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A B S T R A C T

Accurate forecasts of demand play an important role in many businesses
and industries. Especially in the retail sector, these forecasts build the ba-
sis for planning various supply-chain activities such as stock management
or the allocation of scarce resources and personnel. In this context, the un-
derlying data are often time series. What makes time series data special is
that successive observations are usually not independent. In order to make
predictions of the future course of time series, established time series mod-
els therefore attempt to model the inherent structures and patterns based on
past observations. Potentials that external data sources may offer in the form
of leading indicators are often neglected.

Therefore, this work addresses the research question whether and under
which conditions the integration of external data contributes to improving
the accuracy of forecasts. Based on a similarity measure, leading indicators
from an external online open data source are determined for the time series
of a German retail company. Within an experiment, these leading indicators
are incorporated individually as external regressors into a linear time series
model. The comparison of the forecasting performance between the univari-
ate and bivariate models is intended to provide information on which factors
are responsible for the successful inclusion of leading indicators.

The results of the experiment reveal that a certain time series pattern has a
statistically significant influence on the outcome of the inclusion. When both
the time series of the retail company and the time series of their correspond-
ing leading indicators exhibit this pattern, the integration of the external
regressors can be particularly beneficial for the forecast accuracy. Moreover,
the similarity of the time series pairs plays a subordinate role as the results
additionally show.

Keywords— Forecasting; Leading Indicator; Similarity Matching; Google Trends;
ARIMAX model.



Z U S A M M E N FA S S U N G

Möglichst genaue Nachfrageprognosen spielen in vielen Unternehmen und
Branchen eine wichtige Rolle. Insbesondere im Einzelhandel bilden robuste
Prognosen von Abverkäufen die Grundlage für die Planung verschiedener
Aktivitäten innerhalb einer Lieferkette, wie z. B. die Lagerverwaltung oder
die Personal- und Ressourcenzuteilung. Häufig handelt es sich bei den zu-
grundeliegenden Daten um Zeitreihen. Das Besondere an Zeitreihendaten
ist, dass aufeinanderfolgende Beobachtungen in der Regel nicht unabhän-
gig voneinander sind. Etablierte Zeitreihenmodelle versuchen daher die der
Zeitreihen inhärenten Strukturen und Muster auf Basis historischer Werte zu
modellieren, um Vorhersagen für den zukünftigen Verlauf zu treffen. Mögli-
che Potenziale, die externe Datenquellen in Form von Frühindikatoren bie-
ten können, werden dabei oftmals vernachlässigt.

Die vorliegende Arbeit beschäftigt sich daher mit der Forschungsfrage, ob
und unter welchen Bedingungen die Integration von externen Daten zur Ver-
besserung der Prognosegenauigkeit beitragen kann. Hierfür werden auf Ba-
sis eines Ähnlichkeitsmaßes Frühindikatoren aus einer Online-Datenquelle
für die Zeitreihen eines deutsches Einzelhandelsunternehmens bestimmt. Im
Rahmen eines Experiments werden diese Frühindikatoren anschließend ein-
zeln als externe Regressoren in ein lineares Zeitreihenmodell aufgenommen.
Der Vergleich der Vorhersagegenauigkeit zwischen den univariaten und bi-
variaten Modellen soll Aufschluss darüber geben, welche Faktoren für die
Einbeziehung von Frühindikatoren erfolgskritisch sind.

Die Ergebnisse des Experiments zeigen, dass ein bestimmtes Zeitreihen-
muster einen statistisch signifikanten Einfluss auf den Ausgang der Einbe-
ziehung hat. Wenn sowohl die Zeitreihen des Einzelhandelsunternehmens
als auch die Zeitreihen ihrer entsprechenden Frühindikatoren dieses Muster
aufweisen, kann die Integration der externen Regressoren besonders vorteil-
haft für die Prognosegenauigkeit sein. Wie die Ergebnisse ebenfalls veran-
schaulichen, spielt die Ähnlichkeit der Zeitreihenpaare dabei eine unterge-
ordnete Rolle.

Schlagworte— Forecasting; Leading Indicator; Similarity Matching; Google Trends;
ARIMAX model.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

An accurate and robust forecasting of data plays an important role in many
businesses and industries as well as macroeconomic issues. Forecasting the
supply and demand within an industrial sector, the demand for goods and
labour within a production environment or forecasting the weather are just
a few examples. For the retail sector in particular, the accurate prediction of
future sales and demand has a sustainable impact, both economically and
environmentally. This impact can relate to several levels of the complete
supply-chain of a retail store. With improving the forecast accuracy, prod-
ucts receive a higher availability which prevents out-of-stock situations. In
addition, an accurate demand planning can provide the ability to minimize
waste due to overstocking. Moreover, precisely predicting the future amount
of products sold enables an effective stock management and an efficient al-
location of scarce resources and personnel (Fredén and Larsson [42], Taylor
and Letham [90]).

In this context, the underlying data are often time series. What makes
time series unique compared to other data structures is the dimension of
time, which increases the complexity of data analysis (Tavakoli et al. [89]).
Despite its importance, there are serious challenges associated with produc-
ing reliable and high accurate forecasts for time series data. An intuitive
approach to forecasting time series is to analyze historical data. The focus is
often on trends and seasonal patterns which will be extrapolated into the fu-
ture. It is assumed that the temporal structure of past observations provides
information about the future course of the time series (Sagaert et al. [81]).

Here, one important factor, namely information from external data sources,
is often neglected. The integration of external data sources can be discussed
intensively since it can be associated with various obstacles. The search for
publicly accessible data sources is tedious. External data sources are often
associated with costs, if providers charge for the use of their data. Then, this
data must first be purchased and subsequently preprocessed. In this case,
a reliable data quality is not always guaranteed. There is even less guaran-
tee that the use of external data will add any value to the forecast accuracy.
Therefore, they have to be evaluated by specialized departments or experts
in a complex process in which valuable potentials for modeling may be lost.
However, the inclusion of external data sources and the identification of in-
dicators, that have a leading effect on the time series being forecast, can
improve the sales forecast accuracy. If these indicators exhibit similarities in
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terms of patterns and temporal structures, they may contain leading context
information that explain some of the historical variation (Currie and Rowley
[30], Stock and Watson [87]). Selecting appropriate leading indicators and
their respective lead order is not trivial. For this reason, it is crucial to exam-
ine approaches, in which external time series can be merged and processed
so that they potentially lead to an improving forecast performance.

1.2 research objectives

The purpose of this work is to explore an approach to merge time series
from two datasets. One of these datasets shall be a freely accessible dataset
from an external data source. Based on a similarity measure, leading indica-
tors will then be determined and incorporated as external regressors in the
forecasting process of univariate time series. The motivation and purpose
lead to the core research question of this work.

Does the integration of external data sources and leading indicators
contribute to improving the accuracy of forecasts?

From this central question, further sub-questions can be derived.

- How can time series be merged?

- When is it beneficial to add external regressors and which conditions are criti-
cal for success?

- Do time series patterns and similarity have a significant influence?

These research questions are decisive for the content structure and approach
within this work. Eventually, they lead to the two fundamental hypotheses.

- The inclusion of external time series as leading indicators can improve forecast
accuracy.

- The higher the similarity between two time series, the more beneficial the inte-
gration will be.

The main objective is to examine these hypotheses with scientifically sound
methods and to answer the core research question including its sub-questions.
Here, it is essential to note that in this work no novel forecasting methods are
developed. Furthermore, it is not the goal to achieve the best possible fore-
casts for the individual datasets. The question of whether and when the ad-
dition of a leading indicator can be useful should rather be answered based
on established time series models. The critical factors can then be taken into
account in further forecasting tasks.

1.3 methodology

The hypotheses of this work are examined within the framework of an exper-
iment. This experiment should include and implement scientific methods. It
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must provide an approach that can be used to address the formulated hy-
potheses. For this reason, the underlying methodology must be well defined.
The main features of the approach followed in this work will now be de-
scribed.

The experiment is based on two datasets. One dataset is provided by a
German retail company which is active in the discounter and construction
market as well as in the consumer electronics business. It contains retail
sales figures, spanning over two years and including roughly 800 thousand
different products with a daily sampling rate.1 This dataset forms the basis
of the experiment since predictions and forecast errors are obtained for its
time series. The second dataset will be retrieved from Google Trends as an
online open data source. Google Trends is a tool developed by Google that
provides fine-grained data on the popularity of customer queries on certain
search terms in the Google search engine (Cebrián and Domenech [23]). The
service is freely available for various research activities. The search terms
used to create the Google Trends dataset will be collected based on meta-
information of the retail sales products. Both datasets include time series
data.

After the two datasets have been gathered and preprocessed for the ex-
periment, selected time series models will first be fitted for every univariate
retail sales time series. These models include rather simple baseline models
up to a stochastic, linear time series model. Then, forecast errors, which can
be used for a performance measure and comparative metric for model ac-
curacy, are calculated. Subsequently, one leading indicator from the Google
Trends dataset is determined for each individual retail sales time series. For
this purpose, the retail sales time series and external time series are merged
based on a similarity measure. There are several approaches to define simi-
larity between two time series. In particular, the similarity measure should
be capable of representing similar patterns and quantifying the strength and
direction of the relationship. The chosen leading indicators are then incor-
porated individually as external regressors into the linear time series model
converting a univariate model to a bivariate model. Forecast errors are cal-
culated analogously. Ultimately, the performances of the models are com-
pared with each other. Especially the performance difference between the
univariate and bivariate linear time series models is central for answering
the research questions. Finally, the obtained results are validated with three
multivariate analysis methods.

Further information on the individual components of the experimental
pipeline and detailed descriptions of the datasets are provided in chapter 3.

1 The name of the company cannot be unveiled due to a disclosure agreement.
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1.4 related work

This section provides a brief overview of previous work related to the re-
search questions formulated in this work. The objective is to understand the
current depth in this field of research and to find out if there are some pos-
sible gaps in the literature.

Time series are often affected by external factors that can influence the
future course. Such factors may include legislative activities, policy changes
or environmental regulations (Durka and Pastorekova [37]). For this reason,
a great research area and research interest have emerged from the isolated
consideration of historical values to the integration of external leading indi-
cators in prediction models. As versatile the resources of external influences
are, so diverse are the use cases for leading indicator search. There are mul-
tiple cases in which macroeconomic indicators and natural phenomena like
weather are examined and integrated into time series models. The search
term leading indicator time series resulted in approximately 2, 320, 000 hits at
Google Scholar, indicating that much research has been done in this area.

For instance, Durka and Pastorekova [37] modeled and predicted the Gross
Domestic Product (GDP) per capita in Slovakia while examining the impact
of unemployment rate as an external regressor. It was demonstrated that the
model including the external regressor was able to explain much of the vari-
ance in the target variable GDP. Moreover, the variable unemployment rate
contributed to a superior forecast performance. De Felice, Alessandri, and
Ruti [34] have shown that the use of weather data leads to a clear improve-
ment of forecasting accuracy for electricity demand in Italy. The inclusion of
external variables has also been studied in public health care. Wangdi et al.
[93] have shown that certain weather conditions have a leading effect on the
number of cases of malaria in endemic areas of Bhutan. It turned out that
the mean maximum temperature lagged at one month was a strong positive
predictor of increased malaria cases.

There are many comparable examples in academic literature. For the re-
tail sector, it especially important to incorporate variables that may explain
customer shopping behavior and thus correlate with the number of prod-
ucts sold. Murray et al. [68] provide empirical evidence to explain in de-
tail the psychological mechanism of how different aspects of weather af-
fect consumer spending. In addition, Bertrand, Brusset, and Fortin [14] have
shown that unseasonal weather has a significant impact on predicting retail
sales. Siwerz and Dahlén [85], Žliobaitė, Bakker, and Pechenizkiy [101] and
Pavlyshenko [76] suggest that calendar events and public holidays such as
Christmas and Easter and even specific weekdays can correlate with prod-
uct sales and improve forecast accuracy. Furthermore, Huang, Fildes, and
Soopramanien [48] have demonstrated that incorporating price and promo-
tional data can lead to substantially more accurate forecasts across a range
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of product categories.

With the recent advancements in digital technologies and widespread use
of social media as a category of online open data sources, an enormous
amount of user-generated content is grown (Asur and Huberman [7]). The
relevance of such online open data sources has already been verified in many
research tasks. Elshendy et al. [40] analyzed in their study the relationship
between the West Texas Intermediate daily crude oil price and multiple
predictors extracted from Twitter, Google Trends, Wikipedia, and the Global
Data on Events, Language, and Tone database (GDELT). Their results have
shown that the combined analysis of the four media platforms carries valu-
able information in making financial forecasting. Particularly Google Trends
has proven to be a convenient open data source. In 2012, Choi, and Varian
[25] presented in their report short-term forecasts of multiple economic in-
dicators (including unemployment rates, automobile demand and vacation
destinations). It turned out that the inclusion of Google Trends in the fore-
casting process could improve model outcomes by 5% to 20%. The examples
revealed a positive association of the volume of search queries with the finan-
cial and economic indicators. Here, the areas of application are again very
heterogeneous and researchers have shown that Google Trends data can be
successfully used to predict social and economic trends (Boone, Ganeshan,
and Hicks [16]).

However, despite the increasing use of Google Trends, comparatively little
amount of research has been made to incorporate its customer queries data
to enhance retail sales forecasts. Boone, Ganeshan, and Hicks [16] and Boone
et al. [17] made first attempts to examine if search volumes for certain search
terms can improve the sales forecasts of specific products. They have been
working with an online retailer specialized in food and cookware. Google
Trends time series were retrieved for selected search terms that may lead the
customer to the retailer according to the business owner. The premise is that
if a customer searches for a certain term, it may shows an intent of the cus-
tomer to explore and potentially buy the product. Then, the external time
series were included in forecast models resulting in a decrease of forecast
errors.

The idea and structure of the presented case studies regarding the use of
Google Trends are leading the way for the selected approach taken in this
work. External time series are extracted from Google Trends and integrated
into forecast models in order to improve the forecasting performance. Boone
et al. [17] and Elshendy et al. [40] even use the same linear time series models
that will be applied later. However, there are various aspects in which this
work differs greatly from the related work mentioned so far. All examples
have in common that the search terms have already been determined a pri-
ori. Boone et al. [17] have fixed the search terms after consultation with the
retailer either according to high-level product categories or based on unique
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selling propositions. This way, external regressors refer to the population
and not to specifications of individual products. In addition, in all examples
the whole set of external time series was integrated into the forecasting mod-
els and subsequently evaluated together. Accordingly, no similarity measure
has been computed to merge time series and to determine individual lead-
ing indicators. Therefore, the similarity is not considered in the forecasting
process as the indicators are already set. Elshendy et al. [40] do informally
report similarity measures, but they were not used in a preceding step to de-
fine leading indicators. Ultimately, only the results about whether there have
been improvements or deteriorations due to the integration of the external
data source are communicated. No factors or conditions are mentioned that
are essential for the successful inclusion of leading indicators. This work
aims to connect precisely at these points in order to close the apparent gap.
The procedure in which leading indicators are determined and the unveiling
of critical success factors distinguish this work from the previous work.

1.5 outline

Following the introduction, chapter 2 presents the theoretical foundations
of this work. First, the statistical properties and features of time series data
are introduced in section 2.1. This introduction is essential to understand
how time series models use the inherent structures of time series to make
forecasts. The time series models presented in this section consist of sim-
ple baseline models and a more complex linear time series model with its
potential extensions. This section ends with the presentation of a forecast
evaluation procedure that can be utilized to assess and compare the fore-
casting performance of the models. Subsequently, the decomposition of time
series and one well known decomposition method will be explained in sec-
tion 2.2. This section furthermore defines a parameter to properly quantify
the strength of possible seasonal time series patterns. Section 2.3 describes
the similarity matching for the leading indicator search. Here, a statistic will
be introduced to measure the similarity between two time series. The chap-
ter ends with the presentation of multivariate analysis methods, which are
used to evaluate the results of this work.

Chapter 3 specifies the design of the experiment. This includes a detailed
description of the datasets in section 3.2 and a comprehensive explanation
of the experimental pipeline in section 3.3. Within the experimental pipeline,
the underlying methodology will be illustrated step by step.

The results obtained in the experiment are presented in chapter 4. This
covers a performance comparison of the time series models in section 4.1
as well as the analysis of selected time series pairs in section 4.2. Based on
these two sections, the cross-correlation and the seasonal strength are ana-
lyzed as key indicators in section 4.3. Up to this point, qualitative statements
and hypotheses will be formulated, which are then will be evaluated using
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multivariate analysis methods. Their outcomes will be explained in section
4.4. The key findings and special aspects that should be considered when
conducting the experiment are discussed in section 4.5.

The final chapter 5 summarizes the main findings and answers the re-
search questions of this work.



2
T H E O R E T I C A L F O U N D AT I O N S

This chapter provides the theoretical background of this work. This includes
the definition of concepts and the presentation of selected models for time
series forecasting in section 2.1. This section particularly introduces the sta-
tistical properties and features of time series that are fundamental for time
series analysis. In addition to the presented time series models, a procedure
for evaluating the corresponding forecasting accuracies will be addressed.
With the results of this procedure, the models can be compared and poten-
tial key factors for the experiment can be extracted. Section 2.1 is followed
by the decomposition of time series data which enables an analysis of time
series patterns and components. This decomposition is essential for defining
indicators that can be used to measure the strength of time series patterns.
Subsequently, the leading indicator search with its similarity matching will
be explained in section 2.3. Here, the idea of leading indicator search is high-
lighted, and a method is presented with which two time series can be tested
for similarity. Last, three multivariate analysis methods are proposed for the
validation of the experimental results.

2.1 time series forecasting

2.1.1 Terminology

This subsection introduces the fundamental terms in form of basic defini-
tions. These definitional delimitations are necessary to understand the core
concepts of the time series models that follow.

2.1.1.1 Time Series

A time series is an ordered collection of observations (Xt)t=1,...,T measured
sequentially through time, where T denotes the number of observations ob-
tained until the current point in time. A time series can be continuous or
discrete, depending on whether the measurements are made continuously
through time or are taken at a discrete set of time points. For a discrete time
series, the data are typically recorded at equal intervals of time (Bourier
[18, p. 155], Chatfield [24, p. 11]).1 This may be the hourly development of
crude oil prices, the minute-by-minute change of a company share value
or the weekly sales of a product in a certain retail store. The frequency, in
which the observations are made, is called the sampling rate. What makes
time series data special is that successive observations are usually not inde-
pendent and time series analysis must take account of the order in which

1 All the time series examined in this work are discrete. For this reason, all subsequent descrip-
tions refer to discrete time series data.
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the observations are collected. In addition, time series analysis is different
from other statistical problems in that the observed time series is mostly the
only realization that will ever be observed. Therefore, describing the data
using summary statistics, finding suitable statistical models to describe the
data generating process and predict future values of the series constitute the
three main objectives of time series analysis (Chatfield [24, p. 12 f.]).

2.1.1.2 Backward shift and backward difference operator

Throughout this work, the backward shift operator B and backward difference
operator ∇ are employed extensively. The backward shift operator B is de-
fined by BXt = Xt−1 and has the effect of shifting the data back one pe-
riod. Hence, multiple applications of B to Xt shifts the data back multiple
periods: B jXt = Xt−j. The backward difference operator ∇ is defined by
∇Xt = Xt − Xt−1. Since B is also a convenient operator for describing the
process of differencing, the previous formula can alternatively be written as
∇Xt = Xt − Xt−1 = (1 − B)Xt. A second-order differencing can be writ-
ten as (1 − B)2Xt. Accordingly, the dth-order difference of Xt is provided
by (1−B)dXt. In general, the backshift notation is particularly useful when
combining differences, as the operators can be treated using ordinary alge-
braic rules (Hyndman and Athanasopoulos [51], Box et al. [20, p. 7]).

2.1.1.3 Stationarity

A common approach in the analysis of time series data is to consider the ob-
served time series as part of a realization of a process. This process can either
be of deterministic or stochastic nature (Box et al. [20, p. 6 f.]). When a series
is said to be deterministic, its future values can be predicted exactly from
past values. On the other hand, a time series is stochastic in that the future
is only partly determined by past values. Since most series are stochastic,
the following explanations restrict attention on a model for a stochastic time
series, often called a stochastic process2. The latter can be described as a fam-
ily of random variables indexed by time and will be denoted by {Xt, t ∈ T},
where T denotes the index set of times on which the process is defined. In
this context, the observed value at time t, namely xt, will be regarded as an
observation on an underlying random variable, Xt. Eventually, the observed
time series is called a sample realization of a stochastic process that describes
its probability structure (Chatfield [24, p. 24 f.], Brockwell and Davis [22, p.
7]).

An important class of stochastic processes for describing time series are
stationary processes. Stationary processes assume that the probabilistic prop-
erties of the process do not change over time, in particular varying about a
fixed constant mean level and with constant variance (Box et al. [20, p. 7]). At
this point, a distinction must be made between strict and weak stationarity.

2 Most authors use the terms model and process interchangeably.
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The following definitions will help to clarify the difference between these
two forms (Chatfield [24, p. 25], Brockwell and Davis [22, p. 15]).

Definition 1 (Strict stationarity) A stochastic process is said to be strictly
stationary, if (Xt1 , . . . , Xtn) and (Xt1+k, . . . , Xtn+k) have the same joint distri-
butions for all integers k and n > 0. Thus, the joint distribution of any set
of observations must be unaffected by shifting all the times of observations
forward or backward by any integer amount k (Box et al. [20, p. 24]):

(Xt1 , . . . , Xtn) ∼ (Xt1+k, . . . , Xtn+k), ∀t1, . . . , tn, k (2.1)

Definition 2 (Weak stationarity) A stochastic process is said to be weakly
stationary, if its first- and second-order moments are finite and do not change
through time. Conversely, this means that the mean function as the first-
order moment

µX(t) = E(Xt), ∀t ∈ Z

and the covariance between Xt and Xt+k as the second-order moment for
different values of t and k

γX(t, t + k) = Cov(Xt, Xt+k) = E[(Xt − µ)(Xt+k − µ)], ∀t, k ∈ Z

are independent of t,

µX(t) ≡ µ, ∀t ∈ Z,

γX(t, t + k) ≡ γX(k), ∀t, k ∈ Z.
(2.2)

γ(k) is called autocovariance function and γ(0) equals the variance σ2 when
the lag k is zero (Brockwell and Davis [22, p. 15]). The most fundamental
example of a stationary process is a sequence of independent and identically
distributed (i.i.d.) random variables with zero mean E(Xt) = 0 and constant
variance Var(Xt) = σ2. This process is weakly stationary and is referred to
as a white noise process. The autocovariance function is given by:

γX(k) =

0, k 6= 0

σ2, k = 0.

By convention, this work uses Zt (variously called series of innovations, shocks
or errors) and Z ∼ WN (0, σ2) to denote a white noise process. Although the
white noise process has very basic properties and is rarely used to describe
data directly, it is often used to model the random disturbances in more
complicated processes (Box et al. [20, p. 28 f.], Chatfield [24, p. 28]).
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2.1.1.4 Linear processes

The class of linear processes provides a general framework for studying sta-
tionary processes (Brockwell and Davis [22, p. 51]). If a time series Xt has
the representation

Xt = c +
∞

∑
j=−∞

ψjZt−j (2.3)

for all t, where Z ∼ WN (0, σ2) and c is some origin (e.g., its mean µ), the
series is a linear process. By using the backward shift operator B, equation
2.3 can be written more compactly as

Xt = ψ(B)Zt, (2.4)

where ψ(B) = ∑∞
j=−∞ ψjB j. In this equation the operator ψ(B) can be thought

of as a linear filter. When applied to a white noise input series Zt, it produces
the output Xt. Equation 2.4 allows the linear process to represent Xt as a
weighted sum of present and past values of the white noise process Zt (Box
et al. [20, p. 47], Brockwell and Davis [22, p. 51]).

However, the representation in 2.3 of the general linear process would not
be very useful in practice if it contained an infinite number of parameters ψj.
Autoregressive (AR), Moving average (MA) and Mixed Autoregressive Moving aver-
age (ARMA) processes introduce parsimony and are representationally useful
in modeling time series data (Box et al. [20, p. 52]).

autoregressive processes The first special case of general linear pro-
cesses are the AR processes, in which only the first p of the weights are
nonzero. The term autoregressive indicates that the process is a regression of
the variable Xt against itself using a linear combination of its past values
(Hyndman and Athanasopoulos [51]). The process can be written as

Xt = c + φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + Zt, (2.5)

where the symbols φ1, φ2, . . . , φp represent a finite set of weight parameters
(Box et al. [20, p. 8 f.]). The AR process is referred as an AR(p) model, an au-
toregressive model of order p. AR models are remarkably flexible at handling
a wide range of different time series patterns (Box et al. [20, p. 52]).

moving average processes Compared to the AR process, the MA pro-
cess uses past white noise shocks or errors in a regression-like model (Hyn-
dman and Athanasopoulos [51]):

Xt = c + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q + Zt. (2.6)

The symbols θ1, θ2, . . . , θq represent analogously the finite set of weight pa-
rameters and Xt can be thought of as a weighted linear sum of the last q
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random shocks Zt (Box et al. [20, p. 9 f.]). The MA process is referred as a
MA(q) model, a moving average model of order q (Box et al. [20, p. 53]).

Changing the AR(p) parameters φ1, . . . , φp and MA(q) parameters θ1, . . . , θq

results in different time series patterns. The variance of the random shocks
Zt will only change the scale of the series.

mixed autoregressive moving average processes If certain con-
straints on the values of the parameters are met, it is possible to write any
stationary AR(p) model as an MA(∞) model, and vice versa (Box et al. [20, p.
51 f.], Chatfield [24, p. 36 ff.]). However, this may involve an infinite num-
ber of parameters which are impossible to estimate from a finite set of data.
Many real-world time series data can be approximated in a more parsimo-
nious way (meaning fewer parameters are needed) (Chatfield [24, p. 38 f.]).
Therefore, it is often useful to include both AR and MA terms in a class of
mixed ARMA models, which aim to use as few parameters as possible (Box
et al. [20, p. 10]). The resulting process

Xt − φ1Xt−1 − · · · − φpXt−p = c + Zt + θ1Zt−1 + · · ·+ θqZt−q

or

φ(B)Xt = c + θ(B)Zt

(2.7)

with constant c, is said to be an ARMA model of order (p, q) (Box et al. [20,
p. 10]). Figure 2.1 shows a simulated time series with weekly sampling rate
based on an ARMA(1, 1) process with φ1 = 0.8 and θ1 = 0.4 scaled on a range
of [0, 1].

Figure 2.1: Simulated time series with weekly sampling rate based on an ARMA(1, 1)
process with φ1 = 0.8 and θ1 = 0.4 scaled on a range of [0, 1].

2.1.1.5 (Partial) Autocorrelation function

The previous descriptions introduced a time series as a sample realization
of a stochastic process, either as a linear combination of its past values, as
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a weighted linear sum of the last q random shocks or as an inclusion of
both. Along with the autocovariance function, the autocorrelation function can
be used at this point to assess the degree of dependence in the time series
data. Both functions play a crucial role in the problem of constructing an
appropriate model for the data (Box et al. [20, p. 43]). Just as the correla-
tion measures the extent of a linear relationship between two variables, the
autocorrelation function measures for stationary processes the linear rela-
tionship between Xt and Xt+k at lag k. An additional useful function, which
is complementary to the autocorrelation function, is the partial autocorrela-
tion function, which measures the excess correlation at lag k which has not
already been accounted for by autocorrelations at lower lags (Hyndman and
Athanasopoulos [51]). The autocorrelation function of a time series Xt can
be written as

pX(k) = Cor(Xt, Xt+k)

pX(k) =
E[(Xt − µ)(Xt+k − µ)]√

E[(Xt − µ)2]E[(Xt+k − µ)2]

pX(k) =
E[(Xt − µ)(Xt+k − µ)]

σ2
X

pX(k) =
γX(k)
γX(0)

.

(2.8)

Following the definition of a stationary process, the variance σ2
X = γX(0) is

the same at time t + k as at time t. An autocorrelation function pX(k) has
all the properties of an autocovariance function (e.g., it is an even function,
since pX(k) = pX(−k)). Furthermore, it satisfies the additional condition
pX(0) = 1 and has the usual property of correlation that |pX(k)| ≤ 1 (Box
et al. [20, p. 25]).

However, in practical problems the theoretical autocorrelation function is
unknown and there is a finite time series x1, x2, . . . , xT of T observations,
from which only estimates of the autocorrelations can be obtained (Box et al.
[20, p. 30 f.]). The most satisfactory estimate of the autocorrelation function
is called sample autocorrelation function or correlogram and can be written as

rX(k) = p̂X(k) =
cX(k)
cX(0)

, (2.9)

where

cX(k) = γ̂X(k) =
1
T

T−|k|

∑
t=1

(Xt − X̄)(Xt+|k| − X̄), −T < k < T (2.10)

is the estimate of the autocovariance function γX(k) and X̄ is the sample
mean of the time series. The sample (partial) autocorrelation function is one
of the most useful tools in assessing the behavior and properties of a time
series. It provides a general procedure for identifying which of the many
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possible stationary time series models is a suitable candidate for represent-
ing the dependence in the data (in the same way that plotting a histogram
helps to indicate which family of distributions may be appropriate) (Brock-
well and Davis [22, p. 18], Chatfield [24, p. 30 f.]). One common pattern
for stationary time series is to see short-term correlation where perhaps the
first three or four values of rX(k) are significantly different from zero. If the
sample autocorrelation coefficients seem to decrease in an approximately ex-
ponential way, then an AR(1) model is indicated. A higher-order AR model
may be appropriate, if the coefficients behave in a more complicated way. A
MA(1) is indicated, if the only significant autocorrelation is at lag one. When
a time series exhibits a trend, the coefficients for small lags tend to be large
and positive because observations nearby in time are also nearby in value.
Therefore, the sample autocorrelation function of a trended time series tends
to have positive values that slowly decrease as the lags increase. When a time
series exhibits a seasonal pattern, the autocorrelations will be larger for the
seasonal lags than for other lags. Hence, the sample autocorrelation function
can help to determine the order of a stationary process and is often used to
see if seasonality is present (Hyndman and Athanasopoulos [51], Chatfield
[24, p. 32]). The terms trend and seasonality will be further explained in sub-
section 2.2.1.

2.1.1.6 Forecasting

Forecasting a time series can be defined by finding a linear combination of
observed values x1, x2, . . . , xT that result in minimum forecast errors for fu-
ture values xT+h, h > 0. The forecasts of xT+h made at time T for h steps
ahead will be denoted by x̂T(h), where the integer h is called the lead time
or forecasting horizon (Chatfield [24, p. 3], Box et al. [20, p. 2]). Forecast er-
rors can be described as the deviation between the prediction and the actual
observed value. To understand the concept, one can think of daily sales of
a product in a certain retail store last month (T = 30). Based on the his-
torical values x1, . . . , x30, the task is to predict the sales of this product for
the next week, i.e., x̂30+1, . . . , x̂30+7 for a daily sampling rate with lead time
h = 7. Since most series are not deterministic, it is crucial to recognize the
structure, patterns and influencing factors of a time series. However, those
factors are typically random so that time series forecasting is rather finding
an appropriate model to accurately represent this random behavior. If this
random behavior is of stationary nature, valid techniques can be developed
for time series forecasting (Chatfield [24, p. 24]).

2.1.2 Baseline models

The following descriptions are highly condensed and merely give an overview
of selected models that intend to serve as a benchmark for the experiment.
The forecast errors achieved by these models form the baseline since they fol-
low rather simple rule-based approaches. Therefore, only the basic concepts
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of these models are briefly explained. They all have in common that they are
univariate forecasting models that work on isolated time series.

mean forecast The Mean Forecast model returns forecasts and predic-
tion intervals for an i.i.d. model applied to time series Yt based on the his-
torical mean. The underlying model can be described with Yt = µ + Zt. The
resulting forecasts for a specified horizon h are given by Ŷt+h = µ, where µ

is estimated by the sample mean (Hyndman and Khandakar [53], Hyndman
et al. [52]).

random walk To start with, a random walk process Xt is defined by
Xt = Xt−1 + Zt (Chatfield [24, p. 29]). If the random walk starts at time
t = 0 the process can also be written as Xt = X0 + ∑t

j=1 Zj so that Xt is the
accumulation of all past innovations (Mills [67, p. 283]). According to the
hypothesis of the random walk process, future steps or directions cannot
be predicted on the basis of past history (Malkiel [65, p. 26]). Nonetheless,
the corresponding Random Walk model, firstly employed by Pearson [77] in
1905, is one of the simplest and yet most important models in time series
forecasting (Nau [69]). The model can be divided into a model with and
without drift. Both variants assume that in each period, Xt takes a random
step away from its previous value, and the steps are i.i.d.. If the average value
of the step size is zero, a Random Walk model without drift is present. The
corresponding h-step-ahead forecast for a time series Yt is given by Ŷt+h = Yt.
This formula denotes that all future values will equal the last observed value.
If the average step size is a nonzero value c, the model is said to be a Random
Walk model with drift. It follows the process Xt = c + Xt−1 + Zt where c is
the nonzero drift parameter. This parameter can be defined as the average
increase from one period to the next (Nau [69]). The h-step-ahead forecast
is provided by Ŷt+h = ch + Yt (Hyndman and Khandakar [53], Hyndman et
al. [52]). The resulting long-term forecasts are looking like a trend line with
slope c, but it is always re-anchored on the last observed value (Nau [69]).

seasonal naïve If the data follow a random walk process, a Naïve
model is optimal, since all forecasts for time series Yt are set to be the value
of the last observation Ŷt+h = Yt. This is equivalent to a Random Walk model
without drift (c = 0). If the underlying time series is highly seasonal, a sim-
ilar model, called Seasonal Naïve, can be applied. In this case, each forecast
is set to be equal to the last observed value from the same season (e.g., the
same week of the previous year). The model can be written as Yt = Yt−s + Zt

where Zt is a normal i.i.d. error and s is the seasonal period. The h-step-ahead
forecast is given by Ŷt+h = Yt+h−s(k+1) where k is the integer part of (h− 1)/s
(i.e., the number of complete years in the forecast period prior to time t + h)
(Hyndman and Athanasopoulos [51]).

Figure 2.2 shows forecasts of the described baseline models for the simu-
lated ARMA(1, 1) time series.
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(a) Mean Forecast (b) Random Walk without drift

(c) Random Walk with drift (d) Seasonal Naïve

Figure 2.2: Forecasts of baseline models for a simulated time series based on an
ARMA(1, 1) process with weekly sampling rate and a forecast horizon of
h = 26.

2.1.3 Linear Time Series models

With the recent advancement in computational power of computers and
more importantly the development of cutting-edge machine learning ap-
proaches such as deep learning, new algorithms are developed to analyze
and forecast time series data (Siami-Namini, Tavakoli, and Namin [84], Ab-
doli, MehrAra, and Ardalani [1]). However, for more than half a century
linear time series models have dominated many areas of time series fore-
casting (Xie and Goh [98]). Especially one linear time series model, namely
Auto-Regressive Integrated Moving Average (ARIMA), has demonstrated its
outperformance in precision and accuracy in many real-world applications
(Siami-Namini, Tavakoli, and Namin [84]). Due to its statistical properties as
well as the underlying well known methodology it is on the most important
and widely used time series models (Zhang [99]). For this reason, this model
will constitute the core time series model for this work and the correspond-
ing experiment. The following subsection will introduce this model and two
of its potential extensions.

2.1.3.1 Auto-Regressive Integrated Moving Average model

In practice, many empirical time series are non-stationary and stationary AR,
MA or ARMA processes cannot be applied directly. One possible way of han-
dling non-stationary series is to apply differencing assuming that some suit-
able difference of the process is eventually stationary, on which an ARMA(p, q)
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model can then be fitted in the usual way. As described in subsection 2.1.1,
differencing can be applied multiple times (1− B)dXt, where d is the order
of differencing. There are an unlimited number of ways in which a time se-
ries can reveal non-stationary behavior. However, if the original time series
is differenced d times before fitting an ARMA(p, q) process, then the model
for the original undifferenced series that can handle non-stationary behavior
is said to be an ARIMA process of order p, d and q: ARIMA(p, d, q).3 The letter
I in the acronym ARIMA stands for integrated and d denotes the number of
differences taken (Box et al. [20, p. 80 ff.], Chatfield [24, p. 41 f.]). Therefore,
the ARIMA model is a modified form of the ARMA model and can be written
as (Hyndman and Athanasopoulos [51])

(1− φ1B − · · · − φpBp)︸ ︷︷ ︸
AR(p)

(1−B)dXt︸ ︷︷ ︸
d differences

= c + (1 + θ1B + · · ·+ θqBq)Zt︸ ︷︷ ︸
MA(q)

φ(B)(1−B)dXt = c + θ(B)Zt.

(2.11)

All the models already presented in this work are special cases of the ARIMA

model, as shown in table 2.1.

White noise ARIMA(0, 0, 0) with no constant

Random walk ARIMA(0, 1, 0) with no constant

Random walk with drift ARIMA(0, 1, 0) with a constant

Autoregression ARIMA(p, 0, 0)

Moving average ARIMA(0, 0, q)

Table 2.1: Special cases of ARIMA models (Hyndman and Athanasopoulos [51]).

Analogously to the baseline models presented in 2.1.2, an ARIMA model
can also be used to make forecasts. Point forecasts of this model are obtained
based on the following three steps (Hyndman and Athanasopoulos [51]):

1. Expand the ARIMA equation 2.11 so that Xt is on the left hand side
and all other terms are on the right,

2. Rewrite the equation by replacing t with T + h,

3. On the right hand side of the equation, replace future observations
with their forecasts, future errors with zero, and past errors with the
corresponding residuals.

This procedure starts with a forecast horizon of h = 1 and is repeated con-
tinuously for h = 2, 3, . . . until all forecasts have been calculated.

2.1.3.2 Seasonal Auto-Regressive Integrated Moving Average model

Up to this point, all previous remarks to stationary linear processes were
restricted to non-seasonal data. However, ARIMA models are also capable of

3 ARIMA models are sometimes called Box-Jenkins models based on the original key reference
Box and Jenkins [19] from 1970.
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modeling a wide range of seasonal data (Hyndman and Athanasopoulos
[51]). In general, a time series is said to exhibit periodic behavior with s time
periods per year, when similarities in the series occur after s basic time inter-
vals. This means that observations that are s intervals apart are similar. Let Bs

denote the operator such that BsXt = Xt−s and since a non-stationary series
is still assumed let the simplifying operation ∇sXt = (1−Bs)Xt = Xt−Xt−s

denote seasonal differencing (Box et al. [20, p. 306 ff.], Chatfield [24, p. 42

f.]). Based on these operators a general Seasonal Auto-Regressive Integrated
Moving Average (SARIMA) model with non-seasonal terms of order (p, d, q)
and seasonal terms of order (P, D, Q) may be written as

φ(B)Φ(Bs)(1−B)d(1−Bs)DXt = θ(B)Θ(Bs)Zt, (2.12)

where Φ, Θ denote polynomials in Bs of order P, Q respectively (Chatfield
[24, p. 42]). One can see from equation 2.12 that a SARIMA model is formed
by including additional seasonal terms in the ARIMA model. Ultimately, a
SARIMA model can be abbreviated as

ARIMA (p, d, q)︸ ︷︷ ︸
Non-seasonal part

of the model

× (P, D, Q)s︸ ︷︷ ︸
Seasonal part
of the model

,

where s is the seasonal period (e.g., number of observations per year) (Hyn-
dman and Athanasopoulos [51]).

2.1.3.3 Auto-Regressive Integrated Moving Average Exogenous Variable model

ARIMA processes can be used to model non-stationary time series. Further-
more, the SARIMA model was introduced as an extension of the general
ARIMA model by including the ability to handle seasonal data with seasonal
terms. Hence, ARIMA models are capable of modeling a wide range of var-
ious time series patterns. However, in the current form as denoted in 2.11

respectively 2.12 ARIMA models are only applicable for univariate time series
data. Therefore, the model must meet the requirement to be able to also in-
tegrate external regressors in the modeling and forecasting process in order
to be used as the primary model within experiment. Fortunately, there exist
an additional extension of the ARIMA model for this requirement. This ex-
tension is called an Auto-Regressive Integrated Moving Average Exogenous
Variable (ARIMAX) model. It enlarges the ARIMA model through the inclusion
of external variables and at the same time give evidence of the contribution
of each of them (Elshendy et al. [40]). As an extension of ARIMA, ARIMAX

inherits the capacity to identify the underlying patterns in time series data
and to quantify the impact of each external regressor (Victor-Edema and Essi
[91]). The following equation 2.13 will describe an ARIMAX process for a time
series Yt with non-seasonal data and the inclusion of one external regressor
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Xt. The idea can be easily extended to include seasonal terms and multiple
external variables. Using backward shift operators, the model is given by

φ(B)(1−B)dYt = c + βXt + θ(B)Zt, (2.13)

where φ(B) = 1− φ1B − · · · − φpBp, θ(B) = 1 + θ1B + · · ·+ θqBq, Xt is an
external variable at time t and β is its coefficient (Fredén and Larsson [42, p.
10 f.], Victor-Edema and Essi [91]).

While this extension looks straightforward, one disadvantage is that the
coefficient β of the external variable is hard to interpret. In a linear regression
setting, the value of β is the effect on Yt when Xt is increased by one unit.
This is not the case for an ARIMAX model. The presence of lagged values of
the time series Yt in φ(B)(1− B)dYt means that β can only be interpreted
conditional on the value of previous values of Yt, which is hardly intuitive
(Hyndman [49]).

2.1.3.4 Model selection and diagnostic checking

The linear time series models presented so far reveal numerous parameters
that need to be estimated from a finite set of data. Hence, time series anal-
ysis and forecasting usually involves finding a suitable model for this set
of data. However, it should be mentioned that this suitable model might
be only an approximation to the data. Depending on the complexity of the
time series patterns being modelled and the complexity and accuracy of the
model, there will be departures from the model to a greater or lesser extent.
Statistical model building is generally an iterative, interactive process and
usually has three main stages (Chatfield [24, p. 71 f.]):

1. Model specification (or model identification),

2. Model fitting (or model estimation),

3. Model checking (or model verification or model criticism).

In terms of ARIMA models and its extensions, these three stages can be fur-
ther refined using the following general procedure provided by Hyndman
and Athanasopoulos [51]:

1. Plot the data and identify any unusual observations.

2. If necessary, transform the data to stabilize the variance.

3. If the data are non-stationary, take first differences of the data until the
data are stationary.

4. Examine the (partial) autocorrelation function: Is an ARIMA(p, d, 0) or
ARIMA(0, d, q) model appropriate?

5. Try the chosen model(s), and use a model selection criterion to search
for a better model.
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6. Perform diagnostic checks by doing appropriate statistical tests.

7. Once the diagnostic checks are passed, calculate forecasts.

This procedure is necessary since determining an appropriate ARIMA model
to represent an observed time series involves a number of interrelated prob-
lems. These include the choice of p and q (order selection) and the estimation
of the mean µ, the parameters {φi, i = 1, . . . , p}, {θi, i = 1, . . . , q}, the white
noise variance σ2 and especially the order of differencing d respectively D
for SARIMA models. In particular, the order selection is a crucial issue since
in practice the true order of the model generating the data is unknown. For
this reason, techniques are required to find an order that represents the data
optimally in some sense (Brockwell and Davis [22, p. 137 ff.]).

Analyzing the sample (partial) autocorrelation function is one technique
that can be helpful in determining the value of p or q. However, if p and q
are both positive, the sample autocorrelation function and partial autocorre-
lation function are difficult to recognize and do not help in finding suitable
values (Brockwell and Davis [22, p. 155]). In the case of p > 0 and q > 0
there need to be a more systematic approach using a sophisticated model
selection criteria that gives a numerical-valued ranking of all value com-
binations. One of the most commonly used model selection criteria is the
bias-corrected version of the Akaike’s Information Criterion (AIC), denoted
by AICC (Chatfield [24, p. 76]). AICC uses a maximum likelihood estimation
technique that finds the values of the parameters which maximize the prob-
ability of obtaining the observed data. For ARIMA models, the AICC statistic
can be written as

AICC = AIC +
2(p + q + k + 1)(p + q + k + 2)

T − p− q− k− 2
, (2.14)

where AIC = −2log(L)+ 2(p+ q+ k+ 1), k = 1 if c 6= 0, k = 0 if c = 0 and L
is the likelihood of the data (Hyndman and Athanasopoulos [51]). Measured
by the likelihood function, this criterion essentially chooses the parameters
and thus the model which minimize the AICC statistic, subject to a penalty
term that increases with the number of parameters fitted in the model.4

However, AICC tend not to be a good guide for selecting the appropriate
order of differencing d respectively D of a model, but only for selecting the
values of p and q. AICC values between models with different orders of dif-
ferencing are not comparable, since differencing changes the data on which
the likelihood is computed. Therefore, there need to be another approach to
choose the order of differencing. One approach is to simply difference the
non-stationary and potentially seasonal series d respectively D times until
the series appears to be stationary and (most of) the seasonality is removed.
An additional approach for further evaluation is the use of formal proce-
dures, including testing for stationarity (Chatfield [24, p. 43], Hyndman and

4 Readers are referred to Brockwell and Davis [22, p. 171 ff.] for detailed information about the
AICC model selection criterion.
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Athanasopoulos [51]).5

After choosing appropriate values for p, q, d and D, the final selection
of a model depends on a variety of diagnostic checks (also called goodness
of fit tests6). These diagnostic checks can be systematized to a large degree
by the use of model selection criteria such as the minimization of the AICC
statistic. A common diagnostic check involves some sort of residual analysis.
Residuals are in time series analysis generally the one-step-ahead forecasting
errors written as

et = xt − x̂t−1,

where xt denotes the observed value of Xt at time t and x̂t−1 is the forecast
made for time t at time t− 1. If the model is satisfactory, then the residuals
should form a random series and resemble white noise. Residuals can be
examined in several ways to make sure that they are consistent with their
expected behavior under the model.7 In order to assess the overall fit of the
model, the residuals can be plotted against time over the whole period of fit
and treated as a time series in its own right (Brockwell and Davis [22, p. 179

f.]). If the diagnostic checks suggest that the fitted model is inadequate, then
the forecasting method based on it will not be optimal (Chatfield [24, p. 77

f.]).

2.1.4 Evaluation of forecasts

The performance of a time series model is usually measured by how well
the model is able to predict the future. Intuitively, this is reflected in the de-
viation between the actual value YT+h and its corresponding forecast ŶT+h.
Based on forecast errors, several error metrics can be defined to assess the
forecast accuracy and to enable an overarching model comparison. The ques-
tion arises, whether there is a standard procedure to evaluate the perfor-
mance and forecasting ability of time series models, especially on data the
models have not yet seen.

To assess the generalizability of algorithms in classification and regres-
sion, Cross-validation (CV) is one of the most widely used methods (Hastie,
Tibshirani, and Friedman [45, p. 241]). Because of its simplicity and univer-
sality, many results on model selection performances exist on CV procedures
(Arlot and Celisse [6]). Larson [60] already noticed in 1931 that training an

5 A common statistical test for testing the presence of a unit root against the alterna-
tive hypothesis of stationarity is the Dickey–Fuller test (Dickey and Fuller [36]). An addi-
tional statistical test for testing the null hypothesis that a time series is stationary is the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. The resulting p-value provides an indication
whether differencing is required (Kwiatkowski et al. [59]).

6 Box et al. [20, Ch. 8, p. 284 ff.] provide full details on several diagnostic checks.
7 A well known test for residual analysis is the Box-Ljung portmanteau lack-of-fit test. This test

tests if the residuals form a stationary series and resemble white noise (Box et al. [20, p. 289

ff.]).
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algorithm and evaluating its statistical performance on the same data yields
an overoptimistic result. In fact, the output of the algorithm should rather
be tested on new, unseen data. Against this background, CV was raised to fix
this issue and consists in its most primitive but nevertheless useful form in
the controlled or uncontrolled splitting of the data into two samples (Stone
[88]). One sample (often called training sample or training set) is used for
fitting the algorithm. The remaining data (often called validation sample or
validation set) are used for evaluation and can play the role of new data as
long as data are i.i.d.. This becomes particularly useful when only a limited
amount of data is available and a simple split in training and test set is insuf-
ficient (Arlot and Celisse [6]). At this point, it is important to mention that
there are various splitting strategies that lead to various CV methods. Arlot
and Celisse [6] provide a detailed overview of each method and what factors
should be taken into account.

One of the most widely applied procedures is the well known K-fold CV.
This procedure uses part of the available data to fit the model, and a different
part to test it. The data is divided into K parts of approximately equal cardi-
nality n/K. After the preliminary partitioning of data, the model is fitted to
the K − 1 parts of the data and the performance of the model is evaluated
for the kth part. This operation is performed for the parts k = 1, 2, . . . , K
ensuring that each part successively plays the role of the validation sample.
The evaluation results of the K operations can then be combined (Hastie,
Tibshirani, and Friedman [45, p. 241 f.], Arlot and Celisse [6]).

When it comes to time series forecasting, however, practitioners are often
unsure of the best way to evaluate their models. There is often a feeling that
one should not be using future data to predict the past (Bergmeir, Hyndman,
and Koo [13]). A standard evaluation procedure in the traditional forecasting
literature is the out-of-sample (OOS) procedure, where a section from the end
of the series is withheld for evaluation. By using OOS, only one evaluation
on a test set is accordingly considered, whereas with the use of CV, various
such evaluations are performed. Therefore, the benefits of CV, especially for
small datasets, cannot be exploited (Bergmeir, Hyndman, and Koo [13]).

For this reason, a more sophisticated version of the basic training and
test split, called time series CV, has been developed. What distinguishes this
procedure is that there are a series of test sets, each consisting of a single ob-
servation. Only the observations that occurred prior to the observation that
forms the test set are part of the corresponding training set. Each iteration
yield to new data in the training set and with each new data point a h-step-
ahead forecast is made for a selected forecast horizon h. Hence, no future
observations can be used in the forecasting process. According to this proce-
dure, several forecast errors can then be calculated. Figure 2.3 illustrates the
series of training and test sets, where the blue observations denote training
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data, the red cells denote test data and the grey cells denote data that is not
used in the specific iteration (Hyndman and Athanasopoulos [51]).

Figure 2.3: Time series CV with a multi-step-ahead forecast and a forecast horizon
of h = 3 (Hyndman and Athanasopoulos [51]).

The forecast accuracy in this procedure is computed by averaging over
the generated forecast errors made on the test sets. This technique is also
known as evaluation on a rolling forecasting origin since the origin at which the
forecast is based rolls forward in time (Hyndman and Athanasopoulos [51]).
The forecast errors can then be utilized to compute error metrics in order to
assess the achieved forecast accuracy of the underlying model.

2.2 decomposition of time series

Many real-world time series data exhibit a variety of complex patterns. In
order to make further investigations into the behavior of time series, it is
often helpful to split a time series into several components, each represent-
ing an underlying pattern category. Decomposing a time series accurately
into these components can reveal insights of the time series data from dif-
ferent perspectives and facilitate further analysis and time series tasks (Wen
et al. [94], Hyndman and Athanasopoulos [51]). This section contains the
definitional delimitation of time series components, the presentation of a
common method for extracting these components and the definition of sea-
sonal strength.

2.2.1 Time Series components

There are commonly three types of patterns a time series can reveal: Trend,
Seasonality and Cycles. When a time series is decomposed into components,
the trend and cycle are usually combined into a single trend-cycle compo-
nent (sometimes called trend for simplicity). Ultimately, a time series com-
prises of a trend-cycle component, a seasonal component and a remainder
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component. In describing time series data, these patterns and components
need to be defined carefully (Hyndman and Athanasopoulos [51], Chatfield
[24, p. 13 f.], Wen et al. [94]):

Definition 3 (Trend) A trend is defined as a long-term increase or decrease
in the data. Hence, it describes the long-term direction of a time series. The
values of a time series scatter around the trend over time.

Definition 4 (Seasonality) The seasonal component generally refers to re-
peated seasonal factors which affect the data. Those seasonal factors can be
the time of the year (e.g., special events such as Christmas or Easter), the day
of the week or other repeating patterns within any fixed period.

Definition 5 (Cycles) A cycle occurs when the time series exhibit rises and
falls that are not of a fixed frequency. Economic conditions are usually the
cause of these fluctuations and they are often related to the business cycle.

Definition 6 (Remainder) In addition to the components described so far,
other variables can have an effect on the time series data. These can be fac-
tors which have a one-time effect or variables that are mostly unknown and
repeatedly but irregularly affect the time series in their intensity and direc-
tion. These effects are summarized under the remainder component.

The decomposition of a time series can usually be of an additive or mul-
tiplicative form. If an additive form is assumed, the decomposition can be
written as

Yt = St + Tt + Rt, (2.15)

where Yt is the time series data, St the seasonal component, Tt the trend-cycle
component and Rt is the remainder component, all at period t. A multiplica-
tive decomposition would alternatively be written as:

Yt = St × Tt × Rt. (2.16)

The choice of decomposition form depends on the patterns the time series
shows (Hyndman and Athanasopoulos [51], Brockwell and Davis [22, p. 23

f.]).

2.2.2 Decomposition methods

When choosing a forecasting model for a time series that includes trend, cy-
cles and seasonality, it is crucial to apply a method that is able to capture
its patterns properly (Hyndman and Athanasopoulos [51]). This subsection
will briefly describe Seasonal and Trend decomposition using Loess (STL) as
a method of time series decomposition.
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STL, developed by Cleveland et al. [27], is one of the most classical and
widely used decomposition methods (Wen et al. [94]). It is based on a se-
quence of smoothing and filtering procedures using a locally weighted re-
gression, commonly known as Loess (LOcal regrESSion) (Cleveland et al. [27],
Rojo et al. [80]). For a given time of observation, the Loess smoother is based
on fitting a weighted polynomial regression, where weights decrease with
increasing distance from the nearest neighbor (Dagum and Luati [33]). In a
multi-step process in which moving averages alternate with Loess smooth-
ing, the time series is fitted iteratively until trend and seasonality stabilize.
The degree of smoothing in the trend and seasonal components are deter-
mined by six parameters. The components are extracted from the data series
at the end of the STL process (Rojo et al. [80]). A detailed description of
the alternating algorithm can be found in Cleveland et al. [27]. Zhou et al.
[100] provide a graphical representation of the internal circulation process
of STL. Figure 2.4 shows the simulated ARMA(1, 1) time series and its three
components estimated by STL.

Figure 2.4: STL decomposition of the simulated ARMA(1, 1) time series.

The components are shown separately so that their relative behavior can
be visualized. To reconstruct the data in the top panel, one can add the three
components together. When the seasonal and trend-cycle components have
been subtracted from the data, the remainder component in the second panel
is left (Hyndman and Athanasopoulos [51]). However, many time series data
from real-world applications are affected by several repeated activities or
schedules, which introduce multiple seasonality. STL suffers from the inabil-
ity to handle abrupt trend changes and less flexibility in the presence of
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multiple seasonality. Therefore, an extension of STL called Multiple Seasonal-
Trend decomposition using Loess (MSTL) has been proposed allowing the
decomposition of time series with multiple seasonal patterns (Bandara, Hyn-
dman, and Bergmeir [11]). The difference between these two methods lies in
how to estimate multiple seasonal components (Wen et al. [94]).

2.2.3 Definition of seasonal strength

Retail sales, in particular, often exhibit strong seasonal variations, conse-
quently making an effective modeling of retail sales time series a challenging
task (Chu and Zhang [26]). Certain products may be bought frequently dur-
ing the Christmas or Easter period. Outside of these events, however, these
products may be less in demand. For this reason, it is even more important
to define an indicator that can be used to estimate the seasonal strength of a
time series. The decomposition method and the resulting time series compo-
nents described in the previous subsections can also be used to handle this
task (Wang, Smith, and Hyndman [92]). If a component is removed from the
original data, the resulting values are the component adjusted data (e.g., the
seasonally adjusted data for an additive decomposition is given by Yt − St).
If a time series shows strong seasonal patterns, the detrended data should
have much more variation than the remainder component. Hence, the sea-
sonal strength of a time series can be defined by

FS = max
(

0, 1− Var(Rt)

Var(St + Rt)

)
, (2.17)

where Var(·) is the variance of the corresponding component. A value of
FS close to 0 indicates almost no seasonality within the time series. The two
variances should be approximately the same. Contrarily, a series with strong
seasonality will have FS close to 1 because Var(Rt) will be much smaller than
Var(St + Rt) (Hyndman and Athanasopoulos [51]).

2.3 leading indicator search

One of the main objectives of this work is to examine to what extent external
data sources and thus external time series can be utilized to improve the
forecast accuracy of a retail sales time series. Finding external time series
that benefits the forecasting process is an approach, which is referred to in
the micro- and macroeconomic literature as a leading indicator search (Bloom,
Buckeridge, and Cheng [15]). The following explanations will clarify what
leading indicator search is about and what methodology can be used to
implement it.



2.3 leading indicator search 28

2.3.1 Definitions

The term leading indicator can be defined as a variable whose significant fluc-
tuations anticipate significant fluctuations in a target variable. In the time
series domain, it shows similar patterns and thus exhibit a similar course as
the target variable but delayed by a specific lag. If a time series is shown to
provide an early indication of structural changes consistently, then the series
is called a leading indicator (Bloom, Buckeridge, and Cheng [15]). Regard-
ing the objectives proclaimed in this work, a retail sales time series is the
target variable and will be denoted as response time series. The external time
series is a potential leading indicator. This means that external time series
whose structural changes provide an early indication of the development of
the response time series may eventually have a beneficial impact on predict-
ing its future values. Figure 2.5 illustrates highly simplified the concept of a
lead-lag relationship between two time series.

Figure 2.5: Illustration of a sample lead-lag relationship between two time series.
Both time series have a weekly sampling rate. It can be seen that the
leading indicator may be used to anticipate future fluctuations of the
response time series.

The problem arises, how to describe and model the similarity and interre-
lationship existing between two time series. There are several methodolog-
ical choices and approaches on identifying lead-lag relationships. A well
known and commonly used statistical tool in evaluating and quantifying the
strength and direction of the lead–lag relationship between two time series,
is the cross-correlation analysis. By computing the correlation, expressed as
the cross-correlation coefficient, between two time series at a large number
of lags, the similarity between these two can be measured (Olden and Neff
[75]). For this reason, the cross-correlation is a suitable metric to address
the research questions and thus will excessively be exploited as a similarity
measure in this work.
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2.3.2 Similarity matching with cross-correlation

As presented in section 2.1, a stationary stochastic time series Yt can be de-
scribed by its mean µ, autocovariance function γY(k) and autocorrelation
function pY(k). For the measurement of similarity between two time series
Xt and Yt, the cross-correlation function can be employed as an analysis tool.
It is a natural metric for measuring the similarity between segments of time
series and helps to identify lead times between time series by lagging Xt

to maximize the cross-correlation function (Bloom, Buckeridge, and Cheng
[15]). For this purpose, it is useful to regard the pair of time series as real-
izations of a hypothetical population of pairs of time series, called a bivariate
stochastic process (Xt, Yt). In this case, Xt is the external time series that got
classified as a leading indicator and Yt is the response time series. In this
work, the assumption is made that the bivariate stochastic process (Xt, Yt)

is stationary. This implies that the two time series Xt and Yt have constant
means (µX, µY) and constant variances (σ2

X, σ2
Y) (Box et al. [20, p. 429]). Fol-

lowing this assumption, the corresponding cross-covariance function between
Xt and Yt at lag k can be written as

γXY(k) = E[(Xt+k − µX)(Yt − µY)]

γXY(k) = Cov(Xt+k, Yt), k = 0,±1,±2, . . . .
(2.18)

The cross-correlation coefficient at lag k between Xt+k and Yt is similarly
given by

pXY(k) =
γXY(k)
σXσY

. (2.19)

pXY is called the cross-correlation function of the stationary bivariate process.
In contrast to the autocorrelation function, the cross-correlation function is
not symmetric about k = 0, since pXY(k) is not in general equal to pXY(−k)
(Chatfield [24, p. 27]). Similar to the autocorrelation function, the theoret-
ical cross-correlation function remains unknown. The cross-correlation co-
efficients have to be estimated from the data, constituting the sample cross-
correlation function. The sample cross-correlation function is provided by the
estimate rXY(k) of the cross-correlation coefficient at lag k

rXY(k) =
cXY(k)
SXSY

, k = 0,±1,±2, . . . , (2.20)

where SX and SY are the estimates of
√

cXX(0) = σX respectively
√

cYY(0) =
σY and cXY(k) is the estimate of the cross-covariance coefficient at lag k (Box
et al. [20, p. 431 f.]). Figure 2.6a shows the estimated cross-correlation func-
tion of the two time series plotted in figure 2.5.
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(a) Estimated cross-correlation function. (b) Shifted response time series.

Figure 2.6: Estimated cross-correlation function and shifted response time series.
Highest cross-correlation coefficient at lag k = −9. The blue dashed
lines represent the approximated confidence interval for a 5% signifi-
cance level (±1.96/

√
n). Cross-correlation coefficients exceeding these

limits can be considered significantly different from zero. Response time
series shifted by lag k = −9.

In the context of a lead-lag relationship, only negative values of k are im-
portant, since the goal is to identify which external time series has a leading
effect on the response time series Yt. A negative value for k corresponds to
a correlation between the external series Xt at a time before t and the time
series Yt at time t. In the example illustrated in figure 2.6a, the highest es-
timated cross-correlation coefficient is at lag k = −9. Since a similar course
is expected, this means that knowing the value Xt=−9 of the external time
series at time t = −1 may be advantageous for predicting Ŷt=0 (in case the
forecast horizon is h = 1). To take advantage of this potential benefit, either
the external time series or the response time series need to be shifted by lag
k in an appropriate way. Figure 2.6b shows the sample response time series
shifted by lag k = −9.

However, calculating the sample cross-correlation is not enough. Including
leading indicators in a forecasting model introduces two modeling stages,
which have to be taken into account in the further course of this work
(Sagaert et al. [81]):

1. Selection of the appropriate leading indicators from the complete set
of potential ones.

2. Evaluate their impact on the forecasting accuracy.

This work concentrates on an application, in which a bivariate time series
forecast scheme is developed using the leading indicator in concert with
the response time series. The ARIMAX model described in 2.1.3.3 provides
such a scheme, in which the leading indicator is incorporated as an external
regressor.
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2.4 multivariate analysis methods

With the previous sections, the similarity matching and the time series de-
composition were introduced. They result in two factors that can have a sig-
nificant impact on the leading indicator search. The cross-correlation, which
quantifies the similarity between two time series and the seasonal strength,
which can be used to estimate the effect of seasonal patterns. To assess the
impact of these factors, statistical analysis methods are required. For this rea-
son, some of the basic characteristics of selected multivariate analysis meth-
ods are presented in the following sections. Two methods, namely multiple
linear regression and Analysis of variance (ANOVA), are considered parametric
approaches and one method, namely Align Rank Transform Contrasts (ART-C),
is a nonparametric alternative. The variable set that will be used later on
in these methods consists of one variable that will be regarded as the de-
pendent variable (referred to as response variable) and multiple independent
variables (referred to as predictors or covariates). More detailed information
about the variable set will be provided in chapter 3. The parametric methods
were selected due to the presumed linear relationship between the predictor
variables and the response variable. All three multivariate analysis methods
will be used to analyze the experimental results obtained throughout this
work. It is important to mention that these methods are not explained in
their entirety as the focus is primarily on the application of these methods
and not on their derivations. The aim is to provide enough information to
be able to interpret the analysis results. References to comprehensive infor-
mation from the relevant literature are provided at selected explanations.

Before the analysis methods are introduced, however, the term interaction
effect will first be defined. An interaction between two independent variables
X1 and X2 is said to occur when the effect of variable X1 on the response vari-
able Y changes whenever there is change in the value of X2. This represents
the idea that the value of the dependent variable may relate in some nonad-
ditive way to the values of both predictor variables (Navarro [72], Norman
and Streiner [74, p. 91]). The three presented analysis methods can integrate
and analyze interaction effects.

2.4.1 Multiple linear regression

In statistical learning, there is usually an assumption that there is some rela-
tionship between the quantitative response variable Y and p different predic-
tor variables X1, X2, . . . , Xp. This relationship can be written in the general
form

Y = f (X) + ε,

where f is some fixed but unknown function representing the systematic
information that X1, . . . , Xp provide about Y and ε is a random error term
representing the stochastic component (James et al. [54, p. 16]). Multiple
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linear regression assumes that this relationship is of linear form and that f
can be approximately estimated by a linear function given by

Y = XT β + ε = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε, (2.21)

where Xj represents the jth predictor, β0 is the intercept and β j with j ∈
{1, . . . , p} is the regression coefficient that quantifies the association between
predictor variable Xj and the response variable. In this form, multiple linear
regression is one of the most widely used statistical techniques in various
fields of science (James et al. [54, p. 59 ff.], Czado and Schmidt [32, p. 191

ff.]).

To include potential interaction effects between predictor variables, equa-
tion 2.21 can easily be extended. Considering a standard multiple linear re-
gression model with two predictor variables

Y = β0 + β1X1 + β2X2 + ε,

where the association between X1 and Y is a linear constant represented by
the regression coefficient β1. An interaction effect between X1 and X2 can
now be included by introducing a third predictor, which is constructed by
computing the product of X1 and X2:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

= β0 + (β1 + β3X2)X1 + β2X2 + ε

= β0 + β̃1X1 + β2X2 + ε.

The association between X1 and Y is no longer constant since β̃1 is now a
function of X2. This means that a change in the value of X2 will change the
association between X1 and Y (James et al. [54, p. 88], Balli and Sørensen
[10]).

In general, there are two major use cases of multiple linear regression:
Prediction and inference. In a prediction setting, the goal is to estimate f that
it yields in accurate predictions for Y, based on the observed values of the
predictor variables. Within the inference analysis, the goal is to understand
the association between Y and X1, . . . , Xp. The following questions may arise:

- Which predictors are associated with the response?

- What is the relationship between the response and each predictor?

- How strong is the relationship?

- Are there any interaction effects between the predictor variables?

It should be mentioned that these two uses of multiple linear regression
are not mutually exclusive (James et al. [54, p. 17 ff.], Allison [4, p. 1 f.]).
However, in the context of this work, the focus is primarily on the inference
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analysis.

In order to answer the questions above, the regression coefficients β j need
to be analyzed. In practice, these coefficients are unknown and need to be
estimated such that the linear model in 2.21 fits the available data well. The
most common approach is the ordinary least squares (OLS) method, in which
the estimates β̂ j are chosen that minimize the Residual Sum of Squares (RSS)
(James et al. [54, p. 72 f.]).8

With the help of the estimated covariance matrix ∑̂(β̂) = σ̂2(XTX)1, where
X is the design matrix and σ̂2 is the estimate of the residual variance, it is
possible to perform hypothesis tests on the coefficients. In terms of infer-
ence analysis, particularly two tests, namely F-test and t-test, are of special
importance for this work. The F-test tests the null hypothesis whether all
the regression coefficients are zero (no relationship between response and
predictor variables)

H0 : β1 = β2 = · · · = βp = 0

versus the alternative hypothesis that at least one coefficient is nonzero

H1 : ∃j = 1, . . . , p, β j 6= 0.

The t-test tests the null hypothesis whether one selected regression coeffi-
cient is zero (no relationship between response and selected predictor vari-
able)

H0 : β j = 0

versus the alternative hypothesis that the coefficient is nonzero (a relation-
ship exists)

H1 : β j 6= 0.

Based on the resulting p-values, it can be determined whether to reject the
null hypotheses (James et al. [54, p. 75 ff.], Czado and Schmidt [32, p. 213

ff.]).

However, these hypothesis tests are subject to a number of assumptions.
Most of these assumptions relate to the error term ε in equation 2.21. The
error terms are considered random variables ε1, . . . , εn that represent all the
unmeasured causes of the dependent variable Y. The assumptions, formally
known as Gauss-Markov assumptions, are (James et al. [54, p. 66], Kutner et al.
[58, p. 18]):

1. E(εj) = 0 ∀j,

8 Detailed information about the OLS method can be found in Czado and Schmidt [32, p. 197

ff.].
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2. Var(εj) = σ2 ∀j,

3. Cov(εi, εj) = 0 ∀i 6= j,

4. ε ∼ N (0, σ2).

These assumptions imply that the error terms are mean independent, vari-
ance independent (also known as homoscedasticity), uncorrelated and follow
a normal distribution.9 Their distribution parameters do not depend on the
realizations of Xi. The first assumption guarantees that the least squares esti-
mates β̂ j are unbiased estimates. The second and third assumption guarantee
that least squares coefficients are efficient. Their standard errors are at least
as small as those produced by any other unbiased, linear estimation method.
The normality assumption implies that the results of statistical tests includ-
ing p-values will be correct. These assumptions need to be satisfied for the
results and inferential conclusions to be strictly valid (Allison [4, p. 122 ff.]).
In addition, multiple linear regression assumes that the causal mechanism
with which the values of Y are generated is of linear form. However, if the
true relationship is far from linear, then virtually all the conclusions and re-
sults from the regression are suspect. A useful graphical tool for identifying
non-linearity is the residual plot, in which the residuals are plotted against
the predicted values ŷi. If the relationship is linear, the residual plot will
ideally show no discernible pattern. On the other hand, a pattern present in
the plot may indicate a problem with some aspect of the linear model (James
et al. [54, p. 93 f.]).

2.4.2 Analysis of variance

The following subsection presents ANOVA as an additional parametric method.
The ANOVA is a procedure based on a factorial design that examines the ef-
fect of one (or more) independent variables (referred to as factors or grouping
variables) on one dependent variable (analogously called response variable).
It also assumes a linear relationship and a corresponding ANOVA model can
be assigned to the class of linear models. The factors X1, X2, . . . , Xp need
to be nominally scaled with k factor levels (referred to as groups). For the
response variable Y, a metrical scaling is required. The different types of
ANOVA can be differentiated according to the number of factors used. While
in the setting of a one-way ANOVA, only one factor with k different groups
will be analyzed, the two-way ANOVA examine two factors with k respec-
tively j different groups. This can be continued to a multi-factor ANOVA with
more than two grouping variables. The effects of individual factors are called
main effects. This delimitation is necessary regarding potential interaction ef-
fects between factors that can also be examined with a multi-factor ANOVA.
Furthermore, a distinction is made between a balanced and unbalanced design

9 A statistical test for testing the null hypothesis of homoscedasticity is the Breusch-Pagan test
(Breusch and Pagan [21]). A well known statistical test for testing the null hypothesis of
normality is the Shapiro-Wilk normality test (Shapiro and Wilk [83]).
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(Backhaus et al. [9, p. 174 f.], Fromm [43, p. 13 f.]).10

The overall objective for all ANOVA types is to test differences in the re-
sponse variable across different factors or different groups for significance.
The question arises whether the mean response values of the individual fac-
tors or groups are equal or significantly different. Hence, ANOVA analyzes
the differences between mean values. However, the variances of the observed
values around these mean values also play a decisive role. The principle is
heavily based on a decomposition of variance into a systematic part, which
can be explained by the factors and interactions, and a stochastic part rep-
resented by a random error term ε, which cannot be explained (Herrmann
and Seilheimer [46, p. 267], Navarro [71]). If the elements are squared and
summed up over the observations (SS), the decomposition of variance can be
written as

SStotal = SSbetween + SSwithin, (2.22)

where SSbetween is the variance between the factor groups and interactions
and SSwithin is the remaining variance that is neither due to the factors nor
to interaction effects, i.e., random effects on the response variable. Based on
this decomposition, the following hypotheses can be formulated:

H0 : µ1 = µ2 = µ3 = . . .

versus

H1 : not all mean values are equal and

at least one main effect or interaction effect is 6= 0.

These hypotheses can be tested using an F-test. The idea of the test is that
the variances within the groups are small and the variances between the
groups are large, when the groups differ. If the result turns out to be statisti-
cally significant (p-value < significance level α), further questions concerning
the isolated analysis of individual factors or their interactions can be inves-
tigated. In these cases, the null hypothesis is that the analyzed factor has no
effect or that there are no interactions present. Table 2.2 illustrates a sample
two-way ANOVA table with two factors k and j and the interaction k× j.

10 In a balanced design all sample sizes within the different groups are equal. Contrarily, in
an unbalanced design the sample sizes are unequal. Unbalanced designs need to be treated
with a lot more care since they have a major impact on how ANOVAs are performed and how
they are interpreted. In fact, it turns out that there are three fundamentally different ways
in how to run an ANOVA in an unbalanced design and they are not all equally appropriate
to every situation. The three different ways are conventionally referred to as Type I, Type II
and Type III Sum of Squares (SS). All three types lead to different hypothesis testing strategies
and thus to different SS values. Most statistical computer programs have these three types
implemented. Type III is the most conservative type and is usually the default option since it
does not give greater weight to groups with larger sample sizes (Bender and Lange [12]). The
main differences between these three types are out of scope. Readers are referred to Navarro
[73] and Norman and Streiner [74, p. 98 f.] for detailed information.
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Source of
variance

df
Sum of
Squares

Mean Squares F

Factor k K− 1 SSk MSk =
SSk
K−1 Fk =

MSk
MSwithin

Factor j J − 1 SSj MSj =
SSj
J−1 Fj =

MSj
MSwithin

Interaction
k× j (K− 1)(J − 1) SSk×j MSk×j =

SSk×j
(K−1)(J−1) Fk×j =

MSk×j
MSwithin

Error K ∗ J(I − 1) SSwithin MSwithin = SSwithin
K∗J(I−1) -

Total K ∗ J ∗ I − 1 SStotal - -

Table 2.2: Sample two-way ANOVA with interaction effect. This table shows the dif-
ferent sources of variance, their degrees of freedom, their SS and Mean
Squares and the corresponding formulas for the F-statistic (Bender and
Lange [12]).

A significant k × j interaction would indicate that the effect k has on re-
sponse variable Y is significantly different for different groups of j, and vice-
versa.

The underlying F-test is a so-called omnibus test. It tests whether there are
differences between groups, but not whether all groups are different from
each other. It is not possible to determine which groups of one or more
factors exert a significant influence on the response variable and how large
these effects are. Thus, if the F-test shows that a factor has a significant influ-
ence on the response variable, it cannot be concluded that all group means
are different. To analyze such differences, so-called post-hoc contrast tests can
be performed. Post-hoc contrast tests allow pairwise comparisons by testing
all possible combinations of groups against each other. This way they will
reveal which groups of each factor cause these influencing effects. They are
only performed if the F-test of an ANOVA led to a significant result and the
user subsequently wants to know (ex post; a posteriori) which factor groups
account for differences in the means (Backhaus et al. [9, p. 196 f.], Bachman
[8, p. 250 f.]).

However, since multiple comparisons with the same null hypothesis (no
differences in group means) lead to multiple tests, there is an accumulation
of the α-error. The α-error is the Type I error and represents the probability
of rejecting the null hypothesis even though the null hypothesis is correct.
The more statistical tests with a significance level of α = 5% are run, the
greater the probability of finding at least one test result that is significant by
chance (problem of multiplicity). Therefore, the α-error must be corrected in
such a way that the desired significance level is retained in case of multiple
comparisons. A well known correction is the Bonferroni correction, in which α
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is divided by the number of test repetitions (Norman and Streiner [74, p. 80

f.], Edgington [38, p. 80 ff.]). There are various post-hoc contrast tests avail-
able that differ in their assumptions and procedures. Werner [95, p. 322 ff.]
and Norman and Streiner [74, p. 81 ff.] provide an overview of alternative
post-hoc contrast tests and their main differences.

Analogously to multiple linear regression, the testing procedures of ANOVA

rely on specific assumptions about the random error term ε. Here, the er-
ror terms are assumed to be normally i.i.d. with zero mean: ε ∼ N (0, σ2).
This can be assessed by looking at Quantil-Quantil (Q-Q) plots or running
a Shapiro-Wilk normality test. However, the F-test is quite robust to viola-
tions of the normal distribution assumption. An additional assumption is
that the variances caused by the error terms should be approximately equal
across all groups (referred to as the homogeneity of variance or homoscedasticity)
(Fromm [43, p. 13 f.], Navarro [70]).11 Again, ANOVA is fairly robust to devia-
tions from the homoscedasticity assumption, especially if there is a balanced
design (Norman and Streiner [74, p. 80]). Nevertheless, these assumptions
should be examined in any case to ensure the validity of the test results.

2.4.3 Align Rank Transform Contrasts

The multivariate analysis methods presented so far are of parametric nature.
This means they use parametric tests such a t-tests or F-tests for testing hy-
potheses. These tests are based on certain assumptions, in particular regard-
ing the distribution of some error terms. If these assumptions are violated
(i.e., nonconforming data), the test results and the associated conclusions may
lose validity. For this reason, nonparametric methods become very impor-
tant in case of violations.

A nonparametric alternative for a multifactor ANOVA is called ART-C. ART-C

is a new procedure for nonparametric multifactor analysis proposed by Elkin
et al. [39], with which multifactor post-hoc contrast tests can be conducted.
ANOVA assumes normal distribution of the error terms ε. This alternative cir-
cumvents this limitation by using an aligning and ranking procedure. ART-C

is assigned to the Align Rank Transform (ART) paradigm. Its procedure is
similar to the ART algorithm, with specifications for post-hoc contrasts tests.
For this reason, ART will be roughly outlined in order to present ART-C.

ART is an algorithm for factorial data analysis that can handle nonconform-
ing data in a factorial design. With ART one can examine interaction effects
even if multiple factors are involved. The algorithm relies on a two-fold pre-
processing step that (1) aligns the response variable Y for each effect (main
or interaction) before (2) assigning ranks, averaged in the case of ties. While

11 One statistical test for comparing the variances of two or more groups is the Levene’s test. This
test tests the null hypothesis that all group variances are equal. The alternative hypothesis is
that at least two of the compared groups differ (Fromm [43, p. 24 f.]).
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aligning the response variable, effects are estimated as marginal means12

and then stripped from the response variable so that all effects but one are
removed. After this alignment and ranking step, common ANOVA procedures
can be used, making the ART algorithm accessible to anyone familiar with
the F-test (Wobbrock et al. [97]). Wobbrock et al. [97] provide a detailed
description of the ART procedure for N factors. However, it was shown by
Kay [56] that subsequent post-hoc contrast tests involving combinations of
groups across multiple factors cannot be conducted on ART’s aligned and
ranked data without exploding Type I errors.

Against this background, ART-C can be seen as an extension of ART that
enables correct post-hoc contrast tests. In contrast to ART, ART-C offers an
alignment process specific to post-hoc contrast tests involving one or more
factors. The response variable is first aligned and then ranked with ascend-
ing midranks. Within the alignment step, the response variable is aligned
not for main effects and interactions, but for intended post-hoc contrast tests.
Therefore, by using ART-C Y must be aligned and ranked for each set of fac-
tors whose groups will be compared. If there is an interaction effect of two
factors k and j, then Y need to be aligned and ranked separately to compare
combinations of groups of k and j. Elkin et al. [39] provide a comprehensive
example with three factors in the presentation of their extension.

12 Considering two factors with multiple groups and a corresponding contingency table, then
the marginal means of one factor are the means for that factor averaged across every group
of the other factor.



3
E X P E R I M E N TA L D E S I G N

This chapter provides a step-by-step description of the experimental pipeline
and detailed information about the datasets used within the experiment. In
addition, this chapter contains information about the applied software and
hardware.

3.1 setup

The experiment was conducted on a Windows computer with an AMD
Ryzen 5 3600 6-Core 3.59 GHz AM4 35MB Cache processor, 32 GB 3200

MHz DDR4 RAM and a NVIDIA GeForce GTX 1660 Super 6 GB GPU. The
associated pipeline was written in Python and in R. Python is an interpreted,
object-oriented, high-level programming language1 and was primarily used
to retrieve and preprocess time series data from the external online data
source. R is a language and environment for statistical computing that pro-
vides a wide variety of graphical techniques.2 It was mainly used to write the
program with which the experiment was carried out. In addition, R was used
to visualize and analyze the achieved results. Information on key Python li-
braries, R packages and corresponding functions are provided at selected
steps throughout the experimental pipeline.

3.2 datasets

The next two sections present the two datasets on which the experiment is
based. The description of the external dataset contains additional informa-
tion about the applied methodology to create the dataset.

3.2.1 Retail sales figures

This dataset was provided by a German retail company which is one of the
leading trading companies in Germany. The data is stored in several comma-
separated values (CSV) files. Almost 800 thousand unique sales time series of
different products are available. These products are assigned to roughly five
thousand product groups, which in turn are assigned to four superordinate
retail areas (Fast Moving Consumer Goods (FMCG), household, kitchenware,
electronics). The time series data is spread over a total of 59 distinct stores.
The dataset covers a time period of more than two years, starting in Novem-
ber 2018 with a daily sampling rate. The last record was noted in August
2021. In addition to the sales figures, there are also various meta information

1 https://www.python.org/doc/essays/blurb/
2 https://www.r-project.org/about.html
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of the individual products, which enable a unique identification of the prod-
ucts. The most important meta information is the product description, which
plays an important role especially for the second dataset. However, due to
local computing capacities, a limitation of the amount of data must be made
in order to process the data efficiently. For this purpose, after consultation
with the company, only products of the superordinate retail area FMCG were
considered in the experiment. FMCG are relatively low-priced products with
a high turnover. They satisfy immediate wants and needs and are products
of daily use. This includes food and beverages, cleaning products but also
products for personal hygiene (Kaiser [55]). In addition, a single store was
selected that had the most FMCG products sold over the period of two years.
The forecast horizon of FMCG products is set to be three weeks (h = 3). Ulti-
mately, there are 3335 unique products that lead to 3335 sales time series in
total.

3.2.2 Google Trends

Given the research questions, the second dataset must be obtained from an
external data source. Since external data sources often charge money for the
use of their datasets, the search was limited to freely available data sources.
Furthermore, it should be possible to query the data automatically via an
appropriate Application Programming Interface (API).

For this reason, Google Trends was selected as the external data source.
Google Trends is a free online service of the company Google LLC, which
provides information about which and how often search terms (referred
to as keywords) were entered by users of the Google search engine. Hence,
Google Trends offers one of the largest real time datasets. In order to speed
up the process time, Google Trends provides a sample of Google’s search
database each time the service is used. Its data is an unbiased, anonymized,
categorized and aggregated representative of the Google search data. Google
Trends makes it possible to measure the interest in a particular topic, from
around the globe right down to city-level geography. More importantly,
Google Trends offers a free data explorer3 as a tool with which users can an-
alyze the search interest in a keyword over time, where it is most searched,
or what else people search for in connection with it. Once the keyword and
the interested time period and region are entered, Google Trends returns the
associated search interest over time as a univariate time series. This provides
a unique perspective on what people search for, what they are currently in-
terested in and curious about (Rogers [79]).

This analysis option can be particularly useful for FMCG products. When
customers use the Google search engine to search for certain products, it
may be an indication that they have an immediate need and may purchase
these products in the near future. This is why the product descriptions from

3 https://trends.google.com
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the meta information of the retail sales dataset are very valuable. They can
be used as keywords that need to be passed to Google Trends. By doing so, a
dataset with keyword related time series data can be generated. This idea is
especially interesting for the goal of leading indicator search. However, the
product descriptions from the retail sales dataset reveal some serious differ-
ences in terms of quality. For this reason, the descriptions must go through
some preprocessing steps before they can be passed to Google Trends. The
following preprocessing steps have proven to be useful:

- Removal of special characters (e.g., ?, !, &, +, -, # etc.),

- Filtering of English and German stopwords4 (e.g., the, are or is),

- Removal of quantity information (e.g., 500g or 250ml),

- Only keep words with length > 3,

- Apply lowercase notation.

Google Trends works best with concise and specific keywords. A product
description, however, can be composed of a lot of product-specific informa-
tion resulting in long descriptions. The possibility of not obtaining adequate
time series data from Google Trends becomes more likely as the number of
words increases. For this reason, n-grams are extracted for every description.
A n-gram is a contiguous sequence of n items from a given sample of text or
speech (Soffer [86]). In this work n is set to be 1. When n = 1, n-grams are
called unigrams. If a product description consists of four different words af-
ter preprocessing, then four individual unigrams can be extracted. Table 3.1
shows three exemplary product descriptions before and after preprocessing
and the resulting unigrams.

Product description
before preprocessing

Product description
after preprocessing

Unigrams

Knorr Rahmsauce
Braten & Schmoren 250ml

knorr rahmsauce
braten schmoren

[knorr, rahmsauce,
braten, schmoren]

Bratkartoffeln 400g bratkartoffeln [bratkartoffeln]
Bio Lacroix Paste

40g, Gemüse
lacroix paste

gemüse
[lacroix, paste,

gemüse]

Table 3.1: Product descriptions before and after preprocessing and corresponding
unigrams.

There are 3335 unique products with corresponding product descriptions
in the retail sales dataset. After applying the preprocessing steps, 9274 un-
igrams in total could be extracted. These unigrams served as keywords to
generate the Google Trends dataset. However, these keywords need to be
passed individually to Google Trends and the time series data must be ex-
ported as a CSV file manually. Given the number of keywords, this causes a

4 Stopwords are high-frequency words that usually have little lexical content.
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very time-consuming manual process. To overcome this problem, the Python
library pytrends offers an API with which the Google Trends service can be
utilized within a Python program. This API is not officially provided and
maintained by Google Trends, but with its help thousands of keywords and
keyword related time series can be processed and retrieved in no time. Fur-
ther information on the use of pytrends will be provided in section 3.3.

3.3 pipeline

This section contains the step-by-step description of the experimental pipeline
which is required to implement the methodology presented in section 1.3.
The sequence of the individual steps is shown in figure 3.1. Each step will
be described individually.

Figure 3.1: Pipeline of experiment.

data gathering In this step, the Google Trends dataset will be gener-
ated based on the extracted unigrams from the product descriptions. These
unigrams serve as keywords in the further process. The intention is to create
a keyword time series database. In order to retrieve the time series data for
each keyword, the Python library pytrends5 was utilized. This library offers
an API with which thousands of keyword related time series can be requested

5 https://github.com/GeneralMills/pytrends
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automatically within a Python program. For this purpose, the library offers
some useful functions. Before requesting time series data from the Google
Trends service, a connection to Google must be established. This connection
can be built with the function TrendReq() from the request module. Several
meta connection information such as the time zone offset (tz), the host lan-
guage (hl) and the country abbreviation (geo) must be passed to the function
in order to narrow down the geography. Since the descriptions (and ulti-
mately unigrams) are of products that are sold in a German retail store, the
parameters were set to the values tz = 60, hl = "de" and geo = "DE". After
connecting to Google, a payload must be built to specify the relevant request
information. Here, a list of keywords to get data for is passed to the function
build_payload(). In addition, the timeframe of interest must be set. Since the
first sales figures were noted in November 2018 and the last sales figures
in August 2021, the timeframe was set to be five years. Once the payload is
built, historical time series data of the searched keywords according to the
specified timeframe can be retrieved with the function interest_over_time()
(Aganjuomo [2]). This procedure was applied to all 9274 keywords. However,
not every keyword leads to search queries in Google and thus to correspond-
ing time series data. From 9274 unigrams in total only 1848 keywords have
search queries in Google. Therefore, the Google Trends dataset eventually
consists of 1848 keyword related time series.

data preprocessing The time series returned by Google Trends have a
weekly sampling rate and are normalized. Each data point is divided by the
total searches of the location and timeframe specified in the request. Subse-
quently, these data points are scaled from 0 to 100 based on the keyword’s
proportion to all searches on all keywords, where 100 is the maximum search
interest for the selected request parameters. Therefore, each keyword time
series has a range of [0, 100] (Rogers [79], Medeiros and Pires [66]). On the
other hand, the retail sales time series have a daily sampling rate with an un-
defined range of values from theoretically [0,+∞]. Hence, in order to match
the two datasets in the similarity matching, the retail sales data must first
be summed up on a weekly basis. Since not every product is sold on every
day, days with no sales figures are filled with 0. The sum serves as a repre-
sentative figure for the week. In total, each retail sales time series consists
of 143 weeks and thus 143 data points. The Google Trends time series must
also be limited to this period (week 47 of 2018 to week 32 of 2021). In addi-
tion, the time series of the two datasets have different scales. For this reason,
Min-Max normalization is applied to all time series. This way, the minimum
value of each time series gets transformed into 0, the maximum value gets
transformed into 1, and every other value gets transformed into a decimal
between 0 and 1. Unfortunately, the retail sales dataset also includes time se-
ries of products that were sold only irregularly (the proportion of the value
0 is high). To ensure that such time series do not distort the results of the
experiment, they will be excluded from the dataset beforehand. Therefore,
retail sales time series, in which the value 0 has a relative proportion of
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≥ 50% over the entire period and ≥ 25% in year 2021, will be eliminated.
The remaining time series are considered efficient. Ultimately, there are 1633
retail sales time series for which results will be obtained in the experiment.

fitting of univariate time series models In this step, univariate
time series models will be fitted for each retail sales time series. The pack-
age that is mostly used in this step is the forecast package (Hyndman et al.
[52], Hyndman and Khandakar [53]). This package provides functions and
tools for displaying, analyzing and forecasting univariate time series. Fur-
thermore, it offers functions for automatic ARIMA modeling. Before the time
series models can be fitted, the time series must first be initialized as time se-
ries objects. This initialization can be done with the ts() function of the core
package stats. Here, it is important to determine the frequency which refers
to the number of observations before a seasonal pattern repeats (Hyndman
and Athanasopoulos [50]). After preprocessing, both the retail sales and key-
word time series have weekly sampling rates. Therefore, the frequency is
set to be 52. The univariate models that are fitted in this step are the three
baseline models Mean Forecast, Random Walk without drift and Seasonal Naïve
presented in subsection 2.1.2 and the ARIMA model as a linear time series
model. The baseline models will be initialized with the functions mean f (),
rw f () respectively snaive() (all with default settings). The ARIMA model will
be initialized with the function auto.arima(). This model is different from the
other models and must be treated separately. The function conducts a search
over possible models by testing multiple order constraints and returns the
best ARIMA model according to a model selection criterion (such as AICC).
By doing so, this function uses a variation of the Hyndman-Khandakar algo-
rithm (Hyndman and Athanasopoulos [50]). This algorithm covers the steps
three to five of the ARIMA modeling procedure presented in section 2.1.3. Var-
ious arguments can be passed to the function allowing multiple variations
of the algorithm. The most important argument is the seasonal parameter. If
set to true, the search will be extended to seasonal SARIMA models. Against
the background that retail sales time series often exhibit strong seasonal pat-
terns, this option is of particular importance for the experiment. The default
behavior of the algorithm can be found in appendix A.2. All four models
are passed bundled with the f orecast() function to the tsCV() function. This
function then computes forecast errors using a rolling forecast origin until
a forecast error is computed for every test observation. With the help of
this function, the evaluation presented in subsection 2.1.4 can be performed.
The forecast horizon is set to be three weeks (h = 3). This means that sales
are predicted in three weeks time. The parameter initial is passed a split
point which represents an initial period of the time series where no cross-
validation is performed. In this step, this split point is set to be 80% of the
time series length (114 weeks). The remaining 29 weeks constitute the test
set. Eventually, tsCV() returns a numerical time series object containing the
forecast errors as a matrix where the time index corresponds to the last pe-
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riod of the training set and the columns correspond to the forecast horizon
(Hyndman and Khandakar [53]).

computation cross-correlations After the keyword time series
database is created in step one, the process of the similarity matching be-
gins. For each retail sales time series, the cross-correlation between every
keyword time series is computed for a number of lags. The number of lags
is set to be 4, which corresponds to four weeks. This limit goes in hand with
the nature of FMCG products that have a high turnover. The assumption is
made that if a customer has an urgent need for a product, the customer
will presumably not search for the product on Google more than four weeks
prior to the purchase. Ultimately, there are 12, 071, 136 (1633 ∗ 1848 ∗ 4) cross-
correlation computations. However, these computations are only performed
on the training set of each time series (first 80% respectively 114 weeks of
time series values). Future values of the test set which may affect the esti-
mates of the coefficients should not be included in the computation. The
cross-correlations in this step are computed with the cc f () function of the
stats package. Here, only positive cross-correlations are considered, because
it is assumed that higher values lead to higher similarity. For each keyword
time series, the highest of the four cross-correlation values with its corre-
sponding lag will be stored temporarily.

determination leading indicators The next step is to determine
the leading indicator for each retail sales time series. For this purpose, the
keywords will be ranked in descending order using the cross-correlation
values stored in the previous step. The keyword that has the highest cross-
correlation with the respective retail sales time series is set to be the leading
indicator.

fitting of arimax models In the previous step, a leading indicator
was determined for each retail sales time series. These leading indicators
will now be incorporated as external regressors into the linear time series
model, converting the univariate ARIMA models to bivariate ARIMAX models.
For this operation, however, it is important to appropriately shift the two
time series by the lag at which the highest cross-correlation was obtained.
This pre-step is crucial in order to take full advantage of the leading effect
the indicator may possess. Either the retail sales time series need to be shifted
back in time or the leading indicator time series need to be shifted forth in
time by the corresponding lag k (as indicated in section 2.3.2). Subsequently,
the leading indicator can be included to the model via the parameter xreg of
the function auto.arima(). If this parameter is set, a regression model with
ARIMA errors is fitted as an ARIMAX model. In this form, the errors ε1, . . . , εt

from a regression (e.g., as shown in subsection 2.4.1) are allowed to contain
autocorrelation. The model can be written as

Yt = β0 + β1X1,t + · · ·+ βpXp,t + ηt,
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where ηt replaces εt and is assumed to follow an ARIMA model. This model
has two error terms, the error from the regression model denoted by ηt

and the error from the ARIMA model denoted by Zt (which assumed to be
white noise) (Hyndman and Athanasopoulos [50]). This representation of an
ARIMAX model differs from the one presented in section 2.1.3 and is only in-
tended to show how the concept of this model can be implemented with the
auto.arima() function. An advantage of this approach is that, analogously to
the other models, forecast errors can be calculated with the tsCV() function.

comparison of models Up to this point, there are multiple forecast
errors for each time series based on the initial split within the tsCV() func-
tion. For each observation of the test set exist a forecast and thus a forecast
error. These forecast errors are available for all 1633 retail sales time series
and for each of the five time series models. The next step is to compare the
forecasting performance of the five models. However, the models cannot be
assessed on the basis of pure forecast errors alone. For this reason, an error
metric is required that enables an overall model comparison. In this work,
the error metric Mean Absolute Error (MAE) will be selected. This decision
is rather arbitrary at this point and other error metrics can be used for com-
parison as well. After the previous steps, n forecast errors are available for a
single retail sales time series. These errors represent both positive and neg-
ative deviations. The MAE then computes the mean error of the n absolute
deviations: ∑n

i=1 |εi |
n , where |ε i| is the absolute deviation between the forecast

of observation i and its actual value. Performing this computation for every
retail sales time series, there are ultimately 1633 MAEs for each time series
model. It then can be analyzed for each time series which model performed
best based on the achieved MAE. The focus in this step is on exploratory
data analysis. With the help of the package ggplot2 (Wickham [96]) numer-
ous plots will be created to analyze the performances.

evaluation leading indicators This step constitutes on the core
steps of the experiment. To answer the research questions whether and un-
der which conditions the inclusion of an external regressor is beneficial, the
performances of the ARIMA6 and ARIMAX models will be compared with
each other. First, it will be examined in how many cases there was an im-
provement (MAEARIMA > MAEARIMAX) and in how many cases there was
a deterioration (MAEARIMA ≤ MAEARIMAX). This comparison provides the
basis for defining the dependent variable

Impact = MAEARIMA −MAEARIMAX,

which will be examined in the multivariate analysis methods. If the value
is > 0, the external regressor is said to have a positive impact on the ARIMA

model. The inclusion has resulted in an improvement of forecast accuracy

6 Due to the seasonality of the retail sales time series these ARIMA models may also take the
form of SARIMA models. For the comparison with ARIMAX models, both variants will be
summarized under the term ARIMA models.



3.3 pipeline 47

since the MAE of the ARIMAX model is lower than the MAE of the counterpart
ARIMA model. Contrarily, if the value is ≤ 0, the external regressor is said to
have a negative impact on the ARIMA model. These terms will be used numer-
ous times throughout the analyzes. After the comparison is completed for
all retail sales time series, individual time series will selectively be analyzed
where improvements and deteriorations occurred.

decomposition time series As already indicated in the previous sec-
tions, especially retail sales time series can exhibit strong seasonal patterns,
making an effective modeling of these series a challenging task. For this
reason, it is assumed that the seasonality of a time series may affect the fore-
casting performance of ARIMA and ARIMAX models and thus the comparison
of them. Therefore, it is crucial to apply methods that can capture seasonal
patterns. Since it is not known beforehand how many seasonal patterns and
periods the time series of the two datasets may have, the decomposition
method MSTL is applied for all time series instead of the STL method. This
method can be implemented with the function mstl() of the forecast package.
Function mstl() allows multiple seasonal periods and decomposes a time
series into seasonal, trend and remainder components, where seasonal com-
ponents are estimated iteratively using STL (Hyndman and Khandakar [53]).
The function will be called with its default parameter settings.

computation seasonal strengths In order to quantify the poten-
tial influence of seasonality on the results of the experiment, an indicator
is required that can measure the seasonality of a time series. The seasonal
strength defined in subsection 2.2.3 can be used for this purpose. The for-
mula in equation 2.2.3 will be applied to compute the seasonal strength of
all time series. In contrast to the cross-correlation, the seasonal strength will
be calculated based on the complete length of the time series. The time se-
ries are rather short with just 143 data points. This approach ensures that all
possible seasonal periods will be considered.

evaluation cross-correlation and seasonal strengths In this
step, qualitative statements will be made about the influence of the two vari-
ables cross-correlation and seasonal strength on the dependent variable impact.
These statements are primarily based on exploratory data analysis.

significance analysis The results of the model comparison, the eval-
uation of leading indicators and the evaluation of the variables cross-correlation
and seasonal strength constitute the results of the experiment. In the previ-
ous steps, only qualitative statements are made about these results. For this
reason, the last step of the experimental pipeline is to evaluate these state-
ments quantitatively using multivariate analysis methods. These consist of
two parametric methods and one nonparametric method. They will also be
used to investigate potential interaction effects between the variables. For
both parametric methods, the underlying assumptions are examined with
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various diagnostic plots and statistical tests. The functions and packages
used for each method are provided at the corresponding evaluation (starting
at subsection 4.4.1). All three analysis methods use a variable set composed
of the following variables (including value ranges):

- Impact [−∞,+∞],

- Cross-correlation [0, 1],

- Seasonal strength retail sales time series [0, 1],

- Seasonal strength leading indicator time series [0, 1].

Both seasonal strength variables and the cross-correlation forms the set of
independent variables. The variable impact is included in the modeling pro-
cess as the dependent variable. However, before conducting the analysis
methods, data points that are considered outliers according to the boxplot
method are removed from the results dataset. This means that values of the
dependent variable above Quantile 3+ 1.5 ∗ IQR7 or below Quantile 1− 1.5 ∗
IQR will be considered outliers and removed.

7 Interquartile range
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This chapter presents the results of the experiment. The first three sections
build on exploratory data analysis and make qualitative statements about
the findings. Section 4.1 provide the results of the model comparison. Subse-
quently, two time series are examined, where the inclusion of the leading in-
dicator led to both, a noticeable improvement and a significant deterioration.
Based on this, the influences of seasonal strength and cross-correlation on
the response variable impact are analyzed in section 4.3. Within the first three
sections, additional hypotheses are formulated that are examined within the
multivariate analysis methods. Their results are evaluated in section 4.4. Last,
the main findings and essential aspects to consider when conducting the ex-
periment are discussed in section 4.5.

4.1 comparison of models

Within the experiment, the tsCV() function was applied to five different
time series models with 1633 time series each to capture forecast errors on
a rolling forecasting origin with a forecast horizon of h = 3. Based on these
forecast errors, the error metric MAE was calculated. Ultimately, there are
1633 MAEs for each time series model. Since every MAE is computed using
the same procedure, an overall model comparison is possible. This, in turn,
makes it possible to determine which model has achieved the best forecast
accuracy and thus the lowest MAE for each time series. In figure 4.1 a simple
count statistic is illustrated of how often which model was chosen as the best
time series model.

It turns out that the ARIMAX model is the best time series model for ap-
proximately a third of all time series. The ARIMA and Mean Forecast model
almost share the same count statistic. The Random Walk model without drift
was the best model for 264 time series. The lowest count statistic is achieved
by the Seasonal Naive model with only 34 occurrences. Based on this sim-
ple count statistic, the ARIMAX model performs best in a relative comparison.

However, the distribution of the model related MAEs reveal that the first
four models apparently have similar measures of central tendency and dis-
persion (see figure 4.2). The medians, represented by a line across the boxes
within the boxplots, are nearly on the same level. It seems that the MAEs fol-
low the same distribution with minor differences in skewness. Conversely,
this means that the forecast accuracy of the four models does not differ
greatly and that the choice of the best model is very close for the majority of
time series. Here, the Seasonal Naive model is an exception. The estimated
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Figure 4.1: Count statistic of how often which model was considered the best time
series model.

distribution indicates that the forecast accuracy is comparatively poor. The
median of the MAE values is at 0.156 and therefore the highest among the
models. This also explains why the Seasonal Naive model is the best time
series model for only 34 time series. All models have in common that several
data points are declared as outliers.

Figure 4.2: Boxplots and violin plots of MAEs for each model.

For the further analysis, it is particularly important to find out which fac-
tors are responsible for the performance of the ARIMAX models being better
than the counterpart ARIMA models. The dependent variable impact is ulti-
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mately defined from this comparison. These factors can provide information
on when it is especially worthwhile to incorporate external regressors and
when univariate ARIMA models are preferable. For this reason, the overall
model comparison is broken down to these two time series models. It turns
out that in total, there was an improvement (MAEARIMA > MAEARIMAX)
in 51% and a deterioration (MAEARIMA ≤ MAEARIMAX) in 49% of the time
series. Restricting this comparison to time series where the two aforemen-
tioned models performed best, then there was an improvement in 57% and
a deterioration in 43% of the cases.

4.2 univariate results

An improvement in 51% and a deterioration in 49% of the cases resembles
the result of a coin toss. There is no clear tendency that the inclusion of an
external leading indicator has a positive effect on the forecast accuracy of
ARIMA models. However, there were time series with a noticeable improve-
ment but also cases with a significant deterioration. For this reason, several
retail sales time series from both extremes were reviewed individually. The
results of two randomly selected time series will be presented in this section.

For the first time series, the ARIMA model achieved an MAE of 0.087 and
the ARIMAX model achieved an MAE of 0.028. There is a difference of 0.059
resulting in an improvement of roughly 68%. The retail sales time series and
its corresponding leading indicator series are shown in figure 4.3.

(a) Retail sales time series. (b) Leading indicator time series.

Figure 4.3: Retail sales time series and its corresponding leading indicator series.
Improvement of roughly 68%. Highest cross-correlation is 0.71 at lag
k = −1.

There seems to be no trend in both time series since there is no long-
term increase or decrease in the data. However, both series reveal strong
yearly seasonal patterns around Christmas time. These seasonal patterns are
also considered in the univariate modeling process of both time series. For
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the retail sales time series an ARIMA(0, 1, 1)× (0, 1, 0)52 model is fitted. An
ARIMA(0, 0, 3)× (0, 1, 0)52 model is fitted for the leading indicator time series.
Therefore, a seasonal differencing for the seasonal period s = 52 takes place
with an order of D = 1. The associated ARIMAX model is implemented by a
regression with ARIMA(2, 0, 0) errors. Table 4.1 shows the summary()-output
of the model.

Data: Retail sales time series with leading indicator.
Coefficients:

AR1 AR2 Intercept Leading Indicator
0.0716 0.2011 0.0231 0.5426

Standard Error 0.0828 0.0861 0.0118 0.0524

Estimated σ2: 0.00722

Table 4.1: summary()-output of regression with ARIMA(2, 0, 0) errors.

The model residuals illustrated in figure 4.4 seem to follow a white noise
process.

Figure 4.4: Various diagnostic plots of the residuals from a regression with
ARIMA(2, 0, 0) errors. The plots are generated with the checkresiduals()
function of the forecast package.

This is confirmed by the high p-value (> 0.05) of the Box-Ljung portman-
teau lack-of-fit (abbreviated with Box-Ljung) test in table 4.2. The residuals
form a stationary series and resemble white noise. The diagnostic checks
suggest that the fitted model is adequate.



4.2 univariate results 53

Data Test p-value
Residuals from Regression
with ARIMA(2, 0, 0) errors

Box-Ljung test 0.953

Table 4.2: Result of Box-Ljung test with residuals from regression with ARIMA(2, 0, 0)
errors. The p-value indicates that residuals resemble white noise.

For the second time series, the ARIMA model achieved an MAE of 0.044 and
the ARIMAX model achieved an MAE of 0.174. There is a difference of −0.13
resulting in a significant deterioration of nearly 300%. The retail sales time
series and its corresponding leading indicator series are shown in figure 4.5.

(a) Retail sales time series. (b) Leading indicator time series.

Figure 4.5: Retail sales time series and its corresponding leading indicator series.
Deterioration of nearly 300%. Highest cross-correlation is 0.62 at lag k =
−2.

For the retail sales time series, the mean level seems to increase slightly
in time indicating a trend. The same does not apply to the leading indicator
time series. Both time series apparently exhibit no strong seasonal patterns.
The retail sales time series and leading indicator series have one peak at
the beginning of 2020. In addition, the leading indicator reveals a peak in
the middle of 2021. However, these peaks cannot be considered seasonality
since there are no repeated seasonal factors. They may have been caused
by random external factors. This can be confirmed by the fitted univariate
models. For the retail sales time series an ARIMA(0, 1, 1) model is fitted. On
the other hand, an ARIMA(0, 1, 0) model is fitted for the leading indicator
time series. Both time series are not seasonal differenced and the univariate
ARIMA models have no seasonal terms P and Q.

The associated ARIMAX model is implemented by a regression with ARIMA(1, 0, 1)
errors. Table 4.3 shows the summary()-output of the model.
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Data: Retail sales time series with leading indicator.
Coefficients:

AR1 MA1 Intercept Leading Indicator
0.8757 -0.4571 0.1463 0.3903

Standard Error 0.0577 0.0986 0.0347 0.0777

Estimated σ2: 0.009046

Table 4.3: summary()-output of regression with ARIMA(1, 0, 1) errors.

Despite the comparatively poor forecast accuracy, the residuals illustrated
in figure 4.6 also seem to form a stationary series and resemble white noise.

Figure 4.6: Various diagnostic plots of the residuals from a regression with
ARIMA(1, 0, 1) errors. The plots are generated with the checkresiduals()
function of the forecast package.

Again, this is verified by the high p-value (> 0.05) of the Box-Ljung test in
table 4.4. The ARIMAX model appears to adequately represent the data.

Data Test p-value
Residuals from Regression
with ARIMA(1, 0, 1) errors

Box-Ljung test 0.990

Table 4.4: Result of Box-Ljung test with residuals from regression with ARIMA(1, 0, 1)
errors. The p-value indicates that residuals resemble white noise.
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The ARIMAX models of both examples pass the diagnostic checks and ad-
equately represent the data. The main difference between these two exam-
ples is that in the example with improvement, both time series reveal strong
seasonal patterns. In the example with deterioration, figure 4.5 and the uni-
variate ARIMA models indicate that the retail sales time series and its leading
indicator series show rather weak seasonality. This phenomenon could be
observed for the majority of examined time series from the small sample of
both extremes. For this reason, the seasonal strength as a measure of sea-
sonality was determined for these examples. For this purpose, the definition
from subsection 2.2.3 was applied. It turns out that in the example of im-
provement the retail sales time series has a seasonal strength of FS = 0.72
and the leading indicator series of FS = 0.92. Both values are close to 1 indi-
cating strong seasonality within both series. Contrarily, the retail sales time
series of the deterioration example has a seasonal strength of FS = 0.46 and
its leading indicator series of FS = 0.31. Both values are rather close to 0
which supports the assumption of weak seasonality. This suggests that the
improvement may be influenced by how strong the seasonality of the retail
sales time series and its leading indicator series is. What stands out in these
comparisons is that the cross-correlations in all examples are moderate (here
0.71 and 0.62) and do not differ greatly from each other. It may be possible
that the cross-correlation exerts less influence on the outcome of the inclu-
sion.

4.3 evaluation of cross-correlation and seasonal strength

The results of the previous section suggest that there may be a relationship
between the level of seasonal strength and the impact on ARIMA models. In
addition, it was apparent from the sample that the cross-correlation values
do not appear to differ greatly between the two extremes mentioned. For
this reason, the analysis was extended to all 1633 time series. This section
presents the exploratory results of the evaluation of cross-correlation and
seasonal strength as independent variables.

The influence of the cross-correlation on the dependent variable impact is
analyzed first. The distribution of the cross-correlation values is shown in
figure 4.7. Moderate cross-correlations of around 0.6 are obtained for most
of the time series. The average cross-correlation is 0.59.
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Figure 4.7: Distribution of cross-correlation. Average cross-correlation of 0.59.

To examine the influence of cross-correlation on the impact on ARIMA

models, a different view on the distribution of the cross-correlation is il-
lustrated in figure 4.8. Here, the distribution is shown discretized and sepa-
rated by positive (MAEARIMA > MAEARIMAX) and negative (MAEARIMA ≤
MAEARIMAX) impact with a simple count statistic.

Figure 4.8: Discretized cross-correlation separated by impact on ARIMA model.

Most of the cross-correlation values are in a range around (0.4, 0.8]. Fur-
thermore, it can be seen that there are no cross-correlation ranges where the
proportion of the positive impact excels and vice versa. In both, high and
low cross-correlation areas, are cases of improvement as well as deteriora-
tion. The distribution is balanced. Based on this distribution, it cannot be
assumed that a higher cross-correlation, and thus a higher similarity, auto-
matically leads to an improvement and to a positive impact on ARIMA mod-
els.

The analysis of seasonal strength, on the other hand, reveals a different
picture. The distribution for the retail sales time series and the leading indi-
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cator series is shown in figure 4.9. While the seasonal strength for the retail
sales time series follows a right-skewed distribution, there is no clear pattern
in the distribution for the leading indicator time series. The average seasonal
strength is 0.49 respectively 0.56.

(a) Distribution of seasonal strength from
retail sales time series. Average seasonal
strength of 0.49.

(b) Distribution of seasonal strength from
leading indicator time series. Average
seasonal strength of 0.56.

Figure 4.9: Distribution of seasonal strengths.

Figure 4.10 illustrates analogously the distribution discretized and sepa-
rated by impact. Here, interesting differences can be observed compared to
the cross-correlation. For the retail sales time series, the proportion of the
negative impact is greater in the range of (0.2, 0.5]. From a range of 0.5, this
ratio changes. In particular, the proportion of the positive impact is notably
greater in the range of (0.5, 0.8]. A similar picture emerges for the leading
indicator time series. Here, the proportion of the positive impact is greater
from a seasonal strength of 0.7. This pattern suggests that the inclusion of
an external regressor can especially be worthwhile as the seasonal strength
for the retail sales and its leading indicator time series increases.

Last, the question arises how the other time series models perform as
seasonal strength increases. For this reason, the count statistic of the best
time series model is illustrated again, this time by the discretized seasonal
strength of the retail sales time series (see figure 4.11a). It turns out that the
ARIMA model has its highest absolute proportions in the range of (0.3, 0.6].
However, as seasonal strength increases, this proportion decreases in abso-
lute and relative terms. On the other hand, the proportion of the ARIMAX

model is becoming relatively large compared to the other models. The rela-
tive proportion of the Random Walk model without drift increases with sea-
sonal strength. As expected, the proportions of the Seasonal Naive model
are low.
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(a) Discretized seasonal strength from retail sales time series separated
by impact on ARIMA model.

(b) Discretized seasonal strength from leading indicator time series sep-
arated by impact on ARIMA model.

Figure 4.10: Discretized seasonal strengths separated by impact on ARIMA model.

Again, these statements must be put into relation with the model-related
distribution of the MAEs illustrated in figure 4.11b. Up to a seasonal strength
of 0.6, the distributions of the first four models suggest similar performances.
The choice of the best model is very close in these ranges of seasonal strength.
However, a shift can be seen from a seasonal strength of > 0.6. Especially
the boxplots for the ARIMA and ARIMAX model indicate that there are differ-
ences between these two models. In comparison, the forecast accuracy of the
ARIMA model tends to deteriorate with increasing seasonality. What stands
out is that the Random Walk model without drift performs comparatively
well even at high seasonality ranges. In addition, as seasonal strength in-
creases, the performance of the Seasonal Naive model improves. This may
be where the ability of the Seasonal Naive model comes into play to model
seasonal periods.
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(a) Count statistic of best model by discretized seasonal strength of re-
tail sales time series.

(b) Distribution of MAEs by model and discretized seasonal strength of
retail sales time series.

Figure 4.11: Count statistic of best model and distribution of MAEs by model and
discretized seasonal strength of retail sales time series.

Based on these figures, it can be assumed that ARIMA models are unable
to model highly seasonal time series adequately. The superior performance
of the ARIMAX models could be solely due to the fact that the external regres-
sors only represent the unmodeled seasonality and do not add any value to
the forecast accuracy.

This assumption is verified by examining the univariate fitted ARIMA mod-
els of the retail sales time series. If a time series is seasonal differenced or
the seasonal terms P and Q of the model are 6= 0, then there is evidence that
the seasonality is correctly captured. This test was performed for every re-
tail sales time series. The result is shown in figure 4.12. At low to moderate
seasonal strength values, it turns out that seasonality is not modeled. The
result also demonstrates, however, that the seasonality of retails sales time
series with high seasonal strength is correctly captured by the univariate
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ARIMA models (or to be exact SARIMA models). Thus, the assumption that
external regressors only cancel out the inability of ARIMA models to prop-
erly model seasonality and add no value to the forecast accuracy cannot be
confirmed. The improvements by ARIMAX models can be attributed to the
external regressors.

Figure 4.12: Test if seasonality is correctly captured by univariate ARIMA models.

Based on these exploratory results, the following two additional hypothe-
ses are proposed:

1. There is no relationship between cross-correlation and the impact on
ARIMA models. Improvements and deteriorations are both obtained
equally at low and high cross-correlation values.

2. If both the retail sales and leading indicator time series exhibit strong
seasonal patterns, then the probability of a positive impact increases.
In such cases, the inclusion of the external regressor can be particularly
beneficial.

4.4 significance analysis

In addition to the hypotheses formulated in section 1.2, two further hypothe-
ses have been proposed based on the results obtained so far. However, these
results are of qualitative nature and were obtained through exploratory data
analysis. For this reason, multivariate analysis methods are required that
can be used to quantitatively validate the results and to test the formulated
hypotheses. The analysis methods utilized in this work are multiple linear
regression, ANOVA and ART-C. All three methods offer hypothesis tests for
this purpose.

The variable set consists of the dependent variable Impact and the three in-
dependent variables Seasonal Strength Retail Sales Time Series, Seasonal Strength
Leading Indicator Time Series and Cross-Correlation. In all three analysis meth-
ods, a three-way interaction between the three independent variables is ini-
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tially modeled by default. Based on the model results, it will be decided if
and how to examine the interaction effect further. For the purpose of clar-
ity and readability, the following abbreviations are introduced for the three
independent variables:

- Cross-Correlation - CC,

- Seasonal Strength Retail Sales Time Series - SSRS,

- Seasonal Strength Leading Indicator Time Series - SSLI.

The distributions of the three independent variables have already been
discussed in the previous sections. This is why the distribution of the depen-
dent variable will be presented here (see figure 4.13). The average impact
is 0.004, which is > 0. This means that on average, an improvement takes
place.

Figure 4.13: Distribution of dependent variable Impact. Average impact of 0.004.

Moreover, data points, that were considered outliers (in total 157) accord-
ing to the boxplot method presented in section 3.3, are removed from the
results dataset. Eventually, there are 1476 time series with experimental re-
sults.

4.4.1 Evaluation of multiple linear regression

This subsection presents the results of the multiple linear regression. While
applying this method of analysis, the predictor variables have been centered
(by subtracting the variable means) and scaled (by dividing the (centered)
variables by their standard deviations) beforehand. Centering and scaling
improve the interpretability of regression coefficients and main effects even
when involved in interactions (Schielzeth [82], Gelman [44]). The multiple
linear regression model was initialized and fitted with the function lm() of
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the stats package: lm(Impact ∼ SSRS ∗ SSLI ∗ CC). The following linear
relationship was assumed:

Impact = β0 + β1SSRS + β2SSLI + β3CC + β4SSRS ∗ SSLI + β5SSRS ∗ CC

+ β6SSLI ∗ CC + β7SSRS ∗ SSLI ∗ CC.

With the intercept β0, a total of eight regression coefficients must be es-
timated from the data. The regression coefficients β1, . . . , β3 quantify the
association between the predictor variables and the response variable and
β4, . . . , β7 represent the possible interaction terms. The F-test tests if there is
any statistically significant relationship between response variable and pre-
dictor variables and the t-test tests each predictor and interaction individu-
ally. The results of the multiple linear regression model are shown in table
4.5.

Coefficients Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.0013 0.0005 2.58 0.0101 ∗

SSRS 0.0038 0.0006 6.58 0.0000 ∗ ∗ ∗
SSLI 0.0032 0.0006 5.61 0.0000 ∗ ∗ ∗

CC 0.0004 0.0005 0.73 0.4657

SSRS*SSLI 0.0014 0.0005 2.75 0.0061 ∗∗
SSRS*CC -0.0011 0.0005 -2.09 0.0372 ∗
SSLI*CC -0.0002 0.0006 -0.30 0.7605

SSRS*SSLI*CC -0.0010 0.0004 -2.76 0.0058 ∗∗
Residual standard error: 0.01418 on 1468 degrees of freedom.
Multiple R2: 0.1579, Adjusted R2: 0.1539.
F-statistic: 39.33 on 7 and 1468 degrees of freedom.
p-value: < 2.2e− 16.

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4.5: summary()-output of multiple linear regression model.

The F-test has a p-value� 0.05 indicating a highly significant result. This
means that there is a high probability that at least one variable or interac-
tion exerts a significant influence on the dependent variable (β j 6= 0). The
p-values of the individual t-tests reveal which variables and/or interactions
exert a significant influence. It turns out that the influence of the two sea-
sonal strength variables are highly significant. Their two-way interaction is
also statistically significant. On the other hand, the cross-correlation does
not exert a statistically significant influence. Only within a two-way interac-
tion with the seasonal strength of the retail sales time series and within a
three-way interaction with both seasonal strength variables, the influence of
the cross-correlation is significant (although the two-way interaction is only
slightly significant).
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An interesting aspect of these results is that the interaction between all
three predictor variables is significant. Thus, the regression coefficients
β̂1, . . . , β̂6 can only be interpreted to a limited extent. The association of the
corresponding predictor variables and two-way interactions to the response
variable is affected by the values of the three-way interaction. For this reason,
the three-way interaction effect is examined primarily in the further course
of this subsection. The underlying approach is adapted from Houslay [47]
and Long [63]. Both refer to a method proposed by Cohen et al. [29] and pop-
ularized by Aiken and West [3]. Within this approach, two of the three pre-
dictor variables are set to be so-called moderator variables. Subsequently, the
slopes of the response variable on the remaining predictor variable is com-
puted while the moderator variables are held constant at different combina-
tions of high and low values (Houslay [47]). High values and low values are
defined as +1 standard deviation (SD) respectively −1 standard deviation (SD)
from the moderator means (Long [63]). Here, the seasonal strength of the
leading indicator time series and the cross-correlation are set to be the mod-
erator variables. The slopes will be computed on the seasonal strength of
the retail sales time series. This procedure can be performed automatically
with the function interact_plot() of the interactions package (Long [62]) and
its results are shown in figure 4.14.

If the lines run parallel at different combinations of high and low values
of the moderator variables, this may be an indication that there is no inter-
action effect. Figure 4.14a reveals that, especially at the mean− 1 SD level of
cross-correlation, there is an interaction effect that particularly affects high
values of SSLI. When the seasonal strength variables increase at a low level
of cross-correlation, higher values are obtained for the response variable.
When the three levels of moderator variables are combined (figure 4.14b),
the interaction effect becomes even clearer. The relationship between SSRS
and the response variable changes noticeably when there are high values
of SSLI in combination with low values of CC. This combination may oc-
cur if there are strong non-seasonal fluctuations between seasonal periods of
seasonal time series. These intraseasonal fluctuations can have a mitigating
impact on the corresponding cross-correlation. Two time series pairs with
such a combination of values are shown in appendix A.1. In particular the
seasonal structures of the retail sales time series are strongly obscured by
the intraseasonal fluctuations. This is also reflected in the seasonal strength
values (0.54, 0.57). In these constellations, the leading indicators may provide
information through their seasonal patterns (Fs = (0.81, 0.89)) that smooth
out these influences.

In summary, both seasonal strength variables have a positive, statistically
significant influence on the response variable. This influence is further am-
plified when the cross-correlation between the retail sales time series and its
leading indicator series is low. If the cross-correlation is examined on its own,
then it can be concluded that this variable does not exert a statistically sig-
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(a) Three-way interaction effect at different combinations of high and
low values of CC and SSLI.

(b) Summarized illustration of three-way interaction effect.

Figure 4.14: Three-way interaction effect of multiple linear regression model.

nificant influence. There is no relationship between the cross-correlation and
the impact on ARIMA models. Only in interaction with the seasonal strength
variables a significant influence does emerge for the cross-correlation vari-
able. Accordingly, the hypotheses stated in section 4.3 can be confirmed to a
large extent.

For the obtained results to be strictly valid, the assumptions of the mul-
tiple linear regression regarding the model residuals need to be met. They
have to be variance independent (homoscedasticity) and normally distributed.
In addition, the assumption of linearity should not be violated. However, as
the following results show, these assumptions are partially violated.
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The assumption of linearity can be tested by plotting the model residuals
against the fitted values. This is illustrated in figure 4.15. The residual plot
shows no discernible pattern. There appears to be a linear relationship in the
data. This assumption is apparently not violated.

Figure 4.15: Residuals plotted against fitted values.

The normal distribution assumption can be examined analyzing a Q-Q
plot. If the residuals are normally distributed, then they should form an
approximately straight line. This is clearly not the case as illustrated in figure
4.16. In addition, the distribution has heavy tails indicating that the residuals
have more extreme values than would be expected if they truly followed a
normal distribution.

Figure 4.16: Normal Q-Q plot of residuals.

The p-value of the Shapiro-Wilk normality test (< 0.05) in table 4.6 con-
firms that the residuals are not normally distributed. Therefore, the normal
distribution assumption can be considered violated.
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Data Test p-value
Residuals from multiple
linear regression model

Shapiro-Wilk normality test 0.001699

Table 4.6: Result of Shapiro-Wilk normality test with residuals from multiple linear
regression model. The p-value < 0.05 indicates that the residuals are not
normally distributed.

Moreover, the p-value of the studentized Breusch-Pagan test in table 4.7
implies that the model residuals are not variance independent. Therefore,
two important assumptions of the Gauss-Markov assumptions are violated,
which negatively affects the validity of the test results and the estimation
and thus interpretability of the regression coefficients.

Data Test p-value
Residuals from multiple
linear regression model

Studentized Breusch-Pagan test 1.162e-12

Table 4.7: Result of studentized Breusch-Pagan test with residuals from multiple
linear regression model. The p-value � 0.05 indicates heteroscedasticity.
The residuals are not variance independent.

Due to the partial violations of the assumptions, the multiple linear regres-
sion model may not be an appropriate model to represent the data. This is
also partially confirmed by the low adjusted R2 value of 0.1539. Most of the
variance within the data is not explained by the model. Overall, the results
obtained must therefore be handled with great caution.

4.4.2 Evaluation of analysis of variance

The multiple linear regression results revealed that the two seasonal strength
variables and the three-way interaction with cross-correlation have a signif-
icant influence of on the response variable. However, the corresponding as-
sumptions were partially violated, negatively effecting the validity of the
results. Therefore, the purpose of this subsection is to verify whether the re-
sults of the ANOVA can confirm the results already obtained from a different
statistical point of view.

ANOVA tests if the mean response values of the individual factors or groups
are equal or significantly different. The analysis is based on factors that need
to be nominally scaled with k groups. Since the predictor variables in the
variable set are all metrically scaled, they must be nominalized beforehand.
Here, a dichotomization strategy was selected, using the median in combina-
tion with the mean values of the predictors as cutpoints. The cutpoint for the
cross-correlation was set at 0.6 and for the seasonal strength variables at 0.5.
Values exceeding these cutpoints are considered high. On the other hand, val-
ues below these cutpoints are considered low. This way the analysis problem
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was artificially transformed in order to conduct an ANOVA with a factorial
design. Eventually, there is one response variable and three independent fac-
tors with k = 2 groups (high and low). This leads to a 2 × 2 × 2 design
with eight distinct group combinations. Table 4.8 provides some descriptive
statistics for each group combination.

CC SSRS SSLI Response N Mean
Standard
deviation

low low low impact 306 -0.00 0.01

high low low impact 391 -0.00 0.01

low low high impact 199 0.00 0.01

high low high impact 72 -0.00 0.01

low high low impact 87 0.00 0.02

high high low impact 35 -0.00 0.02

low high high impact 212 0.01 0.02

high high high impact 174 0.01 0.01

Table 4.8: Descriptive statistics for three-way ANOVA with 2× 2× 2 design.

Column N in table 4.8 shows the number of observations in each group
combination. It turns out that the ANOVA needs to be performed with an un-
balanced design. The sample sizes are all unequal. The group combinations,
in which the seasonal strength variables share the same level (low & low,
high & high), have the most observations. The linear model of the ANOVA is
initialized and fitted analogously to multiple linear regression with the func-
tion lm(). The actual ANOVA is conducted with the Anova() function of the
car package. This function can be used to calculate Type II and Type III ANOVA

tables for model objects produced by the lm() function (Fox and Weisberg
[41]). Here, Type III was selected since it does not give greater weight to
group combinations with larger sample sizes. The results of the three-way
ANOVA are shown in table 4.9.

Both seasonal strength factors exert a statistically significant influence on
the response variable. This means that for these factors the mean response
values of the two groups are significantly different. Also in the context of
ANOVA, the cross-correlation is not significant (not even in interaction with
the other factors). Therefore, it can be considered to completely exclude this
main effect in the modeling process. Compared to the multiple linear re-
gression, the three-way interaction is not statistically significant. It seems
that the dichotomization eliminated the minimal effect the cross-correlation
had (although the p-value is close to the 5% significance level). However, the
two-way interaction between the seasonal strength main effects SSRS ∗ SSLI
is again significant. This implies that the effect SSRS has on the response
variable is significantly different for the two different groups of SSLI, and
vice-versa.
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Coefficients
Sum of
Squares

Degrees of
freedom

F-value Pr(>F)

(Intercept) 0.0034 1 16.64 0.0000 ∗ ∗ ∗
SSRS 0.0017 1 8.44 0.0037 ∗∗
SSLI 0.0016 1 7.82 0.0052 ∗∗

CC 0.0001 1 0.56 0.4556

SSRS*SSLI 0.0013 1 6.18 0.0130 ∗
SSRS*CC 0.0005 1 2.27 0.1322

SSLI*CC 0.0003 1 1.45 0.2293

SSRS*SSLI*CC 0.0006 1 3.11 0.0778

Residuals 0.3000 1468

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4.9: ANOVA table (Type III tests).

The probability table 4.10 already shows in which direction this interaction
effect goes and between which groups the significant differences exist.

Impact positive negative
SSRS SSLI CC
low low low 0.39 0.61

high 0.39 0.61
high low 0.48 0.52

high 0.38 0.62

high low low 0.48 0.52

high 0.40 0.60

high low 0.68 0.32
high 0.77 0.23

Table 4.10: Conditional observed probabilities of dichotomized response variable
given three independent factors.

The probabilities indicate that it is more likely to achieve a positive impact
when the seasonal strengths of the retail sales and leading indicator time se-
ries are high. In contrast, when seasonal strengths are low, it is more likely
to have a negative impact. If both time series have low seasonal strength,
the inclusion of the leading indicator is probably counterproductive. The
ratio between positive and negative impact is almost identical for the two
cross-correlation groups in these seasonal strength constellations (low & low
versus high & high). These relationships can also be seen in the correspond-
ing interaction plots in figure 4.17.
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(a) Three-way interaction.

(b) Two-way interaction.

Figure 4.17: Exploratory analysis of interaction effects.

The mean response values of the low and high groups of the seasonal
strength factors suggest that there are significant differences and a signif-
icant interaction. Higher mean response values (> 0), and thus a positive
impact, are achieved when the seasonal strengths are high, regardless of the
cross-correlation group (see figure 4.17a). The two-way interaction plot in
figure 4.17b supports this assumption. The difference between the two mean
values of the groups low and high of the factor SSLI is greater in group high
than in group low of factor SSRS.

Since the two-way interaction effect is statistically significant, the main
effects SSLI and SSRS are being compromised by the interaction. For this
reason, post-hoc contrast tests are conducted on the two-way interaction ef-
fect only. Multiple pairwise comparisons were made to determine which
factor groups account for differences in the means. All separate group com-
binations have been tested against each other. However, since the ANOVA

is conducted on an unbalanced design, the estimated marginal means were
compared rather than the observed mean values. These marginal means are
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based on the underlying statistical model, not on the observed data. They
represent what the mean values would have been, had there been a balanced
design with equal sample sizes. With the function emmeans() from the em-

means package, the estimated marginal means for specified factors or factor
combinations in a linear model can be computed and pairwise comparisons
can be carried out automatically (Lenth [61]). The results of the post-hoc
contrast tests are shown in table 4.11.

SSRS SSLI
Estimated marginal

mean
Standard

error
Degrees of

freedom
Grouping

low low -0.0029 0.0005 1468 a
low high -0.0006 0.0010 1468 a
high low -0.0002 0.0014 1468 a
high high 0.0111 0.0007 1468 b

Results are averaged over the levels of: Cross-correlation.
P-value adjustment: Bonferroni correction.
Significance level used: α = 0.05.

Table 4.11: Results of post-hoc contrast tests on estimated marginal means. Column
Grouping indicates which means and thus which combinations are simi-
lar and which are significantly different.

It turns out that the group combination (high, high) is significantly dif-
ferent from all other combinations. This combination has the only positive
mean value of 0.0111. This result confirms what the interaction plots have
already illustrated. If both time series have a high seasonal strength, the
probability of achieving an improved forecast accuracy with the inclusion of
the leading indicator (MAEARIMA > MAEARIMAX) increases. This finding is
almost congruent with the results of the multiple linear regression, except
that with ANOVA the cross-correlation loses further statistical significance.

Analogously to multiple linear regression, certain assumptions regarding
the ANOVA residuals need to be met. They are assumed to be normally i.i.d.

with zero mean. Furthermore, the variances caused by the residuals should
be approximately equal across all groups (homogeneity of variance). Again,
the residuals should form an approximately straight line, if they are nor-
mally distributed. The Q-Q plot in figure 4.18 shows that the residuals do not
form a straight line. They do not seem to follow a normal distribution and
normality cannot be assumed. This conclusion is supported by the Shapiro-
Wilk normality test. The p-value is significant (0.00158). Therefore, the nor-
mal distribution assumption can be considered violated.
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Figure 4.18: Normal Q-Q plot of residuals.

To examine the homogeneity of variance, the residuals can be plotted
against the fitted values, which is illustrated in figure 4.19. There seems to
be no evident relationships between residuals and fitted values (the mean of
each group). However, there are differences in variance noticeable. The Lev-
ene’s test for homogeneity of variance confirms (p-value � 0.05) that there
are at least two statistically significant different groups in terms of residual
variance. Therefore, the assumption of homogeneity of variances can also be
considered violated.

Figure 4.19: Residuals plotted against fitted values.

Ultimately, the two fundamental assumptions of ANOVA are violated. Al-
though ANOVA is said to be robust to violations, they still have a negative im-
pact on the validity of the results and conclusions. However, the exploratory
analyses provide first evidence that the seasonal strength plays an important
role in answering the research questions of this work.
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4.4.3 Evaluation of Align Rank Transform Contrasts

In both parametric analysis methods, the key assumptions were violated.
The underlying data is nonconforming and does not hold the assumptions.
All the conclusions and results from these methods can therefore be consid-
ered suspect. For this reason, the nonparametric multifactor analysis method
ART-C was selected as an alternative, especially for ANOVA, to evaluate the
results of the experiment. ART-C circumvents the normal distribution as-
sumption by using an aligning and ranking procedure, in which the re-
sponse variable is first aligned for intended post-hoc contrast tests and then
ranked with ascending midranks. After this step, common ANOVA proce-
dures can be applied to the aligned and ranked data. The ART-C method can
be initialized with the art() function of the ARTool package (Kay et al. [57]):
art(Impact ∼ SSRS ∗ SSLI ∗CC). Subsequently, a common three-way ANOVA

(Type III) can be applied on the returned object with the anova() function
of the stats package. The results of the three-way ANOVA on the aligned and
ranked data are shown in table 4.12.

Term
Degrees of

freedom
Sum of
Squares

F-value Pr(>F)

SSRS 1 18465073.94 112.64 0.0000 ∗ ∗ ∗
SSLI 1 13306694.06 79.41 0.0000 ∗ ∗ ∗

CC 1 82148.09 0.45 0.5019

SSRS*SSLI 1 4430106.24 25.54 0.0000 ∗ ∗ ∗
SSRS*CC 1 128632.69 0.71 0.4009

SSLI*CC 1 55452.80 0.30 0.5809

SSRS*SSLI*CC 1 445089.61 2.46 0.1170

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4.12: ANOVA table (Type III tests) for ART-C method.

In terms of significance, the results are identical to those of the common
ANOVA presented in table 4.9. Even after the data has been aligned and
ranked, the significant influences of the seasonal strength factors and their
two-way interaction remain the same (as the statements about the individual
main and interaction effects). The result of the post-hoc contrast test for the
significant two-way interaction is shown in table 4.13.

SSRS SSLI Value F-value Pr(>F)

low-high low-high 288.73 25.54 0.0000 ∗ ∗ ∗
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 4.13: Results of post-hoc contrast test on two-way interaction effect.

The difference low-high low-high can be interpreted as the difference be-
tween (low− high|low) and (low− high|high), which is estimated as 288.73.
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The interpretation of this value is hardly intuitive, but the comparison states
that there is a significant positive difference between SSRS low and SSRS
high in group SSLI low compared to SSRS low and SSRS high in group SSLI
high. This indicates that higher values of the response variable are achieved
when the seasonal strengths of the two time series are high. This supports
and emphasises the results of the post-hoc contrast tests from the two-way
ANOVA interaction effect in table 4.11.

4.5 discussion

The results presented in the previous sections illustrate that four out of the
five tested time series models perform at a comparable level. The forecast
accuracies of the Random Walk without drift, Mean Forecast, ARIMA and
ARIMAX model are close to each other and the MAEs seem to follow a sim-
ilar distribution. The baseline models, that follow rather simple rule-based
approaches, can achieve comparatively good results. An exception is the
Seasonal Naive model. One of the key objectives of this work is to iden-
tify factors that reveal when the inclusion of an external regressor may be
worthwhile and when it is not. For this reason, the comparison of the ARIMA

and ARIMAX models is particularly important. Restricting the analysis to this
comparison, there is an improvement in 51% and a deterioration in 49%
of the time series. The examination of individual examples with noticeable
improvements but also with significant deteriorations have shown that the
impact on the ARIMA model possibly depends on the seasonal strengths of
the retail sales and its corresponding leading indicator time series. Moreover,
the cross-correlation achieved in the similarity matching seems to play a sub-
ordinate role. This analysis was extended to all time series. It was found that
positive and negative results were obtained in all cross-correlation ranges.
There are no ranges where the proportion of the positive impact excels and
vice versa. The ratio between positive and negative impact is balanced. For
the seasonal strength variable, however, the proportion of the positive im-
pact is notably greater in higher ranges. Based on these results, two addi-
tional hypotheses were formulated, which were examined and tested within
the framework of multiple analysis methods (two parametric and one non-
parametric). All three analysis methods conclude that when the seasonal
strength of the retail sales time series and its leading indicator series is high,
the probability of achieving an improving forecast accuracy increases. On the
other hand, the cross-correlation exerts no statistically significant influence
as an independent variable. The violations of the model assumptions of the
parametric methods can be compensated by the explorative findings and the
results of the nonparametric analysis method ART-C. Ultimately, the hypothe-
ses stated in section 4.3 can be confirmed. There is no relationship between
cross-correlation and the impact on ARIMA models. A higher similarity does
not guarantee a higher forecast accuracy with ARIMAX models. Contrarily,
the interaction between the seasonal strength variables is statistically sig-
nificant in a way that higher values lead to positive effects. One possible
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interpretation is that the historical variation of highly seasonal retail sales
time series can be explained with information provided by the strong sea-
sonal components of their leading indicators. The short-term development
of these leading indicators may anticipate upcoming seasonal patterns of the
retail sales time series. As the results show, these information can be partic-
ularly valuable for forecast accuracy.

However, there are four aspects that need to be considered while conduct-
ing the experiment. All four aspects affect important steps in the experimen-
tal pipeline, especially the steps data gathering, similarity matching, leading
indicator determination and analysis with ANOVA. The four aspects that will
be discussed in this section are:

1. Challenges utilizing Google Trends,

2. Spurious correlations,

3. Ranking and selection,

4. Dichotomization of continuous variables.

1 . challenges utilizing google trends Google Trends offers ac-
cess to the relative popularity of actual search requests made to Google and
provides the frequency in which a particular term is searched for from vari-
ous regions around the globe down to city-level geography. However, Google
Trends only provides access to a small sample of Google’s search database
since the entire dataset would be too large to process efficiently (Google pro-
cess billions of search requests per day). From a performance point of view,
this sampling strategy may make sense, but it comes with a major challenge.
The small sample provided is not always the same and in fact, it is constantly
changing. The time series data requested for a keyword today may already
look completely different tomorrow even if the same filters as time and loca-
tion are applied (Medeiros and Pires [66], Cebrián and Domenech [23]). In
addition, Medeiros and Pires [66] have shown that the differences between
various samples of the same keyword will be higher the less often the key-
word is searched. For the keywords requested and processed in this work,
it was not tested whether they were high volume search terms. Moreover,
only one sample per keyword was considered in the experiment. This in in
turn could lead to the challenge that other keyword samples could have led
to different leading indicator time series and thus to different conclusions.
Medeiros and Pires [66] offer one solution to overcome this possible prob-
lem. Instead of processing one sample per keyword, many different samples
should be gathered over a longer period. Subsequently, the time series data
could be averaged across multiple samples in order to get a more reliable
time series of that keyword. This approach should be considered in further
experiments in order to substantiate the findings.

2 . spurious correlations The similarity matching between the two
datasets within the experiment was performed using the cross-correlation
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function. The cross-correlation is a natural metric to evaluate and quantify
the strength and direction of the lead–lag relationship between two time se-
ries Xt and Yt. Yt was set to be the retail sales time series and Xt one of
the corresponding keyword time series from the Google Trends dataset.. In
this work, the assumption was made that the underlying bivariate stochas-
tic process (Xt, Yt) is stationary. As a result, it was assumed that the two
time series Xt and Yt have constant means (µX, µY) and constant variances
(σ2

X, σ2
Y). Based on this assumption, the sample cross-correlation has been

calculated for a number of lags according to the formula in equation 2.20.
With the help of the estimated standard deviations of both series (SX and
SY), 5% significance levels (±1.96/

√
n) for confidence intervals could be ap-

proximated. Cross-correlation coefficients exceeding these limits have been
considered significantly different from zero. They are suggesting significant
associations between the two examined time series. However, these signifi-
cance limits and thus the estimates of the cross-correlation coefficients are
only correct, if the two time series Xt and Yt are independent and stationary
in a sense that they are serially uncorrelated (no autocorrelation). In prac-
tice, many empirical time series exhibit autocorrelated structures since they
do not comprise independent values. These autocorrelated structures can
lead to non-stationarity. When the time series themselves are non-stationary,
their standard deviations can be higher or lower since the variances of both
series are no longer constant. This in turn has a direct influence on the ap-
proximation of the confidence intervals and thus on the decision whether
a cross-correlation coefficient is significantly different from zero (Dean and
Dunsmuir [35]). Therefore, cross-correlations that have been calculated with-
out taking autocorrelations into account may provide misleading statistical
evidence of a linear relationship between independent non-stationary time
series. In fact, pairs of autocorrelated time series that are completely indepen-
dent of each other can show significant cross-correlations, even when neither
has a causal effect on the other. The two sample time series illustrated in fig-
ure 2.5 may exhibit no significant lead-lag relationship once the autoregres-
sive structure of both series is removed. Hence, temporal autocorrelations
can inflate estimates of cross-correlations coefficients and cause high rates
of incorrectly concluding linear relationships (i.e., Type I error) (Olden and
Neff [75]). These misleading cross-correlations are called spurious correlations
since they indicate spurious relationships. The cross-correlations in this work
were calculated with the aforementioned assumptions. There is a risk that
many such spurious correlations, that can be interpreted in no meaningful
way, exist in the results. The time series were not tested individually for au-
tocorrelations beforehand. To overcome this problem, one common solution
is to remove the autocorrelation from at least one of the pair of series under
study. This process is known as prewhitening. Prewhitening can be seen as
a linear filtering operation and consists of the following three steps (Bloom,
Buckeridge, and Cheng [15], Razavi and Vogel [78]):

1. Fitting a time series model (such as ARIMA) to the original time series
Xt (external keyword) and store the residuals from this model.
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2. Filter the response time series Yt (retail sales) using the estimated coef-
ficients from the model of step one.

3. Compute the cross-correlation between the residuals of step one and
the filtered values of Yt of step two. Both, the residuals and filtered
values, form stand-alone time series.

The resulting cross-correlations relating the two (previously autocorrelated)
time series can then be assessed and interpreted more reliably (Dean and
Dunsmuir [35]). In order to evaluate the impact of prewhitening, this process
was performed as a preceding step before computing the cross-correlations
between the retail sales time series and each keyword series. It turned out
that this process had a negative impact on the overall comparison between
the ARIMA and ARIMAX models. The proportion of improvement decreased
from 51% to 39% and the proportion of deterioration increased from 49%
to 61%. This means that for more retail sales time series, leading indica-
tors were selected as external regressors, which had a negative impact on
the forecast accuracy. Consequently, the more robust interpretability of the
cross-correlations was accompanied by a deterioration in the forecast accu-
racy. In addition, for 171 prewhitened retail sales time series no adequate
ARIMA models could be found with the auto.arima() function. As the ex-
ploratory analysis of the results makes clear (see A.4), there may also be
no contrary statements regarding the statistical significance of the cross-
correlation. However, in the original computation of cross-correlation, there
were ranges in which the proportion of the positive impact was greater. For
the prewhitened cross-correlation, the proportion of the negative impact is
greater in almost all ranges (in some cases even clearly). The hypothesis that
the higher the similarity, the more beneficial the integration, still cannot be
confirmed. There are also changes in the seasonal strength analysis of the
retail sales time series. The proportion of the positive impact is still greater
in higher ranges of seasonal strength, but the difference to the proportion
of the negative impact seems to be no longer noticeable. This is presumably
caused by the overall lower proportion of improvements and the reduced re-
sults dataset. Ultimately, this leads to the question of what is more important
from a forecasting perspective. Since this work is primarily concerned with
the question of which factors are critical for the success of the integration
of leading indicators, the interpretability of the cross-correlations is of sec-
ondary importance. Nevertheless, this aspect should be critically questioned
and considered when analyzing individual cases.

3 . ranking and selection For the purpose of finding appropriate
leading indicators, cross-correlation coefficients for numerous lags were com-
puted between each retail sales time series and keyword series from the
Google Trends dataset in a 1:N fashion, where N represents the number of
keyword time series. The highest cross-correlation and its corresponding lag
for each keyword were stored temporarily. Subsequently, these keywords
have been ranked by their achieved cross-correlation. From these N key-
words, the keyword with the highest cross-correlation was then chosen to
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be the leading indicator. This operation was performed for each time series
of the retail sales dataset. Choosing the highest out of N cross-correlations,
however, exhibit randomness. This randomness refers to two steps within
this operation and multiplies from step to step. First, the cross-correlation
values of the individual lags were compared with each other and the high-
est cross-correlation was selected and stored temporarily. Second, the cross-
correlation values of the individual keywords were ranked in descending
order and the keyword with the highest cross-correlation was considered
leading indicator. In both steps, the selection was limited to absolute values.
But what if the cross-correlation values of the individual lags or keywords
are close to each other? It is possible that the corresponding second or third
highest keyword makes a better leading indicator in terms of forecast ac-
curacy. The lead-lag relationship may be more beneficial at other lags with
similar cross-correlation values. The main problem is that absolute cross-
correlation coefficients do not indicate whether they are significantly differ-
ent from zero. Therefore, instead of choosing the highest cross-correlation
per lag and keyword, the smallest p-value of a correlation-test per lag and
per keyword should be chosen to ensure that the cross-correlations are statis-
tically significant. Conducting multiple correlation-tests, however, increases
the risk of a Type I error, i.e., to erroneously conclude the presence of a sig-
nificant cross-correlation. For this reason, a Bonferroni correction should be
applied in both steps to adjust the level of significance (Curtin and Schulz
[31]). This alternative approach was implemented in the similarity matching
with the functions cor.test() and p.adjust() from the stats package. It turned
out that in only 383 cases (< 25% of all time series) different keywords and
thus different leading indicators were selected based on p-values. The pro-
portions of improvement and deterioration also remained unchanged. The
seasonal strength analysis did not produce significantly different results ei-
ther. The proportion of the positive impact remains notably greater in the
range of (0.7, 1.0] for the leading indicator time series (see A.3). Ultimately,
this alternative approach did not lead to any major changes.

4 . dichotomization of continuous variables The independent
variables in the variable set are all metrically scaled. In order to conduct an
ANOVA, these variables have been categorized using a simple dichotomiza-
tion strategy. The cutpoints were set near the mean and the median values.
Values that exceeded these cutpoints were classified as high. On the other
hand, values below these cutpoints were classified as low. The values of
the independent variables have been converted into two groups. This di-
chotomization simplifies the statistical analysis and leads to a straightfor-
ward interpretation and presentation of results. A binary split enables a
comparison of groups of observations with high or low values of the in-
dependent variables (Altman and Royston [5]). This comparison can be real-
ized with an ANOVA and a corresponding F-test, leading to an estimate of the
difference between factors and groups. However, the dichotomization of con-
tinuous variables also comes with some drawbacks that can lead to several
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problems. First, there is no good reason in general to suppose that an under-
lying dichotomy exits in the data, and if one exists, there is no reason why
it should be at the median or mean value (MacCallum et al. [64]). The ques-
tion arises where the cutpoints should be set. This decision is crucial since
individual observations close to but on opposite sides of the cutpoints are
characterized as being very different rather than very similar. Second, the
statistical power to detect a relation between the factors and the response
variable is reduced since dichotomization causes a high loss of information.
The strategy applied in the ANOVA of this work reduces power by the same
amount as discarding a third of the data would do (MacCallum et al. [64],
Cohen [28]). Accordingly, not only the assumptions of the ANOVA were vio-
lated, but also the dichotomization of continuous variables led to a reduced
statistical power of the results obtained.

For future research questions regarding leading indicator search, these
four aspects should be an integral part in the planning and design of experi-
ments. When calculating cross-correlations within the similarity matching, it
should first be clarified which research objective should be weighted higher.
Is it primarily about the interpretability of the achieved cross-correlations or
are potential spurious correlations accepted for an improvement of forecast
accuracy? If the latter is chosen, causal relationships should be assessed by
experts in a subsequent step. In addition, multiple samples of keyword time
series should be retrieved from Google Trends in order to avoid high vari-
ances within individual time series. If metric variables constitute the results
of the experiment, the evaluation by ANOVA should be avoided due to the
disadvantages of the required dichotomization, especially if the underlying
assumptions are violated. The latter can be at least partially compensated
by nonparametric alternatives such as ART-C. The alternative ranking and
selection approach did not produce any significantly different results. The
cross-correlation computation can be utilized as a methodology for similar-
ity matching. Nevertheless, correlation-tests can be performed as evidence
of statistical significance.



5
C O N C L U S I O N

The objective of this work was to answer the core research question, whether
the integration of external data sources and leading indicators can contribute
to an improvement of forecast accuracy. To answer this question, leading in-
dicators from an external online open data source were determined for each
time series of a retail sales dataset. The approach chosen to address the ques-
tion of how time series can be merged was based on a similarity matching
with the cross-correlation as a similarity measure. Time series with a high
similarity to those of the retail sales time series were included individually as
external regressors in the linear time series model ARIMA, converting it into
an ARIMAX model. The tool Google Trends was selected as a freely available
online data source. The comparison of the forecasting performance between
the bivariate ARIMAX models and their counterpart univariate ARIMA models
reveals that there is an improvement in 51% and a deterioration in 49% of
the cases. Therefore, the hypothesis that the inclusion of external time series
as leading indicators can improve the forecast accuracy can be confirmed.
However, there is no clear tendency and the improvements can be solely by
chance.

In order to exclude this chance, individual time series with noticeable im-
provements and significant deteriorations have been examined. The analysis
results suggest that there might be factors that are responsible for both ex-
tremes. Following the analysis of individual time series, it was then demon-
strated, that the successful addition of external regressors only depends
on the seasonal strengths of the merged time series. Moreover, the cross-
correlation seems to have no significant influence. Improvements and deteri-
orations were both obtained equally at low and high cross-correlation values.
The results of the multivariate analysis methods confirm these findings. For
this reason, the hypothesis that the higher the similarity between two time
series, the more beneficial the integration will be, cannot be confirmed. The
seasonal pattern, on the other hand, turns out to be a critical success fac-
tor for the experiment. When both time series have high seasonal strengths,
the probability of the leading indicator improving the forecast accuracy in-
creases. This interaction between the two seasonal strength variables proves
to be statistically significant. These results make it possible to answer the
question, when it is useful to include external regressors and which condi-
tions are critical for success.

Ultimately, it can be concluded that high and low cross-correlations can
contribute to an improving forecast accuracy, provided the merged time se-
ries have strong seasonal patterns. Time series with high seasonal strengths
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are therefore suitable candidates for leading indicator search. For this rea-
son, it is important to consider the seasonal strength of time series within
the matching process in further research questions. In addition, further simi-
larity measures that may enable a robust interpretability in connection with
an improvement of forecast performance should be tested.



Part II

A P P E N D I X



A
A P P E N D I X

a.1 selected time series pairs

(a) Retail sales time series first time series
pair.

(b) Leading indicator time series first time
series pair.

(c) Retail sales time series second time series
pair.

(d) Leading indicator time series second
time series pair.

Figure A.1: Time series pairs from evaluation of multiple linear regression. Cross-
correlation values of 0.47 and 0.45.
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a.2 hyndman-khandakar algorithm

Figure A.2: Default behavior of the Hyndman-Khandakar algorithm used in the
function auto.arima() (Hyndman and Khandakar [53]).

a.3 alternative ranking and selection procedure

Figure A.3: Discretized seasonal strength from leading indicator time series sepa-
rated by impact on ARIMA model. Results are obtained from the alterna-
tive ranking and selection procedure.
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a.4 results of the prewhitening process

(a) Discretized cross-correlation separated
by impact.

(b) Discretized seasonal strength from retail
sales time series separated by impact.

Figure A.4: Results of the prewhitening process.
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