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Motivation

Magnetic Particle Imaging (MPI) is an emerging imaging modality which exploits the nonlinear

magnetization of Superparamagnetic Iron Oxide (Nanoparticles) (SPIO) (cf. Fig. 1, left) in order to

reconstruct the particle distribution in a scanned volume. The volume is sampled by the super-

position of static and dynamic fields, adding up to a moving Field Free Point (FFP). The goal is to

recover the spatial distribution of SPIO from a time dependent voltage signal that is measured by

MPI.

Figure 1. The nonlinear magnetization curve (left) is exploited to display the concentration distribution of injected

SPIO tracers. The MPI signal is visualized in colors (right, Source: [Ta20]), whereas the structural information in

grayscale is added by a CT scan.

Having been introduced by Gleich and Weizenecker [GW05] in 2005, MPI has been further

developed as it promises high potential in medical imaging: It offers high spatial resolution,

high temporal resolution and sensitivity [Wu+19]. Furthermore, neither X-Ray like in Computer

Tomography (CT) nor radioactive tracers as in Positron Emission Tomography (PET) are used

which offers an advantage for patients [Wu+19]. Comparable to PET images, MPI visualizes the

concentration of tracers added to the scanned object (cf. Fig. 1, right).

Possible clinical applications:

flow analysis eg. stenosis detection

diagnostics of cancer cells [Häg+12]

MPI suffers from ill-posedness [KJL18], which leads to the need of regularization techniques in

order to receive a stable solution. The fact that there are only few public accessible scan data

challenges the usage of learning-based methods.

Goals of this work

The goal is to reconstruct the volume of SPIO concentration distribution from MPI data of a real

MPI scanner. A standard Tikhonov regularization and two learning-based methods ought to be

investigated, implemented and their results compared. Furthermore, the influence of different

preprocessing steps should be analyzed by standard image quality measures.
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Methods

As a result of a time-consuming calibration process, the MPI problem can be described as a

linear system of equations that has to be inverted. Here, the system matrix S consisting of the

discretized system answer multiplied with the unknown concentration vector c on the left hand

side, should equal the measured voltage (vector) u on the right hand side of the equation leading

to the system of linear equations Sc = u. This problem can be expressed as an optimization

problem:

ĉ = argmin
c

1
2
||Sc − u||22

Implemented regularization techniques for the reconstruction of MPI data of a real MPI scanner:

Standard Tikhonov Regularization, L2-Regularization

Deep Image Prior (DIP), learning-based

Plug and Play Prior (PnP), learning-based

The Image quality of the results is quantified by the standard image quality measures Structural

Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio (PSNR).

Data

Publicly accessible data of the Open MPI dataset [Kno+20] provided in the Magnetic Particle

Imaging Data Format (MDF) [Kno+18] are used to investigate the application of different regu-

larization techniques. The calibration data, which are the foundation of the System Matrix, are

aquired in a 19x19x19 grid using a reference phantom (”Delta phantom”) containing a 100mmol/l

tracer concentration, yielding to a reconstructed volume of 19x19x19 with a 2mmx2mmx1mm

voxel size.

The scanned phantoms are shown in Fig. 2. Both phantoms are filled with a solution of 50mmol/l

tracer concentration.

(a) Shape Phantom (b) Resolution Phantom

Figure 2. Phantoms used in the OpenMPIDatasets. Source: [Kno+20]

Acquired by a preclinical MPI scanner, the data inherit all properties of a real scan setup including

noise and technology-induced perturbations. To tackle this challenge, the data are preprocessed

with different preprocessing steps shown in Fig. 3.

Figure 3. Preprocessing steps applied to MPI scan data.

Results

The different preprocessed MPI scan data are reconstructed by the three different regulariza-

tion techniques and their corresponding hyperparameters are tuned. In Fig. 4, the center slices

of some reconstructed volumes are shown.

Figure 4. Middle slices of the reconstructions of the Shape phantom (top, PnP-reconstructed normalized data

with signal to noise threshold 0) and the Resolution phantom (bottom, Tikhonov-reconstructed data, not

normalized with signal to noise threshold 0).

The quantified evaluation of the reconstructed results is summarized in Fig. 5.

(a) Shape Phantom, normalized data (b) Shape Phantom, not normalized data

(c) Resolution Phantom, normalized data (d) Resolution Phantom, not normalized data

Figure 5. Best results of preprocessed MPI data and different applied regularization techniques. The highest

achieved image quality values are underlined for each preprocessed data investigated.

Conclusion

The main findings of this work are:

The Standard Tikhonov regularization provides comparably good results in the reconstruction

of the Resolution phantom. The regularization parameter controls the tradeoff between lower

frequent and higher frequent parts of the image.

Reconstructions using DIP are highly dependent on the chosen hyperparameters. Early

stopping is necessary.

The hyperparametertuning of PnP is non-trivial and crucial for the resulting image quality.

Different slicing methods are tested: A random choice of the slice axis provides better results.
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