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Introduction

In the development of autonomous Order Picking Systems (OPS) like KION Group’s RoCaP robot,

detecting slipsheets (thin separation layers between product layers) emerged as a key challenge.

These slipsheets obstruct product visibility and accessibility, preventing the robot from continuing

its picking process. A promising solution is training a Deep Neural Network (DNN) to detect

or classify slipsheets in camera images. However, collecting sufficient labeled training data is

difficult, especially in real warehouse environments. To address this, synthetic data generation

using simulation tools likeNVIDIAOmniverse [3] becomes a viable alternative. Its Replicator toolkit

enables the randomized creation of labeled image datasets under varied conditions. This allows

training visual models (e.g., YOLO [2], EfficientNet [4] or ResNet [1]) using simulated data, with

the goal of achieving strong performance on real-world tasks, also known as Sim-to-Real Transfer

Learning.

Research Questions

This thesis revolves around three main research questions.

Can synthetic data be used to effectively fine-tune pre-trained visual models for real-world

tasks and what is the best way of creating synthetic data?

To what extent does supplementing synthetic data with real-world data improve model

accuracy, and what strategies best minimize the simulation-to-reality gap?

To what extent does data augmentation of real data contribute to improved generalization

in models trained with hybrid datasets?

Synthetic Data Generation (SDG)

To create synthetic data usable for the training of DNN the Simulation-to-Reality Gap has to be

addressed. This involves two main challenges:

The Appearance Gap, which refers to visual differences between real and synthetic images

due to rendering limitations or material complexity.

The Content Gap, which concerns differences in object variety, placement, and scene

diversity between simulations and real-world scenarios.

To overcome these gaps, rendering quality must be improved, realistic materials used and scene

variability increased. Domain randomization, the continuous and varied alteration of scenes, is a

key technique to help models generalize to real-world data.

To achieve this, two different simulations were developed using the NVIDIA Omniverse Replicator

framework. These simulations included various warehouse models, packing pattern algorithms

to determine the optimal arrangement of products on a pallet, and a full physics simulation to

realistically model slipsheets.

Figure 1. Example image simulator approach 1 Figure 2. example image simulator approach 2

Data Augmentation of Real Data

In addition to the synthetic dataset generated through simulation, a small set of real-world data

was collected for testing and fine-tuning. These recordings were conducted both in a live ware-

house environment to ensure high realism, and in a test facility to capture data from a different

domain.

To increase the size of the dataset Data Augmentation in different levels was applied to test which

level scores the best results. The pipeline first applies a horizontal flip, then dropouts, channel

dropouts, affine transformations and lastly domain specific augmentations (e.g. noise, blur).

Results

First it was examined if training on only synthetic data already leads to models usable in real-world

applications. For this a ResNet-50, EfficientNet-B0/-B1 and YOLO11s-cls algorithm were trained

and tested. Then different approaches of mixing real and synthetic dataset and cross domain

generalization were studied.

Figure 3. Comparison of models trained on synthetic data

All models perform subpar and are not suffi-

cient for real-world use. Surprisingly the simplest

model in ResNet-50 performs the best and the

more complex models cannot hold up. The last

model shown in Figure 3 is another YOLO11s-cls

model trained on synthetic data that was aug-

mented to more closely match images recorded

by a real camera.

To achieve better results real data had to be

used in training in addition to the synthetic data.

Two different methods for including the real data

were tested: Mixing synthetic and real data and

training on one big dataset and fine-tuning the

models trained on synthetic datawith the smaller

real datasets.

The simpler models (ResNet, EfficientNet) all

achieve better results when using the fine-tune

method of integrating real data. The

YOLO11s-cls model on the other hand performs

better when applying the full train method. A

reason for that may be the more complex layers

used in this architecture, mainly the attention

mechanism that needs a lot of training data to

be be trained for a specific use case.
Figure 4. Comparison of full train and ft models

In addition to the different datasets used, cross domain testswere conducted usingmodels trained

only on real data taken from one domain and tested on another unknown domain while applying

different levels of data augmentation to the real data. The results are as expected and the models

perform well on the domain included in the training data and worse on the unknown domain.

This results is observed over all architectures while different data augmentation levels are able to

improve metrics slightly for some models. So when transferring the RoCaP robot to a new domain

new data has to be recorded and a new model specialized on this domain has to be trained.

Results

The final model used for the integration in the

RoCaP robot was an EfficientNet-B0 model

pretrained on synthetic data and fine-tuned on

an unaugmented real dataset taken from all

domains. The accuracy of the final model is

98.5% and the F1-score is 0.986. The training
time needed for this model are around 1.54h for
the training on synthetic data and an additional

7min for the fine-tuning. All misclassified
images are borderline cases, suggesting that

further hyperparameter tuning could improve

performance.

Figure 5. Confusion matrix final model

Conclusion

This study examined the effectiveness of synthetic data for training visual models, its combina-

tion with real-world data, and the impact of data augmentation. It was found that relying solely on

synthetic data generated in NVIDIA Omniverse was insufficient for real-world performance, with

the best model achieving only 87.5% accuracy. The high visual similarity between slipsheets and

certain product layers likely contributed to these limitations. Incorporating even a small amount

of real data significantly improved results. Fine-tuning pre-trained models with just 392 real im-
ages increased accuracy up to 98.5%, proving that real-world data is essential for robust model
performance. Both training strategies (mixed datasets and fine-tuning) showed benefits, with

their effectiveness depending on the model architecture. Additionally, data augmentation of real

images helped improve cross-domain generalization, especially when training on data collected in

a live warehouse environment. Although no single augmentation level outperformed the others,

applying it consistently led to more stable results. Overall, combining synthetic data with aug-

mented real-world data is key to achieving high-performing and generalizable models.

Future work includes integrating the model into RoCaP’s picking process via a Docker container

using ROS2 camera data. While slipsheet removal is currently manual, automation is planned.

Model efficiency can be improved using TensorRT. Enhancing the simulation with more realistic

physics, textures, and object variety could enable fully synthetic training. Additionally, generating

bounding boxes or keypoints would allow for object detection training. A two-phase classification

approach could improve results on difficult cases. Finally, performance across domains may ben-

efit from either fine-tuning per environment or creating a diverse, combined dataset for better

generalization.
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