SARSA
and Q-learning as example algorithms. On-policy algorithms optimize
their policy based on data that was collected by interacting with
the environment according to the very same policy [34]. Off-policy
algorithms use different policies for interaction and optimization. An
example of an off-policy algorithm is deep Q-learning, as it stores its
experiences in a replay buffer [34]. During learning, experiences are
drawn at random from this buffer, thus a mini-batch may include
experiences that were collected using older versions of the policy. With
exceptions, policy gradient methods work mostly on-policy, whereas
value based methods usually work off-policy [34].

Action type Lastly, as already mentioned in section 2.1.1, (deep) reinforce-
ment learning algorithms are also classified according to their action
type, as they support either discrete, continuous, or both action types.
This is an important distinction since some problems are either discrete
or continuous in nature, which limits the choice of algorithm.

Online or offline learning The concepts presented so far belong to the
class of online reinforcement learning. Even if an algorithm works off-
policy, it learns online, by interacting iteratively with an environment.
Offline reinforcement learning on the other hand aims to learn strategies
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Machine Learning

Unsupervised Learning ...

Model Free Model Based

Policy
Gradients

Value Based
Methods

SARSA

Dynamic Programming

Q-Learning

Deep Q-Learning

...

Vanilla Policy Gradient

PPO

A2C

Actor-Critic

(Deep) Reinforcement
Learning

...

Supervised Learning

Figure 2: A Non-exhaustive taxonomy of (Deep) Reinforcement Learning algo-
rithms, derived by [34] and extended here. The dashed lines indicate
algorithms which rely on neural networks as function approximators and
thus belong to the category of deep reinforcement learning.

based on previously collected data, without any online interaction with
an environment [35, 36]. The concept is also called full batch, fully
off-policy, or data-driven reinforcement learning.

2.4 State of the Art

Deep learning has refined the state-of-the-art capabilities in a wide range
of areas like natural language processing, image processing or anomaly
detection [37]. Similarly, deep learning has also advanced reinforcement
learning, which resulted in deep reinforcement learning. Two works, in
particular, demonstrated the possibilities of DRL. At first, Mnih et al. [21]
proposed the concept of deep Q-learning and showcased its functionality by
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training agents to autonomously play Atari 2600 games. With the same
algorithm and hyperparameters, they were able to set new benchmarks
compared to previous algorithms for every single game played. This was the
first time an artificial agent was able to excel at a diversity of different complex
tasks [21]. Second, Silver et al. [38] managed to defeat the European champion
in the game of Go, which has long been considered the most challenging classic
game for artificial intelligence to play [38]. Besides the application to games,
which is mostly taken for demonstration or development purposes [30,37–39],
DRL has been applied to areas such as robotics [40–43], economics [43,44],
natural language processing [45, 46], autonomous driving [47–49], energy
system management [50] and many more [43,51].

Especially in the field of model free reinforcement learning, a lot of
research was done which has led to the development of a large number
of different algorithms [29, 31, 37, 52–59]. A rough overview of how those
algorithms can be classified is provided in section 2.3. A more detailed
evaluation and description of some of those algorithms was carried out by [60].
Anyhow, a complete performance comparison of the different algorithms is
complex as their performance often depends on implementation details, the
problem at hand, or preset random seeds [50,61].
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2.

3.

4.

3.1.

Figure 3: Basic components of a heat pump supplying heat to an underfloor
heating system: (1) evaporator absorbs heat from surrounding source,
(2) compressor rises temperature, (3) condenser extracts heat which can
be used for heating and (4) expansion valve returns cooled refrigerant.
Derived from [62,63]

3 Fundamentals of Heat Pumps
The goal of this chapter is to provide basic knowledge about heat pumps.
Additionally, two control approaches for heat pumps are presented and
discussed.

3.1 Heat Pumps

The basic concept of heat pumps is to absorb heat from surrounding low-
temperature sources and to bring it to a higher temperature level, so it can
be used for space heating or for domestic hot water supply [6]. Examples
of common low-temperature sources are ambient air, soil or underground
water [63]. The majority of heat pumps in the field are electrically driven [64]
and consist of four elements: A compressor driven by an electric motor,
an expansion valve, an evaporator, and a condenser. The components are
connected and form a circuit through which a refrigerant circulates [6].

This circle is illustrated by figure 3 and is explained based on [6,62,63]
in more detail below: (1) The evaporator allows the refrigerant to absorb
heat from the surrounding source Q0, which has a higher temperature. This
causes the refrigerant evaporate to gas. In the work at hand, an air source
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heat pump is used, which absorbs heat from ambient air. (2) Subsequently
the gaseous refrigerant is compressed to higher pressure, driven by electrical
energy E, which causes a rise in temperature. (3) Heat is extracted for
room heating, thus the refrigerant condenses back into liquid. The recovered
heat Qhp is used to heat water which is used, for example by radiators or
underfloor heating for space heating. The temperature of the heated water
is referred to as supply temperature Tsup. (4) Lastly, in the expansion valve,
the refrigerant drops to lower pressure and cools down further before it
returns to the evaporator at low-temperature level ready to absorb heat
from the surrounding temperature source again to start the process from the
beginning. [6, 62,63]

The efficiency of a heat pump can be measured by the coefficient of
performance (COP), which defines the ratio between the supplied energy W
necessary to operate the heat pump and the heat Qhp gained from it [63]:

COP = Qhp
E

. (21)

In addition to the efficiency of the heat pump itself, the used energy E and
thus the COP is highly influenced by the difference between the temperature
of the low-temperature source and the supply temperature of the heating
medium [6]. Therefore, low-temperature heating systems like under-floor
and in-wall heating systems are more suitable for heat pump operation than
traditional radiators, which need higher supply temperatures caused by their
small surface [6]. Furthermore, as already mentioned, air source heat pumps
use the ambient air as a low-temperature source. This makes the efficiency
of the heat pump dependent on the outside air temperature.

As the compressor is driven by electricity, heat can be generated solely
on the use of electric energy without directly burning fossil fuels such as
oil or gas. Heat pumps can be seen as climate neutral energy supplier, if
the consumed energy is provided by regenerative sources. This makes heat
pumps one of the key technologies for achieving the goals of the ongoing
energy transition [3].

3.2 Heat Pump Control

In the following, some of the basic heating control techniques for heat pumps
are explained. For a more complete overview of heating control techniques,
the reader is referred to [4, 6, 11].
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Figure 4: Exemplary representation of a heating curve, which defines the supply
temperature based on the outside air temperature. Based on [4].

3.2.1 Heating Curve

Today, most of the heat pumps in the field are controlled by a heating
curve [4]. As illustrated in figure 4, the heating curve defines the supply
temperature to be maintained by the heat pump depending on the outside
temperature. In addition, thermostats are often used to adjust the heating
for individual temperature zones. This is done by a thermostatic valve which
regulates the mass flow ṁ (in kg/s) of the heated water [6]. Nevertheless, as
described in section 3.1, a high supply temperature leads to an inefficient
control of the heat pump. The heating curve can be classified as a feed-
forward control system as the control of the supply temperature does not
depend on any feedback, like the current indoor temperature [6]. Because of
ease of implementation and maintenance, this concept is the most common
in the field [4].

3.2.2 Model Predictive Control

The heating curve based control strategy can be categorized as non-predictive
[4], as it only reacts based on the current outside temperature. Other
parameters like the the weather forecast, occupancy profiles, or potential
time varying price signals are not taken into account. However, the inclusion
of these parameters could significantly improve the control strategy in terms
of energy efficiency, comfort and operational costs.

As a result, model predictive control (MPC) has been applied to heat
pump control. As described in various works [6,11,65], the basic idea of MPC
is to make use of a simplified building model to predict the effect of control
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actions. An optimal control action is obtained by defining an optimization
problem that minimizes a cost function. This cost function can be used to
encode multiple objectives like minimization of electricity usage and comfort.
External factors like weather data and the electricity price can be included
in order to find an optimal control strategy. After an optimal action is
determined by solving the optimization problem, the action is executed. This
causes the controlled system to evolve into a new state. Information about
the new system state, like the new indoor temperature, is used to define a
subsequent optimization problem for the next time step. [6, 11,65]

Since MPC reacts to the new system information when planning, it can
be categorized, unlike the heating curve, as a feedback control system. The
work on MPC in the context of optimal heat pump operation goes back to
1988 [65, 66]. Today, many works have been made in this area, of which
summaries can be found in [10,11,67,68].

As promising as this sounds, the MPC approach has not yet gained ac-
ceptance for heat pump control in practice [10,11]. This is due, among other
reasons, to drawbacks of the method. On the one hand, the performance
of MPC highly depends on the accuracy of the building model [4, 10, 12].
Additionally, the computational effort required by MPC to solve the opti-
mization problem at every time step is relatively high compared to other
methods. This results in additional hardware requirements on the controller
level [4, 10, 11]. This means, the model must be relatively simple in order
to achieve reasonable run times, but at the same time it must be accurate
enough to make it useful for MPC [10,69, 70]. This leads to the fact, that in
practice often two models are necessary. One simplified model which can be
used by MPC to optimize and one more complex and accurate model which
is used as test environment to simulate the performance of the MPC con-
troller [10, 67]. Lastly, every building is different and therefore has different
thermodynamic properties. This leads to a high customization effort as the
models used by MPC must be customized to the building at hand [10].
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4 Related Works on Reinforcement Learning for
Heating Systems

As described in section 3.2, controlling a heat pump using MPC or the
traditional heat curve presents challenges. As a result of this, combined with
breakthroughs in the field of deep reinforcement learning, work has already
been done on controlling heat pumps using deep reinforcement learning. As
described in section 2, the basic idea of deep reinforcement learning is to solve
a task by learning from interactions with an environment. So theoretically,
deep reinforcement learning could be directly applied to heat pump control
in the real world, making the laborious process of model creation obsolete.
However, this approach is impractical as (1) a big amount of interactions
are required for learning, and (2) exploration during training causes heating
strategies with random actions which could cause uncomfortable thermal
conditions. Therefore, most of the works listed in this section used a model
as an environment for reinforcement learning to train control strategies in
simulation, which can then be applied to the real world. Thus, as with MPC,
a model is also necessary in order to apply deep reinforcement learning in a
model free and online manner (which is mostly used today [34]). Nevertheless,
the intertwining with the model is lower as with MPC, as the simulation
and therefore the model is only used in training. This results in lower
requirements for a model with DRL than with MPC, which brings two main
advantages:

1. More complex and thus more realistic building models can be used
with DRL.

2. As shown by [70, 71], building models from widely-adopted building
simulation programs like EnergyPlus7 can be used for DRL directly.

Unfortunately, there are only a few works, also in other research areas then
heating control, that perform a comparison between MPC and DRL [72].

The rest of this section is organized as follows: The works listed in
section 4.1 focus primarily on the usage of deep reinforcement learning to
find optimal control mechanisms for heat pumps. A heat pump belongs to the
superordinate category of heating, ventilation, and air conditioning (HVAC)
systems. The micro control mechanisms of different HVAC systems may
differ, but the research work on control methods is related and is therefore
listed in section 4.2. Additionally, works using deep reinforcement learning

7https://energyplus.net/
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for the coordination of multiple HVAC subsystems or even the coordination
between different systems in a building will be explained in section 4.3.

A summary of related work is given by table 1. For sake of completeness,
table 1 also lists older works that do not use neural networks as function
approximators for reinforcement learning. However, due to the breakthrough
made by the usage of neural networks in the context of deep reinforcement
learning, these works can be considered outdated and are not described in
more detail.

Table 1: Summary of Related Work

Reference Algorithm DRL DR Multiple
Compo-
nents

Heating
System

Year

[73] Q-learning [19] No No No HVAC 2014
[74] Fitted Q-iteration [75] No Yes No Heat Pump 2015
[76] Fitted Q-iteration [75] No Yes No Heat Pump 2015
[77] Q-learning [19] No No No HVAC 2015
[70] Deep Q-learning [21] Yes Yes No HVAC 2017
[71] Actor Critic Yes No No HVAC 2017
[78] NFQ [79] Yes Yes No Heat Pump 2017
[80] NFQ [79] Yes Yes No Heat Pump 2018
[81] A3C [52] Yes No No HVAC 2018
[82] NFQ [79] Yes Yes No Heat Pump 2018
[83] Deep Q-learning [21] Yes Yes No Heat Pump 2018
[84] BDQN [55] Yes No Yes HVAC 2019
[85] DDPG [53] Yes No No HVAC 2019
[86] PPO [29] Yes No No HVAC 2019
[87] DDPG [53] Yes No Yes HVAC 2020
[88] Deep Q-learning [21] Yes No Yes HVAC 2020
[89] MAAC [54] Yes Yes No HVAC 2020
[90] Deep Q-learning [21] Yes Yes No HVAC 2020
[91] DDPG [53] Yes Yes No HVAC 2021
[92] Deep Q-learning [21] Yes No No Heat Pump 2021
[93] PPO [29] Yes No No Heat Pump 2021
Note: Summary of related works where (deep) reinforcement learning was applied to
HVAC control. The column DRL indicates the works that used neural networks, thus
deep reinforcement learning. The column DR specifies the works, which have taken
the demand response aspect into account by including price signals. The column
Multiple Components shows works, where more than one system was controlled. The
column Heating System specifies works which used a heat pump or any other HVAC
system.
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4.1 Deep Reinforcement Learning Applied to Heat Pump
Control

In this section, the related works, which applied deep reinforcement learning
to heat pump control are first described per se. Subsequently, the related
works are summarized and differentiated from the present work.

In a previous master thesis at Fraunhofer ISE, the control of a heat pump
by deep reinforcement learning was treated as a subtopic [94]. Anyhow,
the focus of their thesis was on imitation learning and a working deep
reinforcement learning implementation could not be established. In addition,
this work can be distinguished as follows: (1) They used another simulation
framework, which included a forecast of the heat demand by the inhabitants
which was to be fulfilled by controlling the heat pump. (2) The focus of their
work was more on implementing deep reinforcement learning from scratch,
which could not be done fully functional. (3) Their focus was on the scenario
with variable electricity prices and not on the scenario of efficient operation
per se.

Peirelinck et al. [80] used neural fitted Q-iteration (NFQ) [79]8. They
were able to learn strategies that could indirectly control a heat pump,
by using a binary action state that either sets a low or high target room
temperature. Therefore, compared to the work at hand, the problem can
be considered simplified, since it has targeted optimization only in terms of
minimizing energy consumption and not in terms of comfort deviations. Still
they could report promising cost savings by including energy prices in their
problem statement. The works of [74, 76, 78, 82] are related to [80] as the
authors overlap and all works apply fitted Q-iteration to a similar simulation
framework.

Heidari et al. [92] applied deep Q-learning [21] to control a simulated
heat pump for hot drinking water usage. While there are also requirements
for comfort in this problem statement, their focus can be considered different
as their goal was to learn control strategies that are hygiene-aware. They
use a binary action space to control the heat pump. By including occupants’
warm water usage behaviour, Heidari et al. could enable their agent to learn
control strategies that consider occupants’ behaviour. They could report
savings in energy usage by 24,5% compared to a rule-based controller which
they used as a baseline.

In [93], Ghane et al. applied deep reinforcement learning by using
PPO [29] to control a simulated heat pump. Their problem statement differs

8Similar to deep Q-learning, the central idea of NFQ is to learn a neural network which
represents a Q-function [79].
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as their goal is to find optimal control strategies for a central heat pump,
which provides heat to a heating network consisting of multiple houses.
Similar to the work at hand their goal is to minimize electricity usage while
meeting the comfort requirements of the occupants. They compared their
results against a heating curve based controller. They could report 16.03%
of reduction in energy demand compared to their baseline. They used both
discrete and continuous actions to validate their solution.

In [83], Nagy et al. applied deep Q-learning [21] to a simulated air source
heat pump. By defining 6 discrete control actions, they managed to learn
control strategies that stays in a comfort temperature range while reducing
run cost based on an electricity price. They have used a dual price signal with
two different fixed prices during the day and night. A baseline comparison
using rule based and MPC-based control strategies was conducted. They
reported savings of 5-10% compared to a rule based controller. Like in the
work at hand, MPC was used as upper performance limit, as it used the
simulation as a model for planning and had thus full knowledge of the target
environment. The work from Nagy et al. [83] can be considered as the most
similar to the work at hand.

The works listed in this section can be summarized and differentiated
from the presented work, as:

1. Like the work at hand, all the works presented in this section, with
the exception of [74, 76] which used a randomized tree ensemble in
combination of reinforcement learning, used deep reinforcement learning
to control heat pumps.

2. Like the work at hand, none of the works applied heat pump control
outside of a simulation to the real world.

3. The work at hand treats heat pump control as a continuous problem
statement, as in reality heat pump control is continuous and accuracies
are lost due to discretization. All works except [93] treated heat pump
control as discrete or even binarized problem.

4. The work at hand conducted an extensive baseline comparison against
control strategies by the heat curve and MPC. While most of the
works listed in this section conducted a baseline comparison against a
heat curve or an arbitrary rule based strategy, only Nagy et al. [83]
conducted a baseline comparison including MPC. Also in other research
fields, only few works compare MPC and DRL [72].
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5. None of the works from this section could report learned heat pump
control strategies that exploit heat storage capabilities of a building in
order to operate the heat pump more efficiently. As will be described
later in section 8.1.2, learning of control strategies that do exactly that
could be reported in the work at hand.

4.2 Deep Reinforcement Learning Applied to HVAC Control

In this section, the related works which applied deep reinforcement learning
to other HVAC systems than heat pumps are described.

In [70] they used Deep Q-learning to learn control strategies for an
HVAC system in a simulated environment. Through a discrete action space,
they could learn a control strategy that was able to hold the indoor room
temperature in the desired range. By the inclusion of varying electricity
price data, they could report savings of 20%-70%, compared to a rule based
controller. In [71] they applied a policy gradient method by implementing
an actor-critic architecture. This allowed them to control a HVAC cooling
system in simulation. Even though they used a policy gradient method that
supports continuous actions, they learned a control strategy by using 26
discrete actions, which represent the target indoor temperature. In [81] they
learn control strategies for a HVAC system in a simulated office building
using the asynchronous advantage actor-critic algorithm [52]. In their work,
they focused on the description of the process of creating and calibrating the
model used for training the reinforcement learning agent. They also describe
the process of deployment of the agent to the real building. Anyhow, they
have not yet applied their learned agent to the real building, which they
have planned for future work.

Some other works have already addressed the problem of transferring
the reinforcement learning agent which was trained in simulation to a real
environment [86,90]. In [86] they pretrained their deep reinforcement learning
agent using imitation learning on data that they collected from an MPC
controlled HVAC system. After pretraining they deployed their agent to
simulation and to a real-world conference room. They could report energy
savings compared to existing control strategies which were based on a fixed
schedule. In [90] they discussed challenges when transferring a learned agent
into the real world in detail. Additionally, they propose a solution of how to
mitigate these problems. They validated their concepts on a real building,
where they reported cost reductions of 21%.

The works listed in this section can be differentiated from the presented
work, as they applied deep reinforcement learning to HVAC systems other
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than heat pumps. As mentioned in section 3.1, the efficiency of an air source
heat pump, which is considered in this work, depends on factors such as
the outdoor air temperature. Therefore, the efficient control strategies for
heat pumps might differ from those for other HVAC systems. The works
of [86,90] stand out as they applied their solution to the real world.

4.3 Deep Reinforcement Learning Applied to Coordinative
Control

This section presents works that have used deep reinforcement learning to
coordinate control of HVAC systems with other building systems. These
works differ because their focus is on the coordination of multiple subsystems
not the optimization of control for a single heating system. Nevertheless,
some works are presented to give a more complete picture of the works that
applied deep reinforcement learning to heating systems.

In [84] they took a holistic approach to smart building control. By using
DRL with a branching duelling Q-network (BDQN) [55], they learned a
control strategy that considers multiple subsystems in a smart building,
including HVAC, lighting, blinds and window systems. By the joint control
of the named subsystems, they were able to report energy savings while
maintaining comfort in a simulated environment. In [89] they applied multi
agent deep reinforcement learning by using Actor-Attention-Critic [54]. They
coordinated the damper positions of the air handling unit and air supply
rate in each temperature zone of the building. By doing so, they were
able to minimize the operation cost of an HVAC system in a commercial
building with multiple temperature zones while maintaining thermal and air
quality comfort. In [87] they use deep reinforcement learning by using deep
deterministic policy gradients (DDPG) to learn a continuous control policy
for an HVAC system that minimizes electricity usage. The policy controls
the temperature and humidity set points of the HVAC system. Based on the
set points, the simulated HVAC system derives the control actions to adjust
the temperature and humidity in the building. The key point of their work
is that the occupants’ comfort is estimated based on room temperature and
humidity and not assumed to be static as in other works. A more detailed
and complete overview of works in this area is provided by Yu et al. [50].
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Heat Pump

Figure 5: Overview of the simulation framework

5 Research Environment and Task Definition
As mentioned earlier, this work focuses on applying DRL to learn efficient
control strategies for heat pump control in simulation. Therefore, in section
5.1 the simulation used in this work is described in detail. Compared to
reality, the use of the simulation results in simplifications and assumptions,
which are described in section 5.2. Finally, the research questions are defined
in more detail in section 5.3.

5.1 Simulation

The simulation framework used in this work was provided by the Fraunhofer
ISE. As illustrated in figure 5, the simulation environment mimics a simplified
building with a single room, which is heated by a floor heating system supplied
with heat which is generated by a heat pump. The framework can be used to
simulate a wide variety of buildings by setting different parameters. Those
parameters include the building floor area, room height, as well as the
position and size of windows. Additionally, the heat capacity, which defines
the amount of heat that can be stored by the building and the building’s
heat loss through windows or walls can be configured. The framework
contains pre-defined parameter sets of existing buildings. The buildings used
to evaluate the functionality of the proposed methods will be described in
section 8.1.

The core functionality of the simulation framework is shown in figures
5 and 6. Using the simulation, one can model the effect of the outside
temperature Tout and heat pump supply temperature Tsup, which is the
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 900s

Figure 6: Variables required and returned by a simulation step

temperature of the water heated by the heat pump, on the building indoor
temperature Tin. A simulation step is modelled as if 900 seconds would
pass in real-time. This means that the simulation calculates the indoor
temperature as if the outside temperature and supply temperature are kept
constant for 900s. Besides this basic functionality of calculating the new
indoor temperature T t+1

in , the following values are additionally calculated
and returned by performing one simulation step (see figure 6):

Return Temperature The return temperature Tret of the water after per-
forming a simulation step. In contrast to the supply temperature Tsup
which describes the temperature of the water entering the floor heating
system, the return temperature describes the temperature of the water
coming back from the floor heating system which is to be heated again
by the heat pump. The return temperature returned at simulation step
t serves as input for the upcoming simulation step t+ 1.

Electricity Used The amount of electrical energy which was consumed by
the heat pump in order to heat the water from the return Tret to the
supply temperature Tsup during the simulation step. This value is to
be minimized by an efficient control strategy.

Comfort Deviation The comfort temperature range is defined between
21◦C and 25◦C. If the indoor temperature is outside of this interval
during a simulation step, the difference will be reported as comfort
deviation in ◦C. This value is to be minimized by an efficient control
strategy.

Figure 6 summarizes the values needed as inputs as well as the resulting
values of a single simulation step. By chaining multiple subsequent simulation
steps, one can model heat pump operation over a period of time. The value
which needs to be controlled at every simulation step in order to operate
the heat pump is the supply temperature Tsup. The other input variables
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of the simulation step (see figure 6) can be treated as given, as the outdoor
temperature Tout can be taken from a weather profile9 and the values of
the indoor temperature Tin and return temperature Tret are calculated by
a previous time step by the simulation itself. However, a requirement by
Fraunhofer ISE was to control the heat pump by controlling its amount of
thermal power Q̇hp which should be supplied during a time step, instead of
the resulting supply temperature Tsup which is required by the simulation
framework. Practically, both values are in a direct relationship and can
therefore be easily converted. This relationship is defined as

Q̇hp = (Tsup − Tret) ∗ ṁ ∗ c. (22)

This makes it possible to use Q̇hp as the control action and calculate the
resulting supply temperature required by the simulation according to (22).
The parameter ṁ defines the mass flow which will be further described in 5.2
and c defines the specific heat capacity of the water flowing through the floor
heating system. Both values are static over the course of the simulation.

Finally, it should be noted that the simulation is implemented as a Python
function and could be therefore easily integrated into the implementation of
the proposed solution.

5.2 Simplifications and Assumptions

Compared to reality, the following simplifications and assumptions are made
in simulation:

Internal Gains Internal gains refer to the heat produced by inhabitants,
pets or any devices, except the heating, that produce heat. This
includes for example electrical devices, artificial lightning or body
heat [95]. In reality, internal gains depend on behaviour of inhabitants
and other factors. In the simulation, the internal gains are assumed
to be static at 5W per square meter of heated living space, which is
according to DIN4108-6 [95].

Solar Gains Solar gains represent heat gains from solar irradiation through
windows. In simulation, the solar gains are not considered and therefore
assumed to be 0W . It must be noted, that the selection of the data
used in the work at hand and the implementation of the presented
method can be easily extended for the inclusion of the solar gains.

9In the work at hand, the outdoor temperature is taken from existing weather profiles
as it is described in section 6.1
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Single Temperature Zone The simulation framework only supports build-
ing models with a single temperature zone which assumes equal tem-
peratures in the whole building.

Mass Flow and Thermostats The mass flow specifies the amount of
heated water which flows through the heating circle per unit of time. In
reality, thermostats regulate the mass flow individually per room and
therefore control its temperature. Due to the fact that only a single
temperature zone is considered by the simulation framework, a static
mass flow without the use of any thermostats for the whole building
is assumed. This means the indoor temperature is not regulated by
any thermostats but solely by the supply temperature (which itself is
regulated by controlling the thermal power).

Random Actions Temperature drops caused by opening windows or doors
are not taken into account.

Perfect Forecast It is assumed that a perfect forecast of the outside tem-
perature is available. However, in an experiment, the proposed solution
is tested on noisy forecasts.

5.3 Research Task Definition

Although the simplifications and assumptions listed in 5.2 represent a gap
from reality, they make it possible to concentrate on the control strategies.
In the context of this work, a control strategy is one that controls the heat
pump by selecting the thermal power Q̇hp to be generated in every simulation
step in order to control the indoor temperature. Hereby an efficient control
strategy is one that minimizes electrical energy usage and comfort deviations
at the same time. Finding efficient control strategies presents a challenging
task, as not only the control action to be selected at every simulation step,
but also the outside temperature has an impact on the indoor temperature.
Furthermore, the selected control actions have an effect only with a delay,
since the heat transfer does not take place instantaneously.

As described in 3.2.2, the usage of MPC in order to apply efficient heat
pump control has shown to be challenging in practice and the usage of the
heating curve offers room for improvement. Deep reinforcement learning
has shown breakthrough successes in many application areas. Therefore,
the core research task of this work consists of designing, implementing,
and evaluating efficient control strategies for heat pumps by using deep
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reinforcement learning. Based on this core research task, the following
research questions are to be addressed:

• First, can deep reinforcement learning be applied in the given simula-
tion framework, with the aim to learn efficient control strategies that
minimize energy usage and comfort deviations at the same time?

• Second, in this setup, MPC uses the simulation framework itself as the
model to plan and execute the control actions and is thereby given
full transparency. This leads to MPC finding the optimal solutions,
and thus can be considered the gold standard in this problem setup.
However, the use of MPC in practice has some disadvantages which
were discussed in section 3.2.2. The research question to be answered
is if MPC-like performance can be achieved by deep reinforcement
learning without its disadvantages. Additionally, control by the heating
curve is to be included for this comparison, since this is the most
widespread control strategy in the field today [4].

• Third, can the proposed solution be extended to a demand response
scenario, where control happens with respect to a varying price signal?
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6 Concept
This chapter describes the technical concept which was applied to implement
deep reinforcement learning for efficient heat pump control, which is the main
research goal of this thesis. The conceptual ideas surrounding the evaluation
of this concept in order to answer the research questions formulated in section
5.3 will be described in chapter 8.

The main approach of the presented concept is to use the simulation
framework described in section 5.1 as environment for reinforcement learning.
On the agent side, a deep reinforcement learning framework is used to support
design and implementation. The interaction of these two components makes
it possible for the agent to learn heat pump control strategies in a trial and
error manner, which is in line with the presented approach of reinforcement
learning in general which was presented in section 2.

The rest of this chapter describes this main approach in more detail
and is structured as follows: Section 6.1 describes the data which was used
by the environment in order to simulate different weather profiles. Section
6.2 describes how the simulation framework is wrapped as environment
for reinforcement learning. Section 6.3 describes the concept of the deep
reinforcement learning agent. Finally, section 6.4 describes how the agent
interacts with the environment to learn efficient control strategies.

6.1 Outside Air Temperature Data

Weather profiles containing data of the outside air temperature are required
in order to simulate the heating process of a building as described in 5.1.
Therefore, weather data from the photovoltaic geographical information
system of the European Commission10 was obtained. The data contains
information about the weather in Freiburg, Germany between 2010 and 2016.
The resolution of the weather data is hourly. Besides information about the
outside air temperature which is required for the work at hand, the obtained
data also includes information about the solar radiation and wind. Even
though those factors are excluded from this work, they may be of interest in
future works and are thus already made available.

It is important to note, that like in [94], data during months where
heating is usually not necessary are excluded from the datasets. This leaves
data from January to March and October to December of each year. Figure
7 illustrates the outside air temperature data used in this work.

10https://re.jrc.ec.europa.eu/
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Figure 7: Distribution of the outside air temperature data used in this work. The
boxes indicate the 0.25 and 0.75 quantiles of the data per month. The
median of the data is shown by the green line in the box. The points
past the whiskers are outliers. A detailed definition of the position of
the whiskers and outliers can be found in the pandas documentation 11

Besides the use of weather profiles containing the outside air temperature
which is required by the simulation, no further external data is required as
the reinforcement learning agent learns its control strategies by interaction
with the simulation framework.

6.1.1 Data Preprocessing

The outside air temperature data obtained from the photovoltaic geographical
information system of the European Commission was available at a resolution

11https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.
DataFrame.boxplot.html
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of one hour. However, as described in section 5.1, one step of the simulation
framework corresponds to 900 seconds of real-time. Therefore, upsampling
of the outside air temperature data was performed to gain information at
a frequency of 900 seconds. Linear interpolation was used in order to fill
the values between full hours. No further preprocessing was applied to the
outside air temperature data.

6.1.2 Data Split

It is important to evaluate the presented method on outside air temperature
profiles which were not used in training. This is necessary to evaluate how
well the method generalizes to unseen weather profiles. Therefore, the outside
air temperature data was split into different data sets. The training data
set is used by the simulation while training the reinforcement learning agent.
It contains weather data of the years 2010 to 2015. The test data is used
solely for the evaluation of the presented method and is not used during
training, nor considered for any design decisions or hyperparameter tuning.
In contains weather data of the year 2016. Additionally, a validation data
set was used in order to monitor the training process as it will be described
in section 6.4.

6.2 Definition of the Environment

The definition of the environment is central to deep reinforcement learning
because the agent and the resulting control strategies are learned solely
through interaction with the environment. Therefore, the definition of the
environment and its MDP structure, especially the definition of the reward
function are important for the functionality of reinforcement learning. A more
detailed description of the fundamentals of environments in reinforcement
learning in general, can be found in section 2.1.1.

The basic idea of the environment used in this work is to wrap the
simulation framework which is described in 5.1. This basic idea is illustrated
in figure 8. One time step of the environment corresponds to one step of the
simulation framework (see figure 6). The environment passes the outside
temperature of the current time step to the simulation framework in order to
simulate the influence of outdoor weather profiles. Above all, the environment
defines the state, reward, and actions which are used for the interaction with
the reinforcement learning agent. In the following those components are
explained in more detail:
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State

Weather
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reward
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Figure 8: Overview of how the reinforcement learning environment wraps the
simulation framework and supplies the outdoor air temperature data.
Values returned by the simulation framework build the state and reward
of the reinforcement learning environment. The purple area represents
the simulation framework. The green area represents the environment
for reinforcement learning which wraps the simulation framework. The
interfaces for interaction with the agent (state, reward and action) are
denoted in blue.
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6.2.1 State

Each state, which describes the environment at a specific time step, is
composed of a system state and a forecast state. Both parts are simply put
together to form the environment state, which looks like

[T tin, T tret, T tout, T t+1
out , T

t+2
out , ..., T

t+n
out ], where n is the number of forecast

steps included12. The system state contains information about the current
indoor temperature Tin and the current return temperature Tret. Both
values are obtained directly by the simulation framework. The forecast state
contains information about the outside temperature during the current and
upcoming time steps. The length of the forecast included in the state is a
hyperparameter, which was set empirically by experiments. The reader is
again referred to figure 8, which illustrates the composition of the state. It is
important to mention again, that a perfect weather forecast is assumed and
therefore the agent is provided with the values of the outdoor temperatures
of the upcoming time steps. By designing the state as described, the Markov
property is followed, which is crucial for the functionality of reinforcement
learning. This allows the agent to decide on actions based on a single state.
The idea of merging system state information and forecast state information
into a single state which can be used for DRL is in line with the related
works from section 4.1 and 4.2, which have mostly taken a similar approach.

It is important to note that the individual features contained in the state
are on different scales. This faces a problem, as the state is used as input for
the DRL agent’s neural network. Therefore, standardization of the state is
required. This is done by calculating the mean µ and standard deviation σ
of each of the features contained in the state individually and by applying
the following formula:

Z = X − µp
σp

. (23)

This results in a state, which contains features that are all on the same scale
with µ = 0 and σ = 1, which improves stability of training the neural network.
Note that normally a data set is required in order to calculate µp and σp
for every feature p contained in the state. This could be done for features
concerning the current and future outside air temperature as this data is
available beforehand. Anyhow, the distribution of Tin and Tret is not known
beforehand, and thus their µ and σ cannot be calculated. Therefore, µp and
σp of all features are estimated by updating their values continuously during
training. This concept is called moving or running average normalization

12As later shown in section 8.1, the number of forecast steps included in the step depends
on the building to be heated.
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and was applied by following the implementation of the deep reinforcement
learning framework Stable Baselines3 which was used in this work [96].

In order to test the demand response capability of the proposed solution,
an experiment was performed where a forecast about a varying electricity
price was included in the state. This approach will be described in more
detail in section 8.3.

6.2.2 Action

Based on the state, the reinforcement learning agent executes an action with
the goal to maximize the return. The action represents the thermal power
Q̇hp which should be generated by the heat pump during the upcoming
time step. It represents the control variable that is used to control the heat
pump. The action space is defined to be continuous and thereby applies
Q̇hp ∈ [0, 12000W ]. The upper limit of the action space interval represents
the maximum power of thermal heat which can be served by the heat pump
which is defined by the simulation framework. As proposed by [97], the
action space is internally rescaled, so the actions taken by the agent lie in the
symmetric interval [−1, 1]. It must be noted, that the simulation framework
works with the supply temperature Tflow as the control variable for the
heat pump. Therefore, the control variable is transformed by equation (22)
through the environment.

6.2.3 Reward

The reward encodes the goal of the research task at hand. Therefore, the
reward must balance the minimization of electricity usage and comfort
deviations at the same time. A reward is calculated at every time step
according to the following formula:

rt = −1 ∗ (β ∗ electricity_usedt + comfort_deviationt). (24)

Since the targets of minimizing electricity usage and minimizing comfort
deviations are in conflict with each other, they are balanced on the basis
of a trade-off parameter β. A high β will lead to a reward definition that
focuses more on the minimization of the electricity, whereas a low β focusses
on the minimization of comfort deviations. The value for β was empirically
set to 0.45. Since the goal in reinforcement learning is always to maximize
the reward, the reward given is multiplied by the factor −1. Intuitively, the
reinforcement learning agent is punished for every Wh of electrical energy
used and every K of comfort deviation. Note that most of the related works
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listed in section 4.1 and 4.2 balance the minimization of comfort and some
kind of cost and therefore have a related reward definition.

6.3 Deep Reinforcement Learning Agent

As described in 2.3, a number of algorithms exist which define different
approaches of how DRL can be applied. In this work, PPO is used because
of the following reasons:

1. PPO supports continuous action spaces.

2. Recent works were able to apply deep reinforcement learning to complex
problems by using PPO [30,98].

3. These works have reported stability in regards to the hyperparameters
used.

Especially the last point was a key requirement. Since the performance
of DRL often depends on different hyperparemeter settings [99, 100], an
algorithm should be used that has been reported stable in this respect.

Implementing PPO from scratch would be error-prone and time con-
suming, but most importantly would lead to results that are difficult to
interpret and reproduce by others. This is due to the fact that the function-
ality of reinforcement learning algorithms depends on the implementation
details [99–101]. Therefore, the deep reinforcement learning library Stable
Baselines3 [96] was used to apply PPO in this work. The library has ab-
stracted away the implementation of the deep reinforcement learning agent
and the calculation and application of the gradients used for training. Most
design decisions related to PPO were taken away by using PPO mostly as it
was defined in the default settings in Stable Baselines3. Settings that differ
from the default will be explained in section 7.2. Still, the main structure of
PPO as it is defined by Stable Baselines3 is described below, with the goal
to provide an overview of how PPO is used in the work at hand:

As PPO is a policy gradient method, the deep reinforcement learning
agent is represented by a neural network that serves as a policy to estimate
optimal actions based on a state. The policy used in this work is represented
by a fully connected neural network with two hidden layers containing 64
neurons each13.

Since PPO is based on the actor-critic principle, an additional neural
network, which represents the critic is used. As explained in section 2.2.2,

13The usage of alternative neural network types like convolutional neural networks (CNN)
or recurrent neural networks (RNN) for the policy is left open for future work.
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Figure 9: The architectures of the neural networks. The actor-critic network
presentation in this image is based on [102].

this is used to estimate the advantage, which provides a baseline when
estimating the gradients during training. The advantage estimation is based
on estimations of the value function, thus the additional neural network
is referred to as value network. Figure 9 shows the architectures of both
neural networks, which represent the deep reinforcement learning agent
used in this work. Both, the value and the policy network have the same
architecture. In addition to the input and output layers, both networks have
two fully connected hidden layers with 64 neurons each. This network can
be considered small, compared to most neural networks in other areas like
computer vision or natural language processing. The hyperbolic tangent
(tanh) activation function is applied after each fully connected layer.

6.4 Training

During training, the weights of the policy and value network are updated in
order to select actions that maximize the return. This process is completely
carried out in simulation, by interacting with the environment defined in
section 6.2. An intuition of the gradient computation which is used to update
the parameters of the neural network during training is given in section 2.2.2.
Anyhow, these low-level training details are abstracted away by using the
deep reinforcement learning library Stable Baselines3. Although thereby
training is implemented at an algorithmic low-level perspective, this section
describes the overall high-level concept of the training process.
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6.4.1 General Procedure

The training process was designed to be done in multiple episodes. Each
episode contains 2880 interactions between the agent and the environment.
This corresponds to approximately one month, as one time step represents
900 seconds in real time. The training is finished after 348 episodes were
executed. In total, the agent is therefore trained over 1,000,000 time steps.

At the beginning of each episode, the environment is reset by setting it to
an initial state. This involves resetting the environment indoor temperature
to 21◦C and the return temperature to 23◦C. In addition, a new weather
profile containing information about the outdoor temperatures is chosen at
the beginning of each episode. This is done by drawing one month of a
continuous weather profile at random from the pool of training data. This
is an important step, as it prevents the learned strategies from overfitting
to certain weather profiles and therefore enables the agent to generalize to
different weather scenarios.

An alternative approach would have been to use one long continuous
training episode containing all the available weather data from the train
data set. Anyhow, the process of regularly resetting the environment at
the beginning of each episode into a sane state introduced stability in the
training process.

6.4.2 Periodical Validation

After every seventh episode of training, the DRL agent is being validated.
This includes executing the current state of the agent for three episodes.
Here, too, one episode contains 2880 time steps and therefore 2880 actions
taken by the agent, which corresponds to approximately one month of heat
pump control. The weather data used during those episodes are contained
in the validation data set. During the validation, the training is paused,
meaning no updates to the parameters of the neural networks are taking
place. The results of the validation are stored and serve as statistics to judge
about the quality of the training process afterwards.

Additionally, the regular validation during training is used to determine
the best performing agent during training. This is done by storing the
current parameters of the neural network if the agent performed better than
all previous agents of this training run. The mean reward of the validation
episodes is taken as the criterion for determining the best model. This step
is necessary as the reward and thus the performance of the model does not
always improve monotonically during training. Or to put it in other words,
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Figure 10: Exemplary progression of mean rewards over the training period of
348 episodes. Although the five training runs differ only in their
preset random seed, their progression is different. The reward does not
increase monotonically over the course of training. The best reward
and thus model in the training run with seed 45 was obtained already
at approximately episode 100.

the model obtained after the last training step is not necessarily the best.
This is illustrated in figure 10, which shows an exemplary training run.

The decision on the validation frequency and the number of episodes used
when validating trades off model performance and training time. The more
frequent the validations take place and the more data is used in the validation,
the higher the probability to obtain the best model which occurred any time
during training. On the other hand, validating too often and using too much
validation data causes impracticable training times. By conducting extensive
experiments it turned out that validating every seventh train episode for
three episodes showed to be a good trade-off to achieve manageable training
times while having a good chance to obtain a good model.

6.4.3 Multiple Seeds

Lastly, in [100] it was shown that the results of deep reinforcement learning
often depend on the random initialization of the parameters in the neural
net. Therefore, it is necessary to run an experiment multiple times with
different random seeds which cause different random initializations of the
parameters. A single training run has only little informative value about the
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performance of the method due to the potential variability in performance.
Or in other words, good results can only have occurred by chance. Figure 10
illustrates this issue. Measured by the mean reward, the results of the runs
differ largely, which is solely caused by different preset random seeds. Please
note that this plot shows an extreme case, which was discarded afterwards.
To obtain more meaningful and interpretable results, each training run is
executed independently with five different pre-set random seeds.

The presented concept of how training is executed is summarized by
algorithm 2.

Algorithm 2 Training
for seed in [42,43,44,45,46] do

set random seed
initialize PPO agent
initialize environment
while n_episode < 348 do

Tamb ← 21
Tret ← 23
get weather data from random start date from train dataset
interact and train one episode
n_episode += 1
if n_episode % 7 == 0 then

evaluate PPO agent
if best model so far then

save PPO agent
save environment statistics

end if
end if

end while
save statistics

end for
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7 Implementation Details
The purpose of this chapter is to give an overview of the most important
implementation details of the work at hand. Note that the code used in this
work is publicly available on GitHub14.

7.1 Environment

The environment as described in 6.2 was implemented with the help of
OpenAI Gym15, which serves as a toolkit for implementing environments for
reinforcement learning. It provides an interface that defines the interaction
between agent and environment [103]. Therefore, OpenAI Gym provides a
Python interface, which requires the implementation of two methods:

step() The step() method is the core element of the environments imple-
mentation. It defines one time step of interaction between the agent
and the environment by taking an action as argument and by re-
turning the tuple (state, reward, done, info) [103]. As the tuples
variable names suggest, the state defines the new environments state
and reward defines the reward given to the agent. Both, the state
and the reward returned to the agent were implemented according
to the concepts presented in section 6.2. The returned variable done
is a boolean and defines, weather the episode ended with the last
interaction or not. As described in 6.4.1, one episode ends when 2880
interactions took place, which corresponds to approximately one month
in real time. The variable info was used for reporting and debugging
purposes and contained information about the heat pump operation.
This, for example, has enabled the creation of plots of the control
strategies which will be presented in chapter 8.

reset() The reset() method resets the environment to an initial state.
As described in 6.4.1, this includes resetting the current indoor and
return temperature, as well as setting a new start date for the outdoor
temperature profile. The reset() method must be called before the
first time step can be executed. Additionally, it is called at the end of
an episode.

Many deep reinforcement learning libraries, like Stable Baselines3 which was
used in this work, support environments that are implemented according

14https://github.com/tobirohrer/reinforcement-learning-heat-pump
15https://gym.openai.com/
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to the OpenAI Gym interface. This provides modularity to the overall
architecture, as the reinforcement learning agent can be easily exchanged16.

7.2 Agent

As already mentioned in section 6.3, the use of deep reinforcement learning
libraries offers advantages compared to implementations from scratch. In
this work, the deep reinforcement learning library Stable Baselines3 [96]
was used. It provides open-source implementations of state-of-the-art deep
reinforcement learning algorithms [96]. The algorithms are implemented
with Python using the machine learning framework PyTorch [104]. The
details on the implementation of PPO in Stable Baselines3 are summarized
by [105]. As the performance and thus the reproducibility of results in deep
reinforcement learning depends on implementation details [100,101], it must
be noted that the PPO implementation from the official git repository17 with
commit a6f5049 was used. The following describes the hyperparameters
that were set differently from the default settings of the implementation just
described:

Learning Rate As shown in (16), the size of a gradient update during
training depends on the learning rate α. Setting an appropriate learning
rate is crucial for the functionality of deep reinforcement learning. Like
in supervised deep learning, a learning rate set too high might cause
the learning process to fluctuate around an optimum. A learning rate
set too low requires more training iterations and thus more wall clock
time for convergence. The learning rate for the work at hand was
determined empirically by running multiple training runs and set to
0.5 ∗ 10−4. The following two criteria were used to select the learning
rate: First, the maximum reward that is achieved on the validation
data during training. Second, the evolution of the mean reward on
the validation data during training. An example of the evolution of
the mean reward on validation data during training is shown in figure
11. The hypothesis is, that a learning rate set too low would cause
a linear shaped evolution of the mean reward. A learning rate set
too high would cause fluctuations in the evolution, as the training
would overshoot the optimum frequently. This hypothesis leans on

16In early phases of the work at hand, experiments were conducted with the deep
reinforcement learning framework ChainerRL. Thanks to the modular architecture, it was
possible to switch to Stable Baselines3 with little effort.

17https://github.com/DLR-RM/stable-baselines3
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the choice of the learning rate for supervised learning, which is among
other criteria chosen on the same thoughts but looking at the evolution
of the loss instead of the mean reward during training [106].

Discount Factor As described in section 2.1.1, the discount factor γ weights
the influence of time-distant rewards on the return. The set value of γ
will be discussed in section 8.1.2, as the experiments have shown that
the learned strategy and therefore a good choice of γ depends on the
building.

A complete list of the hyperparameters used for PPO can be found in
appendix A.
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Table 2: Summary of Simulated Buildings

Old Efficient Efficient Enhanced
Floor Size in m2 136 393 393
Heat Capacity in Wh/m2/K 45 65.9 65.9
Transmission Losses in W/K 396 281.7 281.7
Energy-Efficiency Class19 F A A
Year of Construction 1984 2020 2020
Heat Storage Capabilities No No Yes
Note: The Energy-efficiency class according to the German building energy
act was determined by measuring the energy required per m2 of heated
living area when heating with the heating curve implementation provided
by Fraunhofer ISE.

8 Experiments and Results
This chapter describes the experiments which were conducted in order to
evaluate the concepts and implementations from this work and to answer
the research questions defined in section 5.3. A total of four experiments
were carried out for this purpose.

All experiments were conducted on a Debian 10 Linux server with an
NVIDIA A100 GPU, 256GiB RAM and an AMD EPYC 7502P 32 core
processor, which was provided by the Fraunhofer ISE. CUDA18 version 11.5
was available on the server in order to support GPU acceleration while
performing training of the DRL agent. The duration of the training depends
on the experiment and is therefore reported in the experiments section. All
four experiments are described by the same structure: (1) the setup, (2) the
results, and (3) a summary.

8.1 Experiment 1: Efficient Control Strategies

In this experiment, the primary research objective was evaluated, which was
to learn efficient control strategies for heat pumps using deep reinforcement
learning in simulation. In this context, an efficient strategy is one that
minimizes electrical energy usage and comfort deviations at the same time.

Note that this experiment evaluates the learned control strategies in a
qualitative manner. Additionally, the strategies are evaluated quantitatively

18https://developer.nvidia.com/cuda-toolkit
19According to the German buidling energy act https://www.bmwsb.

bund.de/Webs/BMWSB/DE/themen/bauen/energieeffizientes-bauen-sanieren/
gebaeudeenergiegesetz/gebaeudeenergiegesetz-artikel.html
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in terms of comfort deviations which were to be minimized. A quantitative
evaluation of the energy efficiency of the learned strategies was done by
experiment 8.2, as baselines are needed for comparison.

8.1.1 Setup Experiment 1: Efficient Control Strategies

The construction methods and therefore also the thermal properties of
buildings differ largely. For this reason, three different buildings were used
for the evaluation, each intended to represent a separate scenario. The three
scenarios are: (1) an old building which is considered energy inefficient; (2)
an efficient building, which as the name suggests can be considered efficient
in terms of its thermal properties; and (3) an efficient enhanced building,
which is the same as the efficient building but was extended by enhancing
its heat storage capabilities 20. The buildings are summarized in table 2 and
were simulated using the framework described in section 5.1. The parameters
of the old building were obtained from the online tool TABULA21. The
parameters represent a single-family house that was built in 1984. The
houses efficient and efficient enhanced represent the same existing house
located in Freiburg. Its parameters were measured and obtained in the
course of another project at Fraunhofer ISE. The heat pump which was to
be controlled in all of the three houses corresponds to a Dimplex LA 6TU air
source heat pump with maximum heating power set to 12kW. The selection
of the houses and the parametrization of the simulation were carried out in
consultation with the Fraunhofer ISE.

It is important to note, that the training of the DRL agents as described
in 6.4 was carried out individually for each building, which led to three
independent trained agents. Except for the change in the parametrization of
the simulation framework, the training and testing procedure is the same for
all three buildings.

8.1.2 Results Experiment 1: Efficient Control Strategies

Figure 11 shows the progression of the mean reward during training for each
of the three buildings. As described in section 6.4.3, running the training
multiple times with different preset random seeds is an elementary step when
applying deep reinforcement learning in order to rule out the possibility that

20To be precise, the water volume in the heating circuit was increased to simulate the
effect of a water tank for storing hot water. Unfortunately, the simulation framework did
not support the usage of a water tank per se. However, the thermodynamic processes are
similar and therefore sufficient to evaluate the proposed method.

21https://webtool.building-typology.eu/
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Figure 11: Evolution of the mean reward on the validation data per time step
during training for each of the three buildings. For each building, the
training was executed five times using different preset random seeds.
The shaded areas show the variance of the progression of the mean
reward caused by the different preset random seeds. The line indicates
the mean progression.

good results were only achieved by chance. The shaded areas of the curves
shown in figure 11 show that the variability of the mean rewards from the
different seeds decreases as the training progresses. At the end of the training
where the best rewards occur, the variability is minimal. Therefore, it can be
excluded that good results were found only by chance and the performance
of the proposed methods is independent of preset random seeds which can
be interpreted as an indicator of stability. Since the variability is so low, the
results are simply reported on the run that has achieved the highest reward.
The training of the agents for each of the buildings containing the five runs
with the different preset random seeds took 6 hours and 45 minutes on the
server described in 8.

Subsequent to training, the agents were used to control the heat pumps
of the three simulated buildings. To evaluate the functionality, the weather
profiles contained in the test dataset were used. Therefore, heat pump control
is evaluated in the months from January to March and from October to
December in 2016.

The learned control strategies are demonstrated in figure 12. For a better
overview, only the month of March is shown from the test data. The control
during the other months from the test dataset can be seen in the appendix
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Figure 12: Heat pump control strategies for the three different buildings learned
by the DRL agents. All three plots show the same weather profile,
which represents the month of march from the test data. The control
actions chosen by the agents are shown in black. The resulting indoor
temperature is shown in orange. The outdoor temperature is shown in
blue. Note that the strategy for the efficient enhanced building differs
from the other two.
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B. It can be seen, that for all three buildings, the agents learned to select
control actions in order to keep the inside temperature in the comfort range,
which was defined to be between 21◦C and 25◦C. If we look at the control
actions chosen as a function of the outside temperature, we can see that
the learned strategies of the old and efficient building are similar, but differ
from the efficient enhanced building. Both learned control approaches are
described below:

Strategy of Old and Efficient Building The learned strategies for the
old and efficient building have the same approach and regulate the
indoor temperature almost constantly at 21◦C. Most of the heating is
taking place when it is cold outside, and only a little when it is warm.
Intuitively, this makes sense, as 21◦C marks the lower comfort bound.
Heating further would not increase any comfort by our definition, but
lead to an increase in electricity usage. The strategy itself does not rely
on predictions of the outside temperature that go far into the future.
Experiments were conducted to determine the effect of different forecast
lengths. The best results, which are reported here, were achieved with
a prediction length of only 8 time steps which corresponds to two hours.
Analogously, a relatively low γ of 0.96 was chosen, to minimize the
impact of time distant rewards.

Strategy of Efficient Enhanced Building The strategy picked up by
the agent controlling the heat pump in the efficient enhanced building
is different. The majority of heating is taking place while the outside
temperature is relatively high. This makes sense because as explained
in section 3.1, the efficiency of the heat pump increases with the
temperature of the low-temperature source, which in our case is the
outdoor air temperature. The enhanced heat storage capability thus
makes it possible to shift the heat generation to periods, where the
heat pump can be operated efficiently. To obtain the results as given,
a forecast length of 48 time steps which corresponds to 12 hours was
used. Analogously, a relatively high γ of 0.99 was chosen, as actions at
a current time step have a relatively high impact on future rewards.

Table 3 quantifies the results of the learned control strategies for all
months contained in the test dataset. It can be seen, that for all three
buildings, the agents managed to control the heat pump without any major
comfort deviations. The increased standard deviation of the indoor temper-
ature of the efficient enhanced building compared to the old and efficient
building underline the two different strategic approaches presented above.
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Table 3: Quantitative Results of Learned Heating Strategies

Jan Feb Mar Oct Nov Dec

Old

Mean Comfort Deviation 0 0 0 0 0 0
Max Comfort Deviation 0.18 0.03 0.09 0.08 0.07 0.05
Mean Indoor Temp 21.02 21.03 21.02 21.03 21.02 21.03
Standard Deviation Indoor
Temp

0.02 0.02 0.03 0.07 0.02 0.03

Efficient

Mean Comfort Deviation 0 0 0 0 0 0
Max Comfort Deviation 0.07 0 0.03 0 0 0.02
Mean Indoor Temp 21.02 21.02 21.02 21.05 21.03 21.02
Standard Deviation Indoor
Temp

0.02 0.01 0.01 0.06 0.01 0.01

Efficient
Enhanced

Mean Comfort Deviation 0.02 0.01 0.02 0.04 0.04 0.01
Max Comfort Deviation 0.16 0.2 0.21 0.19 0.19 0.21
Mean Indoor Temp 21.12 21.1 21.1 21.07 21.02 21.13
Standard Deviation Indoor
Temp

0.17 0.11 0.15 0.22 0.13 0.11

Note: All units are in ◦C and rounded to two decimal places. The mean and
standard deviation were calculated over one month and are to be considered per
time step, which simulates 900s in real time. The Max denotes the maximum
comfort deviation which occurred any time during the control period of that month.

Note that the evaluation of the consumed energy will be described in section
8.2, as baselines are necessary for interpretation.

8.1.3 Summary Experiment 1: Efficient Control Strategies

The key findings of this experiment are summarized as follows:

1. Based on the low variability in performance caused by different preset
random seeds, the training of the method can be considered stable.

2. Just by learning through trial and error, all three trained agents picked
up strategies that enabled them to control the heat pump in order to
keep the indoor temperature in the comfort bound almost perfectly.

3. As shown by the use of different buildings, the learned strategic ap-
proaches adapt to the thermal properties of the building. If the building
provides the capacity to store heat, the learned strategies take advan-
tage of this to operate the heat pump efficiently by shifting heating
loads. If the building does not offer enough capacity to store heat effi-
ciently, the learned strategies simply regulate the indoor temperature
at the lower comfort bound.
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8.2 Experiment 2: Baseline Comparison

In order to be able to better classify the functionality of the trained DRL
agents, a comparison against heating curve and MPC-based control was
conducted. This is particularly important in order to be able to evaluate the
energy consumption of the proposed method. This experiment targets to
answer the second research question defined in section 5.3. The functionality
of both baseline methods was described in section 3.2.

It must be noted, that MPC uses the simulation framework in order to
plan and execute the control actions. As explained in section 3.2.2, this would
mostly not be applicable in reality. Usually, MPC uses a simplified model
to plan and a more complex model or the reality to execute the planned
control actions [10,67]. However, in our scenario, providing MPC with the
same model for planning and execution can be considered an advantage, as
it makes MPC the gold standard which finds the optimal control strategy
and can thus be considered as upper performance limit.

8.2.1 Setup Experiment 2: Baseline Comparison

The implementations of the heating curve and MPC control, which served
as baselines, were provided by the Fraunhofer ISE. As described in section
3.2.2, MPC plans based on the building model and external factors like the
ambient temperature. Therefore, like the presented DRL method, MPC is
given a perfect forecast of the outdoor temperature at every planning step.
The length of the forecast provided to MPC was set to 96 time steps into
the future. The forecast length was determined empirically by experiments.
Longer forecasts did not improve the control quality of MPC further. Both
methods were applied to control the heat pumps on the same weather data
as the DRL agents. The same three buildings which were described in 8.1.1
were used.

8.2.2 Results Experiment 2: Baseline Comparison

Figure 13 contrasts the control strategies taken by the different methods for
the three buildings qualitatively. The strategies learned by the DRL agents
were already discussed in section 8.1.2. In the following, the strategies taken
by MPC and the heating curve are discussed and compared to the strategies
learned by DRL:
Heating Curve When looking at the strategy of the heating curve, it be-

comes clear that it is only a mapping of the current outside temperature
to the control actions. This has two main disadvantages:
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Figure 13: Comparison of strategies taken by the different control methods when
heating the different buildings. In all cases, the same weather profile
from the month of January from the test data was used. The control
actions chosen are shown in black. The resulting indoor temperature
is shown in orange. The outdoor temperature is shown in blue.

63



1. Comfort deviations occur, as the heating curve is just a feed-
forward control system without any feedback about the current
indoor temperature

2. Unlike the other two approaches, the heating curve cannot shift
heating to periods when the heat pump can be operated efficiently,
i.e. when it is already relatively warm outside.

It must be noted, that the first listed disadvantage is less relevant in
practice. As described in section 3.2.1, thermostats are used in practice
to counteract this problem to a certain degree. Thermostats were not
supported by the simulation framework and therefore this problem
occurs more in the setting at hand.

MPC The heating strategies applied by MPC differ from building to building.
In the old building, the strategy is similar to the one taken by the DRL
agent. Due to the limited thermal capacity of the old building, the
majority of heating is done when its relatively cold. In the case of the
efficient building, the strategies of MPC and DRL differ. Whereas DRL
still takes the approach of heating most when it is cold outside, MPC
already starts to shift the heating operation to periods when the outside
temperature is relatively warm and thus the operation is more efficient.
As can be seen in Table 4, MPC’s strategy is marginally (approx. 1%)
more efficient in terms of energy consumption. The hypothesis is, that
this little difference in efficiency is not enough for DRL to pick up the
more complex strategy while learning through trial and error. Anyhow,
it can be seen that in the case of the efficient enhanced building, which
offers more potential for shifting the heating operations, the strategies
taken by DRL and MPC are quite similar again.

Table 4 quantifies the results of the strategies discussed above. The values
refer in each case to the mean or the maximum of the entire test dataset.
The mean values represent the average per time step which simulates 900s
in real-time. It can be seen that DRL consumes only minimally more energy
for all 3 buildings compared to MPC, which as explained above can be
considered as optimal solution in this scenario. Additionally, it can be seen
that DRL outperforms the heating curve in all three buildings in terms of
energy usage and comfort.

The execution times indicate how long the execution took for all 6 months
in the test data set. This includes the execution of a total of 17,262 simulation
steps. Since the heating curve is only a static mapping from the outside
temperature to a control action, its execution time can be roughly considered
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Table 4: Quantitative Baseline Comparison

DRL MPC Heating Curve

Old
Electricity Mean in Wh 405.15 403.23 419.25
Comfort Deviation Mean in ◦C 0 0.02 0.11
Comfort Deviation Max in ◦C 0.18 0.15 2.68

Efficient
Electricity Mean in Wh 138.08 136.67 142.42
Comfort Deviation Mean in ◦C 0 0.01 0.1
Comfort Deviation Max in ◦C 0.07 0.1 1

Efficient
Enhanced

Electricity Mean in Wh 137.92 137.65 145.53
Comfort Deviation Mean in ◦C 0.02 0 0.08
Comfort Deviation Max in ◦C 0.21 0.20 0.74
Execution Time in Seconds 38 1679 27

Note: Values were rounded to two decimal places. The mean values were calculated
over the whole test dataset are to be considered per time step, which simulates 900s
in real time. The Max denotes the maximum comfort deviation which occurred any
time during the control period of the whole test dataset.

as the calculation time required by the simulation itself. The difference
between this time and the times taken by MPC and DRL can be interpreted
as the time taken for planning the actions of the respective methods. In
order to create equal conditions during the measurement of the run times,
the GPU was switched off for DRL. Although the simulation framework used
can be considered a relatively simple model, it can be seen that the run times
of MPC are many times longer than those of DRL.

8.2.3 Summary Experiment 2: Baseline Comparison

The key findings of this experiment are summarized as follows:

1. DRL performs better in terms of energy usage and comfort than the
heating curve in all three buildings.

2. DRL only uses slightly more energy than MPC, which however can be
considered the optimal solution in this scenario.

3. The run times of DRL are many times faster than those of MPC.

8.3 Experiment 3: Demand Response Capability

As explained in chapter 1, due to the increasing share of renewable energy
sources, the electricity supply is becoming more dependent on external
factors like the weather. To balance demand and supply of electricity on
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the consumer side, it is expected that time-based varying electricity prices
will be available to residential customers in the future [8,9]. This is called
demand response and therefore electrical devices should be able to regulate
their load based on the varying price signals in order to save costs. The
heat pump as an electric heater accounts for a large proportion of the energy
usage of residential buildings, which is why it offers potential savings when
controlled with respect to the varying price.

The aim of this experiment was to investigate the last research question
which was defined in section 5.3. This has defined the question of whether
the presented solution can be extended to a demand response scenario, where
the electric load of the heat pump should take place with respect to the
electricity price. Therefore, a varying price signal was included and the
objective was to minimize the operational cost of the heat pump while still
maintaining comfort. The operational cost result from the amount of energy
consumed and the electricity price at that time.

8.3.1 Setup Experiment 3: Demand Response Capability

In order to train an agent with this new objective, the definition of the MDP
from 6.2 was changed accordingly:

Reward As just mentioned, the new objective of the agent is to operate the
heat pump with minimal operational cost while minimizing comfort
deviations. Operational costs are defined as electricity_usedt ∗ pricet.
This objective is encoded in the reward to be maximized, which is now
defined as:

rt = −1 ∗ (β ∗ electricity_usedt ∗ pricet + comfort_deviationt) (25)

Note that the new reward definition is analogue to the one from (24),
but differs as the price is included. Here too, a trade-off parameter β is
used to balance comfort and costs. The search for a suitable β depends
on the main objective. If the main objective is to keep comfort at all
costs, β is to be set relatively low. If the main objective is to save cost
and to accept comfort deviations, β is to be set relatively high. In this
setup, a β of 0.07 has shown to provide a reasonable trade-off between
comfort and costs.
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Figure 14: Distribution of the price data used in the experiment. A description of
the boxplot itself can be found in figure 7.

State In order to give the agent the possibility to make decisions depending
on the price, a price signal is given in the state in addition to the
weather forecast. In this scenario, a state has the following form:
[T tin, T tret, T tout, pricet, T t+1

out , price
t+1, T t+2

out , price
t+2, ...]. It should be

noted that, as with the weather, a perfect forecast is assumed. A
forecast length of 32 time steps, which corresponds to 8 hours of the
price and outside temperature has shown to perform best and is given
in the state.

Besides changing the MDP as just described, data containing time-based
varying electrical prices was required to conduct the experiment. With the
exception of a few pilot projects, there are still no variable electricity prices
for residential customers in the field in Europe. Accordingly, there is no data
yet on these variable electricity prices. Therefore, like in [94], day-ahead
electricity prices from the European power exchange (EPEX) spot marked for
Germany were used to be able to evaluate the demand response capability of
the proposed solution. These prices are used to balance supply and demand
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Figure 15: Evolution of mean reward during training. Please refer to the caption
of figure 11 for a more detailed description of the plot.

between electricity producers and distributors. It must be noted, that the
used EPEX spot prices differ from residential customer electricity prices as
they do not include taxes and costs for grid usage. This becomes clear when
looking at the median electricity prices shown in figure 14, which are cheap in
comparison to real end residential customer electricity prices. Furthermore,
figure 14 shows the presence of negative electricity price data. This is a
realistic scenario since the storage of electricity is difficult and at times of
high energy production from renewable sources, there is an abundance of
electricity that needs to be consumed in order to ensure grid stability. The
price data used in this experiment originate from the same time period as
the weather data and were provided by the Fraunhofer ISE22.

The experiment was conducted on the efficient enhanced building, as it
has the highest heat storage capacity, which allows to efficiently shift the
heating from high to low price periods. The training of the DRL agents was
performed as described in 6.4. The training including 5 separate training
runs using different preset random seeds took 7 hours to complete.

8.3.2 Results Experiment 3: Demand Response Capability

Figure 15 shows the progression of the mean reward during training. Analogue
to figure 11, which was discussed in section 8.1.2, it shows the progression of
the mean reward on the validation data during training. Here too, it can
be seen, that the variability in the mean rewards caused by different preset
random seeds minimizes as the training progresses. The run which achieved
the highest mean reward during training was used to report the results in
this section.

22https://energy-charts.info/
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Table 5: Results of the Demand Response Scenario

DRL MPC DRL Baseline
Cost Mean in € Cent 0.32 0.31 0.47
Comfort Deviation Mean ◦C 0.2 0.22 0.02
Comfort Deviation Max ◦C 1.08 0.85 0.21
Execution Time in Seconds 38 1677 38
Notes: Values were rounded to two decimal places and the
statistics are calculated over the whole test dataset. The descrip-
tion of table 4 provides more details on how the mean and Max
were calculated.

Subsequent to training, the agent was executed to control the heat pump.
To evaluate the functionality, the weather and price profiles contained in the
test dataset were used. Therefore, heat pump control is tested in the months
from January to March and from October to December in 2016, using the
strategies learned.

Figure 16 demonstrates the functionality of the trained agent for the
efficient enhanced building qualitatively. It can be seen that the agent
learned to heat whenever the price is relatively low. Therefore, the energy
consumption is shifted to low price periods. It can be also observed, that in
periods of negative prices, maximal heating is taking place.

Table 5 quantifies the results of this experiment. The cost and comfort
deviation mean values denote the mean per time step and are calculated
using all months contained in the test data. Based on the costs, it can be
seen that the proposed solution is almost as effective as MPC in the demand
response context, which can be considered as the gold standard. Additionally,
the DRL method from section 8.1.2, which controls independent of the price
signal is listed in the table and serves as an additional baseline. Although
the DRL method described in this section causes more comfort deviations,
operational costs could be reduced by almost a third compared to the DRL
baseline. It must be noted, that the quantification of the saving potential
depends on the price signal used and must be therefore interpreted with
caution.

8.3.3 Summary Experiment 3: Demand Response Capability

The key findings of this experiment are summarized as follows:

1. The proposed method can be easily extended in order to be used in a
demand response scenario, where control is to be done with respect to
a time-based varying price signal.
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Figure 16: Heat pump control in a demand response scenario using the trained
DRL agent for the efficient enhanced building. The three different
subplots show three different weeks of heat pump control by the same
agent in the same building. The indoor temperature is shown in orange.
The control action is shown in black. The ambient temperature is
shown in blue. The electricity price in green.
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2. Here too, DRL achieves almost optimal results measured by MPC
which serves as the gold standard.

8.4 Experiment 4: Robustness

As described in section 5.2, the simulation framework used in this work is a
simplification of the problem statement of controlling a heat pump in the
real world. However, the overall research goal in the field is to find efficient
control strategies that are also applicable in the real world. Even though, the
application of the presented methods to the real world was out of scope of
this work, an experiment was conducted in order to evaluate the robustness
of noisy sensor measurements and noisy weather forecasts which occur in
practice. The goal of this experiment is to get a first idea of how the DRL
solution reacts to noise. A more intensive investigation of random effects
and noise is necessary as soon as the solution is to be transferred to a real
heat pump, which is left open for future work. In addition, MPC was tested
under the same noisy conditions, which allowed a further comparison of the
two methods.

8.4.1 Setup Experiment 4: Robustness

The trained agents from experiment 1, which was described in section 8.1
were used. But with the difference that during execution on the test data,
noisy sensors and forecasts were simulated. This means, the agents were
trained without noise, but tested with noise. This was done by adding
Gaussian noise23 X ∼ N (0, 0.52), Y ∼ N (0, 0.12), Zn ∼ N (0, σ2

Zn
) at every

time step to the state, which thereby looks like this: [T tin +X,T tret +Y, T tout +
Z0, T

t+1
out + Z1, T

t+2
out + Z2, T

t+n
out + Zn, ..., T

N
out + ZN ]. Note that N denotes

the length of the forecast and the standard deviation of Z at forecast step n
is calculated by σZn = 1.1 − 0.9n. This models the increasing uncertainty
with the length of the forecast. Similarly, the same noise distribution was
assumed and applied to MPC.

8.4.2 Result Experiment 4: Robustness

The qualitative results of this experiment for the DRL agents are illustrated
by figure 17. The added noise causes the control strategy of the old building
to fluctuate quickly. The same applies, but minimized, to the control strategy

23An alternative noise schema would be the Perlin noise [107] which can be evaluated in
this setup in future works.
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Table 6: Effects of Noise on the Performance

DRL
Baseline

RL
Noise

MPC
Baseline

MPC
Noise

Standard
Electricity Mean in Wh 405.15 447.15 403.23 429.62
Comfort Mean in ◦C 0 0.07 0.02 0.02
Comfort Max in ◦C 0.18 0.88 0.15 0.72

Efficient
Electricity Mean in Wh 138.08 156.25 136.67 158.73
Comfort Mean in ◦C 0 0 0.01 0
Comfort Max in ◦C 0.07 0.2 0.1 0.06

Efficient
Enhanced

Electricity Mean in Wh 137.92 139.35 137.65 153.63
Comfort Mean in ◦C 0.02 0.02 0 0
Comfort Max in ◦C 0.21 0.21 0.2 0.03

Note: The Baseline columns show the result as they were reported in the previous
sections, without adding noise. The Noise columns shown the results with added
noise during execution. The values were rounded to two decimal places and the
statistics are calculated over the whole test dataset. The description of table 4
provides more details on how the mean and Max were calculated.

for the efficient building. For the efficient enhanced building, the impact of
the added noise is not as big. The different influence of noise on the different
strategies makes sense. As described in 8.1.2, the learned strategic approach
of the old and efficient building is to regulate the indoor temperature almost
constantly at 21◦C. That makes the control strategies of these buildings
mostly dependent on the measured indoor temperature Tin. However, that
value was relatively strongly noisy as Gaussian noise with standard deviation
of 0.5 was added, which explains the strong fluctuations. The learned strategy
of the efficient enhanced building on the other hand is more complex as it
plans to shift the heat loads to periods where heat pump operation is effective.
Therefore, the dependency on the measurement of Tin is minimized, which
is why the added noise does not have such a big influence on the control
strategy.

This hypothesis is quantitatively supported by table 6, which compares
the performance of the control strategies when tested with and without noise.
It shows that the added noise does only have a small impact of performance
on the control strategy of the efficient enhanced building. Additionally, table
6 lists the effect of equally distributed noise added to MPC during execution.
Here it can be shown, that in the efficient and efficient enhanced scenario, the
DRL methods outperform MPC in terms of energy consumption. However,
for a final evaluated comparison, more extensive robustness experiments have
to be performed.

72



0

10

20
old

0

10

20

Te
m

pe
ra

tu
re

 in
 °C

efficient

12/01 12/03 12/05 12/07 12/09 12/11 12/13
Date (MM/DD)

0

10

20
efficient enhanced

0

5

10

0

5

10

Th
er

m
al

 h
ea

t p
um

p 
po

we
r i

n 
kW

0

2

4

6

8

Tout Tin Qhp

Figure 17: Effect of noise on the heat pump control strategies of the three buildings.
Unlike the other plots, the control action is shown here in gray.
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In an additional experiment based on these results, it was investigated how
the large influence of noise can be counteracted, given the efficient building as
an example. Therefore, the DRL agent of the efficient building was retrained
by including the noise as described in 8.4.1 into training. To be clear, the
agent was trained with noise and tested with noise. Additionally, domain
randomization was implemented by randomizing the physical properties of
the simulated building in each training episode. This is done by multiplying
the floor size, heat capacity and transmission losses by a factor X individually
drawn per parameter and episode from a normal distribution X ∼ N (0, 0.22).
Analogue approaches were taken by recent works [98, 108,109] and reported
good results by applying domain randomization. As illustrated by figure 18,
by applying domain randomization and by including noise in training the
agent was able to learn to control almost smoothly, even though the state was
noisy. Anyhow, it is important to note that the noise added during training
and testing was drawn from the same distribution with the same parameters.
Further experiments in which the noise distribution from training and testing
differ are left open for future work.
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Figure 18: The effect of noise can be mitigated when training the agent with noise.
The top image shows heat pump control when training the DRL agent
without noise, but testing with noise. The bottom image shows heat
pump control when training with noise and testing with noise. Note
that the efficient building was used in this experiment. Unlike the
other plots, the control action is shown here in gray.

75



9 Discussion
The main objective of the work at hand was to apply deep reinforcement
learning to heat pump control. This overall objective was split into three
research questions. Subsequent, these research questions are discussed in
detail based on the experiments and their results which were reported in
chapter 8:

Is it possible to apply DRL to heat pump control in the simu-
lation provided ? The results from experiment 1 (see section 8.1) show
that deep reinforcement learning can be applied to learn strategies to control
a heat pump in the simulated environment. Thereby, it could be shown
that heat pump control strategies can be learned in a trial and error manner
by simply interacting with the simulation. The learned strategies can be
considered efficient, as they did not cause major comfort deviations and have
used only a little more electrical energy as MPC, which can be considered
as the optimum solution in this setup. The results of the experiments were
obtained by using weather profiles from the test dataset, which was not used
during training. Thereby it could be shown that the solution generalizes to
unknown weather profiles and does not overfit the train data.

By using three different buildings in the experiment, it could be shown
that the learned control strategies depend on the building used. In the
case of the two buildings with limited heat storage capabilities, the learned
control strategy aimed to regulate the indoor temperature almost constantly
by reacting on the current outside temperature. In the case of the building
with enhanced storage capabilities, the learned control strategy aimed to
exploit the heat storage to shift the heating loads to periods where the heat
pump could be operated most efficiently.

These findings are in line with the works which were listed in section 4.1,
which could also report a working deep reinforcement learning solution for
heat pump control in simulation. Anyhow, the results extends those works
by performing a detailed evaluation of the learned strategies. Especially, in
respect to the fact that the learned strategies depend on the building and
that learning of complex strategies which exploit the heat storage for heat
load shifting can be learned in a trial and error manner. Additionally, by
applying PPO out of the box, without the need for any handcrafted changes
on the algorithm side, this work contributes by presenting another working
example for the wide applicability of state-of-the-art deep reinforcement
algorithms.

However, the solution was evaluated in simulation only. Therefore, the
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problem statement at hand can be considered simplified, compared to the task
of heat pump control in the real world. The simplifications and assumptions
made by using the simulation were described in section 5.2. By those
simplifications and assumptions, the used building simulation framework
can be considered relatively simple. However, those simplifications made it
possible to focus on learning efficient strategies in a trial and error manner
by deep reinforcement learning and to perform a comparison to MPC.

Experiment 4 from section 8.4 has shown the influence of noisy sensors
and forecasts on the solution’s performance, but should only be considered
as first robustness test in order to get a solution that can be efficiently
transferred to the real world.

How well is the solution working compared to baselines ? The
results from experiment 2 (see section 8.2) indicate that MPC-like perfor-
mance can be achieved by deep reinforcement learning. This is in line with
the findings from [83]. As described in section 3.2.2, the usage of MPC intro-
duces some disadvantages due to its strong dependency on the model used.
Applying deep reinforcement learning directly to the real world would make
the time consuming process of model creation obsolete but is unpractical
due to the number of interactions needed to learn useful control policies.
Therefore, when deep reinforcement learning is implemented like in the work
at hand by a model free and online manner, a building model, like with
MPC is nevertheless necessary to either pretrain strategies which will be
continually adapted after deployment to the real world, or to train strategies
which are robust enough for direct deployment. However, the dependency on
the model in the case of DRL is not as big, as the model is only needed during
training and not during execution. This advantage has been demonstrated
by the execution times of the two methods. Even though the building model
used in this work can be considered relatively simple, the execution times
of MPC in the setup at hand are more than 40 times longer than those of
DRL. This alone would pose challenges if a more complex model was used,
which would be closer to reality.

Additionally, it is speculated that the usage of DRL could be better in
handling random events and uncertainties which are expected to occur when
applying heat pump control to the real world. The reasons for this are: (1)
DRL contains randomness by design, (2) neural networks have shown to be
robust function approximators in related research areas, (3) DRL offers the
possibility of continuous learning which can be applied in order to adapt
to the circumstances in the real world and finally, (4) research on DRL is
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rapidly increasing, leading to frameworks and concepts that facilitate imple-
mentations. Anyhow, this is a hypothesis that is left open for future work.
Through experiment 4 (see section 8.4), it has already been suggested that
DRL may do better with noisy sensor measurements and forecasts. However,
for a final evaluated comparison, more extensive robustness experiments have
to be performed. In general, this work contributes to the field by providing
another comparison of MPC and DRL which is rare to find in other research
works [72].

Finally, to be fair, it must be noted that the MPC implementation initially
provided by the Fraunhofer institute was used as given and not extended
or improved. It is, therefore, possible that with expert knowledge in the
field of MPC, its implementation can be further improved, leading to other
results, especially with regard to the long execution times and the results of
the robustness experiment (see section 8.4 ). In summary, it can be said that
the results show, that in the simulation provided, DRL is an alternative with
similar performance to MPC. Anyhow, more work in this field, conducted by
experts of both methods, is needed to finally answer the question: Which of
these two methods is better suited for the application of heat pump control
in the real world?

Besides the comparison to MPC, it could be shown that the learned
control strategies are more effective in terms of energy usage and comfort
than the heating curve. However, it should be noted that the heating curve
which served as baseline in this setup was implemented as open loop control
without any feedback loop24. Therefore, the comparison to the heating curve
in the setup at hand can be considered biased. A fairer comparison between
deep reinforcement learning and heating curve should be conducted as soon
as the simulation framework supports thermostats which serve as regulators
for the indoor temperature.

Can the described DRL method be extended to a demand re-
sponse scenario ? The results from experiment 3 (section 8.3.2) show
that an efficient control strategy with respect to a varying price signal can
be learned by deep reinforcement learning. It could be shown that the agent
learned to heat whenever the electricity price is relatively low, which was
the expected strategy. Here too, a comparison to MPC was conducted and
it could be shown, that in this setup, the performance was only by a margin

24As explained in section 3: In practice, thermostats are used to regulate the mass flow
of the heated water in order to mitigate the non-existing feedback loop of this control
strategy.
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worse than the optimum provided by MPC. The conversion to the scenario
with variable strategy prices was realized with only a few changes in the
MDP definition, which shows the flexibility of the proposed solution.

It should be noted that the price data used to represent stock marked
prices which are used for trading between electricity producers and distribu-
tors. Data on variable electricity prices for end consumers in Germany are
not yet available.
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10 Conclusion
This thesis aimed to apply deep reinforcement learning for heat pump control
in a simulated environment. The results obtained indicate that heat pump
control by deep reinforcement learning is a feasible alternative to control
by MPC or the heat curve. Additional findings show that the presented
solution can be easily extended to heat pump control with respect to variable
electricity prices.

To summarize, the work contributes to the field by: (1) showcasing
the wide applicability of deep reinforcement learning by providing another
working example, (2) performing an in-depth evaluation of the learned
control strategies, (3) providing a functioning DRL solution for heat pump
control to the Fraunhofer ISE, which can build on it in future work and
most importantly, (4) comparing deep reinforcement learning and MPC on
the task of heat pump control, which has only been included in the work
from [83].

However, it is important to note that the presented solution was applied
in simulation and not to the real world. Therefore, the work at hand can be
considered as proof of concept for heat pump control by deep reinforcement
learning. The transfer of the solution to the real world remains open for
future works. Based on the experience gathered from the work at hand, the
following research recommendations for future works are given:

1. Based on the simplifications and assumptions of the building simulation
framework used in this work (see section 5.2), it can be considered
relatively simple. Therefore, the simulation framework used in this work
should be extended, among other things, by supporting multiple rooms,
introducing thermostats, and applying random inhabitant effects. The
extended simulation framework can then be used to get results that
are closer to reality.

2. The comparison of MPC and deep reinforcement learning should be
extended to different building simulations and a larger number of
simulated buildings to gather more insights and more significant results
from the comparison.

3. Although the code of this master thesis has been published publicly on
GitHub, the used simulation framework itself is not intended for open
source use. To ensure comparability to other methods and works, it is
necessary that simulations are published to serve as benchmarks.
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4. The process of transferring the learned control strategies to the real
world was not considered in this work. Concepts of continuously
learning strategies to adapt to changing circumstances in the real world
need to be tested. Additionally, concepts of making the strategies
learned in simulation more robust and hence improve the chance that
they will work in the real world need to be evaluated in this context.

5. In the work at hand, one deep reinforcement learning agent was trained
per building. Another approach, which is worth evaluating would
be to train a single agent with the goal, of achieving a generalized
strategy, which can be used for a wide variety of different buildings.
This strategy could include a step where the thermal properties of the
building are first detected in order to adapt the strategy accordingly.

6. The concept of offline reinforcement learning seems to be promising
for the problem of heat pump control in the real world. It would make
the process of model creation obsolete, as control strategies could be
learned from previously collected sensor data.
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Appendices

A PPO Parameters

The table lists the parameters set for PPO. Except for the learning rate and
γ, the default parameters from Stable Baselines325 were used.

Table 7: Summary of Parameters

Parameter Value
Algorithm PPO
Learning Rate 0.5 ∗ 10−4

γ 0.96 or 0.99 (depending on the building)
Batch Size 64
Number of Epochs when Optimizing 10
Number of Interactions per Update 2048
Generalized Advantage Estimator Bias
Variance Trade-Off Factor

0.95

Entropy Coefficient 0
Clip Parameter 0.2

25https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
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B Learned Strategies

Section 8.1.2 only illustrated the control strategies during the month of
March. In the following the control strategies during all of the months
contained in the test data are shown. All three subplots always show the
same weather profile. The control actions chosen by the agent are shown in
black. The indoor temperature is shown in orange. The outdoor temperature
is shown in blue. Note that the strategy from the efficient enhanced building
differs from the other two.
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Figure 19: Control Strategies for January
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Figure 20: Control Strategies for February
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Figure 21: Control Strategies for March
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Figure 22: Control Strategies for October
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Figure 23: Control Strategies for November
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Figure 24: Control Strategies for December
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