Towards enhancing Augmented Reality-guided Visual Inspection with Automated Deviation Analysis

Master Thesis of Tim Rohwedder^{1,2}, Supervisors: Prof. Dr. Elke Hergenröther¹, Prof. Dr. Andreas Weinmann²
Departments of Mathematics and Science² and Computer Science¹ of Darmstadt University of Applied Science

Motivation

- **Visual Quality Control**: Products in manufacturing processes must be checked for deviations from the CAD-model.
- Augmented Reality is used to assist this process. In real-time, the real object's pose is tracked¹ and the image is augmented with the CAD-model contours. Relevant sections are highlighted. The worker can label them "okay / not okay" (OK / NOK) directly in the app. Automated highlighting of defects could further enhance the effectiveness of the inspection.²
- In practice, fast setup times for new objects are often mandatory
 System must work with new CAD-models without requiring data collected from the real object
- CAD-based automated defect detection with a mobile camera poses a problem without any existing datasets.

Research Question

How to define and create a dataset that enables the development of CAD-based automated defect detection with mobile cameras?

- System input / output; Performance metrics
- Additional data necessary for development
- What are cost-effective ways of creating such datasets?

Defining a suitable dataset format (First figure)

- Annotations: Class, Reference to node in the 3D model, Mathematical Parameters
- Tolerances: Per part for different defect types
- Frame sequence: Camera image, Tracking pose, SLAM pose
- Output: "OK / NOK / Unknown" label per part
 - NOK case: Defect type and parameters
- Performance metrics; Confusion matrix, Ratio of classified parts,
 Measurement error for defect parameters

Rendering training masks for subtasks (Second figure)

- Given CAD-model and annotations of the actual object's state
 - → Rendering of ground truth masks for potential subtasks
 - Depth & Normal Estimation
 - Semantic segmentation

Simulation based dataset creation (Third figure)

- Often not possible to collect detailed data on the production line
 - → Collect data from sample objects in the lab
 - → Limited number of objects
- Real object and actual state (3D model + annotations) required.
- Simulate defects by creating a target state with deviations from the actual state. Modifies mesh and annotations. Record list of simulated deviations. Combine with real images.

- Supported defect types
 - Shifting, Tilting, Scaling
 - Removing / Adding parts
 - Deformation of parts (given the 3D model looks plausible)

Created dataset

- Remodeling and annotation of 8 different objects
 - Automobile use-case, steel and aluminum
 - o Part classes: Stud, hole, weld spot, generic part
 - o In total: 37 studs, 292 holes, 318 weld spots
- Modified existing AR application to record images and poses
 - SLAM pose from native SLAM support
 - Model tracking pose from VisionLib
 - 133 recorded sequences for a total of 146k frames
- Model tracking poses are mostly accurate (offset between augmented model and real object not visible). Inaccuracies occur mostly when the camera is moving → Good for testing (real conditions) but problematic for training (inaccurate masks)

Conclusion, Limitations, Future work

- Dataset format proposed that supports evaluating a solution and creation of 2D masks for various image processing subtasks.
- Simulation based dataset creation proposed.
 - Simulation provides target state and deviations. Lower effort compared to measuring real defects.
 - Real images → No domain gap
- Limitations
 - Not applicable for deformations like dents and surface defects like scratches
 - Physical object and corresponding model necessary
- Future work
 - Physically based rendering of simulated model
 - Implementation and evaluation of potential solutions
 - Extension of the dataset, supported part and defect types

References

- Wuest, Harald, Florent Vial, and Didier Stricker. "Adaptive line tracking with multiple hypotheses for augmented reality." Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05). IEEE, 2005.
- Seeliger, Arne, Long Cheng, and Torbjørn Netland. "Augmented reality for industrial quality inspection: An experiment assessing task performance and human factors." Computers in Industry 151 (2023): 103985.
- Visometry GmbH. VisionLib documentation. https://docs.vis ionlib.com. [Accessed 12-04-2024]. 2024.