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Motivation

Figure 1. Digital twin of the employed production line.

The objective of the project Dynamic Scheduling of Gantry Robots using Simulation and Reinforcement

Learning [3] is to examine the potential of using Reinforcement Learning (RL) [2] to control gantry

robots in a production line. Figure 1 illustrates the digital twin of a production line comprising three

work centers, eachwith twowork stations, and two gantry robots, which are also referred to as loaders.

The loaders are responsible for the transportation of the workpieces, which must be processed once

at each work center. The previous research employed a Single-Agent Reinforcement Learning (SARL)

approach, where one agent was responsible for controlling all employed loaders [3]. The agent uti-

lized a Deep Q-Network (DQN) [1] to approximate the Q-function within the RL domain. The work

successfully demonstrated that the RL agent can learn a strategy at least equivalent to conventional

control methods.

Nevertheless, the practical application of the SARL approach is constrained by the increasing com-

plexity of the simulated system, particularly in scenarios involving a greater number of work stations

and multiple loaders. The exponential growth of the state space, which is a consequence of the ne-

cessity of mapping the entire environment, and the asynchronous environment are identified as the

primary challenges. The asynchronous environment is a consequence of the varying execution times

of the actions, as the digital twin simulates a continuous rather than a discrete process. It would be an

inefficient use of time to await the completion of all robot actions. Consequently, at each time step t,
the agent selects only the action designated for the requesting loader. This results in scenarios where

the selected action at is not fully executed in the subsequent state st+1, when another loader requests
the action in time step t + 1.

Research Goal

This master’s thesis examines how these challenges can be addressed through the application of

a cooperative Multi-Agent Reinforcement Learning (MARL) approach. The following requirements

must be satisfied:

In order to guarantee that the observed experiences align with the principles of RL, it is essential

to address the challenge of the asynchronous environment.

In order to counteract the curse of dimensionality, it is necessary to reduce the cardinality of the

state space.

In order to achieve the highest possible throughput of workpieces, it is imperative that the

agents adopt a unified strategy that guarantees the cooperative effort of all agents.
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Figure 2. Structure of the RL problem with two independent agents.

The proposed MARL approach employs multiple independent DQN agents, with each agent responsi-

ble for controlling only a single loader. In order to address the asynchronous environment, the global

state st and the observed reward rt are distributed only to the agent, that is responsible for the request-

ing loader (see Figure 2). This guarantees that each agent exclusively observes environment states in

which its own previous action is fully executed. All modifications to the environment resulting from

the actions of other loaders can be considered ”passive”, i.e. modifications that are not actively caused

by the executed action of the requesting loader.

The state space cardinality is reduced in two stages. The application of partial observability results in a

local state space for each agent, which includes only a subset of the features present in the global state

space. Furthermore, the local state spaces are reduced by limiting the operational area of each loader.

This thesis proposes a symmetrical division of the production line. The first loader is capable of moving

between the input (represented by the left conveyor belt in Figure 1) and the fourth station, while the

second loader can travel between the third station and the output (represented by the right conveyor

belt). These modifications require that each agent utilizes its own replay memory to store its observed

experiences during the training process. This is essential, as the local states of the agents represent

different subsets of the global state. Moreover, each agent employs its own DQNwith distinct param-

eters, as the local state maps to the input layer and the local action state maps to the output layer of the

neural network. Consequently, the training of the agent’s DQNs must be conducted independently.

Figure 3. Moving average over 50 episodes of the achieved hourly workpiece throughput. For illustrative purposes, only
the initial 2700 of the 40 000 episodes are presented for the SARL strategy.

Results

Figure 3 illustrates the training progress of three distinct MARL strategies in comparison to the existing

SARL strategy. It is important to note that the SARL strategy requires training over 40 000 episodes to
reach its maximum, which is not fully illustrated in Figure 3. The ”MARL All Stations” strategy enables

both loaders to reach all six work stations analogously to the SARL strategy. In contrast, the ”MARL

Restricted Work Area” strategy divides the production line symmetrically. In the ”MARL Consecutive

Drive Penalty” strategy, consecutive drive actions are penalized via the reward function, as they are

deemed inefficient. It can be observed that all MARL strategies achieve a similar maximum throughput

during the training process, outperforming the SARL strategy significantly.

The validation results of the trained strategies are presented in Table 1. The validation of the strategies

is conducted over 100 episodes, during which the production process is simulated for two hours. As
no random processes are employed within the system to enhance clarity, the values attained in each

episode remain consistent. The results demonstrate that all three MARL strategies achieve a higher

throughput than the SARL approach. By limiting the work area, throughput is further enhanced, albeit

at the cost of a notable increase in the number of required actions. This issue can be addressed by

implementing a penalty for consecutive drive actions.

Table 1. Validation results for existing SARL strategy and three different MARL strategies.

#Actions

Strategy Throughput Agent 1 Agent 2

SARL Two I-Loaders 153 2600 -

MARL All Stations 158 1530 1350
MARL Restricted Work Area 159 1750 1450
MARL Consecutive Drive Penalty 159 1510 1290

Conclusion

The presented MARL approach demonstrates that the control of gantry robots can be achieved with

independent agents. Notwithstanding the fact that the DQN agents act and are trained indepen-

dently of one another, they have learned to cooperate in a manner that maximizes the achieved

throughput. The number of training episodes required could be reduced from 40 000 to 2500 in com-
parison to the previous SARL approach. This is made possible due to the fact that the distribution

of the environment state only to the responsible agents results in less variant training data. More-

over, the cardinality of the agent’s state spaces can be reduced, due to the partial observation and

the restriction of the work areas without any adverse effects. The global state space of the SARL

approach has a cardinality of approximately 8 × 109. In contrast, the local state spaces of the MARL
approach only have a cardinality of approximately 9×105 for the first agent and 4×105 for the second
agent.
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