h da

HOCHSCHULE DARMSTADT
UNIVERSITY OF APPLIED SCIENCES

Introduction

In the development of autonomous Order Picking Systems (OPS) like KION Group’s RoCaP robot,
detecting slipsheets (thin separation layers between product layers) emerged as a key challenge.
These slipsheets obstruct product visibility and accessibility, preventing the robot from continuing
its picking process. A promising solution is training a Deep Neural Network (DNN) to detect
or classify slipsheets in camera images. However, collecting sufficient labeled training data is
difficult, especially in real warehouse environments. To address this, synthetic data generation
using simulation tools like NVIDIA Omniverse |3] becomes a viable alternative. Its Replicator toolkit
enables the randomized creation of labeled image datasets under varied conditions. This allows
training visual models (e.g., YOLO [2], EfficientNet [4] or ResNet [1]) using simulated data, with
the goal of achieving strong performance on real-world tasks, also known as Sim-to-Real Transfer
Learning.

Research Questions

This thesis revolves around three main research questions.

= Can synthetic data be used to effectively fine-tune pre-trained visual models for real-world
tasks and what is the best way of creating synthetic data?

= To what extent does supplementing synthetic data with real-world data improve model
accuracy, and what strategies best minimize the simulation-to-reality gap?

= To what extent does data augmentation of real data contribute to improved generalization
iIn models trained with hybrid datasets?

Synthetic Data Generation (SDG)

To create synthetic data usable for the training of DNN the Simulation-to-Reality Gap has to be
addressed. This involves two main challenges:

= The Appearance Gap, which refers to visual differences between real and synthetic images
due to rendering limitations or material complexity.

= The Content Gap, which concerns differences in object variety, placement, and scene
diversity between simulations and real-world scenarios.

To overcome these gaps, rendering quality must be improved, realistic materials used and scene
variability increased. Domain randomization, the continuous and varied alteration of scenes, is a
key technique to help models generalize to real-world data.

To achieve this, two different simulations were developed using the NVIDIA Omniverse Replicator
framework. These simulations included various warehouse models, packing pattern algorithms
to determine the optimal arrangement of products on a pallet, and a full physics simulation to
realistically model slipsheets.

Figure 1. Example image simulator approach 1 Figure 2. example image simulator approach 2
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Data Augmentation of Real Data

In addition to the synthetic dataset generated through simulation, a small set of real-world data
was collected for testing and fine-tuning. These recordings were conducted both in a live ware-
house environment to ensure high realism, and in a test facility to capture data from a different
domain.

To increase the size of the dataset Data Augmentation in different levels was applied to test which
level scores the best results. The pipeline first applies a horizontal flip, then dropouts, channel
dropouts, affine transformations and lastly domain specific augmentations (e.g. noise, blur).

Results

First it was examined if training on only synthetic data already leads to models usable in real-world
applications. For this a ResNet-50, EfficientNet-BO/-B1 and YOLO11s-cls algorithm were trained
and tested. Then different approaches of mixing real and synthetic dataset and cross domain
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The final model used for the integration in the
RoCaP robot was an EfficientNet-BO model
pretrained on synthetic data and fine-tuned on
an unaugmented real dataset taken from all
domains. The accuracy of the final model is
98.5% and the F1-score is 0.986. The training
time needed for this model are around 1.54h for
the training on synthetic data and an additional
7min for the fine-tuning. All misclassified
images are borderline cases, suggesting that
further hyperparameter tuning could improve
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Comparison between models trained only on synthetic data
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Figure 3. Comparison of models trained on synthetic data

The simpler models (ResNet, EfficientNet) all
achieve better results when using the fine-tune
method of integrating real data. The
YOLO11s-cls model on the other hand performs
better when applying the full train method. A
reason for that may be the more complex layers
used in this architecture, mainly the attention
mechanism that needs a lot of training data to
be be trained for a specific use case.

All models perform subpar and are not suffi-
cient forreal-world use. Surprisingly the simplest
model in ResNet-50 performs the best and the
more complex models cannot hold up. The last
model shown in Figure 3 is another YOLO11s-cls
model trained on synthetic data that was aug-
mented to more closely match images recorded
by a real camera.

To achieve better results real data had to be
used in training in addition to the synthetic data.
Two different methods for including the real data
were tested: Mixing synthetic and real data and
training on one big dataset and fine-tuning the
models trained on synthetic data with the smaller
real datasets.

Comparison between finetuning and full training of different architecture (BW + AB)
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Figure 4. Comparison of full train and ft models

In addition to the different datasets used, cross domain tests were conducted using models trained

Figure 5. Confusion matrix final model

Conclusion

This study examined the effectiveness of synthetic data for training visual models, its combina-
tion with real-world data, and the impact of data augmentation. It was found that relying solely on
synthetic data generated in NVIDIA Omniverse was insufficient for real-world performance, with
the best model achieving only 87.5% accuracy. The high visual similarity between slipsheets and
certain product layers likely contributed to these limitations. Incorporating even a small amount
of real data significantly improved results. Fine-tuning pre-trained models with just 392 real im-
ages increased accuracy up to 98.5%, proving that real-world data is essential for robust model
performance. Both training strategies (mixed datasets and fine-tuning) showed benefits, with
their effectiveness depending on the model architecture. Additionally, data augmentation of real
images helped improve cross-domain generalization, especially when training on data collected in
a live warehouse environment. Although no single augmentation level outperformed the others,
applying it consistently led to more stable results. Overall, combining synthetic data with aug-
mented real-world data is key to achieving high-performing and generalizable models.

Future work includes integrating the model into RoCaP’s picking process via a Docker container
using ROS2Z camera data. While slipsheet removal is currently manual, automation is planned.
Model efficiency can be improved using TensorRT. Enhancing the simulation with more realistic
physics, textures, and object variety could enable fully synthetic training. Additionally, generating
bounding boxes or keypoints would allow for object detection training. A two-phase classification
approach could improve results on difficult cases. Finally, performance across domains may ben-
efit from either fine-tuning per environment or creating a diverse, combined dataset for better
generalization.
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