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A B S T R A C T

In recent years, there has been a notable increase in the attention given to Machine
Learning and Reinforcement Learning in both research and practice. In the manufactur-
ing industry, for instance, an increasing number of approaches are being investigated
with the objective of determining how artificial intelligence can be utilized to enhance
efficiency and productivity. One potential area of application is the flexible control and
rapid adaptation of production systems to changing conditions through Reinforcement
Learning. In contrast to conventional, purely rule-based control systems, this is only
possible with great effort. Digital twins are now being used in the development of
production systems, allowing risks during subsequent operations to be identified and
minimized at an early stage. The simulation software used for this is particularly suitable
as an environment for Reinforcement Learning approaches.

Previous research has demonstrated that Reinforcement Learning with a single
agent can be utilized to control gantry robots in relatively straightforward production
lines. However, in more advanced production lines with multiple gantry robots, the
exponentially expanding state space presents a significant challenge for the Single-Agent
approach, ultimately reducing its efficiency. Furthermore, the asynchronous execution
of actions with multiple agents introduces additional complexities for the Reinforcement
Learning approach that require further investigation and resolution.

This thesis presents a Multi-Agent Reinforcement Learning approach in which each
gantry robot is controlled by one agent. An analysis of previous research forms the basis
for identifying the major challenges. Based on this, the methodology of the Multi-Agent
approach is developed and explained. The effectiveness of the presented methodology
is then tested and evaluated in several iterative experiments.

The experiments demonstrate the efficacy of the methodology in controlling gantry
robots in a production plant. Despite training the agents independently, they learn
a strategy for cooperative collaboration. The use of local state and action spaces for
the respective agents has a negligible impact on the learned strategy. Additionally, it
is shown that adapting the reward function of the Reinforcement Learning approach
effectively compensates for inaccuracies in the simulation software.

keywords: Reinforcement Learning, Cooperative Multi-Agents, Gantry Robots, Dy-
namic Scheduling, Production Control
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Z U S A M M E N FA S S U N G

In den vergangenen Jahren gewannen Machine Learning und Reinforcement Learning
mehr Aufmerksamkeit in der Forschung und auch in der Praxis. So werden beispiels-
weise in der produzierenden Industrie vermehrt Ansätze untersucht, wie künstliche
Intelligenz eingesetzt werden kann, um die Effizienz und die Produktivität zu steigern.
Ein potenzielles Anwendungsgebiet ist die flexible Steuerung und schnelle Adaption
von Produktionsanlagen an veränderte Bedingungen durch Reinforcement Learning.
Mittels herkömmlicher rein regelbasierten Steuerungen gelingt dies nur mit großem
Aufwand. Inzwischen werden bei der Entwicklung von Produktionsanlagen digitale
Zwillinge eingesetzt, wodurch Risiken beim späteren Betrieb vorzeitig erkannt und
minimiert werden können. Die dafür verwendete Simulationssoftware eignet sich in
besonderem Maße als Environment für Reinforcement Learning Ansätze.

In vorangegangenen Forschungsarbeiten konnte nachgewiesen werden, dass Rein-
forcement Learning mit einem einzelnen Agenten zur Steuerung von Portalrobotern in
simplen Produktionsanlagen anwendbar ist. Bei komplexeren Anlagen mit mehreren
Portalrobotern führt der exponentiell wachsende Zustandsraum allerdings zu Heraus-
forderungen für den Single-Agenten Ansatz, was die Effizienz des Ansatzes reduziert.
Zudem ergeben sich durch die asynchrone Ausführung der Aktionen bei mehreren
Agenten weitere Herausforderungen für den Reinforcement Learning Ansatz, die es zu
bewältigen gilt.

Die vorliegende Masterarbeit präsentiert einen Multi-Agenten Reinforcement Lear-
ning Ansatz, bei dem jeder Portalroboter von einem Agenten kontrolliert wird. Die
Analyse vergangener Forschungsarbeiten bildet die Grundlage für die Identifizierung
der wesentlichen Herausforderungen. Davon ausgehend wird die Methodik des Multi-
Agenten Ansatzes entwickelt und erläutert. Die Wirksamkeit der vorgestellten Methodik
wird in mehreren iterativen Experimente getestet und bewertet.

Die durchgeführten Experimente belegen, dass die entwickelte Methodik sich erfolg-
reich zur Steuerung von Portalrobotern in einer Produktionsanlage eignet. Die Agenten
erlernen, obwohl sie unabhängig voneinander trainiert werden, eine Strategie zur ko-
operativen Zusammenarbeit. Es konnte nachgewiesen werden, dass das Verwenden von
lokalen Zustands- und Aktionsräumen für die jeweiligen Agenten nur marginale Aus-
wirkungen auf die gelernte Strategie hat. Des Weiteren wurde demonstriert, dass durch
Anpassen der Reward-Funktion des Reinforcement Learning Ansatzes Ungenauigkeiten
in der Simulationssoftware effektiv kompensiert werden können.

Schlagwörter: Reinforcement Learning, Kooperative Multi-Agenten, Portalroboter,
Dynamisches Scheduling, Produktionssteuerung
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Part I

T H E S I S



1
I N T R O D U C T I O N

In the contemporary era, a considerable number of modern production facilities have
adopted the use of robots to automate a range of tasks to enhance efficiency and
productivity. For instance, these tasks encompass the distribution of resources within
production facilities. In order to remain competitive in a dynamic global market, pro-
duction facilities must be able to adapt quickly to new requirements. Traditionally, the
transportation of goods was conducted through the use of rudimentary methods, such
as First In, First Out (FIFO), or heuristic approaches. These straightforward methods are
insufficient for maintaining the required adaptability, which is why dynamic scheduling
is becoming increasingly popular. Dynamic scheduling is a methodology that employs,
among other things, real-time decision-making based on the current condition of its
environment.

In recent years, there has been a notable increase in research exploring the potential of
Artificial Intelligence (AI) in optimizing dynamic scheduling problems. The simulation
of actual production facilities with so-called digital twins – a technology employed
under the rubric of Industry 4.0 – offers an optimal foundational basis for Reinforcement
Learning (RL). The problem of distributing resources as a continuous task presents an
additional challenge for RL, which is initially designed for problems with a fixed end.

The objective of the project Dynamic Scheduling of Gantry Robots using Simulation and
Reinforcement Learning (german: KI-Verfahren zur Steuerung von Digitalen Portalroboterzwill-
ingen) is to examine the potential of using RL to control gantry robots in a production
line [Zis+24]. The production line represents a machining process comprising multiple
work steps, such as drilling or milling. The gantry robots are responsible for the trans-
portation of the workpieces between the processing machines. The objective of the RL

approach is to learn a strategy that controls the actions of the gantry robots so that the
achieved throughput is maximized. The initial work carried out as part of the project
successfully demonstrated that an RL agent can learn such a strategy that is at least
equivalent to simple conventional control concepts. This study has used a RL approach
where one Single-Agent (SA) is responsible for the entire production system.

Nevertheless, challenges emerge when the simulated production system becomes
more advanced, specifically when an increased number of work stations and portal
robots are employed. One such challenge is that the individual portal robots are capable
of performing their designated tasks in an asynchronous manner. However, communi-
cation between the simulation and the RL agent must be synchronized, as the agent is
only capable of making a single decision at the same time. Furthermore, the strategy
that must be learned is considerably more complex. On one hand, the environment’s
complexity rises in proportion to the number of components comprising the production
line. On the other hand, the agent must learn a unified strategy to control all gantry
robots, which are performing disparate actions concurrently. Moreover, the learned strat-

2



1.1 structure of thesis 3

egy must learn both cooperation between the gantry robots and mutual consideration,
as the portal robots operate in the same workspace. The functionality of the software
utilized to simulate the digital twin presents a further challenge to the Single-Agent
Reinforcement Learning (SARL) approach, as the transmitted environment states can be
problematic. When multiple gantry robots are employed in the production line, this
issue arises, which may negatively influence the RL algorithm. The challenges that arise
are presented in detail in a subsequent chapter (see Chapter 5).

In accordance with the aforementioned challenges, this master’s thesis will investigate
whether these challenges can be overcome with the application of a Multi-Agent Rein-
forcement Learning (MARL) approach. It is essential to guarantee that the various agents
learn to collaborate effectively in order to maximize the throughput of the produced
workpieces through the implementation of a cooperative strategy. This strategy must
also be evaluated in a dynamic environment, specifically in the context of random
machine failures. Moreover, it is also necessary to ascertain whether the particular
characteristic of the simulation software can be mitigated through the utilization of a
Multi-Agent (MA) approach. The efficacy and robustness of the presented methodology
will be evaluated through a series of experiments.

1.1 structure of thesis

The following chapters of this thesis are structured as follows:

• Chapter 2 offers an overview of the core structural elements and operational
characteristics of the simulated production plant, providing a foundation for
subsequent analysis.

• Chapter 3 presents an examination of the diverse MARL approaches, elucidat-
ing their distinctive attributes and previous studies that have examined these
approaches in different contexts.

• Chapter 4 explains the theoretical foundations of Neural Networks (NNs) and the
concept of RL, which both are necessary to comprehend the proposed methodology.

• Chapter 5 provides an in-depth analysis of the specific challenges associated with
the existing SARL approach. It then introduces the methodology of the proposed
MARL approach, which has been designed to address these challenges.

• Chapter 6 outlines the key aspects of the implementation of the proposed MARL

approach, offering a technical overview of how the methodology was realized in
practice.

• Chapter 7 presents the conducted experiments and their subsequent evaluation.
An analysis of the resulting data is provided in order to assess the performance
and effectiveness of the proposed approach.

• Chapter 8 summarizes the findings of the thesis, reflecting on the insights gained
from the research, and provides an outlook on potential future works.



2
P R O J E C T P R E S E N TAT I O N

Figure 2.1: A digital twin of a production line with one single I-Loader and three work centers,
each of which employs two work stations. The work stations are positioned between
the input (left) and output (right) conveyor.

This thesis builds upon the fundamental structure of the project Dynamic Schedul-
ing of Gantry Robots using Simulation and Reinforcement Learning (german: KI-Verfahren
zur Steuerung von Digitalen Portalroboterzwillingen (KISPo)), which investigates the use
of Reinforcement Learning (RL) for finding an optimal control of gantry robots for
transporting workpieces in a production line [Mil+23]. The creation of a digital twin of
production lines is facilitated by the utilization of simulation software, such as Plant
Simulation from Siemens or AnyLogic. The digital twin of a production line, illustrated
in Figure 2.1, comprises the following components:

• Gantry robots, also referred to as loaders in this thesis, are mobile robotic systems
that navigate horizontally on a track situated above the machines. Two distinct
types of loaders have been classified: the I-loader, which is equipped with one
single gripper, and the H-loader, which is equipped with two independent grippers.
The grippers are capable of vertical movement towards the machines and grabbing
the workpieces. This thesis focuses exclusively on the I-loader type.

• The input of the production line is illustrated on the left side of Figure 2.1. It
comprises two components: the source, which generates unprocessed workpieces
following a configurable distribution (in this instance, an uniform distribution),
and a conveyor belt that transports the workpieces to the Conveyor_In station,
where the loader can access and load the unprocessed workpieces.

• The right-hand side of Figure 2.1 illustrates the output of the production line.
The output receives workpieces that have undergone all necessary processing

4



project presentation 5

steps and transports them to the sink, thereby removing the workpiece from the
simulation. The name of this output station is Conveyor_Out.

• A variable number of work centers may be positioned between the input and
the output. Each work center comprises two machines as standard and is tasked
with executing a specific work step, such as drilling or milling. These stations are
named alphabetically starting with Station_A to Station_F. The processing time
of the work step is defined by deterministic value. Furthermore, it is possible to
simulate the occurrence of machine failures, which follow a stochastic behavior.

A process plan is specified for each workpiece type, describing the sequence of
required work steps. Upon completion of these steps, the workpiece is considered
finished and can be transported to the output.

A loader is capable of executing the following actions:

• The drive actions initiate the movement to the designated target station. The action
name itself is the name of the target station.

• The load action initiates the loading process of a workpiece from the Conveyor_In
or a work station into the gripper of the I-loader.

• The unload action initiates the unloading process of the loaded workpiece from
the gripper into a work station or the Conveyor_Out station.

• The wait action allows the loader to await a change in the simulation environment,
such as the completion of the processing of a workpiece at a workstation.

In contrast to conventional approaches, the digital twin simulation employs a contin-
uous time frame, rather than discrete time steps. Moreover, the time required for the
completion of individual actions varies. To illustrate, the duration of the load and unload
action is a fixed value, whereas the duration of a drive action depends upon the initial
location of the loader and the intended destination. The precise times are outlined in
Chapter 7. In a production line that employs multiple gantry robots, it is typical for the
loaders to complete their actions at disparate simulation times. In practice, it would be
inefficient to wait for all loaders to complete their respective actions. Therefore, it is
necessary for the loaders to receive new actions at different times, which results in the
formation of an asynchronous system.



3
R E L AT E D W O R K S

Multi-Agent Reinforcement Learning (MARL) represents a research area that addresses
the application of multiple agents that act in the same environment. In recent years,
MARL has gained attention in the research community, as numerous real-world prob-
lems, such as cooperative robotics, autonomous driving, and business simulations, are
characterized by the interaction of multiple agents. Multi-Agent (MA) approaches can
be classified into three primary categories: competitive, cooperative, and mixed.

The competitive approach is characterized by scenarios in which multiple agents
engage in a competitive pursuit, either to be the first to achieve a predefined goal or to
accomplish their individual objectives. This approach is frequently observed in strategic
games such as chess, Go [Sil+18], and StarCraft II [Vin+19], where the objective of the
agents is to vanquish their opponent and thereby gain a superior position.

In contrast, the cooperative approach involves agents pursuing a common goal that
can only be achieved through collaborative efforts. This type of MARL approach is
frequently employed in applications that necessitate collective action, such as swarm
robotics [Krn+24] or cooperative multiplayer computer games.

Mixed approaches integrate elements of both cooperative and competitive strategies.
An illustrative example is autonomous driving [SSSS16; Zho+22], where each car strives
to reach its destination as quickly as possible, while also coordinating with other cars to
avoid collisions and ensure road safety.

In the context of the project discussed in this thesis, only cooperative MARL approaches
are applicable, as all loaders and therefore their corresponding agents must work
cooperatively to transport the workpieces through the production line.

In their book, Albrecht et al. [ACS24] provide an expanded classification of MARL

approaches that illustrate their diversity and complexity. In addition to the three cate-
gories previously presented, MARL approaches can differ in the following dimensions.
It should be noted that the respective main categories exclude certain characteristics of
the dimensions.

• Size: The number of agents can be either constant or dynamic. A constant number
of agents provides a stable framework, whereas a dynamic number of agents
introduces greater complexity to the coordination process and necessitates the
development of more adaptive strategies.

• Knowledge: The agents may vary in their knowledge of the environment and of
each other. This may extend to include information regarding the action space, the
reward function, and the state-transition probability.

• Observability: The observations made by the agents can be classified as either
global or local. Global observations comprise all available information related

6
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to the state of the environment and the actions of all agents. In contrast, local
observations offer only a limited view of the environment for each individual
agent. This behavior is also referred to as partial observability of the agents.

• Reward: The structure of rewards can be classified into three main categories: the
competitive zero-sum reward, a shared reward, or individual rewards for each
agent. The structure of rewards influences the development of strategies and the
interactions between agents.

• Objective: The objective may be to develop a unified strategy that is advantageous
for all agents or to optimize individual performance. Additionally, there is a
distinction between whether only the final strategy learned or the evolving strategy
during training is relevant.

• Centralization and Communication: The categorization of MARL approaches
according to their training and execution behavior, as well as the communication
patterns between the agents, is in accordance with the descriptions put forth by
Gronauer and Diepold [GD22].

– In Centralized Training Centralized Execution (CTCE) approaches, a common
strategy is developed through centralized learning, with all agents utilizing
the same strategy due to the direct exchange of information between the
agents.

– In Centralized Training Decentralized Execution (CTDE) approaches, the local
experiences of all agents are shared and utilized for updating their policies.
In contrast, during the selection of actions, each policy relies exclusively on
the local observations of the respective agent, thereby entirely decentralizing
the execution process.

– In a Distributed Training Decentralized Execution (DTDE) approach, each agent
gathers its own local experiences without any direct communication with
the other agents. Their policies are trained exclusively on the basis of their
individual experiences. Similarly, decisions are made exclusively on the basis
of their local observations.

In consideration of the project setup utilized, it is possible to narrow down the
specified dimensions. To illustrate, the number of agents is constant, as each agent is
designed to control a single loader. It is highly improbable that the number of loaders
would undergo a permanent alteration in such an application. Secondly, although the
possible actions and the reward function are known, the state-transition probability is
not known. In the context of the existing Single-Agent (SA) approach, it is essential that
the agent is aware of the complete state of the environment. For the MARL approach,
however, partial observations of local states are also a viable option for reducing the
growth of the state space cardinality in more complex systems. Additionally, only shared
or individual rewards can be considered for reward allocation, due to the cooperative
objective. Similarly, the cooperative approach necessitates the learning of a common
strategy, which must find a balance between the local strategies of the individual agents.
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For the majority of problems that represent reality, a MARL approach with centralized
training and execution is not a viable solution. In order to enable centralized execution,
it is necessary to employ a controlling unit that must have a global view of the entire
environment and all utilized worker agents. This results in the same issues as those en-
countered with the existing SA approach when a complex system is involved. Therefore,
a decentralized execution approach is necessary. This is further reinforced by the fact
that the actions of the individual agents must be executed independently due to the
asynchronous nature of the simulation (see Chapter 2 and Chapter 5). Similarly, central-
ized training of the agent’s policies based on the shared experiences is not applicable,
as the local states of the agents may include different features of the global state, due to
their intended partial observability.

In their work, Yu et al. [Yu+23] address the challenges of cooperative exploration by
multiple robots in unknown regions, with a particular focus on improving exploration
efficiency in real-world scenarios. The authors contend that traditional MARL methods
assume synchronous action execution, which can be inefficient when the duration of the
execution is different for each robot. The authors have proposed an asynchronous MARL

approach, Asynchronous Coordination Explorer (ACE), which extends the multi-agent
Proximal Policy Optimization (PPO) algorithm to handle asynchronous actions and
incorporates action-delay randomization for better policy generalization.

The research of Gupta et al. [GEK17] examines the phenomenon of different co-
operative Reinforcement Learning (RL) approaches in complex, partially observable
environments, wherein the agents are not required to engage in explicit communication.
They compare the three learning algorithms policy gradient, temporal-difference, and
actor-critic. Testing reveals that among these methods, policy gradient methods demon-
strate superior performance when used with feed-forward architectures. However, the
environments used for evaluating the presented approaches were only step-based and
involved synchronous action execution.

The work of Knrjiac et al. [Krn+24] addresses the order-picking problem in ware-
houses where mobile robots and human pickers must coordinate efficiently. The logistic
problem is analogous to the project employed in this thesis, as heuristic methods require
substantial engineering to optimize the control of the robots. The authors introduce hier-
archical MARL algorithms, wherein a manager agent assigns objectives to worker agents,
and both are co-trained to maximize a global metric like pick rate. These algorithms
markedly enhance sample efficiency and pick rates in comparison to baseline MARL
methods and industry heuristics across a range of warehouse scenarios. However, it
uses a central manager agent which needs a global view of the environment.

The study conducted by Tampuu et al. [Tam+15] examines the interactions between
two distinct Deep Q-Network (DQN) agents within the game of Pong. The study illus-
trates how modifying the reward scheme can prompt the emergence of both competitive
and cooperative behaviors, whereby the cooperative setup aims to keep the ball in the
game as long as possible. The research demonstrated the effectiveness of DQNs utilizing
decentralized training in MA systems.
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The presented works examine only specific aspects of the challenges and requirements
inherent to the utilized project and do not consider the combination of all these elements.
The combination consists of the following elements:

• A continuous RL task that does not have a finite state.

• The utilization of multiple agents that learn their local policy but work coopera-
tively.

• The employment of partial observability to reduce the complexity of the local
states.

• The distributed and independent training of the heterogeneous agents.

• The decentralized execution of the selected action due to the asynchronous behav-
ior of the environment.

The methodology used to solve this combination of requirements and challenges is
presented in Chapter 5.



4
T H E O R E T I C A L F O U N D AT I O N S

This chapter provides an overview of the theoretical foundations of Reinforcement
Learning (RL), with a particular focus on Q-Learning and Deep Q-Networks (DQNs).
Additionally, a summary of the functionality of Neural Networks (NNs) is presented,
as NNs are a crucial component of DQNs. These foundational concepts are essential to
comprehend the subsequent Multi-Agent Reinforcement Learning (MARL) approach
and its application, which will be discussed in subsequent chapters.

4.1 neural networks

Artificial Neural Networks (ANNs), or NNs for brevity, represent a central component of
machine learning and artificial intelligence. These models are based on the structure
and functionality of the human brain, comprising interconnected nodes, known as
neurons, that are organized in multiple layers. The neighboring layers are connected
by establishing a link between each neuron of both layers. The strength of the signal
transmitted from one neuron to the next is regulated by the adjustable weight of the
connection between them. If the input layer is directly connected to the output layer,
this is referred to as a single-layer NN. However, this type of network is not well-suited
for mapping complex relationships, which is why additional layers, known as hidden
layers, can be added between the input layer and the output layer. A multi-layered
NN, as illustrated in Figure 4.1, is also referred to as Deep Neural Network (DNN) if it
contains more than two hidden layers.

As illustrated in Figure 4.2, the perceptron represents the functional basis of a neuron
in a NN. A perceptron receives multiple input values x0, x1, .., xn, which are multiplied
by the corresponding weights w0, w1, .., wn of the connection. Subsequently, the sum
of the weighted input values, designated as a = ∑n

i=0 wi × xi, is then passed on to an

Hidden Layers Output LayerInput Layer

Figure 4.1: Illustration of a Deep Neural Network (DNN) with three hidden layers.
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Figure 4.2: Perceptron with its components

activation function g(a). The transformed output value z of the activation function
represents the output of the perceptron. This output value is then utilized as input value
for the subsequent perceptron. [DS13]

The output of the NN is dependent upon the specific weights, which must therefore be
optimized through supervised training. The initial step is to perform the forward pass
of the input data from the training data set. This implies that the input data is conveyed
through each layer of the network, where each neuron calculates its value based on its
input values and passes the result to all neurons of the next layer. Subsequently, the
loss between the predicted values and the target values from the training data set is
calculated. The loss function is used as an indicator of the quality of the network, and
thus, the loss must be minimized to get better predictions. Subsequently, the calculated
loss is propagated backward through the network in order to determine the gradients of
the loss function in relation to each individual weight [RHW86]. The gradients indicate
the extent to which each weight influences the overall loss of the network. Finally, all
weights of the NN are updated using the gradient descent method, with the objective of
minimizing the loss. These adjustments are made in an iterative process until the neural
network achieves optimal performance.

In addition to their classification capabilities, NNs are also optimally suited as universal
function approximators [DS13]. The theoretical basis for this capability is the Universal
Approximation Theorem, which was formulated by Hornik et al. [HSW89]. This theorem
demonstrates that any function of finite dimension can be approximated by a multi-layer
feedforward NN. The degree of accuracy achieved in this approximation is dependent
upon the structure of the NN, particularly the number and configuration of layers and
neurons, as well as the quality of the training data. The successful approximation of non-
linear target functions requires the use of non-linear activation functions, such as the
Rectified Linear Unit (ReLU) function, in the hidden layers. In the absence of non-linear
activation functions, the network is constrained to linear relationships. Consequently,
the selection of an appropriate activation function is important in order to utilize the
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Figure 4.3: Interactions between Agent and Environment.

capabilities of NNs fully. Furthermore, networks comprising multiple output neurons
allow for the approximation of vector-based functions and the mapping of intricate
relationships in multi-dimensional spaces.

4.2 reinforcement learning

The objective of machine learning is to achieve the most accurate prediction or classifica-
tion possible based on input data. The learning algorithms that have been developed can
be classified into three main categories: supervised, unsupervised, and reinforcement
learning [Bis06]. The categories differ in terms of the manner in which the learning
algorithm operates. In supervised learning, both the training data and the desired target
values are available. In contrast, an unsupervised learning procedure is required to
recognize correlations using only the training data, without the benefit of target values.
In contrast, reinforcement learning does not require the initial provision of training data
and target values, as this data is generated during the training phase.

Figure 4.3 provides a straightforward representation of the structure of a RL problem.
The environment presents the mapping of the problem and all potential states. In the
initial stage, the RL agent receives the current state, designated as st, of the environment
at time t. Based on the state, the agent then selects an action, designated as at, which is
then transmitted to the environment. Subsequently, the environment determines the
following state, designated as st+1, and calculates the reward for the resulting state-
action-state transition, represented as (st, at, st+1). The new state and the associated
reward for the preceding action are communicated to the agent, who then selects the
subsequent action based on the new state. This process is repeated until either a final
state of the environment is reached or, in the case of a continuous RL problem, the
process continues until an artificial endpoint is reached. This may be, for example,
until a predefined number of time steps have been completed. The objective of RL is to
instruct the agent in a strategy that will result in the selection of the optimal action at

in a given state st, thereby maximizing the total reward received by the agent over the
course of the episode.

The following explanations and formulas follow those used by Sutton and Barto in
their book, Reinforcement Learning: An Introduction [SB18].
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4.2.1 Definitions and Explanations

The property of RL problems that decisions are contingent upon the current state
implies that the subsequent state is also contingent upon the current state. This indicates
that RL problems satisfy the Markov property, which characterizes this dependency.
Consequently, an RL problem can be formalized as a Markov Decision Process (MDP)
based on the following tuple MDP = (S, A, R, p), where S is the set of possible states
of the environment, A is the set of possible actions and R is the set of rewards [SB18].
The state transition function is defined as follows: p(s′, r|s, a) = P(St = s′, Rt = r|St−1 =

s, At−1 = a). This specifies the probability with which the system transitions to a certain
subsequent state, thereby describing the dynamics of the MDP.

As previously stated, the objective of RL is for the agent to learn to select actions in a
way that maximizes the reward. The return Gt at time t is defined as the cumulative
sum of future rewards (see Equation 4.1):

Gt =


T

∑
k=0

Rt+k+1 for problem with a finite state

∞

∑
k=0

γkRt+k+1 for continuous problems
(4.1)

In the event that the RL problem lacks a clearly defined endpoint by mapping a continu-
ous problem, the discontinuation rate 0 ≤ γ ≤ 1 is employed to weight future rewards.
If γ = 0, only the next reward is considered, resulting in a myopic decision-making
process. Conversely, if γ = 1, the reward grows to infinity, which is also problematic.
Therefore, it is advisable to select a discount factor γ < 1 to ensure that the reward
converges to a single value.

The behavior of the agent is contingent upon its current so-called policy. The agent’s
policy, denoted by π, is defined as the probability of selecting action At in state St (see
Equation 4.2).

π(St) = P(At|St) (4.2)

The policy π allows the evaluation of the value of a given state St through the use of
the value function (Equation 4.3).

vπ(s) = Eπ[Gt|St = s] (4.3)

vπ(s) = Eπ[Rt+1 + γ Gt+1|St = s] (4.4)

vπ(s) = Eπ[Rt+1 + γ vπ(st+1)|St = s] (4.5)

The value function defines the value of a state by the expected return, that can be
achieved from that state. Upon inserting the definition of the return (Equation 4.1), it
becomes evident that this expected value considers all potential subsequent states of the
current state in a recursive manner, as illustrated in Equation 4.4 and Equation 4.5.

In addition to evaluating a state alone, the value of an action in that given state can
also be evaluated using the action-value function or Q-function for short. The Q-function
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is defined as the expected return Gt of an action a based on the current state s and the
current policy pi (see Equation 4.6). The future reward is not defined by the value of the
subsequent state st+1, but by the action a′ that has the highest Q-value in that state.

qπ(s, a) = Eπ[Gt|St = s, At = a] (4.6)

qπ(s, a) = Eπ[Rt+1 + γ max
a′

qπ(st+1, a′)|St = s, At = a] (4.7)

By transforming the value function into a weighted sum of all possibilities, the Bellman
equation (Equation 4.8) is obtained. The value of a given state s can be described in
words as follows: For each action a ∈ A, the value of all potential subsequent states is
determined. This value is weighted with the policy π(a|s), which is the probability that
a specific action a is selected in the given state s. The value of all subsequent states is
then determined by the expected return, which is weighted by the transition probability
p(s′, r|s, a) into that respective state s′.

vπ(s) = ∑
a∈A

π(a|s) ∑
r∈R,s′∈S

[r + γ vπ(s′)] ∗ p(s′, r|s, a) (4.8)

The objective of RL is to identify an optimal policy, denoted as π∗. A policy π is
considered superior to another policy π′ if for all state s ∈ S applies that vπ(s) ≥ vπ′(s).
It is possible that multiple optimal policies may exist. The optimal value function
resulting from the optimal policy is defined in Equation 4.9. The same applies to the
optimal action-value function q∗(s, a).

v∗(s) = max
π

vπ(s) for all s ∈ S (4.9)

In assuming the optimal value function is present, the value of a state must be
equivalent to the value of the optimal action from the state. The resulting Bellman
optimality equation (Equation 4.10) demonstrates that the optimal value function can be
determined without the knowledge of the optimal policy.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

E[Rt+1 + γ v∗(St+1)|St = s, At = a]

(4.10)

However, since neither the optimal value function nor the optimal policy is provided
for the majority of RL problems, these must be determined approximately using the
learning procedure. Solving the Bellman optimality equation for each state is only
feasible for problems with very small state spaces (e.g. with Tabular Q-Learning). For
problems with large state spaces, the value or Q-function must be approximated. There
are numerous learning methods available for this approximation. However, this paper
will focus on the Q-learning method used with DQNs.
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4.2.2 Temporal-Difference Learning

The Temporal-Difference (TD) learning approach is one of the most widely used learning
methods and forms the basis for Q-learning, which is explained in the following section.
TD learning is itself a combination based on the ideas of the Monte Carlo methods and
dynamic programming. As a model-free learning technique, TD learning employs an
empirical trial-and-error process to identify an optimal policy over numerous time steps
and episodes.

Both the TD and Monte Carlo methods rely on accumulated experience to refine the
approximation of the value function vπ. However, the Monte Carlo method is only
capable of performing the update after the episode has been completed, as the final
return Gt is necessary for the update. The update function of the Monte Carlo method
is delineated in Equation 4.11, which also employs the learning rate α to regulate the
impact of the update.

V(St)← V(St) + α[Gt −V(St)] (4.11)

V(St)← max
At

∑
St+1,Rt+1

[Rt+1 + γ V(St+1)] ∗ p(St+1, Rt+1|St, At) (4.12)

The dynamic programming approach offers the advantage of enabling the value function
approximation to be updated in the subsequent time step, t + 1. However, the dynamic
programming approach requires the transition probability, as defined in Equation 4.12,
which is often unavailable for a multitude of RL problems.

The TD learning approach facilitates the incorporation of both approaches, enabling
the update to occur in the subsequent time step and with an unidentified transition
probability. To accomplish this, the error function is adapted so that the split return
is used for the TD-error, which is defined as follows: Rt+1 + γ V(St+1)− V(St). The
complete update function for the TD learning approach is delineated in Equation 4.13.

V(St)← V(St) + α[Rt+1 + γ V(St+1)−V(St)] (4.13)

4.2.3 Q-Learning

The Q-learning approach represents an extension of the previously discussed TD learning
approach. Therefore, the TD learn algorithm is transferred from the value function to
the action-value function or the Q-function. The update of the approximation Q for the
Q-function q∗ is illustrated in Equation 4.14 [WD92].

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (4.14)

As indicated by the equation, a greedy selection is employed for the target value
Rt+1 + γ maxa Q(St+1, a)−Q(St, At), whereby the action with the maximum Q-value
in the subsequent state is selected. This selection of the action is not based on the
existing policy π, and thus Q-learning can be classified as an off-policy procedure.
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As a consequence of the Q-function assigning a value to each state-action combination,
it is possible to store all of these values in a table, which is referred to as a Q-table. It
should be noted, however, that a restriction is in place that both the state and action
spaces are discrete. Algorithm 1 illustrates the learning process. At the beginning of
the learning process, the learning rate α must be defined, and the Q-table must be
initialized with arbitrary values for each action-state combination. In order to begin
a new episode, it is required that the environment state St is reset to its initial state
S0. Subsequently, the following steps are repeated until a terminal state is reached in
the environment. Firstly, the action At is selected either based on the Q-function or
randomly, if the ϵ-greedy approach is utilized. The ϵ-greedy approach is designed to
support the learning process by enabling the exploration of states through random
selection. The selected action is then executed and the subsequent state St+1 and the
assigned reward Rt+1 are observed. Subsequently, the corresponding Q-value in the
Q-table is updated based on the observed data. Finally, the current state is updated, and
the next loop begins.

Algorithm 1 Q-Learning algorithm [SB18]

Require: Algorithm Parameters: learning rate α ∈ (0, 1], ϵ-greedy value
Require: Q(s, a) initialized, for all s ∈ S, a ∈ A

1: for each episode do
2: Initialize state St = S0
3: while St ̸= terminal do
4: Select At for St based on policy of current Q or ϵ-greedy approach
5: Execute At and observe reward Rt+1 and next state St+1
6: Q(St, At)← Q(St, At) + α[Rt+1 + γ maxa Q(St+1, a)−Q(St, At)]
7: St ← St+1
8: end while
9: end for

4.2.4 Deep-Q-Networks

The issue of RL problems with very large state spaces has the potential to cause diffi-
culties for learning approaches such as the Q-tabular learning method that has been
presented above. As a consequence of the rising complexity of the environment state, its
dimension expands at an exponential rate, such that the states reached during training
constitute a mere fraction of the total. The phenomenon was initially referred to as
the Curse of Dimensionality by Richard Bellman [BBC57]. For this reason, methods that
approximate the Q-function are employed in favor of tabular approaches. As previously
stated, neural networks are highly effective at approximating arbitrary functions. The
combination with Deep Learning approaches is called Deep Reinforcement Learning.

The so-called Deep Q-Network (DQN) approach employs Deep Neural Network to
approximate the action-value function as a non-linear approximation [Mni+15]. The
DQN is tasked with predicting the Q-values for all potential actions, based on the
state input to the NN. The values of the neurons in the output layer are interpreted
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Figure 4.4: Structure of a Deep Q-Network (DQN) for Q-value Approximation

as the Q-values, which is illustrated in Figure 4.4. Like other NNs, the DQN is trained
through backpropagation of the error made (see Section 4.1). The squared error between
the predicted value Q(St, At; θ) and the target value Rt+1 + γ maxa Q(St+1, a; θ) is
typically employed as the loss function (see Equation 4.15). The parameters of the NN

are collectively symbolized by the symbol θ.

Le(θ) =

(
Q(St, At; θ)−

[
Rt+1 + γ max

A
Q(St+1, A; θ)

])2

(4.15)

A significant challenge inherent to the DQN approach is the necessity to predict the
Q-values of all actions in every conceivable state with the same Network parameters.
Consequently, the structure of the DQN must be tailored to accommodate the complexity
of the state space.

Another issue that arises is that the approximation function is used both for the pre-
diction of the predicted Q-value and for the target value. In order to prevent correlation
between these values, the DQN approach employs the use of two distinct NNs, namely
the Q-network and the target network. The Q-network is described by the function
Q(St, At; θ), whereas the target Q-network is described by the function Q(St, At; θ−).
The prediction network is used to predict the Q-value of an action in a given state.
The target network is employed to evaluate the selected action by greedily selecting
the action that maximizes the Q-value in the subsequent state St+1, thereby identifying
the optimal action. It is necessary that both networks use the same structure as only
the weights of the Q-network are updated via Q-Learning. The weights of the target
network are updated only periodically, at intervals of C steps, by synchronizing with
the weights of the Q-network. The use of two networks also serves to address another
issue, namely that minor adjustments to the weights may result in significant alterations
to the current policy. As the weights of the target network are updated with a delay, the
target values remain constant until the next update, thereby counteracting rapid and
unintended policy changes in such circumstances.

Additionally, correlations may occur in the sequence of collected experiences due
to the limited adjustments made to the Q-function approximation. To address this
issue, a solution has been proposed in the form of replay memories, which involve the
temporary storage of collected experiences [Lin92]. An experience is defined as a tuple
comprising four elements: St, At, Rt+1, and St+1. By randomly selecting a mini-batch
of experiences from the replay memory, it is possible to avoid any correlations in the
data that is used to train the DQN. The decoupling of the actual DQN training from the
complete learning process allows for straightforward control over the frequency and
number of experiences used in the training of the Q-network.
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Figure 4.5: Training Process of a DQN Agent.

A further disadvantage is that the replay memory is initially empty and must there-
fore be populated. For this reason, it is reasonable to utilize an exploration phase of the
state space using a 100 % ϵ-greedy approach, for example, until the requisite number of
experiences are available in the replay memory. Subsequently, if a sufficient quantity of
experience is available, the ϵ value can be adjusted so that the newly acquired experi-
ences contain decisions made by the DQN. To prevent older and probably suboptimal
experiences, which were generated using outdated policies, in the replay memory from
subsequently influencing the approximation, it is advisable to limit the size of the replay
memory. Once the maximum size has been reached, the oldest experiences are removed
from the replay memory. It is crucial to ensure that a correspondingly large number of
experiences is permitted, in order to guarantee an adequate level of variance.

Figure 4.5 illustrates the structure and connection of the aforementioned components
of a DQN agent. The training process of the DQN is illustrated in Algorithm 2 in a
step-by-step manner. The process begins with the initialization of the replay memory
D and the construction of the Q-network and the target network. The initial weights
employed for both networks are identical. Each episode begins with the reset of the
environment to its initial state S0. In each time step t, the action At is selected either
by the current policy based on the Q-value approximation or by a random selection
from the action space, when the ϵ-greedy approach is used. Subsequently, the action is
executed, and the assigned reward Rt+1 and the subsequent State St+1 are observed. The
observed data is stored as experience tuple et = (St, At, Rt+1, St+1) in the replay memory.
The training of the weights of the Q-network is illustrated in lines 7 to 13 in Algorithm 2.
In this example the training is executed in each time step; however, it is also possible
to train less frequently. Initially, a mini-batch of experiences is randomly selected from
the replay memory. Subsequently, for each experience within the mini-batch, the Q-
value for the current action-state pair is predicted using the Q-network. With the target
network the target value Rt+1 + γ maxa Q(St+1, a) is predicted. Afterward, the loss is
calculated between the target and the predicted value. In this example, the squared
error is employed. Subsequently, the total loss of all experiences within the mini-batch is
used to update the weights θ of the Q-network by utilizing the backpropagation method.
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Finally, the weights of the target network are updated periodically at regular intervals,
with a period of C steps, by copying the current weights of the Q-network.

Algorithm 2 Deep-Q-Learning algorithm

Require: Initialize replay memory D
Require: Initialize Q-Network and target-network with the same weights θ, θ−

1: for each episode do
2: Initialize state St = S0
3: while St ̸= terminal do
4: Select At for St based on policy of current Q or ϵ-greedy approach
5: Execute At and observe reward Rt+1 and next state St+1
6: Store experience et = (St, At, Rt+1, St+1) in replay memory D
7: Sample random mini-batch from replay memory
8: for each e ∈ mini-batch do
9: Predict Q-value for experience and receive Q(St, At; θ)

10: Approximate target Q-value Yt = Rt+1 + γ maxA Q(St+1, A; θ−)
11: Compute loss Le(θ) = (Q(St, At; θ)−Yt)2

12: end for
13: Update θ by back-propagating total loss of mini-batch in Q-network
14: Every C steps set θ− ← θ
15: St ← St+1
16: end while
17: end for



5
M E T H O D O L O G Y

This chapter presents the methodology for implementing an independent Multi-Agent
Reinforcement Learning (MARL) approach using Deep Q-Network (DQN) for the dynamic
scheduling of gantry robots. The initial section delineates the fundamental functionality
and communication of the Reinforcement Learning (RL) agent with the simulation.
Subsequently, the shortcomings of the Single-Agent Reinforcement Learning (SARL)
approach for production lines with a more complex layout are elucidated. Finally, the
methodology for the MARL approach is presented and explained.

5.1 simulation

The simulation returns a simulation state that contains a multitude of features for each
individual component described in Chapter 2. The state utilized for RL is a configurable
subset of features that are described in Table 5.1. The Conveyor_In and Conveyor_Out
stations are also managed as normal stations but only the finished feature from the
Conveyor_In is used. This feature is renamed to available in the table in order to improve
comprehensibility. No features from the Conveyor_Out station are needed as it will
always accept workpieces and is incapable of failure. In the case that multiple loaders
are used the possible values for the action feature of the loaders the value "idle" is added,
which is used for the requesting loader, but can not actively be executed.

5.1.1 Simulation Process

In the case of production lines comprising a single loader, the simulation will transmit
a request to the agent upon the completion of previously received action at−1. The
current state st transmitted within the request comprises, in comparison to the previous
state st−1, both "active" changes resulting from the last action at−1 itself, and "passive"
modifications that occurred independently to this action. An example of an "active"
change would be a drive action or the loading of a workpiece. For example, a "passive"
state modification includes the completion of a workpiece processing cycle at a work
station or a failure of a machine. The wait action is an exception to this rule; the waiting
of the loader gets canceled when a change in the simulation state is detected. Previous
suboptimal actions may have caused a simulation state in which no more passive
changes can occur. This is the reason behind the simulation’s automated cancellation of
waiting actions after a specified elapsed time.

A training session is constituted of multiple episodes that progress at an accelerated
pace. Each episode starts in a defined state, wherein all machines are unproductive.
The conclusion of an episode is triggered after a predefined simulated time, such as

20
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Table 5.1: Features of the simulation state used in the Reinforcement Learning approaches.

Feature Description

System State General features

Simulation Time Time step of the request

Episode Throughput
A counter of finished processed
and delivered workpieces in the running episode

Requesting Loader Id of the requesting loader

Reward Last Action Reward type for the last action of the requesting loader

Loader State Feature of each loader

Position Current location (==station) of the loader

Gripper Object Data of loaded object in the gripper of the I-loader

Action Current executed action

Blocked
Flag when loader can’t complete action
because another loader blocks its way

Conveyor_In State

Available Flag if a new unprocessed workpiece is available

Station State Features of each work station

Occupied Flag if a workpiece is processed

Finished Flag if processing has finished

Failed Flag if the machine has a failure
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Figure 5.1: Comparison of the training progress between a single I-loader and two I-Loaders
production line using the SARL approach.

20 minutes. The required simulated time for optimal training depends upon various
factors, including the number of work steps and the processing time of the machines.

Furthermore, the simulation is also capable of controlling multiple loaders in an asyn-
chronous manner. This implies that the loaders can execute their actions independently
and request new actions from the agent at different simulation times. In the event of
multiple loaders transmitting their requests simultaneously, the requests are processed
in a predetermined sequence, with the leftmost loader receiving priority. This occurs at
the beginning of an episode, at simulation time t0 = 0 s, or if one loader is currently
waiting and another loader completes its action, thereby canceling the waiting. This
results in the phenomenon whereby the global state is updated prior to the transmission
of the next loader request, creating two different global states for the same simulation
time. This is not a significant issue, as the loader, which transmits the request, is a
feature of the global state in the SARL approach. Additionally, the training of the DQN is
independent of the absolute simulation time.

5.2 problem formulation

The implementation of the simulation and of the existing SARL approach is works well
for production lines with only one single gantry loader and only a limited number
of machines. However, if the produced workpiece requires more process steps and
therefore more machines on the production line, it is possible that using only one loader
can result in a bottleneck, i. e. the loader cannot transport each workpiece fast enough
to its next station. In practice, the solution is to add more loaders to the production line.

However, this introduces further challenges for the RL algorithm. The required training
duration or rather the number of needed episodes for the Single-Agent (SA) approach
increases significantly as seen in Figure 5.1. It is also noticeable that the training with
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the more complex production line setup is considerably less stable. The challenges of
the SARL approach will be explained in the following sections.

5.2.1 Random Request Sequence

The simulation is capable of controlling multiple loaders in an asynchronous manner.
Nevertheless, the requests to the agent are transmitted in a synchronous manner,
allowing only the request for a new action for a single loader at any given time.
Consequently, the identifier of the requesting loader must be included in the request, so
that the agent is aware of which loader the action should be selected for. Depending on
the execution duration of the selected action it may result in the situation where one or
multiple requests for the other loader are handled until the initial loader sends its next
request. The SARL approach uses always the state of the subsequent request at time step
t + 1 as the next state st+1 in the replay memory entry. However, due to the potential
for interim requests from other loaders, the next state st+1 may be one in which the
previously chosen action at is fully executed. Alternatively, it may be a state where the
action at is still being executed when the next request is triggered from another loader.
This behavior is illustrated in Table 5.2.

This is a problem for the SARL approach, as the entries in the replay memory can
be inconsistent. Looking at this problem from a theoretical point of view, the set of
next states for each state-action-pair contains many different states. Only a few of them
are states, where the last chosen action is fully executed (with few variations based
on passive environment changes). The majority of the states are states, where the last
chosen action is still being executed. During the training of the DQN, the future Q-values
are calculated based on these states (see Section 4.2.4), which leads to a high variance in
the Q-values and therefore to a slow learning process.

5.2.2 Reward Distribution

As an additional consequence of the issue outlined in Section 5.2.1, the reward for the
action at must be calculated by the SARL approach in time step t. This is necessary
because the simulation is designed in such a way that the reward for an action is only
returned when the same loader sends its next request. This may occur in the next time
step t + 1 or any following time step ti for i > 1. For the training of the DQN the
reward it is essential that the reward is assigned to the correct state st and action at.

As a consequence of the fact that only the last loader can receive the highest reward
for delivering a finished workpiece at the Conveyor_Out station, a further problem has
emerged. This issue may influence the learned strategy or, at the very least, the training
duration. This issue arises because the agent may attempt to position the first loader in
close proximity to the Conveyor_Out station, as the expected return may be higher in
these states. This would result in unnecessarily lengthy journeys to reposition the first
loader when, for example, the processing of a workpiece in Station_A has finished.
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Table 5.2: Generated experience by the SARL approaches for a random sequence of requesting
loader. The "Completed Action" rows indicate whether the replay memory entry has a
new state st+1, where the action at was fully executed.

Step 0 1 2 3 4

Requesting Loader L1 L2 L1 L1 L2

State s0 s1 s2 s3 s4

Action a0 a1 a2 a3 a4

Reward r0 r1 r2 r3 r4

SARL
Experience - (s0, a0, r0, s1) (s1, a1, r1, s2) (s2, a2, r2, s3) (s3, a3, r3, s4)

Completed Action - ✗ ✗ ✓ ✗

Step 5 6 7 8

Requesting Loader L2 L2 L1 L2

State s5 s6 s7 s8

Action a5 a6 a7 a8

Reward r5 r6 r7 r8

SARL
Experience (s4, a4, r4, s5) (s5, a5, r5, s6) (s6, a6, r6, s7) (s7, a7, r7, s8)

Completed Action ✓ ✓ ✗ ✗
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Table 5.3: Comparison of the state space cardinalities for production lines with one and two
operating I-Loaders.
A detailed overview of features for the used states is illustrated in Table A.1.

Loader Setup State Space Cardinality

One I-Loader 3.3× 105

Two I-Loaders 7.8× 109

5.2.3 Loader Interactions

For production lines with multiple gantry loaders it is essential to avoid collisions
between loaders. A collision occurs in the event of either a loader driving into another
stationary loader or two loaders driving in opposite directions toward each other. For
example, one loader is located at Station_A and has decided to drive to Station_D, but at
the same time, the other loader is already driving from Station_E to Station_B.

On one hand, a collision is addressed by the simulation by adding the blocked state
to the loader. If a loader is driving to a station, that is already occupied by another
loader, the loader will wait in front of that station until the other loader has driven
away. This special waiting is signalized by the blocked status of the loader, which must
be considered by the SARL agent. On the other hand, the SARL approach restricts the
possible actions for the requesting loader, by removing all drive actions to stations
temporarily from the action space, that are located behind the blocking loader.

5.2.4 State Space Cardinality

In the SARL approach the state space must represent the complete environment, as the
agent must be able to make decisions for the complete environment. This results in
a state space that grows rapidly, when the number of stations and loaders increases.
In practice, the addition of a second loader should improve the productivity of the
production line as the loaders can work in parallel. However, the state space grows
considerably with the introduction of a second loader, as the state space must contain
all relevant information about the second loader.

Example
We consider a production line with three work centers, with each two machines, and
simulated machine failures. Table 5.3 illustrates the cardinalities of the state spaces for
one and two I-loaders in this production line. In the case that a single I-loader operates
within this production line, the state space has a cardinality of approximately 3.3× 105

different states. The introduction of a second I-loader increases the state spaces to about
7.8× 109 states. Table 5.4 illustrates the additional features that are required in the
state and the number of potential values associated with each feature. By introducing
the second loader the state space cardinality grows by a factor of 23 716. A detailed
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Table 5.4: Composition of the growth factor for the state space cardinality, based on the utilization
of a second loader. The potential values for the position of loader 1 are reduced from
eight to seven, as loader 1 is no longer capable of driving to the Conveyor_Out station.
This results in a reduction in the growth factor from 27 104 to 23 716.

Additional Features # Values

Requesting Loader ID 2

First Loader
Position (reduced) 8→ 7
Current Action 11
Blocked Status 2

Second Loader
Position 7
Gripper Status 4
Current Action 11
Blocked Status 2

Growth Factor 27 104→ 23 716

overview of the used features and their number of potential values are illustrated in
Table A.1.

In practice, production lines typically comprise a considerably larger number of ma-
chines and loaders than the system described in the previous example. This provides an
insight into the immense scale of the state space of a real system, should all components
be mapped together. The growth is amplified by the addition of a single machine, which
not only increases the cardinality by the value of 4 for the machine’s features but also
expands the potential values for the position and current action feature of each loader.
Consequently, the growth rate for each added station and loader is considerably higher,
exhibiting an exponential pattern.

5.3 decentralized and independent cooperative multi-agents

This thesis presents a new approach that introduces multiple agents, each is responsible
for controlling a single loader. It is crucial for the agents to collaborate in a cooperative
manner to accomplish the overarching objective of maximizing the number of finished
workpieces produced in the simulated production line.

In the SARL approach, the single agent is required to observe the global state space,
which consequently results in an exponential growth in the state space S when addi-
tional machines or loaders are integrated into the production line (see Section 5.2.4).
Nevertheless, in the MARL approach with multiple independent agents, the use of partial
observability can offer a potential advantage. Partial observation describes a scenario in
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Figure 5.2: Structure of the RL problem with two decentralized Agents.

which the agents must make their decision based on a subset of the features from the
entire environment state S. Each agent i has its own so-called local state space Si.

Si ⊆ S for each agent i

In this project setup also a local action space Ai is used for each agent i:

Ai ⊆ A for each agent i

The implementation of a local action space leads to a reduction in the number of output
neurons from the DQN, which consequently reduces the number of trainable parameters.
In considering the structure of the production line in this project with the specified
agent count N, it becomes evident that only the last loader is able to proceed towards
the Conveyor_Out station. This allows for the removal of the Conveyor_Out action from
every other local action space Ai, for i = 1, . . . , (N − 1). A similar principle applies
to the Conveyor_In action, as only the first loader can drive to the Conveyor_In station.
Furthermore, only the local state space S1 of the first agent must contain the state
features for the Conveyor_In station.

The utilization of local state and action spaces for each agent necessitates the estab-
lishment of a distinct Q-network and target network for each agent. This is necessary
because, on the one hand, the input layer maps the features of the local states, and on the
other, the output layer maps the local action space. Consequently, each agent must also
save its collected experiences in its own replay memory and be trained independently.

Figure 5.2 illustrates two agents and their connections to the environment. Depending
on the value of the feature "requesting loader" (see Section 5.1) the global state st and
the reward rt is passed to the corresponding agent. The passed reward rt is the reward
for the last action that the same loader has executed beforehand as the simulation has
cached the reward until the same loader sends the next request.
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As illustrated in Table 5.5 the distribution ensures that only entries in the individual
replay memories are stored where the previous action ati of the same agent was fully
executed. Any other actions that were processed by other agents and executed by their
associated loaders can be seen as "passive" updates (see Section 5.1.1) in the state. This
will enhance the learning efficiency of the DQN, as each entry in the replay memory
will be consistent. To illustrate, the initial state st where the loader is positioned at
Station_A and the selected action at is the drive to Station_C, the position of that loader
will invariably be Station_C in the next state st+1.

5.3.1 Work Area Restriction

A further reduction of the local state and action spaces can be achieved by limiting the
operational area of the loaders. In practice, it is unlikely that each loader will have access
to all machines in a production line due to the necessity of connecting the mobile loaders
to power and network, which is often done via drag chains. Moreover, the necessity
for different types of grippers for the handling of intermediate workpieces must be
considered. It is also assumed that the RL algorithm will partition the production line
into relatively equal sections with the aim of minimizing travel times and distances.

In order to prevent collisions between loaders utilizing the SARL approach, it was
essential to include all information of all loaders into the state space. This would
inevitably lead to an exponential expansion of the state space with the addition of
numerous loaders to the production line. From the perspective of a loader, it is only
sufficient to know the state of the neighboring loaders, as these alone represent a
potential risk of collision.

Table 5.6 illustrates based on the previous statements the necessary features of an
agent’s local state spaces Si. Depending on the production line setup, the number of
loaders, work steps, and agent responsibility, the number of needed features varies.
The cardinalities of the state spaces based on different approaches and restrictions are
illustrated in Table 5.7. All values are based on the same production line setup with
three work steps which can each be processed at two stations. As previously stated
(see Section 5.2), the introduction of a second loader to the production line significantly
increases the state space cardinality when the SARL approach is utilized. Two different
configurations are presented for the MARL approach, which distinguishes in terms of
the responsibilities assigned to the loaders. In the case of "full stations responsibility",
both loaders are capable of driving to all workstations (each conveyor station can
still be reached by only one loader). In the alternative configuration, the production
line is divided into two sections. Consequently, the first loader is capable of driving
from the Conveyor_In station to Station_D, while the second loader can drive between
Station_C and the Conveyor_Out station. This reduction in responsibility mitigates the
risk collisions between loaders only to Station_C and Station_D. Furthermore, it reduces
the cardinality of both agents’ local state spaces to a value comparable to that of the
single I-loader SARL setup.
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Table 5.5: Comparison of the generated experience by the SARL and MARL approaches, based
on the same sequence of requesting loaders. The "Completed Action" rows indicate
whether the replay memory entry has a new state st+1, where the action at was fully
executed.

Step 0 1 2 3 4

Requesting Loader L1 L2 L1 L1 L2

State s0 s1 s2 s3 s4

Action a0 a1 a2 a3 a4

Reward r0 r1 r2 r3 r4

SARL
Experience - (s0, a0, r0, s1) (s1, a1, r1, s2) (s2, a2, r2, s3) (s3, a3, r3, s4)

Completed Action - ✗ ✗ ✓ ✗

MARL
Agent 1 Step 0 - 1 2 -

Agent 2 Step 0 - - 1

Agent 1 Experience - - (s0, a0, r2, s2) (s2, a2, r3, s3) -

Agent 2 Experience - - - - (s1, a1, r4, s4)

Completed Action - - ✓ ✓ ✓

Step 5 6 7 8

Requesting Loader L2 L2 L1 L2

State s5 s6 s7 s8

Action a5 a6 a7 a8

Reward r5 r6 r7 r8

SARL
Experience (s4, a4, r4, s5) (s5, a5, r5, s6) (s6, a6, r6, s7) (s7, a7, r7, s8)

Completed Action ✓ ✓ ✗ ✗

MARL
Agent 1 Step - - 3 -

Agent 2 Step 2 3 - 4

Agent 1 Experience - - (s3, a3, r7, s7) -

Agent 2 Experience (s4, a4, r5, s5) (s5, a5, r6, s6) - (s6, a6, r8, s8)

Completed Action ✓ ✓ ✓ ✓
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Table 5.6: State space features of the MARL approach for each agent. The state space cardinality
depends on the responsibility of the agent.

Feature Description

Loader State Features of associated loader
Position Current location (==station) of the loader
Gripper Object Data of loaded object in gripper of the I-loader

Loader State Features of each neighboring loader
Position Current location (==station) of the loader
Action Current executed action

Blocked
Flag when loader can’t complete action
because other loader blocks its way

Conveyor_In State Only for the first loader
Available Flag if a new unprocessed workpiece is available

Station State Features of each work station that the loader can reach
Occupied Flag if a workpiece is processed
Finished Flag if processing has finished
Failed Flag if the machine has a failure

Table 5.7: Comparison of the rounded state space cardinalities of different approaches for a
production line with three work steps and two machines each.
A detailed overview of features for the used states is illustrated in Table A.1.

Approach State Space Cardinality

SARL
One I-Loader 3.3× 105

Two I-Loaders 7.8× 109

MARL (Responsibility for All Station )

Agent 1 4.4× 107

Agent 2 1.8× 107

MARL (Restricted Work Area)

Agent 1 9.2× 105

Agent 2 3.5× 105
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5.3.2 Action Restrictions

In an ideal RL scenario, the agent should be allowed to develop its strategy without any
predefined restrictions by refining its current approach based on the experiences, which
the agent generates by interacting with the environment. It is crucial to acknowledge
that the imposition of unsuitable constraints may result in the formulation of an inef-
fective strategy. Consequently, any restrictions that are introduced should be carefully
considered. However, in the context of this project, a few restrictions must be introduced
on the agents to guarantee the smooth functioning of the simulation and to prevent
actions that could have a significant negative impact on the training process.

The wait action is such an action when it is selected in an environment state where
no "passive" change can occur anymore. Such a state could occur, for example, at the
beginning of an episode when all stations are still empty and an unprocessed workpiece
has already arrived at the Conveyor_In station. If the agent decides in such a state in
favor of the wait action, the simulation would remain waiting in this state until the set
episode duration has expired. This has the consequence that no more experiences can be
observed in this episode, as the remaining simulated time is effectively wasted. To avoid
this outcome during the ϵ-greedy state exploration, the "wait" action is temporarily
excluded from the random selection in such states. If the agent nevertheless chooses the
action based on its current policy, the simulation has a built-in safeguard that cancels
the wait after a defined time (see Section 5.1.1).

Further restrictions are imposed to prevent the execution of meaningless actions, such
as loading when the gripper has already a workpiece loaded or unloading when the
gripper does not hold a workpiece. It is essential that these actions are prevented until
the agents have undergone a sufficient period of training, as they could otherwise cause
issues within the used simulation programs. Accordingly, a penalty vector is generated
based on the given state. This vector comprises a penalty value for each action that must
be restricted; while every allowed action is not penalized. Subsequently, the individual
penalty values are subtracted from the output of the DQN, i. e. the approximated Q-
values, before the action with the highest Q-value is selected. The structure of the DQN

with the penalty vector is illustrated in Figure 5.3.

Q(St, At) = Q(St, At; θ)− P(St, At) (5.1)

Equation 5.1 formalizes the calculation of the predicted Q-value with the Q-network with
the applied penalty. Similarly, the penalty is integrated into the target value within the
Q-learning algorithm. It should be noted that the penalty only influences the selection
of the maximum Q-value in the next state, as illustrated in Equation 5.2.

Q(St, At)← Q(St, At) + α
[

Rt+1 + γ max
a

[
Q(St+1, a; θ−)− P(St+1, a)

]
−Q(St, At)

]
(5.2)
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Figure 5.3: Structure of the DQN with the additional penalty vector calculation. The values of
the output layer are to be interpreted as approximated Q-values for the individual
actions. The Q-values of the restricted actions are reduced through the subtraction of
the penalty vector.

The resulting loss function for the weight update of the Q-network is formalized in
Equation 5.3

L(θ) =
(
(Q(St, At; θ)− P(St, At))−

[
Rt+1 + γ max

a
[Q(St+1, a; θ−)− P(St+1, a)]

])2

(5.3)

Both the penalty vector Pt for the current State and the penalty vector Pt+1 for the next
state St+1 are included in the experience which is stored in the replay memory.

The utilized restrictions to the action space and the effects of restricting the work
areas are explained in Chapter 7.

5.3.3 Reward Function

An efficient reward function is an essential element in RL, as it directly impacts the
agent’s behavior. A well-designed reward function provides guidance to the agents,
directing them towards desired actions and ensuring efficient and effective learning. In
contrast, inappropriate reward functions may result in unintended behaviors, suboptimal
performance, and even exploitation of loopholes in the environment.

As a first approach, a fairly simple reward function is designed:

• Unloading a finished workpiece at the Conveyor_Out station is rewarded with the
value 5

• Unloading a workpiece from the gripper into the correct work station is rewarded
with the value 2.

• Loading a workpiece into the gripper of a loader is rewarded with the value 1.

• If a loader waits, while it is blocking another loader, this waiting is penalized with
the reward value −3.

• All other actions, such as a drive to another station or waiting in general, are not
rewarded.

The SARL approach employs a single DQN, which consequently utilizes a single reward
function for both loaders. Therefore, a suboptimal strategy may be learned where the
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agent attempts to send the first loader in the vicinity of the Conveyor_Out station, as a
higher reward can be expected near the output, despite the inability to drive towards it.
In contrast, the MARL approach divides the system into two agents, each with its own
independent reward maximization problem. Although both reward functions may be
based on the same set of rules, the splitting ensures that the potential for the second
agent to achieve a higher absolute reward has no impact on the training of the network
from the first agent.

Upon further examination, it becomes evident that the absence of the reward for
delivering a finished workpiece still may affects the strategy of the first agent. The
unloading of a workpiece at Station_A and Station_B is equally valuable in terms of the
achieved reward as unloading at Station_C and Station_D.

We assume the following scenario: A new workpiece is available at the Conveyor_In
station, Station_B has finished the processing of the loaded workpiece, and the loader is
currently located at Station_A, which is not occupied. In this context, the agent has two
equally rewarded action sequences (excluding execution times):

• Filling Station_A with the unprocessed workpiece from Conveyor_In:
Conveyor_In (0)→ load (1)→ Station_A (0)→ unload (2)

• Transporting the workpiece from Station_B to Station_C or Station_D (assuming
these stations are currently not occupied):
Station_B (0)→ load (1)→ Station_C (0)→ unload (2)

It can be observed that the reward sequence and the total reward are identical for both
potential pathways. However, when considering the overall production line, it would
likely be more optimal to prioritize the transfer of the workpiece from Station_B to a
station of the subsequent work center, as this allows the second loader to receive new
input for its designated work area at an earlier stage.

One potential solution is the use of time-discounted future rewards, which reduce
the value of future rewards depending on how long the execution of the selected action
takes. This is formalized in Equation 5.4, with dt+1 as the difference in the simulation
time between step t and t + 1.

Q(St, At)← Q(St, At) + α[Rt+1 + γdt+1 max
a

Q(St+1, a)−Q(St, At)] (5.4)

Furthermore, the duration is also stored in the replay memory, as it cannot be calculated
at a later point in time.

In practice, however, there is no guarantee that the travel times between stations
will be different. Therefore, an extension of the reward function is considered so that
unloading a workpiece no longer results in a constant value, but the reward is awarded
depending on the work step. Unloading at work center one (Station_A and Station_B)
will result in a reward value of 1; unloading at work center two (Station_C and Station_D)
will result in a reward of 2, and so on. In addition, the reward for delivering a finished
workpiece at the Conveyor_Out station will also be adjusted, so that this reward is one
greater than unloading at the last work center. This graduated reward is designed to
prioritize the quick transfer of the workpieces through the production line.
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Figure 5.4: Sketched Markov Decision Process with reward and action duration.
The normal circles represent the loader position at the specified station. The filled
circle U represents the finite state after unloading a workpiece at Station_C. The
lowercase letters symbolize the required action to transition to the subsequent state.

The simulation uses a simplification when calculating the execution times of drives
between stations. Here, the travel times follow discrete values instead of taking the
acceleration and deceleration of the loaders into account. As a result, a consecutive
drive from Station_A to Station_B and then from Station_B to Station_C will take the
same amount of time as a direct drive from Station_A directly to Station_C. In practice,
the direct drive would be faster, since there would be not time lost, due to unnecessary
stops.

Figure 5.4 illustrates this problem in a very simplified way as a decision process with
only four states. The states A, B, and C represent the location of the loader at the named
station. The final state U, occurs after the initial loaded workpiece has been unloaded
at Station_C The lowercase letters symbolize the required action to transition to the
subsequent state. The action to transition to the next state is defined as the lowercase of
the state name, e. g. b, c, u.

In accordance with the theory of RL, the agent should, over time, learn to select the
direct path (A ↣ C ↣ U). This is due to the fact that the reward for unloading is only
one step away, in contrast to the two-step path involving an intermediate stop.

Equation 5.5 presents the calculated values for the Q-values in state A for both paths.
The calculation is based on Equation 4.7 with a discount factor γ = 0.99 for the Q-values
of the subsequent state.

q(A, b) = 0 + 0.99 ∗ (0 + 0.99 ∗ (2)) = 1.9602

q(A, c) = 0 + 0.99 ∗ (2) = 1.98
(5.5)

It is evident that the path with an intermediate stop results in a lower Q-value. However,
in order to make more optimal decisions in other states, it is reasonable to include the
execution time of the actions in the calculation of the future return (see Equation 5.4). As
anticipated, the Q-values calculated with the time-discounted future return are slightly
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Figure 5.5: Sketched Markov Decision Process with reward (incl. applied penalty for consecutive
drives) and action duration.
The normal circles represent the loader position at the specified station. The filled
circle U represents the finite state after unloading a workpiece at Station_C. The
lowercase letters symbolize the required action to transition to the subsequent state.

lower (see Equation 5.6). However, the discrepancy between the two paths has also
diminished.

q(A, b) = 0 + 0.991.25 ∗ (0 + 0.991.75 ∗ (2)) ≈ 1.9406

q(A, c) = 0 + 0.993 ∗ (2) ≈ 1.9565
(5.6)

In consideration of the entire system, it is uncertain whether such a minor discrepancy
can be effectively learned, given that the Q-value for the actual system depends upon a
multitude of additional factors and is approximated by the DQN. For these reasons, a
negative reward is introduced that penalizes consecutive drives. Figure 5.5 illustrates
the same minimal example where the second drive action from state B to state C is now
penalized with the reward −1.

Equation 5.7 shows the Q-values for the longer path for both with and without
time-discounted future rewards. These values are now, as expected, significantly smaller
in comparison to the Q-values for the direct path.

q(A, b) = 0 + 0.99 ∗ (−1 + 0.99 ∗ (2)) = 0.9702

q(A, b) = 0 + 0.991.25 ∗ (−1 + 0.991.75 ∗ (2)) ≈ 0.9531

q(A, c) = 0 + 0.99 ∗ (2) = 1.98

q(A, c) = 0 + 0.993 ∗ (2) ≈ 1.9565

(5.7)

However, the introduction of a penalizing reward for consecutive driving also presents
a potential disadvantage. As illustrated in Figure 5.6 the state B may also be reached from
state X through the execution of action x, which was not a driving action. Therefore, no
penalty would be incurred for the subsequent drive from state B to state C. Consequently,
the state-action-state transition (B, c, C) is associated with two distinct reward values
(in this example −1 and 0). The reward which is awarded for the drive from B to C
depends now not only on the current state st (B) but also on the previous state st−1 (A or
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Figure 5.6: Sketched Markov Decision Process with inconsistent rewards and action duration.
The normal circles represent the loader position at the specified station. The filled
circle U represents the finite state after unloading a workpiece at Station_C. The
lowercase letters symbolize the required action to transition to the subsequent state.
State X is an undefined state, which transition x to state B is not a drive action.

X) or rather the previous action at−1 (b or x). This stands in contrast to the fundamental
tenet of a Markov Decision Process (MDP), which posits that the subsequent state st+1

and the reward rt+1 only depends on the current state st and the chosen action at (see
Section 4.2).

In order to maintain consistency with the MDP principle, an additional flag feature
could be incorporated into the state, indicating whether the preceding action was
a driving action. This would effectively double the state space, but it would not be
feasible to integrate this flag into the used simulation software. An alternative, more
straightforward approach would be to penalize all driving actions.

The effects of these reward function adjustments on the training are shown and
explained in Chapter 7.



6
I M P L E M E N TAT I O N

This chapter presents a summary of the implementation for the Multi-Agent Reinforce-
ment Learning (MARL) approach described in Chapter 5. The implementation builds
upon the existing structure and the interface for the simulation software from the project
KI-Verfahren zur Steuerung von Digitalen Portalroboterzwillingen (KISPo) [Zis+24]. The
primary programming language utilized for this project is Python, with TensorFlow

[Aba+15] employed as the deep learning framework. Furthermore, the diagrams and
figures included in this chapter were generated using PlantUML [Pla]. In the second
section the implementation of the proposed MARL methodology is presented, illustrating
how the theoretical concepts are translated into a functional system.

6.1 communication with the simulation

The production line is modeled through the industry-standard software Plant Simula-
tion and AnyLogic. For the communication between the simulation and the learning
framework, an interface was established within the KISPo project. The interface utilizes
a local web server embedded in the implemented learning framework to which the
simulation transmits Hypertext Transfer Protocol (HTTP) requests.

Figure 6.1 illustrates the communication process between the simulation and the
learning framework. The configuration of the production line is initially requested
from the simulation. This procedure must be carried out in the initial stage of each
episode, due to the intrinsic functionality of the simulation programs, despite the fact
that the configuration remains constant for the whole training process. Afterward, the
simulation notifies the learning framework so that it is prepared to start. At this stage,
the learning framework may overwrite the initial state of the simulation.

The following inner loop of the procedure is the actual simulation and interaction
process. Therefore, the simulation transmits its current state to the learning framework,
which determines the action based on the selected algorithm. Subsequently, this action
is executed within the simulation, resulting in the transmission of the next request,
which contains the new simulation state and the assigned reward. This sub process is
repeated until the defined simulation time is reached. This termination of the episode is
signaled to the algorithm via the sim-end route. The episode is also terminated when
an error or a critically incorrect action has been selected. Finally, the response to the
sim-end route initiates the next episode in the simulation. This process repeats until the
desired number of episodes is reached.
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Simulation

Simulation

Learning Framework

Learning Framework

loop [until max. number of episodes reached]

requests production line setup

respones with setup

requests simulation start

responses with initial state

loop [until end of simulation time]

request action for current state

responses with chosen action

signals simulation end

responses when processing has finished

Figure 6.1: Sequence diagram of the communication between simulation and the learning algo-
rithm.

MARL Learning Framework

Strategy

sim_start()
query_agent()
sim_end()

Agent

compute_action()
train()

ActionRestrictor

apply_restrictions()

RewardCalculator

calculate_reward()

1..*

1 1

Figure 6.2: Simple class diagram of the MARL learning framework with its components.
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6.2 marl implementation

Figure 6.2 provides a simplified class diagram for the implementation of the MARL

approach. The simplification is limited to the necessary components and their main
methods for the learning procedure; all other classes, e.g., for the communication
interface, are not shown for clarity. A detailed class diagram is illustrated in the appendix
in Figure B.1.

The following subsections explain the structure and tasks of the four components.

6.2.1 Training Strategy

The strategy class serves as the primary control unit for all processes within the learning
framework. Requests from the simulation are routed to the designated method (sim_start,
query_agent, sim_end) via the local web server.

The processing of the setup request and the return of the production line configuration
are conducted outside of the actual MARL implementation, as this response remains
constant for the entire training run. The initial state of the simulation must be overwritten
during handling the sim_start request, since the simulation positions the loaders in
order by default, with the first loader at the Conveyor_In station and the second loader
at Station_A. However, the restriction of the working area (see Section 5.3.1) prohibits
the second loader from occupying this position, so the initial position is set to Station_C.

Upon the simulation’s request for a new action, the requesting loader is initially
extracted from the query. With the assistance of an assignment table, constructed during
the initialization phase, the query is passed to the designated agent instance, which is
responsible for the requesting loader. Subsequently, the training of the agents’ Deep
Q-Network (DQN) is initiated with an adjustable probability (in this case, 5 %). The
motivation behind the decision to train during the episode, as opposed to only at its
conclusion, is twofold. Primarily, this approach is intended to reduce the overall number
of episodes required. Secondly, the design aims to prevent the agents from becoming
"stuck" within an episode. The term "getting stuck" is used to describe a situation
in which the agent’s actions result in a lack of progress within the episode, due to
inadequate training outcomes. One potential scenario, is that the agent will consistently
select the wait action, as this receives the highest Q-value approximation for the current
state. Training during the episode may result in a slight adjustment to the weights of
the DQN, leading to the selection of an alternative action for the same state. This is not a
prerequisite as long as the ϵ-greedy value remains relatively high at the beginning of
training, as the random actions will also result in a transition to another state. However,
as training progresses, the ϵ value is reduced (to 0.1 %), resulting in the infrequent
occurrence of random actions.

Upon the completion of the episode, the simulation transmits its final state. However,
this state is not utilized, as it represents an "intermediate" state in which the previous
action has not been fully executed. Instead, the agent’s processing of the experience
gained during the episode is initiated. Afterward, the agents’ DQN are once again trained,
and the update of the weights of the target network is initiated every ten episodes.
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Furthermore, the decay of the ϵ-greedy approach is controlled from the strategy, as
the ϵ-value is the same for all agents. The training starts with an initial ϵ-greedy value
ϵ0 = 1. The reduction is dependent upon the used settings and occurs either upon the
beginning of the network training, contingent upon a required number of entries in
the replay memory, or when the replay memories of the agents are fully populated (in
this case, 105 entries). The decay itself follows a power function, whereby the ϵ-value is
multiplied each episode by a defined decay rate λϵ:

ϵnew = ϵ ∗ λϵ with λϵ ∈ (0, 1) (6.1)

The ϵ-value is reduced until the minimal value ϵmin = 0.001 is reached. As the final step
necessary statistics for the episode are recorded and all components are prepared for
the next episode.

6.2.2 Deep Q-Network-Agent

During the initialization of the learning framework, a unique agent instance is created
for each loader. This instance receives all necessary information, including details
about the loader itself, neighboring loaders, and accessible work stations. Based on this
information, the agent’s local action space Ai is created and the number of input and
output nodes of the DQN is calculated in order to create both the main NN and the
target network. Each agent also creates an instance of the ActionRestrictor class and the
RewardCalculator class. Each agent is equipped with two distinct memory systems for
the purpose of storing observed experiences. The replay memory stores the experiences,
which are utilized in the generation of the training data for the DQN training. Each entry
is a data tuple, expressed as (st, pt, at, rt+1, st+1, pt+1, dt+1), where st is the current local
state and pt is the corresponding penalty vector, and at is the chosen action. Furthermore,
the tuple includes the achieved reward rt+1, the next state st+1and its corresponding
penalty vector pt+1, and the duration dt+1 of the execution of the action.

As indicated by the index values, the data originate from disparate time steps,
specifically t and t + 1. It is therefore essential to utilize a supplementary memory,
namely the episode memory, which serves as a storage for data accumulated over the
course of an episode, retaining information from a single time step. At the end of an
episode, the entries of the episode memory are pairwise linked to form a complete
experience, which is then stored in the replay memory.

Both memories are implemented as ring buffers with a predefined maximal length
(in this case, 105 entries). Once the ring buffer is at maximum capacity, the addition
of a new entry results in the removal of the oldest entry. The Python deque object is
employed for this purpose. A deque is a special type of list where the addition and
removal of objects are approximately O(1) time complex, as opposed to the O(n) time
complexity associated with a normal list [Pyt].

Upon the simulation’s request for an action, the strategy class passes the simulation
state to the agent instance that is responsible for the requesting loader. As the preliminary
step in the selection of the action, the simulation state is passed to the ActionRestrictor
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instance. Based on the configured restriction, the list of permitted actions and the
penalty vector is created for the current state. Moreover, the agent generates the local
state from the query in accordance with its designated responsibilities. During this
generation, the values of the selected features of the simulation state, which is formatted
as JavaScript Object Notation (JSON), are mapped to numbers, as the local state is used
as input data for its DQN. In the second step, a probability of the current ϵ-value is used
to determine whether a random action is selected or whether the action with the highest
approximated Q-value is selected. In the event that the ϵ-greedy approach is selected, a
random action is chosen from the list, returned by the ActionRestrictor beforehand. In
the alternative scenario, the local state and the penalty vector are employed to predict
the Q-values with the DQN.

In the subsequent phase, the reward associated with the previous action is passed
to the RewardCalculator instance, which may modify the reward in accordance with the
configured reward function adjustments. Finally the tuple (st, pt, at, rt, dt) for the current
time step t is stored in the episode memory. The tuple consists of the current local state
st, the current penalty vector pt, the selected action at, along with the reward rt and the
execution duration dt of the previous step.

At the completion of each episode, the entries from the episode memory are pro-
cessed in pairs. During this processing, the information of each pair (st, pt, at, rt, dt) and
(st+1, pt+1, at+1, rt+1, dt+1) for t = 0, 1, .., T − 1 with T = |Episode Memory| is combined
to the experience (st, pt, at, rt+1, st+1, pt+1, dt+1), which is stored in the replay memory.

The training of the DQN may be initiated either during the episode or following
the episode’s completion. In both scenarios, the training data must be derived from
the experiences stored in the replay memory. Listing 6.1 demonstrates the generation
process in a simplified function. First, a random sample of experiences is selected from
the replay memory. Secondly, the input data (x_train) is created by extracting the current
state and current penalty from each experience. To create the target data (y_train), the
Q-values for the current state and the subsequent state are predicted. Subsequently,
the current Q-value of the selected action of each experience is overwritten with a
new target Q-value, which is calculated using the adjusted Q-learning algorithm (see
Equation 5.4). The list of updated Q-values then resembles the target data. Finally, the
data pair is passed to the Tensorflow framework, which performs the weight update
of the DQN.

6.2.3 Restrictions

Each agent initializes its own ActionRestrictor class instance and transmits its responsi-
bility configuration, which includes the reachable stations and the neighboring loaders.
This is a requisite step, as the restrictions are only evaluated on the agent’s local state
space Si and subsequently applied to the local action space Ai. Upon the simulation’s
request for a new action, the agent transmits the global state to its ActionRestrictor in-
stance. During the processing, first, all actions that should be restricted are temporarily
removed from the agent’s local action space. To illustrate, in a state where the gripper
of the requesting loader already holds a workpiece, the load action is removed from
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1 def generate_training_data(replay_memory, batch_size, main_model, target_model):
2 # 1: select a random batch from the replay memory
3 experiences = sample(replay_memory, batch_size)
4 # 2: create x_train
5 current_states = [exp.state for exp in experience]
6 current_penalty = [exp.penalty for exp in experience]
7 x_train = [current_states, current_penalty]
8 # 3: create y_train
9 next_states = [exp.next_state for exp in experience]

10 next_penalty = [exp.next_penalty for exp in experience]
11 # 3.1: get Q-value approximations
12 current_q_values = main_model.predict(x_train)
13 next_q_values = target_model.predict([next_states, next_penalty])
14 # 3.2: update target Q-value of selected action
15 for i, exp in enumerate(experiences):
16 # calculate new target Q-value
17 target_q = exp.reward + discount_factor**exp.duration * max(

next_q_values[i])
18 # overwrite the current Q-value of the action
19 current_q_values[i][exp.action] = target_q
20

21 y_train = current_q_values
22 return x_train, y_train

Listing 6.1: DQN Training Data Generation from the experiences.

the local action space Ai. This subset of the local action space is used for the ϵ-greedy
approach. However, if the action is selected by the DQN the penalty vector p is needed
(see Section 5.3.2). The penalty vector maps the complete local action space Ai and
assigns a penalty value to each disallowed action. Both, the list with allowed action and
the penalty vector, are returned to the agent.

6.2.4 Reward Function

In contrast to a direct reward value, the simulation only transmits the reward type
(e.g., CorrectLoad, CorrectStep, Finished). This enables a more flexible configuration of the
actual reward value within the learning framework. Consequently, modifications to the
reward function can be implemented with greater flexibility.

The responsibility for performing this task is assigned to the RewardCalculator class.
The initial step is to convert the type of reward received into the configured value. In
the case of the graduated reward, an increasing value is assigned in contrast to the
fixed values assigned to the CorrectLoad and the Finished reward types. This implies that
unloading at the first work center results in a reward of 1, unloading at the second work
center results in a reward of 2, and so on.

Subsequently, it is verified whether consecutive drives have been recorded. Therefore,
the RewardCalculator receives the last two executed actions. In the event, that both are
driving actions, the existing reward value is reduced by the corresponding penalty value.
Finally, the remaining reward value is returned to the agent.
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E X P E R I M E N T S A N D R E S U LT S

This chapter examines the potential of the proposed approach for controlling multiple
gantry robots, as outlined in Chapter 5, by conducting a series of experiments. The
objective of the individual experiments is to demonstrate the suitability of the Multi-
Agent Reinforcement Learning (MARL) approach in the context of the production plant
and the impact of the various modifications on the training of the Deep Q-Network
(DQN). Initially, the default configurations for the experiments and the used criteria to
evaluate the quality of the training models are described. Afterward, the results of the
Single-Agent Reinforcement Learning (SARL) approach are presented as a reference for
subsequent analyses of the different MARL strategies. Then six different experiments
are conducted in a step-by-step manner, with each subsequent experiment building
on the previous one. This enables the evaluation of the enhancements outlined in the
methodology (see Chapter 5). At the beginning of each experiment, the modifications to
the experimental configuration are described. The analysis and evaluation of the results
are conducted in accordance with the established evaluation criteria.

7.1 experiment setup

The following experiments were performed on the same production line layout, as
illustrated in Figure 7.1. Each workpiece must undergo three different work steps before
it can be considered complete. Two machines are available for each work step, with
processing occurring at a constant rate of ten seconds. Additionally, new unprocessed
workpieces are delivered to the Conveyor_In at a rate of one per ten seconds. Two
gantry robots of the "I" type are employed for the transportation of workpieces between
stations. Each I-loader is equipped with a single gripper. The execution duration of
the different actions is illustrated in Table 7.1. In the absence of obstructions, the travel

Figure 7.1: Digital twin of the production line used in the experiment. Two I-loaders and three
work steps with each two machines are employed.
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Table 7.1: Execution duration of the distinct actions. The stations are located at varying distances
from one another. In the case of drives over multiple stations, the individual travel
times are summed up.

Action Execution Duration

load 2.8 s

unload 2.8 s

Conveyor_In ⇐⇒ Station_A 1.5 s
Station_A ⇐⇒ Station_B
Station_C ⇐⇒ Station_D
Station_E ⇐⇒ Station_F

1.25 s

Station_B ⇐⇒ Station_C
Station_D ⇐⇒ Station_E 1.75 s

Station_F ⇐⇒ Conveyor_Out 2 s

times between stations exhibit consistent values. In the event of a drive traversing
multiple stations, the duration of that drive is the sum of the individual drives. To
illustrate, the duration of the drive from Conveyor_In to Station_D is calculated with d =

1.5 s + 1.25 s + 1.75 s + 1.25 s = 5.75 s. To clarify the impact of varying methodologies,
machine failures are not included in the experiments, with the exception of the one
presented in Section 7.7.

The agents undergo training over the course of several episodes, with each episode
covering 20 minutes of simulated time. The standard training period for MARL experi-
ments consists of 2500 episodes. At the beginning of each episode, all work stations are
unoccupied, indicating that there are no workpieces present within the production line.
The utilized epsilon decay rates λϵ for the ϵ-greedy approach are dependent upon the
complexity of the state space. The chosen decay rates and their respective progressions
are illustrated in Figure 7.2. The epsilon value, which regulates the frequency of the
ϵ-greedy approach, is decreased with each episode. This process continues until the
specified minimum value ϵmin = 0.001 is reached. The decay rates are set in such a way
that the minimum is reached after a certain number of episodes that are indicated by
the vertical lines in Figure 7.2. It is important to note that the illustration only presents
the theoretical progression of the decay. In practice, the decay will only begin once the
DQN has also commenced its training. In addition to training at the completion of each
episode, training also takes place with a probability of 5 % during the episode following
the processing of the request for a new action. On average, training is performed with
this set probability approximately 45 times per episode.

Each agent, whether utilizing the SARL or MARL approach, operates with a replay
memory capacity of 105 entries. Once the replay memory reaches a capacity of 104

entries, the training of the DQN and the epsilon decay is initialed. This delay is intended
to ensure the availability of data exhibiting sufficient variance for training of the DQN.
The training itself is conducted using a single batch comprising 64 random experiences
from the replay memory. The structure of the DQN is consistent across all experiments,
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Figure 7.2: Progression of the ϵ value over the training. The vertical lines indicate the episode
when the decay has reached the minimum epsilon value ϵmin = 0.001.

with the exception of the number of neurons in the input and output layer, which
varies based on the utilized state and the size of the action space of the corresponding
agent. Each DQN comprises three hidden layers, each with 32 neurons, which are
activated via the Rectified Linear Unit (ReLu) function. In the case of the output layer,
which represents the approximated Q-values, the linear activation function is employed,
whereby the values are output without undergoing any further modification. With
regard to the Q-learning algorithm (see Section 4.2.3), a discount factor of γ = 0.99
is utilized for future rewards. It should be noted that time discounting of the future
reward is only applicable in the context of MARL approach, given that the execution
duration obtained from the simulation cannot be employed due to the processing of
queries in the SARL approach (see Section 5.2).

In accordance with the default reward function (Equation 7.1), the action at is assigned
a reward Rt+1 in accordance with the following rules:

Rt+1 =



5, unloading a finished workpiece at Conveyor_Out

2, unloading a workpiece at a work station

1, loading a workpiece from Conveyor_In or a work station

−3, waiting at a station while blocking other loader

0, otherwise

(7.1)

The following restrictions are employed by default. If a restriction is triggered in the
current state, the corresponding action is removed from the list of allowed actions for
the ϵ-greedy approach and penalized in the penalty vector, when the action is selected
by the DQN (see Section 5.3.2).

1. Loading when the gripper has already a workpiece loaded

2. Loading from an empty station

3. Loading at a work station that has not finished its process
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4. Loading at the Conveyor_Out station

5. Loading a workpiece when all stations of the following process step are occupied

6. Unloading when the gripper has no workpiece loaded

7. Unloading a workpiece at the Conveyor_In station

8. Unloading a workpiece at an occupied work station

9. Unloading a workpiece at a work station that performs the wrong processing step

10. Driving to the station where the requesting loader is already located

11. Driving to stations that are behind the neighboring loader

An example of the fifth restriction can be observed in the scenario where Station_A and
Station_B are already processing a workpiece. In such a scenario, the agent is precluded
from loading a new workpiece from the Conveyor_In station, as it cannot be unloaded as
long as both stations remain occupied. If multiple loaders can reach those stations, this
restriction may be overly strict; otherwise, the result would be a deadlock with no further
productive actions in the running episode. The ninth restriction is intended to ensure
compliance with the prescribed sequence of process steps. The eleventh restriction is
only triggered when multiple loaders are employed. For example, if the second loader
is located at Station_C, the first loader is prohibited from driving to Station_D, Station_E,
and Station_F.

7.1.1 Evaluation Criteria

In theoretical terms, the primary criterion for an effective strategy is to achieve the
highest possible hourly throughput. The maximal achievable throughput depends on
a number of factors, including the number of work steps required and the processing
time on the machine. Furthermore, an effective strategy should demonstrate superior
performance in comparison to straightforward heuristics or, as utilized in these exper-
iments, the First In, First Out (FIFO) strategy, which serves as a fundamental point of
reference. The FIFO strategy is implemented as a basic job queue. Once a workpiece has
been processed at a work station, a job is created in the queue for further transport to
the next station. The loaders select the oldest job from the list and execute it.

During the training process of the Reinforcement Learning (RL) strategies, a straight-
forward metric is utilized to determine the so-called "best" model. This metric calculates
the moving average of the achieved throughput over the previous ten training episodes.
In the event that this moving average is higher in a given episode than the previously
determined highest average, the corresponding model persists as the "best" model.

In practice, however, it is also beneficial to achieve the highest possible throughput
with the fewest possible actions and movements, as these exert unnecessary strain on
the mechanical components. Moreover, suboptimal actions, such as consecutive drives
rather than a direct drive to a distant station, also increase the necessary communication
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between the simulation and the agent. The experiments conducted during the course of
this thesis have demonstrated that the highest throughput is achieved at an early stage
of the training with the MARL approach, although a considerable number of suboptimal
actions still occur. Consequently, the evaluation is not limited to the "best" model but
also encompasses the model that is ultimately generated at the conclusion of all training
episodes. In the following sections, this model will be referred to as the "final" model.

To ensure efficient testing of various production system configurations, it is advisable
to minimize the duration of the training process. This can be achieved by limiting the
number of episodes and ensuring that each episode is as brief as possible. Furthermore,
these criteria must be met in scenarios where simulated machine failures are present.
This guarantees that the highest throughput is achieved even in instances of temporary
"production bottlenecks".

The "best" and "final" models derived from each training run are validated through
the simulation of 100 episodes. The validation process is conducted without any actions
selected by the ϵ-greedy approach. The performance indicators measured during the
validation are the hourly throughput and the number of actions required to reach that
throughput. As each validation episode begins with an empty production line, a settling
phase with reduced achieved throughput is observed until the main strategy is executed.
To mitigate the impact of this settling phase on the metrics, each episode is simulated
for a duration of two hours.

7.2 reference experiment : single-agent

This section presents the results of two reference training runs with the SARL imple-
mentation, in which one or two I-loaders are utilized within the production line. To
guarantee the success of the training process with two I-loaders, it is essential to reduce
the ϵ-decay to provide adequate exploration of the large global state space. The utilized
epsilon decay λϵ = 0.999 77 results in the minimum ϵ-value ϵmin = 0.001 being reached
after around 30 000 episodes. This is necessary since the cardinality of the state space
has increased to approximately 7.8× 109 distinct states when the second loader is intro-
duced (see Section 5.2.4). Additionally, the number of training episodes is significantly
increased to 40 000 to compensate for the slower epsilon decay and to train the DQN

more frequently.
Figure 7.3 illustrates the training progress based on the hourly throughput achieved.

For purposes of comparison, the training progress of a model where only a single
I-loader is employed is also delineated in the figure. As anticipated, it can be observed
that the utilization of a second loader results in an increased throughput due to the
potential for parallelization in the further transportation of workpieces. However, it is
also evident that the training runs exhibit considerably higher variance, with numerous
instances where only a low throughput is achieved. Even after the epsilon value has
reached its minimum, there are still numerous episodes with low throughput.

Table 7.2 presents the results of the validation of both "best" models. A comparison of
the throughputs achieved between the training and validation phases indicates that a
slightly higher throughput is achieved during the validation phase. This discrepancy
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Figure 7.3: Hourly throughput of training runs used as a reference for the new MARL approach.
To enhance visibility, a moving average is calculated over 50 episodes.

Table 7.2: Results of the validation of the "best" model for the reference strategies. All values
are presented on an hourly basis. The column labeled "FIFO Throughput" indicates the
achieved throughput when the FIFO strategy is utilized.

Strategy Throughput Actions FIFO Throughput

Single I-Loader 82 1360 74.5
SARL Two I-Loaders 153 2600 131
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Figure 7.4: Comparison of the time between delivery of finished workpieces at the Conveyor_Out
station for both reference strategies.

can be attributed to two primary factors: Firstly, the use of the ϵ-greedy approach during
the training may results in suboptimal actions that disrupt the learned strategy and
therefore result in a decrease in the throughput. Secondly, the simulation of two hours
during the validation reduces the impact of the settling phase of the system on the
overall throughput value. A notable observation in the comparison of required actions
is that the number nearly doubles when two loaders are employed, yet the throughput
only increases by approximately 80 %. Furthermore, it is evident that both learned
strategies outperform the FIFO strategy.

Figure 7.4 illustrates the interval between the delivery of finished workpieces at the
Conveyor_Out station during the initial 600 seconds of a randomly selected validation
episode. A settling phase of approximately 250 seconds can be observed for the SARL

strategy, which utilizes two I-loaders. During this time interval, the duration between
deliveries occurs in an irregular pattern. Following the settling phase, the pattern
remains consistent until the completion of the simulation. In contrast, the single I-loader
strategy results in the delivery of all workpieces, with the exception of the initial one, at
a regular rhythm.

7.3 experiment 1 : multi-agent

In this initial experiment, the MARL approach proposed in this thesis is evaluated in
its most basic form (see Section 5.3). This involves contrasting with the SARL approach
from the reference experiment, that each of the two I-loaders is controlled by an
individual agent. As in the reference experiment, both loaders are capable of driving to
all workstations and interacting with them. The epsilon decay rate, λϵ, is set to 0.993 11
during the training, resulting in the minimum epsilon, ϵmin, being reached within 1000



7.3 experiment 1 : multi-agent 50

Figure 7.5: Hourly throughput of new MARL approach training run with SARL training run as
comparison. To enhance visibility, a moving average is calculated over 50 episodes.
The vertical dotted line denotes the episode of persistence of the "best" model.
The second figure presents the plot of the same data but with the number of episodes
limited to 4000.

episodes. As a consequence of the enhancements introduced by the MARL approach, the
number of training episodes can also be reduced to 2500, a value comparable to the
training of a model with just a single loader.

Figure 7.5 illustrates the training progress of the presented model in comparison
to the reference. For improved clarity, an additional magnified version is provided,
displaying only the initial 4000 episodes. The enhancement of the MARL approach is
irrefutably evident. On the one hand, the maximum throughput is only reached in
a fraction of the episodes. On the other hand, even a higher maximum throughput
is also achieved with 156 parts per hour instead of 147 with the SARL approach. A
closer examination of the zoomed plot reveals that the throughput achieved with MARL

training demonstrates a markedly reduced variance in comparison to the SARL approach.
The occurrence of isolated peaks or the temporary decrease around training episode
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Table 7.3: Results of the validation of the "best" model for the reference strategies. All values are
presented on an hourly basis.

Actions

Strategy Throughput Agent 1 Agent 2

FIFO 131
SARL Two I-Loaders 153 2600
MARL All Stations 158 1530 1350

Figure 7.6: Comparison of the time between the delivery of finished workpieces at the Con-
veyor_Out station.

1300 may be caused by a number of different factors. For instance, the occurrence of
isolated peaks may be attributed to the selection of an inadequate action by the ϵ-greedy
approach, which results in a state that contravenes the learned cooperative strategy.
An additional potential explanation is that the experiences selected for the training
data (see Section 6.2.2) result in a temporary decrease in the precision of the Q-value
approximations made by the DQN. This may result in a situation in which, for example,
the wait action is consistently selected in a state, thereby causing the agent to remain in
that local state. If this or a similar situation arises with one of the two agents, it halts the
joint strategy and hinders or decelerates the production of further workpieces. As the
training of the DQNs also occurs during the episode, these issues are mostly resolved in
a few episodes.

As illustrated in Table 7.3, the results of the validation also demonstrate the enhance-
ment of the MARL approach, as evidenced by the increased throughput. Additionally,
this increased throughput is reached with approximately the same number of actions,
when the numbers of both agents are combined.
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Figure 7.7: Action frequency in the replay memory of both agents of the MARL approach where
all work stations can be reached by both loaders.

A closer examination of the time interval between the delivery of finished workpieces,
as illustrated in Figure 7.6, reveals several noteworthy observations. Firstly, the delivery
of the initial workpiece is completed at an earlier point in time, and the settling phase is
shorter and follows a sequence that is more similar to the final pattern. Additionally, it
is evident that the deliveries of workpieces occur at a consistent pace only for a limited
duration. The observed pattern undergoes a brief alteration approximately every 500
seconds, which suggests that the learned strategy has not yet reached an optimal state.
An analysis of the validation run has revealed that at these times, the loaders undertake
a workpiece transport between stations that could be performed with greater efficiency
by the other loader. To illustrate, if the first loader transports a processed workpiece
from Station_D to Station_F, the second loader must perform an evasion drive to the
Conveyor_Out station. Subsequently, the first loader is required to drive the extended
distance back to the front area. A similar situation is observed when the second loader
loads a processed workpiece from either Station_A or Station_B.

Figure 7.7 illustrates the frequencies of the various actions in the replay memory of
the two agents. It is evident that these extended journeys occur with less frequency
than the other trips. Furthermore, the frequencies of the driving actions of both agents
exhibit a certain degree of mirroring, indicating that the learned joint strategy has
independently divided the work area into two segments. This, along with the long trips
to the more distant stations, which reduce throughput, reinforces the idea of restricting
the workspace in advance (see Section 5.3.1). The impact of this restriction will be
examined in the next experiment (see Section 7.4).

Upon examination of the relative frequency of the actions in the replay memory, it
becomes evident that the load action and unload action each account for approximately
20 %. The wait action accounts for approximately 6 % or 7 %, depending on the agent,
leaving just over 50 % for the driving actions collectively. In an optimal scenario, apart
from the wait action, each drive to a station should be followed by a load or unload action.
In other words, in an optimal strategy, the number of driving actions in an agent’s
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replay memory should be approximately equal to the sum of the load and unload actions.
As the driving actions are represented with greater frequency in this experiment, this
serves to confirm the issue of consecutive drive actions, which are challenging to avoid
with the default settings. The impact of the solution presented in Section 5.3.3, which
penalizes consecutive drives, is investigated in the fourth experiment (see Section 7.6).

7.4 experiment 2 : restricted work area

As observed in the preceding experiment, both agents learned a joined strategy wherein
the production line is divided into two nearly distinct work areas. This experiment
now examines the behavior of the training progress and the effectiveness of the learned
strategy when the division is determined in advance. For that purpose, the work area
of the first loader is restricted to the station from Conveyor_In to Station_D, and for the
second loader from Station_C to Conveyor_Out. This restriction has the effect of reducing
the local action space of both agents, as the drive actions for non-reachable stations are
no longer necessary. Conversely, the local state space of each agent is also reduced, as
only the features of the reachable work stations need to be present in the local state (see
Section 5.3.1).

An additional restriction is introduced that penalizes the loading action when the next
work step of the workpiece is performed at a station outside the designated work area of
the loader. With reference to the production line, this restriction is intended to prevent
the first loader from picking up processed workpieces from Station_C and Station_D.
In the absence of this restriction, the loader would be unable to unload the workpiece,
thereby preventing the acquisition of further meaningful experiences within the current
training episode. This restriction has no effect on the second loader.

Figure 7.8 illustrates the training progress in comparison to the previous experiment
using the hourly throughput as an indicator. It can be observed that the learning effect
initiates approximately 50 episodes earlier. This outcome is attributed to the smaller local
action spaces of the agents, as the restriction increases the probability that the ϵ-greedy
approach is selecting a productive action actions. Upon closer examination, it becomes
evident that the maximum hourly throughput is now slightly lower than that achieved
with the previous setting. This reduction can be explained by the following reasons:
Given that the training episodes are only 20 minutes in duration, the actual throughput
achieved during the episode is only a third, in this case, 51 finished workpieces for the
"Restricted Work Area" strategy and 52 workpieces for the "All Stations" strategy. As
the second loader is capable of operating at Station_A and Station_B in the previous
experiment, it can be productive at an earlier point in the settling phase at the beginning
of the episode. This slight acceleration of the settling phase allows both agents to
proceed with the actual strategy more quickly, enabling the delivery of another finished
workpiece within the 20 minutes of the episode. Nevertheless, this acceleration is
effectively negated during the validation process, as the settling phase is relatively brief
in comparison to the overall duration of the validation.

Figure 7.9 illustrates the hourly throughput of the validation for both the "best"
and the "final" model of the "Restricted Work Area" strategy. It is noteworthy that the
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Figure 7.8: Hourly throughput of the training run with restricted work area in comparison where
all stations can be reached. To enhance visibility, a moving average is calculated over
50 episodes. The vertical dotted line denotes the episode of persistence of the "best"
model.

Figure 7.9: Comparison of the reached hourly throughput of the "best" and "final" model for the
"Restricted Work Area" strategy.

Table 7.4: Results of the validation of the "best" model for the reference strategies. All values are
presented on an hourly basis.

Actions

Strategy Throughput Agent 1 Agent 2

FIFO All Stations 131
MARL All Stations 158 1530 1350

MARL Restricted Work Area
best (max) 159 1520 1360
best (min) 138 1390 1400
final 159 1750 1450
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"best" model generates a markedly reduced throughput in several episodes delivering
only 138 finished workpieces. This inconsistency can be derived from the relatively
early persistence of the "best" model in the 1350th training episode (see Figure 7.8). It
can be hypothesized that a higher throughput was achieved by chance over several
episodes, which then resulted in the persistence of the model. However, due to the early
persistence, further fine-tuning of the DQN that probably happened in the following
episodes did not persist, as the maximum throughput was already reached. Accordingly,
the "final" model, which resembles the model after the completion of all 2500 training
episodes, is validated to ascertain whether the fine-tuning process was indeed successful.
As illustrated in Figure 7.9, the "final" model consistently achieves a throughput of
159 workpieces per hour, which represents an improvement compared to the first
experiment. However, when examining the actions required for this throughput (see
Table 7.4), it is evident that the "final" model needs approximately 300 additional actions
compared to the best model in a "good" episode. The findings indicate that extended
training periods may not always yield positive outcomes.

7.5 experiment 3 : graduated reward

As part of this third experiment, an adjustment has been made to the reward function.
This adjustment is made with the aim of encouraging the rapid transfer of workpieces
through the production line (see Section 5.3.3). Previously, the unloading of a workpiece
into a work station or the Conveyor_Out was rewarded with a fixed value. However, the
reward is now increasing, depending on the process step of the workpiece. This results
in the following reward function (Equation 7.2) for the production line in question:

Rt+1 =



4, unloading a finished workpiece at Conveyor_Out

3, unloading a workpiece at Station_E or Station_F

2, unloading a workpiece at Station_C or Station_D

1, unloading a workpiece at Station_A or Station_B

1, loading a workpiece from Conveyor_In or a work station

−3, waiting at a station while blocking other loader

0, otherwise

(7.2)

Figure 7.10 illustrates the training progress in comparison to the training of the
previous experiment. It is noteworthy that the reward function adjustment does not
result in a significant enhancement of the training process. However, a slight reduction
in variance in the achieved throughput and a reduction in the number of temporary
drops can be observed. Additionally, it is evident that the "best" model has persisted at
a later episode in comparison to the previous experiment. However, these observations
may also have resulted from chance and thus should be interpreted with caution.
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Figure 7.10: Hourly throughput of the training run which uses the graduated reward in compar-
ison where the work area is restricted. To enhance visibility, a moving average is
calculated over 50 episodes. The vertical dotted line denotes the episode of persis-
tence of the "best" model.

Table 7.5: Results of the validation of the "best" model of the "Graduated Reward" strategy with
the results of the "Restricted Work Area" strategy as reference. All values are presented
on an hourly basis.

Actions

Strategy Throughput Agent 1 Agent 2

MARL Restricted Work Area
best (good) 159 1520 1360
best (bad) 138 1390 1400
final 159 1750 1450

MARL Graduated Reward 159 1600 1450
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As demonstrated in Table 7.5, the validation results of the "best" model indicate that
the maximum hourly throughput was once again achieved. In comparison to the "final"
model of the "Restricted Work Area" strategy the number of actions performed by
the second agent remained constant. In contrast, the first agent was able to identify
an improved local strategy in terms of the required actions. However, in comparison
with the "best" model in a "good" validation episode, this does not yet appear to be
optimal. Nevertheless, caution should be exercised when making such comparisons, as
the throughput that triggered the persistence of the "best" model is achieved by the joint
strategy of both agents. Consequently, the local strategies of the agents could potentially
differ even with the same number of actions and reached throughput.

Figure 7.11 illustrates the frequencies of the actions in the replay memory of both
agents from the training of the "Graduated Reward" strategy. It is evident that the
second agent has a notably lower frequency of wait actions within the replay memory,
thereby indicating that all other actions are represented with slightly greater frequency
than with the first agent. This discrepancy may be attributed to the slightly longer travel
time of two seconds between Station_F and the Conveyor_Out station, as opposed to the
opposite drive of the first agent between Station_A and the Conveyor_In station, which
takes only 1.5 seconds (see Table 7.1). The longer travel time for the outward and return
drive of two times half a second appears to result in a reduction of necessary waiting
actions.

It is also noteworthy that the number of drive actions to the two work centers, which
can only be reached by a single agent, is approximately equivalent. With regard to the
inner work center (comprising of Station_C and Station_D), which has been identified as
the critical zone for blockages, it is determined that the rear station is only approached
approximately half as often. This implies that the first agent approaches Station_C twice
as frequently as Station_D and vice versa for the second agent. One potential explanation
for this situation is the possibility of evasion drives. To illustrate, if the second loader is
located at Station_C and the first loader desires to transport a workpiece to Station_C,
the second agent will probably perform a brief evasion journey to Station_D. In this
situation, it would be more efficient to drive directly to another work station where
a workpiece can be loaded or unloaded, rather than making an evasion drive to the
next station that is mostly followed by a consecutive drive. The following experiment
examines whether penalizing consecutive drives has an influence on this situation.

7.6 experiment 4 : consecutive drive penalty

The objective of this experiment is to investigate the impact of introducing a penalty
for consecutive drives. The application of this penalty is justified by the fact that the
simulation software in use makes it extremely challenging for the agents to differentiate
between consecutive drives and more efficient direct drives. This phenomenon is a
consequence of the fact that the travel times between stations adhere to a constant value
and fail to reflect the acceleration and deceleration observed in reality (see Section 5.3.3).
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Figure 7.11: Frequency of the distinct action in the replay memory of both agents.

The reward function from the previous experiment (see Equation 7.2) is extended by the
following aspect:

Rt+1 =


...

−1, if the actions at and at−1 are both drive actions

...

(7.3)

Figure 7.12 illustrates the training progress in comparison to that of the previous
experiment. It is evident that the training progress has become more diverse, exhibiting
a greater degree of variability and notable occurrences of temporary declines. This
lends support to the hypothesis put forth in Section 5.3.3 that the introduction of the
penalty results in different reward values being attributed to the same state-action-
state transition. Notwithstanding this disadvantage, the same maximum throughput is
achieved during the training.

As illustrated in Table 7.6, the results of the validation are presented in comparison to
the outcomes of the previous experiment. It is noteworthy that the "best" model once
again achieved the maximum throughput of 159 workpieces per hour. The introduction
of the penalty has resulted in a reduction of the number of necessary actions from
approximately 3000 to 2800.

However, the validation of the "final" model nearly produced no workpiece. The
"final" model represents the state of both agents after the completion of all 2500 training
episodes. As seen in Figure 7.12 the training completed within a drop in the achieved
throughput. Further analysis of the validation episode has shown that the second agent
wrongfully prefers the wait action in a state where processed workpieces could have
been transported to the next station. This may only be a temporary problem caused by
the randomly selected experiences that are used for the training of the DQN.

An examination of the frequency of the actions in the replay memory of both agents
also demonstrates that the consecutive drives are successfully avoided (see Figure 7.13).
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Figure 7.12: Hourly throughput of the training run which employs the penalty for consecutive
drives in comparison with the training run of the third experiment. To enhance
visibility, a moving average is calculated over 50 episodes. The vertical dotted line
denotes the episode of persistence of the "best" model.

Table 7.6: Results of the validation of the "best" model of the "Consecutive Drive Penalty"
strategy with the results of the "Graduated Reward" strategy as reference. All values
are presented on an hourly basis.

Actions

Strategy Throughput Agent 1 Agent 2

MARL Graduated Reward 159 1600 1450

MARL Consecutive Drive Penalty
best 159 1510 1290
final 2 120 200
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Figure 7.13: Frequency of the distinct actions in the replay memory of both agents.

It can be observed that all stations are now approached with approximately equal
frequency. Station_C and Station_D represent an exception with regard to a single agent,
as on the one hand, the first agent is only approaching for the purpose of loading the
stations, and on the other hand, the second agent is only approaching for the purpose of
unloading. The other work stations are approached by the same agent for both processes.
When the frequencies of both agents are summed, the result is a value that is similar to
the frequency of the other drive actions.

Furthermore, it can be observed that the sum of all driving actions of an agent now
occurs with a frequency that is nearly equivalent to the sum of the loading and unloading
actions. This lends further support to the hypothesis that the ideal strategy is for each
drive to be followed by a loading or unloading action. It is also possible that wait actions
occur between two drive actions, as this is not detected by the penalty mechanism and
therefore not penalized. Nevertheless, it can be postulated that this occurs with minimal
frequency, as otherwise the ratio between the number of driving and loading/unloading
actions would be skewed towards the driving actions.

7.7 experiment 5 : machine failures

In the preceding experiments, all processing times on the machines were held constant,
thereby establishing the theoretical premise that the optimum strategy represents the
most efficient driving pattern. In practice, however, malfunctions may occur on the
machines, which then disrupt that pattern. It is imperative that the agent’s joint strategy
also yields the best possible throughput in such scenarios. In order to evaluate the
behavior of the different strategies, machine failures are simulated in this experiment.
A machine failure can only occur after a workpiece has been loaded into a work
machine. The error itself is flagged within the state space with the "failed" feature of
the corresponding machine (see Table 5.6). As long as the machine is faulty, it is not
possible for any loader to interact with it. Once the error has been resolved, the machine
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switches to the idle state, and the previously processed workpiece is destroyed, thereby
disappearing from the simulation.

In practice, the Mean Time Between Failures (MTBF) and Mean Time to Repair (MTTR)
describe the availability (Equation 7.4) of machines, which is defined as follows:

Availability =
MTBF

MTBF + MTTR
(7.4)

In this experiment, the MTBF is set to 270 seconds, and the MTTR is set to 30 seconds,
resulting in a machine availability of 90 %. This relatively low availability is chosen in
order to illustrate the impact of machine failures on training more clearly. In practice,
errors do not occur at fixed intervals; rather, they occur randomly. Accordingly, the MTBF

and MTTR values serve as parameters for statistical distributions, which are employed
to determine the simulated values in the simulation. The time to the next failure is
determined using the exponential distribution with the parameter λ = 1/MTBF. The
exponential distribution is defined by the following density (Equation 7.5) and the
distribution function (Equation 7.6):

f (x) =

λ exp(−λx) for x ≥ 0

0 otherwise
(7.5)

F(x) = 1− exp(−λx) (7.6)

In the case of MTBF, only the active processing time of the machines is considered. To
illustrate, if an MTBF of 255 seconds is determined for a machine, this signifies that the
error occurs when the 26th workpiece is processed, given that the processing of each
workpiece takes 10 seconds.

The repair times of the machines are determined using the Erlang distribution, with
the parameters λ = 1

2×MTTR and k = 2. The Erlang distribution is defined by the
following density function (Equation 7.7) and the distribution function (Equation 7.8):

f (x) =


λkxk−1 exp(−λx)

(k−1)! for x ≥ 0

0 otherwise
(7.7)

F(X) = 1−
k−1

∑
n=0

1
n!

exp(−λx)(λx)n (7.8)

Upon completion of the repair process, new values for the MTBF and the MTTR are
generated using the aforementioned distributions, which subsequently describe the
future occurrence of machine failures. It is important to note that the probability of
simultaneous failure of both machines in a work center is 1 %, as the failures of the
machines are independent and identically distributed.

In order to test the resilience of the MARL approach to machine failures, all configura-
tions from the previous experiments were retrained with the aforementioned machine
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Figure 7.14: Hourly throughput achieved during training with the SARL implementation. To
enhance visibility, a moving average is calculated over 50 episodes.

failures. Figure 7.14 illustrates the training progress of the SARL approach in comparison
to the same training without failures. As can be observed, the training process is not
particularly effective, exhibiting a stagnation at approximately 120 parts per hour. The
validation results, as presented in Table 7.7, also corroborate this conclusion. Due to
the occurrence of simulated machine failures, the throughput achieved and the number
of actions performed exhibited considerable fluctuations over the course of the 100
validation episodes. Consequently, the table presents the 95 % confidence interval for the
mean of the different metrics across the validation episodes. The "final" model that un-
derwent a slightly longer training period demonstrated marginally better performance.
The suboptimal performance can be attributed to multiple factors, one of which is the
increase in state space cardinality due to the introduction of the "failed" state for each
machine. Furthermore, it has been demonstrated once again that the moving average of
the throughput is not an optimal metric for the persistence of the "best" model.

Figure 7.15 illustrates the progression of the MARL training runs in two pairs. A com-
parison between the "All Stations" and "Restricted Work Area" strategies demonstrates a
more rapid increase, similar to that observed in the second experiment (see Section 7.4).
However, in contrast to the previous experiment, the "Restricted Work Area" strategy
appears to yield superior training outcomes when machine failure are simulated.

A comparison of the "Graduated Reward" and "Consecutive Drive Penalty" strategies
reveals that the training progress is again more variable due to the introduction of
consecutive drive penalty as before in the fourth experiment (see Section 7.6). All four
training runs exhibit a comparable maximum, with an output of approximately 140
workpieces per hour. In comparison to all previous experiments, each resulting training
progress displays greater variability, which can be attributed to both the inherent
unpredictability of the failures themselves and the slightly larger state space. To ensure
the consistency of the training runs, the same hyperparameters were intentionally used.
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Figure 7.15: Hourly throughput during training of all four MARL strategies experiments with
machine failures. To enhance visibility, a moving average is calculated over 50
episodes.
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It is likely that the training runs would exhibit less variability if the epsilon decay
rate was slower, more training episodes were conducted, or the simulated time was
extended.

A closer examination of the validation results reveals that while the "best" models
exhibit similar throughputs, the MARL strategies still demonstrate notable differences.
The "final" models of the "All Stations" and "Graduated Reward" strategies exhibit a
notable decline in performance relative to their "best" models. This discrepancy can
be attributed to the inherent randomness associated with the training process. The
"Restricted Work Area" strategy achieves the highest throughput with both models,
with minimal variance. An examination of the frequencies of the various actions in the
replay memory (see Figure 7.16) reveals that even in the presence of machine failures,
the punishment of double runs has an effect.

Additionally, it is evident that the second agent awaits almost twice as frequently as
the first loader. This is attributed to the fact that the initial failures predominantly occur
at the front stations, as these also commence processing first. Consequently, due to the
destruction of the workpiece by the machine failure and the subsequent repair time,
which averages 30 seconds, only one machine is operational for the stations situated
behind it during this interval. This results in a notable increase in idle time for the
second loader.
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Figure 7.16: Frequency of the action in the replay memory from the training runs of the "Re-
stricted Work Area" and the "Consecutive Drive Penalty" Strategy.
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Table 7.7: Results of the validation runs for the different strategies and models when machine
failures (MTBF = 270 s, MTTR = 30 s) are simulated. The results are presented as the
mean over all 100 validation episodes with the 95 % confidence interval. All values
are presented on an hourly basis.

Actions

Strategy Throughput Agent 1 Agent 2

FIFO All Stations
124.5

[124.07, 124.86]

FIFO Restricted Area
114.3

[113.71, 114.96]

SARL Two I-Loaders

best
116.2

[112.2, 115.54]
2162.7

[2128.75, 2196.56]

final
112.2

[114.15, 118.28]
2110.3

[2056.77, 2163.81]

MARL All Stations

best
135.5

[131.47, 139.51]
1616.4

[1603.69, 1629.21]
1434.0

[1422.53, 1445.57]

final
110.0

[100.45, 119.59]
1386.3

[1297.01, 1475.54]
1421.8

[1329.28, 1514.37]

MARL Restricted Work Area

best
142.8

[142.29, 143.23]
1526.5

[1524.43, 1528.64]
1423.0

[1419.46, 1426.63]

final
144.5

[143.98, 145.01]
1658.0

[1655.94, 1659.97]
1427.4

[1424.85, 1429.88]

MARL Graduated Reward

best
141.0

[140.45, 141.51]
1565.3

[1561.34, 1569.19]
1448.0

[1444.12, 1451.88]

final
125.3

[118.8, 131.73]
1819.8

[1765.92, 1873.74]
1726.6

[1667.91, 1785.23]

MARL Consecutive Drive Penalty

best
135.7

[131.37, 140.12]
1425.8

[1415.75, 1435.9]
1341.9

[1334.38, 1349.36]

final
134.9

[134.43, 135.42]
1353.6

[1351.39, 1355.89]
1379.5

[1376.78, 1382.25]
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Table 7.8: Adjusted configuration for both training strategies.

Strategy # Episode Simulated Time Epsilon Decay Rate

Five Steps 2500 1200 s 0.993 11
Five Steps Slowed Training 5000 1800 s 0.9977

7.8 experiment 6 : five work steps

In this final experiment, the performance of the new MARL approach in a production
line examined in which the workpieces must pass through five work steps. As in the
preceding experiments, there are two work stations for each work step. The processing
times and distances between the machines align with the established pattern. The
work areas for the agents are separated at Station_E and Station_F, allowing each agent
to reach six work stations. The state space of the preceding SARL implementation is
estimated to have a state space cardinality of approximately 5.2× 1013. In contrast, the
cardinality of the local state spaces in the MARL approach is observed to be 4.4× 107

for the first agent and 1.8× 107 for the second agent. These values confirm the rapid
growth of the SARL state space with minor alterations, due to the necessity of mapping
the complete system state.

In the interest of clarity of presentation, machine failures have been excluded from
this experiment. Two distinct configurations of the training parameters are subjected to
evaluation (see Table 7.8). The initial configuration employs the identical settings utilized
in preceding MARL experiments. The second configuration results in a slower training
process, with a reduced epsilon decay rate, thereby allowing for a more comprehensive
exploration of the expanded local state space of both agents. The epsilon decay rate of
λϵ = 0.9977 results in the minimum being reached after 3000 training episodes. As a
result, the number of episodes is increased to 5000. Given that the higher number of
process steps increases the throughput time of each workpiece, the simulated time per
episode is increased to 30 minutes. This ensures that, especially at the beginning of the
training, i.e., while a high epsilon value is still present, there are sufficient opportunities
for workpieces to be guided through the system by random decisions only.

The progression of both training runs is illustrated in Figure 7.17. It can be observed
that a higher throughput is achieved in a shorter time with the standard settings, as
the proportion of decisions based on the Q-values increases at a faster rate due to the
accelerated epsilon decay. However, it is apparent that there is a notable degree of
variability in the achieved throughput. This is due to the fact that the strategy that each
agent must learn is more complex, as each agent is now responsible for three work steps.
Furthermore, the first agent is required to first guide the workpiece through the initial
work steps before the second agent can gain any productive experience.

The progression of the slowed-down training exhibits a slower increase, which is
attributed to the reduced epsilon decay rate. However, the variance observed during
training appears to be similar to that of the default training run. A more notable
observation is that a higher maximum throughput of 100 parts per hour is achieved
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Figure 7.17: Hourly achieved throughput of the training runs of the sixth experiment. To enhance
visibility, a moving average is calculated over 50 episodes. The vertical dotted line
denotes the episode of persistence of the "best" model.

with the "Slowed" strategy. This discrepancy is likely attributable to the extended
simulated time span, whereby the system’s settling phase has a diminished impact on
the attained throughput rate.

The results of the validations for both strategies are presented in Table 7.9. It can
be observed that the discrepancies in both the achieved throughput and the actions
required are relatively minor. The "final" model of the "Five Steps" strategy exhibits a
slight decline in performance, which is attributed to random fluctuations during the
training phase. The slower training process, which results in an extended exploration of
the state space using the ϵ-greedy approach, resulted in a throughput of 105 per hour
in approximately half of the validation episodes.

Table 7.9: Results of the validation of both models of each experiment training run. All values
are presented on an hourly basis. The "Slowed Training" strategy achieved each
corresponding throughput in approximately 50 validation episodes.

Actions

Strategy Throughput Agent 1 Agent 2

MARL Five Steps
best 104 1370 1320
final 103 1470 1370

MARL Five Steps Slowed Training
best {104, 105} 1370 1320
final {104, 105} 1400 1350
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Figure 7.18: Frequency of the distinct actions in the replay memory of both agents.
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Figure 7.17 once more illustrates the frequencies of the actions stored in the replay
memory for both training runs. In both cases, it can be observed that the implementation
of a penalty for double trips has resulted in a similar frequency of occurrence for all
driving actions. Furthermore, the ratio between drive and load/unload actions is also
balanced. As the training episodes are terminated after the specified time, the drive
actions to the rear stations (Station_G to Conveyor_Out) occur with slightly diminished
frequency, as the workpieces that are already in the system are no longer completed.
The most notable distinction between the two training runs is the frequency of waiting
actions. On the one hand, it can be observed that the training with the standard settings
involves more frequent waiting. This may also be the reason for the slightly lower
throughput during the validation process, as the agents may mistakenly select the wait
action, which is aborted after a very short time due to a passive updates in the system
state (see Section 5.1.1). This issue seems to have been resolved with the slower training.

Secondly, it is evident that the second agent now waits more frequently in both
training runs in comparison to the previous experiments. This is due to the longer
settling phase of the system. By the time the second agent can retrieve a completed
workpiece from Station_E or Station_F, the first agent has already performed a substantial
number of actions. As a consequence of the manner in which the simulation software
operates, each of these actions constitutes a passive alteration to the system state
that cancels the second agent’s wait action (see Section 5.1.1). An enhancement to the
simulation software could be the incorporation of a mechanism that considers the
restricted work area of the loaders, whereby requests for the loader are only sent to the
agent in the event of a change in the loader’s work area.
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C O N C L U S I O N

In the modern era, many production facilities have adopted robots to automate tasks and
improve efficiency, but traditional control methods are no longer sufficient to maintain
adaptability, leading to the growing popularity of dynamic scheduling. Recent research
has increasingly focused on using Artificial Intelligence (AI) to optimize dynamic
scheduling, with digital twins providing a strong foundation for applying Reinforcement
Learning (RL) to complex and continuous tasks.

The analysis of the preceding Single-Agent Reinforcement Learning (SARL) approach
for controlling gantry robots in a production line has demonstrated that the approach
is unable to adapt effectively when multiple loaders are utilized. As a consequence
of the requirement of mapping the entire system state, even minor additions to the
production line layout result in an exponential growth of the state space. Similarly,
the asynchronous execution of the actions of the different loaders represents a further
challenge. In the SARL approach, this means that not every accumulated experience
contains a subsequent state where the previously selected action has been fully executed
or completed. Furthermore, the reward is also delivered late, when the request in the
subsequent time step is triggered by another loader. This contradiction to the theory of
a Markov Decision Process (MDP) hinders the success and speed of finding the optimal
policy.

This thesis has demonstrated how these challenges can be addressed through the
application of a Multi-Agent Reinforcement Learning (MARL) approach. The key im-
provements include:

• Selective State Distribution: By limiting the distribution of the system state only
to the responsible agent, it is ensured that the agent’s previous action is fully
executed in the subsequent state.

• Partial Observability: The partial observation of the agents effectively reduces the
size of the local state and action spaces without compromising the efficacy of the
learned joint strategy.

• Work Area Restriction: Limiting the work areas of the loaders has been shown to
be a legitimate restriction, reducing the system complexity and state space, as this
division is learned independently by the agents.

• Reward Function Adjustments: Although graduated rewards to prioritize rapid
transfer did not yield notable enhancements, modifying the reward function
successfully prevented consecutive drives caused by the simplified simulation.

The operational efficacy of the proposed methodology has been validated through sev-
eral iterative experiments. The findings indicate that multiple agents can independently

71
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learn and yet still collaborate, thus identifying a cooperative strategy for maximizing
throughput in the simulated system.

8.1 future prospects

In the course of preparing this master’s thesis and, in particular, in the process of
conducting the experiments, some minor issues emerged that would benefit from
further investigation in future works. The experiments demonstrated the necessity for
the development of a more effective metric for the evaluation of models during training.
In addition to the throughput achieved, this metric should also take into account other
values, such as the number of actions required. From a practical standpoint, it would
also be beneficial to ascertain which hyperparameters influence the training and learning
behavior of the agents and to what extent.

Additionally, it would be valuable to examine the performance of the MARL approach
when the simulated system is more similar to a real system. Such an investigation could
entail examining systems with additional loaders and stations with varying degrees of
overlap between their work areas, as well as more intricate production processes involv-
ing different product types with distinct processing times in the machines. Moreover,
examining the influence of the structure of the Deep Q-Network (DQN) on the training
process may prove advantageous in scenarios where the complexity of the production
plant and, consequently, the size of the state spaces increases.

Furthermore, deficiencies in the simulation software that impede the effectiveness
of RL have been identified. Potential areas for future investigation include the removal
of the penalty for double runs in instances where the simulation accurately maps the
acceleration of the loaders. Additionally, it is hypothesized that the learning behavior
can be enhanced by mapping the restricted work areas and regulating the requests to
the agents in a manner that aligns with the simulation’s representation of the physical
system.
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Figure B.1: Detailed class diagram with methods and attributes for the MARL approach.
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