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A B S T R A C T

Magnetic Particle Imaging (MPI) is an emerging medical imaging modality
which aims to reconstruct a particle concentration from measured voltage.
In order to acquire scan data, the nonlinear response of superparamagnetic
iron oxide nanoparticles (SPIO) to external magnetic fields is exploited. The
modality is tracer based and inherits advantageous properties like high sen-
sitivity, temporal and spatial resolution while working without radioactive
materials or X-Rays. For that reason, many applications in the medical field
could benefit from MPI.
In this work, the measurement-based approach using a lengthy calibration
process in order to acquire the system response at each voxel position is
applied. Consequently, the relation between concentration distribution and
measured voltage can be described as a system of linear equations. Since the
problem is ill-posed, regularization techniques are used to reconstruct the
concentration distribution. The goal of this thesis is to implement and com-
pare one standard and two different Machine Learning-based regularization
techniques to approach the inverse problem and reconstruct MPI data from
a preclinical scanner.
In order to reconstruct the data, three regularization techniques are applied:
Besides L2-Tikhonov Regularization, Machine Learning-based methods Deep
Image Prior (DIP) and Plug and Play Prior (PnP) are implemented in Python.
To denoise reconstructed volumes within the PnP framework, a pretrained
denoiser Convolutional Neural Network (CNN) is used. Preprocessing of the
data is described and implemented in Matlab. The results of reconstructed
concentration distributions by the implemented different regularization tech-
niques are evaluated by the standard image quality measures SSIM and
PSNR.
The results differ by the scanned phantom and preprocessing applied to the
data. Regarding SSIM, L2-Tikhonov Regularization recoonstructs in most
cases the best results using preprocessed data of a phantom consisting of
thin tubes. It is shown that Learning-based techniques lead to a better image
quality of a phantom with a large area: Edges are preserved while the noise
level is low. This applies to both the visual impression and image quality
measures. The tuning of hyperparameters is non-trivial and crucial for the
image quality. Both Learning-based methods require early stopping of the
training process. The best visual result of a phantom with a large amount of
low frequent parts is achieved in the first iteration of the PnP.

Keywords: Magnetic Particle Imaging, Machine Learning, Medical Imaging,
Algorithms, Regularization, Data Science



Z U S A M M E N FA S S U N G

Magnetic Particle Imaging (MPI) ist eine neuartige medizinische Bildgebungs-
modalität, bei der die Konzentration paramagnetischer Partikel anhand ge-
messener Spannung rekonstruiert wird. Dabei wird die nichtlineare Antwort
superparamagnetischer Eisenoxid Nanopartikel (SPIO) auf externe Magnet-
felder für die Signalerhebung von MPI ausgenutzt. Die Modalität ist tracer-
basiert und bietet vorteilhafte Eigenschaften wie hohe Sensitivität und hohe
zeitliche sowie örtliche Auflösung. Dabei verzichtet MPI auf radioaktive oder
Röntgenstrahlung. Daher könnten viele Anwendungen in der Medizin von
MPI profitieren.
Der messbasierte Ansatz für MPI wird in dieser Arbeit verfolgt. Dabei wird
während eines zeitintensiven Kalibrationsprozesses die Systemantwort eines
Scanners bei jeder Voxelposition erfasst. Folgend wird der Zusammenhang
zwischen Konzentrationsverteilung und gemessener Spannung als lineares
Gleichungssystem beschrieben. Dieses Problem ist schlecht gestellt, weswe-
gen Regularisierungstechniken zur Rekonstruktion eingesetzt werden. Ziel
dieser Thesis sind Implementierung und der Vergleich verschiedener Machi-
ne Learning-basierten Regularisierungstechniken und einem Standardregu-
larisierungsverfahren um das inverse Problem anzugehen und MPI Daten
eines preklinischen Scanners zu rekonstruieren.
Neben einer L2-Tikhonov Regularisierung werden Machine Learning-basierte
Methoden Deep Image Prior (DIP) und Plug and Play Prior (PnP) imple-
mentiert. Um die rekonstruierten Volumina mit PnP zu entrauschen, wur-
de ein vortrainiertes entrauschendes künstliches neuronales Faltnetz (CNN)
verwendet. Die Datenvorverarbeitung wird beschrieben und in Matlab im-
plementiert. Die Bildqualität der Resultate wird anhand Standardbildquali-
tätsmaße SSIM und PSNR quantifiziert.
Die Ergebnisse unterscheiden sich anhand der gescannten Phantome und
Datenvorverarbeitung. Gemessen an SSIM führt die L2-Tikhonov Regulari-
sierung von Daten eines Phantoms bestehend aus dünnen Stäben meistens
zu den besten Ergebnissen. Es wird gezeigt, dass die implementierten lern-
basierten Techniken zu besserer Bildqualität eines Phantoms mit großen Flä-
chen führt. Dabei werden Kanten bei niedrigem Rauschlevel erhalten, was
sowohl der visuelle Eindruck, als auch Bildqualitätsmaße zeigen. Hyperpa-
rametertuning ist nicht trivial und entscheidend für die resultierende Bild-
qualität. Frühzeitiges Abbrechen ist bei beiden lernbasierten, iterativen Tech-
niken notwendig. Das beste visuelle Ergebnis des flächigen Phantoms wurde
in der ersten Iteration von PnP erreicht.

Keywords: Magnetic Particle Imaging, Maschinelles Lernen, Medizinische Bild-
gebung, Algorithmen, Regularisierung, Data Science
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1
I N T R O D U C T I O N

1.1 motivation

Magnetic Particle Imaging (MPI) is an emerging imaging modality which ex-
ploits the nonlinear magnetization of Superparamagnetic Iron Oxide (Nano-
particles) (SPIO) in order to reconstruct the particle distribution in a scanned
volume. The goal is to recover the spatial distribution of SPIO from a time
dependent voltage signal that is measured by MPI. Having been introduced
by Gleich and Weizenecker [GW05] in 2005, MPI has been further devel-
oped as it promises high potential in medical imaging: It offers high spatial
resolution, high temporal resolution and sensitivity [Wu+19]. Furthermore,
neither X-Ray like in Computed Tomography (CT) nor radioactive tracers as
in Positron Emission Tomography (PET) are used which offers an advantage
for patients [Wu+19]. As an example in the medical field, a tracer contain-
ing SPIOs can be injected into the patient’s circulatory system and thus show
the concentration of the tracer and consequently, gaining information of flow
properties and detecting stenosis. A further possible application is the diag-
nostics of cancer cells [Häg+12]. There are promising results that indicate
future applications in medical imaging, overcoming the challenging engi-
neering task to create a strong gradient field in order to achieve a scanner
big enough to scan a human brain [Le+23].
As a result of a time-consuming calibration process, the MPI problem can
be described as a linear system of equations that has to be inverted. Here,
the system matrix S consisting of the discretized system answer multiplied
with the unknown concentration vector c on the left hand side, should equal
the measured voltage (vector) u on the right hand side of the equation lead-
ing to the system of linear equations Sc = u. However, MPI suffers from
ill-posedness [KJL18], which leads to the need of regularization techniques
in order to receive a stable solution. Moreover, conditions related to the prob-
lem like the existence of only positive particle concentrations or the assump-
tion of sparse distributed concentration can be taken in account and imple-
mented by considering suitable priors in regularization techniques.
This thesis focuses on applying different regularization techniques in order
to deal with the MPI problem. The goal is to reconstruct the volume of SPIO
concentration distribution from MPI data. A standard Tikhonov regulariza-
tion and two learning-based methods are investigated and implemented.
Furthermore, the influence of different preprocessing steps is analyzed.
Image quality of the results is quantified by Structural Similarity Index Mea-
sure (SSIM) and Peak Signal to Noise Ratio (PSNR).
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1.2 goal of this thesis

The goal of this thesis is to understand and preprocess freely accessible MPI
data of a reals scanner and perform reconstruction with Machine learning-
based regularization techniques. The reconstruction of the data is approached
in a measurement-based way. Furthermore, different regularization tech-
niques are implemented, tuned and the results evaluated by standard image
quality measures.
As a baseline, Tikhonov regularization is implemented. Moreover, Machine
learning-based techniques are also implemented and their results regarding
image quality evaluated. The few amount of freely accessible MPI data chal-
lenges the application of learning-based methods and has to be taken into
account during the finding process of suitable Machine learning-based reg-
ularization techniques.
An objective is to provide inside into the strengths and weaknesses of differ-
ent regularization techniques applied to acutal scan data.

1.3 structure of this thesis

First, Background information needed to understand the functionality of
MPI and the measurement-based approach is provided. The signal gener-
ation from particles with certain properties, technical implementation and
spatial encoding is described. Afterwards, the measurement based approach
to MPI construction is explained since this is the core operation used in this
thesis to reconstruct MPI data. To complete the understanding of MPI, pos-
sible clinical applications of MPI are stated.
Then, freely accessible MPI data including the used MPI scanner, scan se-
quences, calibration procedure and scanned phantoms are introduced and
described. Methods applied for the calculation of the MPI reconstruction
in this thesis are introduced in Chapter 3. This includes different steps of
preprocessing of the freely accessible data. Preprocessing is used to exclude
background and also augments the few data. Afterwards, the notion of ill-
posedness is introduced in order to motivate the usage of regularization
techniques. Then, Tikhonov regularization and the Machine learning-based
regularization methods Deep Image Prior and the Plug and Play framework
with a convolutional neural network as denoiser are explained. Since the
resulting image quality has to be quantified, image quality measures are in-
troduced.
The results of regularization techniques including tuned hyperparameters
are provided and evaluated by standard image quality measures in Chapter
4.
Having described the results, their further properties are discussed as well
as challenges that might have an influence on the results.
Finally, the main findings and challenges of the thesis are summarized.



2
B A C K G R O U N D A N D S TAT E O F R E S E A R C H

This chapter deals with the functionality of Magnetic Particle Imaging. First,
the functionality of Magnetic Particle Imaging (MPI) and the measurement-
based approach to MPI is described. Afterwards, the dataset used in this
thesis is introduced.

2.1 mpi principle

In this section, the technical functionality of MPI is explained, starting from
the used Superparamagnetic Iron Oxide tracers, their response to external
applied magnetic fields and measurement of the resulting signal. Moreover,
the superimposition of different magnetic fields in order to excite SPIOs and
provide local encoding is described. Followingly, the measurement-based
approach to MPI is shown so that the usage of the SM, which is the main
component of the measurement-based approach to MPI, is understood. Fi-
nally, possible clinical applications for MPI are explained and the difference
to other medical imaging modalities is summarized.

2.1.1 Superparamagnetic Iron Oxide (Nanoparticles) (SPIO)

Magnetic Particle Imaging exploits the nonlinear magnetization respronse of
Superparamagnetic Iron Oxide Nanoparticles [GW05] exposed to magnetic
fields. This chapter introduces the properties of SPIO and the advantages for
medical imaging.
Paramagnetism refers to the property of particles to be strongly magnetized
in a magnetic field and in contrast to ferromagnetism, no magnetization
is retained after switching off the magnetic field. Thus no magnetic rema-
nence is formed when a previously applied magnetic field has been turned
off as shown in Figure 2.1. If this property remains even below the Curie
temperature, it is described as superparamagnetism. This effect occurs be-
low a substance-dependant size of ferromagnetic or ferrimagnetic material
[TSH03]. Superparamagnetic iron oxide nanoparticles (SPIO) consist of an
iron oxide core which is surrounded by a non-ferrous shell [Bie12]. The di-
ameter of the core ranges between 10nm and 100nm [WA12]. In MPI, the
nonlinear magnetization of SPIO is used for imaging.
SPIO as contrast agent is already used in the field of medical imaging, more
precisely it has found application in Magnetic Resonance Imaging (MRI)
[TSH03] as well as drug carrier [WA12]. Conventional contrast media like
gadolinium in MRI have been shown to be difficult to tolerate for some
patient groups and, in severe cases, may even lead to increased mortality
[Sar+13]. Since gadolinium is processed in the kidney, imaging with such
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Figure 2.1: Magnetization of a paramagnetic substance. When a magnetic field H is
applied, the absolute value of magnetization M increases until saturated
at magnetization Ms. After switching off or without a magnetic field,
the magnetization is 0. Source:
https://commons.wikimedia.org/wiki/File:Hysteresis_superparamag.JPG

contrast media can be especially harmful for patients with chronic kidney
disease. SPIO as contrast agent is safer for the patient than gadolinium due
to the processing in the liver rather than in the kidneys [Sar+13].
However, SPIO appear dark in Magnetic Resonance Imaging, which leads
to a negative contrast. This causes challenges and limitations in applications
like the quantification of lumen area or the precise location of SPIO [Sar+13].
In opposition to that, SPIO in MPI are represented as "bright blood" contrast
[Sar+13].

2.1.2 Technical implementaion: Selection Field, Drive Field and Field Free Point

To acquire the MPI scan signal, SPIO are excited with an alternating mag-
netic field, usually sinusoidal, of amplitude AD and frequency f0. If the dy-
namic drive field HD(x, t) with sufficiently high amplitude AD is applied, a
magnetization M(t) is exhibited by the SPIO [GW05]. An example for the
1-dimensional case is shown in Fig. 2.2. Due to the sensitivity profile of the
drive field coils, the resulting magnetic field varies along the spatial compo-
nent x [MW]. The induced voltage in a receive coil shows dirac-like peaks
(Fig. 2.2, top right). Since the magnetization curve of the particles does not
follow a perfectly steep step function, the spectrum of the received voltage
time-signal inherits harmonics of the excitation frequency f0 [Kno11].
However, the drive field alone does not provide any spatial encoding since
all particles in a volume respond to the excitation. For that reason, a static
gradient field, selection field Hs(x) = Gx with a linear gradient G is super-
imposed:

H(x, t) = HS(x) + HD(x, t) . (2.1)

In a certain region, Hs(x) is by design 0 [Kno11]. Using permanent magnets
and/or coils in Maxwell configuration, the gradient field is generated [MW].
An overview of the coils used for a MPI scanner is found in Figure 2.5.
The magnetization of particles located in a saturated area are hardly influ-

https://commons.wikimedia.org/wiki/File:Hysteresis_superparamag.JPG
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Figure 2.2: Magnetization response of unsaturated paramagnetic particles. A dynamic
magnetic field (bottom left) acting on paramagnetic particles in their non-
linear magnetization range (top left), leads to a magnetization response
(top middle). The change in magnetization induces in the receiving coil
a signal (top right) whose Fourier spectrum is non-trivial (bottom right).
Source: [Kno11]

enced by an external dynamic field, which is shown in Fig. 2.3. Therefore,
induced voltage in receive coils is trivial and the resulting coefficients of the
spectrum are close to zero.
Due to the superimposition of drive field and selection field, the location
of the point where H(x, t) = 0, is moved. This point is called Field Free
Point (FFP). The effect of the superimposition is visualized in Fig. 2.4.
Only particles located in and in very close proximity to the FFP can be ex-
cited and thus induce a non-trivial signal in receive coils. As a consequence,
spatial encoding is achieved.
There are also MPI scanners using a Field Free Line (FFL) geometry [WGB08]
[TG20], which will not be discussed in the course of this thesis. All data pro-
cessed in this study was acquired by a scanner with FFP geometry.
According to (2.1), the induced voltage in the receive coils results not only
from the particle’s magnetization change but is also influenced by the drive
field itself. Therefore, the frequencies used for reconstruction are usually
higher than the drive field base frequency f0.



2.1 mpi principle 6

Figure 2.3: Magnetization response of saturated paramagnetic particles. A dynamic mag-
netic field (bottom left) acting on paramagnetic particles in a saturated
range (top left), leads to a marginal change in their magnetization (top
middle). Small changes of the magnetization induce very small voltages
in the receive coil (top right). Followingly, the Fourier coefficients are
close to 0 (bottom right). Source: [Kno11]

Figure 2.4: Superposition of Drive field and Selection Field. Superposition of a Drive
field generating a Field Free Point (left) and gradient field (middle) leads
to another position of the FFP (right). Source: Universität Bremen, Zen-
trum für Technomathematik, accessed 22.04.2023

2.1.3 Measurement-based approach to MPI reconstruction

Having measured the induced voltage signal with the receive coils, the goal
of MPI is to reconstruct the particle concentration distribution of the scanned
volume.
There are two different approaches to address the MPI reconstruction: Measurement-
based and model-based. Both aim to derive information of the spatial con-
centration distribution from measured voltage signal.
In the following section, the measurement-based approach is described since

https://www.uni-bremen.de/techmath/forschung/inverse-probleme-und-magnetic-particle-imaging
https://www.uni-bremen.de/techmath/forschung/inverse-probleme-und-magnetic-particle-imaging
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Figure 2.5: Schematic MPI scanner setup. Source: [Wei+09]

all of the following analysis and implementation is based on it. It should be
noted that this approach inherits some drawbacks like a lengthy calibra-
tion process limitations of voxel grid size. In the model-based approach, the
calibration process is avoided. For further information on the model-based
approach, please refer to [Kno+10b; Kno+10a; MW].
The main goal is the reconstruction of the spatial particle concentration ρ

from measured time signal u(t) [MW].
The signal detected in a receive coil is induced voltage u(t) by a temporal
change of the magnetic flux Φ(t) according to Faraday’s law of induction:.

u(t) = − d
dt

Φ(t) . (2.2)

In MPI, magnetic flux is the superposition of an applied magnetic field
H(x, t) and the magnetization response M(x, t) of the SPIO in a volume
Ω ∈ R3:

Φ(t) = µ0

∫
Ω

R(x)(H(x, t) + M(x, t))dx . (2.3)

Parameter µ0 represents the magnetic permeability and R(x) ∈ R3x3 the
sensitivity pattern of the three recording coil pairs [MW].
The magnetization response depends on the particle concentration ρ and
magnetic moment m of a single particle which is influenced by the magnetic
field:

M(x, t) = ρ(x) m(x, t) (2.4)

The influence of a magnetic field on the magnetic moment is described by
the Langevin function, which is visualized in Fig. 2.1. Hence, the induced
voltage can be split into a particle concentration dependent part described
by the magnetization response and a particle concentration independent part
of the applied magnetic field (2.5). Since the latter one does not provide
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information about the concentration distribution and thus is not of interest
in terms of the MPI inverse problem, it is defined as background signal b(t).

u(t) = − d
dt

µ0

∫
Ω

R(x)(M(x, t) + H(x, t))dx

= −µ0
d
dt

∫
Ω

R(x)M(x, t)dx − d
dt

µ0

∫
Ω

R(x)H(x, t)dx︸ ︷︷ ︸
b(t)

=
∫

Ω
ρ(x) (−µ0)R(x)ṁ(x, t)︸ ︷︷ ︸

s(x,t)

dx + b(t)

=
∫

Ω
ρ(x)s(x, t)dx + b(t)

(2.5)

Parts of the background signal is filtered by analog filters in the signal ac-
quisition chain. To eliminate the entire background signal from the induced
voltage, the remaining background signal is estimated via measurements of
an empty MPI scanner [KJ19].
The system answer s(x, t) of one single magnetic particle consists of the ma-
terial properties of the scanner and magnetic particle.
In reality, the background signal and particle signal is superimposed in the
measured signal. To extract the signal induced by the magnetization re-
sponse, measured signal is subtracted by measurements of an empty MPI
scanner.
After the data acquisition, a discrete Fourier transformation is performed
on the received voltage signal u(t), leading to K ∈ N Fourier coefficients.
Let Ik = 1, 2, ...K and k ∈ Ik, then the k-th background-corrected Fourier
coefficient ûk can be then described with Fourier coefficients ŝk of s(x, t):

ûk =
∫

Ω
ŝk(x)ρ(x)dx (2.6)

By dispersing volume Ω into N discrete voxels of the same size, a discretized
formula is obtained, where cn is the SPIO concentration in voxel Vn, n ∈ IN

with IN = 1, 2, ..., N:

ûk =
N

∑
n=1

ŝk,ncn (2.7)

In matrix notation it becomes clear that the MPI problem can be adressed as
a linear problem, if the System Matrix S is known:

û = Sc . (2.8)

The System Matrix (SM) is the discretized system function which can be ob-
tained via a calibration process. During the calibration, the system response
is measured by scanning a voxel-sized phantom "Delta Sample" of a known
concentration at each voxel position. A detailed description of the calibration
process is provided in section 2.2.3.
The columns of the System Matrix define the spatial position of the "Delta
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Sample" during the calibration, therefore representing the voxel position in
the volume to be reconstructed, which is also known as Field of View (FOV).
The rows represent selected Fourier coefficients obtained by the Fourier
Transformation of the calibration measurements. Each of the used L receive
coils provides measurement data that can be added as rows to the System
Matrix. Furthermore, the Fourier coefficients can be split into their real and
imaginary part, which leads to a SM S ∈ RmxN , with m being the total
number of Fourier coefficients used for the reconstruction. The number of
suitable Fourier coefficients of the individual receive coil can vary. A selec-
tion of coefficients can be made by criteria, for instance bandpass filtering
or signal to noise ratio. Let Il be the set of Foursystem mier coefficients of
receive channel l taken into account for the reconstruction. Then the number
of rows m of the SM is: m = 2 · ∑L

l=1 |Il |.
The left hand side of (2.8) consists of vector û ∈ Rm, the elements are the
corresponding Fourier coefficients of the voltage signal used for reconstruc-
tion.
Finally, the unknown particle concentration c := (cn)n∈IN ∈ RN

+ can be ob-
tained by solving the inverse problem associated to (2.7).
However, the reconstruction problem is severely ill-posed [KJ19], meaning a
solution via inversion of the SM would lead to unstable results. An anlaysis
of MPI scan data in section 3.1 shows that the SM is ill-conditioned since
the SM has a high condition number. Consequently, a small change in the
measurement vector u can lead to major changes in the reconstructed con-
centration distribution. The singular value decay on MPI scan data is inves-
tigated in [KJ19]. Therefore, a regularized reconstruction method is needed.
Furthermore, implausible results like negative concentrations could be part
of the calculated solution. Constraints like positivity constraint can be inte-
grated in the regularization process to ensure that the solution fulfills certain
properties.
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2.1.4 Possible clinical applications and comparison to other medical imaging modal-
ities

The signal of excited and relaxed SPIO tracer is measured in MPI. This
means that only externally added tracers with certain properties are visible
in the image of MPI. Unlike CT or MRI, the overall structure of the scan object
is not measured and thus not visible in the resulting MPI images. Two imag-
ing modalities can be combined to provide further spatial information of the
scanned object’s structure [Vog+19]. An example is shown in Fig. 2.6, where
the structural information provided by CT scans is visualized in grayscales
and SPIO concentration measured with MPI is visualized using colors.
Tracer imaging is used in medical imaging modalities like PET. A disadvan-
tage of these tracers is the radioactivity to which a patient is exposed. SPIO
are not radioactive, which is a great advantage compared to PET.
Moreover, since SPIO are better tolerated compared to other contrast me-
dia used in MRI [Sar+13]. Clinical applications for MPI are the diagnosic

Figure 2.6: Imaging of a mouse with two probes of SPIO tracer. The grayscale struc-
tural imaging is from CT, color coded areas MPI reconstruction. Source:
[Tal+20]

of tumors [Häg+12] and dynamic scans like myocardperfusion [Häg+12] or
general scan of the flow through a blood vessel in order to detect stenosis.
An overview of MPI’s properties compared to other medical imaging modal-
ities is provided in Fig. 2.7. Main advantages are high sensitivity, high tem-
poral resolution and depending on a calibration process or model-based ap-
proach, high spatial resolution [Wu+19].
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Figure 2.7: Comparison of MPI with other medical imaging modalities. Source: [Wu+19]

2.2 open mpi data

In this thesis, public data of the Open MPI dataset [Kno+20] (downloaded
from https://media.tuhh.de/ibi/openMPIData/, accessed on April 12, 2023)
provided in the Magnetic Particle Imaging Data Format (MDF) [Kno+18] is
used to investigate the application of different regularization techniques. Ac-
quired by a preclinical MPI scanner (Bruker in Ettlingen, Germany) in Febru-
ary 2018, the data inherit all properties of a real scan setup including noise
and technology-induced perturbations. In the following section, a closer in-
vestigation of the scanner, data acquisition process and scan phantoms is
provided. Preprocessing steps needed to achieve a reasonable image quality
are discussed in Chapter 3.1.

2.2.1 MPI scanner (Bruker)

The preclinical scanner as well as the corresponding coordinate system is
shown in Fig. 2.8. It was developed by Bruker in cooperation with Royal
Philips. The MPI scanner used to measure the Open MPI dataset was in-
stalled at the University Medical Center Hamburg-Eppendorf in 2014 [Kno+20].
The bore size is 11.9cm, which makes it accessible for phantoms and smaller
laboratory animals like rats and mice. The maximum FOV of one image is
limited to 10cm×10cm. With a speed of up to 46 volumes per second, biolog-
ical processes can be imaged in real time. According to Bruker’s marketing
brochures [Bru20] (downloaded from https://www.bruker.com/de/products-
and-solutions/preclinical-imaging/mpi.html, accessed on April 12, 2023), this
is 1000 times faster than imaging via PET.
The scanner uses a FFP geometry, whose trajectory is determined by a drive
field of 3 dimensions with up to 12mT and frequency of 25kHz. Depending
on the scan sequence, between one and three drive fields are used.

https://media.tuhh.de/ibi/openMPIData/
https://www.bruker.com/de/products-and-solutions/preclinical-imaging/mpi.html
https://www.bruker.com/de/products-and-solutions/preclinical-imaging/mpi.html
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Figure 2.8: Preclinical MPI scanner used for data acquisiton of the OpenMPIData ini-
tiative. The corresponding coordinate system is shown in white. Source:
[Kno+20]

2.2.2 Scan Sequences

Scan Sequences define the trajectory and velocity of the field free point. Con-
sequently, a scan sequence controls the sampling of the scanned region and
influences the temporal resolution of the result, especially if a movement of
the object of interest is involved.
The Bruker scanner provides three different scan sequences: 1D, 2D and 3D.
According to the naming, the sequence defines the sampling along a line, a
plane or a volume. This is implemented by adding a dynamic field along the
chosen number of dimension. For MPI, different types of trajectories have
been tested. The preclinical scanner used to acquire the scan data uses a
Lissajous-type trajectory. As a consequence, the field free point moves in a
Lissajous-type trajectory (2.9). The sampling points of the FFP during one
period of the 2D sequence is shown in Fig. 2.9.
In order to sample the whole volume using 1D or 2D sequence, the object is
moved by a robot after each completed scan along the scan line or plane, ac-
cordingly. In case of a 2D sequence, the phantom is moved step-wise along
the z-axis. One robot position thus represents one patch. One set of indi-
vidual scans that describe the whole volume (FOV) is called one frame. An
overview of the different parameters and scan sequences is found in table
2.1.
The Lissajous-type FFP trajectory controlled by the strength of magnetic

field HD is visualized in Fig. 2.9 in a 2D scenario and defined in (2.9). For
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Parameter 1D Sequence 2D Sequence 3D Sequence

Drive-Field Amplitude [mT] 12 x 0 x 0 12 x 12 x 0 12 x 12 x 12

Repetition Time [ms] 0.0408 0.6528 21.54

No. Patches 19 x 19 19 -
No. Periods per Patches 1000 1000 -
No. Frames 1 1 1000

Sampling points per Period 102 1632 53856

Table 2.1: Overview of Scan Sequence Parameters.

each channel d ∈ {1, 2, 3}, equal to spatial dimension sampled, the applied
and time-dependent magnetic field strength HD can be described indepen-
dently [Kno+18]:

HD
d (t) = Ad sin(2π fdt +

π

2
) . (2.9)

The excitation frequencies are given as the fraction of base frequency, leading
to f1 = 1250000/102 Hz, f2 = 1250000/96 Hz and f3 = 1250000/99 Hz. The
amplitude is 0.012T or 0T, depending on the number of channels activated
and thus on the dimension of the sequence.

Figure 2.9: Sampling points of the FFP during one period of the 2D Scan Sequence. The
axis refer to the applied magnetic field strength.

In the further course of this thesis, only 3D data will be used, unless oth-
erwise stated.
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2.2.3 Calibration

In the measurement-based approach, calibration in order to acquire data for
a System Matrix is needed. A special phantom called Delta Sample in the
size of an image voxel is the main part of the calibration. In the case of the
Open MPI data, it is a cube of size 2mm × 2mm × 1mm filled with Tracer
Perimag in a concentration of 100mmol/l.
Using the Delta Sample as a calibration phantom at specific predefined po-
sitions on a 3D grid, the system response is measured at each position. The
Delta Sample used in this study was moved and measured at 19 × 19 × 19
grid positions during the calibration process, covering a volume of size
24mm × 24mm × 12mm [Kno+20]. The Delta Sample is first moved by a
robot.After each 19 scanned Delta Sample positions in x-direction, a back-
ground scan with the scanner empty is performed to capture background
noise. An additional empty scan is performed at the beginning to ensure
that there is an empty scan before and after the measurement of a new set
of 19 scans in the x-direction. This process is time-consuming, mainly be-
cause of the robot movements. For instance, in order to scan the 19× 19× 19
grid, 193 = 6859 robot positions have to be scanned. In addition to that,
19 × 19 + 1 = 362 background measurements have to be acquired for which
the delta sample has to be removed from the scanner.
Each position is scanned with 1000 periods of the Lissajous-type scan trajec-
tory.
In the end, the mean of 1000 voltage time-series of each Delta Sample posi-
tion and the mean of all background measurements is Fourier transformed.
The Fourier coefficients are stored as data in the calibration data set.

2.2.4 Phantoms

In addition to calibration measurements of a delta sample to create the sys-
tem matrix, OpenMPIData provides measurements of three different phan-
toms, which are presented in this section. For a detailed description, see
the original https://media.tuhh.de/ibi/openMPIData/, accessed on April
12, 2023.
In the case of phantom measurements of the 3D sequence, 1000 frames are
measured first. Then 1000 frames of the empty scanner are measured to ob-
tain information about the background noise.
The three phantoms Resolution Phantom, Shape Phantom and Dilution Phan-
tom are shown in Fig. 2.10.
The Resolution Phantom consists of 5 tubes, each 1mm in diameter, filled

with Perimag tracers of 50mmol/l concentration. Sharing a common origin,
the angles of the tubes are chosen differently. One tube is placed along the y-
axis, the other tubes have their own angles. Tubes of the XZ-plane have small
angles of 10 and 15 degrees, while the other two tubes in the XY-direction
have angles of 20 and 30 degrees.
When viewing the XZ-plane, the tubes are imaged at different distances. The

https://media.tuhh.de/ibi/openMPIData/
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Figure 2.10: Phantoms used in the open MPI datasets. Source: [Kno+20]

resolution of the scanner and the image reconstruction method can be deter-
mined based on the distinguishability of the tubes.
The shape phantom consists of a cone defined by a radius tip of 1mm and
apex angle of 10 degrees. With a height of 22mm, the total volume of the
phantom is 683.9µl. It was filled with Perimag tracer in a concentration of
50mmol/l.
Cut in its layers, the cone is viewed as a circle (YZ-plane) or triangle (XY-
plane, XZ-plane). Consequently, properties like edge-preserving can be ana-
lyzed by evaluating scans of this phantom.
The Dilution or Concentration phantom consists of 8 cubes, each with an
edge length of 2mm. The cubes are filled with different dilutions of tracer
solution. This allows the sensitivity of the system to be checked. The Con-
centration phantom was not considered in this thesis.



3
M E T H O D S

3.1 data preprocessing

Under ideal conditions, the MPI problem in the measurement-based ap-
proach can be expressed as a linear problem, consisting of System Matrix
S, Fourier transformed and background corrected received voltage signal u
and unknown concentration c (2.8).
In reality, physical factors influence the measured data. This leads to the
MPI problem (3.1) with noisy System Matrix A and noisy vector of Fourier
coefficients yδ of the voltage signal:

Ac = yδ, with yδ := u + by + ηy and A := S + bA + ηA (3.1)

Additive systematic background signal b is mainly produced by the time-
dependent drive field and perturbances in the measurement chain. There-
fore, background signal bA of the data in the system matrix and time-signal
of phantom scans by will not be equal but can be estimated by measurements
with an empty scanner.
Furthermore, another noise component η ∼ N (µ, C) is added to measured
signals. It is assumed to be normally distributed with mean value µ and
covariance matrix C, although there is no proof so far that this noise distri-
bution reflects reality.
As a consequence, measured data should be preprocessed in order to achieve
reasonable results. In the following sections, several preprocessing steps are
described, closely following [KJ19]. In the course of this thesis, the prepro-
cessing steps were implemented in Matlab.
The examples given refer to the Open MPI Data scanned with a 3D-sequence.
The calibration data set is data/calibrations/3.mdf , phantom data data/measure-
ments/<phantom>/3.mdf.

Figure 3.1: Preprocessing steps applied to MPI data. The steps follow the preprocessing
steps described in [KJ19].
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The preprocessing steps applied to MPI scan data are visualized in Fig. 3.1
and described in the following section. All preprocessing steps are always
applied to both calibration and phantom scan data. Preprocessing steps SNR
filtering and normalization are optional.
Fourier transformation
The calibration data are already Fourier transformed whereas phantom data
are stored as time-series. For that reason, the phantom data are Fourier trans-
formed.
Afterwards, a split of real and imaginary part of the complex Fourier coeffi-
cients is applied to both calibration and measurement data.
Frequency selection
A frequency selection ensures that frequencies knon to be unsuitable are not
used for the reconstruction. Reasons for this can be the known systematic
strong noisy frequencies of the measurement chain, or frequencies with gen-
erally low signal to noise ratio.
In the case of the OpenMPI data and the scanner used in the generation of
the dataset, the absolute mean and variance of the 1000 background mea-
surements of the shape phantom of receive channel 1 are shown in Fig. 3.2.
Due to an analog filter, the measurement data show very high variances at
frequencies below 75kHz. For that reason, frequencies lower than 80kHz are
excluded.
In addition, a frequency selection can be made based on the signal to noise
ratio. In contrast to [KJ19], the estimated SNR provided in the data were
used. Frequencies with an SNR lower than a certain threshold τ are excluded
from the reconstruction.

Figure 3.2: Frequency analysis of receive coil 1 of the real part of Fourier transformed back-
ground measurements from the Shape phantom scanned with a 3D sequence.
The data analyzed are part of the OpenMPIData initiative [Kno+20].

Background correction
A background correction is applied in order to exclude the background sig-
nal b. Calibration data and phantom data are treated separately due to the
different collection of background measurements.
Before and after the measurement of the delta phantom at each position of
a line along x-direction, a measurement without phantom is performed in
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the scanner. Applied to the used data, this means after measuring the Delta
Phantom at each of the 19 positions along the x-axis.
The calibration process is time-consuming. Especially the robot movements
to the precise locations take their time. In the example of the used data,
193 = 6859 different positions have to be scanned. If a finer grid or a larger
volume should be calibrated, the number of positions and the calibration
time increase accordingly.
The background signal does not only consist of a systematic, static part but
it is also assumed to be dynamic. For that reason, background scans using
a scanner being empty are not only acquired in the beginning and at the
end of the calibration process. Moreover, after a certain amount of calibra-
tion scans have been measured, a new set of background scans is performed.
In case of the used data, the robot is first moved in x-direction and scans
with the delta sample at each of the 19 positions of the grid. After that, the
Delta Sample is moved outside the scanner and background scans are per-
formed. Then the Delta Sample is moved inside the scanner, shifted one po-
sition in y-direction and calibration scans at each position along x-direction
are performed. Afterwards, a new set of background scans with an empty
scanner is performed. The many sets of background scans are acquired to al-
low a background correction of the assumed dynamic background signal.
Each Delta Sample scan is background corrected with the two temporal
nearest background scans. This is implemented as a convex combination
of the previous background scan bprevious and following background scan
b f ollowing for each delta sample scan uDS at position part i = 1

19 , 2
19 , 3

19 , ..., 1:
uDS;corrected = uDS − (ibprevious + (1 − i)b f ollowing).
In the phantom measurements, 1000 frames with phantom in the scanner
are measured first, followed by 1000 frames of the empty scanner. For the
estimation of b, the 1000 background frames are averaged. Then the aver-
age value per Fourier coefficient is subtracted from the averaged scans with
phantom:

Ax = yδ − µ . (3.2)

Normalization: "Whitening" estimation of diagonal covariance
To filter out frequency components with particularly high noise content, the
noise content η ∼ N (µ, C) is determined by estimating the variance of the
1000 blank measurements of phantom data. The estimation of variance leads
to the diagonal covariance matrix Cdiag. Calculating the reciprocal of the diag-
onal values of C gives normalization matrix W. Then, both sides of the equa-
tion are normalized by multiplying the matrix W, which is called whitening
in [KJ19]:

WAx = W(yδ − µ), where Cdiag =


σ2

1 0
. . .

0 σ2
M

 , W =


1

σ2
1

0
. . .

0 1
σ2

M


(3.3)
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Stack Receive Channels
If data from multiple receive channels are used for reconstruction, they must
be stacked to create the system matrix meaning that rows are added to the
SM.
Low Rank Approximation of the System Matrix
The system matrix can become quite large. For instance, the system matrix

of the 3D 19 × 19 × 19 calibration data with applied bandpass filter of fre-
quencies [80kHz 625kHz] lead to a system matrix of size 70446 × 6859. This
can challenge computing capacity and runtime of reconstruction algorithms.
To tackle this, a singular value decomposition of the normalized SM WA can
be performed:

WA = UΣVT (3.4)

To decrease the size of the resulting SM, the first k singular values are used
for reconstruction. Applied to the MPI equation of normalized and back-
ground corrected system matrix WA and normalized, background corrected
scan data W(yδ − µ), the MPI equation is [KJ19]:

UT
k WAx = UT

k W(yδ − µ) . (3.5)

Since each column of Uk with index larger than k is cut, the dimension can
be reduced strongly. For instance, in [KJ19] k = 2000 were used. Setting
k = 2000, the original system matrix of size 70446 × 6859 is decreased to
2000 × 6859.
Singular values of the background-corrected and whitened SM of the 3D
calibration data are visualized in Fig. 3.3, where the vertical axis is on a
logarithmic scale. This shows a strong decrease of the singular values. This
indicates that even a few singular values can be used for reconstruction. In
Fig. 3.3, it is shown that the condition number in this example is in the range
of 8 · 103. A high condition number indicates an ill-conditioned problem
meaning that a small perturbations in the measured date, for instance caused
by noise, can lead to comparatively large perturbations in the reconstruction
[Dem87].
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Figure 3.3: Singular value decay of a normalized and background corrected System Matrix.
Open MPI Datas Calibration Data measured with a 3D sequence are
used. Note the logarithmic scale on the vertical axis.

3.2 reconstruction and regularization techniques

From a Bayesian perspective, regularization problems can be expressed as a
Maximum A Posteriori (MAP) problem (3.6) [Zha+], where x is the original
solution. In terms of image denoising, this would be a noise-free image, in
the MPI problem it is the true concentation distribution of SPIO. The de-
graded observation y = T (x) + η is in the MPI context the scan data with
noise η ∼ N (µ, σ) and the measurement-based MPI operator T (x) = Ax
is equal to a multiplication with the System Matrix A. The energy mini-
mization problem is regularized by a regularizer R(·) and regularization
parameter λ:

MAP : x̂ = argmax
x

p(y|x) p(x)

= argmin
x

− log p(y|x) − log p(x)

= argmin
x

E(y; x) + λR(x)

(3.6)

Finally, the problem consists of a y-dependent data term and a regularization
term. This regularized energy minimization approach can be used to solve
ill-posed problems.

3.2.1 Ill-posed problems

According to [TA77], problems are well-posed if the following properties
apply to problems in the form of Ax = y:

1. a solution x exists;
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2. solution x is unique;

3. solution x is stable relative to small changes in the initial data.

If one of these requirements is not fulfilled, it is ill-posed.
In order to solve ill-posed problems and thus compute stable solutions, reg-
ularization techniques are necessary.

3.2.2 Tikhonov regularization

A widely used method to solve ill-posed inverse problems, more precisely
linear equations in the form of Ax = y, is the Tikhonov regularization.
Without any regularization, such a problem can be adressed via the Ordinary
Least Squares (OLS) approach (3.7), where ∥·∥2 is the Euclidean norm:

1
2
∥Ax − y∥2

2 (3.7)

To add stability of the computed solution, regularization is applied. The
corresponding Tikhonov functional with some matrix Γ is:

1
2
∥Ax − y∥2

2 + ∥Γx∥2
2 . (3.8)

Often, the matrix is defined as Γ = αI, a scalar multiple of the identity matrix
with regularization parameter α (cf. [CR04]):

1
2
∥Ax − y∥2

2 +
α

2
∥x∥2

2 . (3.9)

The L2-norm of x is added as penalty term [Ger21], leading to a ridge re-
gression. It is also possible to instead add the L1-norm of x as penalty term,
leading to a Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion.
In order to solve (3.9), the term is minimized with respect to x (cf. [CR04]):

x̂ = min
x

{
1
2
∥Ax − y∥2

2 +
α

2
∥x∥2

2

}
. (3.10)

The optimality condition is

A∗(Ax̂ − y) + αx̂ = 0 , (3.11)

leading to the solution

x̂ = (A∗A + αI)−1A∗y , (3.12)

where A∗ is the adjoint of A.
To get the best result x̂, the regularization parameter α should be optimized.
Applied to the MPI problem, the best regularization parameter α is identi-
fied by comparing the resulting concentration vector x̂ with a ground truth
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and then minimizing the error or maximizing an image quality measure like
PSNR or SSIM, which are introduced in Chapter 3.3. A ground truth is the
true concentration distribution of the scanned object. In the example of the
used data, the phantom, phantom position and concentration of Tracer solu-
tion is known so that a ground truth can be calculated.
This regularization applied to MPI data is implemented in Python.

3.2.3 Learning-based techniques

In addition to standard approaches, there are Machine Learning-based tech-
niques to find a regularized solution to the problem Ax = y. In the fol-
lowing section, two Learning-based regularization techniques, Deep Image
Prior (DIP) and Plug and Play Prior (PnP) with a deep Convolutional Neural
Network (CNN) as a denoiser are described. Learning-based techniques can
overcome some drawbacks of traditional techniques like reduced contrast
when applied to MPI [Sha+22].

3.2.3.1 Deep Image Prior (DIP)

First introduced in 2017 [UVL20], DIP found some popularity because, un-
like traditional Deep Learning methods, it does not require a large amount
of data. In fact, only one image or one set of measured data is necessary.
In the original paper of Ulyanov [UVL20], DIP is used to tackle standard
inverse problems like denoising, inpainting and super-resolution. In other
publications, DIP has been used for reconstruction in clinical settings such
as CT [BLS20], MRI [Yoo+], and MPI [Dit+].

Figure 3.4: Comparison of "traditional" deep learning techniques vs. the Deep Image Prior
method. "Traditional" supervised deep learning techniques use a huge
amount of labelled data or corrupted-uncorrupted data pairs [Kri12].
These are the basis to iteratively set the weights of a network [BLS20].
Feeding an unknown corrupted image [GMHAHE20] forward the al-
ready trained net, an uncorrupted image is expected as output. The Deep
Image Prior method iteratively sets weights of an untrained net using a
noisy input with the goal to decorrupt an image using a task-dependent
prior.
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In Fig. 3.4, the difference between "traditional" deep learning techniques
in order to denoise an image and the Deep Image Prior method is shown.
Usually, a large set of corrupted and ground truth data are needed to train a
network. For this, several training iterations are run. After training, the net-
work parameters are fixed. Then, an unknown, corrupted image is passed
through the network and a denoised version is received.
The idea of DIP is rooted in energy minimization problems (3.6), consisting
of a task-dependent data term and a regularizer.
Input of DIP is a noisy image or a noisy vector z. The special feature of z
is that it is initialized with random values, in the MPI DIP implementation
sampled from a uniform distribution z ∼ U[0 0.7).
Equation (3.13) shows that DIP also minimizes the energy. However, what is
special here is that concentration vector x = φθ(z) is expressed as the result
of the image z processed by a CNN φθ(z) with parameters θ. The ultimate
goal of DIP is to find a set of parameters θ that transforms the noisy input z
to an output, so that the applied task-dependent prior is very close to yθ . To
fit the task-dependent term to the MPI problem, φθ(z) is multiplied by the
system matrix A, which results in the minimization problem:

min
θ

∥Aφθ(z)− yδ∥2
2 . (3.13)

This means, that the feedthrough of a CNN given a noisy input z is a discrete
concentration distribution c. Aφθ=Ac=y is in MPI the expected measured
voltage data y. To ensure that the calculated concentration distribution is the
one that fits the actual scan data yδ, the L2-norm is minimized. Since random
but noisy input z and the architecture of CNN φ is set at the beginning and
in the learning process not changed, there are only the weights θ that can be
adjusted in the learning process and thus have an influence on the calculated
concentration distribution.
Since an explicit computation of the best parameters θ would be too compu-
tationally intensive, they are first randomly initialized and then iteratively
fitted via a method like gradient descent [UVL20]. Therefore, hyperparame-
ter step size can be adjusted.
In case of DIP, the CNN works implicitly as a prior: It has been shown that
the quality of the result is strongly influenced by the chosen network ar-
chitecture [UVL20] since the architecture determines the solution space and
how it is searched. Moreover, low frequent parts like large lighter and darker
areas of an image are reconstructed first. After more iterations, higher fre-
quent parts like edges, smaller details and noise of an image are shown in the
DIP output which finally lead to overfitting. In some cases, early stopping
of DIP leads to a denoised result [UVL20]. As a consequence, the regularizer
does not need to be defined explicitly.
Based on the DIP implementation for MPI in Python from the authors of
[Dit+], the DIP results analyzed in the further course of this thesis were
computed.
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3.2.3.2 Plug and Play (PnP)

Plug and Play Priors is a framework that has been first introduced in [VBW13]
and stands out for its flexibility and customizability for denoising problems.
It consists of two parts that are usually computed in many iterations: Re-
construction and denoising. Applied to MPI, first a concentration distrubu-
tion is calculated by finding a solution to the system of linear equations.
Afterwards, the result is denoised. Both reconstruction and denoising are
performed during each iteration of the PnP. In order to allow a gradual im-
provement of the results, the denoiser takes the previous reconstruction into
account and the reconstruction of one iteration is influenced by the denoised
result of the previous iteration.
Different algorithms can be plugged in to reconstruct or denoise. For in-
stance, a denoiser can be implemented by a standard approach like soft
thresholding or exchanged with a more complex denoiser like a denoiser
CNN.
The Plug and Play approach iterates between reconstruction and denoising.
The latter regularizes the solution of the reconstruction part. In the next iter-
ation, the result of the denoiser influences the reconstruction.
In the following section the functionals of the reconstruction and the de-
noiser are described. The functionals are based on the energy minimization
problem of the measurement-based approach to MPI. Afterwards, the imple-
mented hyperparameters are introduced.
Applied to the MPI problem, the estimation of the discrete SPIO concentra-
tion distribution x̂ can be expressed as the minimization problem

x̂ = arg min
x

1
2σ2 ||y − Ax||2 + λR(x) , (3.14)

which is a reformulation of (3.6) [Zha+] with System Matrix A, background-
corrected scan data y = Ax + η, normal distributed noise η ∼ N (µ, σ) and
a Regularizer R(x) with positive regularization parameter λ.
The data term and regularizer can be decoupled by introducing an auxiliary
variable z, which should equal x. This leads to

x̂ = arg min
x

1
2σ2 ||y − Ax||2 + λR(z) s.t. z = x . (3.15)

This problem can be solved by minimizing the Lagrangian and introducing
penalty parameter µ according to [Zha+]:

Lµ(x, z) =
1

2σ2 ||y − Ax||2 + λR(z) +
µ

2
||z − x||2 . (3.16)
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This is implemented by splitting the term according to the Half Quadratic
Splitting method (HQS) method:

xk = arg min
x

||y − Ax||2 + µkσ2||x − zk−1||2 (3.17)

zk = arg min
z

1

2(
√

λ
µk
)2
||z − xk||2 +R(z) . (3.18)

First, the reconstruction problem is solved (3.17), then the solution is de-
noised (3.18) [Zha+] at each iteration k. The algorithm iterates between these
two steps.
Each step of the splitting is a minimization problem that can be solved com-
puting the gradient. This can be solved with known methods like Conjugate
Gradient (CG) or Alternating Direction Method of Multipliers (ADMM). In
this thesis, CG algorithm is implemented.
Subproblem (3.18) works as a denoiser of xk, with an assumed noise level of
λ
µk

and can thus be expressed as:

zk = Denoiser

(
xk,

√
λ

µk

)
(3.19)

In the spirit of Plug and Play, any denoiser could be plugged in to solve
(3.18). In the scope of this work, a shrinking method and a Learning-based
method using a deep CNN are implemented in Python. Regarding the CNN,
part of the code is based on the work of PhD candidate Tim Selig.
In the reconstruction part of PnP, product µkσ2 controls the influence of the
regularization condition. For that reason it is implemented as one parameter:

αk = µkσ2 . (3.20)

In order to achieve a denoised result, [Zha+] proposes to increase αk at each
iteration k. For MPI, this is implemented by hyperparameter αincr controlling
the increment of α for each iteration k,

αk = α + k · αincr . (3.21)

Since µ is part of both regularization and denoiser part, the noise level is
influenced by α and therefore implemented as

λ

µk
=

λσ2

αk
. (3.22)

Hyperparameters tuned and implemented in this work are αstart, αincr and
λσ2 and the resulting image quality analyzed over the course of iterations.
Denoising by Shrinking
One simple denoising method is shrinking the values of xk by applying
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function d(xk, β) (3.23). Each element of xk that is smaller than a certain
threshold β is set to 0. Otherwise, the value is decreased by β.

zk = d(xk, β) with d(xk(i), β)

0, if xk(i) < β

xk(i)− β, otherwise
(3.23)

Assuming that the noise level is lower than the signal, this function is a de-
noiser.

Denoising using a Convolutional Neural Network
In 2020, [Zha+] introduced a deep CNN called DRUNet denoiser prior that

Figure 3.5: Architecture of the deep CNN DRUnet denoiser prior. In addition to an
input image, the net takes a Noise Level Map in order to receive a De-
noised Image. Strided convolution "Sconv" and transposed convolution
"Tconv" blocks are used. [Zha+]

successfully performed in image restoration tasks such as denoising. The
pretrained parameters are freely accessible on
https://github.com/cszn/DPIR/tree/master/model_zoo. An overview over
the architecture is given in Fig. 3.5. It is a combination of U-Net [RFB] and
ResNet [He+16].
In the scope of this work, this network as well as pretrained parameters
are used. Since there are not enough freely accessible MPI data, no transfer
learning is applied. Instead, it is tested how well the pretrained CNN works
depending on different constant noise levels, regularization and penalty pa-
rameters.
Since the input is downsampled four times, the width and height of the in-
put has to be divisible by 24. Due to the calibration process and data used,
the reconstructed volume of size 19 × 19 × 19 is split into 19 images of size
19 × 19. In order to fit the necessary size, the input images are padded with
edge-padding to result in a size of 32 × 32. The original 19 × 19 pixel grid of
the output images are then extracted and form the further processed output
of the net.

Denoising of a Volume
The denoising network has been designed for 2D images, not for a 3D vol-
ume. There is a spatial dependence of the concentration distribution in all 3
directions. Therefore, it is necessary to slice the volume cleverly into images
and stitch the results back together into a volume.

https://github.com/cszn/DPIR/tree/master/model_zoo


3.2 reconstruction and regularization techniques 27

If 19 images of each dimension are denoised and then the volume is re-
generated via averaging, the valuable edge preservation is probably lost.
Therefore, this method is not used.
If one always slices along the same dimension, artifacts are to be expected,
which are probably reflected in different basic brightness of the individual
layers.
There is another option to denoise a volume which mainly consists of choos-
ing a random axis to slice the volume at each iteration. The process is visu-
alized in Fig. 3.6. The reconstructed volume is sliced into separate images
along a randomly chosen axis. Then, the resulting images are denoised inde-
pendently. Having been denoised, the images are stiched back in the original
order to regain a volume. In the case of the used calibration data, 19 images

Figure 3.6: Denoising along a randomly chosen axis. A reconstructed volume (blue
cube) is sliced along a randomly chosen axis (black arrow). The resulting
images (blue squares) are denoised independently (green arrow). The de-
noised images (green squares) are then stitched back to a volume (green
cube).

are received that are denoised independently.
Since a new random number and thus a random axis to slice is chosen at
each iteration, artifacts caused by slicing are expected to be reduced.
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3.3 image quality measures

This section explains standard image quality metrics that will be used to
evaluate and compare the results later in this thesis. These include the Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics.

3.3.1 Peak Signal to Noise Ratio (PSNR)

The Mean Squared Error (MSE) of two images f ∈ RMxN and g ∈ RMxN with
M, N ∈ N is calculated via the mean of the squared difference of each image
pixel [HZ10]:

MSE( f , g) =
1

MN

M

∑
j=1

N

∑
i=1

( fij − gij)
2 . (3.24)

For the 3D case, the MSE of two volumes f ∈ RLxMxN and g ∈ RLxMxN with
L, M, N ∈ N is calculated via the mean of the squared difference of each
volume voxel:

MSE( f , g) =
1

LMN

L

∑
k=1

M

∑
j=1

N

∑
i=1

( fijk − gijk)
2 . (3.25)

Taking into account the MSE and maximum fluctuation R of the reference
image or volume g, the Peak Signal to Noise Ratio (PSNR [HZ10]) is a image
quality measure of logarithmic scale:

PSNR( f , g) = 10 log10(R2/MSE( f , g))[dB] . (3.26)

The higher the PSNR, the better the signal to noise ratio.
There are different approaches to set R. In this implementation, R is the dif-
ference of the highest and lowest voxel value of reference image or volume
g.
Applied to the results of the different regularization methods, volumes are
compared. In this case, the reference volume is the true and known concen-
tration distribution of the scanned phantom. Since there might be deviations
from the expected position of the phantom and thus ground truth xre f , posi-
tion uncertainty is taken into consideration [KJ20]:

PSNRmax(x) = max
∆r∈R

PSNR(x, xre f ,∆r) , (3.27)

where position shifts ∆r with a step size 0.5mm in the neighborhood of
[−3mm 3mm]3 each lead to a reference volume xre f ,∆r ∈ R, in total 2197 ref-
erence volumes. PSNR of the reconstructed volume x and reference volume
xre f ,∆r is calculated. The largest one is defined as PSNRmax.
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3.3.2 Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Measure (SSIM) describes the preserved struc-
tural information of a reconstructed volume compared to a ground truth.
Three factors are considered: Luminance (l), contrast (c) and structure (s)
[HZ10]:

l( f , g) =
2µ f µg + C1

µ2
x + µ2

y + C1
,

c( f , g) =
2σf σg + C2

σ2
x + σ2

y + C2
,

s( f , g) =
σf g + C3

σf σg + C3
,

(3.28)

where µ f is the mean value, σf standard deviation of f and covariance σf g of
f and g.
The three factors l, c and s can be weighted in order to calculate SSIM:

SSIM( f , g) = [l( f , g)]α · [c( f , g)]β · [s( f , g)]γ (3.29)

Weights α, β, γ are all set to 1. Constants Ci, i ∈ 1, 2, 3 avoid division by
zero and are set to C1 = (0.01 · R)2, C2 = (0.03 · R)2 and C3 = 0.5 · C2

with dynamic range R. As in the implementation of [Dit+], R is set to 100
representing the concentration of the Delta Sample being used during the
calibration process.
The value range of SSIM extends from −1 (no similarity) to 1 (perfect match).
Analogous to equation (3.27), the compared ground truth contains uncer-
tainty, which leads to uncertainty-aware measure SSIMmax(x) [KJ20]:

SSIMmax(x) = max
∆r∈R

SSIM(x, xre f ,∆r) . (3.30)

Precalculated reference values kindly provided by T. Kluth were used, which
were the ground truth in the calculation of the image quality measures in
[Dit+].



4
R E S U LT S

In this chapter, the results of the regularization methods L2-regularization,
DIP and PnP of different hyperparameters are presented. Using the image
quality parameters SSIM and PSNR they are evaluated and compared. Differ-
ent preprocessed data are used as described in the previous chapters. First,
reference values which represent part of the ground truth of the different
phantoms are shown to provide a basis for comparison. Then, results of the
regularization methods are presented and the influence of different hyper-
parameters on the resulting image quality is investigated.

4.1 references

To test different regularization techniques, measurement data from Open-
MPIData [Kno+20] was used. For this purpose, measurement data of two
phantoms are examined cf. Fig. 4.1: First, that of the Shape phantom, a cone
filled with tracers of an SPIO concentration of 50mmol/l. In addition, the
Resolution Phantom was used, whose design of tubes filled with tracer solu-
tion is well suited for determining the resolution.
In order to create the System Matrix, data from a calibration procedure

Figure 4.1: References of the two phantoms used, sliced in each axis. Top: Shape phantom
reference, bottom: Resolution phantom reference. Shape and Resolution
phantom data are from the Open MPI data [Kno+20].
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is used, which consists of a volume grid of size 19 × 19 × 19 voxels. Thus,
the spatial concentration distribution to be reconstructed is calculated in a
19 × 19 × 19 grid.
The middle slices of each axis are shown in Fig. 4.1. Shape phantom is shown
in the top row, Resolution phantom in the bottom row. The maximum of the
brightness scale is set to the concentration used for the phantom scan of
50mmol/l. The different length of the shape phantom cone in z-direction
compared to the other two axis is caused by the smaller size of the Delta
Sample used for the calibration scans. Due to its size 2mm × 2mm × 1mm,
the voxels are not cubes with the same length. As a consequence, the z di-
mension appears to be larger in the reconstructed image.
In order to compare reference and reconstructed data, the different value
ranges have to be taken into account. Caused by solving a system of linear
equations using the SM, the value of the reconstructed concentration vector
is relative to the concentration of the calibration phantom Delta Sample. A
concentration of 100mmol/l was used as reference phantom for the calibra-
tion scans. This means that a value of 0 in the reconstructed data equals a
concentration of 0mmol/l, a value of 1 in the reconstructed data corresponds
to a concentration of 100mmol/l. As a consequence, the ideal value in the
center of a reconstructed shape phantom is 0.5 which corresponds to a tracer
concentration of 50mmol/l.
This is also taken into account in the calculation of image quality measures
PSNR and SSIM and their respective uncertainty-aware version PSNRmax

and SSIMmax. Prior to the calculation of the image quality measures, the re-
constructed concentration distribution is multiplied with factor 100, which
is the concentration of the Delta Sample.
In the following sections, reconstruced slices are shown in a relative scale
from 0 to 0.75.

4.2 tikhonov regularization

In this section the results of the implemented Tikhonov Regularization is
evaluated based on the described references.
The only value that can be adjusted in the implemented Tikhonov Regular-

ization is regularization parameter α. This means that α is the only parameter
that controls the regularization strength and in consequence influences the
quality of the reconstruction. The influence of α is analyzed.
Figure 4.2 shows the PSNRmax (blue) and the SSIMmax (orange) dependent
on regularization parameter α. The reconstructed data of this example are
neither normalized nor SNR filtered during the preprocessing.
Results of both Shape phantom and Resolution phantom show that a too

large α leads to decreased PSNR and SSIM.
In the case of the Shape phantom, the peak values for both image qual-
ity measures are caused by similar regularization parameters: The best α of
SSIMmax is 10−4, the best α of PSNRmax is 5 · 10−5. The difference between the
best α can be explained by the evaluated values of α. Due to the discretiza-
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Figure 4.2: Image quality measures of Tikhonov Regularization Results with different
penalty parameter α. Results of the Shape phantom are shown in the left
column, results of the Resolution phantom in the right column. Prepro-
cessing: Non-normalized data without SNR filtering, first 2000 singular
values used. The position of the maximum value of SSIMmax (orange)
and PSNRmax (blue) is highlighted by vertical lines. Note the logarith-
mic scale on the axis representing α.
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Figure 4.3: Best results of the L2 regularization according to PSNRmax (1st, 3rd row) and
SSIMmax (2nd, 4th row) values. Regularization parameter α from top to
bottom: 5 · 10−5, 10−4, 5 · 10−5, 10−12

tion, the overall course of image quality measures is sampled at the analyzed
α. The best overall reconstruction might be achieved using a regularization
parameter between 5 · 10−5 and 10−4.
Best regularization parameters leading to the maximization of PSNRmax and
SSIMmax do not necessarily align. An example for that is shown in the eval-
uation of the Resolution phantom results. According to PSNRmax, best α is
5 · 10−5, whereas SSIMmax decreases in this area. SSIMmax values are best
with the choice of α ∈ [10−12, 10−8]. Middle slices of the results of the im-
plemented Tikhonov Regularization with best PSNRmax (first and third row)
and best SSIMmax (second and fourth row) are shown in Fig. 4.3. The struc-
tures of the Shape phantom are visible although blurred compared to the
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reference image. The background is free of noise.
The influence of large regularization parameter α = 0.01 is shown in Fig. 4.4

Figure 4.4: Reconstruction of the Shape phantom with Tikhonov L2-regularization using
not suitable penalty strength. Regularization parameter α from top to bot-
tom: 0.01, 10−10, 10−14. The top images show a too weak regularization,
whereas on the middle and bottom images the effect of a too strong reg-
ularization is shown.

(top). The triangular shape of the phantom is hardly recognizable. Overall,
the result has a blurry visual impression and lacks of high frequent image
parts. Due to the strong regularization, high frequent parts are suppressed
and low frequent parts of the image remain.
On the other hand, if α is chosen too small, high frequent parts are enhanced:
Edges are sharper while noise can be seen. This is shown in Fig. 4.4 in the
middle row using regularization parameter 10−10. If α is chosen even smaller,
noise is strongly enhanced and eventually overcomes signal intensity lead-
ing to strong artifacts in the reconstruction. The result of α = 10−14 is shown
in Fig. 4.4 (bottom).
Having provided a baseline using Tikhonov Regularization, the results of
the two Machine Learning-based methods are described in the following
subsections.
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4.3 deep image prior (dip)

The Deep Image Prior method is one of the two Machine Learning-based
Regularization techniques applied to real scan data from the OpenMPIData
[Kno+20]. The first paper where the application of DIP to these data is de-
scribed was published in 2020 [Dit+]. After contacting the authors, both code
and used data were kindly provided.

Figure 4.5: Image quality measures PSNRmax and SSIMmax of the DIP result using differ-
ent seeds. In total, 250 different seeds are applied. Normalized data of the
Shape phantom with SNR-thresholding τ = 5, step size 0.001 and 350
iterations are used for the DIP approach. The image quality measures
vary by using different seeds. According to paper: PSNRmax 29.94dB,
SSIMmax 0.973

The image quality measures PSNRmax and SSIMmax values published in
the paper of DIP could not exactly be reproduced although the same pre-
processed data and hyperparameters were used. The calculated values of
PSNRmax and SSIMmax do not align. This can have multiple reasons: First,
parameters set for the calculation of PSNR and SSIM might differ. The re-
spective parameters in PSNR is the maximal fluctuation R, in SSIM the con-
stants C1, C2 and C3 that might be set differently. Second, the seed in order
to set random values can differ. The random state influences both the initial
values set of the 3D-net used in Deep Image Prior and the initial values of
the randomly set input z. The initial values define the starting point of in
the solution space and thus influence which solutions are calculated via gra-
dient descent during the learning process of DIP.
To verify this hypothesis, one subset of preprocessed data is selected and pro-
cessed with DIP using different seeds. For this experiment, Shape phantom
data which is normalized ("whitened") and SNR thresholded with τ = 5. Ac-
cording to [Dit+], an SSIMmax of 0.973 and PSNRmax of 29.94dB is achieved
after 350 iterations and step size 0.001.
In the experiment, 250 different seeds were set. For each seed set, PSNR

and SSIM of the result is calculated after 350 iterations with step size 0.001.
The result in shown in Fig. 4.5. The published PSNRmax value 29.94dB is in
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Figure 4.6: Comparison of the reconstruction of the Shape phantom using the DIP method
and different seeds. Results of DIP SNR threshold 5, normalized Shape
phantom. Top: worst PSNRmax 26.32dB and SSIMmax 0.87 result, middle:
best PSNRmax result 30.76dB with SSIMmax 0.90, bottom: difference of
best and worst. Note the scaling of the colorbar.

the range [26.32 30.76]dB of the calculated PSNRmax of different seeds. The
distribution shows that the published value is in the higher end of the dis-
tribution. Followingly, the difference of locally calculated PSNRmax results
can be explained by the usage of different seeds. Whereas the puplished
SSIMmax 0.973 of the data is outside the range [0.87 0.90] and many standard
deviations apart from the center of the distribution. This indicates, that the
difference between published and locally calculated values has rather a sys-
tematic cause than the initialization of random values. We conjecture that the
parameters C1, C2 and C3 are probably set differently for the computation of
SSIM. It was not tried to estimate the used values of C1, C2 and C3, since the
results are also influenced by the unknown used seed.
Although the image quality measures differ having set different seeds, the re-
sults are visually similar in the case of the analyzed dataset. This is shown in
Figure 4.6, where the middle slices of the results with best PSNRmax 30.76dB
with corresponding SSIMmax of 0.87 (top row) and worst PSNRmax of 26.32dB
with corresponding SSIMmax 0.90 are visualized. Since the visible impression
is similar, the difference of the reconstructions is shown as well (bottom row).
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Note that the scale of the difference is not the same as the one of the origi-
nal values of the reconstructed slices, since it is vastly smaller than the peak
values of the reconstructed concentration.
In summary, computated image quality measures differ from the published
values. In order to provide a common ground for comparison, the locally
computed values are used and compared to the results of the Tikhonov reg-
ularization and Plug and Play results.
The goal of the Deep Image Prior method is to adjust parameters of a CNN
so that a randomly initialized input image is passed forward to a desired
output (Ch. 3.2.3.1). In case of MPI, this means that a concentraton distribu-
tion should be the CNN’s output so that multiplied with the system matrix,
the result equals scanned phantom data. In this subsection, the influence of
different settings during the training process is analyzed. This includes im-
age quality measures after a different number of training iterations as well
as hyperparameters like step size of gradient descent during the learning
process.
The image quality parameters of the DIP output were evaluated after each it-
eration. For Shape phantom data, a total of 500 iterations of the DIP learning
process were performed, and for Resolution phantom data, a total of 4200 it-
erations were performed. Both normalized and non-normalized ("whitened")
data were used for preprocessing, as well as signal to noise thresholding
τ ∈ {0, 1, 5}.
It can be seen (cf. Fig. 4.7) that the results of all data used converge with
increasing iteration. However, the value against which the values converge
is different.
Results of the Shape phantom converge within fewer iterations than those
of the Resolution phantom. In particular, in the case of SSIMmax, it can be
seen that after about 100 to 200 iterations, the value increases very little. In
contrast, SSIMmax for the Resolution phantom results still increases strongly
after 500 iterations in many cases. In the results of both phantoms, there
are individual combinations of hyperparameters and preprocessing steps, in
which the value of the image quality parameters increases abruptly at the
beginning and stagnates at a level. All in all, this level is lower than the im-
age quality parameter, which is reached with a slow increase after several
iterations. In the image this is reflected as a constant output. Thus, these
results are unsuitable.
Over many iterations converging results of the Resolution phantom achieve
a higher PSNRmax compared to the Shape phantom (cf. Fig. 4.7). However,
SSIMmax with a best level of about 0.35 is significantly lower than the re-
sults of the Shape phantom with an achieved SSIMmax of about 0.9. Thus,
differences in the performance of the DIP are evident for different scanned
phantoms.
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Figure 4.7: Image quality measures PSNRmax (blue) and SSIMmax (orange) of DIP results
over learning iterations using different preprocessed data. Image qualty mea-
sures of the Shape phantom are shown in the top row, results of the
Resolution phantom in the bottom row.

The influence of different hyperparameters on the image quality of the
reconstructed concentration distribution is analyzed. The selected step size
is relevant for the convergence behavior of the method DIP. In Figure 4.8 the
course of SSIMmax over several training iterations is shown. A distinction is
made between the Shape phantom (top row) and the Resolution phantom
(bottom row). Based on the used hyperparameters 10−4, 10−3 and 0.01 (left
to right) the results are plotted separately. At the smallest chosen step size,
most results of differentially preprocessed data converge towards a high
threshold. In contrast, with a large step size 0.01, the effect of rapid increase
and stagnation at low level often occurs. Thus, the selected step size seems
to correlate with the highest SSIMmax achieved.
Especially noticable is this effect at the results of the Resolution phantom (cf.
Fig. 4.8, bottom row). A step size 0.01 set leads to a rapid increase in the first
iterations and stagnation during higher iterations. This happens for every
preprocessed data set of Resolution phantom measurements. The highest
SSIMmax is 0.27 which is below the best overall result 0.35 of the Resolution
phantom. This indicates that a smaller step width 10−4 or 10−3 is more suit-
able for better image quality, especially in case of the Resolution phantom.
The difference between Shape and Resolution phantom may lie in the na-
ture of the phantom design: The Shape phantom consists of rather large,



4.3 deep image prior (dip) 39

Figure 4.8: SSIMmax of different preprocessed data using DIP split according to the step
size used. Image quality measure SSIMmax of different preprocessed
data using DIP. The result is split according to the chosen step size
10−4, 10−3, 10−2 (left to right) during reconstruction and phantom data
(top Shape phantom, bottom Resolution phantom).

contiguous areas in the layers. This corresponds to a high proportion of low
frequencies in the image. Sharp edges at the edge of the Shape phantom are
high frequent. Since the Resolution phantom consists of thin, filled tubes, the
area to be displayed is much smaller and not as contiguous as in the Shape
phantom. Thus, the low-frequency portion of the phantom to be displayed
is lower than compared to the Shape phantom. Finally, the observation as in
[UVL20] shows that high-frequency parts are reconstructed only in higher it-
erations with DIP. Thus, a high number of iterations as well as rather smaller
step size are suitable if the SPIO distribution of the scan object is expected
to be rather sparse.
In order to analyze the influence of training iterations, the image quality
measures are analyzed over a large number of iterations and different data.
To show the observed behavior in the following figures of this section, nor-
malized data of the Shape phantom with τ = 5 SNR-thresholding were used
for the DIP training with step size 0.001.
The image quality measures SSIMmax and PSNRmax are shown in Fig. 4.9.
During the first 350 iterations, both image quality measures increase strongly
on average. With increasing training iterations, the image quality measures
decrease.
With the decrease in image quality parameters, the effect of overfitting is

visible in the resulting images cf. Fig. 4.9. In addition to that, the property of
DIP described in the original paper [UVL20] of reconstructing low frequent
parts of an image first is also observed for MPI reconstruction. This is shown
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Figure 4.9: Image quality measures PSNRmax and SSIMmax over a large number of iter-
ations. Normalized data of the Shape phantom with SNR-thresholding
τ = 5 and step size 0.001 were used for the DIP approach.

in Figure 4.10 and Figure 4.11, where the middle slices of the Shape phantom
reconstruction are displayed at different training iterations of DIP. After the
first two iterations, the output looks randomly computed without reference
to the original phantom. At 20 iterations, low frequent parts are shown. To
be more precise, the overall shape is formed and shown in the image. After
further iterations the shapes are more formed and displayed until a good im-
age quality is reached at around 300 iterations. Large numbers of iterations
1000, 5000 and 10000 lead to noise-like artifacts in the area of the phantom.
These artifacts become stronger the higher the number of iteration is.
To conclude, early stopping of the DIP training process after a phantom-
dependent iteration leads to a better image quality. The tradeoff between
underfitting and overfitting is strongly influenced by the chosen number of
training iterations.
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Figure 4.10: DIP result of the Shape phantom, with step size 10−3 after different iterations.
Number of iterations from top to bottom: 1, 2, 5, 20, 30, 40.
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Figure 4.11: DIP result of the Shape phantom, with step size 10−3 after dif-
ferent iterations. Number of iterations from top to bottom:
100, 200, 300, 1000, 5000, 10000.
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4.4 plug and play prior (pnp)

PnP iterates between reconstruction and denoiser. In the following section,
the results of the denoised reconstruction is analyzed.

4.4.1 Choice of the axis along which the reconstructed volume is sliced

In order to denoise 2D images, the axis along which the reconstructed vol-
ume is sliced into 19 images has to be chosen. Two different approaches
were tested: At the first approach, an axis is chosen randomly at each iter-
ation. The second approach slices the volume always along the same axis,
which is set to x-axis in the further experiments .
The image quality measures for one preprocessed Shape phantom dataset
but different hyperparameters are shown in Fig. 4.12. In the left column, re-
sults of the randomly chosen axis are shown, in the right column results
of a set axis are visualized. The plot of the quality measures produced by
PnP with a set axis are smoother. In the first few iterations, the overall level
of the image quality measures is comparable. Especially with an increasing
number of iterations, both PSNRmax and SSIMmax are lower for a set choice
compared to a random choice of slicing axis. The few starting points at the
first iteration are discussed by evaluating Fig. 4.16 in Chapter 4.4.2.
The differences in the reconstructed images at iterations 10 (top row) and

39 (bottom row) between PnP results choosing a randomis slicing axis (left
three images) compared to a set slicing axis (right three images) are shown in
Fig. 4.13. Both reconstructions are similar at iteration 10, although a darker
line is visible in the reconstruction using a set axis. This artifact gets worse
with a larger iteration: At 39 iterations, the line artifact is prominent in the
XZ-plane and YZ-plane. The triangle in the XY-plane is heavily corrupted. In
contrast to that, the reconstruction at the same iteration and hyperparame-
ters, with the exception of a random choice of sliced axis, does not show this
artifact. The visual impression became worse compared to smaller iterations
but not as strong as the reconstruction with a set axis.
Since experiments have shown that a choice of a random axis to slice the

cube into images leads to better image quality compared to always slicing
along the same axis. For that reason, a random axis is always chosen in order
to compute the following results.

4.4.2 Hyperparameters

In order to find the best results of PnP, different hyperparameters were
tuned:

• αstart ∈ {10−2, 10−3, 10−4, 10−5},

• αincr ∈ {10−3, 10−4, 10−5},

• λσ2 ∈ {10−6, 10−7, 10−8, 10−9, 10−10}.
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Figure 4.12: PSNRmax and SSIMmax of the PnP approach using different slicing methods.
Results of normalized, τ = 1 SNR thresholded Shape phantom data
are shown. Left: A random axis is chosen to slice the volume at each
iteration. Right: X-axis is chosen to slice the volume at each iteration.

Figure 4.13: Shape phantom reconstructions of PnP applying random vs. set chosen slicing
axis. All three planes are shown so that the three images belong together.
Top left: random choice iteration 10, top right: set axis iteration 10, bot-
tom left: random choice iteration 39, bottom right: set axis iteration 39
The same hyperparameters αstart = 10−5, αincr = 10−4, λσ2 = 10−6 were
used for the reconstruction.

All preprocessed data sets consisting of normalized and not normalized
Shape phantom and Resolution phantom data with applied SNR thresholds
τ ∈ {0, 3, 5} were evaluated.
The image quality measures of the reconstruced normalized Resolution phan-
tom data with SNR threshold τ = 1 are shown in Fig. 4.14. Whereas SSIMmax

increases with higher iterations, PSNRmax decreases in most cases over time.
Compared to the results of the Shape phantom, SSIMmax is generally lower
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with a difference of around 0.5. Based on the visual impression, the Res-
olution phantom results are therefore expected to be worse compared to
the Shape phantom results. An example with decreasing PSNRmax and in-

Figure 4.14: PSNRmax and SSIMmax of Resolution phantom reconstructions using PnP.
Normalized, τ = 1 SNR thresholded Resolution phantom data and
different hyperparameters are used.

creasing SSIMmax is visualized in Fig. 4.15. The corresponding reconstructed
concentration distribution of the middle slices after the first iteration (mid-
dle) and iteration 40 (bottom) are also shown. The result at the first iteration
inherits high PSNRmax and rather low SSIMmax, whereas the result at itera-
tion 40 has lower PSNRmax and higher SSIMmax. By comparing the results
visually, the reconstructed concentration distribution in the first iteration is
more blurry. This can be perceived especially at the XZ-plane, where the
tubes are sliced in order to gain information about the resolution. The tubes
can be distuingished better at reconstruction after iteration 40 with higher
SSIMmax although they are not perfectly separated.
In contrast to the Resolution phantom’s results, the results of the Shape phan-
tom differ especially by comparing PSNRmax and SSIMmax. Image quality
measures of reconstructions using PnP of normalized, τ = 1 SNR thresh-
olded Shape phantom data are shown in Fig. 4.16. Most often, SSIMmax val-
ues decrease after the first few iterations. For some hyperparameters, the
image quality measure is generally low showing that the choice of hyperpa-
rameters is non-trivial for the quality of the output. Hyperparameters αstart

and λσ2 influence the first output of the denoised result. This is the reason
for the few origins of the image quality measurements in the Figure. The
highest start of PSNRmax is generated by αstart = 10−5 and λσ2 = 10−6.
In some cases, the image quality measures are very high in the first de-

noised output of PnP and decrease with further iterations. An example for
that is shown in Fig. 4.17, where non-normalized data with SNR-threshold
τ = 1 data of the Shape phantom is reconstructed with PnP. The result of
the first denoising iteration shows a reconstruced concentration distribution
that is homogeneous in the center of the shape. The overall brightness fits
the linearity assumption. Edges are sharp and the images are nearly free of
noise. Some low-level noise is visible in the background area of the shown
YZ-plane displaying the elliptic shape. After completing 40 iterations, the
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Figure 4.15: Reconstruction of Resolution phantom data at different iterations of the PnP
method. Image quality measures PSNRmax and SSIMmax (top) of normal-
ized, τ = 1 SNR thresholded Resolution phantom data are shown. The
corresponding reconstruction after iteration 0 (middle) and iteration 39
(bottom) are displayed. Used hyperparameters are αstart = αincr = 10−5,
λσ2 = 10−7.

Figure 4.16: PSNRmax and SSIMmax of Shape phantom data reconstructions at different
PnP iterations. Normalized, τ = 1 SNR thresholded Shape phantom
data and different hyperparameters are evaluated.
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visual impression fits the decreased image quality measures: Some noise is
shown in the background but moreover, the shapes now seem noisy and the
uniform concentration level is lost and does not look denoised.

Figure 4.17: Example of high image quality after the first iteration of the PnP result (mid-
dle) vs. low image quality after 40 iterations (bottom). The Image Quality
Measures of the preprocessed data set and hyperparameters used are
shown in the top row. Data used: Shape phantom using normalization
and SNR threshold τ = 1, hyperparameters αstart = 10−5, αincr = 10−5

and λσ2 = 10−6
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4.5 comparison of the different results

The highest image quality measures of the preprocessed MPI data with SNR-
filtering using thresholds τ ∈ {0, 1, 5} are shown in the following tables.
There is a different table for each of the scanned phantoms, Shape phantom
and Resolution phantom, as well as whether the preprocessing step normal-
ization was applied.
An overview of the corresponding hyperparameters is given in the appendix.
The first two Tables 4.1 and 4.2 show the results of preprocessed Shape phan-
tom data. Implemented Tikhonov Regularization leads in all 6 preprocessed
data sets to the lowest image quality measures, both PSNRmax and SSIMmax.
PnP has highest PSNRmax with preprocessed data using rather low SNR
thresholds τ ∈ {0, 1}. Compared to that, preprocessed data with τ = 5
performs worse. SSIMmax values of Tikhonov Regularization are at least 0.5
lower compared to the results of the Learning-based techniques.

Shape Phantom PSNRmax SSIMmax

Regularization Technique τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Tikhonov Regularization 22.28 22.38 22.64 0.32 0.32 0.39

DIP 26.75 29.35 30.39 0.88 0.90 0.91

PnP 30.30 30.10 25.78 0.90 0.90 0.85

Table 4.1: Best image quality measures of the Shape phantom reconstruction using
different Regularization techniques split according to SNR-filtering with
threshold τ during preprocessing. Data were preprocessed without Nor-
malization. The highest values of each preprocessed data set are under-
lined.

Shape Phantom PSNRmax SSIMmax

Regularization Technique τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Tikhonov Regularization 22.86 23.09 23.01 0.33 0.34 0.36

DIP 28.70 29.75 29.98 0.90 0.91 0.91

PnP 30.86 31.80 26.24 0.91 0.90 0.86

Table 4.2: Best image quality measures of the Shape Phantom reconstruction using
different Regularization techniques split according to SNR-filtering with
threshold τ during preprocessing. Data were preprocessed with Normal-
ization. The highest values of each preprocessed data set are underlined.

Tables 4.3 and 4.4 show the best image quality measures of preprocessed
Resolution phantom data. In 5 of 6 preprocessed data sets, Tikhonov regu-
larization achieves highest SSIMmax. Considering PSNRmax, DIP achieves the
highest values in 5 of 6 preprocessed data sets of the Resolution phantom.
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Compared to the results of Shape phantom, the SSIMmax of the Learning-
based regularization techniques is significantly lower.

Resolution Phantom PSNRmax SSIMmax

Regularization Technique τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Tikhonov Regularization 29.98 30.28 30.03 0.33 0.27 0.33

DIP 31.67 32.45 31.07 0.30 0.32 0.33

PnP 29.06 29.02 29.02 0.27 0.28 0.29

Table 4.3: Best image quality measures of the Resolution Phantom reconstruction
using different Regularization techniques split according to SNR-filtering
with threshold τ during preprocessing. Data were preprocessed without
Normalization. The highest values of each preprocessed data set are un-
derlined.

Resolution Phantom PSNRmax SSIMmax

Regularization Technique τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Tikhonov Regularization 30.23 30.24 30.23 0.38 0.37 0.39

DIP 31.69 28.48 32.45 0.33 0.25 0.35

PnP 29.02 28.96 30.00 0.28 0.29 0.30

Table 4.4: Best image quality measures of the Resolution Phantom reconstruction
using different Regularization techniques split according to SNR-filtering
with threshold τ during preprocessing. Data were preprocessed with Nor-
malization. The highest values of each preprocessed data set are under-
lined.
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D I S C U S S I O N

The results of this thesis include image quality measures of Tikhonov Regu-
larization, Deep Image Prior and Plug and Play Prior using a CNN denoiser.
These results are further inspected and the methods critically discussed. Fur-
thermore, possible approaches to resolve challenges encountered are identi-
fied.

5.1 data and preprocessing

MPI is an emerging imaging modality which is in a preclinical development
phase. There are only few publicly available data which limits the possibil-
ities for transfer learning without overfitting the few available datasets. For
that reason, no transfer learning was performed. Moreover, transfer learn-
ing is often not wanted in the medical field since artifacts like hallucination
should be avoided since a wrong diagnosis can have severe consequences
for a patient. Other MPI data can be used and reconstructed with the pro-
posed regularization techniques since overfitting is unlikely due to the fact
that hyperparameters need to be chosen for each newly introduced dataset
and thus the results are not influenced by pretrained supervised algorithms.
On the other hand, computationally intensive hyperparametertuning will be
needed for each data set reconstructed.
There are publications in which preprocessed MPI data are used in order
to reconstruct concentration distributions but no preprocessing toolbox is
publicly available. For that reason, preprocessing steps were implemented
in Matlab. Since only few data were used in the course of this thesis, the
performance of applied preprocessing steps is not proven for MPI data in
general. If more data are available, preprocessing steps can be enhanced like
taking covariance into account in the data normalization step.
There are already more advanced MPI scanners [TG20] compared to the one
used for the freely accessible data acquisition. Since these are the only freely
accessible data as of my current knowledge, the data used are still consid-
ered state of the art.
The calibration data of the dataset are already Fourier Transformed which
forces the user to work with Fourier Transformed data. Although an inverse
Fourier Transformation could be applied, original time series data are not
retrieved since they are averaged.
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5.2 tikhonov regularization

The implemented Standard L2-Tikhonov Regularization leads to reconstruc-
tions on which the scanned phantoms can be recognized. It is shown that
the regularization parameter α controls the tradeoff between low frequent
parts of an image like large bright or dark areas and high frequent parts
like edges and noise. The approach is simply implemented and computated
fast. Compared to the Learning-based regularization techniques, the imple-
mented Tikhonov Regularization performs worst reconstructing the shape
phantom according to the image quality measures. SSIMmax of the recon-
structed Resolution phantom data is highest with an applied L2-Tikhonov
Regularization. This shows that Learning-based methods do not generally
outperform standard regularization techniques.
In order to improve the results using Tikhonov Regularization, further con-
straints and terms can be added to the Tikhonov functional. Total Varia-
tion (TV)-regularization might lead to better results [Dit+].

5.3 dip

Compared to the implemented Tikhonov Regularization, the DIP results of
the Shape Phantom are better according to the used image quality measures.
Edges are preserved while keeping the noise level low.
Early stopping is necessary in order to achieve a good image quality. Other-
wise, noise in the scan data is also reconstructed in the result. Especially due
to the hyperparametertuning and the iterations used for the training process,
the computation time for MPI reconstruction is higher than the implemented
Tikhonov Regularization. On top of that, more computation resources are
needed in order to store and apply the used CNN. The higher demand for
computation resources and time is challenging in a real-world scenario in
the medical field where resources are often limited.
Another disadvantage of DIP and its application in a real-world scenario is
the problem of a missing ground truth. Usually, subjects and objects are
scanned without knowing the real concentration distribution of a tracer.
Moreover, the subject or object is scanned because the concentration dis-
tribution is of interest and should be detected with MPI. Since there is no
ground truth of the concentration distribution, image quality measures like
SSIM and PSNR can not be computed in order to identify the best recon-
struction and suitable hyperparameters including number of iterations. It is
shown in the course of the thesis that the number of best iterations varies de-
pending on the scanned phantom itself. A proposition for a good amount of
iterations can thus not be given when scanning an unknown object. A visual
inspection of each iteration output is also not suitable for the application in
the medical field. Nonetheless, a tuning will be necessary for each new scan
which can be computationally challenging.
The different needed step size and number of learning iterations of Shape
phantom compared to the Resolution phantom could be explained by the
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characteristic form of the phantoms. The shape phantom consists of large
areas which have the same concentration. This means the proportion of high
frequent parts in the image is rather high compared to the Resolution phan-
tom consisting of thin tubes. In order to achieve a finer distinction between
noise and small structure of the Resolution phantom, smaller step sizes there-
fore could be useful.

5.4 pnp

In order to denoise the volume with a 2D denoiser CNN, it is sliced along
an axis in 19 images that are denoised separately. The choice of this axis has
an influence on the reconstructed volume. It is shown that strong line arti-
facts are visible in the reconstruction using always the same axis to slice the
volume. These artifacts do not appear if the axis is chosen randomly. This
phenomenon might be caused by the independent treatment of the sliced im-
ages although a dependency exists in the neighborhood in all 3 dimensions.
Followingly, it is important to randomize the choice of an axis at each itera-
tion. In future works, a 3D denoisier CNN can be implemented and tested.
Since 3D convolution kernels are used, the dependency of close neighbor-
hood of each voxel is taken into account and could improve the results.
Resolution phantom and Shape phantom differ in the number of iterations
needed to achieve a high SSIMmax. Many iterations are better in case of the
Resolution phantom whereas the Shape phantom reaches the best SSIMmax

after few iterations. This can be have different causes: On the one hand, cho-
sen hyperparameters for the Shape phantom might not be very suitable and
could be tuned better if more time was invested. The example of a high
achieved image quality of the Shape phantom as in Fig. 4.17 contradicts this
hypothesis. Another reason for the different number of iterations needed
could be similar to DIP: Since the shape phantom consists of a higher por-
tion of low frequencies, it is reconstructed faster and therefore a stronger
denoising possible without losing information of the Phantom.
Another explanation for the few iterations needed in order to achieve high
image quality measures is the size of denoised images. With 19× 19, the size
of denoised images is smaller than originally intended. Padding and there-
fore increasing the size was needed in order to fit the images to the used
network. Since the images are way smaller, denoising could be achieved in
the course of fewer iterations.
In order to analyze the results being more physically acurate and achieve
better results according to image quality measures, negative values can be
set to 0. This was not applied in this work since the raw output of the De-
noiser was of interest.
The used denoisier CNN is trained for input with Gaussian noise. Noise
of MPI scan data is not proven to be Gaussian. Moreover, there are several
noise sources of MPI that are not necessarily Gaussian. Examples are random
processes inside the device like thermal noise of receive coils, harmonic in-
terference from non-linear electronic components or abrupt signal changes
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or distortions that can be caused by the electrical discharge of a hardware
component or malfunction in the data acquisition chain [PTH23],[Pay+20].
For these reasons, non-gaussian noise proportion of MPI scan data noise is
not quite suitable for gaussian denoising. To overcome this problem, trans-
fer learning with lots of MPI or MRA data could be tested in future work
if transfer learning and the possibility of hallucination artifacts are accepted.
Another method to tackle this problem is enforcing denoising constraints
like sparsity in the reconstruction part of PnP.

5.5 outlook

To improve the performance of the PnP approach with a learned denoiser,
transfer learning with MPI data or estimation of noise in MPI could lead to
better results.
Standard methods of supervised machine learning like transfer learning
could not be applied due to the lack of freely accessible data. In a future work
in order to tune a denoising network, simulated data [Zha+23a] [NK23] or
similar data to MPI, like experimental magnetic resonance angiogram (MRA)
images [Ask+22], could be used. Pre-condition for that is the accessibility of
a simulator, scan data or reconstructed images. Reconstructed clinical im-
ages are often not freely accessible due to patient information restrictions.
So it is especially challenging to access a massive amount of scan data and
actual concentration distribution pairs.
Another possibility is the usage of a CNN suitable for 3D input. The im-
portance of considering the dependency of voxels in the neighborhood was
shown by different choices of an axis along which the volume was sliced for
2D denoising. Therefore, a 3D denoiser network could improve the results.
In order to tackle the problem of the missing ground truth data and follow-
ing problem of choosing the best hyperparameters, a deep learning-based
postprocessing technique which tries to choose the best hyperparameters
can be tested [KJG23].
The measurement-based approach main disadvantage is the time-consuming
calibration time and the need to recalibrate if the scan setup changes. Al-
though there are propositions to reduce the calibration time [Gla+20], a
model-based approach does not lack from these disadvantage and might
lead to better results. Furthermore, in the measurement-based approach the
SM has to be explicitly set up and stored in memory beforehand, which
is memory consuming. Moreover, large SM can lead to long reconstruction
times [Zha+23a].
In this thesis, data with only one type of tracer was used. In future works,
scans with different tracers could be simulated in order to create color Mag-
netic Particle Imaging (cMPI) [Rah+15] [Zha+23b]. The performance of the
proposed regularization techniques can be evaluated using such data.
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Real MPI data from a preclinical scanner were preprocessed.
Tikhonov regularization and Learning-based techniques Deep Image Prior
and Plug and Play framework with a pretrained gaussian denoiser were ap-
plied to MPI scan data. Hyperparameters were finetuned and the results
evaluated by standard image quality measures Peak Signal to Noise Ratio
and Structural Similarity. In addition to that, uncertainty of phantom posi-
tions were taken into account in the calculation of the image quality mea-
sures.
In summary there are multiple main findings resulting from the quantitative
evaluation of the discrete concentration distributions of the different reg-
ularization techniques: The implemented Tikhonov regularization leads to
visually good results and was easily implemented. Both the shapes of Shape
phantom and Resolution phantom are perceived. Compared to the Learning-
based methods, the implemented Tikhonov regularization performed in many
cases better in the reconstruction of Resolution phantom data and worse in
the reconstruction of Shape phantom data considering image quality mea-
sures PSNRmax and SSIMmax of the reconstructed concentration distribution.
It is shown that the regularization parameter α in Tikhonov regularization
controls the tradeoff between the lower frequent and higher frequent parts
of the reconstruction. If chosen too high, the images appear blurry especially
in edge-regions of a phantom meaning the high frequent parts of the images
are too strongly regularized. If the regularization parameter is too small,
edges are preserved but noise is also enhanced. If the regularization term is
weighted too little, noise artifacts appear in the reconstructed images.
Compared to the Shape phantom results of the implemented Tikhonov reg-
ularization, the DIP results perform better according to the image quality
measures and visual impression. Edges are better preserved in the best DIP
reconstruction while less noise is seen in the result.
The reconstructions of MPI data via DIP strongly depend on the chosen hy-
perparameters and seeds. Some hyperparameters lead to not useful recon-
structions, where the output is constant and no concentration distribution
is seen. It is shown that the number of used iterations in order to achieve
the best results with regards to image quality measures differs from the
scanned phantom, which makes finding the best choice challenging for an
application in a real-world scenario scanning an unknown object. Another
challenge of the application of DIP in a clinical area are limited computation
resources. DIP takes more computation time and resources than the imple-
mented Tikhonov L2-Regularization. On top of that, many iterations and
hyperparameters need to be computed and compared in order to identify
the "best" reconstruction.



conclusion 55

The results of PnP strongly vary by the choice of hyperparameters.
Since a pretrained 2D denoiser CNN was used, different slicing methods of
the reconstructed volume in order to denoise it in 2D were tested. Slicing
the volume into single images was implemented in two different ways: The
first option was the choice of the same axis at each iteration, which lead to
line artifacts in the reconstruction. The second option of choosing a random
axis to slice the volume into images leads to better results. The visually best
reconstruction of the Shape phantom was achieved by the PnP method.
The goal of the thesis was overall reached by understanding and preprocess-
ing existing MPI data and implementing, tuning and evaluating different
regularization techniques.
With more time invested in noise estimation of MPI data and finetuning
of hyperparameters of the PnP framework, better results might be achiev-
able. Due to the flexibility of the PnP framework, there is a high potential
to achieve better results by plugging in other solvers like ADMM or use a
more suitable denoiser network.
Promising future research areas are the identification and description of MPI
noise. Knowledge about the noise and noise structure in MPI can be incor-
porated in the PnP denoiser network’s noise level map. This holds potential
to increase the quality of the PnP results using a denoiser network. Fur-
thermore, transfer learning of similar imaging modalities can be performed
like experimental Magnetic Resonance Angiogram (MRA) images [Ask+22],
which have shown promising results.
Another promising research area is the model-based MPI approach which
does not need the time consuming calibration process of scanning many
positions of a reference "Delta" Sample.
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a.1 hyperparameters of the regularization techniques lead-
ing to highest image quality measures

α PSNRmax SSIMmax

Data τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Shape, not normalized 10−4 5 · 10−4 0.001 5 · 10−5 10−4 5 · 10−4

Shape, normalized 10−4 5 · 10−4 0.001 5 · 10−5 10−4 5 · 10−4

Resolution, not normalized 5 · 10−5 5 · 10−5 10−4 10−12 10−12 5 · 10−6

Resolution, normalized 5 · 10−5 10−4 5 · 10−4 10−12 10−10 5 · 10−6

Table A.1: Regularization parameter α of L2-Regularization leading to highest val-
ues of image quality measures.

Step Size PSNRmax SSIMmax

Data τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Shape, not normalized 0.001 10−4 0.01 0.001 10−4 0.01
Shape, normalized 10−4 0.01 0.001 10−4 0.01 0.001
Resolution, not normalized 10−4 10−4 10−4 10−4 10−4 10−4

Resolution, normalized 10−4 0.01 0.001 10−4 10−4 0.001

Table A.2: Step size of the DIP method leading to highest values of image quality
measures.

Iteration PSNRmax SSIMmax

Data τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Shape, not normalized 217 295 320 275 374 359

Shape, normalized 233 416 303 494 416 303

Resolution, not normalized 3932 2737 2307 3982 3586 3902

Resolution, normalized 3351 5 4020 4118 4 3551

Table A.3: Number of iteration of the DIP method leading to highest values of image
quality measures.
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αstart PSNRmax SSIMmax

Data τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Shape, not normalized 10−5 10−5 10−4 10−5 10−5 10−4

Shape, normalized 10−5 10−5 10−4 10−5 10−5 10−4

Resolution, not normalized 10−5 10−5 0.01 10−5 10−5 10−5

Resolution, normalized 10−5 0.01 0.01 10−5 10−5 10−5

Table A.4: Hyperparameter αstart of the PnP method leading to highest values of
image quality measures.

αincr PSNRmax SSIMmax

Data τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Shape, not normalized 10−5 0.001 0.001 0.001 0.001 10−4

Shape, normalized 10−5 0.001 0.001 10−5 0.001 10−4

Resolution, not normalized 0.001 0.001 10−5 10−5 10−5 10−5

Resolution, normalized 0.001 0.001 0.001 10−5 10−5 10−5

Table A.5: Hyperparameter αincr of the PnP method leading to highest values of
image quality measures.

λσ2 PSNRmax SSIMmax

Data τ = 0 τ = 1 τ = 5 τ = 0 τ = 1 τ = 5

Shape, not normalized 10−6 10−6 10−6 10−6 10−6 10−6

Shape, normalized 10−6 10−6 10−6 10−6 10−6 10−6

Resolution, not normalized 10−6 10−6 10−6 10−7 10−7 10−7

Resolution, normalized 10−6 10−6 10−6 10−7 10−7 10−7

Table A.6: Hyperparameter λσ2 of the PnP method leading to highest values of
image quality measures.
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