
Darmstadt University of Applied
Sciences

– Faculties of Mathematics and Natural Sciences
& Computer Science –

Satisfying Real-Time Requirements in
Multi-Label Text Classification of Traveler

Feedbacks with Transformer Models

Submitted in partial fulfilment of the requirements for
the degree of

Master of Science (M.Sc.)

by

Dennis Imhof

Matriculation number: 715862

First Examiner : Prof. Dr. Markus Döhring

Second Examiner : Prof. Dr. Antje Jahn

Issue date : 11.10.2022

Submission date : 26.03.2023

Dennis Imhof: Satisfying Real-Time Requirements in Multi-Label Text Classifica-
tion of Traveler Feedbacks with Transformer Models, © 26. März 2023

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch
nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Darmstadt, 26. März 2023

Dennis Imhof

A B S T R A C T

In this work we present a multi-step training and optimization scheme for
real-time Multi-Label Classification (MLC) in the context of the long-distance
personal rail transport industry. We are specifically dealing with anonymized
traveler feedback texts submitted through multiple digital channels. To pro-
vide customers with context-dependent information, an instant response to
their feedback has to be generated since anonymization prohibits the asso-
ciation of feedback and customer at a later point in time. Due to the sparse
availability of multi-label annotated data, we utilize an ensemble of Large
Language Model (LLM) binary classifiers trained on expert-annotated data to
generate multi-label Pseudo Labels (PLs) for a large unlabeled dataset. A stu-
dent LLM multi-label classifier is trained on the PL data and further latency-
optimized through the application of neural network graph-optimization
and quantization techniques.

We show, that we can distill the knowledge of an ensemble teacher model
into a highly optimized student model with only a marginal loss of pre-
dictive power in a Multi-Label Classification problem incorporating eleven
classes. We find only marginal performance degradation in the optimized
student model, with the teacher model reaching a macro F1-score of 0.902

and the latency-optimized student model reaching a macro F1-score of 0.891

on a multi-label holdout testset. Contrastingly, the per-sample inference time
of the student model can be reduced to 92ms on a commodity CPU, whereas
the per-sample inference time of the ensemble model teacher depends on the
slowest model in the ensemble and the degree of parallelization with around
500-700ms per-sample latency. Additionally, it can be shown that the multi-
label student model even outperforms the binary ensemble teacher for some
of the classes by utilizing learned label correlations the binary predictors
have no access to. In a subsequent scalability experiment we extend the pro-
posed workflow to a category selection of 82 categories and find that the
student model reaches competitive performance on over 75% of the selected
categories.

Keywords – Multi-Label Text Classification; Pseudo Labels; Latency; Trans-
former; ELECTRA; DistilBERT.

Z U S A M M E N FA S S U N G

In dieser Arbeit wird ein mehrstufiges Trainings- und Optimierungskonzept
für Multilabel-Klassifikation in Echtzeit im Rahmen des Schienenpersonen-
fernverkehrs vorgestellt. Als Datengrundlage dienen anonymisierte Reisen-
denfeedbacks, die über verschiedene Digitalkanäle von KundInnen bereitge-
stellt werden. Die Klassifikation und die davon abgeleitete Antwort auf das
Kundenfeedback muss in Echtzeit erfolgen, da durch die Anonymisierung
der Feedbacks eine spätere Zuordnung und Antwort nicht mehr möglich
ist. Da multi-label-annotierte Daten kaum verfügbar sind und sich der kor-
respondierende Annotationsprozess bei hohen Klassenanzahlen als enorm
zeit- und ressourcenintensiv herausstellt, greifen wir auf ein Ensemble aus
binären LLM Klassifikatoren zurück, die auf Basis von expertenannotierten
Daten trainiert werden. Jenes Ensemble dient zur Erzeugung von PLs auf ei-
nem großen, ungelabelten Datenbestand. Anschließend wird ein multi-label
student model mithilfe der PL-Daten trainiert und mithilfe von Netzwerkgra-
phoptimierung sowie Quantisierung latenzoptimiert.

Die Ergebnisse dieser Arbeit zeigen, dass ein Ensemble aus elf binären LLM

Klassifikatoren ohne merklichen prädiktiven Performanzverlust in ein laten-
zoptimiertes student model distilliert werden kann. Hierbei weist das Ensem-
ble ein makro F1-Evaluationsergebnis von 0.902 und das student model einen
minimal geringeren Wert von 0.891 auf einem vorgehaltenen Testdatensatz
auf. Gleichzeitig kann die per-Sample Inferenzzeit des student models auf
gewöhnlicher Konsumentenhardware von den 500-700ms Inferenzzeit des
Ensembles auf 92ms reduziert werden. Weiterhin zeigt sich, dass das multi-
label student model auf einer Teilmenge der Labels eine bessere prädiktive
Performanz erzielt als das Ensemblemodell, was auf die Ausnutzung von
Labelkorrelationen zurückzuführen ist, die dem binären Ensemble nicht zur
Verfügung stehen. In einem anschließenden Skalierbarkeitsexperiment wird
die Kategorieauswahl auf insgesamt 82 Kategorien erweitert und gezeigt,
dass durch das student model ohne weitere Optimierung der Trainingsdaten
eine mit dem Ensemblemodell vergleichbare prädiktive Performanz auf über
75% der Klassen erreicht werden kann.

Stichworte – Multi-label Text Classification; Pseudo Labels; Latency; Trans-
former; ELECTRA; DistilBERT.

C O N T E N T S

I Thesis 1

1 Introduction 2

1.1 Motivation . 2

1.2 Methodology and Outline . 3

2 Related work 5

3 Foundations: Multi-label classification with Attention-based Neu-
ral Networks 10

3.1 Multi-Label Classification . 10

3.1.1 Probability Theory . 12

3.1.2 Label dependence . 12

3.1.3 Evaluation Measures for Classification 16

3.2 Multi-Label Data Improvement 19

3.2.1 Active Learning . 19

3.2.2 Pseudo Labels . 21

3.2.3 Label Imbalance . 23

3.3 Attention-based Deep Neural Networks 27

3.3.1 Text representation . 27

3.3.2 Transformer Encoder Architecture 29

3.3.3 Attention . 33

3.3.4 Pre-Training and Fine-Tuning 38

3.3.5 Multi-Label Classification with Transformers 40

4 Foundations: Inference Time Optimization 43

4.1 Quantization . 43

4.1.1 Symmetric vs. Asymmetric Quantization 44

4.1.2 Uniform vs. Non-Uniform Quantization 45

4.1.3 Post-Training Quantization vs. Quantization-Aware Train-
ing . 45

4.2 Knowledge Distillation . 46

5 Concept and experimental setup 49

5.1 Data . 50

5.1.1 Binary-labeled training data 50

5.1.2 Multi-label data . 54

5.2 Training, evaluation and prediction 58

5.2.1 Baseline Models . 60

5.2.2 Large Language Models 61

5.3 Inference Latency Optimization 61

contents vii

6 Experimental results 63

6.1 Predictive performance . 63

6.1.1 Binary classifiers by example of Passenger Rights 64

6.1.2 Multi-label classifiers . 68

6.1.3 Scaling to higher numbers of categories 73

6.2 Inference latency optimization on CPU 76

7 Discussion 81

7.1 Conclusion . 83

Bibliography 85

II Appendix 95

a Figures 96

a.1 Predictive . 97

a.2 Latency . 97

L I S T O F F I G U R E S

Figure 3.1 Three classification types with associated (positive) la-
bels in green and non-associated (negative) labels in
red. Each label box also shows a corresponding pre-
dicted probability assigned by a trained classifier. . . . 11

Figure 3.2 Unconditional label dependence (sub-)graph 13

Figure 3.3 General pool-based Active Learning Workflow 20

Figure 3.4 Effect of majority class undersampling on the optimal
decision boundary with i.i.d. sample (top) and major-
ity class undersampling (bottom) 25

Figure 3.5 Transformer Encoder Architecture [Vas+17] 30

Figure 3.6 Transformer Encoder Block [Ala18] 32

Figure 3.7 Unrolled recurrent neural network (RNN) 33

Figure 3.8 Self-Attention and Cross-Attention visualized with BertViz
[Vig19] . 34

Figure 3.9 Scaled Dot-Product Attention (left) and Multi-Head
Attention (right) [Vas+17] 37

Figure 3.10 Different Self-Attention Heads visualized with BertViz
[Vig19] . 38

Figure 3.11 Inputs used BERT . 39

Figure 3.12 Binary Cross-Entropy Loss and Focal Loss for different
predicted probabilities p̂ and true label y = 1 42

Figure 4.1 Symmetric and Asymmetric Quantization 45

Figure 4.2 Uniform and Non-Uniform Quantization 45

Figure 4.3 Knowledge Distillation [Gou+21] 47

Figure 5.1 End-to-End Pipeline . 49

Figure 5.2 Wordclouds for a subset of six categories 52

Figure 5.3 Distribution of predicted probabilities on unlabeled
data . 54

Figure 5.4 Fraction of samples with Scaled Confidence Score above
threshold α . 55

Figure 5.5 Label correlation P(Y) found in the pseudo-label multi-
label date . 56

Figure 5.6 Early stopping induced by stagnating averaged F1-
score improvement . 60

Figure 6.1 Evaluation curves over five cross validation folds on
cross validation dataDvalcv and holdout validation data
Dvalood . 66

Figure 6.2 Influence of Positive Class Weight on model perfor-
mance . 67

list of figures ix

Figure 6.3 Multi-label XGBoost macro evaluation metrics on the
holdout validation data Dvalood corresponding to dif-
ferent hyperparamter configurations in a Parallel Co-
ordinates Plot . 69

Figure 6.4 ELECTRA: F1 Score, Recall and Precision per class on
test data . 70

Figure 6.5 ELECTRA: Precision-Recall Curves for test data 70

Figure 6.6 F1-Scores and Positive Label Training Data Ratio in
context of the binary classifiers, the multi-label classi-
fier and respective difference 74

Figure 6.7 Linear regression plot showing the true values y and
fitted values ŷ corresponding to the difference in F1-
Score between binary and multi-label models on the
binary cross-validation data against the dependent vari-
able x corresponding to the logarithmic ratio of the
binary and multi-label label distributions. 75

Figure 6.8 Per-Sample Latencies for XGBoost baseline models and
different input sequence lengths 77

Figure 6.9 Per-sample latency for different model architectures
and sequence lengths . 78

Figure 7.1 Contextualized response based on the detection of
category Punctuality . 84

Figure A.1 GLUE Top 10 Models . 96

Figure A.2 Per-Sample Inference Latency for different model type
with input sequence length 20 97

Figure A.3 Inference latency with ONNX runtime 98

Figure A.4 Inference latency for 8-bit quantized model and ONNX
runtime . 98

L I S T O F TA B L E S

Table 2.1 Related Work Summary 9

Table 3.1 Conditional and marginal probability distributions px(Y)
and px(Yi) [DCH10] . 15

Table 3.2 Confusion matrix for binary classification 16

Table 3.3 Parameter count of Pre-Trained Transformer models . . 39

Table 5.1 Token count statistics per category 51

Table 5.2 Sample and label distribution within the binary train-
ing data of eleven categories 53

Table 5.3 Size of intersections between binary-annotated datasets 53

Table 5.4 Label distribution of the confidence-filtered pseudo-
label multi-label data consisting of 37,621 samples . . . 55

Table 5.5 Execution environment specifications 62

Table 6.1 Exemplary Regular Expressions filtering for feedbacks
relevant to category Passenger Rights 64

Table 6.2 Binary classifier improvement by dataset curation through
batchwise Active Learning 65

Table 6.3 Comparison of the predictive performance of differ-
ent model architectures on the test data via F1-Score . 72

Table 6.4 OLS Regression Results 75

Table 6.5 Macro F1-scores of binary and multi-label classifiers
by choosing the best performing n categories for the
multi-label model . 76

Table 6.6 Per-sample latency sequence length 250 79

Table 6.7 Per-sample latency sequence length 512 79

Table A.1 Comparison of the predictive performance of differ-
ent model architectures on the holdout validation data
via F1-Score . 97

L I S T O F A C R O N Y M S

BCE Binary Cross-Entropy

BERT Bidirectional Encoder Representations from Transformers

BR Binary Relevance

CBOW Continuous Bag of Words

CNN convolutional neural network

FNN feedforward neural network

GAN Generative Adversarial Network

GELU Gaussian Error Linear Unit

GLUE General Language Understanding Evaluation

i.i.d. independent and identically distributed

LS Labelset

LLM Large Language Model

LSTM Long Short-Term Memory

MLC Multi-Label Classification

NLP Natural Language Processing

NLU Natural Language Understanding

ONNX Open Neural Network Exchange

PL Pseudo Label

RNN recurrent neural network

SVM support vector machine

SSL Semi-Supervised Learning

TFIDF Term Frequency Inverse Document Frequency

Part I

Thesis

1
I N T R O D U C T I O N

Long distance personal rail transport encompasses a very broad set of ser-
vices ranging from transport, booking and connection scheduling to informa-
tion distribution as well as travel services like gastronomic offers, luggage
logistics and multimedia services. All of which might be the subject of cus-
tomer feedbacks submitted via multiple digital channels as anonymized free
text. These textual feedbacks are a valuable resource to detect problems in
service quality and present a low usage barrier for customers, which makes
it possible to obtain them in relatively high volume. Additionally, the sub-
ject matter of such feedbacks typically refers to recent events, which makes it
possible to react, mitigate or even solve specific problems in a timely fashion.

The investigation and proposition of such a detection infrastructure capa-
ble of accurately predicting customer intent is the focus of this work. Apart
from a high predictive performance, a real-time latency is required to in-
stantly respond to a customers feedback since anonymization makes a de-
layed response impossible. Additionally, the prediction should be performed
on CPU hardware to satisfy cost and scalability constraints.

1.1 motivation

The emergence of pre-trained large language models utilizing the trans-
former architecture, specifically the (self-)attention mechanism, has led to
a massive shift in the field of natural language processing. The superior
context awareness of transformer-based models in comparison to classical
machine learning models and sequential deep learning models has enabled
the handling of a wide range of difficult language tasks with high precision.
In environments with high amounts of incoming unlabeled data and po-
tentially high numbers of categories, manually annotating multi-label data
quickly becomes infeasible. Textual customer feedbacks are often short and
associated with only a small amount of labels. As such, constructing a vi-
able multi-label training dataset requires labeling enormous amounts of i.i.d.
sampled unlabeled data. However, if it was possible to train performant
multi-label models based on intermediary pseudo-label data generated by
individual binary classifiers, the annotation process could be optimized sig-
nificantly. Each binary label generator model and corresponding training
dataset could be optimized indivdually and multi-label training data could
be generated in quantities only limited by the amount of unlabeled data
available. We contemplate that the high learning capacity of LLMs makes
these models well suited for the creation of the best possible pseudo-label
data and at the same time makes them highly suitable as final multi-label

1.2 methodology and outline 3

model learning from the provided pseudo-label data. However, the high
learning capacity of these models comes at the price of relatively high re-
source requirements and a corresponding high inference latency on CPU
hardware. Thus, in this thesis we investigate the predictive performance as
well as the performance regarding the inference latency of LLMs trained on
pseudo-label data. In more practical terms, we are interested in creating a
workflow that

• can easily be adapted to different category selections,

• yields a model with high predictive performance and real-time latency,

• is cost- and energy-efficient.

The trending topics in customer feedbacks vary by season, political deci-
sions, changes in services as well as local- and worldwide events. As such,
we want a potential classification system to be highly adaptable. Another
important constraint are the costs of such a classification system. Since ded-
icated GPU-hardware as well as GPU-capable cloud instances are signifi-
cantly more expensive than CPU-hardware, we prioritize a deployment on
the latter. Following, we present the research goals outlining the focus of this
thesis.

Research goals

The following three research questions are the main driver behind this work:

• Is it possible to train a performant multi-label model without expert-annotated
multi-label data?

• Can a multi-label language model outperform multiple binary language mod-
els and thus, can the multi-label model implicitly use label correlations to its
advantage?

• Can a high capacity multi-label language model reach an inference latency of
sub 100ms on CPU hardware?

1.2 methodology and outline

Following this introductory chapter, we present an overview of previous
research related to this work, which touches the fields of Multi-Label Classi-
fication, Neural Network Compression as well as the research fields of Active
and Semi-Supervised Learning. In the two succeeding theoretical chapters we
lay out the necessary basis for this work. We begin by presenting the funda-
mentals of Multi-Label Classification in Chapter 3 as well as challenges and
approaches for the curation and handling of Multi-Label Data in Section 3.2.
In the second theoretical chapter, Chapter 4, we provide an overview of tech-
niques to reduce the memory footprint and specifically the inference latency

1.2 methodology and outline 4

of LLMs. In Chapter 5 we discuss the setup, implementation and execution
of the experiments conducted in context of this work. We propose a multi-
step training and optimization scheme for real time MLC in the context of the
long-distance personal rail transport industry. Due to only sparsely available
multi-label-annotated data, we utilize PL data generated by an ensemble of
optimized LLM binary classifiers, which are themselves trained on expert-
annotated data. The intermediary PL data is used to compress the ensemble
of LLM binary classifiers into a single multi-label student model and serves
as a form of Knowledge Distillation. The student model trained on PL data
is then further latency-optimized through the application of neural network
graph optimization and quantization techniques. Following in Chapter 6,
we evaluate the experimental results and conclude with a critical discussion
regarding the success of our research in Chapter 7.

2
R E L AT E D W O R K

In this chapter we provide an overview of existing works related to the re-
search questions formulated in Section 1.1.

Is it possible to train a performant multi-label model without expert-annotated multi-
label data?

The incorporation of unlabeled data or synthesized data into the training
process of machine learning models is an important part of self-training and
semi-supervised learning. The first mentions of self-training date back to
Scudder et al. [Scu65] where they propose first training a teacher model on
labeled data and subsequently use the teacher model to generate pseudo-
labeled data. The pseudo-label data in combination with the initial labeled
data is used as training data for a student model. The combination of a small
amount of labeled data and large amounts of unlabeled data is a common
characteristic for semi-supervised learning methods. Bucila et al. investigate
the compression of an ensemble of models into a single model by training
the multi-label model on a mixture of expert-annotated data and pseudo
data generated from the binary ensemble [BCNM06]. They use eight tab-
ular datasets in their experiments and propose a synthetic data generation
scheme to create pseudo-data. The mixture of real and synthetic data is used
to compress an ensemble of base learners into a single model without signif-
icant loss of performance. However, they focus on binary classification with
conventional feed forward neural networks learning from tabular data.

In context of our work, data generation is not necessary since large amounts
of unlabeled data are available. There is high interest in solving language
tasks with reduced amounts of labeled data. This is because the annotation
process is expensive and resource-intensive. Mintz et al. present distant and
weak supervision for text classification tasks to create pseudo-label data from
unlabeled data by means of word-searches and regular expressions [Min+09].
The so created pseudo-labels, unfortunately, contain high amounts of noise,
which negatively impacts model performance. In the worst case this leads
to the model overfitting on incorrect labels and sub-par performance. To de-
crease the impact of label noise on the trained model, various mitigation
approaches have been proposed. These can be divided into methods trying
to improve the pseudo-label generation process as well as methods trying to
filter the pseudo-label data after creation. Works focussing on an improve-
ment of the label generation process incorporate meta information [MZS20],
the learning order of samples [MDS22] or contextualized searches instead
of word-based searches into the pseudo-label creation process [MS20]. Var-

related work 6

ious approaches for the subsequent filtering of pseudo-labels with the goal
of selecting the most informative data have been investigated. These encom-
pass iterative approaches,clustering [Zhe+21] as well as confidence-based
approaches [Riz+21], [Hua+21], [Lee+13] which are closely related to Active
Learning methods [RB21], [NDH19]. A shared similarity of the referenced
works is that they extend existing labeled data with unlabeled data by means
of semi-supervised learning. In our approach, however, we explicitly avoid
using any expert-labeled multi-label training data. The initial training data
for the teacher ensemble is a set of disjunct, binary-labeled datasets and the
training data for the final compressed multi-label model is completely based
on uncertainty-filtered pseudo-label data.

Key Results

Training models on a small set of labeled data and high amounts of un-
labeled data is a common approach in semi-supervised learning. Given
the constraints of disjunct binary training data, we completely cut out
the labeled data in the training of the student.

Does a multi-label language model outperform multiple binary language models and
thus, can the multi-label model implicitly use label correlations to its advantage?

There are several factors on which the aforementioned research question de-
pends. For one, the predictive performance of the multi-label transformer
model is directly tied to the quality of the pseudo-label data used as train-
ing data. Bai et al. find that early stopping is important to stop the model
in training from overfitting on noisy labels [SGM22]. Zhu et al. state that
early stopping should be induced if the models performance degrades on a
clean validation set [Zhu+22]. Another important factor is the modeling of
the multi-label problem regarding correlations and dependencies between
labels or set of labels. Dmbczynski et al. show that explicitly modeling la-
bel dependencies by utilizing a higher order multi-label modeling approach
leads to a drastically different optimization problem than the utilization of
the binary relevance first order approach [DCH10]. They find that a binary
relevance approach might be preferable if the performance of individual
classes is more important than an exact match of all labels. Label depen-
dencies can explicitly be modelled with the label powerset approach [TV07],
which, however, leads to high label sparcity and an exponential increase in
required data. Classifier chains also fall into the category of higher order meth-
ods. They iteratively incorporate label subsets into the feature space and
have successfully been applied to multi-label classification on short textual
data [DWH12], [Sch+14]. In context of large deep learning models, however,
Nam et al. find that classifier chains come with prohibitively high resource
overhead [Nam+19]. Different approaches for modeling label semantics and
dependencies explicitly with transformer models have been proposed that
incorporate meta-data and hierarchical information [Zha+21], label subset

related work 7

tagging [Liu+17] or add an additional correlation output module to capture
possible label correlations [Xun+20]. Devlin et al. [Dev+18] as well as Brown
et al. [Bro+20] show that the unsupervised pre-training stages applied to
BERT, GPT and adjacent transformer architectures lead to high generaliza-
tion capabilities, intrinsic context awareness and state-of-the-art results on
various benchmark experiments. As such, pre-trained LLMs should be able
to implicitly utilize label correlations.

Key Results

Pre-trained transformer models are highly context-aware. We hypoth-
esize, that they should be capable to utilize label correlations in the
input data without explicit modelling of label dependencies.

Can a high capacity multi-label language model reach an inference latency of sub
100ms on CPU hardware?

The size of a LLM, or rather the number of utilized parameters, directly in-
fluences the potential predictive performance as well as inference latency of
the model. Brown et al. show that efficient context utilization and task per-
formance directly correspond to model size [Bro+20]. In a real-time context
where predictive performance and low inference latency are of equal impor-
tance, model optimizations have to be performed that at best reduce infer-
ence latency without degrading the predictive performance of the model.
Han et al. investigate the efficiency of compressed neural networks regard-
ing inference speed and energy consumption on embedded devices with re-
source constrained hardware. [Han+16] They show that the memory access
required to fetch the parameters of a neural network causes energy costs two
magnitudes larger than arithmetic operations executed with said parameters
and consequently also significantly contributes to the total inference latency.
Methods with the goal of increasing the execution performance of neural
networks typically try to optimize the utilization of hardware in a specific
execution environment, optimize the memory layout of the model or reduce
the number of floating point operations as well as the number of memory
accesses required for a forward-pass.

Different areas of research focus on the creation of efficient neural network
architectures and the modification of existing architectures for increased
efficiency. One of these areas is known as knowledge distillation [HVD15],
where a smaller, more memory-efficient student model learns from a larger
teacher model. Another field known as pruning focusses on the reduction
of employed weights in neural network models. This reduction is typically
performed during or post-training [GDA20], [WWL20]. It is assumed that
a neural network contains high degress of redundancy and that there ex-
ists an optimal sub-network equally performant as the fully specified par-
ent network. This is also known as the Lottery Ticket Hypothesis [Mor+19],

related work 8

[BH20] and serves as theoretical underpinning for as to why pruning and
the sparcification of neural networks works. Sanh et al. present DistilBERT,
a pruned and knowledge distilled successor of BERT, with a size reduction
of 40% and a 60% inference speedup compared to BERT. The execution of
sparse neural networks is another active area of research connecting pruning
and hardware-efficient neural network layouts [Lag+21], [Hoe+21]. Different
frameworks and compiler techniques have emerged and evolved with the fo-
cus of optimizing neural network graphs on specific execution environments
[Rot+18], [Lat+21]. Lastly, the research area known as quantization focusses
on a more memory-efficient representation of neural networks by utilizing
16bit floating-point values (also known as half-precision) or integer values
to represent the weights of the neural network [Gup+15], [Zaf+19], [Jac+18].
Kim et al. find that an integer-transformed BERT shows a speedup of up to
3 times of that of the original 32bit floating-point formulation [Kim+21].

The average per-sample latency highly depends on the utilized hardware
and execution environment. As such, publications typically report relative
latency improvements instead of hardware-specific absolute values. Hugging-
Face report that by employing multi-threading on a high performance CPU,
a sub-100ms per-sample latency with BERT in a PyTorch runtime is achieve-
able 1.

Key Results

Achieving a sub-100ms per-sample latency should be achievable with
high performance CPU hardware. We investigate if the previously pre-
sented optimization techniques enable us to perform sub-100ms infer-
ence on commoditiy hardware without significant predictive perfor-
mance loss.

1 https://huggingface.co/blog/bert-cpu-scaling-part-1 (last visited on 26.03.2023

https://huggingface.co/blog/bert-cpu-scaling-part-1

r
e

l
a

t
e

d
w

o
r

k
9

Summarization and overview

Topic Publication Keywords

Pseudo-Labels [BCNM06] Ensemble compression, feed-forward neural networks,
8 binary tabular datasets, only pseudo-labels

[Lee+13] Multi-Class, MNIST dataset, Entropy Regularization
[Riz+21] Uncertrainty selection, model calibration, CIFAR-10, CIFAR-100, Pascal VOC and

UCF-101 datasets

Active Learning [LG94] Uncertainty sampling, text classification, AP newswire data subset
[RB21] Noisy labels, uncertainty sampling synthetic data as well as

letter-binary and covertype datasets

Transformer [Vas+17] Transformer architecture, attention mechanism, WMT 2014 dataset
[Dev+18] BERT, pre-training for transformers, GLUE datasets
[Cla+20] ELECTRA, improved pre-training scheme, GLUE datasets

Model compression [HVD15] Knowledge distillation, MNIST & JFT image datasets
[San+19] Distilbert, knowledge distillation for transformers, GLUE dataset
[Kim+21] 8-bit quantized BERT, GLUE datasets

Table 2.1: Related Work Summary

3
F O U N D AT I O N S : M U LT I - L A B E L C L A S S I F I C AT I O N W I T H
AT T E N T I O N - B A S E D N E U R A L N E T W O R K S

This chapter focuses on the theoretical foundations of MLC and the appli-
cation of attention-based deep neural networks to MLC problems. In Sec-
tion 3.1 we develop the necessary background to understand multi-label
classification in a probabilistic context. In the subsequent Section 3.2, we ex-
amine challenges and respective solutions specific to multi-label data imbal-
ance and sparcity. The architecture of attention-based deep neural networks,
whose predictive performance in multi-label classification is another core
subject of this work, is the focus of Section 3.3.

Notations

Throughout this work we will use the following notations.

X - Multivariate random variables

X - Univariate random variables

x - Realizations of multivariate a random variable

x - Realizations of a univariate random variable

X - Mathematical space

3.1 multi-label classification

Classification is the task of associating an observation

x = (x1, . . . xp) ∈ X (3.1)

with one or multiple discrete labels λi with

L = {λ1, . . . , λm} ⊆ L (3.2)

being a label subset from a finite set of labels L. We call X ⊆ Rp the p-
dimensional input or feature space. Exemplary input data x might be text,
sound, image or tabular data and the associated labels λi could represent
music genres, emotions or even chemical elements. We differentiate between
three different kinds of classification tasks, which are

• binary classification,

3.1 multi-label classification 11

• multi-class classification

• and multi-label classification.

A visualization of the three different types of classification problems is shown
in Figure 3.1.

Figure 3.1: Three classification types with associated (positive) labels in green and
non-associated (negative) labels in red. Each label box also shows a cor-
responding predicted probability assigned by a trained classifier.

In binary and multi-class classification an observation x is associated with
exactly one label λi ∈ L. This can be seen in the left and center panel of
Figure 3.1 where exactly one of the possible labels is positive. Binary classifi-
cation can be viewed as special case of multi-class classification with the label
set L consisting of exactly two labels ie. |L| = 2. Multi-label classification on
the other hand permits the association of an observation x with an arbitrary
subset of labels L ⊆ L and multi-class classification in turn can be viewed
as a special case of multi-label classification with |L| = 1. Many classification
problems are multi-label in nature. A movie or a piece of music might be as-
sociated with multiple genres, an image might contain multiple objects we
want to classify and a text document might span various relevant topics.

We can approach a classification problem by utilizing methods of supervised
learning where a statistical model is fitted to training data

Dtrain = {(x(i), y(i))n
i=1} (3.3)

with the goal of estimating an often complex underlying functional mapping

f : x→ y. (3.4)

The trained statistical model and thereby the learned or estimated mapping
f̂ can subsequently be used to predict the label associations of unseen data

ŷ = f̂ (x). (3.5)

We use binary vectors y ∈ Y and ŷ ∈ Y to represent the sets of true label
associations L and predicted label associations L̂ of an observation x. We call
Y the output or label space. Both binary vectors are of dimension |L| with

3.1 multi-label classification 12

y, ŷ ∈ Y Y = {0, 1}|L| (3.6)

where the entry yi at index i indicates the association or non-association of
the observation x with label λi ie.

yi = 0⇔ λi /∈ L

yi = 1⇔ λi ∈ L.
(3.7)

3.1.1 Probability Theory

The training data Dtrain = {(x(i), y(i))n
i=1} is assumed to be an independent

and identically distributed (i.i.d.) sample from an unknown joint probability
distribution p(X, Y) on X × Y [Dem+12] with X = (X1, . . . Xp) and Y =

(Y1, . . . Y|L|) being multivariate random variables. If we had access to the
joint probability distribution, an unseen observation x could be classified by
finding the mode of the conditional probability distribution pX(Y):

copt = arg max
c

pX(Y)

= arg max
c

p(Y = c|X = x)

= arg max
c

p(X = x, Y = c)
p(X = x)

(3.8)

Here p(X = x) is the marginal distribution of X

p(X = x) = ∑
y∈Y

p(X = x, Y = y) (3.9)

which can be calculated by summing the joint probability distribution over
the support of the discrete multivariate random variable Y. Modeling the
joint probability distribution directly falls into the area of generative mod-
eling, which is a very difficult task given high dimensional data ([Bis06],
p.44f). Though, if we’re mainly interested in discriminative results, model-
ing the full joint probability distribution is not necessary. Instead we try to
model the joint conditional probability distribution p(Y|X = x) or the in-
dividual marginal probability distributions p(Yi|X = x) depending on our
specific goals and assumptions regarding label dependence.

3.1.2 Label dependence

In MLC we differentiate between two forms of statistical dependence between
labels. These are unconditional and conditional label dependence [Dem+10].
Unconditional label dependence is a dependence between labels Yi regard-
less of any association with a specific instance x. As an example, if the task
was to assign labels to products and the label set contained the labels rare,

3.1 multi-label classification 13

novel, high production cost and expensive, the presence of any of the labels
rare, high production cost and novel would make the occurence of the label
expensive highly likely regardless of an association with a specific product.
Though, we assume a dependence of the label expensive on the former labels
as shown in Figure 3.2.

Figure 3.2: Unconditional label dependence (sub-)graph

In the most extreme case unconditional dependence between labels could
mean that the set of labels contains highly redundant labels. Formally, un-
conditional label independence is defined as

p(Y) =
m

∏
i=1

p(Yi) (3.10)

and thus unconditional label dependence exists, if the equality between the
joint label probability distribution and the product of the marginal label
probability distributions does not hold. As mentioned in Chapter 2, there
are various works concerned with the detection and incorporation of uncon-
ditional label dependence into the modeling process.

Another form of label dependence is called conditional label dependence. Con-
ditional label independence is formally defined as the equivalence between
the joint conditional probability distribution of Y and the product of its con-
ditional marginal probability distributions

px(Y) =
m

∏
i=1

px(Yi). (3.11)

Modeling under the strong assumption that conditional label independence
holds, leads to the Binary Relevance (BR) approach to multi-label classifica-
tion, a first order approach where the classification of each label is viewed
as individual binary classification task. Conversely, the incorporation of con-
ditional label dependence into the modeling task leads to second and higher
order approaches to MLC.

3.1 multi-label classification 14

Modeling Strategies for Label Dependence

first order strategies : Each label is treated in an individual bi-
nary classification problem. Label dependencies are not explic-
itly integrated into the modeling process. This approach enables
the use of ensembles of individually trained models as well as
the use of multi-output models optimized with a loss function
that doesn’t take any form of label dependence into account.

second order strategies : This approach to MLC incorporates
pairwise label dependence into the modeling process. This can
be achieved by the usage of pairwise ranking loss-functions.
Pairwise approaches come with an quadratic increase of com-
putational complexity since each pair of labels has to be taken
into account.

higher order strategies : These strategies try to explicitly in-
clude all dependencies between labels into the modelling pro-
cess. A common approach is the Labelset (LS) problem trans-
formation approach. Here each label subset is viewed as an in-
dividual class and the multi-label problem is transformed into
a multi-class problem. Worst case, this means that the computa-
tional complexity increases exponentially from L to 2L. There are
approaches like the Pruned Set approach [RPH08] that try to alle-
viate the high computational complexity by pruning infrequent
sets of labels.

Dembczyński et al. compared the first order BR approach with the higher order
LS approach and found that the performance of each highly depends on the
choice of loss function [Dem+10] and ultimately on the specific goal we try
to optimize for. They showed that the BR approach, which tries to predict the
marginal conditional modes

arg max
i

px(Yi),

on average performed better with respect to the Hamming Loss

LHamming(y, ŷ) =
1
m

|L|

∑
i=1

I[yi ̸= ŷi], (3.12)

which is defined as the fraction of incorrectly predicted labels. The LS ap-
proach on the other hand performed better with respect to the Subset 0/1-Loss,
which is defined as

L0/1(y, ŷ) = I[y ̸= ŷ] (3.13)

and whose minimization corresponds to the minimization of the loss w.r.t
the joint conditional probability distribution px(Y) [DWH12]. The Subset 0/1-

3.1 multi-label classification 15

Loss is much more rigid than the Hamming Loss and equally penalizes any
divergence of the predicted set of labels from the true set of labels.

Which strategy to choose?

As briefly discussed in Section 3.1.1, each of the different MLC problem mod-
eling strategies comes with its own set of advantages and disadvantages.
The most notable factors thereby tend to be:

1. Strength of assumptions and degree of problem simplification.

2. Data and compute resource requirements.

We first look at item (1) by comparing the predicted set of labels given a
BR approach utilizing the marginal conditional modes and a LS approach
utilizing the joint conditional mode. In Table 3.1 we show an exemplary
joint conditional probability distribution px(Y) as well as the marginal con-
ditional probability distributions px(Yi) for two random variables Y1 and Y2,
which represent the set of labels.

px(Y) 0 1 px(Y2)

0 0.0 0.4 0.4
1 0.3 0.3 0.6

px(Y1) 0.3 0.7 1

Table 3.1: Conditional and marginal probability distributions px(Y) and px(Yi)
[DCH10]

We can see the problematic conclusion caused by the false assumption of
conditional label independence. The mode of the joint conditional probabil-
ity distribution is found at

px(Y1 = 0, Y1 = 1) = 0.4,

whereas the product of the marginal modes is calculated as

px(Y1 = 1)px(Y2 = 1) = 0.7 · 0.6 = 0.42

and thus, the BR approach would lead to the false conclusion that both labels
should be associated with observation x. Under the strict constraints of the
Subset 0/1-Loss this would mean that the classification is wrong. However, in
context of the Hamming Loss the classification is 50% correct and 50% wrong.
Now, if we imagine the classification of an observation with one misclas-
sified label ŷi ̸= yi out of |L| = 100 labels, the Subset 0/1-Loss would still
indicate a wrong classification. Contrastingly, the Hamming Loss would pe-
nalize only the misclassified label surmounting in a total loss of 0.01, which
might be a more desirable outcome.

3.1 multi-label classification 16

As mentioned in Section 3.1.1, second and higher order strategies show quadratic
and exponential computational complexity in L. Even worse, this quadratic
and exponential increase not only applies to the computational complexity,
but also to the amount of required, labeled training data. To put things into
perspective, an exemplary multi-label classification problem concerned with
the prediction of a set of labels with |L| = 10 would require the counts of
observations shown in Equation 3.14 to at least provide one positive exam-
ple of a label, nF, label pair, nS, and label subset, nH, corresponding to the
first, second and higher order strategy, respectively.

nF = |L| nS =

(
|L|
2

)
nH = 2|L|

= 10 = 45 = 1024
(3.14)

Additionally, the correctness of a specific label subset might not matter as
much as the average partial correctness of labels for the specific use case
at hand. Thus, the BR approach, optimizing the Hamming Loss or a surro-
gate loss like the Binary Cross Entropy Loss, which will be discussed in Sec-
tion 3.1.3, is the the prioritized strategy in context of this work.

3.1.3 Evaluation Measures for Classification

Many evaluation measures for single- and multi-label classification can be
derived from a contingency table also known as confusion matrix. An exem-
plary contingency table is shown in Table 3.2. True Positives (TP), False Posi-
tives (FP), False Negatives (FN) and True Negatives (TN) are positive integers
(counts) where true and false signal the correctness of the prediction whereas
positive and negative signal the value of the prediction.

True value
Positive Negative Total

Predicted value
Positive TP FP TP + FP
Negative FN TN FN + TN

Total TP + FN FP + TN N

Table 3.2: Confusion matrix for binary classification

Common evaluation measures for binary classification that can be derived
from the counts found in a contingency table are Accuracy, Precision, Recall
and the F1-Score among others.

3.1 multi-label classification 17

Accuracy =
TP + TN

N

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score =
2

Precision−1 + Recall−1

(3.15)

Tangible explanations of these measures are as follows:

accuracy also known as Hit-Rate, measures the fraction of correct predic-
tions. This is a good general measure if the distribution of labels is
balanced and both, positive as well as negative predictions, are equally
important.

precision represents the quality of positive predictions. This is an impor-
tant measure for recommender systems. Here being sure about the
relevance of an advertised product is often more important than ex-
haustively advertising all possibly relevant products to a customer.

recall or sensitivity is measuring the fraction of true positive observations
the classifier has successfully detected. This is a very important mea-
sure in medical classification problems where we want to be sure to
detect a specific disease.

f1-score is the harmonic mean of the Precision and Recall measures and
thus takes into account the quality of positive predictions as well as the
ability to detect positives. This will be the reference measure in context
of this work, since we are confronted with major label imbalance and
prioritize positives over negatives.

To apply these measures to a MLC problem, we can use micro and macro
averages. A micro average is calculated on the summed confusion matrix or
contingency table over all classes, which makes it favor majority classes. A
macro average on the other hand is calculated as unweighted average of the
individual class metrics and thereby favors minority classes. Favor in this
context means assigning a disproportionately high weight to the respective
class. For a general binary measure B(TP, FP, FN, TN) the calculation of the
respective micro and macro measures is as follows

Bmicro = B(
|L|

∑
i=1

TPi,
|L|

∑
i=1

FPi,
|L|

∑
i=1

FNi,
|L|

∑
i=1

TNi)

Bmacro =
1
|L|

|L|

∑
i=1

B(TPi, FPi, FNi, TNi)

(3.16)

3.1 multi-label classification 18

The exemplary formulation of the micro and macro F1-Scores is shown in
Equation 3.17.

F1micro =
2 ·∑|L|i=1 TPi

∑|L|i=1(2 · TPi + FPi + FNi)

F1macro =
1
|L|

|L|

∑
i=1

2 · TPi

2 · TPi + FPi + FNi

(3.17)

As mentioned before, we would like to optimize our multi-label classifier
with respect to the F1-measure. Unfortunately, the binary measures derived
from a contingency table are not suitable in the role of a loss function. This
is because such a loss function would not be continuous and differentiable.
Thus, it would be ill-suited in conjunction with gradient descent methods
used for the training of neural networks. As a result, surrogate loss func-
tions that are presented in Section 3.3 will be used for the training. The
binary evaluation measures shown in this section are used for continuous
evaluation and as early stopping criterion for the training progress.

3.2 multi-label data improvement 19

3.2 multi-label data improvement

The curation of adequate datasets for the training and validation of multi-
label classifiers poses various difficulties amplified by the size of the set of
relevant labels. As shown in Section 3.1.1, if we want to ensure an exhaustive
selection of labels in the multi-label training data, for higher order strategies
like the LS approach, we are required to provide a number of observations
exponential in L, which quickly becomes infeasible in practice. Additionally
and given the concrete problem of customer feedback classification at hand,
historic data used as training and validation data becomes stale over time,
which means that the historic data isn’t a good representation for the more
recent data anymore. This phenomenon is known as Data Drift and leads to
a degradation of model performance. For a real time classification system
exclusively dealing with the most recent data, detecting and combating Data
Drift and thus constantly updating the underlying data is necessary.

This section touches upon different challenges in creating, curating, updat-
ing and classifying multi-label data and discusses strategies for managing
said challenges. In Section 3.2.1 we will first look at the optimization of
binary labeled data and corresponding binary classification models by uti-
lizing Active Learning methods. Following in Section 3.2.2, we discuss the cre-
ation of Pseudo-Label multi-label data used in a Knowledge Distillation scheme,
where multi-label classification models are trained by learning from an en-
semble teacher model consisting of optimized binary classifiers. We con-
clude this section by looking at ways to handle data imbalance in multi-label
data in Section 3.2.3.

3.2.1 Active Learning

Active learning is a field of machine learning concerned with optimizing the
experimental design. A key idea of Active Learning is that the amount of data
and computational resources needed to train a machine learning model can
be minimized by efficiently curating the training data. Therefore the model
is integrated into the data selection process. Through the usage of some
predefined measure of uncertainty the model selects or queries observations
from a set of unlabeled data that it is the least sure about. These observations
are then labeled by a human expert and added to the labeled training data.
An extensive summary of research and application areas concerning Active
Learning was presented by Prince et al. [Pri04].

We are especially interested in pool-based active learning for sequential data.
Here a large pool of unlabeled data is iteratively queried for the most infor-
mative observations. This sampling procedure is called Uncertainty Sampling
[LG94] and the general workflow is shown in Figure 3.3.

3.2 multi-label data improvement 20

Figure 3.3: General pool-based Active Learning Workflow

To quantify the uncertainty of a probabilistic model with parameters θ given
a specific observation x, different measures in form of a score function s(θ, x)
can be applied [NSH22]. Typical measures for binary and multi-class classi-
fication are the Shannon entropy [Sha48]

s(θ, x) = − ∑
y inY

pθ(y|x) log pθ(y|x), (3.18)

the least confidence measure

s(θ, x) = 1−max
y∈Y

pθ(y|x). (3.19)

and the smallest margin measure

s(θ, x) = pθ(ym|x)− pθ(yn|x) (3.20)

with

ym = arg max
y∈Y

pθ(y|x)

yn = arg max
y∈Y\ym

pθ(y|x).

In case of the entropy and least confidence measures, we are looking for the ex-
amples x with the highest score indicating the highest degree of uncertainty.
In case of the smallest margin measure, we are selecting the observations with
the lowest score, indicating that the probabilistic model has the most diffi-
culty deciding between label ym and yn.

Scaled confidence score

In this work we will employ a scaled version of the least confidence measure.
This modified version takes decision thresholds deviating from the often
employed decision threshold t = 0.5 into account. The decision threshold is

3.2 multi-label data improvement 21

the value used to decide between a negative and positive prediction given
the probability output of a binary classifier. As such, the hard thresholding
or binarization of a classifiers output can be formalized as

fbin(p̂, t) = I[p̂ ≥ t] (3.21)

We employ decision threshold tuning to optimize the F1-Score as described
in Section 3.2.3. To account for the imbalance between the probability regions
below and above the decision threshold t ̸= 0.5, we scale the least confidence
score leading to the following definition

s(p̂, t) = 1− p̂
2

(
I[p̂ < t]

t
+

I[p̂ ≥ t]
1− t

)
. (3.22)

The scaled least confidence score as well as the macro formulation thereof will
also play an important role in the selection of Pseudo Label data, which we
will explain in Section 3.2.2.

3.2.2 Pseudo Labels

The manual annotation of large amounts of data is time-consuming, often
costly and error-prone depending on the domain knowledge of the annota-
tor(s) as well as depending on the subjectivity of the classification problem
at hand. It would be highly desirable, if we could reduce the manual annota-
tion efforts to a necessary minimum. Sparsity of labeled data as well as the
aforementioned challenges posed by manual annotation efforts are part of
the motivation for research fields known as Self-Supervised Learning, Weakly
Supervised Learning and Semi-Supervised Learning that try to incorporate unla-
beled data into the training process.

Different subfields of Self-Supervised Learning have emerged like Consistency
Regularization, where samples are augmented with minor perturbations and
an inconsistent model output given the original and the augmented input is
penalized by an auxiliary loss function [BAP14][SJT16]. Another approach
is known as Co-Training, where multiple classifiers are trained with the goal
of having each classifier learn unique representations of the data. The con-
sistency of their predictions is evaluated and each classifier can be used to
generate weakly labeled data for the remaining classifiers [BM98] [Qia+18].
An extensive overview of Semi-Supervised Learning (SSL) techniques and
challenges can be found in [TGH15] and [VEH20]. Generally, methods of
Semi-Supervised Learning make the following assumptions about the data:

cluster assumption : The input data is assumed to cluster in high den-
sity regions corresponding to the classes of the classification problem.
Consequently, optimal decision boundaries should lie in low-density
regions

smoothness assumption : If two points x1, x2 ∈ X are close in the fea-
ture space X , they should also be close in the output space Y , which

3.2 multi-label data improvement 22

means that they typically should be assigned the same class. Consis-
tency Regularization builds upon this property.

manifold assumption : We assume that the input data residing in the
high-dimensional feature space X = Rp is concentrated on a lower-
dimensional space or manifold. Under this assumption, it should be
possible to separate dense regions or clusters with lower dimensional
functions.

In this work we focus on a method of SSL called Pseudo Labeling or Weak
Labeling. Pseudo Labels are labels that are assigned to unlabeled data by an
automatic mechanism, which might be a rule based system [Min+09] or a
trained classifier [Riz+21][MA20], instead of being assigned by a human ex-
pert. Additionally, an uncertainty measure based on the estimated probabili-
ties is used to estimate the quality of the generated labels.

Given an observation xi, a decision threshold t and a binary probabilistic
classifier pθ , a hard pseudo-label ỹi can be generated by applying the follow-
ing rule:

ỹi = I[pθ(x) ≥ t] (3.23)

To quantify the classifiers uncertainty with respect to ỹi, we can utilize the
(scaled) least confidence measure s(θ, x) presented in Section 3.2.1. Given the se-
lection thresholds τp and τn for positive and negative examples, respectively,
we can select the most confident subset Dcon f of the generated pseudo-label
data DPL = {(xi, ỹi)

m
i=1} as follows

Dcon f = {(x, ỹ) ∈ DPL | (s(θ, x) < τn) ∨ (s(θ, x) > τp)}. (3.24)

Thus, we select only those observation-label tuples that the classifier confi-
dently deems negative or positive. More formally, we select only the tails
of the confidence distribution over the pseudo-label dataset DPL. Rizve et al.
[Riz+21] show that a decrease in prediction uncertainty correlates with a
decrease in the expected calibration error [Guo+17]

EP̂
[∣∣P(Ŷ = Y|P̂ = p)− p

∣∣] (3.25)

with P̂, the confidence estimate or probability of correctness, and Ŷ, the
predicted class. For a perfectly calibrated model the confidence estimate P̂
should be equal to the actual class probability p.

However, the selection of a pseudo-label data subset associated with con-
fident predictions might still lead to the inclusion of wrong predictions
also known as noisy labels caused by overconfident, miscalibrated models.
Though, Niculescu et al. find that in contrast to neural networks in multi-
class settings, neural networks for binary classification tend to predict unbi-
ased and well calibrated probabilities [NMC05].

3.2 multi-label data improvement 23

Label Noise and Early Stopping

Generated pseudo-label data as well as data annotated by human experts
might contain noisy labels. These are falsely assigned labels which can be
a result of human error due to miscommunication, unclearly defined deci-
sion rules or insufficient domain knowledge on the human side. Pseudo labels
might be noisy because the model generating the labels is underfitted or it
might be that the model is overfitted and overconfident. Zhu et al. investi-
gated the impact of noisy labels on the training of LLMs, specifically BERT,
and showed that the fine-tuning with noisy labeled data first leads to a good
generalization performance that later degrades when the model begins to
overfit on the noisy labels [Zhu+22]. They propose the employment of early
stopping to avoid the overfitting on noisy labeled data. Additionally, Tänzer
et al. find that LLMs show a very low susceptibility to label noise and overfit-
ting in general. They analogously propose an early stopping procedure to
mitigate the effects of memorizing label noise [TRR22].

To detect overfitting and label noisy memorization, we utilize a combination
of cross validation, threshold-based checkpointing and an addtional valida-
tion dataset consisting of difficult samples and a slightly different distribu-
tion where the concrete implementation of this procedure will be explained
in Chapter 5.

3.2.3 Label Imbalance

Many classification problems have to deal with severely imbalanced data,
since the underlying population is highly imbalanced. For example, a detec-
tor assigning the classes normal and suspicious activity to network logs of an
enterprise network or a classifier trying to decide if there’s cancerous growth
present in a medical image. In both cases we would expect the default cases
or negative classes, normal behaviour and non-cancerous, to be much higher in
number than the positive classes.

The evaluation of such a classifier with the accuracy measure or a loss func-
tion implicitly optimizing the accuracy measure might look promising at first,
but, depending on the severity of the label imbalance and thus the sparsity
of the positive class, the performance on the positive class might be sub-
par, which manifests in low precision and recall measures. This is particularly
problematic in cases where the positive class is of much higher interest then
the negative class.

As mentioned in Section 3.2.1, the annotation of data is often expensive and
time-consuming, which leads to labeled data being only sparsely available.
In Section 3.1.2 we have seen that the problem of data and especially label
sparsity is amplified in multi-label classification linearly up to exponentially
in L, depending on the multi-label problem modeling strategy.

3.2 multi-label data improvement 24

Different methods to handle label imbalance have been proposed, which
can be divided into methods like over- and undersampling, modifying the dis-
tribution of the training data, and methods modifying the statistical model
or training procedure, for example through a class weighted loss function.

As discussed in Section 3.1.1, we aim to train a classifier that learns the
joint conditional probability distribution px(Y), which we assume to be the
product of the independent conditional marginal probability distributions
px(Yi). Applying Bayes’ Theorem, we can formalize finding the correct class
y∗ in a binary classification task as such

y∗ = arg max
c∈{0,1}

p(Y = c|X = x)

= arg max
c∈{0,1}

p(X = x|Y = c)p(Y = c)
p(X = x)

= arg max
c∈{0,1}

p(X = x|Y = c)p(Y = c).

(3.26)

We select the class c that maximizes the product of the likelihood p(X = x|Y =

c) and the class prior p(Y = c).

Resampling

Resampling techniques, such as majority class oversampling and minority
class undersampling, have a direct impact on both of these quantities. Orig-
inally, we assumed our training data to be an i.i.d. sample taken from an
unknown distribution p(X, Y) with class prior p(Y). By undersampling the
majority class, or oversampling the minority class, we change the class fre-
quencies in our training data and thus the empirical class prior distribution
pemp(Y). As such the assumption, that our training data is an i.i.d. sample
does not hold anymore. The effect of this deviation (on the decision bound-
ary) can be seen in Figure 3.4.

3.2 multi-label data improvement 25

Figure 3.4: Effect of majority class undersampling on the optimal decision boundary
with i.i.d. sample (top) and majority class undersampling (bottom)

So, why would we consider knowingly violating this assumption? If we
are confronted with severe class imbalance, for example a positive-negative
ratio of 1:500, we’d average 2 positive examples in an annotated training
dataset of 1000 examples. As such, it would be impossible for a model to
learn any meaningful structure of the data associated with the positive class.
With respect to Equation 3.26 this means, that the model could possibly
only learn a very crude approximation of the likelihood of the positive class,
p(X = x|Y = 1). Given the aforementioned cost and time constraints with
respect to data annotation, a slight deviation from the true class prior might
be worthwhile, if we can thereby improve the diversity of observations asso-
ciated with the minority class.

Instead of or in conjunction with changing the distribution of the available
data through resampling techniques, we can also try to increase the models
attention to the minority class by assigning weights to the classes. We show
how a loss function can be modified to account for label imbalance in Sec-
tion 3.3.5. Another way to account for the label imbalance without necessar-
ily changing the training data distribution, is to tune the decision threshold,
which is used to decide between negative and positive prediction.

Threshold tuning

As explained in Section 3.1.3, the F1-score serves as a balanced measure be-
tween detecting relevant samples (recall) and being correct when predicting

3.2 multi-label data improvement 26

positives (precision). An often employed decision threshold is t = 0.5, the
midpoint between the probability minimum and maximum. Though, this
threshold is not necessarily the optimal threshold with respect to the F1-
score. When training the model with an unweighted binary cross-entropy
loss or focal loss under severe class imbalance ie. typically a low number of
positives, the model might learn to pay less attention to the positive class
for its less prominent influence on the overall loss. This in turn leads to pre-
dicted probabilities skewed to lower values. Different methods for the opti-
mization of the decision thresholds in a multi-label setting have been pro-
posed. These methods generally are split into global and local methods and
depend on the label (in-)dependence assumptions and multi-label modeling
strategy employed [Yan01]. As explained in Section 3.1.2, the BR approach
to multi-label classification assumes conditional label independence. This
circumstance is exploited in the local sCut threshold optimization method,
where the decision threshold for each class is optimized individually. For this
a validation data set is used and the best decision threshold for each class
is determined by performing a linesearch over canditate decision thresholds
ti ∈ (0, 1) ⊂ R.

3.3 attention-based deep neural networks 27

3.3 attention-based deep neural networks

The introduction of the Transformer neural network architecture by Vaswani
et al. [Vas+17] in 2017 had significant impact on the Natural Language Pro-
cessing (NLP) landscape. A quantification of the impact the Transformer ar-
chitecture had on various NLP tasks can be seen in the leaderboard1 of
the popular General Language Understanding Evaluation (GLUE) benchmark
[Wan+18], which is as of the time of this writing dominated by derivations
and successors of the Transformer architecture. The GLUE benchmark tries
to cover a broad spectrum of Natural Language Understanding (NLU) tasks
and consists of nine tasks such as Question Answering, Named Entity Recogni-
tion and Sentiment Analysis. Multiple factors contribute to the state-of-the-art
performance and success of the Transformer and its successors. Though, two
important parts are played by the replacement of sequential network compo-
nents with the Attention mechanism presented by Bahdanau et al. [BCB14]
in 2014 and the development of Pre-Training schemes enabling transfer learn-
ing with pre-trained language models.

In this section we give an overview of the components of the Transformer
architecture. We focus on the Encoder part of the architecture that is used
to generate outputs for the binary and multi-label classification tasks at
hand. To utilize deep learning models in context of NLP, the textual data
has to be transformed into a suitable numeric representation. Consequently,
we present an overview of different text representation techniques in Sec-
tion 3.3.1. In Section 3.3.2 we try to provide a holistic view of the Transformer
Encoder Architecture. Following, we discuss the Attention mechanism and its
advantages over sequential mechanisms for context learning in Section 3.3.3.
We conclude this section by looking at the Pre-Training scheme proposed by
Devlin et al. in 2018 [Dev+18] and extended by Clark et al. in 2020 [Cla+20]
enabling efficient transfer learning with LLMs in Section 3.3.4.

3.3.1 Text representation

Digital textual data is generally represented as a string of characters with
a text-encoding. The encoding specifies which character or symbol is repre-
sented by a specific single- or multi-byte sequence. To use natural language
in context of a machine learning or specifically neural network model, we
have to find a suitable numeric representation for the textual data. The collec-
tion of textual documents contained in our training data is called a text cor-
pus. Historically there have been a multitude of approaches to (pre-)process
and transform textual data into such a numerical representation. The collec-
tive starting point for many of these approaches is called tokenization and
encompasses the transformation of documents into a list of tokens with the
tokens being (sub-)words or multi-word combinations known as n-grams.
Additionally, the process of tokenization might be accompanied by remov-

1 https://gluebenchmark.com/leaderboard, (Screenshot in the appendix, Figure A.1)

https://gluebenchmark.com/leaderboard

3.3 attention-based deep neural networks 28

ing stopwords, lemmatization and the replacement of synonyms. Jurafsky et al.
provide an extensive overview of text preprocessing techniques in [JM09].

The tokenization of the documents in a training corpus yields a list of tokens
for each document as well as a corpus-specific vocabulary V. The vocabulary
is a dictionary containing the key-value mappings between each unique to-
ken and its corresponding numeric identifier or index. We can formalize the
vocabulary mapping as

V : t→ i

V−1 : i→ t
(3.27)

where the vocabulary V maps a token t to a corresponding ID i and the in-
verse of that mapping V−1 maps an ID i to a token t. As such, a tokenized
document can then be represented as a collection of integer IDs. Proceed-
ing from here, there are multiple ways to create numerical vector or tensor
representations of the tokenized documents. The representation of a token,
word or document in a vector space X is known as word, token or docu-
ment embedding, respectively. In the following, we provide a brief summary
for different encoding and embedding approaches:

one-hot encoding : This is a very simple method of representing each
token t of vocabulary V in a vector space X = {0, 1}|V|. Each token t
is represented as a vector of dimension |V|, where each vector element
is zero except for the element at index i = V(t), which is one.

count-based methods : Document vectors based on word counts can
be understood as the sum of one-hot vectors of all the tokens in a
given document. As such, a dense document vector c based on word
counts is of dimension |V| with an element ci being the count of token
t = V−1(i) in the given document. To alliviate the impact of differ-
ent document lengths, it is also possible to use normalized document
vectors

cnormalized =
c
|c| (3.28)

tfidf : The Term Frequency Inverse Document Frequency (TFIDF) approach
([RU11], p. 8) combines document local, term frequency, and global
statistics, inverse document frequency, to create a numeric document vec-
tor. The TFIDF score can be viewed as the importance a token t has for
a given document D and is calculated as

TFIDF(t, D) = t f (t, D) · id f (t) (3.29)

with the term frequency being local to document D and the inverse docu-
ment frequency being a global measure over all documents in the corpus.
As such, the TFIDF score of a token is especially high, if the token ap-
pears frequently in the current document, but appears infrequently in
the corpus of all documents.

3.3 attention-based deep neural networks 29

word2vec : Word2Vec [Mik+13] is an umbrella term for two different ap-
proaches utilizing a two-layer neural network and a context window of
fixed size to create a vector space (word embeddings) from a text corpus.
The two methods are called Continuous Bag of Words (CBOW) and Skip-
Gram, with both methods slightly differing in architecture and training
procedure. In the CBOW method, the neural network learns to predict
a center word wt from the surrounding context of size c. The corre-
sponding objective function therefore tries to maximize the conditional
probability of token or word wt given its surrounding context

L =
1
T ∑

t
log p(wt|wt− c

2
, . . . , wt−1, wt+1, . . . , wt+ c

2
). (3.30)

The neural network in the Skip-Gram approach on the other hand tries
to predict the surrounding context of a word wt. This objective is op-
timized by maximizing the sum of the log probabilities of all context
words surrounding word wt

L =
1
T ∑

t
∑

− c
2≤j≤ c

2 ,j ̸=0
log p(wt+j|wt). (3.31)

The word embeddings obtained through the Word2Vec approaches in-
corporate a global average of context information. Each time a word w
appears in the training corpus its surrounding context will contribute
to the adjustment of the neural networks parameters and thus to the fi-
nal word embeddings of the given word w. Unfortunately, the meaning
of a word is often highly dependent on its local context and might vary
by a lot. By representing a word with a fixed vector, the embedding
will reflect a global context average dominated by the most common
context of a word.

deep contextualized word representations : To capture syntax, se-
mantics as well as local linguistic context in word representations,
methods utilizing more complex deep learning architectures have been
researched as mentioned in Chapter 2. One of these architectures is
the Transformer and the BERT pre-training scheme, which both will be
layed out in detail in the following sections.

3.3.2 Transformer Encoder Architecture

The Transformer consists of two main building blocks, which are the Encoder
and Decoder. The original model was proposed mainly Machine Translation
in mind, which at that point in time was typically approached with Encoder-
Decoder models utilizing convolutional neural networks (CNNs) and RNNs to
capture and represent contextual information contained in the sequential
inputs [SVL14][KB13]. The Transformer model however replaces the sequen-
tial architecture components with the Attention mechanism. The general idea

3.3 attention-based deep neural networks 30

Figure 3.5: Transformer Encoder Architecture [Vas+17]

of the Encoder-Decoder architecture is to first use the Encoder to transform a
sequential input into an internal contextualized representation and then use
the Decoder to transform the internal representation into the task-specific out-
put. For example, in a Machine Translation task the sequential input might
be a German sentence that is to be translated into a French output sentence.
Another example is Question Answering, where the sequential input is a ques-
tion and the output of the decoder is the corresponding answer. In context of
MLC, the Decoder part of the architecture is not required, since we can directly
utilize the internal contextualized representations output by the Encoder.

Here we will provide an overview of the Transformer Encoder architecture
with specifically referencing the implementation of Bidirectional Encoder
Representations from Transformers (BERT) [Dev+18] in mind. In Figure 3.5
an illustration of the high-level architecture of the Encoder by Vaswani et al.
[Vas+17] can be seen.

Input Embedding

The tokenized inputs are first mapped into an embedding space with di-
mension R|V|×dh . Thus, an embedded token will be represented by a vector
of dimension dmodel . This dimension is kept constant throughout the layers
of the Transformer. The embeddings are generally just a matrix of trainable

3.3 attention-based deep neural networks 31

parameters and a dictionary mapping an input ID to a specifc row in the
matrix.

Positional Encoding

Since the Transformer utilizes the Attention mechanism instead of sequential
components like RNNs, an additional mechanism is needed to provide the
model with the sequential information of the input data. This is done by
adding a positional encoding to the embedded inputs. An absolute positional
encoding is calculated with the following functions

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i + 1) = cos(
pos

100002i/dmodel
)

(3.32)

where pos is the position in the sequence and i is the index within the hidden
dimension dmodel . Vaswani et al. hypothesize that the encoding enables the
model to attend to relative positions within the input sequence.

Encoder Blocks

The grey block in Figure 3.5 is one of N Encoder blocks that are stacked on
top of each other. On a high level it is composed of a Multi-Head Attention
block and a feedforward neural network (FNN) part. We will set aside the expla-
nation of the Multi-Head Attention block until the following Section 3.3.3. The
Multi-Head Attention and the FNN block are followed by a Residual Connection
[He+15] and a Layer Normalization layer [Xu+19]. Both, Residual Connections
and Layer Normalization enable a faster and more stable training of the neural
network. Layer Normalization does this by shifting and rescaling the interme-
diary output of the preceeding layer and as such mitigates the problems of
dying and exploding gradients. Residual Connections on the other hand enable
a neural network layer to learn a zero-mapping instead of an identity-mapping
if the layer, informally spoken, finds nothing valuable to learn. The zero-
mapping is generally much easier to learn, ie. just set every parameter close
to zero, than the identity-mapping [He+15]. If the part of the network en-
closed by a Residual Connection has difficulties learning, the gradient can still
freely flow back through the Residual or Skip-Connection, which mitigates the
dying gradient problem.

In Figure 3.6 a more detailed visualization of an Encoder block by Alam-
mar et al. [Ala18] is shown. Here an exemplary sentence ’Thinking Machines’
is processed that has been tokenized and mapped into the embedding space
X as matrix X with the word embeddings as row vectors x1 and x2. Before
being input to the first Encoder block, the positional encoding is added to the
embeddings. For didactic reasons the processing of both word embeddings

3.3 attention-based deep neural networks 32

is seen in an unrolled fashion where in reality this is performed through
combined matrix operations.

Figure 3.6: Transformer Encoder Block [Ala18]

The Self-Attention layer outputs contextualized representations z1 and z2

which are then added to the positionally encoded inputs x1, x2 with the help
of a Residual Connection. The resulting sum of both matrices is normalized
with the Layer Normalization layer. The Residual Connections can also be un-
derstood as a pass-through for information of earlier layers. The second part
of the Encoder block functions analogously, but uses a FNN block instead of a
Self-Attention layer to transform the normalized intermediary outputs z1 and
z2. The feed forward block is a fully connected neural network performing an
affine transformation to the inputs

z = fa f f (x)

= xWT + b.
(3.33)

The weight matrix W and the bias term b are of size W ∈ R4dmodel×dmodel and
b ∈ R4dmodel . Thus, the inputs are mapped into a vector space four times its
original dimension. After the affine transformation, a subsequent Gaussian
Error Linear Unit (GELU) non-linear activation function is applied to the out-
puts of the FNN

a = GELU(z) (3.34)

= 0.5z
(

1 + tanh
[√

2/π(z + 0.044715z3)
])

. (3.35)

This enables the network to learn complex, non-linear relationships. The
final Add & Normalize block consists of a FNN layer, a Dropout layer [Sri+14]

3.3 attention-based deep neural networks 33

and Layer Normalization. The weight matrix W of the final FNN is chosen in
such a way that it returns outputs with the original model dimensions, dmodel ,
and as such the the weight matrix is W ∈ Rdmodel×4dmodel .

3.3.3 Attention

The arguably most important innovation of the Transformer architecture is
the usage of the Attention mechanism instead of sequential mechanisms like
RNNs to create contextualized intermediary representations of the input data.

To provide a point of reference and motivation for the Attention mechanism,
we first take a short detour to look at how we can utilize context information
with RNNs. An unrolled unidirectional RNN can be seen in Figure 3.7 process-
ing a sequential input x = (x1, . . . xt) and outputting a contextualized hidden
state h = (h1, . . . , ht).

Figure 3.7: Unrolled RNN

Each hidden state hi is a combination of the corresponding input token xi
and the previous hidden state hi−1 with this recursive structure unwrapping
until the first input token x0. Hence, only the final hidden state ht has ac-
cess to all the contextual information contained in the input sequence and
is used as the output of the RNN. Additionally, important contextual infor-
mation found at the beginning of the sequence has to traverse the complete
sequential structure and might degrade in that process. At the same time, if
very important contextual information appears at the end of the sequence,
the hidden states of the previous time steps aren’t able to utilize it.

Instead of such a recursive sequential structure with the aforementioned dis-
advantages, Attention utilizes a highly parallel structure enabling each token
to attend to any other token. We distinguish between Self-Attention, where
the tokens of the input sequence attend to each other, and Cross-Attention,
handling two differing token sequences. The latter appears in the Encoder-
Decoder architecture and is needed in tasks like translation. An exemplary
visualization of the attention scores resulting from Self-Attention and Cross-
Attention is shown in Figure 3.8. In both cases the token sequence on the left
side is attending to the token sequence on the right side. The line thickness

3.3 attention-based deep neural networks 34

as well as the strength of the background color of the tokens on the left
side indicate how strongly the specific token on the left side attends to the
selected token on the right side.

(a) Self-Attention (b) Cross-Attention

Figure 3.8: Self-Attention and Cross-Attention visualized with BertViz [Vig19]

In practice, the attention scores αi,j visualized by line thickness are con-
tained in an attention matrix A, which in case of Self-Attention is a quadratic
matrix A ∈ Rnseq×nseq and a rectangular matrix A ∈ Rnseq×nseq2 in case of
Cross-Attention. There are different ways to calculate the attention scores like
the Bahndanau Attention [BCB14] using a neural network or the Scaled Dot-
Product Attention mechanism [Vas+17] proposed by Vaswani et al. We focus
on the latter, since this is the mechanism employed by BERT and its descen-
dants ELECTRA and DistilBERT, which we will discuss in Section 3.3.4 and
Section 4.2, respectively.

Scaled Dot-Product Attention

Attention can be understood as a mechanism analogous to an information
retrieval process with input queries Q ∈ Rdmodel×dk and a set of key-value
pairs, with the keys, K ∈ Rdmodel×dk , and the values, V ∈ Rdmodel×dv . We can
compare the process with the usage of a search engine. We provide a query
to the search engine and expect it to return a ranking of the best fitting
results from a database. Instead of returning ranked results, the attention
mechanism returns a weighted average of the values corresponding to the
best matching keys:

zi = Attention(qi, K, V)

= Ai,:V

=
nseq

∑
j=1

αi,jVj,:

(3.36)

3.3 attention-based deep neural networks 35

Formally Scaled Dot-Product Attention is defined as follows

Z = Attention(Q, K, V)

= So f tmax
(

QKT
√

dk

)
V

= AV.

(3.37)

where the So f tmax-function is applied row-wise and defined as

So f tmax(x⃗)i =
exp xi

∑n
j=1 exp xj

(3.38)

for row-vector element xi.

To get a good understanding of the Self-Attention mechanism, we’ll explain
the individual steps by example of an input sequence x, where we want to
calculate the self-attention scores corresponding to token xi. A visualization
of the necessary steps by Vaswani et al. [Vas+17] is shown on the left in
Figure 3.9.

1 . inputs to query, key and value : The input sequence x is linear trans-
formed into the query Q ∈ Rdnseq×dk , key K ∈ Rdnseq×dk and value ma-
trices V ∈ Rdnseq×dv by applying the weight matrices WQ ∈ Rdh×dk ,
WK ∈ Rdh×dk and WV ∈ Rdh×dv respectively. The weight matrices con-
sist of parameters learned during the training of the network. For one
token of the sequence we have

qi = xiWQ

ki = xiWK

vi = xiWV.

(3.39)

Self-Attention and Cross-Attention

In Self-Attention, the query Q, key K and value V matrices are
linear transformations of the same input sequence x, since we
want to learn contextual relationships within the same sequence.
However, in Cross-Attention, utilized in a Transformer Encoder-
Decoder architecture, the key K and value V matrices originate
from the output of the Encoder and the query Q matrix is a lin-
ear projection of the input sequence to the Decoder. Hence, there
are two different sequences at play, which both are mapped into
the same vector space and as such their dot-product can be cal-
culated.

2 . dot-product similarity : The raw dot-product similarity si,j between
the query qi and each key kj is calculated as

si,j = qik j (3.40)

3.3 attention-based deep neural networks 36

and for the full sequence, the similarity matrix S with raw dot-product
similarity scores is calculated as

S = QKT. (3.41)

3 . scaling the dot-product : Vaswani et al. [Vas+17] find that in case
of a large key vector space dimension dk, the dot-products tend to
become very large, which leads to problematic Softmax gradient values.
Hence, they propose a scaling factor as the inverse of the square root
of dk

s′i,j =
si,j√

dk
. (3.42)

4 . masking (optional): In this optional step a large negative value is
added to the scores s′i,j for sequence positions that we do not want
to attend to. Applying a large negative value leads to Softmax scores
close to zero, which means that we do not attend to this positions.
This is necessary if we use tensors of the same length for the sequence
dimension. Sequences shorter than the fixed maximum length could
potentially attend to the empty positions at the end.

5 . applying the softmax function : In this step each row of the scaled
score matrix S′ is transformed into a probability distribution by appli-
cation of the Softmax function

Ai,: = So f tmax(S′i,:). (3.43)

Hence, the attention scores or attention weights αi,j of a row i sum to
one

nseq

∑
j=1

αi,j = 1. (3.44)

6 . weighted value average : The attention scores or attention weights
are now used to create a weighted average of the values. Thus, values
corresponding to keys that were strongly attended to will be more
prominently represented in the output vector.

zi = Ai,:V (3.45)

7 . output linear transformation : As mentioned at the beginning of
the section, the hidden dimension dmodel is kept consistent throughout
the Encoder layers. As such a final linear transformation is applied to
the weighted average of values Z ∈ Rnseq×dv returned from (6). This is
done by multiplying each of the vectors zi with the learnable output
weight matrix WO ∈ Rdv×dmodel as such

z′i = ziWO (3.46)

and thus projecting each zi back into the original model space Rdmodel .

3.3 attention-based deep neural networks 37

Multi-Head Attention

To enable the learning of more diverse positional and linguistic relationships
Vaswani et al. propose Multi-Head Attention, where the query, key and value
are projected h times into smaller representation subspaces QWQ

i , KWK
i and

VWV
i with i ∈ {1, . . . , h}. Each of these perform the attention steps layed out

in the previous subsection in parallel. The modified architecture can be seen
in the visualization by Vaswani et al. [Vas+17] on the right side of Figure 3.9.

Figure 3.9: Scaled Dot-Product Attention (left) and Multi-Head Attention (right)
[Vas+17]

To avoid prohibitive memory and computation requirements, the dimension
of the query, key and value spaces in Multi-Head Attention is modified by a
scaling factor inversely proportional to the number of heads

dk = dv = dmodel/h.

For each head we have

Zi = Attention(QWQ
i , KWK

i , VWV
i) (3.47)

with Zi ∈ Rnseq×dv and dv = dmodel/h. By concatenating the h heads along the
hidden dimension axis, we recover the dimension of the original single-head
formulation

Z = [Z1 · . . . · Zh] . (3.48)

The final output of the Multi-Head Attention layer is obtained by linear trans-
forming Z with the output matrix WO ∈ Rhdv×dmodel analogous to the single-
head formulation

Z′ = ZWO. (3.49)

3.3 attention-based deep neural networks 38

Each attention head is able to attend to information from an individual rep-
resentation subspace or, stating this rather informally, each attention head
is able to provide an individual perspective on the input sequence. To show
this by example, Figure 3.10 displays the attention scores of different heads
of the same Encoder layer. The heads attention distributions reflect different
positional and linguistic patterns. The first head attends specifically to the
next position in the sequence whereas the second heads attention distribu-
tion is more shallow and attends to most of the tokens in the sequence. The
third heads attention pattern on the other hand seems to be much more re-
lated to the content of the sequence and could be interpreted as time context.

(a) Next word attention (b) Shallow attention (c) Time

Figure 3.10: Different Self-Attention Heads visualized with BertViz [Vig19]

An extensive investigation into patterns exhibited by the attention heads of
pre-trained BERT models has been provided by Clark et al. [Cla+19]. They
distinguish between Surface-Lavel patterns and linguistic patterns. Surface-
Level patterns are for example positional patterns the attention is focused on
the previous or next token as shown in Figure 3.10 (left). Another form of
Surface-Level pattern is the attention solely on special tokens. Linugistic pat-
terns are for example verbs attenting to a corresponding object or possessive
pronouns attending to nouns.

3.3.4 Pre-Training and Fine-Tuning

The high learning capacity of large language models can be attributed to the
utilized network architectures and especially to the large number of learn-
able parameters contained in these models. In Table 3.3 the number of learn-
able parameters contained in a selection of LLM architectures is shown.

3.3 attention-based deep neural networks 39

Model name Number of parameters

DistilBERT 66M
BERT base 110M
BERT large 314M

GPT-3 175B

Table 3.3: Parameter count of Pre-Trained Transformer models

Training a model with millions of parameters from scratch requires large
amounts of training data and computational resources. Fortunately, LLMs

generalize very well, which makes pre-trained LLMs highly suitable for trans-
fer learning by a relatively inexpensive, subsequent fine-tuning. Brown et al.
[Bro+20] show that very large models, specifically GPT-3, even outperform a
fine-tuned BERT large in the SuperGLUE benchmark [Wan+19], an extended
collection of NLU tasks, by providing it with only a few labeled examples,
also known as Few-Shot Learning.

The pre-training of BERT consists of two unsupervised learning tasks, which
are Masked Language Modeling and Next Sentence Prediction.

masked language modeling : In this task 15% of the tokens in the train-
ing data are randomly replaced with a special [MASK] token. The
model is trained to predict the correct original word at the masked
position.

next sentence prediction : For the Next Sentence Prediction task the train-
ing data is first split sentence-wise and transformed to inputs consist-
ing of adjacent sentence pairs. For 50% of the sentence pairs the suc-
ceeding sentence B is replaced by a random sentence taken from the
training corpus. The training objective is to correctly predict, if sen-
tence B is the original successor to sentence A.

The inputs of BERT are an additive combination of token embeddings, position
embeddings and segment embeddings as shown in Figure 3.11.

Figure 3.11: Inputs used BERT

The token and position embeddings are as explained in Section 3.3.2. The seg-
ment embeddings serve to encode if a token belongs to sentence A or B.

3.3 attention-based deep neural networks 40

ELECTRA: Modified pre-training scheme

Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-
TRA) is a modified Masked Language Modeling pre-training scheme [Cla+20].
Instead of masking tokens at random with fixed probability, ELECTRA uses
a Generative Adversarial Network (GAN) approach [Goo+14] to replace to-
kens with a slightly wrong token. The discriminator has to decide, if the token
is the original or a replaced token.

3.3.5 Multi-Label Classification with Transformers

To perform multi-label classification with BERT or related LLMs the model ar-
chitecture has to be extended by a Multi-Label Classification Head. This build-
ing block projects the hidden state corresponding to BERTs [CLS] token into
an output space with dimension d|L| through the application of a FNN layer

y = h[CLS]W + b (3.50)

with the resulting logits y ∈ R|L|, the output matrix W ∈ Rdmodel×|L| and the
bias term b ∈ R|L|. To arrive at the desired probability output, we apply the
sigmoid or logistic function to each logit yi with i ∈ {1, . . . , |L|} individually

p̂i = σ(yi)

=
1

1 + e−yi
.

(3.51)

This is in agreement with the BR approach to modeling the MLC problem at
hand, since we are not explicitly modeling any possible label dependencies.
Yet, the fine-tuned model is able to implicitly make use of labels correlations
by accessing the same feature space for the creation of each binary output.

Loss functions

There are different objective functions to measure the quality of the proba-
bility outputs produced by our multi-label model. The choice of objective or
loss function depends on the multi-label modeling approach as discussed in
Figure 3.2 as well as the distribution or balance of labels. Given the binary
relevance approach to the MLC problem at hand and the existence of label
imbalance in the data, we focus on two specific loss functions and their cor-
responding parameterization. These are Binary Cross-Entropy Loss and Focal
Loss.

binary cross-entropy loss : The Binary Cross-Entropy (BCE) loss func-
tion shows desirable mathematical properties in that it is smooth and
differentiable. It serves as a surrogate loss for the Hamming Loss and is
well-suited for binary relevance multi-label classification. The BCE loss

3.3 attention-based deep neural networks 41

for multi-label classification is defined as the sum of the BCE losses for
each individual binary classification problem and defined as follows

LBCE(y, ŷ) = −
|L|

∑
i=1

αiyi log(p̂i) + (1− yi) log(1− p̂i). (3.52)

As mentioned in Section 3.2, binary classification can suffer from se-
vere label imbalance, if there exists a high imbalance between the posi-
tive and negative class. In multi-label classification via binary relevance
this problem can possibly occur for each of the |L| binary classification.

The positive weight αi constitutes a hyperparameter which is used to
rebalance the loss of the positive and negative classes. By choosing
αi > 1 we disproportionally penalize false positives of label i. An intu-
itive approach might be to choose each αi inversely proportional to the
label distribution corresponding to label i in the training data. Though,
in severe cases of imbalance this leads to very high values of αi, con-
sequently encouraging predictions with high recall but possibly very
poor precision. Additonally, by making the values of αi dependent on
the training data distribution, we implicitly assume the training data
distribution to be a good estimate for the population. Given the meth-
ods of Active Learning and Resampling described in Section 3.2, that are
employed to combat label sparcity, this premisse might knowingly be
false to begin with. Another way of dealing with severe class imbal-
ance is the application of threshold tuning as described in Section 3.2,
which does not actively influence the model weights.

focal loss : The Focal Loss loss function was first introduced by Lin et al.
in context of computer vision and object detection [Lin+17]. Addition-
ally to hyperparameter αi used in the BCE loss, Focal Loss introduces a
focussing hyperparameter γ. The hyperparameter smoothly applies a
downweighting to the easy examples and thus shifts the focus of the
training to the misclassified examples.

LFL(y, ŷ) = −
|L|

∑
i=1

αiyi(1− p̂i)
γ log(p̂i) + (1− yi) p̂γ

i log(1− p̂i) (3.53)

In Figure 3.12 the loss produced by BCE loss and Focal Loss with fo-
cussing paramter γ = 2 and γ = 4 is shown for a true label y = 1 over
predicted probabilties p̂ ∈ [0, 1].

3.3 attention-based deep neural networks 42

Figure 3.12: Binary Cross-Entropy Loss and Focal Loss for different predicted probabil-
ities p̂ and true label y = 1

The curve corresponding to focal loss is heavily dampened in the cen-
ter region corresponding to uncertain correct predictions or slightly
wrong predictions (assuming a decision threshold t = 0.5). Thus, the
low region of p̂ corresponding to misclassified examples has a much a
higher relative contribution to the overall loss than in the case of BCE

loss.

4
F O U N D AT I O N S : I N F E R E N C E T I M E O P T I M I Z AT I O N

In Section 3.3.4 we have seen that LLMs contain large amounts of parame-
ters, which makes (pre-)training and deploying these models very resource-
and compute-intensive. For one, models with high parameter counts have
correspondingly high memory requirements, which lead to higher costs and
might even be infeasible to provide in resource constrained environments
like edge devices. Additionally, and most importantly for our work, the num-
ber of numerical operations required for a single forward-pass through the
model directly corresponds to the number of model parameters. Parallel
processing techniques like Single Instruction Multiple data (SIMD) on CPUs
as well as the highly parallel architecture of GPUs accelerate the processing
of vectorized numerical operations found in neural networks. Though, even
with highly parallel hardware accelerating neural networks, the inference
times of LLMs might range up to multiple seconds depending on the spe-
cific model architecture, batch size and maximum sequence length. Various
approaches to compress neural networks have emerged, which enable a re-
duction of model size as well as the acceleration of model inference times.
Namely these are quantization, knowledge distillation and pruning. In the fol-
lowing subsections we will focus on the first two methods.

4.1 quantization

Quantization in context of neural networks, or digital signal processing in
general, is a compression technique used to represent data with reduced nu-
merical precision. Data used in weights, parameters of activation functions
and inputs of neural networks is typically represented as floating point data
type with a bit width of 32 bits. There exists a wide range of quantization
approaches with varying strengths of bit width reduction. In Mixed Precision
Training the data is represented by a mixture of full- and half-precision float-
ing point values with a bit width of 32 bits and 16 bits, respectively. This
enables Tensor Processing Units (TPUs) and GPUs to process larger batch
sizes as well as larger model architectures with only marginal loss of ac-
curacy More extreme approaches are binarized [CB16] or ternarized [HS14]
neural networks, constraining the data to xbin ∈ {0, 1} or xtern ∈ {−1, 0, 1},
respectively. Though, extreme low-bit quantization approaches are often ac-
companied by significant accuracy loss, especially in context of complex ar-
chitectures like RNNs and deep neural network architectures [Den+20].

Consequences of quantization and bitwidth reduction are the decrease of
required disk and memory space, inference latency and possibly a reduction
in model accuracy. A specifically interesting form of quantization is Integer

4.1 quantization 44

Quantization where floating point values are transformed into a suitable in-
teger representation. A bit width of 8 bits for the result data type has shown
to be a good compromise between minimal accuracy loss, significant latency
improvement and a memory reduction by a factor of four [Jac+18]. Addition-
ally, modern CPUs provide highly optimized instruction set extensions for
vectorized integer operations, namely the Advanced Vector Extensions SIMD
(AVX) with the Vector Neural Network Instructions (VNNI) 1 for the execution
of 8 bit vector and matrix calculations. In context of this work, we will focus
on 8 bit integer quantization to optimize the CPU inference latency of LLMs.

The selection of an optimal quantization scheme for specific weights and
activations is a balancing act between the introduction of minimal computa-
tional overhead and an ideal representation of the underlying distribution
of values. Generally, integer quantization is the mapping of a real value r to
a quantized representation Q. We distinguish between symmetric and asym-
metric as well as uniform or linear and non-uniform quantization. In this work
we will focus on uniform symmetric quantization which is the most common
and the least computationally expensive variant.

4.1.1 Symmetric vs. Asymmetric Quantization

Asymmetric or affine quantization of a real value r can be formalized as

Q =
⌊ r

S

⌉
+ Z (4.1)

with the integer zero point Z and the scaling factor S. The operator ⌊·⌉ is
rounding input values to the next integer and the scaling factor S is defined
as

S =
β− α

2b − 1
(4.2)

with [α, β] being the real valued input range. Input values outside this range
are clipped to the lower or upper boundary with parameter b being the quan-
tization bit width.

Symmetric quantization can be understood as special case of asymmetric quan-
tization with integer zero point Z = 0. In symmetric quantization the input
range is defined as [−α, α] with

α = max(|x|) (4.3)

and with x being the set of input values to be quantized ie. weight layers or
activation parameters. In Figure 4.1 both symmetric and asymmetric quanti-
zation of real valued ranges can be seen.

1 https://www.intel.com/content/www/us/en/developer/articles/guide/
deep-learning-with-avx512-and-dl-boost.html last viewed on 26.03.2023

https://www.intel.com/content/www/us/en/developer/articles/guide/deep-learning-with-avx512-and-dl-boost.html
https://www.intel.com/content/www/us/en/developer/articles/guide/deep-learning-with-avx512-and-dl-boost.html

4.1 quantization 45

(a) Symmetric Quantization (b) Asymmetric Quantization

Figure 4.1: Symmetric and Asymmetric Quantization

Even though asymmetric quantization is able to more expressively capture
the input distribution, Jacob et al. find that compared to symmetric quanti-
zation it poses significant additional operational overhead [Jac+18].

4.1.2 Uniform vs. Non-Uniform Quantization

Another distinction has to be made between linear or uniform quantization
and non-uniform quantization. Both quantization schemes are shown in Fig-
ure 4.2. In both cases a step function resulting from the quantization, or
concretely the application of the integer operator shown in Equation 4.1, can
be seen. The distances between the quantized values are equivalent in the
uniform case and vary in the non-uniform case. Thus, the scaling factor S is
a scalar in the uniform case and a function of r ie. S(r) in the non-uniform
case. When dealing with input data that is unevenly spaced, non-uniform
quantization is able to better capture important regions.

(a) Uniform Quantization (b) Non-Uniform Quantization

Figure 4.2: Uniform and Non-Uniform Quantization

4.1.3 Post-Training Quantization vs. Quantization-Aware Training

Quantization can be applied at different stages of the model lifecycle. In
Quantization-Aware Training the quantization parameters constitute additional
parameters to be learned during training. Post-Training Quantization (PTQ)

4.2 knowledge distillation 46

on the other hand is, as the name implies, applied after the model is fully
trained. PTQ methods can generally be separated into static and dynamic
methods. Following, we provide a summary for the different methods.

static quantization : Static Quantization requires calibration data that
is input to the model to compute the quantization parameters for the
activations. These parameters are then included as constants in the
execution graph of the quantized model and as such are used for every
input.

dynamic quantization : In Dynamic Quantization scale S, zero point Z
and the range [α, β] for activation parameters is calculated at runtime.
Scale and zero point for weights however is calculated during compile
time. Dynamic Quant. typically higher inference time but also higher
accuracy.

quantization aware training The quantization step can be incorpo-
rated into the training of the network, which is known as Quantiza-
tion Aware Training. This is done by wrapping layer and activation
nodes of the computational graph of a floating-point neural network
model with quantization and dequantization nodes and performing
simulated or fake quantization during training. Thereby optimal model
and quantization parameters are learned with the latter being applied
downstream in the actual quantization of the model [Jac+18]. Unfor-
tunately, for large models the computational cost of the Quantization
Aware Trainnig approach can be prohibitively high, potentially requir-
ing hundereds of epochs of retraining to recover the models accuracy.

4.2 knowledge distillation

Analogus to the previously discussed quantization, Knowledge Distillation is
an approach to reduce the resource footprint of a trained model through
compression. In Knowledge Distillation a student model is employed to learn
from a trained teacher model. Teacher and student can be part of the same
architecture family, which is the case for DistilBERT, a reduced version of
BERT, but could also be of different model type. The teacher might also be
an ensemble of models. The latter equates to the approach we took in this
work by distilling the knowledge of binary teachers to a single multi-label
model as described in Section 3.2.2. In this section we will specifically look
at the distillation procedure for DistilBERT, since this is one of the models
we employ as final multi-label classification model.

Knowledge Distillation dates back to Bucila et al. [BCNM06], who showed that
it is possible to distill the knowledge contained in an ensemble of models
into a single student model. The general knowledge distillation framework
is visualized in Figure 4.3.

4.2 knowledge distillation 47

Figure 4.3: Knowledge Distillation [Gou+21]

To train a student model with a given teacher and ground truth data Hinton
et al. [HVD15] propose a combined loss function consisting of a weighted
average of two losses. The first loss function is the cross-entropy between the
teachers and students probability outputs that are softened by a temperature
parameter T. Thus, a softened probability output for class i ∈ c is calculated
by applying the modified softmax function σ(z) to the logit outputs z as

qi = σi(z/T)

=
exp(zi/T)

∑c
j=1 exp(zj/T)

.
(4.4)

The first loss function minimizes the Kullback-Leibler divergence between
the teacher and student and hence is abbreviated as LKL. It is defined as
such

LKL(zt, zs) = −T2
c

∑
j=1

σj(zt/T) log σj(zs/T) (4.5)

with zt being the logit outputs of the teacher and zs being the logit outputs
of the student. The second loss is the cross-entropy loss, LCE, of the students
probability outputs and the true labels

LCE(y, zs) = −
c

∑
j=1

yj log σj(zs). (4.6)

The combined loss is the weighted sum of both losses

L = αLKL + βLCE (4.7)

with the weighting factors α and β.

DistilBERT

Sanh et al. show that it is possible to train a student model based on BERT

[Dev+18] with a size reduction of 40%, but at the same time a performance

4.2 knowledge distillation 48

retention of 97% of the original BERT model. The student model called Dis-
tilBERT is generally of the same architecture as the BERT teacher model. The
student is initialized by copying every second layer of the teacher model into
the student and as such reducing the number of layers from 12 to 6.

The loss function utilized is a combined loss as described in Section 4.2. In
addition to the KL-loss between the tempered softmax output of the teacher
and student, LKL, and the CE-loss of the student outputs and ground truth
labels, LCE, a cosine embedding loss, Lcos is integrated into the total loss
function. This loss function is used regularize the directions of the hidden
state vectors of student and teacher. As such the total loss is defined as

L = αLKL + βLCE + γLcos. (4.8)

In contrast to the pre-training of BERT, Sanh et al. only apply the masked-
language-modeling objective without the next-sentence prediction objective. They
find that removing the NSP loss from the training procedure leads to equal
or even better performance on downstream tasks.

5
C O N C E P T A N D E X P E R I M E N TA L S E T U P

In this chapter we present an end-to-end workflow for the creation of a scal-
able multi-label classification system based on CPU latency-optimized LLMs

and trained on PL multi-label data. A high-level overview of the proposed
workflow is shown in Figure 5.1.

Figure 5.1: End-to-End Pipeline

In the following sections, we describe the end-to-end process in detail, be-
ginning with the datasets employed in our experiments as well as the cor-
responding binary annotation procedure. We look at the batchwise Active
Learning component to optimize the training data corresponding to binary
classification models with unsatisfying performance. Following, we present
the curation of Pseudo-Label datasets by employing optimized binary clas-
sifiers and Confidence Threshold Filtering. We also give an overview of the
baseline models utilized for binary and multi-label classification, whose
performance measures serve as reference benchmark for the transformer-
based models. Further, we look at the early-stopping criterion in the train-
ing of binary and multi-label transformers. We conclude this chapter with

5.1 data 50

an overview of the methods applied to optimize the inference latency of the
trained large language models.

5.1 data

The data used in our experiments is a large collection of german textual cus-
tomer feedbacks in context of regional and long-distance traffic of Deutsche
Bahn. Customers submit feedbacks through different channels, which are a
mobile application, DB Navigator, the ICE portal accessible from within long-
distance trains and via QR codes placed on the seats of long-distance trains
encoding the URL to a feedback submission form. The feedback form pro-
vides two text fields with one of the fields purposed for positive feedback
and the other for negative feedback. The textual feedbacks used in our ex-
periments are already preprocessed with regards to privacy and compliance
requirements, meaning that potentially tracable personal information is re-
moved from the feedbacks. The anonymized feedbacks are persisted in a
data warehouse and amount to multiple millions of unlabeled samples. To
provide a better perspective on the data at hand, we present a selection of
synthetic exemplary samples with potential categories in brackets:

Synthetic Feedback Examples

• Delays! - [Punctuality]

• The train stopped unexpectedly and no one knew what’s happening.
Fortunately, the train attendant was very nice and provided us with
information. Kind regards, XXX XXX - [Train Service]

• WLAN is working, seats are comfortable - [WLAN / Internet, Seat-
ing Comfort].

• The train was late and my connection is cancled. Now, I’ll be over an
hour late. I want my money back! - [Punctuality, Train Cancelation,
Passenger Rights]

5.1.1 Binary-labeled training data

In addition to the data warehouse containing large amounts of unlabeled
data, we also have access to expert-labeled data for around 100 categories,
which are split into a shallow hierarchical structure with a main category
being parent to potentially multiple descendants. The existing annotations
are binary as they are typically created in context of projects in which a spe-
cific category or topic has to be investigated. As an example, one of these
projects might be the investigation of recent trends in customer sentiment re-
garding WLAN availability. The annotations are performed with an internal
application that enables annotators to query the data warehouse with key-

5.1 data 51

word searches and through weak labeling with decision trees. The selection
of weakly labeled examples is then re-annotated by the expert annotator.

Category Name Mean Std. Dev. Min Max Documents with
> 512 Tokens

Face Mask General 38.29 34.69 3 222 0

Loudness 30.39 36.73 3 606 1

Luggage General 34.57 40.79 4 606 1

Passenger Rights 46.34 61.41 5 789 2

Punctuality 26.94 29.04 3 198 0

Seat Availability 17.77 18.23 3 297 0

Seating Comfort 30.34 42.41 3 606 1

Temperature General 27.00 34.78 3 606 1

Train Cancellation 28.30 25.83 3 288 0

Train Service 20.76 23.98 3 361 0

WLAN / Internet 23.88 21.75 3 276 0

Table 5.1: Token count statistics per category

We choose a subset of ten categories with the selection criteria being the
amount of available annotated data and topic diversity. In addition to the
ten existing categories, we introduce a new category, Passenger Rights, and
curate a corresponding training dataset by iteratively extending the dataset
in an Active Learning loop as explained in Section 3.2.1, until we find the
performance improvement through dataset extension to be plateauing. The
evaluation results of this process are presented in Chapter 6. The selected
categories and descriptive statistics concerned with document length, specif-
ically the amount of (sub-)word tokens contained in the documents after
tokenizing them with a WordPiece [Wu+16] tokenizer, can be seen in Ta-
ble 5.1. We include a column showing the number of documents with a
token count greater than 512. This is an important threshold, since the BERT-
based models, ELECTRA and DistilBERT, we introduced in Section 3.3 and
Section 4.2, respectively, are pre-trained on a maximum sequence length of
512 (sub-)word tokens. Processing longer documents would require us to
either discard parts of the documents or to include document splitting and
a subsequent combination of the classification results on the sub-documents.
Yet, only a minimal amount of samples exceeds this threshold, which is why
we opt to truncate these samples.

5.1 data 52

Figure 5.2: Wordclouds for a subset of six categories

Figure 5.2 shows word clouds consisting of the most frequent words contained
in the positive-labeled samples for a subset of six categories. The documents
are preprocessed by removing stopwords, punctuations and non-ASCII char-
acters. It is evident that the most prominent words for each category are
contextually relevant words. For example, we find words like noisy, quiet
and quiet area as the most frequent words in the preprocessed documents
corresponding to category Loudness. As such, the baseline XGBoost classi-
fiers operating on bag-of-words embeddings of the preprocessed documents
already perform relatively well as will be shown in Chapter 6.

Label distribution

In Table 5.2 the category selection as well as the number of samples, nsample,
number of positive samples, npos, and the fraction of positive samples, f racpos,
is shown. The label distribution varies considerably with the fraction of pos-
itives ranging from 0.11 for Seating Comfort up to 0.51 for Passenger Rights.

5.1 data 53

Category Name nsample npos f racpos

Face Mask General 1036 182 0.18

Loudness 10765 1366 0.13

Luggage General 12193 2000 0.16

Passenger Rights 1500 768 0.51

Punctuality 16671 4771 0.29

Seat Availability 14265 3582 0.25

Seating Comfort 10694 1193 0.11

Temperature General 11199 1542 0.14

Train Cancellation 5631 1728 0.31

Train Service 12590 3243 0.26

WLAN / Internet 10865 1628 0.15

Table 5.2: Sample and label distribution within the binary training data of eleven
categories

As described in Section 3.2.3, there are multiple methods to combat perfor-
mance degradation resulting from severe label imbalance. We employ re-
sampling, threshold tuning and loss reweighting to specifically improve the
precision of the resulting classifiers.

Sample intersection

The union of the eleven binary-annotated datasets consists of n = 31620
unique samples with only one third of the samples appearing in multiple
datasets. In Table 5.3 we can see that there isn’t a single sample that was an-
notated in context of all eleven categories. A third of the samples appear in
more than one binary dataset with the majority of multi-labeled samples ap-
pearing in exactly seven categories. This makes the creation of multi-class or
multi-label models challenging, since these models require fully annotated
training data.

Number of categories 1 2 3 4 5 6 7 8 9 10 11

Number of unique samples 20966 650 18 180 39 458 9148 160 1 0 0

Table 5.3: Size of intersections between binary-annotated datasets

To circumvent the challenge of partial labels, we create fully labeled pseudo-
label data with trained binary classifiers and filter the data with an uncer-
tainty threshold measure.

5.1 data 54

5.1.2 Multi-label data

As explained in the previous section, the intersection between the binary-
annotated datasets generally decreases with an increase of the number of
categories with none of the samples appearing in all of the eleven datasets.
To distill the knowledge of the binary classifiers into a single multi-label
model, we employ pseudo-labeling to generate a fully labeled dataset used as
training data for the multi-label model. Given time and resource constraints,
we use a subset of the available unlabeled data in the data warehouse con-
sisting of 200,000 samples.

Figure 5.3: Distribution of predicted probabilities on unlabeled data

Each trained and optimized binary classifier is used to perform a binary pre-
diction on each unlabeled sample. The detailed training, evaluation and pre-
diction procedure will be explained in the following Section 5.2. The distri-
bution of the predicted probabilities per category is shown in Figure 5.3 with
the y-axes representing the number of samples on a logarithmic scale. Each
of the barplots displays a bimodal distribution with the modes around zero
and one, respectively. Though, the histogram corresponding to Punctuality

5.1 data 55

shows many uncertain samples with predicted probability around 0.5. Fur-
ther, the probability mass around zero is higher than around one, which is to
be expected given the imbalanced label distribution of the expert-annotated
data shown in Table 5.2. We use the Scaled Confidence Score, as explained in
Section 3.2.2, to filter for the most certain predictions using a probability
threshold α.

Figure 5.4: Fraction of samples with Scaled Confidence Score above threshold α

We calculate the Scaled Confidence Score for each sample and each category
and set the confidence threshold to t = 0.85. This means that only samples
with corresponding Scaled Confidence Score greater than t for every category
will be included in the multi-label training data.

Category Name npos f racpos

Face Mask General 1865 0.05

Loudness 3367 0.09

Luggage General 778 0.02

Passenger Rights 2328 0.06

Punctuality 17880 0.48

Seat Availability 5010 0.13

Seating Comfort 2743 0.07

Temperature General 4539 0.12

Train Cancellation 2270 0.06

Train Service 7864 0.21

WLAN / Internet 5192 0.14

Table 5.4: Label distribution of the confidence-filtered pseudo-label multi-label data
consisting of 37,621 samples

5.1 data 56

We choose this specific threshold as a compromise between predictive con-
fidence and abundance of positively labeled data. Since we already apply
relatively strict constraints by requiring each individual label prediction to
exceed the specified threshold, choosing the threshold more conservatively
would lead to very low positively labeled examples for the more sparse cat-
egories like Luggage General. This could potentially be alleviated by using
larger amounts of unlabeled data, which, however, was out of scope for this
work. The final multi-label dataset consists of 37,621 samples with the label
distribution shown in Table 5.4. Compared to the label distributions of the
binary expert-annotated data, as shown in Table 5.2, we find a decreased
fraction of positives for most of the categories. This is a result of the sam-
pling procedure applied for the curation of the binary datasets as explained
in Section 5.1.1. In Figure 5.5 the pairwise pearson correlations between the
label columns yi of the pseudo-label data are shown.

Figure 5.5: Label correlation P(Y) found in the pseudo-label multi-label date

Most of the label columns show a minor negative correlation. This is because
most of the feedbacks are relatively short with a majority of feedbacks being
associated with a single category. Exceptions to this are the pairwise corre-
lation between Train Service and Face Mask General. This makes sense, since
feedbacks associated with Face Mask General often contain complaints about
a too limited enforcement of the mask mandate regarding other passengers
or a too rigid enforcement of the mask mandate regarding themselves. The
other two positive pairwise correlations of Passenger Rights with Punctuality
and Train Cancellation, respectively, are also reasonable, since Passenger Rights
is comprised of feedbacks mentioning delays over one hour (Punctuality) as
well as feedbacks mentioning cancelled trains, leading to additional costs
(Train Cancellation), among others.

5.1 data 57

Dataset Splits

A standard practice in supervised learning is the utiliziation of dataset splits,
where one data partition is used for training and the remaining partition is
used for model evaluation. We utilize 5-fold stratified cross-validation, where
the dataset is partitioned into five partitions of equal size and equal label
distribution. This is done via the Iterative Stratification algorithm presented
by Sechidis et al. [STV11]. The algorithm first calculates the desired number
of samples per fold and label and continues by iteratively filling the parti-
tions with samples associated with the rarest label.

In addition to the cross-validation split Dvalcv , we manually annotate an ad-
ditional multi-label validation dataset consisting of 800 samples, Dvalood . One
half consists of samples with low confidence scores and the other half is a
random sample. This validation dataset plays an important role in the early
stopping procedure we include in the training, which will be explained in
the next section. Finally, we also use a randomly sampled and manually an-
notated test dataset, Dtest, which is used to benchmark the performance of
the different models after their training is completed.

Utilized datasets

Dvalcv Cross validation fold used to evaluate the training progress.

Dvalood Additional validation dataset with difficult examples used
for training evaluation and early stopping.

D test Holdout test dataset used to ultimately evaluate the predic-
tive performance of the different model architectures.

Bias

As explained in Section 3.2.2, we employ multiple measures to reduce the
amount of label noise and bias affecting the intermediary pseudo-label data. We
use high-capacity transformer models as label-generator models and an early
stopping procedure to estimate the generalization of the model in training
and consequently avoid the training of overfitted models.

The filtering of uncertain pseudo-label data reduces the amount of label
noise in the data. However, a very conservative threshold might lead to
a highly biased dataset, keeping only very simple examples. Additionally,
the sampling and annotation procedure used to curate the binary training
data by employing distant supervision and re-annotation comes with inherent
bias. Thus, we employ multiple evaluation datasets with different label dis-
tributions to detect and combat bias or overfitting-dependent performance
degradation.

5.2 training , evaluation and prediction 58

5.2 training , evaluation and prediction

In this section we lay out the training and evaluation procedure performed
in context of binary and multi-label models. For the binary classifiers we
use expert-annotated data as training, evaluation and test data. We extend
the dataset corresponding to category Train Cancelation with an Active Learn-
ing loop, as described in the previous section, and, following the same pro-
cedure, construct the binary dataset for category Passenger Rights. For the
multi-label classifiers we use Pseudo-Label data as training and validation
data. Additionally, we employ expert-annotated validation and test datasets,
with the latter serving as benchmark dataset across all models.

Regarding text preprocessing, most of the work has to be performed in con-
text of the baseline models, which will be explained in Section 5.2.1. The LLM

classifiers do not require extensive text preprocessing except the removal of
HTML substrings and special characters resulting from different text encod-
ings. We also perform lower casing on the input text for the fine-tuning of
models pre-trained on lower case german text.

The training, evaluation and tracking of the binary and multi-label neural
network models, ie. Transformer and LSTM models, follows the steps sum-
marized in Algorithm 1. The general procedure consists of batchwise feed-
forward passes of the input data through the neural network, gradient calcu-
lation via backpropagation and subsequent model weight updates with an
optimizer such as Adam [KB14]. We evaluate the model performance either
at the end of each training epoch, ie. after the model has processed the full
training dataset Dtrain, or after a fixed number of batches depending on the
size of the training dataset. We closely monitor the training by propagating
the evaluation results consisting of the F1-score, recall, precision and the cur-
rent loss, among others, to a MlFlow1 tracking server. This server provides
a user interface component with graphical and tabular representations of
tracked experiment results. Real-time experiment monitoring makes it pos-
sible to manually intervene and restart the training in case of unsatifactory
results or abnormal behaviour. Additionally, it provides a structured history
of previous experiment parameters and evaluation results. For the training
of the neural network models we use a NVIDIA GeForce RTX 2080 Super
graphics processing unit with 8 GB virtual random access memory. This en-
ables us to train the models with batches of size 8 for the larger ELECTRA
and a batch size of 16 for the smaller DistilBERT. To simulate training with
larger batch sizes with smoother weight updates, we also include gradient
accumulation in our training.

1 https://mlflow.org/ (last visited on 26.03.2023)

https://mlflow.org/

5.2 training , evaluation and prediction 59

Algorithm 1 Training-, Evaluation- and Tracking-Loop

Require: Model model
Require: Optmizer opt
Require: EarlyStopper
Require: Loss function L
Require: Thresholds t
Require: Datasets Dtrain,Dvalcv ,Dvalood

Ensure: F1best ← 0
1: for each epoch ∈ epochs do
2: for each batch (x, y) ∈ Dtrain do
3: ŷ← model(x) ▷ Forward-Pass
4: loss← L(y, ŷ)
5: gradients← backprop(loss, model)
6: model ← optimize(model, gradients, opt)
7: if shouldEvaluate() then
8: (F1cv, _)← eval(model,Dvalcv , t)
9: (F1ood, tnew)← eval(model,Dvalood , t) ▷ Threshold tuning

10: F1avg ← (F1cv + F1ood)/2
11: if F1avg > F1best then
12: F1best ← F1avg
13: t← tnew
14: checkpoint(model, path)
15: EarlyStopper.reset()
16: else
17: EarlyStopper.decreasePatience()
18: end if
19: Propagate evaluation results to tracking service
20: end if
21: if EarlyStopper.shouldStop() then
22: break
23: end if
24: end for
25: end for

The presented training loop is an ordinary neural network training loop with
the addition of F1-score-based threshold tuning and early stopping.

Early Stopping

We utilize two evaluation datasets, a cross validation fold, Dvalcv , and an out-
of-distribution dataset, Dvalood . Since the training datasets are constructed by
combining keyword searches and distant supervision to filter unlabeled data
for potential positive samples, the datasets carry an inherent bias. As such,
the cross validation data carries the same sampling bias and is often insuffi-
cient for the evaluation of the models performance. We combat this problem
by including an additional validation dataset consisting of two partitions,
an i.i.d. sampled partition and a partition of difficult examples. We call this

5.2 training , evaluation and prediction 60

the out-of-distribution dataset, Dvalood , and estimate the models generaliza-
tion through constant monitoring. We employ an early stopping procedure
based on the average evaluation F1-score of the cross-validation and the
out-of-distribution validation datasets. The EarlyStopper, as shown in Algo-
rithm 1, is a simple counter that is incremented if the average F1 validation
score does not surpass a previous best. If the counter reaches a predefined
maximum patience threshold, the training concludes. In Figure 5.6 the early
stopping procedure with a patience of 4 is shown.

Figure 5.6: Early stopping induced by stagnating averaged F1-score improvement

Each dot on the average validation curve (orange) signals an increase in F1-
score and the creation of a checkpoint. Following the last orange dot four
evaluations without an increase in the average F1 occur until the patience
threshold of the EarlyStopper is exceeded and the training concludes.

5.2.1 Baseline Models

To provide a performance reference for the binary and multi-label LLM classi-
fication models, we also train support vector machine (SVM) [CV95], XGBoost
and Long Short-Term Memory (LSTM) models whose evaluation results on
the shared test dataset serve as baseline for the following experiments.

svm : To provide a baseline evaluation with a relatively simple model archi-
tecture, we employ a SVM classifier with a radial basis function ker-
nel and L2 regularization. We use a count-based text representation to
train the SVM classifier.

5.3 inference latency optimization 61

xgboost : After performing a bag-of-words preprocessing with count-based
methods or through TFIDF-vectorization, as described in Section 3.3.1,
we utilize XGBoost [CG16] classifiers for binary and multi-label predic-
tion. XGBoost is a tree-based ensemble machine learning method that
sequentially optimizes a tree-structure of weak learners. It is a highly
adaptive algorithm that tends to perform well on a wide range of clas-
sification and regression tasks. We perform extensive hyperparameter
tuning by employing a Tree-structured Parzen Estimator [Ber+11] al-
gorithm implemented in the hyperparameter tuning library Optuna2.
Instead of exhaustively searching through a fully specified grid of hy-
perparameter values, the Tree-structured Parzen Estimator algorithm
tries to maximize the Expected Improvement criterion with a statistical
learning procedure.

bidirectional lstm : We also utilize bidirectional LSTM models [HS97],
which in contrast to the bag-of-words approach used with XGBoost are
able to utilize local context information within sequential inputs. For
the training of binary and multi-label LSTMs we use a concatenation of
pre-trained word embeddings consisting of 300-dimensional german
fastText and GloVe word embeddings [PSM14] trained on a corpus con-
sisting of documents related to Deutsche Bahn. The fastText embedding
procedure is an extension of the skip-gram embedding procedure utiliz-
ing n-grams as described in Section 3.3.1.

5.2.2 Large Language Models

We select the LLM model architectures ELECTRA and DistilBERT for the clas-
sification experiments. Creating the LLM multi-label classification model con-
sists of two major building blocks. We first train binary classification mod-
els for each of the individual categories. Here we are not concerned with
latency constraints and as such utilize the model architecture yielding the
best predictive performance, which we find to be ELECTRA. We partition
each binary dataset into five stratified folds and train multiple models using
different random seeds per split. To create pseudo-labels on an unlabeled
corpus consisting of 200,000 samples, we create predicted probabilities with
the best model per split. We then average the final probabilities as well as
the decision thresholds of the five models. Finally, we create binary predic-
tions by applying the average decision threshold to the averaged predicted
probabilities.

5.3 inference latency optimization

To achieve the overarching goal of enabling real-time multi-label classifi-
cation with high predictive performance, we first distill the knowledge of
multiple binary LLM classifiers into a single multi-label model as described

2 https://optuna.org/ (last visited on 26.03.2023

https://optuna.org/

5.3 inference latency optimization 62

in Section 3.2.2. We compare the model architecture selection consisting of
ELECTRA and its compressed and pruned descendant DistilBERT. The exe-
cution environment described in Table 5.5 is used to measure the inference
latencies of the raw and optimized models. All experiments are performed
on CPU hardware.

Hardware Component Specification

CPU AMD Ryzen 7 PRO 4750U, 8 cores @ 1.70 GHz
RAM 32GB @ 3.2GHz
OS Windows 10 - 64-Bit
Python version 3.9
PyTorch version 1.12.1
ONNX Runtime Version 1.13.1

Table 5.5: Execution environment specifications

For latency optimization, the fine-tuned PyTorch models are first converted
into the framework-agnostic Open Neural Network Exchange (ONNX)-format.
We utilize the ONNX Runtime (ORT)3 and its corresponding CPU execution
provider to perform inference on the ONNX-converted models. Finally we
compress the fine-tuned models into an dynamically quantized 8-bit format as
explained in Section 4.1.

3 https://onnxruntime.ai/ (last visited on 26.03.2023)

https://onnxruntime.ai/

6
E X P E R I M E N TA L R E S U LT S

In this chapter we present our experimental results. We separate this chapter
into two sections. The first part, Section 6.1, deals with the predictive perfor-
mance of the binary and multi-label classifiers. In Section 6.1.1 we first take
a thorough look at the results of the binary classifier for category Passenger
Rights. This serves as representation of the generall procedure and evalua-
tion for all individual binary classifiers, but for brevity, we omit looking at
the other binary classifiers in such detail. The binary LLM classifiers are used
to generate the pseudo-label training data for the multi-label models.

Following in Section 6.1.2, we look at the multi-label model results and
present the baseline performance results achieved with a multi-label SVMs,
hyperparameter-tuned XGBoost models and bidirectional LSTMs. We then
discuss the results of the multi-label LLM classifiers and investigate changes
in performance in comparison to the results of the binary classifiers. With
Section 6.1.3 we conclude the first section by presenting the results of a scal-
ability experiment, in which we apply the proposed workflow to a selection
of 82 categories.

The second section, Section 6.2, is dedicated to the results of the latency op-
timization experiments. We measure the inference times of original PyTorch
implementations, converted and optimized ONNX-representations executed
with ONNX Runtime and 8-bit quantized ONNX-representations of LLMs and
LSTM models.

6.1 predictive performance

In this section we present the predictive results of the binary and multi-label
classifiers. We first look at the evaluation results of the binary classifiers by
example of the classifier for category Passenger Rights. We highlight the itera-
tive improvement of its predictive performance through the application of a
pool-based Active Learning loop. We then look at the predictive performance
of SVM, hyperparameter-tuned XGBoost and bidirectional LSTM multi-label
baseline models. Following, we display and compare the performance of the
ensemble of binary LLMs, baseline models and multi-label LLMs in floating
point and 8-bit quantized form. We conclude this section with a meta anal-
ysis, in which we investigate the scalability of our workflow to train multi-
label models with intermediary pseudo-label data by applying the workflow
to a total of 82 categories.

6.1 predictive performance 64

6.1.1 Binary classifiers by example of Passenger Rights

Here we evaluate the predictive performance of the binary Passenger Rights
classifier. The presentation of this specific classifier serves as proxy for the
workflow applied to the eleven binary classifiers in a similar fashion. The
results of the full set of binary classifiers are discussed in the subsequent
multi-label subsection, in which we compare the predictive performance of
the binary and multi-label models. We extend the selection of ten existing cat-
egories with a new category called Passenger Rights. This category is used for
customer feedbacks that describe a situation in which the feedback author
might be eligible for compensation. In the real-time classification context,
the feedback author should receive information and a link to a passenger
rights customer form as response to the submitted feedback. To construct
the training dataset, we first select weakly labeled positive examples with
a word-based search which we then manually re-annotate. We use multiple
case insensitive regular expressions to filter the unlabeled data for potentially
positive examples. A subset of these regular expressions is shown in Ta-
ble 6.1.

Description Regular Expression

Customer requires voucher /.*(verlange|antrag|möchte|gibt|will)*.*gutschein.*/

Customer requires passenger rights form /.*(gastrecht|antrag|formular).*/

Customer requires refund /.*(geld|kosten|betrag|preis)\s+zurück.*/

Table 6.1: Exemplary Regular Expressions filtering for feedbacks relevant to cate-
gory Passenger Rights

We also randomly sample the unlabeled data to extend the training data by
a partition with a distribution close to the real population. This partition
contains mostly negative samples. Additionally, we manually annotate the
validation dataset Dvalood and the test dataset Dtest with a new column corre-
sponding to to the Passenger Rights category. In Table 6.2 the improvement of
the F1-score on the validation dataset Dvalood corresponding to the addition
of informative training data is shown. The new training examples are selected
satisfying the following criteria:

• The Scaled Confidence Score corresponding to the samples is low (Uncer-
tainty Sampling).

• The samples contain content with no or very low representation in the
current training data.

• Adversarial examples the model currently falsely predicts, leading to
false positives and thus low precision.

6.1 predictive performance 65

Number of samples Number of positive samples Validation F1-Score on Dvalood

1000 403 0.717

1151 515 0.742

1250 622 0.772

1502 750 0.792

Table 6.2: Binary classifier improvement by dataset curation through batchwise Ac-
tive Learning

We find that specifically the addition of adversarial examples to decrease
the false positive rate of the model lead to high performance gains. The cat-
egory Passenger Rights is one of the more demanding categories in terms
of language and content. The association of samples with this category is
highly context-dependent with many edge-cases resulting from the follow-
ing exemplary criteria:

• Eligibility for compensation depends on the amount of delay.

• Customers demanding a refund might refer to a wrongfully performed
ticket purchase, gastronomical services or parking costs not necessarily
related to railway travel.

• Mentioned delays or costs might be unrelated to Deutsche Bahn.

The following synthetic examples are meant to highlight these challenges:

Not associated with Passenger Rights

• I arrived almost an hour late.

• There has been a duplicate booking in the app. I want a refund!

• The parking lot was full, so I had to park in an expensive parking garage.

Associated with Passenger Rights

• The train arrived over an hour late.

• The train was canceled and we did not arrive at the final destination, so we
had to book a hotel for the night. I want a refund!

We train the binary classifiers via 5-fold cross validation and as such, each
training and evaluation procedure yields five models. The creation of the
pseudo-label data is performed with averaged predictions of the five models
as described in Section 5.2. In Figure 6.2 the variation in model training
progress over the five folds is shown.

6.1 predictive performance 66

(a) Validation scores on cross validation datasets Dvalcv

(b) Validation scores on holdout validation dataset Dvalood

Figure 6.1: Evaluation curves over five cross validation folds on cross validation
data Dvalcv and holdout validation data Dvalood

6.1 predictive performance 67

The panels show the mean F1-score, precision and recall as well as their
corresponding standard deviation and range on the cross validation dataset
Dvalcv (a) and the holdout validation dataset Dvalood (b). The model precision
shows the highest variance and generally the lowest value in terms of the
three evaluation metrics. At the same time, the recall score is very high with
values over 0.98 for both validation datasets. This validates the previously
stated focus on the reduction of false positives, improving precision and con-
sequently the F1-score.

In addition to the Active Learning approach to improve the model precision
by curating a more informative training dataset, we try to force the model
to increase the focus on positive examples by employing a positive weight
parameter in the binary cross-entropy and focal loss functions. In Figure 6.2
the performance results on both validation datasets for different positive
weight parameters are shown. The best model performance is reached with
a balanced weight between positives and negatives.

(a) Performance on cross validation datasets Dvalcv

(b) Performance on holdout validation dataset Dvalood

Figure 6.2: Influence of Positive Class Weight on model performance

We find that high positive class weights lead to a decrease in performance re-
sulting from low precision scores. In case of high positive class weights, the
model weight updates are being dominated by the positively labeled sam-
ples. Consequently, the influence of the negatively labeled data, which is
richer in diversity and generally larger in samples, decreases, leading to the
performance degradation. Instead of directly influencing the model weight

6.1 predictive performance 68

updates via the positive weight parameter, we employ the less invasive deci-
sion threshold tuning, which has no effect on the weight update.

Key Results

• The dataset improvement via Active learning combined with ad-
versarial examples is highly effective, yielding an improvement
in F1 score of ∼ 10%

• Employing a high positive label weight leads to a reduction
in model precision, because model weight updates depend too
strongly on the smaller subset of positively labeled data.

6.1.2 Multi-label classifiers

To put the performance of the multi-label LLM models into perspective we
train SVM and hyperparameter-optimized XGBoost classifiers utilizing bag-
of-words text representations as well as bi-directional LSTMs as baseline mod-
els. In this subsection, we compare the results of the ensemble of binary
ELECTRA classifiers, the baseline multi-label models and the multi-label LLM

models.

Baseline models

To provide a performance baseline we perform extensive hyperparameter
tuning with XGBoost models using bag-of-words input representations. In Fig-
ure 6.3 we show a parallel coordinates plot containing a selection of hyper-
parameters and evaluation metrics corresponding to the XGBoost hyperpa-
rameter tuning procedure.

6.1 predictive performance 69

Figure 6.3: Multi-label XGBoost macro evaluation metrics on the holdout validation
data Dvalood

corresponding to different hyperparamter configurations in
a Parallel Coordinates Plot

In contrast to the binary LLM classifier for category Passenger Rights the XG-
Boost classifer profits from a high positive weight parameter combating the
imbalanced distribution of the majority of labels. The best number of estima-
tors and the maximum depth of the gradient boosted trees are close to the
default values of 250 and 6, respectively. These values have been found to be
good general configurations [CG16]. For the optimization of the LSTM mod-
els we employ pre-trained fastText and GloVe word embeddings as well as
embeddings specifically pre-trained on textual content in context of Deutsche
Bahn. We also vary the hidden dimensions, number of feed-forward and bi-
directional LSTM layers as well as the amount of dropout applied to the
model. The results of the best LSTM models are incorporated in the subse-
quent multi-label result comparison.

Transformer based encoder models

As with the baseline XGBoost and LSTM models, we use the pseudo-label
data generated from the ensemble of binary LLMs as training data. As ex-
plained in Section 3.2.2 and Section 5.2, we utilize early stopping and mul-
tiple evaluation datasets to detect and combat a performance degradation
resulting from biased data. The LLM models show a high performance with
only minimal hyperparameter tuning. The results of the best multi-label
model on the test dataset are shown in Figure 6.4.

6.1 predictive performance 70

Figure 6.4: ELECTRA: F1 Score, Recall and Precision per class on test data

Figure 6.5: ELECTRA: Precision-Recall Curves for test data

The predictive performance in terms of F1-score is above 0.8 for all categories
and for most categories close to or above 0.9 with the worst performing
categories being Luggage General and Passenger Rights. For Luggage General

6.1 predictive performance 71

this can mostly be attributed to the contextual overlap with category Seat-
ing Comfort, whose corresponding samples often refer to space and furniture
in a more general way than the samples corresponding to Luggage General,
which refer to the space available for luggage. The same is true for cate-
gory Passenger Rights, which has high overlap with category Punctuality, but
with narrower contextual focus as described in Section 6.1.1. Another con-
tributing factor for the worse evaluation results of both categories might be
the relatively low number of positives, with 70 and 113 examples of 1313

examples for Luggage General and Passenger Rights, respectively, which are
among the lowest numbers of positives in the dataset. This can also be seen
in the precision-recall plot shown in Figure 6.5 with large vertical step sizes
especially for Luggage General corresponding to an increase of false positives
going from left to right.

In Table 6.3 the predictive performance of the best models corresponding
to different model architecture types on the test data are shown.

6.
1

p
r

e
d

i
c

t
i
v

e
p

e
r

f
o

r
m

a
n

c
e

7
2

Ensemble Multi-Label ML 8-Bit Multi-Label Multi-Label Multi-Label SVM
Category ELECTRA ELECTRA ELECTRA DistilBERT LSTM XGBoost

Macro 0.902 0.899 0.888 0.891 0.860 0.842 0.629

Micro 0.907 0.905 0.894 0.901 0.874 0.853 0.681

Face Mask 0.955 0.943 0.920 0.927 0.917 0.945 0.644

Loudness 0.943 0.933 0.930 0.924 0.921 0.888 0.767

Luggage 0.822 0.812 0.797 0.837 0.724 0.775 0.376

Passenger Rights 0.792 0.830 0.805 0.789 0.774 0.667 0.305

Punctuality 0.906 0.934 0.939 0.940 0.924 0.920 0.805

Seat Availability 0.897 0.868 0.838 0.873 0.833 0.788 0.632

Seating Comfort 0.863 0.870 0.856 0.810 0.756 0.711 0.539

Temperature 0.936 0.944 0.937 0.942 0.938 0.912 0.745

Train Cancellation 0.916 0.879 0.877 0.857 0.825 0.807 0.571

Train Service 0.906 0.891 0.876 0.900 0.882 0.869 0.641

WLAN / Internet 0.990 0.987 0.990 0.997 0.961 0.984 0.892

Table 6.3: Comparison of the predictive performance of different model architectures on the test data via F1-Score

6.1 predictive performance 73

The evaluation results offer multiple interesting perspectives. For one, we
observe that the LLM models on average perform significantly better than
the optimized baseline XGBoost models. The LSTM baseline models also per-
form worse than the LLM models, although by a lesser degree. We find that
both baseline architectures show significant performance drops on specific
categories. The 8-bit quantization slightly impacts the performance of the
LLM models with a decrease of 0.01 in F1-score on average. At the same time
the model size can be compressed to a fourth of its original size. The pruned
and distilled DistilBERT transformer variant shows competitive results with
the much larger ELECTRA and even outperforms the larger model on some
of the categories like Luggage General and Train Service. This could be the
result of the regularizing effect of a lower capacity model.

Key Results

• Compressing an eleven category ensemble of ELECTRA models
into a single multi-label ELECTRA model is possible without
significant performance degradation.

• We observe a predictive performance improvement with cate-
gories that profit from label correlations not accessible to binary
models.

• The compressed models, DistilBERT and 8-bit quantized ELEC-
TRA, show a reduction in F1 score of 1.5%.

• LSTM and XGBoost baseline models show a more significant re-
duction in predictive performance with 4.7% and 6.7%, respec-
tively.

• All models significantly improve on the baseline set by the SVM

classifier.

6.1.3 Scaling to higher numbers of categories

We extend the category selection to a a total of 82 categories to investigate the
scalability of the presented workflow. We train 82 binary ELECTRA models
via 5-fold cross validation on expert-annotated binary data. With the trained
models we extend the previously used 11-category pseudo-label dataset, con-
sisting of 37621 samples, with pseudo-labels for all 82 categories. Following,
we train multi-label LLMs on the pseudo-label training data and choose to
evaluate both binary and multi-label models on a fixed cross-validation fold
of each binary expert-annotated dataset, since manually multi-label annotat-
ing 82 categories on the holdout validation set is too time consuming. In Fig-
ure 6.6 an overview of the F1-score results (red) and the label distribution
of the training dataset (blue) is shown for the binary classifiers, the multi-
label classifiers as well as the difference between the binary and multi-label

6.1 predictive performance 74

results. The categories are sorted by the F1-score of the binary classifiers in
descending order and keep their ordering in all three panels.

Figure 6.6: F1-Scores and Positive Label Training Data Ratio in context of the binary
classifiers, the multi-label classifier and respective difference

A very noticeable difference is the much lower ratio of positives in the
pseudo-label data used to train the multi-label data. This can be attributed
to the sampling scheme used to create the binary-annotated training data, in
which acquiring a representative amount of positives is preferred over faith-
fully capturing the true population distribution, which might display a very
low positive ratio. The pseudo-label data on the other hand was created by
predicting the label associations of an i.i.d. unlabeled dataset and as such
might be closer the the true label distribution. Some of the categories show
a very noticeable F1-score performance degradation between the results of
the binary and multi-label classifiers. We assume that the change in label dis-
tribution might be a major contributing factor. A linear regression with the
logarithmic ratio between the binary and the multi-label label distribution
as independent variable and the difference in F1-score as dependent vari-
able confirms this assumption. In Figure 6.7 the true difference in F1-score y
as well as the fitted values ŷ and respective prediction intervals are plotted
against the logarithmic ratio of label distributions. With the prediction inter-
val incorporating the uncertainty of the estimated parameters as well as the
error term ϵ.

6.1 predictive performance 75

Figure 6.7: Linear regression plot showing the true values y and fitted values ŷ
corresponding to the difference in F1-Score between binary and multi-
label models on the binary cross-validation data against the dependent
variable x corresponding to the logarithmic ratio of the binary and multi-
label label distributions.

In the linear regression summary shown in Table 6.4 we can see that with an
R2 = 0.406, the linear model is able to explain around 40% of the variance
of the dependent variable F1di f f . Consequently, there must be other factors
contributing to the variance of F1di f f , that are not included in the univariate
linear model.

Dep. Variable: F1di f f R-squared (uncentered): 0.406

Model: OLS Adj. R-squared (uncentered): 0.399

Method: Least Squares F-statistic: 55.35

Df Residuals: 81 Prob (F-statistic): 9.44e-11

No. Observations: 82 Log-Likelihood: 48.911

Df Model: 1 AIC: -95.82

Covariance Type: nonrobust BIC: -93.41

coef std err t P> |t| [0.025 0.975]

log(pos_ratio) 0.0398 0.005 7.440 0.000 0.029 0.050

Table 6.4: OLS Regression Results

Still, a significant influence can be attributed to the dependent variable con-
sidering the high t-statistic and its respective small p-value. We find that
most of the average performance degradation results from a small set of cat-
egories, as can be seen in Table 6.5. Here we remove the categories, on which
the multi-label classifier performs the worst and observe that after removing
16 of 82 categories, the difference in macro F1-score shrinks from a difference
of 0.08 to a difference of just 0.03.

6.2 inference latency optimization on cpu 76

No. of categories Macro F1bin Macro F1ML

82 0.870 0.786

81 0.873 0.796

80 0.873 0.801

79 0.872 0.808

78 0.871 0.813

77 0.874 0.819

76 0.873 0.822

.
66 0.884 0.854

Table 6.5: Macro F1-scores of binary and multi-label classifiers by choosing the best
performing n categories for the multi-label model

Considering that we performed no additional steps to optimize the 82-category
pseudo-label dataset, we trained the multi-label classifier on, this is an im-
pressive result. With additional dataset curation and focus on the pseudo-
labels corresponding to the weakly performing categories, it might be possi-
ble to achieve competitive results on all 82 categories. Unfortunately, such an
investigation was out of scope for this work. Nontheless, the above results
show that by taking an average performance hit of 0.03 in macro F1-score,
we can compress 66 binary LLMs into a single multi-label model.

Key Results

• The compressed 82 category multi-label model only shows a
reduction in performance of 3% on over 75% of the categories
compared to the binary ensemble without any additional data
curation.

• The multi-label model shows a significant drop in predictive per-
formance on a small subset of categories.

• The sparsity of positive labels in the generated pseudo-label data
negatively impacts the performance of the compressed multi-
label model.

6.2 inference latency optimization on cpu

In this section we present the results of our latency optimization experiments.
As initially stated, our proposed workflow encompasses the knowledge dis-
tillation of binary classifier ensembles into single multi-label models. In the
previous section we compared the predictive performance of the binary en-
semble with several multi-label model architectures. In this section we com-
pare the inference latencies of the proposed baseline XGBoost and LSTM

6.2 inference latency optimization on cpu 77

models and the LLM models. We convert the PyTorch models, LSTMs and
LLMs, into an optimized Open Neural Network Exchange (ONNX) graph rep-
resentation. The optimization procedure entails the reduction of redundant
nodes, constant folding, which is the pre-computation of static parts of the
network graph as well as node fusion, in which multiple nodes of the graph
are combined. This is for example the combination of the single operations
of the layer normalization and corresponding skip-connection in the trans-
former architecture into a single node. We finally transform the optimized
ONNX model graph into a dynamically quantized 8-bit integer representa-
tion. The measurements are performed with a warmup of 100 repetitions,
which are discarded, and subsequent 300 measurements which are used to
evaluate the latency performance of the models on the CPU hardware and
environment specified in Section 5.3. In Figure 6.8 the measured inference
latencies of the baseline XGBoost models for input data with different se-
quence lengths are visualized as boxplots. The median inference latencies
for all sequence lengths are around 30ms, which is significantly below the
constraint of 100ms. The XGBoost model utilizes bag-of-words text representa-
tions for the input documents which means that only the preprocessing step
is affected by higher sequence lengths. The input to the algorithm itself is a
vector of vocabulary length |V| and as such the measured latencies show no
significant difference regarding different sequence lengths.

Figure 6.8: Per-Sample Latencies for XGBoost baseline models and different input
sequence lengths

In the three subfigures of Figure 6.9 we show the measured per-sample la-
tencies for the deep learning models for different sequence lengths. The
three compared model architectures are the baseline bi-directional LSTM
and the two LLMs, DistilBERT and ELECTRA. Each subfigure consists of three
columns with each column representing one of the three optimization levels
PyTorch (unoptimized), ONNX (graph-optimized) and ONNX 8-bit Quantized
(graph-optimized and quantized). A relatively unsurprising observation is
the correaltion between model size (and thus number of required mathemat-
ical operations) and inference latency. In all of the experiments the ELECTRA
model, having twice the number of encoder-layers of DistilBERT, shows the
highest inference latency.

6.2 inference latency optimization on cpu 78

(a) Per-sample latency for samples with input sequence length 20

(b) Per-sample latency for samples with input sequence length 250

(c) Per-sample latency for samples with input sequence length 512

Figure 6.9: Per-sample latency for different model architectures and sequence
lengths

The multi-label LSTM consistently shows the lowest inference latencies given
the much lower amount of trainable parameters, which amount to approxi-
mately 5 million parameters in comparison to the 66 million parameters in
case of DistilBERT and 110 million parameters in case of ELECTRA. For all
models the biggest improvement in inference latency can be achieved by the
transformation to a graph-optimized ONNX-format. For sequence lengths of
250 tokens all model types reach mean inference latencies below 200ms as
can be seen in more detail in Table 6.6.

6.2 inference latency optimization on cpu 79

Model Name Execution Type t̄ tstd t0.5 t0.99

DistilBERT ONNX 111.40 5.99 110.36 129.65

ONNX 8-bit Quantized 92.17 2.30 92.84 95.71

PyTorch 301.18 8.73 301.64 324.83

ELECTRA ONNX 190.53 9.92 189.70 218.07

ONNX 8-bit Quantized 173.77 8.90 173.05 189.91

PyTorch 620.76 33.18 611.44 718.98

LSTM ONNX 18.45 1.83 18.21 25.01

ONNX 8-bit Quantized 12.72 1.59 12.30 15.22

PyTorch 67.29 5.44 65.90 88.64

XGBoost sklearn 31.87 4.70 33.11 41.45

Table 6.6: Per-sample latency sequence length 250

Model Name Execution Type t̄ tstd t0.5 t0.99

DistilBERT ONNX 266.07 20.26 263.36 318.54

ONNX 8-bit Quantized 223.63 13.97 224.42 239.39

PyTorch 649.17 33.77 655.02 709.40

ELECTRA ONNX 434.46 16.49 431.24 482.03

ONNX 8-bit Quantized 389.61 17.05 389.07 437.16

PyTorch 1338.78 67.02 1330.71 1501.26

LSTM ONNX 34.98 2.35 34.95 41.26

ONNX 8-bit Quantized 26.96 2.61 26.66 33.41

PyTorch 124.95 8.92 121.93 158.73

XGBoost sklearn 31.46 3.45 29.94 40.57

Table 6.7: Per-sample latency sequence length 512

Utilizing the full sequence length of 512 tokens processable by ELECTRA
and DistilBERT results in average inference latencies much higher than the
100ms constraint we aimed at, as can be seen in Table 6.7. We find that
through 8-bit quantization an additional latency decrease of up to 31% in
case of the LSTM models can be reached with the benefit of a 75% reduction
in model size. In comparison to the unoptimized PyTorch variants, models
executed in an ONNX runtime environment show much lower variance in
inference latency.

6.2 inference latency optimization on cpu 80

Key Results

• Reducing the inference latency of transformer models to sub
100ms on the specified commodity hardware is possible by em-
ploying model compression techniques, reduced maximum in-
put sequence lengths as well as a dedicated execution environ-
ment like ONNX runtime.

• XGBoost and LSTM models perform inference a magnitude faster
than the corresponding transformer models.

7
D I S C U S S I O N

In this master’s thesis we proposed an end-to-end process for the creation of
real-time-capable multi-label LLM classifiers based on disjunct binary-labeled
data. We specifically investigated three research questions that are subse-
quently discussed in detail.

Is it possible to train a performant multi-label model without expert-annotated multi-
label data?

As first and arguably most important question regarding the feasibility of
our proposed workflow, we investigated if it is possible to create competi-
tive multi-label models through knowledge distillation with pseudo-labels.
In Section 6.1.2 we compared the performance of such multi-label model
architectures with the ensemble of optimized binary LLM classifiers used to
generate the pseudo-label training data. Given that SSL approaches typically
incorporate small amounts of expert-labeled data as explained in Chapter 2,
we assumed that our approach, solely relying on pseudo-label data, should
lead to a noticeable performance degradation. Interestingly, this is not the
case in context of the 11 category experiment, where the compressed multi-
label model performs on-par with the binary ensemble. We even see a per-
formance increase in the prediction of categories for which pairwise label
correlations in the dataset exist. This is most prominent for category Passen-
ger Rights, on which the multi-label ELECTRA model achieves the best per-
formance across all included model architectures. We presume that pairwise
label correlations between Passenger Rights and the thematically adjacent cat-
egories Punctuality and Train Cancellation, as shown in Figure 5.5, help the
model in its decision process and lead to the increased performance.

In the scalability experiment in Section 6.1.3 we have shown, that our pro-
posed workflow is scalable to much higher numbers of categories. Addition-
ally, it has to be noted that we performed no additional data optimization
for the extension to 82 categories. Due to resource and time constraints, we
performed the pseudo-labeling for the additional 71 categories exlusively
on the 37,000 samples optimized for the eleven category experiment. Un-
der this consideration, the experiment worked surprisingly well. The multi-
label model performed competitively with the binary models on over 75%
of categories. However, the multi-label model shows noticeable performance
degradation on 16 of the 82 categories. Unfortunately, creating pseudo-label
data for such a high number of categories via cross-validation and multiple
random seeds is very time-consuming and was out of scope for this work.
It would, however, be a worthwhile endeavour to focus on improving the

discussion 82

multi-label performance on the worse performing 16 categories. Another po-
tentially viable extension of the experimental setup is the pseudo-labeling
of a much higher amount of unlabeled data. This would provide higher de-
grees of freedom in selecting a viable training data subset, integrating all 82

categories into the selection process.

Can a multi-label language model outperform multiple binary language models and
thus, can the multi-label model implicitly use label correlations to its advantage?

As discussed in Chapter 2 and Section 3.3, pre-trained transformer-based lan-
guage models are highly suitable for transfer learning. As such, we hypothe-
sized the multi-label models to improve on the performance of binary mod-
els, where knowledge transfer, specifically label correlations, could be lever-
aged. We have seen that the multi-label model shows significant improve-
ment in F1-score with respect to category Passenger Rights, which is part of
the two most highly correlated label pairs. However, most of the eleven cate-
gories show relatively low absolute pairwise correlations and as such there is
only sparse shared structure the multi-label model can potentially exploit to
improve on the binary classifiers. Even though the most correlated category
Passenger Rights experienced a significant boost in performance, the multi-
label model performed slightly worse on most of the remaining categories.
To pass a more confident verdict regarding the influence of label correlation
on the multi-label models performance, future works with a more extensive
investigation into categories with higher pairwise correlation would be ad-
vantageous.

Can a multi-label LLM reach an inference latency of sub 100ms on CPU hardware?

We showed that it is possible to distill the knowledge of an ensemble of bi-
nary classifiers into a single multi-label model. After transforming the origi-
nal deep learning models into an ONNX graph representation, we optimized
the graph with the removal of redundant nodes, fusion of adjacent nodes
as well as dynamic quantization. With the smaller DistilBERT and sequence
lengths of 250 tokens, we find that it is possible to reach inference latencies
under 100ms on commodity CPU hardware. This meets our expectations
as discussed in Chapter 2. We could not, however, satisfy this constraint
without reducing the maximum input sequence length. As discussed in Sec-
tion 3.2, the number of tokens contained in the individual feedbacks are
generally less than 100. Still, reducing the maximum sequence length too
much, leads to an enormous information loss when handling significantly
longer documents. To further optimize the inference latency, a simple but
costly approach might be the utilization of more performant CPUs. A possi-
ble topic for future research might be the incorporation of inference engines
capable of executing sparse neural network graphs.

7.1 conclusion 83

7.1 conclusion

As discussed in Chapter 7, we could successfully reach the overarching goal
of creating an end-to-end workflow ultimately compressing a binary ensem-
ble into a multi-label model exclusively utilizing binary-annotated train-
ing data by means of intermediary pseudo-labels. In addition, we could
show that the resulting multi-label model reaches competitive predictive
performance compared to the teacher ensemble model. Through the applica-
tion of different latency optimization techniques like neural network graph-
optimization and quantization, we could also show that a compressed and
optimized multi-label model can reach real-time inference latencies below
100ms per-sample. However, we have seen that the scalability of the pro-
posed workflow needs closer inspection as the predictive performance degra-
dation of the multi-label model in the scalability experiment in Section 6.1.3
has shown.

Weaknesses and future work

In Chapter 7 we outlined that our proposed workflow could successfully
be implemented in an eleven category study. The extension to 82 categories
however showed significant performance degradation on 16 of the 82 cate-
gories. As discussed in Section 3.2.2, the intermediary pseudo-labels carry
an inherent bias that follows from the specific model architecture of the gen-
erating model as well as the bias introduced from the annotation procedure
used to curate the binary training data. It might be worthwhile to investigate
the performance of models trained on pseudo-label data with specific focus
on varying levels of linguistic or thematic difficulty. Improving the selection
of training data for an extended multi-label model could be another subject
for subsequent work. As previously stated, first steps could be the creation
of much higher amounts of pseudo-labeled data. Additionally, in this work
we restricted ourselves to the selection of informative pseudo-label data by
means of Uncertainty Filtering setting a hard threshold for each individual la-
bel. It could be helpful to incorporate pre-clustering [NS04] or a hierarchical
label taxonomy [DH08] into the sampling process to acquire a more infor-
mative set of pseudo-label training data. Also, in terms of inference latency
optimization, execution environments have emerged enabling a hardware-
efficient execution of sparse LLMs in addition to quantization and network
graph optimization.

Practical Application of the Thesis Results

Concluding this work, we are proud to mention that we could successfully
integrate the proposed workflow into the feedback process at Deutsche Bahn.
A model based on the findings of this work is currently live and accessible
to a potential 200 million customers. Since its deployment on March 16th,
2023 the model has already served over 40,000 customers by enabling an

7.1 conclusion 84

instant response to the customers feedback with contextualized information.
In Figure 7.1 the live response to a customers feedback regarding category
Punctuality is shown.

Figure 7.1: Contextualized response based on the detection of category Punctuality

In conclusion, the results of this work serve as yet another step to the en-
hancement of the travel experience with Deutsche Bahn through machine
learning.

B I B L I O G R A P H Y

[Ala18] Jay Alammar. The Illustrated Transformer. http://jalammar.git
hub.io/illustrated-transformer. 2018. url: http://jalamma
r.github.io/illustrated-transformer.

[BAP14] Philip Bachman, Ouais Alsharif, and Doina Precup. “Learning
with pseudo-ensembles.” In: Advances in neural information pro-
cessing systems 27 (2014).

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neu-
ral Machine Translation by Jointly Learning to Align and Translate.
2014. doi: 10.48550/ARXIV.1409.0473. url: https://arxiv.or
g/abs/1409.0473.

[BH20] Maximiliana Behnke and Kenneth Heafield. “Losing Heads in
the Lottery: Pruning Transformer Attention in Neural Machine
Translation.” In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Asso-
ciation for Computational Linguistics, Nov. 2020, pp. 2664–2674.
doi: 10.18653/v1/2020.emnlp-main.211. url: https://aclant
hology.org/2020.emnlp-main.211.

[Ber+11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. “Algorithms for hyper-parameter optimization.” In: Ad-
vances in neural information processing systems 24 (2011).

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Berlin, Heidelberg: Springer-
Verlag, 2006. isbn: 0387310738.

[BM98] Avrim Blum and Tom Mitchell. “Combining labeled and un-
labeled data with co-training.” In: Proceedings of the eleventh an-
nual conference on Computational learning theory. 1998, pp. 92–100.

[Bro+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. “Language
models are few-shot learners.” In: Advances in neural information
processing systems 33 (2020), pp. 1877–1901.

[BCNM06] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil.
“Model Compression.” In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
KDD ’06. Philadelphia, PA, USA: Association for Computing
Machinery, 2006, 535–541. isbn: 1595933395. doi: 10.1145/115
0402.1150464. url: https://doi.org/10.1145/1150402.11504
64.

http://jalammar.github.io/illustrated-transformer
http://jalammar.github.io/illustrated-transformer
http://jalammar.github.io/illustrated-transformer
http://jalammar.github.io/illustrated-transformer
https://doi.org/10.48550/ARXIV.1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/2020.emnlp-main.211
https://aclanthology.org/2020.emnlp-main.211
https://aclanthology.org/2020.emnlp-main.211
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464

bibliography 86

[CG16] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System.” In: Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining.
KDD ’16. San Francisco, California, USA: Association for Com-
puting Machinery, 2016, 785–794. isbn: 9781450342322. doi: 10
.1145/2939672.2939785. url: https://doi.org/10.1145/2939
672.2939785.

[Cla+19] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christo-
pher D. Manning. “What Does BERT Look at? An Analysis
of BERT’s Attention.” In: Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.
Florence, Italy: Association for Computational Linguistics, Aug.
2019, pp. 276–286. doi: 10.18653/v1/W19-4828. url: https://a
clanthology.org/W19-4828.

[Cla+20] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher
D. Manning. ELECTRA: Pre-training Text Encoders as Discrimina-
tors Rather Than Generators. 2020. doi: 10.48550/ARXIV.2003.10
555. url: https://arxiv.org/abs/2003.10555.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector net-
works.” In: Machine learning 20 (1995), pp. 273–297.

[CB16] Matthieu Courbariaux and Yoshua Bengio. “BinaryNet: Train-
ing Deep Neural Networks with Weights and Activations Con-
strained to +1 or -1.” In: ArXiv abs/1602.02830 (2016).

[DH08] Sanjoy Dasgupta and Daniel Hsu. “Hierarchical sampling for
active learning.” In: Proceedings of the 25th international conference
on Machine learning. 2008, pp. 208–215.

[DCH10] Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier.
“Bayes Optimal Multilabel Classification via Probabilistic Clas-
sifier Chains.” In: International Conference on Machine Learning.
2010.

[Dem+10] Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng,
and Eyke Hüllermeier. “Regret Analysis for Performance Met-
rics in Multi-Label Classification: The Case of Hamming and
Subset Zero-One Loss.” In: ECML/PKDD. 2010.

[DWH12] Krzysztof Dembczyński, Willem Waegeman, and Eyke Hüller-
meier. “An Analysis of Chaining in Multi-Label Classification.”
In: Proceedings of the 20th European Conference on Artificial Intel-
ligence. ECAI’12. Montpellier, France: IOS Press, 2012, 294–299.
isbn: 9781614990970.

[Dem+12] Krzysztof Dembczyński, Willem Waegeman, Weiwei Cheng,
and Eyke Hüllermeier. “On label dependence and loss mini-
mization in multi-label classification.” In: Machine Learning 88

(July 2012). doi: 10.1007/s10994-012-5285-8.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18653/v1/W19-4828
https://aclanthology.org/W19-4828
https://aclanthology.org/W19-4828
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.2003.10555
https://arxiv.org/abs/2003.10555
https://doi.org/10.1007/s10994-012-5285-8

bibliography 87

[Den+20] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie.
“Model Compression and Hardware Acceleration for Neural
Networks: A Comprehensive Survey.” In: Proceedings of the IEEE
108.4 (2020), pp. 485–532. doi: 10.1109/JPROC.2020.2976475.

[Dev+18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2018. doi: 10.48550/ARXIV.1810.0
4805. url: https://arxiv.org/abs/1810.04805.

[Goo+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative Adversarial Networks. 2014. doi: 10.4
8550/ARXIV.1406.2661. url: https://arxiv.org/abs/1406.26
61.

[GDA20] Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews. Com-
pressing BERT: Studying the Effects of Weight Pruning on Transfer
Learning. 2020. doi: 10.48550/ARXIV.2002.08307. url: https:
//arxiv.org/abs/2002.08307.

[Gou+21] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng
Tao. “Knowledge Distillation: A Survey.” In: International Jour-
nal of Computer Vision 129.6 (2021), pp. 1789–1819. doi: 10.1007
/s11263-021-01453-z. url: https://doi.org/10.1007%2Fs112
63-021-01453-z.

[Guo+17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. “On
calibration of modern neural networks.” In: International confer-
ence on machine learning. PMLR. 2017, pp. 1321–1330.

[Gup+15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and
Pritish Narayanan. “Deep learning with limited numerical pre-
cision.” In: International conference on machine learning. PMLR.
2015, pp. 1737–1746.

[Han+16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram,
Mark A. Horowitz, and William J. Dally. “EIE: Efficient Infer-
ence Engine on Compressed Deep Neural Network.” In: Pro-
ceedings of the 43rd International Symposium on Computer Archi-
tecture. ISCA ’16. Seoul, Republic of Korea: IEEE Press, 2016,
243–254. isbn: 9781467389471. doi: 10.1109/ISCA.2016.30. url:
https://doi.org/10.1109/ISCA.2016.30.

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. 2015. doi: 10.48550/ARX
IV.1512.03385. url: https://arxiv.org/abs/1512.03385.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
Knowledge in a Neural Network. 2015. doi: 10.48550/ARXIV.1
503.02531. url: https://arxiv.org/abs/1503.02531.

https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/ARXIV.2002.08307
https://arxiv.org/abs/2002.08307
https://arxiv.org/abs/2002.08307
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007%2Fs11263-021-01453-z
https://doi.org/10.1007%2Fs11263-021-01453-z
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1503.02531
https://doi.org/10.48550/ARXIV.1503.02531
https://arxiv.org/abs/1503.02531

bibliography 88

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term
Memory.” In: Neural Comput. 9.8 (1997), 1735–1780. issn: 0899-
7667. doi: 10.1162/neco.1997.9.8.1735. url: https://doi.or
g/10.1162/neco.1997.9.8.1735.

[Hoe+21] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. Sparsity in Deep Learning: Pruning and growth
for efficient inference and training in neural networks. 2021. doi: 10
.48550/ARXIV.2102.00554. url: https://arxiv.org/abs/2102
.00554.

[Hua+21] Kai Huang, Jie Geng, Wen Jiang, Xinyang Deng, and Zhe Xu.
“Pseudo-loss confidence metric for semi-supervised few-shot
learning.” In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2021, pp. 8671–8680.

[HS14] Kyuyeon Hwang and Wonyong Sung. “Fixed-point feedfor-
ward deep neural network design using weights+ 1, 0, and- 1.”
In: 2014 IEEE Workshop on Signal Processing Systems (SiPS). IEEE.
2014, pp. 1–6.

[Jac+18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. “Quantization and training of neural networks
for efficient integer-arithmetic-only inference.” In: Proceedings
of the IEEE conference on computer vision and pattern recognition.
2018, pp. 2704–2713.

[JM09] Dan Jurafsky and James H. Martin. Speech and language process-
ing : an introduction to natural language processing, computational
linguistics, and speech recognition. Upper Saddle River, N.J.: Pear-
son Prentice Hall, 2009. isbn: 9780131873216 0131873210. url:
http://www.amazon.com/Speech-Language-Processing-2nd-E

dition/dp/0131873210/ref=pd_bxgy_b_img_y.

[KB13] Nal Kalchbrenner and Phil Blunsom. “Recurrent continuous
translation models.” In: Proceedings of the 2013 conference on
empirical methods in natural language processing. 2013, pp. 1700–
1709.

[Kim+21] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. “I-BERT: Integer-only BERT Quantization.”
In: Proceedings of the 38th International Conference on Machine
Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Pro-
ceedings of Machine Learning Research. PMLR, 2021, pp. 5506–
5518. url: https://proceedings.mlr.press/v139/kim21d.htm
l.

[KB14] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization.” In: International Conference on Learning Repre-
sentations (Dec. 2014).

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.2102.00554
https://doi.org/10.48550/ARXIV.2102.00554
https://arxiv.org/abs/2102.00554
https://arxiv.org/abs/2102.00554
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://proceedings.mlr.press/v139/kim21d.html
https://proceedings.mlr.press/v139/kim21d.html

bibliography 89

[Lag+21] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M.
Rush. Block Pruning For Faster Transformers. 2021. doi: 10.48550
/ARXIV.2109.04838. url: https://arxiv.org/abs/2109.04838.

[Lat+21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Co-
hen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeis-
man, Nicolas Vasilache, and Oleksandr Zinenko. “MLIR: Scal-
ing compiler infrastructure for domain specific computation.”
In: 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE. 2021, pp. 2–14.

[Lee+13] Dong-Hyun Lee et al. “Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.”
In: Workshop on challenges in representation learning, ICML. Vol. 3.
2. 2013, p. 896.

[LG94] David D. Lewis and William A. Gale. A Sequential Algorithm for
Training Text Classifiers. 1994. doi: 10.48550/ARXIV.CMP-LG/940
7020. url: https://arxiv.org/abs/cmp-lg/9407020.

[Lin+17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Pi-
otr Dollár. Focal Loss for Dense Object Detection. 2017. doi: 10.48
550/ARXIV.1708.02002. url: https://arxiv.org/abs/1708.02
002.

[Liu+17] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang.
“Deep learning for extreme multi-label text classification.” In:
Proceedings of the 40th international ACM SIGIR conference on re-
search and development in information retrieval. 2017, pp. 115–124.

[MDS22] Dheeraj Mekala, Chengyu Dong, and Jingbo Shang. LOPS:
Learning Order Inspired Pseudo-Label Selection for Weakly Super-
vised Text Classification. 2022. doi: 10.48550/ARXIV.2205.12528.
url: https://arxiv.org/abs/2205.12528.

[MS20] Dheeraj Mekala and Jingbo Shang. “Contextualized weak su-
pervision for text classification.” In: Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics. 2020,
pp. 323–333.

[MZS20] Dheeraj Mekala, Xinyang Zhang, and Jingbo Shang. “META:
Metadata-Empowered Weak Supervision for Text Classifica-
tion.” In: Conference on Empirical Methods in Natural Language
Processing. 2020.

[Mik+13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Ef-
ficient estimation of word representations in vector space.” In:
arXiv preprint arXiv:1301.3781 (2013).

[Min+09] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. “Dis-
tant Supervision for Relation Extraction without Labeled Data.”
In: Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2 - Volume 2. ACL ’09.

https://doi.org/10.48550/ARXIV.2109.04838
https://doi.org/10.48550/ARXIV.2109.04838
https://arxiv.org/abs/2109.04838
https://doi.org/10.48550/ARXIV.CMP-LG/9407020
https://doi.org/10.48550/ARXIV.CMP-LG/9407020
https://arxiv.org/abs/cmp-lg/9407020
https://doi.org/10.48550/ARXIV.1708.02002
https://doi.org/10.48550/ARXIV.1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.48550/ARXIV.2205.12528
https://arxiv.org/abs/2205.12528

bibliography 90

Suntec, Singapore: Association for Computational Linguistics,
2009, 1003–1011. isbn: 9781932432466.

[Mor+19] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian.
“One ticket to win them all: generalizing lottery ticket initial-
izations across datasets and optimizers.” In: Advances in neural
information processing systems 32 (2019).

[MA20] Subhabrata Mukherjee and Ahmed Awadallah. “Uncertainty-
aware self-training for few-shot text classification.” In: Advances
in Neural Information Processing Systems 33 (2020), pp. 21199–
21212.

[Nam+19] Jinseok Nam, Young-Bum Kim, Eneldo Loza Mencia, Sunghyun
Park, Ruhi Sarikaya, and Johannes Fürnkranz. “Learning
Context-dependent Label Permutations for Multi-label Clas-
sification.” In: Proceedings of the 36th International Conference
on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan
Salakhutdinov. Vol. 97. Proceedings of Machine Learning Re-
search. PMLR, 2019, pp. 4733–4742. url: https://proceedings
.mlr.press/v97/nam19a.html.

[NS04] Hieu T Nguyen and Arnold Smeulders. “Active learning using
pre-clustering.” In: Proceedings of the twenty-first international con-
ference on Machine learning. 2004, p. 79.

[NDH19] Vu-Linh Nguyen, Sébastien Destercke, and Eyke Hüllermeier.
Epistemic Uncertainty Sampling. 2019. doi: 10.48550/ARXIV.190
9.00218. url: https://arxiv.org/abs/1909.00218.

[NSH22] Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke
Hüllermeier. “How to Measure Uncertainty in Uncertainty Sam-
pling for Active Learning.” In: Mach. Learn. 111.1 (2022), 89–122.
issn: 0885-6125. doi: 10.1007/s10994-021-06003-9. url: http
s://doi.org/10.1007/s10994-021-06003-9.

[NMC05] Alexandru Niculescu-Mizil and Rich Caruana. “Predicting
good probabilities with supervised learning.” In: Proceedings
of the 22nd international conference on Machine learning. 2005,
pp. 625–632.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning.
“GloVe: Global Vectors for Word Representation.” In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Doha, Qatar: Association for Com-
putational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115
/v1/D14-1162. url: https://aclanthology.org/D14-1162.

[Pri04] Michael Prince. “Does active learning work? A review of the
research.” In: Journal of engineering education 93.3 (2004), pp. 223–
231.

https://proceedings.mlr.press/v97/nam19a.html
https://proceedings.mlr.press/v97/nam19a.html
https://doi.org/10.48550/ARXIV.1909.00218
https://doi.org/10.48550/ARXIV.1909.00218
https://arxiv.org/abs/1909.00218
https://doi.org/10.1007/s10994-021-06003-9
https://doi.org/10.1007/s10994-021-06003-9
https://doi.org/10.1007/s10994-021-06003-9
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162

bibliography 91

[Qia+18] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan
Yuille. “Deep co-training for semi-supervised image recogni-
tion.” In: Proceedings of the european conference on computer vision
(eccv). 2018, pp. 135–152.

[RB21] Anant Raj and Francis Bach. Convergence of Uncertainty Sampling
for Active Learning. 2021. doi: 10.48550/ARXIV.2110.15784. url:
https://arxiv.org/abs/2110.15784.

[RU11] Anand Rajaraman and Jeffrey David Ullman. “Data Mining.”
In: Mining of Massive Datasets. Cambridge University Press,
2011, 1–17. doi: 10.1017/CBO9781139058452.002.

[RPH08] Jesse Read, Bernhard Pfahringer, and Geoff Holmes. “Multi-
label Classification Using Ensembles of Pruned Sets.” In:
2008 Eighth IEEE International Conference on Data Mining. 2008,
pp. 995–1000. doi: 10.1109/ICDM.2008.74.

[Riz+21] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and
Mubarak Shah. In Defense of Pseudo-Labeling: An Uncertainty-
Aware Pseudo-label Selection Framework for Semi-Supervised Learn-
ing. 2021. doi: 10.48550/ARXIV.2101.06329. url: https://arx
iv.org/abs/2101.06329.

[Rot+18] Nadav Rotem et al. Glow: Graph Lowering Compiler Techniques for
Neural Networks. 2018. doi: 10.48550/ARXIV.1805.00907. url:
https://arxiv.org/abs/1805.00907.

[SJT16] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. “Reg-
ularization with stochastic transformations and perturbations
for deep semi-supervised learning.” In: Advances in neural infor-
mation processing systems 29 (2016).

[San+19] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. 2019. doi: 10.48550/ARXIV.1910.01108. url: https:
//arxiv.org/abs/1910.01108.

[Sch+14] Axel Schulz, Eneldo Loza Mencía, Thanh Tung Dang, and
Benedikt Schmidt. “Evaluating multi-label classification of
incident-related tweets.” In: Proceedings of the Making Sense of
Microposts (# Microposts 2014), Seoul, Korea (2014), pp. 7–11.

[Scu65] H. Scudder. “Probability of error of some adaptive pattern-
recognition machines.” In: IEEE Transactions on Information The-
ory 11.3 (1965), pp. 363–371. doi: 10.1109/TIT.1965.1053799.

[STV11] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vla-
havas. “On the stratification of multi-label data.” In: Machine
Learning and Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Pro-
ceedings, Part III 22. Springer. 2011, pp. 145–158.

https://doi.org/10.48550/ARXIV.2110.15784
https://arxiv.org/abs/2110.15784
https://doi.org/10.1017/CBO9781139058452.002
https://doi.org/10.1109/ICDM.2008.74
https://doi.org/10.48550/ARXIV.2101.06329
https://arxiv.org/abs/2101.06329
https://arxiv.org/abs/2101.06329
https://doi.org/10.48550/ARXIV.1805.00907
https://arxiv.org/abs/1805.00907
https://doi.org/10.48550/ARXIV.1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.1109/TIT.1965.1053799

bibliography 92

[Sha48] C. E. Shannon. “A mathematical theory of communication.” In:
The Bell System Technical Journal 27.3 (1948), pp. 379–423. doi:
10.1002/j.1538-7305.1948.tb01338.x.

[SGM22] Ruoqi Shen, Liyao Gao, and Yi-An Ma. On Optimal Early Stop-
ping: Over-informative versus Under-informative Parametrization.
2022. doi: 10.48550/ARXIV.2202.09885. url: https://arxi
v.org/abs/2202.09885.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. “Dropout: A Simple Way
to Prevent Neural Networks from Overfitting.” In: Journal of
Machine Learning Research 15.56 (2014), pp. 1929–1958. url: htt
p://jmlr.org/papers/v15/srivastava14a.html.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Se-
quence Learning with Neural Networks. 2014. doi: 10.48550/ARXI
V.1409.3215. url: https://arxiv.org/abs/1409.3215.

[TRR22] Michael Tänzer, Sebastian Ruder, and Marek Rei. “Memorisa-
tion versus Generalisation in Pre-trained Language Models.”
In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2022, pp. 7564–
7578.

[TGH15] Isaac Triguero, Salvador García, and Francisco Herrera. “Self-
labeled techniques for semi-supervised learning: taxonomy,
software and empirical study.” In: Knowledge and Information
systems 42.2 (2015), pp. 245–284.

[TV07] Grigorios Tsoumakas and Ioannis Vlahavas. “Random k-
labelsets: An ensemble method for multilabel classification.” In:
Machine Learning: ECML 2007: 18th European Conference on Ma-
chine Learning, Warsaw, Poland, September 17-21, 2007. Proceedings
18. Springer. 2007, pp. 406–417.

[VEH20] Jesper E Van Engelen and Holger H Hoos. “A survey on semi-
supervised learning.” In: Machine Learning 109.2 (2020), pp. 373–
440.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention Is All You Need. 2017. doi: 10.48550/ARXIV.17
06.03762. url: https://arxiv.org/abs/1706.03762.

[Vig19] Jesse Vig. “A Multiscale Visualization of Attention in the Trans-
former Model.” In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations.
Florence, Italy: Association for Computational Linguistics, July
2019, pp. 37–42. doi: 10.18653/v1/P19-3007. url: https://www
.aclweb.org/anthology/P19-3007.

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.48550/ARXIV.2202.09885
https://arxiv.org/abs/2202.09885
https://arxiv.org/abs/2202.09885
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.48550/ARXIV.1409.3215
https://doi.org/10.48550/ARXIV.1409.3215
https://arxiv.org/abs/1409.3215
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/P19-3007
https://www.aclweb.org/anthology/P19-3007
https://www.aclweb.org/anthology/P19-3007

bibliography 93

[Wan+19] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet
Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. SuperGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems. 2019. doi: 10.48550/ARXIV.19
05.00537. url: https://arxiv.org/abs/1905.00537.

[Wan+18] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. GLUE: A Multi-Task Benchmark
and Analysis Platform for Natural Language Understanding. 2018.
doi: 10.48550/ARXIV.1804.07461. url: https://arxiv.org/ab
s/1804.07461.

[WWL20] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. “Structured
Pruning of Large Language Models.” In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020. doi:
10.18653/v1/2020.emnlp-main.496. url: https://doi.org/10
.18653%2Fv1%2F2020.emnlp-main.496.

[Wu+16] Yonghui Wu et al. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. 2016.
doi: 10.48550/ARXIV.1609.08144. url: https://arxiv.org/ab
s/1609.08144.

[Xu+19] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and
Junyang Lin. “Understanding and Improving Layer Normaliza-
tion.” In: Advances in Neural Information Processing Systems. Ed.
by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019. url:
https://proceedings.neurips.cc/paper/2019/file/2f4fe03

d77724a7217006e5d16728874-Paper.pdf.

[Xun+20] Guangxu Xun, Kishlay Jha, Jianhui Sun, and Aidong Zhang.
“Correlation networks for extreme multi-label text classifica-
tion.” In: Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining. 2020, pp. 1074–
1082.

[Yan01] Yiming Yang. “A study of thresholding strategies for text cate-
gorization.” In: Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information re-
trieval. 2001, pp. 137–145.

[Zaf+19] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat.
“Q8BERT: Quantized 8Bit BERT.” In: 2019 Fifth Workshop on En-
ergy Efficient Machine Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS). IEEE, 2019. doi: 10.1109/emc2-nips5302
0.2019.00016. url: https://doi.org/10.1109%2Femc2-nips53
020.2019.00016.

https://doi.org/10.48550/ARXIV.1905.00537
https://doi.org/10.48550/ARXIV.1905.00537
https://arxiv.org/abs/1905.00537
https://doi.org/10.48550/ARXIV.1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://doi.org/10.18653%2Fv1%2F2020.emnlp-main.496
https://doi.org/10.18653%2Fv1%2F2020.emnlp-main.496
https://doi.org/10.48550/ARXIV.1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://doi.org/10.1109/emc2-nips53020.2019.00016
https://doi.org/10.1109/emc2-nips53020.2019.00016
https://doi.org/10.1109%2Femc2-nips53020.2019.00016
https://doi.org/10.1109%2Femc2-nips53020.2019.00016

bibliography 94

[Zha+21] Yu Zhang, Zhihong Shen, Yuxiao Dong, Kuansan Wang, and Ji-
awei Han. MATCH: Metadata-Aware Text Classification in A Large
Hierarchy. 2021. doi: 10.48550/ARXIV.2102.07349. url: https:
//arxiv.org/abs/2102.07349.

[Zhe+21] Yi Zheng, Shixiang Tang, Guolong Teng, Yixiao Ge, Kaijian Liu,
Jing Qin, Donglian Qi, and Dapeng Chen. “Online Pseudo La-
bel Generation by Hierarchical Cluster Dynamics for Adaptive
Person Re-Identification.” In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). 2021, pp. 8371–
8381.

[Zhu+22] Dawei Zhu, Michael A. Hedderich, Fangzhou Zhai, David Ife-
oluwa Adelani, and Dietrich Klakow. Is BERT Robust to Label
Noise? A Study on Learning with Noisy Labels in Text Classification.
2022. doi: 10.48550/ARXIV.2204.09371. url: https://arxiv.o
rg/abs/2204.09371.

https://doi.org/10.48550/ARXIV.2102.07349
https://arxiv.org/abs/2102.07349
https://arxiv.org/abs/2102.07349
https://doi.org/10.48550/ARXIV.2204.09371
https://arxiv.org/abs/2204.09371
https://arxiv.org/abs/2204.09371

Part II

Appendix

A
F I G U R E S

Figure A.1: GLUE Top 10 Models

A.1 predictive 97

a.1 predictive

Binary Ensemble Multi-Label ML 8-Bit Multi-Label Multi-Label Multi-Label
Category ELECTRA ELECTRA ELECTRA DistilBERT LSTM XGBoost

Macro 0.869 0.867 0.862 0.853 0.813 0.842

Micro 0.863 0.860 0.859 0.850 0.803 0.837

Face Mask General 0.980 0.960 0.960 0.984 0.933 0.976

Loudness 0.938 0.931 0.937 0.915 0.870 0.928

Luggage General 0.893 0.921 0.908 0.897 0.847 0.877

Passenger Rights 0.817 0.847 0.838 0.802 0.764 0.773

Punctuality 0.837 0.846 0.853 0.852 0.785 0.841

Seat Availability 0.824 0.813 0.786 0.798 0.744 0.774

Seating Comfort 0.844 0.846 0.846 0.800 0.785 0.800

Temperature General 0.901 0.901 0.886 0.889 0.878 0.882

Train Cancellation 0.853 0.794 0.807 0.755 0.711 0.734

Train Service 0.700 0.701 0.694 0.743 0.677 0.707

WLAN / Internet 0.973 0.973 0.973 0.950 0.947 0.969

Table A.1: Comparison of the predictive performance of different model architec-
tures on the holdout validation data via F1-Score

a.2 latency

Figure A.2: Per-Sample Inference Latency for different model type with input se-
quence length 20

A.2 latency 98

Figure A.3: Inference latency with ONNX runtime

Figure A.4: Inference latency for 8-bit quantized model and ONNX runtime

	Titlepage
	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Abkürzungsverzeichnis
	 Thesis
	1 Introduction
	1.1 Motivation
	1.2 Methodology and Outline

	2 Related work
	3 Foundations: Multi-label classification with Attention-based Neural Networks
	3.1 Multi-Label Classification
	3.1.1 Probability Theory
	3.1.2 Label dependence
	3.1.3 Evaluation Measures for Classification

	3.2 Multi-Label Data Improvement
	3.2.1 Active Learning
	3.2.2 Pseudo Labels
	3.2.3 Label Imbalance

	3.3 Attention-based Deep Neural Networks
	3.3.1 Text representation
	3.3.2 Transformer Encoder Architecture
	3.3.3 Attention
	3.3.4 Pre-Training and Fine-Tuning
	3.3.5 Multi-Label Classification with Transformers

	4 Foundations: Inference Time Optimization
	4.1 Quantization
	4.1.1 Symmetric vs. Asymmetric Quantization
	4.1.2 Uniform vs. Non-Uniform Quantization
	4.1.3 Post-Training Quantization vs. Quantization-Aware Training

	4.2 Knowledge Distillation

	5 Concept and experimental setup
	5.1 Data
	5.1.1 Binary-labeled training data
	5.1.2 Multi-label data

	5.2 Training, evaluation and prediction
	5.2.1 Baseline Models
	5.2.2 Large Language Models

	5.3 Inference Latency Optimization

	6 Experimental results
	6.1 Predictive performance
	6.1.1 Binary classifiers by example of Passenger Rights
	6.1.2 Multi-label classifiers
	6.1.3 Scaling to higher numbers of categories

	6.2 Inference latency optimization on CPU

	7 Discussion
	7.1 Conclusion

	 Bibliography

	 Appendix
	A Figures
	A.1 Predictive
	A.2 Latency

