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ABSTRACT

Understanding fine-grained user intent within corporate email is crucial for workplace
automation but faces significant Natural Language Processing (NLP) challenges due to
unstructured conversational context, unknown intent taxonomies, and pervasive seman-
tic overlap between related goals. This thesis addresses this complexity by developing,
implementing, and evaluating a novel semi-automated workflow for discovering and
labeling intents in the large-scale Avocado email corpus. The methodology integrates
targeted filtering, weak supervision utilizing Large Language Models (LLMs) (using
LLaMA 3 8B Instruct for quality scoring and feature generation), semantic clustering
(with SBERT embeddings), and an iterative refinement process. This produced a new
labeled dataset of 6,785 utterances across 54 identified fine-grained corporate intent
classes.

Characterization of this dataset revealed significant structural properties: a highly
skewed distribution (with most defined intents being sparse in the underlying corpus,
confirmed via random sampling) and substantial semantic overlap between related
classes (low Silhouette Score: 0.057, high DBI: 3.257). Comparative analysis positioned
its structural complexity nearest the BANKING77 benchmark, highlighting challenges
related to shared vocabulary for nuanced intents, distinct from benchmarks benefiting
from greater topical diversity or strong keywords.

Label quality assessment using Confident Learning (Cleanlab) flagged 4.2% of
labels as potential inconsistencies. Further analysis indicated these flagged instances
primarily highlight the inherent difficulties of assigning definitive single labels in
this domain, frequently occurring where utterances reflect semantic ambiguity or fall
on inherently fuzzy boundaries between subtle intent categories. This suggests the
identified inconsistencies reflect the complexity of mapping nuanced communication
onto a discrete taxonomy.

In conclusion, this work contributes: (1) An adaptable workflow demonstrating LLM
utility and limitations as weak supervisors in intent discovery; (2) A unique, character-
ized dataset embodying real-world email complexities like overlap and ambiguity; and
(3) Insights from label quality assessment diagnosing inconsistencies tied to inherent
domain characteristics. A key finding underscored by this assessment is that even when
attempting to simplify the problem by focusing on individual sentences, the prevalence
of multi-intent expressions often makes a single label insufficient for accurately cap-
turing the full communicative meaning. The findings collectively emphasize the need
for context-aware, potentially multi-label approaches to achieve deeper communication
understanding in complex domains like corporate email.

keywords: Intent Discovery, Corporate Email, Fine-Grained Intents, Natural Language
Processing, Dataset Creation, Labeling Workflow, Large Language Models
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ZUSAMMENFASSUNG

Das Verstehen von feingranularen Nutzerintentionen innerhalb von Unternehmens-E-
Mails ist fiir die Automatisierung des Arbeitsumfelds von entscheidender Bedeutung,
stellt jedoch aufgrund des unstrukturierten Konversationskontexts, unbekannter Intenti-
onstaxonomien und weitreichender semantischer Uberlappungen zwischen verwandten
Zielen eine erhebliche Herausforderung fiir die nattirliche Sprachverarbeitung (NLP)
dar. Diese Arbeit befasst sich mit dieser Komplexitdt durch die Entwicklung, Imple-
mentierung und Evaluierung eines neuartigen semi-automatischen Workflows zur
Erkennung und Labeling von Intentionen im umfangreichen Avocado E-Mail-Korpus.
Die Methodik integriert gezielte Filterung, schwache Uberwachung unter Verwendung
von Large Language Models (LLMs) (unter Verwendung von LLaMA 3 8B Instruct fiir
Qualitdtsbewertung und Feature-Generierung), semantisches Clustering (mit SBERT
Embeddings) und einen iterativen Verfeinerungsprozess. Auf diese Weise entstand ein
neuer gelabelter Datensatz mit 6.785 AuBerungen {iber 54 identifizierte, feingranulare
Klassen von Intentionen aus dem Unternehmensumfeld.

Die Charakterisierung dieses Datensatzes offenbarte signifikante strukturelle Eigen-
schaften: eine stark verzerrte Verteilung (im zugrunde liegenden Korpus sind die
meisten definierten Intentionen nur selten zu finden, was durch Stichproben bestatigt
wurde) und erhebliche semantische Uberlappungen zwischen verwandten Klassen
(niedriger Silhouette Score: 0,057; hoher DBI: 3,257). Eine vergleichende Analyse ergab,
dass die Struktur am ndchsten an dem BANKING77-Benchmark liegt, was die Heraus-
forderungen im Zusammenhang mit dem geteilten Vokabular fiir nuancierte Intentionen
hervorhebt, im Gegensatz zu Benchmarks, die von einer grofleren thematischen Vielfalt
oder starken Schlagwortern profitieren.

Bei der Bewertung der Label-Qualitdt mit Confident Learning (Cleanlab) wurden
4,2% der Labels als potenzielle Unstimmigkeiten eingestuft. Weitere Analysen ergaben,
dass diese markierten Instanzen in erster Linie die inhdrenten Schwierigkeiten bei
der Zuweisung definitiver Single-Labels in diesem Bereich verdeutlichen. Sie treten
hiufig dort auf, wo Auferungen semantische Mehrdeutigkeit widerspiegeln oder auf
unscharfe Grenzen zwischen subtilen Intentionskategorien fallen. Dies deutet darauf hin,
dass die festgestellten Unstimmigkeiten die Komplexitidt der Zuordnung nuancierter
Kommunikation zu einer diskreten Taxonomie widerspiegeln.

Zusammenfassend trégt diese Arbeit zu Folgendem bei: (1) Einem anpassungsfdhigen
Workflow, der den Nutzen und die Grenzen von LLMs als schwache Supervisoren bei
der Entdeckung von Intentionen aufzeigt; (2) einem einzigartigen, charakterisierten
Datensatz, der die Komplexitdt von E-Mails in der realen Welt verkorpert, wie z.B.
Uberlappungen und Mehrdeutigkeit; und (3) Erkenntnissen aus der Bewertung der
Label-Qualitét, die Unstimmigkeiten in Verbindung mit inhdrenten Domdnenmerkma-
len diagnostiziert. Eine wichtige Erkenntnis, die durch diese Auswertung unterstrichen
wird, ist, dass selbst bei dem Versuch, das Problem zu vereinfachen, indem der Fokus



auf einzelne Sitze gelegt wurde, die Pravalenz von Ausdriicken mit mehreren Inten-
tionen oft dazu fiihrt, dass ein einzelnes Label nicht ausreicht, um die ganzheitliche
kommunikative Bedeutung exakt zu erfassen. Die Ergebnisse unterstreichen den Bedarf
an kontextbezogenen, potenziell Multi-Label-Ansédtzen, um ein tieferes Verstandnis der
Kommunikation in komplexen Doménen wie Firmen-E-Mails zu erreichen.

Schlagwirter: Intent Discovery, Corporate Email, Fine-Grained Intents, Natural Lan-
guage Processing, Dataset Creation, Labeling Workflow, Large Language Models
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INTRODUCTION

Understanding the underlying intent in textual communication is a fundamental chal-
lenge in Natural Language Processing (NLP). In corporate environments, email remains
a primary mode of communication, facilitating task coordination, decision-making, and
information exchange. Unlike structured interactions in chatbots or customer support
logs, where each message typically revolves around a single request, emails serve a
much broader range of functions within an ongoing conversational context. They can
involve requests for action or information, provide information, or serve other means.
Moreover, it’s not unusual for emails to carry multiple intents at once, often involving
subtle distinctions and significant semantic overlap between related communication
goals, making the process of uncovering underlying, fine-grained intents even more
complex.

Traditional intent classification relies on a fixed set of pre-defined intent categories.
However, for real-world scenarios like diverse corporate email, the relevant intent taxon-
omy is often unknown and needs to be uncovered. This makes intent discovery—the
process of identifying new and previously unseen intent categories—an essential aspect
of understanding communication patterns in this domain. While conceptually related
to clustering, the nature of corporate email, focused on broad communication rather
than just explicit requests, means that simple clustering algorithms often fail to yield
meaningful intent categories. A specialized approach is necessary.

Recent advances in machine learning, particularly deep learning and Large Language
Models (LLMs), offer sophisticated methods for text analysis. However, their application
to fine-grained intent discovery specifically within corporate emails remains relatively
unexplored. Furthermore, manual annotation is time-consuming and requires domain
expertise, while automated methods demand careful validation to ensure data quality,
especially given the inherent ambiguities.

To address these challenges, this thesis introduces and evaluates a novel, data-driven
workflow involving targeted data filtering, LL.M-based feature generation, semantic
clustering, and an iterative refinement process for discovering and labeling fine-grained
intents in corporate emails. The methodology aims to provide a scalable solution for
analyzing complex email data. In doing so, this research contributes not only the
workflow and the resulting labeled dataset but also a detailed characterization of this
dataset’s unique structural properties compared to standard benchmarks, and a critical
assessment of the achieved label quality, offering insights into the practical challenges
of the task and advancing the understanding of fine-grained intent discovery in emails.

The remainder of this chapter is structured as follows: Section 1.1 presents the
motivation for studying intent detection and discovery in corporate emails. Section 1.2
outlines the research questions that guide this work. Finally, Section 1.3 outlines the
organization of the thesis.



1.1 MOTIVATION

1.1 MOTIVATION

Corporate email communication remains a vital medium for workplace coordination,
decision-making, and knowledge exchange. Despite its significance, the underlying
intents within these emails remain largely unstructured and difficult to analyze sys-
tematically. Understanding the specific goal behind an email message — whether it
involves a request for action, an approval, an inquiry for specific information, or an
offer of assistance — provides valuable insights into communication patterns. These
insights can enable organizations to streamline processes, reduce inefficiencies, enhance
decision-making, and ultimately improve productivity.

While understanding the general purpose of an email is useful, significant potential
for sophisticated workflow automation and communication analytics lies in identifying
more specific user goals. This thesis, therefore, focuses on uncovering and analyzing
fine-grained intents within corporate email. We define "fine-grained intents" as the
specific, often subtle, communicative goals or desired actions expressed typically at
the sentence or key phrase level. This requires distinguishing between closely related
functions — for example, differentiating a request to set up a meeting from a request
to reschedule one, or distinguishing requesting a document copy from requesting to be
copied (CC’d) on an email. Capturing this level of detail is crucial for building truly
helpful automated assistants and understanding nuanced communication patterns, but
it presents considerable challenges due to the inherent ambiguity, context-dependence,
and semantic overlap prevalent in real-world email conversations.

Unlike many traditional intent classification tasks focused on direct user commands
(e.g., in chatbots), corporate emails present unique difficulties. The full range of possible
intents is unknown beforehand, necessitating an exploratory, data-driven approach to
intent discovery. Furthermore, workplace communication is highly dynamic, influenced
by company culture, specific jargon, and evolving workflows, further complicating the
identification and consistent labeling of these fine-grained intent categories.

Once potential fine-grained intents are identified, structuring them into a high-quality
labeled dataset is a critical, yet challenging, next step for enabling model training and
evaluation. However, publicly available benchmark datasets that specifically combine
fine-grained intent annotations with the diverse, conversational context of corporate
email are largely lacking. While established corporate email corpora like the Enron
dataset [KYo4] exist, they typically lack the necessary granular intent labels required
for this type of analysis. Conversely, standard intent classification benchmarks (e.g.,
SNIPS [Cou+18], BANKINGy7 [Cas+20]) originate from different domains, such as
task-oriented dialogue or specific customer service interactions, and do not capture
the unique characteristics and communication patterns inherent in corporate email
exchanges.

This gap in readily available, suitably annotated resources makes it difficult to develop,
train, and rigorously evaluate NLP models specifically designed for understanding
nuanced intentions within the corporate email domain. It also hinders direct compari-
son and benchmarking of different approaches. Consequently, a key prerequisite for



1.2 RESEARCH QUESTIONS

advancing research in this area involves the creation and characterization of datasets
that begin to capture these fine-grained distinctions and associated challenges.

Given this lack of suitable public datasets and the inherent difficulties in identification
and categorization, intent labeling in this context requires more than just a technical
solution; it necessitates a systematic workflow to ensure consistency and reproducibility,
moving beyond purely manual, labor-intensive efforts which are often subjective and
infeasible for large datasets.

This research, therefore, contributes not only a novel labeled dataset reflecting the
complexities of fine-grained corporate email intents but also a methodological frame-
work for discovering and categorizing these intents. By bridging the gap between
exploratory intent discovery and structured dataset creation, this study aims to support
advancements in email data analysis, workplace communication insights, and Al-driven
automation in corporate settings.

1.2 RESEARCH QUESTIONS

This thesis addresses the challenge of understanding user intent within large corporate
email datasets. It focuses on developing and evaluating methodologies for discovering,
labeling, and characterizing fine-grained intents in this complex domain. The research
is guided by the following key questions:

1. RQ 1: How can fine-grained user intents be effectively identified, categorized, and
labeled at scale within a corporate email corpus, and what role can LLMs play in
facilitating this complex task?

2. RQ 2: What are the structural characteristics (intent distribution, semantic sepa-
rability, lexical patterns) of a labeled dataset representing fine-grained corporate
email intents, and how do these characteristics compare to established intent
benchmark datasets?

3. RQ 3: Given the inherent challenges of semantic ambiguity and potential multi-
intent expressions in corporate email, what systematic methods can be employed
to assess the quality and consistency of labels in a dataset representing fine-grained
intents from this domain?

1.3 THESIS STRUCTURE

The remainder of this thesis is organized as follows:

¢ Chapter 2: Background
Chapter 2 provides the necessary foundation for understanding the research
context. It begins with a historical overview of text embeddings and representa-
tions, tracing the evolution from early approaches to modern deep learning-based
techniques. The chapter then covers relevant work in the broader fields of intent
detection and intent discovery, as well as the increasing use of LLMs for data
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annotation tasks. Subsequently, it reviews prior research focused specifically on
analyzing communication patterns and identifying intents or speech acts within
email data, noting that such analyses have typically operated at a coarser level of
granularity than the fine-grained focus of this thesis. Finally, standard benchmark
datasets commonly used in intent analysis are introduced to provide context for
later comparisons.

Chapter 3: Methodology

Chapter 3 details the systematic methodology developed and employed in this
research to address RQ1. It describes the data source and necessary preprocessing
steps. It then outlines the proposed multi-stage workflow for discovering and
labeling fine-grained intents, detailing the use of LLMs for annotation generation,
embedding techniques for semantic representation, clustering algorithms for
grouping intents, and the iterative process designed for refinement. Finally, this
chapter defines the evaluation strategy, outlining the metrics and rationale for
assessing dataset characteristics and label quality.

Chapter 4: Experimental Setup

Chapter 4 presents the specific experimental setup used to implement the method-
ology and enable the analyses reported in Chapter 5. It defines the final labeled
dataset artifact generated by the workflow, including its splits, and lists the bench-
mark datasets used for comparison. Crucially, it details the procedures followed
for: characterizing the labeled dataset (distribution, semantic structure, lexical
analysis, quantitative metrics), performing the comparative analysis against bench-
marks, conducting the supplementary random sampling analysis, and executing
the label quality assessment using Cleanlab, including the cross-validation setup.

Chapter 5: Results

Chapter 5 presents the empirical findings resulting from the experiments detailed
in Chapter 4. This includes a detailed characterization of the generated labeled
dataset (qualitative overview, distribution, semantic structure via Uniform Mani-
fold Approximation and Projection for Dimension Reduction (UMAP), lexical pat-
terns, quantitative metrics like Silhouette/Davies-Bouldin Index (DBI)/similarity).
It also presents the results of the same characterization analyses applied to the
benchmark datasets and a comparative summary of key structural metrics. Further-
more, the results of the supplementary random sampling analysis approximating
underlying distributions are presented, alongside the findings from the Cleanlab
label quality assessment, highlighting identified inconsistencies.

Chapter 6: Discussion

Chapter 6 provides an in-depth interpretation and discussion of the results pre-
sented in Chapter 5. It synthesizes the findings to address the research questions
(RQ1, RQ2, RQ3) posed in Chapter 1. The chapter analyzes the effectiveness and
limitations of the developed methodology, discusses the characteristics and quality
of the generated dataset in the context of benchmarks and domain challenges (like
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semantic overlap and multi-intent utterances), explores the implications of the
findings, and acknowledges the study’s limitations.

Chapter 7: Conclusion and Future Work

The final chapter summarizes the entire research effort. It restates the core problem
and objectives, highlights the key contributions and main conclusions drawn from
the research in response to the guiding questions, and acknowledges limitations.
Based on these, it proposes specific directions for future work aimed at improving
intent discovery workflows, dataset quality, and the analysis of communication
data.



BACKGROUND

In this chapter, we provide a comprehensive background on the key concepts and
methodologies that underpin this research. We begin with a historical overview of
text embeddings and representations, highlighting the challenges associated with en-
coding textual data and tracing the evolution from early techniques to modern text
representations.

The chapter then transitions to the topics of intent detection and discovery, which
serve as the foundational concepts for this thesis in identifying fine-grained intents.

Next, we explore relevant work on intent classification in email data, drawing parallels
to our own approach.

Finally, we examine the growing role of LLMs in automating data annotation, focusing
on their application in generating and evaluating labels for tasks like intent detection.

2.1 HISTORICAL OVERVIEW OF TEXT EMBEDDINGS AND REPRESENTATIONS

Unlike numerical data, which exists on a continuous scale, textual data is discrete and
unstructured, making it difficult to process directly. Words are distinct symbols with
no natural interpolation, and word order matters, meaning small rearrangements can
completely alter meaning. Text also suffers from ambiguity, where words and phrases
take on different meanings depending on context. Morphology and grammar further
complicate processing, as words change form based on tense and structure, and complex
syntax affects interpretation.

To address these challenges, researchers have developed numerical representations
of text, such as word embeddings, which capture structure, semantics, and contextual
nuances to improve machine understanding of language.

2.1.1  Early Approaches For Encoding Text as Numerical Representations

One of the first numerical representations of text was One-Hot Encoding and has been
used for early rule-based machine translation. The idea is to create a vocabulary of
all the unique words in a corpus. Each word is being assigned a specific index for
representation. For example under the assumption that a corpus consists of the words
{"cat", "dog", "fish"} the resulting representation for the word "cat" would be [1,
0, 0]. This approach creates sparse (contains a lot of zeros) high dimensional binary
vectors with each vector being the size of the whole corpus.

Another early approach for encoding text into a numerical representation is the Bag
of Words (BoW) approach. Instead of encoding individual words, the idea of BoW
is to encode whole sentences or documents based on word frequency. For a corpus
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containing the words {"I", "like", "cat", "dog", "fish"} a document containing "I
like cat" a corresponding representation would be [1, 1, 1, 0, 0]. However, whereas
the One-Hot Encoding approach only contains binary values, the BoW approach can
contain values greater than one, as it represents the frequency of how often a word
occurred in a given document.

A similar approach based on word frequency is Term Frequency - Inverse Document
Frequency (TF-IDF). TE-IDF is a statistical measure used to assess the importance of a
word within a document relative to a larger corpus. The underlying assumption is that
the more frequently a word appears in a document (Term Frequency (TF)), the more
significant it is likely to be for that document. However, to counteract the effect of words
that appear frequently across many documents (such as common stop words like "the",
"is", and "and"), the Inverse Document Frequency (IDF) is introduced. The IDF reduces
the weight of words that are very common across the corpus, ensuring that only words
that are both frequent in a specific document and rare across the corpus are considered
significant. The resulting TF-IDF score assigns higher values to words that are frequent
in a document but rare in other documents within the corpus. This helps identify terms
that are particularly representative of a document’s content, improving the ability to
capture distinctive features and thus better distinguishing the document from others.

These early approaches, however, had several significant limitations. The high-
dimensional vector representations used in One-Hot Encoding and BoW were inefficient
in terms of both memory and computation. As the number of words in the vocab-
ulary grows, the vector spaces become exponentially larger, leading to the curse of
dimensionality. This means that the number of possible word combinations increases
rapidly, making it harder to capture meaningful patterns and relationships between
words. Moreover, these methods failed to capture semantic relationships, as words like
"dog" and "cat" were represented as entirely distinct vectors, despite their semantic
similarity (e.g., both are animals). Additionally, contextual information was disregarded,
since words like "bank" were treated as identical, even though one could refer to a
financial institution and the other to the side of a river. Furthermore, word order was
neglected, meaning syntactic relationships between words were ignored. These lim-
itations highlighted the need for more advanced methods that could overcome the
curse of dimensionality, better capture semantic meaning, and incorporate contextual
relationships in a more efficient way.

2.1.2  Deep Learning Approaches

To address some of these challenges, the work of Bengio et al. [Ben+03] presents a
significant milestone in the development of numerical representations for text. Previous
approaches relied on n-grams, short word sequences, to model language by predicting
the probability of a word occurring given a preceding sequence. However, this approach
struggles to generalize because the number of possible word sequences grows exponen-
tially as the vocabulary size increases. The authors propose a neural network-based
approach in which each word is mapped to a dense, continuous-valued feature vector,
allowing the model to capture semantic similarities between words. The core idea is to
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train the network to predict the most likely word given a specific context. Through this
process, the model learns to create useful, dense representations of words that capture
their meanings and is able to generalize beyond training data.

Mikolov et al. [Mik+13] build upon the foundational work by Bengio et al. by in-
troducing Wordz2Vec, making several key improvements. Instead of calculating the
probability distribution over all possible words in the vocabulary, Word2Vec employs
negative sampling, which reduces computational cost by updating only a small subset
of words. Additionally, it introduces hierarchical softmax, which replaces the expen-
sive full softmax computation with a binary tree structure, reducing complexity from
O(V) to O(log V), with V being the vocabulary. These optimizations make training
significantly more efficient while preserving high-quality word representations. Addi-
tionally, they found that they can perform simple algebraic operations on their word
vectors to derive meaningful results. The operation vector("King") - vector("Man")
+ vector("Woman) results in a vector that is closest to the vector representation of the
word "Queen".

In 2014, Pennington et al. [PSM14] proposed Global Vectors (GloVe) as an improve-
ment over Word2Vec. While Word2Vec relies on local context windows to learn word
embeddings, GloVe incorporates global corpus statistics by constructing a word co-
occurrence matrix, where each entry represents how often two words appear together
in a given context. Instead of learning embeddings through predictive tasks (as in
Word2Vec), GloVe derives them via matrix factorization of this co-occurrence data. This
approach captures semantic relationships more effectively by leveraging information
from the entire corpus. Additionally, GloVe handles rare words better than Word2Vec,
which often struggles to learn meaningful representations for infrequent terms.

Building upon Word2Vec, Bojanowski et al. [Boj+17] propose FastText. FastText
improves upon previous attempts by incorporating subword information. Instead of
treating each word as single units, FastText breaks words into character n-grams (sub-
word units). The embedding for a word is constructed by summing over the embeddings
calculated for these subword units. This approach handles Out-of-Vocabulary (OOV)
words better and is well suited for languages that contain a lot of morphology (e.g.,
German, Turkish, Finnish). Moreover, words with common roots such as "run", "runner”,
"running” share subword components, leading to more meaningful embeddings.

2.1.3 Contextualized Word Embeddings

While early models captured semantic relationships between words, they lacked con-
textual awareness—each word had the same embedding regardless of the sentence it
appeared in.

One of the first models to address this was Embeddings from Language Models
(ELMo), proposed by Peters et al. [Pet+18]. Unlike static word embeddings, ELMo gen-
erates contextualized embeddings that vary depending on the surrounding text. It uses
a bi-directional Long Short-Term Memory (LSTM), a type of Recurrent Neural Network
(RNN) designed to process sequential data more effectively than standard RNNs. The
bi-directional LSTM processes text in both left-to-right and right-to-left directions, en-
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abling ELMo to capture richer contextual information. However, despite improvements
over static embeddings, LSTMs still struggle with long-range dependencies, motivating
the development of the Transformer architecture.

With the introduction of the Transformer architecture by Vaswani et al. [Vas17], a
revolutionary shift in NLI occurred. Unlike RNN-based models, Transformers rely
on self-attention mechanisms, which enable them to weigh the importance of each
word relative to others in a sentence. This allows them to effectively capture long-range
dependencies, a limitation of RNNs and LSTMs. Additionally, Transformers eliminate
sequential processing constraints, enabling parallelization, which improves efficiency
and scalability. The Transformer consists of two main components: an Encoder, which
generates contextualized representations of input text, and a Decoder, which uses these
representations to generate output text. Different Transformer-based models utilize
these components in varying ways.

Bidirectional Encoder Representations from Transformers (BERT), introduced by
Devlin et al. [Dev+19], consists only of an Encoder. This design reflects BERT’s focus
on generating deep contextual embeddings rather than producing output text. By
leveraging self-attention, BERT considers both left and right context simultaneously,
allowing it to better capture word relationships.

However, while BERT produces strong contextualized embeddings, it is not optimized
for efficient sentence-level comparisons. A direct application of cosine similarity on
BERT embeddings often yields suboptimal results, as BERT is trained for token-level
understanding rather than sentence-level meaning. Sentence BERT (SBERT), introduced
by Reimers and Gurevych [RG19], addresses this by fine-tuning BERT with a Siamese
network structure, enabling it to generate fixed-size sentence embeddings that can be
efficiently compared. SBERT significantly improves performance in tasks like semantic
search, sentence clustering, and retrieval, where computing similarity between entire
sentences is crucial.

Generative Pre-Trained Transformer (GPT) [Ope+24] follows a different approach by
using only the Decoder. Unlike BERT, which learns bidirectional representations for con-
textual understanding, GPT is designed for autoregressive text generation—predicting
words sequentially based on prior context. This makes it particularly effective for
open-ended text generation tasks.

Seq2Seq models such as Text-to-Text Transfer Transformer (T5) [Raf+20] incorporate
both an Encoder and a Decoder. The Encoder processes input text to create contextual-
ized representations, which the Decoder then uses to generate meaningful output. This
design allows T5 to handle a wide range of NLP tasks by treating them as text-to-text
transformations.

As Transformer-based architectures evolved, LLMs emerged, trained on massive text
corpora to develop broad knowledge and reasoning abilities. Notable examples include
ChatGPT, Gemini [Tea+24], and LLaMA [Gra+24]. Unlike early Transformer-based
models, which primarily generated text without specific behavior control, modern LLMs
are fine-tuned for instruction-following. This enables them not only to generate fluent
text but also to follow structured prompts, making them valuable tools for text analysis,
transformation, and generation.

10
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While most LLMs are proprietary and accessible only via Application Programming
Interface (API) requests, LLaMA provides an open-weight alternative, offering several
key advantages:

¢ Fine-tuning flexibility: Researchers can adapt LLaMA to specific domains and
applications by training it on specialized datasets.

¢ Data privacy: Unlike API-based models, which require sending sensitive data
to external servers, LLaMA enables local deployment, ensuring data remains
in-house.

* Accessibility: By making model weights publicly available, LLaMA allows for ex-
perimentation and independent research without relying on proprietary services.

2.1.4 Cosine Similarity For Embedding comparison

Once textual utterances are transformed into numerical vector representations (embed-
dings) using techniques like SBERT (as described in Section 2.1.3), a method is needed to
quantify their semantic relatedness. Cosine similarity is a widely adopted metric for this
purpose, measuring the similarity between two non-zero vectors in a high-dimensional
space based on the cosine of the angle between them.

Formally, the cosine similarity between two vectors A and B is defined as their dot
product divided by the product of their magnitudes (or norms):

A B
a4
sim(4. B) = 1771B]

where A and B are two vectors. The dot product is computed as:

and the norm of a vector A is given by:

n
1Al =4/ X_ A7
i=1

The resulting similarity score ranges from -1 to 1:

* A score of 1 indicates that the vectors point in the exact same direction (angle
of 0°), implying maximum semantic similarity between the corresponding text
utterances.

* A score of o indicates that the vectors are orthogonal (angle of 90°), suggesting no
semantic relationship (dissimilarity).
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¢ A score of -1 indicates that the vectors point in diametrically opposite directions
(angle of 180°), implying opposite meanings (though this interpretation is less
common for standard sentence embeddings).

APPLICATION TO TEXT EMBEDDINGS. In the context of NLP, each sentence or
document embedding (like those generated by SBERT) is a vector in a high-dimensional
semantic space. The fundamental idea is that the direction of this vector captures the
semantic meaning of the text. Cosine similarity, by measuring the angle between two
such vectors, effectively compares their directions. Therefore, a high cosine similarity
between the embeddings of two sentences suggests they convey similar meanings,
regardless of their exact word choice or length.

WHY USE COSINE SIMILARITY?  While other distance metrics like Euclidian dis-
tance exist, cosine similarity is often preferred for comparing high-dimensional text
embeddings due to several key advantages. Firstly, cosine similarity focuses solely on
the orientation (direction) of the vectors, not their magnitude. In text embeddings, the
direction primarily encodes semantic meaning, while magnitude can sometimes be
influenced by factors like sentence length or frequency statistics that may not be relevant
for semantic comparison. Euclidian distance, in contrast, is sensitive to magnitude.
Secondly, Euclidian distances can become less meaningful in very high-dimensional
spaces (the "curse of dimensionality"), where distances between points tend to concen-
trate. Cosine similarity, focusing on angles, often remains a more robust measure of
relatedness in such spaces.

Cosine similarity thus forms the basis for several analyses in this work and is used
directly to compare utterance embeddings for tasks like semantic clustering (where items
with high similarity are grouped) and similarity search. Furthermore, related metrics
like cosine distance (defined as 1 — cosine_similarity) are employed as the distance
measure within algorithms like Agglomerative Clustering and for calculating cluster
quality metrics in the forthcoming chapters.

2.1.5 Comparison of Text Representation Techniques

The evolution of text representations, as discussed in the preceding sections, moved
from simple frequency-based methods to complex, context-aware deep learning models.
Table 2.1 summarizes the key characteristics, advantages, and limitations of these
approaches.

2.2 RELEVANT WORK

Closely related fields are the fields of intent detection and intent discovery, as well as
the field of LLM prompt engineering and similar work that analyzed email data in
terms of their intents.

12
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Table 2.1: Comparison of different text representation techniques over time.

Approach/Model Repr. Level Vector Type Core Idea / Context Han-  Key Advantage(s) Key Limitation(s)
Method dling
One-Hot Encoding  Word Sparse Binary Unique index per  None Simple concept High dim, Sparsity,
word No semantics, No
context
BoW Doc/Sent  Sparse Count Word Frequency None Simple frequency  High dim, Sparsity,
rep. No semantics, No
context, No order
TE-IDF Doc/Sent  Sparse Weighted = Term Freq. + In- None Weights important No semantics, No
verse Doc Freq. terms context, No order
Word2Vec Word Dense Cont. Predict contex- Local Window  Efficient, Good Static reps (no con-
t/word (Shallow semantics (analo-  text), Struggles w/
Network); Neg gies) rare words
Samp/Hier SM
GloVe Word Dense Cont. Factorize Global Global (via Good semantics,  Static reps (no con-
Co-occurrence matrix) Better rare words  text)
Matrix
FastText Word (Sub) Dense Cont. Sum of Character Subword level Handles OOV, Static word reps (no
N-gram Embed- Morphology aware context)
dings
ELMo Word Dense Contextual Bi-LSTM Layers Full Sentence  First major contex- Struggles w/ long-
(Bi-LSTM) tual model range dependencies
BERT Token Dense Contextual Transformer En-  Full Sequence  Deep bidirectional Not optimized for
coder; Masked LM  (Bidirect. Attn)  context sentence similarity
SBERT Sentence  Dense Fixed-Size Fine-tune BERT Full Sentence  Efficient sentence  Requires fine-tuning
(Siamese Struc- comparison, Se-
ture) mantic search
GPT Token Dense Contextual Transformer De-  Left Context Strong text genera- Primarily unidirec-
coder; Autoregres- only tion tional understanding
sive Prediction
Seq2Seq (T5) Sequence  Dense Contextual Transformer Full Sequence  Flexible text-to- Complex architecture
Encoder-Decoder  (Bidirect. Enc)  text tasks
LLMs (General) Sequence  Dense Contextual Large-Scale Trans- Full Sequence  Broad knowledge, Computationally ex-

former; Instruction

Tuning

Instruction follow-

ing, Reasoning

pensive, Often propri-
etary (except LLaMA)

13
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2.2.1 Intent Detection

Traditional approaches of intent detection view it as a text classification problem in
which the goal is to find the correct mapping of a set of utterances U = {u1,up, ..., Uy}
to a set of classes C = {c1,¢2,...,cn }- This problem can be extended to the problem of
slot filling, where the task not only consists of correctly identifying the user intent, but
also to extract important information that is mandatory to help the user with fulfilling
a request. For example for the utterance: I want to book a flight to New York. The virtual
assistant not only needs to correctly identify the intent (e.g. book_flight), but also the
requested destination (New York). The joint problem of intent detection alongside slot
filling, [Zha+18], [E+19], [Qin+19], has been studied extensively and reached impressive
results on benchmark datasets such as ATIS [HGDgo] and SNIPS [Cou+18].

Due to the simplicity of the datasets, more challenging datasets have been proposed
such as BANKING77 [Cas+20], which contains 77 fine-grained intent categories from the
banking and finance domain. It covers a wide range of topics such as transactions, card
issues, account management and security concerncs. The dataset is not only challenging
because of the large amount of intent categories, but also because of the semantic overlap
between some of the categories. Another more complex dataset is CLINC150 [Lar+19],
which contains 150 intent categories from 10 domains. A comprehensive overview of
benchmark datasets commonly used in the fields of intent detection and discovery is
presented in a later section: Section 2.2.3.

Even though the complexity of the used benchmark dataset has increased, another
problem remained: the proposed approaches for intent detection operate under the
assumption of a closed-world, i.e. the number of intents is known and fix. However,
this approach assumes that all test classes are known at training time. This does not
align with a real-world scenario, where not all user intents are known in advance and
may evolve over time. A similar problem exists in the field of Computer Vision (CV)
called Open Set Recognition (OSR) [Sch+13]. Fei et al. [FL16] stress the necessity of text
classification algorithms to be adapted to a similar problem. Therefore they propose
to design classification algorithms in a way to classify documents of the known class
into their respective known class, while simultaneously assigning documents, for which
the model cannot confidently classify as one of the known classes, as an additional
(m + 1) unknown or open (world) class. There is still ongoing research happening
using the closed-world assumption, which makes sense for some applications. In this
paper however, the focus is on research using the open-world assumption.

With the rise of Deep Neural Networks (DNNs), Bendale et al. [BB16] propose a
new approach achieving state-of-the-art performance in OSR by replacing the softmax
layer with a distance-aware alternative called OpenMax. Instead of directly applying
SoftMax to the activations from the penultimate layer, the distance between an input’s
activations and the mean activations of known classes is measured. If the input is far
from all known class distributions, it is classified as unknown; otherwise, it is assigned
to the closest known class.

Shu et al. [SXL17] build upon this work and apply it to text document classification.
Instead of using a traditional softmax layer, they employ a 1-vs-rest output layer.

14
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The softmax layer produces a probability distribution over mutually exclusive classes,
meaning that every input is always assigned to one of the known classes—even when
it does not actually belong to any of them. This makes it difficult to reject unknown
samples. In contrast, the 1-vs-rest layer applies independent sigmoid activation functions
to each class, allowing the model to assign low confidence scores across all classes when
a sample does not fit any known category.

Lin et al. [LX19] propose a two-stage approach: first, a bidirectional LSTM is used as
a feature extractor to learn high-level semantic representations of intents. They argue
that traditional softmax loss only ensures correct classification but does not enforce
intra-class compactness or inter-class separation, which is crucial for distinguishing
unknown intents. To address this, they replace the softmax loss with Large Margin
Cosine Loss (LMCL), a type of margin loss that applies L, normalization to features
and weight vectors and introduces a cosine margin to maximize inter-class variance
and minimize intra-class variance. In the second stage, the discriminative deep features
are fed to a Local Outlier Factor (LOF) algorithm, which evaluates the local density of
the features to determine whether a sample belongs to an unknown class. The method
was evaluated on benchmark dialogue datasets (SNIPS and ATIS) and demonstrated
significant improvements over baseline methods in detecting unknown intents.

Fan et al. [Fan+20] acknowledge the effectiveness of the previously described LMCL
approach but highlight two key limitations: (1) LMCL ignores prior knowledge of class
labels by focusing solely on maximizing the cosine margin between embeddings, without
incorporating semantic information about relationships between classes. This omission
limits the model’s ability to generalize, particularly in zero-shot scenarios. (2) LMCL’s
reliance on cosine distance for embedding separation results in radiating, elongated
clusters in the feature space, which are poorly suited for density-based outlier detection
methods. The lack of compactness in these embeddings makes distinguishing known
intents from unknown ones more challenging. To address these limitations, Fan et al.
propose the Semantic-Enhanced Gaussian Mixture Model (SEG). By modeling intent
embeddings with a Gaussian Mixture Model (GMM), SEG ensures that embeddings
form dense, ball-like clusters, making density-based outlier detection methods like LOF
more effective. Additionally, by injecting class semantic information into the GMM, SEG
learns more class-concentrated embeddings, improving both intent classification and
unknown intent detection.

Zhang et al. [ZXL21] improve upon previous approaches by moving away from the
GMM-based method, arguing that it requires architectural modifications while failing to
define explicit decision boundaries due to its reliance on LOF. Instead, they propose an
Adaptive Decision Boundary (ADB) method. Using BERT to extract utterance features,
they learn spherical decision boundaries for each intent class, ensuring that known
intents are enclosed within their respective boundaries while unknown intents remain
outside. The learned decision boundaries dynamically adjust by balancing empirical
risk (ensuring correct classification of known intents) and open space risk (preventing
misclassification of unknown intents), without requiring negative samples or model
modifications.

15



2.2 RELEVANT WORK

A comprehensive comparison table of the described approaches can be viewed in
Table A.1

2.2.2 Intent Discovery

While intent detection is typically framed as a classification problem, intent discovery
is better understood as a clustering task. In intent discovery, similar utterances are
grouped together to form intent-clusters. This can be approached in both unsupervised
and semi-supervised settings. In the unsupervised setting, no prior information is
available, while in the semi-supervised setting, partially labeled data is used to guide
the clustering process. A comprehensive table comparing the presented approaches can
be viewed in Table A.2.

2.2.2.1  Unsupervised Setting

Traditional clustering algorithms, such as K-Means [Mac+67] and agglomerative clus-
tering [GK78], struggle when applied to high-dimensional data due to their inherent
limitations. To address this, researchers have optimized the feature space in advance to
learn compressed representations, which can improve the clustering process [Xu+15].

With the advent of deep learning, researchers began applying DNNs to the problem,
enabling the simultaneous learning of feature representations and cluster assignments.
This approach has shown significant improvements in performance compared to the
sequential methods previously used [XGF16], [Yan+17].

In the field of CV, Contrastive Clustering (CC) has been successfully used to enhance
cluster separation. This method creates positive and negative pairs through various data
augmentation techniques and employs a dual contrastive learning framework at both
the instance and cluster levels. The goal is to maximize the similarity between positive
pairs while minimizing the similarity between negative pairs, leading to well-separated
clusters [Li+21].

Building on this, Zhang et al. [Zha+21a] applied the contrastive clustering approach
to short text, proposing Supporting Clustering with Contrastive Learning (SCCL). They
explored several data augmentation methods under different settings: (1) WordNet
Augmenter, which replaces words in a text with their synonyms from WordNet; (2)
Contextual Augmenter, which uses pretrained transformers to insert or substitute suitable
words; and (3) Paraphrasing via back translation, where a text is translated into a different
language (e.g., French) and then back to English.

2.2.2.2  Semi-Supervised Setting

For the semi-supervised setting, Lin et al. [LXZ19] propose Constrained Deep Adaptive
Clustering with Cluster Refinement (CDAC+). They criticize existing methods for re-
lying on intensive feature engineering, which can lead to overfitting and sensitivity to
the number of clusters. Instead, CDAC+ frames clustering as a pairwise classification
task, determining whether two utterances belong to the same intent. It leverages BERT
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to generate sentence embeddings and computes cosine similarity between intent repre-
sentations. A small set of labeled intent pairs is used to define pairwise constraints. For
unlabeled data, similarity labels are dynamically assigned based on thresholding: High
similarities are treated as the same intent, while low similarities are treated as a different
intent. Intermediate similarity pairs are left unassigned to reduce noise. This iterative
process refines clustering assignments over time. Once initial clustering is complete,
CDAC+ further refines cluster assignments using self-training, encouraging the model to
learn from high-confidence predictions, thereby improving both representation quality
and clustering stability.

Improving upon their previous work, Zhang et al. [Zha+21b] propose Deep Aligned
Clustering. They identify two key shortcomings of CDAC+: (1) The reliance on pairwise
similarities as weak supervision signals, which becomes ineffective when unlabeled
data contains a mixture of known and unknown intents. (2) The difficulty in effectively
transferring knowledge from known intents to new ones, leading to performance
degradation as the number of new intents increases. To address these challenges, Deep
Aligned enhances both knowledge transfer and clustering quality. First, the model is
pre-trained using the limited labeled data with a softmax classification loss, ensuring
well-initialized intent representations. Then, clustering is performed on the extracted
intent features, and the number of clusters K is estimated by removing low-confidence
clusters. To stabilize the clustering process, they introduce an alignment strategy. In
each training epoch, k-means clustering is applied to generate cluster assignments,
which are then used as pseudo-labels to train the deep neural network. However, since
cluster assignments can vary across training epochs, they employ centroid alignment
using the Hungarian algorithm to ensure consistency between successive iterations. This
prevents label permutation issues and allows the model to retain historical learning
information, leading to more robust clustering performance.

In 2022, Zhang et al. [Zha+22a] propose a novel approach for new intent discovery
by integrating multi-task pre-training and contrastive learning. They leverage both
publicly available, high-quality intent detection datasets and the labeled and un-
labeled utterances from the target domain to pre-train a language model, enabling
it to learn task-specific utterance representations for the discovery task. To improve
clustering performance, they adopt a contrastive loss function, a technique inspired
by its success in both CV and NLP. However, instead of using a standard contrastive
loss, they introduce a neighborhood-aware contrastive learning objective, which incor-
porates semantic relationships between utterances. This method encourages utterances
with similar intents to be grouped together while ensuring better cluster separation.
Their approach significantly outperforms previous methods by enhancing knowledge
transfer, stabilizing clustering assignments, and improving representation quality
for both labeled and unlabeled intents. Experimental results on multiple intent recog-
nition benchmarks demonstrate substantial improvements in both unsupervised and
semi-supervised new intent discovery.

Despite these advancements, prior methods continued to face three key challenges:
(1) Heavy reliance on labeled data, leading to severe performance drops in fully unsu-
pervised settings. (2) Limited knowledge transfer in semi-supervised scenarios, where
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leveraging a small set of labeled data remains inefficient. (3) Difficulty in estimating
the number of new intent clusters, a crucial factor for real-world applicability. To ad-
dress these issues, Zhang et al. [Zha+24] proposed Unsupervised and Semi-Supervised
New Intent Discovery (USNID), a unified clustering framework for unsupervised and
semi-supervised new intent discovery. USNID first applies unsupervised contrastive
learning to pre-train on unlabeled data, constructing positive pairs through data aug-
mentation techniques to extract high-level intent representations. This pre-training
step ensures that even without labeled data, the model can learn meaningful intent
structures. A major innovation of USNID is its centroid initialization strategy, which
significantly improves clustering consistency. In traditional partition-based methods
like k-means, cluster assignments often fluctuate across iterations, leading to instability.
USNID leverages centroids from previous clustering iterations to initialize the next
round, ensuring smoother convergence and more reliable cluster assignments. This
alignment mechanism enhances both the efficiency and accuracy of clustering. Empir-
ical results demonstrate that USNID outperforms previous state-of-the-art methods
by 10-30% in clustering metrics such as Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI). By integrating contrastive learning, centroid alignment,
and self-supervised clustering, USNID establishes a new benchmark for new intent
discovery, particularly in low-resource and real-world settings.

2.2.3 Exploration of the Intent Benchmark Datasets

To get a better overview of the data basis, we present intent benchmark datasets,
commonly used for evaluation of intent detection and intent discovery models.

sN1Ps. The SNIPS [Cou+18] dataset is a popular benchmark dataset used for intent
classification and slot filling tasks. It was released by Snips, a voice platform company.
It contains a total of 13,784 utterances across 7 intent categories. Its intents include:

* PlayMusic (e.g., "play rap album one by gene vincent”)

* GetWeather (e.g., “what is the weather in sint maarten”)

* AddToPlaylist (e.g., “add rosemary clooney to pura vida playlist”)

* BookRestaurant (e.g., “i want to book the hat for my grandfather and i in arkansas”)

Besides that, the SNIPS dataset contains annotations for Slot Filling, that help a model
extract relevant entries. For example for an utterance such as “Book a table for two at
Joe’s Diner tomorrow at 7 PM”, the corresponding intent would be "BookRestaurant",
alongside different slot labels such as "restaurant_name": "Joe’s Diner",
"number_of_people": "two", "datetime": "tomorrow at 7 PM". The intents of the SNIPS
dataset are equally distributed, making it a balanced dataset. Finally, as this work is
focusing specifically on fine-grained intents, the slot filling aspect is mostly disregarded.
The SNIPS dataset is considered easy for the task of intent detection, as the categories
are mostly well separated and only 7 intents in total need to be correctly distinguished.
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BANKING77. The bankingyy [Cas+20] dataset on the other hand, as its name suggests,
belongs to the banking domain containing queries for banking and finance-related
queries. It contains 13,083 customer service queries classified into 77 different intent
categories. Its intents are very fine-grained including;:

¢ Card-related issues (e.g., "How do I activate my new card?”)

* Transaction inquiries (e.g., “Why was my transaction declined?"”)

¢ Account-related questions (e.g., "How do I change my account password”?)
* Security concerns (e.g., "How can I report fraud?”)

The dataset was manually labeled, ensuring clear and distinct intent labels with
minimal ambiguity. Its utterances stem from actual user interactions from customer
support logs or virtual assistant interactions. To derive a set of high-quality queries,
that are clear in terms of expression, and their underlying intent, noisy and irrelevant
data was removed. With respect to the annotation process, the labeling has occurred
manually, by annotators familiar with banking teminology. Furthermore, efforts were
made to ensure a high inter-annotator agreement, meaning that only data has been
added to the dataset if multiple annotators had assigned the same label to a given data
point.

crLiNci50. The CLINC150 dataset [Lar+19] is a widely used benchmark for evaluat-
ing both intent classification and out-of-scope, also known as Out-of-Domain (OOD),
detection in task-oriented dialogue systems. It consists of 150 fine-grained intent classes
organized into 10 broad domains, such as Banking, Credit Cards, Travel, Utilities, and
Weather.

The dataset is balanced, with each intent class containing exactly 100 examples,
totaling 15,000 in-scope utterances. In addition, it includes 1,200 out-of-scope exam-
ples—utterances that do not correspond to any of the defined intent classes. This
design enables robust evaluation of a model’s ability to both classify known intents and
correctly reject unfamiliar ones.

Representative examples from the dataset include:

* change_pin (e.g., "How do I change my PIN?")
* weather_query (e.g., "What's the weather like today? ")
* insurance_change (e.g., "I need to switch to a new insurance plan”)

® 00S (e.g., “Tell me a joke”)

A key distinction of CLINC150 compared to other intent detection datasets is its
inclusion of OOD examples. This makes it especially valuable for evaluating whether
models can avoid misclassifying unseen or irrelevant queries as valid intents—an
important consideration for real-world deployment of conversational agents.
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sTACKOVERFLOW.  The StackOverflow dataset is a widely used benchmark, originally
published on Kaggle.com *. It comprises a total of 3,370,528 samples collected between
July 31, 2012 and August 14, 2012. Each sample corresponds to a question related to a
programming topic, with the label indicating the associated programming language or
technology.

Unlike typical intent detection tasks where the goal is to infer a user’s underlying
intent from an utterance, this dataset focuses on categorizing technical questions into
their appropriate programming language or framework. Example categories include:

¢ Scala (e.g., "Scala Regex Multiple Block Capturing”)
¢ Oracle (e.g., "Use Oracle 6 from ASP.NET application”)
e Hibernate (e.g., "HQL 1 to many count() question”)

* Haskell (e.g., "How do I test if a floating point number is an integer in Haskell?")

The benchmark version of the dataset contains 20 high-frequency categories that
have been manually verified to ensure class distinctiveness. Each category includes
exactly 100 examples, resulting in a balanced and uniform distribution across classes.
Preprocessing was applied to retain only short text snippets by stripping away HITML,
code, and other metadata, allowing models to focus solely on the natural language
content.

While the labels reflect broad technical topics rather than fine-grained user intents,
the dataset is frequently used in intent detection and intent discovery research due to
the structural similarity of the task.

2.2.4 Intent Classification in Email Data

The previous section describes the intent detection and discovery on short text utterances.
However, since the data source of this work contains the texts of emails, this sections
purpose is to provide an overview for research concerning emails as a whole.

One of the earliest works in this area is by Cohen et al. [CCMo4]. They analyzed
different email corpora, including their own inboxes, in search for regularities to derive
a coarse-grained taxonomy to classify emails into speech acts as seen in Figure 2.1. They
assume that a single email may contain multiple acts (intents), with each intent being
describable by a verb-noun pair drawn from the suggested taxonomy (e.g. "Deliver
Data", "Propose Meeting").

Building on the taxonomy Cohen et al. proposed, Sappelli et al. [Sap+16] further re-
fined it and used it annotate two email datasets, Enron and Avocado. They found about
half of the corporate email messages to contain at least one task, mostly informational
or procedural in nature. They propose their taxonomy to describe the main purpose
conveyed by an email as the intent of a message, however, within this message, the
sender can describe (either implicitly or explicitly) one or more tasks to be undertaken

1 https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
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Figure 2.1: Email intent taxonomy as proposed by Cohen et al.

by the receiver. For a subset of mails, they annotated the mails in terms of the two
main email acts in the message, where they adopted the verbs from the taxonomy of
Cohen et al. Another dimension of their proposed taxonomy is the implicit reason of
the message, which can assume one of the following categorical values: administra-
tive procedure, legal procedure, internal collaboration, external collaboration, travel
planning, employment arrangements, logistic arrangements, personal and other. For
the annotated data, they found that most messages contained a single task (55.6%),
with 35.6% containing no task whatsoever. The main email act for most emails was
to deliver information (52.2%), followed up by requests (21.7%). The implicit reason
for a sent email was mostly collaborations (43.2% internal and 34.1% external). Most
tasks explicitly described in an email were informational in nature (63.3%), while most
remaining tasks were procedural (30%).

Wang et al. [Wan+19] also analyzed the Avocado dataset in terms of its intents.
However, instead of categorizing the email into a broad set of categories, they focus on
intent-identification on sentence-level and analyzed how incorporating more context
(such as the full email body and other metadata) helps improving the identification
performance. For the intent taxonomy they define four overarching intent categories:
(1) Information Exchange where the sender intends to either request or to provide
information. Common uses are for example the asking of questions, requesting or
sharing content, status updates, etc. They subdivide this category into share information
and request information, differentiating between the provision of information vs. the
requesting of information. (2) Task Management is also subdivided into two categories
where the sender is either requesting an action, or is promising an action. (3) Scheduling
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and Planning is subdivided into schedule meeting and reminder. Scheduling a meeting is
refering to the intention of organizing a meeting (i.e., a physical meeting, a conference
call or a regular phone call). Reminder on the other hand is refering to the intent of
the sender reminding their recipient(s) about an upcoming meeting or event. (4) Social
Communication are casual messages between work contacts, as well as between friends
and family. As sub-intents they use greeting messages and thank you notes. Another aspect
they shed light on is multiple intents vs. single intents. Emails usually contain more than
one intent and the intents are not mutually exclusive, for example an email could contain
a reminder about a deadline while also requesting a specific task to be completed before
mentioned deadline. They find that approximately 55.2% contain a single intent, 35.8%
contain two intents and 9.0% contain three or more intents. They also found that some
intents such as share information and request information are more likely to co-occur.

In contrast to these prior approaches focusing on email-level speech acts, this thesis
targets fine-grained intents, as defined in Section 1.1. Our goal is to capture more specific
distinctions necessary for detailed analysis and downstream applications. Analyzing
communication at this fine-grained level within the complex, conversational context of
corporate email remains a relatively unexplored area.

2.2.5 Large Language Models for Data Annotation

With the advent of LL.Ms, new research areas have emerged that leverage these tools
to automate tasks. One of these tasks is data annotation. This process is not trivial,
as it requires domain expertise and is resource-intensive, particularly when the la-
beling needs to occur manually. Advanced LLMs such as OpenAl’s GPT-4 [Ope+24],
Meta’s LLaMA [Gra+24] or Google’s Gemini [Tea+24] offer a promising opportunity
to revolutionize data annotation. Tan et al. [Tan+24] conducted an extensive literature
review covering different annotation aspects, such as the annotation generation itself,
how annotations should be assessed, as well as how they should be utilized. This
section presents a mixture of the work of Tan et al., as well as research of our own.
While some researchers argue that LLMs are on par or even better than human annota-
tors [GAK23], [He+24], others highlight the shortcomings of LLMs compared to human
annotators [YCS24], [Tse+24].

2.2.5.1 Generating Labels by LLMs

For labeling, many researchers leverage LLMs to help automate the labeling process.
Chen et al. [Che+24] employ LLMs as expert annotators for event extraction. Whereas
most research in this area tries to replace human annotators by LLMs, Li et al. [Li+23]
propose a collaborative paradigm called CoAnnotating, where LLMs are being used to
assist humans with the labeling task, rather than to replace them. Choi et al. [Cho+24]
use multiple LLMs to generate different outputs on the same task, imitating how labeling
tasks would be conducted using human annotators, by generating multiple labels and
letting the majority vote decide what the label should be.
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2.2.5.2  Assessing LLM-Generated Annotations

A general approach to evaluate LLM-generated labels is to compare them against
labels created by human annotators. Regarding the adherence of the LLM following
a set of given guidelines, Efrat et al. proposed the "Turking Test" [EL20]. In scenarios
where extensive datasets are required, the quality of LLM-generated annotations is
compared to a small subset of the dataset, that is manually labeled, making up the gold
standard [Zha+22b], [Agr+22], [He+24]. Wang et al. [Wan+24b] propose a collaborative
approach using an LLM to first annotate data, followed by a human to assess the labels to
subsequently reannotate if a verification score is too low. Wan et al. [Wan+24a] calculate
the accuracy of the LLM by using a pairwise comparison task, using an utterance and
its corresponding label as predicted by the LLM, alongside of another label, the LLM is
being prompted again to decide which label is more fitting.

2.2.5.3 Utilizing LLM-Generated Annotations

The annotations generated by the LLM can be utilized further for different downstream
tasks. One of these is Supervised Fine-Tuning. Huang et al. [Hua+23] propose an
approach of self-evolution where the LL.M is used both as a data annotator, as well as a
learnable model. Using the self-annotated data, the model is iteratively fine-tuned. For
efficiency reasons, many studies aim to use data generated by larger models to train
smaller models on them.

In-Context Learning (ICL) is another area where LLM-generated annotations are
being leveraged. ICL consists of three components: a prompt (a task description for
the LLM), several in-context samples (or demonstrations), as well as the test case the
LLM needs to infer. Current studies leveraged LLM-generated annotations to refine
or augment all of these components. Zhou et al. [Zho+22] first showed that LLMs
can be used to design accurate task-descriptions rivaling the expertise of human-level
prompt engineers. Demonstration augmentation has also been proven useful, especially
in situations where labeled data is scarce, where provided demonstrations are being
enriched and diversified using an LLM [Kim+22]. Regarding the test sample that needs
to be inferred, possible augmentations are to use the LLM to rephrase the test sample
once or multiple times, or to polish the orignal sample or to decompose it into several
sub-questions.
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METHODOLOGY

This chapter outlines the comprehensive methodology developed to discover, categorize,
and label fine-grained user intents within the complex domain of corporate email, specif-
ically using the Avocado Research Email Collection. Addressing the inherent challenges
of analyzing large-scale, real-world communication data—where intents are often im-
plicit, overlapping, embedded in noisy text, and lack a predefined taxonomy—required
moving beyond standard classification or simple clustering techniques applied directly
to raw text. The approach detailed herein evolved through exploration and iteration,
aiming for a scalable and systematic process to navigate these complexities.

We begin by introducing the Avocado dataset, the foundation of this study, and
detail the crucial preprocessing steps undertaken to handle its scale, varied formats,
and inherent noise (Section 3.1). This section also recounts initial exploratory data
analyses, including action-object pair extraction and early clustering attempts on raw
text, highlighting the limitations encountered (such as topic mixing and sensitivity to
non-intent features like signatures) that necessitated a more sophisticated strategy.

Subsequently, Section 3.2 presents the core contribution of this chapter: the proposed
multi-stage workflow designed specifically for fine-grained intent discovery and label-
ing in this domain. A foundational decision shaping this workflow is the focus on
identifying intents primarily at the sentence level. This approach was chosen deliber-
ately to manage the complexity arising from emails often containing multiple sentences
that serve distinct communicative functions or express several intents simultaneously.
Analyzing entire emails for a single primary intent would obscure these nuances and
grapple directly with the difficult problem of multi-intent representation from the start.
By concentrating on individual sentences, particularly those filtered for clarity and
self-containment (Section 3.2.1), we aim to isolate more discrete intent expressions,
making the discovery and labeling task more tractable and aligning with the utterance-
level format common in many intent classification benchmarks. This focus allows for a
detailed exploration of fine-grained distinctions, although it intentionally simplifies the
problem by initially disregarding the influence of broader email context. Operating on
this sentence-level foundation, the workflow integrates several key techniques:

¢ Targeted data filtering using a combination of linguistic rules and LLM-based
quality scoring to isolate high-potential, self-contained intent-bearing sentences
(Section 3.2.1).

* Leveraging a LLM (LLaMA 3 8B Instruct) not merely for labeling, but for generat-
ing richer, intent-focused semantic features—including explicit intents, implicit
intents, and purpose summaries—for each utterance (Section 3.2.2).
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* Employing semantic clustering on these generated features, rather than raw text
embeddings, to group utterances based on their underlying communicative goals
(Section 3.2.2).

¢ An iterative refinement and dataset expansion strategy, alternating between popu-
lating known intent categories using supervised methods and similarity search,
and re-clustering the remaining data to discover potential new intents, all guided
by human-in-the-loop validation (Section 3.2.3).

Finally, recognizing the importance of evaluating the outcomes of this process, Sec-
tion 3.3 defines the evaluation strategy employed throughout the thesis. It outlines
the specific metrics and rationale for characterizing the structural properties of the
generated labeled dataset, assessing the quality and consistency of its labels (addressing
RQ3), and establishing a basis for comparison against standard benchmarks and algo-
rithm performance, setting the stage for the experimental setup (Chapter 4) and results
(Chapter 5) chapters that follow. The overall methodology aims to provide a structured,
semi-automated framework adaptable for tackling fine-grained intent discovery in
similar complex, real-world communication datasets.

3.1 PRE-PROCESSING THE DATASET AND EXPLORATIVE DATA ANALYSIS

The foundation for the analyses presented in this thesis is the Avocado Research Email
Collection [Dou+15], in the following referred to as "Avocado’. Avocado was an Informa-
tion Technology software and services firm developing products for the mobile Internet
market, operating from the late 1990s to the middle of the first decade of the 21st
century. The dataset originates from Personal Storage Table (PST) files linked to 282
accounts. However, three of these accounts yielded no data, resulting in a final collection
of 279 accounts. Each account is referred to as a "custodian,” which can represent both
individual users and non-human entities. The collection is organized into two main
components: metadata and text.

* Metadata: The metadata is stored in XML format and includes a top-level XML file
listing all custodians, along with individual XML files for each custodian. These
files detail items extracted from the corresponding PST files.

¢ Text: The text component contains the extracted content from each custodian’s
folders, with each item’s text stored in separate files. These files are compressed
into ZIP archives, grouped by custodian.

Datasets derived from real-world scenarios are immensely valuable, as downstream
applications are typically designed to reflect real-world conditions. However, due to
privacy concerns and regulations, publicly available email datasets are relatively scarce.
The most prominent publicly accessible corporate email dataset is the Enron Email
Dataset [KYo04], which was made available as part of an internal investigation following
the corporate collapse of Enron.
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The handling of the Avocado dataset presented several challenges. Initially, a top-level
XML file was parsed, as it contains entries for all custodians and their corresponding
ZIP files, which house the actual data. For easier processing, these files were saved
locally as Parquet dataframes.

Regarding the metadata, this thesis primarily focuses on the text content of the emails,
rather than incorporating additional metadata into the analysis. The varied formats of
the emails presented significant challenges during processing. Often, the text content
was embedded within metadata, which had to be extracted to obtain the relevant
information. An email parser’ was highly beneficial in facilitating the extraction of the
email body text. However, creating regular expressions to filter out specific patterns,
such as email signatures and other extraneous metadata, was a time-consuming but
essential task.

Additionally, the use of BERTopic [Gro22] proved valuable for identifying automatic
status messages, spam emails, and advertisements—elements that were irrelevant to
the focus of this thesis, which centers on human communication. Following the pre-
processing steps, the dataset was reduced from the original 938,035 emails to 488,314
emails for further analysis.

In order to conduct preliminary exploratory data analysis, each email in the dataset
was segmented into individual sentences using the spaCy library®. The resultant his-
togram, which visualizes the distribution of sentence frequencies, is shown in Figure 3.1.
The majority of emails contain between 1 to 5 sentences. However, there are notable
exceptions, particularly in emails containing more than 10 sentences. Upon closer ex-
amination, these outliers can frequently be attributed to anomalies in spaCy’s sentence
segmentation process. Specifically, the presence of numerous asterisks in some emails
led spaCy to erroneously interpret each asterisk as a sentence boundary, thereby arti-
ficially inflating the sentence counts. Furthermore, some emails resembled chat logs,
consisting primarily of disjointed utterances, which further contributed to the unusual
distribution patterns observed.

To inspect the dataset and get a feeling of what kind of intents it encompasses,
we leverage spaCy for dependency parsing to extract Action-Object (also known as
Verb-Object) pairs from the emails. Subsequently we sorted the pairs based on their
occurrence frequency in descending order. As a next step we aggregated them based on
specific words, as well as words carrying only little descriptive information.

The intents we expect to find based on just the action-object pairs we inspect in the
tables are the expected communications in a corporate environment. These include
requests for contact such as calls and mails.

Assistance and offers or requests for help also seem to be included in the dataset.

Other than that the only other action-object pair that alludes to a specific intent topic
is meeting related, potentially implying the proposal or a request for a meeting.

Other identified pairs suggest no intents whatsoever and rather imply social phrases.

To further complement the insights from action-object pairs and gain a broader
perspective on potential structures within the data, preliminary clustering experiments

1 https://github.com/alfonsrv/mail-parser-reply
2 https://spacy.io/
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Figure 3.1: The distribution of sentence frequency in the analyzed emails.

were performed. These experiments applied agglomerative clustering to the semantic
embeddings of a subset of sentences previously filtered to contain request-implying
please,
natural groupings corresponding to intents would emerge based purely on semantic
similarity within this targeted subset.

Initial inspection of the resulting clusters revealed groups centered around common

non non

expressions (e.g., "can you, could you"). The goal was to explore whether

corporate themes, some of which superficially resembled broad intent categories, such
as meeting arrangements or document requests. However, closer examination of the
utterances within these seemingly coherent clusters often exposed a significant mixing
of distinct communicative goals. For example, a cluster broadly related to ‘meetings’
might contain sentences explicitly requesting a meeting, alongside sentences asking for
information about an existing meeting (e.g., the time or location), or even confirming
attendance. While topically related, these represent different fine-grained intents.

This finding underscores a key limitation of applying standard semantic clustering
directly for fine-grained intent discovery in this domain: such methods tend to group
utterances based on broader topical similarity rather than the specific underlying
communicative purpose or desired action. Consequently, these preliminary results
highlighted the necessity for a more specialized approach, one capable of generating
features that emphasize the user’s specific goal, to achieve meaningful clustering and
ultimately enable the discovery and labeling of distinct, fine-grained intents. This
motivates the LLM-based feature generation and iterative refinement workflow detailed
in the subsequent sections.
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3.2 PROPOSED INTENT DISCOVERY AND LABELING WORKFLOW

The proposed approach involves three main processing steps that are being applied to
the text data: (1) a filtering step involving rules, as well as scores assigned by LLaMA, to
obtain a set of well articulated utterances, clearly expressing their intent, referenced in
Section 3.2.1. (2) an automated annotation step, leveraging LLaMA, to obtain important
features for the utterances, mandatory to yield intent clusters, referenced in Section 3.2.2.
(3) the manual inspection of the resulting intent clusters for inclusion in our intent
dataset, followed by a subsequent step to further populate existing classes and to
iteratively refine the intent taxonomy, referenced in Section 3.2.3.

3.2.1 Filtering for quality utterances

In order to facilitate the intent discovery process, we decided to focus on single label
intents on a sentence-level instead of analyzing emails as a whole. By this we delib-
erately disregard context from previous messages or other sentences surrounding the
target sentence for which we want to identify the intent. As intent benchmark datasets
usually contain single sentence utterances with one specific request, we aim to extract
comparable utterances from the avocado dataset.

RULE-BASED FILTERING. To focus on sentence-level intents, the first step is to split
each email into its individual sentences. This is accomplished using spaCy, which
divides the 279,819 emails in the training set into 923,929 individual sentences. Next, a
rule-based filtering approach is applied. Since most request-type sentences fall within a
medium sentence length range, we retain sentences with a word count between 5 and
15 words, inclusive. This filter removes short phrases like "thank you" while ensuring
that sentence length remains concise by excluding sentences with more than 15 words.
This further reduces the total number of sentences to 500,788.

To refine the focus on sentences that likely contain an intent, we apply textual

non

patterns indicative of specific requests, such as "please," "can you," and "could you", the
exhaustive list of the used expressions implying a request is to be found in Table A.3.
Sentences that contain at least one of these patterns are treated as candidates containing
a request and are retained for further analysis. The pattern list is expanded using
ChatGPT to identify similar phrases, resulting in a total of 34 patterns. This further

narrows down the pool of sentences likely expressing an intent to 49,759.

SCORE-BASED FILTERING. As the utterances from the previous step are merely
candidates for containing intents, we utilize LLaMA 3 8B Instruct 3 to apply score-
based filtering as the next step in our processing pipeline. For this, LLaMA is being
prompted to assign different scores, ranging from 1-5, with 5 being the best score, to each
utterance, based on how effectively an intent is expressed in each sentence. The scoring
criteria are as follows: Intent Clarity, which evaluates how explicitly and effectively the

3 https://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct
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intent is articulated, favoring sentences that are free from ambiguity. Self-Containment,
which ensures that a sentence is independent and does not rely on external context, as
we aim to extract utterances comparable to the data that is being used in traditional
intent detection benchmarks. The final scoring criterion is Specificity in Task and Object
Definition, which assesses whether entities, tasks, and objects are clearly defined rather
than referenced with vague terms such as "them" or "it".

After obtaining the quality scores by LLaMA, we only keep sentences that have been
assigned the maximum score for each criterion. By this we arrive at a final set of 19,450
well-articulated utterances containing a clear intent. The filtering approach is visually
expressed in Figure 3.2

Emails S paCy Rulebased ") Assign Quality Scorebased High-Quality
e Filtering 12 Scores Filtering Utterances
Sentence Splitting

Figure 3.2: The emails are first split into individual sentences using spaCy. The resulting set
of sentences are subsequently filtered using rules to retain sentences with a high
likelihood of containing an intent. For the penultimate step LLaMa is being leveraged
to assign different scores, for which a final filtering is being applied to derive high
quality utterances.

The resulting prompt from the described approach is detailed in Listing C.1. The
sentences are being injected dynamically into a variable within the prompt template
where the LLM is analyzing each sentence.

3.2.2 LLM-based Annotation and Clustering

To analyze communicative functions within the Avocado dataset at scale, a method
for identifying user intents was required. Manual annotation of the entire dataset
was deemed infeasible due to its size. Furthermore, preliminary analysis suggested
that utterances expressing similar underlying intents often lack direct surface-level
semantic similarity, making simple clustering of raw utterances ineffective. Therefore,
an automated approach was developed leveraging LLaMA to generate intent-focused
textual features, which could then be clustered based on semantic meaning, visualized in
Figure 3.3. This approach evolved through several iterations, detailed below, to address
challenges encountered in achieving coherent and meaningful intent groupings.

Intent

Cluster 1
High-Quality #ha LLM-Based SBERT Agglomerative Intent
Utterances ®"{ Data Annotation Encoding Clustering Cluster 2

Intent
Cluster n

Figure 3.3: Process for generating intent clusters: High-quality utterances (filtered according to
Figure 3.2) are annotated using LLaMA. Subsequently, SBERT generates semantic
embeddings for these annotations, which are then clustered to produce fine-grained
intent clusters.
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FIRST ITERATION: SINGLE INTENT DESCRIPTORS. The initial strategy involved
prompting an LLM to analyze each relevant utterance and generate a single, concise
"intent descriptor”, summarizing the sender’s primary goal (e.g., schedule_meeting,
request_contact_method). The hypothesis was that these descriptors would abstract
away surface variations while preserving core intent, allowing utterances with similar
goals to be grouped via semantic clustering of the descriptor embedding.

However, when these generated descriptors were conceptually embedded and clus-
tered based on semantic similarity, the resulting clusters revealed significant limita-
tions. While some groupings were sensible (e.g., various ways of scheduling a meeting
clustered together), many were heterogeneous and failed to capture distinct intents
accurately. Key problems included:

¢ Descriptor Ambiguity: Descriptors like request_copy were too broad, leading to
the erroneous merging of distinct actions such as requesting a document copy
with requesting to be copied on an email. Similarly, request_direction conflated
requests for task instructions with requests for navigational directions.

¢ Implicit Intent Neglect: The single descriptor often captured only the explicit
statement, missing underlying implicit intents.

These results indicated that single, short descriptors lacked the necessary specificity
to reliably represent user intent for fine-grained clustering.

SECOND ITERATION: INCORPORATING IMPLICIT INTENT DESCRIPTORS.  To specif-
ically address the problem of overlooked implicit meanings, the prompting strategy was
refined. The LLM was instructed to generate two distinct features for each utterance:
one descriptor capturing the explicit intent and another capturing the implicit intent (if
present). The rationale was that combining representations of both facets might lead to
better differentiation during clustering.

While this approach succeeded in capturing implicit intents noted as missing from the
previous iteration, preliminary evaluations suggested that clustering based on these two
potentially short descriptors still suffered from the ambiguity issues observed previously.
The fundamental problem of descriptors lacking sufficient context remained partially
unresolved.

FINAL ITERATION: INCLUDING PURPOSE SUMMARIZATION (FINAL APPROACH).
Recognizing that concise descriptors struggled to capture the full nuance and context
of an utterance, a third, more descriptive feature was introduced. The LLM prompt
was further enhanced to generate a brief, sentence-level "‘purpose summarization” of the
utterance, explicitly focusing on the user’s overall goal or the disired action resulting
from the message.

Conceptually clustering based on embeddings derived solely from the purpose sum-
maries yielded markedly more coherent and interpretable intent groups than the
previous iterations. The richer context provided by the summaries appeared crucial for
disambiguation.
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To leverage the strengths of all generated features, the final adopted methodology
involved combining representations from all three: the explicit intent descriptors, the
implicit intent descriptors, and the purpose summarization. Embeddings were concep-
tually generated for each, and these were concatenated to create a composite feature
vector for each utterance. This multi-feature representation formed the basis for the
final clustering process. This approach was found to produce the most consistent, fine-
grained, and semantically meaningful intent clusters, overcoming the major limitations
identified in earlier iterations. The corresponding prompt is referenced in Listing C.2.

3.2.3 [Iterative Dataset Expansion and Refinement

The initial intent clusters derived from the LLM-based annotation and clustering process
provided a foundational seed set of labeled utterances for identified intents. To sys-
tematically build upon this foundation and construct a comprehensive labeled dataset,
we employed an alternating, iterative strategy (illustrated in Figure 3.4). Each iteration
involved two main phases: (1) expanding the labeled examples for known intents, and
(2) exploring the remaining unlabeled data for potential new intents.

PHASE 1: EXPANDING KNOWN INTENTS  The core automated techniques used to
identify candidate utterances for manual review included:

¢ Semantic Classification (Supervised Approach): This involved training classi-
fication models on the currently available labeled data (starting with the seed set
and growing with each iteration) to predict labels for unlabeled utterances. High-
confidence predictions were flagged as strong candidates belonging to existing
classes. Two main modeling approaches were utilized:

— SetFit: This approach [Tun+22] leverages pre-trained sentence transformers
(like SBERT) for embedding generation. It first employs contrastive learning
(using labeled examples) to fine-tune the transformer body, encouraging bet-
ter separation of known intent classes in the embedding space. Subsequently,
a lightweight classification head (e.g., Logistic Regression) is trained on these
fine-tuned embeddings. The key advantage is its effectiveness even with
limited labeled data per class. When applied to the unlabeled pool, SetFit
models produce predicted labels and associated confidence scores. Utterances
predicted with high confidence (score > 0.8) for a known intent were selected
as candidates for that intent.

— Adaptive Decision Boundary (ADB): The ADB method [ZXL21] was adapted
from its original implementation* for identifying high-confidence examples.
ADB, using BERT-based features, learns spherical decision boundaries for
each known intent class during training. When applied to unlabeled data,
instances falling well within the learned boundary of a specific class (i.e.,
far from the decision boundary shared with the "unknown" space or other

4 Based on https://github.com/thuiar/TEXTOIR
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classes) can be considered high-confidence examples of that known intent.
These were also selected as candidates.

¢ Cosine Similarity Search (Embedding-Based Approach): Sentence embeddings
were generated for representative utterances already labeled within each known
intent category (e.g., cluster centroids or manually selected exemplars). These
embeddings were then compared against the embeddings of all unlabeled utter-
ances using cosine similarity. Unlabeled utterances exhibiting very high cosine
similarity (e.g., above a threshold of 0.9) to the exemplars of a specific intent class
were flagged as strong candidates for that class.

* Rule-Based Filtering (Pattern-Based Approach): Based on linguistic patterns
observed in the confirmed examples for certain intents (e.g., specific keywords,
phrases, or sentence structures identified during manual review), targeted regu-
lar expressions were crafted. These rules were applied to the unlabeled pool to
efficiently surface utterances matching these specific structural patterns, provid-
ing another source of candidates, particularly for intents with distinct syntactic
markers.

PHASE 2: DISCOVERING POTENTIAL NEW INTENTS VIA RE-CLUSTERING  After
expanding the known categories and thus thinning the unlabeled pool, the second phase
focused on identifying potentially novel intents that might have been obscured initially.
To achieve this:

¢ The remaining unlabeled utterances were isolated.

¢ The original clustering methodology (as detailed in Section 3.2.2) was re-applied
specifically to this reduced, unlabeled subset.

¢ The resulting clusters were manually inspected to identify any new, coherent
groupings that emerged and represented distinct communicative goals not covered
by the existing taxonomy:.

¢ If such new intents were validated, representative seed examples were manu-
ally selected from these clusters and added to the labeled dataset, effectively
introducing new intent categories into the taxonomy.

ITERATIVE CYCLE AND REFINEMENT. This two-phase process (expand known, dis-
cover new) was repeated iteratively. In each subsequent cycle, the expansion techniques
(Phase 1) benefited from the larger, more diverse labeled dataset (including any newly
discovered intents from Phase 2 of the previous cycle). Similarly, the re-clustering (Phase
2) operated on a progressively smaller and potentially more distinct pool of remaining
unlabeled data, increasing the chance of uncovering less frequent or more nuanced
intents. By alternating between clustering unlabeled data and applying open-intent
detection methods, the intent dataset can be efficiently and iteratively constructed. This
process is illustrated in Figure 3.4 and described as an algorithm in Algorithm 1.
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Manual verification at each stage was paramount. This alternating strategy allowed
for both the deepening (more examples per intent) and broadening (discovery of new
intents) of the labeled dataset efficiently, balancing automated suggestion with essential
human oversight.

Intent
Cluster 1

Pool of Agglomerative Intent i
Unlabeled Data Clustering Cluster 2 Manual Inspection

A add to
labeled data

Intent
Cluster n

Y

Pool of
Labeled Data

|G

£

predict

Y
Pool of

Unlabeled Data

{Unknown} [ own ]7

Figure 3.4: Proposed Approach: To retrieve intent clusters, the unlabeled data is first clustered
based on annotations generated by the LLM, as illustrated in Figure 3.3. After manual
inspection using a human-in-the-loop process, an initial set of labeled data is derived.
This labeled data is then used to train the ADB Open Intent Classifier, enabling the
identification of additional samples for known classes. As more data is added to
the labeled set, the pool of unlabeled data is gradually reduced. Clustering is then
reapplied to the remaining unlabeled data to repeat the process of discovering new
intent categories, as well as adding more diverse examples to existing categories,
further expanding the dataset and ensuring a diverse set of samples for each intent
category.

3.3 EVALUATION STRATEGY

Following the description of the proposed methodology for intent discovery and dataset
labeling (Section 3.2), this section outlines the comprehensive evaluation strategy em-
ployed in this research. Evaluating the outcome involves multiple facets: characterizing
the structural properties of the generated labeled dataset, assessing the quality of its
labels, contextualizing its characteristics through comparison with established bench-
marks, and measuring the performance of standard algorithms upon it. The following
subsections define the specific metrics and approaches used for each aspect of this
evaluation, forming the basis for the procedures detailed in Chapter 4 and the results
presented in Chapter 5.
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Algorithm 1 Iterative workflow for intent discovery and labeling

1: Input: Unlabeled dataset ¢/
2: Output: Labeled dataset £ with discovered intent categories

3: Initialize £ < @ > Start with an empty labeled set
4140 > Initialize iteration counter
5: while |U/| > 0 do > Repeat until all data is labeled
6: if imod 2 = 0 then > Alternate between clustering and model training
7 Generate clusters from U/ using LLM annotations

8: else

9 Train ADB model using £
10 Use trained ADB model to predict labels for ¢/
11 end if
12: Perform human-in-the-loop verification to obtain L£;¢,
13: L+ LULyew > Add new labels
14: U—U\L > Remove labeled data from the unlabeled set
15: i+—i+1 > Increment iteration counter

16: end while
17: return L

3.3.1 Dataset Characterization Metrics

INTRA-CLASS SIMILARITY. For each intent class, all pairwise cosine similarities are
calculated among the embedding vectors corresponding to utterances with the same
label. Let {x1,x2,...,x,} C RY denote the set of embeddings for utterances belonging
to a class c. The intra-class similarity is defined as the average cosine similarity across
all distinct pairs:

n o n
IntraSim(c) = i —1) & gcos X, Xj)
75
To avoid inflating the similarity score, self-similarity values on the diagonal of the
similarity matrix are excluded. In addition to the mean, the variance of the pairwise
similarities is also computed to capture the internal spread or semantic tightness of each
class in the embedding space.

INTER-CLASS SIMILARITY. To estimate the semantic proximity between different
intent classes, average pairwise cosine similarity is computed between all utterances
from two distinct classes. For each unique class pair (c;,c;), let {xgi),...,xf,?} and
{xgj ), . .,x,(f )} represent the embedding sets for classes c; and c;j, respectively. The
inter-class similarity is then given by:

1

m n .
InterSim(c;, ¢j) = — Y ) cos (xk ,xl(]))
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This formulation results in a symmetric similarity matrix across all class pairs, allow-
ing for the identification of semantically overlapping intents, which may pose challenges
for intent classification due to their close proximity in embedding space.

3.3.2 Internal Clustering Metrics

SILHOUETTE sCORE. The Silhouette Score is a metric that quantifies how well a
sample is clustered by comparing its intra-class similarity to its nearest inter-class
similarity. Instead of solely quantifying the quality of a clustering, we leverage this
metric to measure how well separated the clusters are by using the ground-truth labels
of a benchmark dataset as cluster assignments. For a given utterance embedding x, let
a(x) denote the average distance between x and all other embeddings in the same class
(i.e., intra-class dissimilarity), and b(x) the minimum average distance between x and
the embeddings of any other class (i.e., the closest neighboring cluster). The silhouette
score s(x) for a single sample is then defined as:

_ b(x) —a(x)
s(x) = max{a(x),b(x)}

This score ranges from —1 to 1, where values close to 1 indicate that the sample is well-
matched to its own cluster and clearly separated from others. A score near 0 suggests
overlapping clusters, and negative values imply potential misclassification. Traditionally,
the silhouette score is computed using Euclidian distance; however, we adapt it to
use cosine distance instead, defined as deos(x,¥) = 1 — cos(x,y). This adaptation is
motivated by the nature of high-dimensional embedding spaces, where cosine similarity
is generally more meaningful than Euclidian distance due to the curse of dimensionality.
Cosine-based distances better capture angular relationships between vectors, which are
more indicative of semantic similarity in the context of language representations. As
such, using cosine distance yields a more reliable assessment of clustering quality for
utterance embeddings.

DAVIES-BOULDIN INDEX. The DBl is an internal evaluation metric used in clustering
that measures the degree of separation between clusters. Although it shares similarities
with the Silhouette Score, the DBI specifically quantifies the average similarity between
each cluster and its nearest neighbor. This similarity is defined by the ratio of the sum
of intra-cluster distances to the inter-cluster distance. For any two clusters i and j, S;
represents the average distance between all points within cluster i and its centroid,
while M;; denotes the distance between the centroids of clusters i and j. The DBI for
cluster i is calculated as:

S,‘—f—S'
DB; = !
l max< M;; )
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The overall DBI is then determined by averaging the DB; values for all clusters. A
lower DBI indicates superior clustering quality, suggesting that the clusters are both
internally compact and well-separated from each other. Thus, the metric provides
insights into how well the clusters are separated. Similar to the Silhouette Score, DBI
is traditionally computed using Euclidian distances. However, just like we did for the
Silhouette Score, we adapt this metric to use cosine distances instead.

3.3.3 Label Quality Assessment using Confident Learning (Cleanlab)

Given that the labels for the corporate email intent dataset are generated through a semi-
automated workflow involving LLM annotations and clustering, rather than constituting
verified ground truth, assessing their quality and identifying inconsistencies is crucial
(RQ3). Standard evaluation against a gold standard test set is not directly applicable for
evaluating the inherent quality of these generated labels across the entire dataset.

Therefore, this research employs Confident Learning, a framework designed to find
label errors in datasets by analyzing the relationship between potentially noisy labels
and predictions from a trained classifier. Specifically, the Cleanlab Python library,
which implements Confident Learning algorithms, is utilized.

The core idea is to estimate the joint distribution between noisy labels and true (but
unknown) labels by leveraging predicted probabilities generated from models trained
via cross-validation (ensuring probabilities are out-of-sample). Cleanlab uses these
estimates to identify data points where the provided label is statistically unlikely given
the model’s predictions, ranking them by confidence.

Cleanlab was chosen as the primary method for label quality assessment in this thesis,
because it provides a systematic and quantifiable approach to identifying potential label
noise without requiring a separate, verified ground truth dataset. Furthermore, it is
model-agnostic, allowing integration with the classification models (like SetFit/Logistic
Regression) already used in the workflow. Finally, it helps diagnosing the types of
inconsistencies present, offering insights into the challenges of the labeling task and
potential areas for taxonomy refinement.

The specific procedures for generating the necessary out-of-sample probabilities via
cross-validation and executing the Cleanlab analysis are detailed in the Experimental
Setup, Section 4.2.3.

3.3.4 TEXTOIR evaluation

To assess how state-of-the-art algorithms perform on the generated corporate email
intent dataset and to contextualize its characteristics, evaluations were conducted using
the standardized Text Open Intent Recognition (TEXTOIR) framework [Zha+21c].
This framework was chosen for its inclusion of established algorithms relevant to the
tasks of open intent detection and semi-supervised intent discovery (as discussed in
Section 2.2), facilitating reproducible and comparable experiments.
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While open intent detection usually relies on metrics like accuracy and Fi-scores
for known and unknown classes, evaluating the quality of intent discovery requires
metrics that compare the algorithmically generated clusters against the ground truth
intent labels. For this purpose, the TEXTOIR framework utilizes, and we will report on,
standard clustering metrics, primarily:

* NMI: This metric measures the agreement between the discovered cluster assign-
ments and the ground truth intent labels by quantifying their shared information,
normalized typically to a scale between o (no mutual information beyond chance)
and 1 (perfect correlation). Higher NMI values indicate better clustering quality.

* ARI: ARI assesses the similarity between cluster assignments by considering all
pairs of samples and whether they are grouped together consistently with the
ground truth labels, correcting for chance agreement. ARI typically ranges from o
(random agreement) to 1 (perfect agreement), with higher values signifying better
clustering performance.

Utilizing TEXTOIR allows for evaluating algorithm performance under controlled
conditions that simulate real-world challenges, such as operating with incomplete
knowledge of all possible intent classes (controlled via the Known Intent Ratio (KIR)) or
learning from limited supervision (controlled via the Labeled Ratio (LR)). By employing
this framework, we aim to benchmark the performance of standard methods on our
specific dataset using the aforementioned metrics (and others like Fi-score where
appropriate) and gain insights into its difficulty and data requirements for effective
model training. The specific algorithms, dataset configurations, parameter settings
(KIR, LR variations), and detailed reporting of these metrics used within the TEXTOIR
experiments are detailed in the Experimental Setup (Section 4.2.4).
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EXPERIMENTAL SETUP

Following the methodology for intent discovery and labeling (Chapter 3) and the evalu-
ation strategy defined therein, this chapter describes the concrete experimental setup.
It specifies the final configuration of the generated labeled dataset and the benchmark
datasets used for comparison. Furthermore, it details the exact procedures followed for
dataset characterization (including distribution, semantic structure, and lexical analysis),
comparison against benchmarks, and label quality assessment using Cleanlab. These
details provide the necessary context for the results reported in Chapter 5.

4.1 DATASETS USED FOR EVALUATION

The datasets subject to our evaluation are the labeled dataset we created ourselves, as
well as several intent benchmark datasets.

4.1.1  Labeled Corporate Email Intent Dataset

The primary dataset analyzed in subsequent chapters was constructed using the method-
ology detailed in Chapter 3. It is important to note that the initial data corpus was
partitioned into training, validation, and test subsets prior to the intent discovery and
labeling phases. The methodology was then applied primarily within these splits. Con-
sequently, the resulting dataset represents the outcome of this process and consists of
6,785 labeled utterances.

During the analysis and finalization of the dataset across the predefined splits, a
taxonomy of 54 distinct in-scope intent classes was established based on recurring
themes found primarily in the training data (full taxonomy in Table A.4).

An OOD category was utilized specifically during the preparation of the test set. If
certain intent categories identified and labeled within the training split had insufficient
or zero representation in the initially allocated validation or test splits, utterances
corresponding to those scarce categories were re-assigned to the OOD class within
the test set. This approach ensures that the evaluation reflects performance on well-
represented intents while acknowledging the presence of other discovered categories
that were too infrequent for robust split-wise evaluation.

The final splits used for subsequent model training and evaluation, reflecting this
handling of low-frequency intents, are:

¢ Training Set: 4,804 utterances (70.8%) (Containing 54 in-scope labels)
* Validation Set: 1,229 utterances (18.1%) (Containing 54 in-scope labels)

¢ Test Set: 752 utterances (11.1%) (Containing 54 in-scope labels + the OOD category)
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While the dataset was randomly partitioned into a 60/20/20 split, the final label
distribution within these splits reflects the intents discovered and labeled via the applied
methodology, including the reassignment of rare intents to OOD in the test set. Therefore,
this distribution (analyzed in Section 5.1.2) should not be interpreted as representing
the true, underlying intent distribution of the original email corpus, nor is the
discovered taxonomy guaranteed to be exhaustive. To supplement the main analysis, a
separate investigation was conducted in order to approximate the intent distributions
found in each respective dataset partition. 100 utterances were randomly selected from
each of the original unlabeled training, validation, and test partitions. These 300 samples
were manually labeled by the author using the final intent taxonomy (Table A.4). These
labels served only for the analysis reported in Section 5.1.2 and were not incorporated
into the primary labeled dataset. A notable characteristic is a significant class imbalance
within the final labeled splits, which influenced subsequent analysis steps (e.g., using
class_weight="balanced’).

4.1.2  Benchmark Intent Datasets

To contextualize the characteristics of the labeled corporate email dataset developed in
this thesis, its structural properties (analyzed in Chapter 5) will be compared against
several established intent benchmark datasets. The following datasets, previously intro-
duced in Section 2.2.3, were selected based on their common usage (e.g., inclusion in the
TEXTOIR repository) and diverse characteristics, providing varied points of comparison.

For all benchmark datasets, the versions and standard train/validation/test splits
as provided within the TEXTOIR framework were utilized directly. Key characteristics
relevant to the comparison include:

e SNIPS [Cou+18]:

— Role: Represents a dataset with a small number (7) of mostly distinct intent
categories across several domains, ranging from restaurant reservations to
music consumption.

- Size: Contains 14,484 utterances, split approx. 9go% train / 5% validation /
5% test.
e BANKING?77 [Cas+20]:

- Role: Represents a fine-grained dataset within a single domain (banking),
featuring 77 distinct intents.

— Size: Contains 13,083 utterances, split approx. 70% train / 10% validation /
20% test.
e CLINC150 [Lar+19]:

- Role: Represents a large-scale, fine-grained dataset spanning 10 domains
with 150 intents, crucially including OOD examples (though OOD examples
are typically excluded from structural comparisons like this unless specified).
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- Size (without OOD): Contains 22,500 in-scope utterances, split 80% train /
10% validation / 10% test.

- Size (OOD): Contains 23,700 utterances, 22,500 in-scope utterances with
additional 1,200 OOD utterances, split approx. 63% train / 12% validation /
25% test.

e StackOverflow:

- Role: Represents a dataset where labels correspond to technical topics (20
programming languages/technologies) rather than user intents, offering a
contrast in structure.

- Size: Contains 20,000 utterances, split 60% train / 10% validation / 30% test.

These datasets provide a spectrum of granularities, domain specificities, and underly-
ing structures against which the properties of our newly created corporate email intent
dataset, such as cluster separability and cohesion, can be assessed.

4.2 ANALYSIS AND EVALUATION PROCEDURES

This section details the specific procedures implemented to characterize the labeled cor-
porate email intent dataset and compare its properties against established benchmark
datasets, using the evaluation strategies defined in Section 3.3. To facilitate repro-
ducibility of these procedures, particularly those applied to publicly available data,
the code implementing the dataset characterization workflows and is available at:
https://github.com/emailintents/benchmark_experiments/. Note that due to licens-
ing restrictions, the primary labeled dataset derived from the Avocado corpus is not
included in this repository.

4.2.1 Labeled Dataset Characterization Procedure

The procedures described here were executed to analyze the distributional, semantic,
and lexical properties of the final labeled corporate email intent dataset (specified in
Section 4.1.1) generated through the methodology in Chapter 3.

DATASET DISTRIBUTION ANALYSIS. Two distinct procedures were employed to
analyze intent distributions: one characterizing the final labeled dataset resulting from
the methodology, and another supplementary analysis aimed at approximating the
underlying distribution within the original data partitions.

¢ A) Distribution within the Final Labeled Dataset: To visualize the frequency and
skewness of intent labels within the final, curated dataset splits, the occurrences
of each of the 54 in-scope intent labels were counted. These counts were then
plotted as barcharts using both the Matplotlib and Seaborn libraries to illustrate
the compositional characteristics of the curated dataset resulting from the applied
methodology.
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* B) Approximation of Underlying Distribution via Random Sampling: In or-
der to gain insights into the likely distributions of intents within the original,
uncurated data partitions and to assess taxonomy applicability on random data,
a supplementary sampling analysis was conducted. From each of the original
unlabeled training, validation and test partitions, n=100 data points (utterances)
were randomly sampled without replacement. These 300 sampled utterances
were manually labeled by the author according to the final 54-class intent taxon-
omy. Utterances that could not be confidently assigned to an existing category
due to ambiguity, lack of context, or representing a potentially new intent were
assigned a new intent label that best describes the underlying goal of the utter-
ance. Subsequently, the frequencies of the assigned labels within each 100-sample
set were calculated. These frequencies were visualized as barcharts using Mat-
plotlib/Seaborn to approximate the underlying intent distribution within each
original partition.

To visualize the frequency and skewness of intent labels, histograms were generated
for the training, validation, and test splits separately. Label counts for each intent class
within each split were computed, and these counts were plotted using the Matplotlib
library. However, as our methodology is more about curating a dataset, a separate
experiment is being conducted to approximate the true intent distribution. For this we
sampled n=100 datapoints from each respective dataset partition to gain insights into
the true underlying distribution of intents within our analyzed subset.

SEMANTIC STRUCTURE VISUALIZATION (UMAP). To visually inspect the semantic
relationships and separability of intent classes, the UMAP technique [Mcl+18] was
employed. First, sentence embeddings for all labeled utterances were generated using
the pre-trained SBERT model all-MinilM-L6-v2 from the Hugging Face Sentence Trans-
formers library *. UMAP, implemented via the umap-learn library 2, was then applied to
these 384-dimensional embeddings to project them into a 2-dimensional space suitable
for plotting. Key UMAP parameters were set as follows: n_neighbors=30, min_dist=0.3,
n_components=2, and importantly, metric='cosine’ to reflect the similarity measure
most appropriate for these embeddings. Class centroids were also computed by aver-
aging the SBERT embeddings for all utterances within each intent class and projected
using the same UMAP transformation for visualization.

LEXICAL CHARACTERISTIC ANALYsIs. To identify dominant terms associated with
each intent class, a lexical analysis was performed using the spaCy library 3, using
the model en_core_web_sm. For each intent class, the corresponding utterances were
processed by: (1) Tokenizing the text, (2) Performing Part-of-Speech (POS) tagging and
lemmatization, (3) Removing standard English stopwords, (4) Counting the frequency
of the remaining noun and verb lemmas. The top 3 most frequent noun lemmas and
verb lemmas for each class were extracted.

1 https://huggingface.co/sentence-transformers
2 https://pypi.org/project/umap-learn/
3 https://spacy.io/
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QUANTITATIVE CLUSTER QUALITY ASSESSMENT. To quantitatively assess the cohe-
sion and separation of the intent classes within the embedding space, several metrics
were calculated based on the SBERT embeddings (all-MinilM-L6-v2).

¢ Intra-Class Similarity: The cohesiveness within each defined intent class was quan-
tified by calculating the average pairwise cosine similarity among its constituent
utterances. This involved the following steps:

— All utterance embeddings were stacked into a numerical matrix using
NumPy 4 (np.vstack).

- A comprehensive pairwise cosine similarity matrix, comparing every ut-
terance embedding against every other, was computed using Scikit-learn’s
cosine_similarity function.

— For each unique intent label, the sub-matrix corresponding to similarities only
between utterances belonging to that specific label was extracted using Pandas >
DataFrame indexing.

— To ensure the average was not inflated by self-similarity (which is always 1),
the diagonal elements of each sub-matrix were disregarded (conceptually set
to NaN).

— The mean (np.nanmean) and variance (np.nanvar) of the remaning off-diagonal
similarity values were computed for each intent class, representing the Aver-
age Intra-Class Similarity and its Variance respectively.

— Finally, the overall mean of the per-class Average Intra-Class Similarities was
calculated to provide a single summary statistic for the dataset’s internal
cohesion.

¢ Inter-Class Similarity: To estimate the semantic proximity between different intent
classes, the average pairwise cosine similarity was computed for every unique
pair of distinct intent classes. The procedure was as follows:

— All unique pairs of distinct intent labels were generated using Python’s
itertools.combinations.

— For each pair of intents (e.g., intent_a and intent_b), the corresponding sets
of utterance embeddings were extracted and stacked into separate numerical
matrices (emb_a,emb_b) using NumPy (np.stack).

— The Scikit-learn cosine_similarity function was then used to compute the
similarities between all utterances in embd_a and all utterances in embd_b,
resulting in a matrix of cross-class similarity scores.

— The overall mean (np.mean) of this cross-class similarity matrix was calculated,
yielding a single value representing the average semantic similarity between
intent_a and intent_b.

4 https://numpy.org/
5 https://pandas.pydata.org/
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— This process was repeated for all unique pairs of intents, and the results were
organized into a symmetric similarity matrix using Pandas, capturing the
average similarity between all distinct intent classes.

¢ Silhouette Score & DBI: Overall dataset cluster quality was assessed using the
Silhouette Score and DBI. While the implementation of the Silhouette Score al-
ready These were calculated using implementations from the Scikit-learn library ©
(silhouette_score,
davies_bouldin_score), critically adapting them to use cosine_distance (defined as
1 — cosine_similarity) as the distance metric. These metrics were computed using
the assigned labels for our labeled dataset.

4.2.2  Comparison with Benchmark Datasets Procedure

To establish a comparative baseline for understanding the structural characteristics of the
newly created labeled corporate email dataset, the core quantitative analysis procedures
outlined in Section 4.2.1 were systematically applied to each of the benchmark intent
datasets specified in Section 4.1.2 (SNIPS, BANKING?77, CLINC150, and StackOverflow).
The goal was to ensure that any observed differences in metrics reported in Chapter 5
reflect inherent dataset properties rather than variations in the analytical methodology.
A fundamental aspect of this procedure was the consistent application of the same tools,
models, and metric calculations across all datasets. Thus the generation of embeddings
and measured metrics was conducted the exact same way as described for the newly
created labeled corporate email dataset. This yields a set of comparable structural metrics
(overall intra-similarity, inter-similarity, Silhouette Score, DBI) for each benchmark
dataset, which are presented alongside those of the primary dataset for comparative
analysis.

4.2.3 Label Quality Assessment via Cleanlab Procedure

To quantitatively evaluate assess the quality of the labels assigned during the intent
discovery and labeling process (described in Chapter 3) and to identify instances and
patterns of potential label noise within the created dataset, the Confident Learning
framework, as implemented in the cleanlab Python library 7, was employed. Given that
the labeling process was applied uniformly and the resulting labels across all predefined
splits (train, validation, test) were considered potentially noisy "pseudo-labels" rather
than absolute ground truth, this analysis was performed on the entire combined labeled
dataset. This approach allows for a comprehensive identification of conflicts across all
available labeled data points.

GENERATING OUT-OF-SAMPLE PREDICTED PROBABILITIES. Confident Learning
requires predicted probabilities for each data point that are generated Out-of-Sample

6 https://scikit-learn.org
7 https://github.com/cleanlab/cleanlab
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(OOS) (i.e., from a model not trained on that specific data point). To achieve this, a
stratified k-fold cross-validation procedure was implemented:

¢ Splitting: The combined dataset was divided into k = 5 folds using stratified split-
ting (sklearn.model_selection.StratifiedKFold) to maintain the proportional
representation of each intent class within each fold, which is crucial due to the
observed label imbalance (Section 5.1.2).

¢ Iteration: A loop iterated 5 times, with each fold serving once as the held-out
validation set and the remaining k — 1 (i.e., 4) folds serving as the training set for
that iteration.

¢ Fold-Specific Body Fine-Tuning: Within each iteration:

- A fresh base Sentence Transformer model was loaded using
SetFitModel.from_pretrained.

— The SetFitTrainer was configured with the training texts and labels for the
current k-1 folds.

— The trainer.train() method was executed, primarily to perform contrastive
fine-tuning of the SBERT model body based on the training data of this
specific fold. Key SetFit training parameters included num_iterations=20
and batch_size=16. (Note: The head trained internally by SetFitTrainer during
this step is temporary and not used for the final probability prediction).

— The fine-tuned SBERT body (trainer.model.model_body) specific to this fold
was extracted.

¢ Fold-Specific Embedding Generation: Using the fine-tuned body obtained in the
previous step, sentence embeddings were generated for both the training utterances
(k-1 folds) and the held-out validation utterances (1 fold) for the current iteration.

¢ Fold-Specific Classifier Head Training: A separate Logistic Regression classi-
fier (sklearn.linear_model.LogisticRegression) was trained exclusively on the
training embeddings and corresponding training labels for this iteration. Recognizing
the significant class imbalance inherent in real-world communication data and
confirmed during preliminary analysis of our dataset, the classifier was configured
with the class_weight="balanced’ parameter to mitigate potential bias towards
majority classes (the detailed distribution analysis is presented in Section 5.1.2).
Other parameters included max_iter=2000 and solver="1iblinear’.

¢ Out-of-Sample probability Prediction: The trained Logistic Regression head was
then used to predict class probabilities (predict_proba) for the embeddings of the
held-out validation fold.

* Probability Aggregation: These predicted probabilities for the validation fold
were stored. By mapping them back to the original indicies of the utterances, a
complete matrix (oof_preds) containing OOS predicted probabilities for every
utterance in the entire dataset was assembled after all 5 folds were processed.
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CLEANLAB EXECUTION. The generated matrix of OOS predicted probabilities and
the corresponding array of original (potentially noisy) labels assigned during the dataset
creation process were provided as input to the

cleanlab.filter.find_label_issues function. This function identified instances sus-
pected of having incorrect labels based on the Confident Learning algorithms.

VISUALIZATION SETUP.

¢ Conflict Matrix: A confusion matrix, termed the "Label Conflict Heatmap" (Fig-
ure 5.7), was generated using Matplotlib/Seaborn. This matrix cross-tabulates
the original assigned labels against the labels predicted with the highest OOS
probability specifically for those instances flagged by Cleanlab as potential issues. This
highlights the primary sources of confusion.

¢ Network Graph: A directed network graph (Figure 5.8) was constructed using the
NetworkX library ® and visualized using Matplotlib/Seaborn with a force-directed
layout (e.g., spring_layout). Nodes represent the intent classes. Directed edges
from class A to class B indicate Cleanlab identified instances originally labeled "A’
but predicted as ‘B’. Edge thickness was scaled proportionally to the count of such
conflicts. Node size was scaled based on the total number of off-diagonal conflicts
involving that class (both incoming and outgoing) as identified by Cleanlab.

4.2.4 TEXTOIR Experiment Setup

To assess the performance of representative state-of-the-art open-set intent detection
and semi-supervised intent discovery algorithms when applied to the challenging char-
acteristics (skew, semantic overlap) of the newly created labeled corporate email dataset,
experiments were conducted utilizing the standardized TEXTOIR framework [Zha+21c].
This allows for evaluating how well these established methods generalize to the nu-
ances of this specific dataset and provides insights into their robustness under varying
conditions of data availability and class knowledge.

ALGORITHMS SELECTED. On the side of intent detection, the ADB [ZXL21] method
was chosen as a representative state-of-the-art algorithm for this task. For the intent
discovery task, Deep Aligned Clustering [Zha+21b] was selected to evaluate performance
in discovering intents.

DATASET CONFIGURATIONS. Recognizing the significant class imbalance in the
final labeled dataset, experiments were conducted using two distinct dataset splitting
strategies to analyze potential impacts:

¢ Original Skewed Splits: Utilizing the standard train (4804 samples), validation
(1229 samples), and test (752 samples) sets as defined in Section 4.1.1. This config-
uration preserves the skew resulting from the data creation methodology.

8 https://networkx.org/
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¢ Stratified Splits: Employing newly generated train, validation, and test splits
(using a split of 90%/5%/5%) created via stratified sampling from the entire com-
bined labeled dataset. This configuration ensures proportional class representation
across all partitions, providing a comparison point against the original setup.

TEXTOIR PARAMETER VARIATIONS. Key parameters within the TEXTOIR frame-
work were systematically varied to simulate different realistic scenarios and assess
model robustness:

¢ KIR: This parameter was varied (across the values [0.25, 0.50, 0.75]) to simulate
scenarios where only a fraction of the total intent classes (54 in this case) are known
during training. The model’s task is to correctly classify instances of known classes
while identifying instances belonging to the remaining (temporarily held-out)
classes as ‘unknown’ (OOD).

* LR: This parameter controls the fraction of the available training data for the
known classes that is actually provided with labels during training. It was varied
(e.g., across values such as [0.1 0.2 0.3 ... 1.0]) to simulate low-resource learning
scenarios and assess how much labeled data is sufficient for effective model
training on this dataset.

EVALUATION METRICS. Performance for these TEXTOIR experiments was measured
using standard evaluation metrics suitable for the respective tasks:

¢ For open intent detection (evaluated using ADB), performance was assessed
using standard classification metrics such as Accuracy and Fi-scores (calculated
separately for known and unknown/OOD classes).

¢ For semi-supervised intent discovery (evaluated using Deep Aligned Clustering),
the quality of the generated clusters was measured using NMI and ARI, as defined
in Section 3.3.4. These metrics quantify the alignment between the discovered
clusters and the ground truth intent labels.



RESULTS

This chapter presents the empirical findings derived from the application of the method-
ologies and experimental procedures detailed in Chapters 3 and 4. The primary focus is
on characterizing the newly created labeled corporate email intent dataset, evaluating
its properties in the context of established benchmarks, assessing its label quality, and
reporting the performance of standard intent analysis algorithms when applied to it.

The chapter begins with a multi-faceted analysis of the labeled dataset generated in
this work (Section 5.1). This includes a qualitative overview of the discovered intent
themes, an examination of intent distributions (both within the final curated dataset and
approximated from random sampling), visualization of the semantic structure using
UMAP, lexical analysis of characteristic terms, and quantitative metrics assessing cluster
cohesion and separation.

Subsequently, Section 5.2 presents the results of applying similar characterization
analyses to four standard benchmark intent datasets (SNIPS, BANKING?77, CLINC150,
StackOverflow) to establish a comparative baseline.

Building on these individual analyses, Section 5.3 provides a comparative summary,
directly contrasting the key structural metrics of the generated dataset against the
benchmarks.

Following the dataset characterizations, Section 5.4 reports the performance outcomes
obtained by running selected state-of-the-art open-set intent detection (ADB) and
discovery (Deep Aligned) algorithms from the TEXTOIR framework on our dataset
under various configurations.

Finally, Section 5.5 details the findings from the label quality assessment conducted
using Cleanlab, quantifying potential inconsistencies and highlighting specific patterns
of label confusion within the generated dataset.

5.1 LABELED DATASET CHARACTERISTICS

This section presents a comprehensive analysis of the labeled corporate email intent
dataset generated through the methodology outlined in Chapter 3. The characteristics
of this dataset are examined from multiple perspectives to understand its composition,
structure, and properties. The following subsections detail the qualitative themes dis-
covered during taxonomy development, the quantitative distribution of intents within
the final dataset and approximations from random sampling, the semantic structure
visualized via dimensionality reduction, a lexical analysis of intent-specific terminology,
and finally, quantitative metrics assessing overall cluster quality.
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5.1.1  Qualitative Overview of Discovered Intent Categories

Qualitative inspection of the intent clusters generated via the methodology described in
Chapter 3 revealed several recurring thematic categories reflecting typical workplace
communication needs.

A central group of intents pertains to IT-related operations, including utterances
concerning file transfers, requests for access to systems or infrastructure, inquiries about
login credentials, and bug/issue management. Another major category involves project
coordination and task management, encompassing requests to be kept informed , offers
of support, and inquiries about task procedures.

A broad class of document and information exchange intents was also identified,
ranging from requests to send specific documents (resumes, reports) and timesheet
submissions to utterances related to reviewing or signing documents and requesting
contact details. This category also included informative messages notifying recipients
of attachments. Furthermore, a distinct set of intents centered on meeting logistics
and scheduling, such as setting up meetings, checking availability, or inquiring about
time/location. Finally, several administrative or specialized intents like hotel reservations
or confidentiality requests were observed.

Analysis of cluster granularity revealed that while larger clusters often represented
these core themes, smaller clusters (e.g., those with five or fewer utterances) typically
contained highly specific phrasings or contextual nuances of already identified intents,
rather than representing entirely novel categories.

Variations in cluster coherence were also noted. Some clusters, like those for
offer_assistance, exhibited high homogeneity, with utterances consistently conveying
the same core meaning. Others, such as those related to request_contact, were more
heterogeneous, sometimes combining requests for being contacted with requests for
others’ contact information. Examples of multi-intent utterances within single concep-
tual clusters were encountered (e.g., simultaneously requesting to print and sign a
document).

Additionally, certain utterances proved difficult to assign to a single intent category
due to a lack of surrounding conversational context (which was intentionally excluded
in the sentence-level analysis). Instances were also found where clusters grouped
utterances with opposite meanings, particularly involving negation (e.g., requests to
forward information clustered with requests explicitly asking not to forward a specific
piece of information).

Based on this inspection and analysis of recurring patterns, the final intent taxonomy
comprising 54 in-scope categories was defined (see Table A.4).

5.1.2 Intent Distribution in the final labeled dataset

This section characterizes the frequency distribution of the 54 in-scope intent labels
within the final training, validation, and test splits. These splits constitute the dataset
artifact generated via the discovery and iterative refinement methodology detailed in
Chapter 3.
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It is crucial to emphasize that this distribution is a direct outcome of that methodology
- reflecting the intents successfully identified and populated with sufficient examples
through targeted filtering, LLM-based clustering, and iterative expansion. Therefore,
the observed frequencies presented here characterize the specific dataset used for
subsequent analyses and model evaluations in this thesis, but they do not necessarily
represent the true underlying frequency or prevalence of these intents within the
original, uncurated Avocado email corpus. Understanding this specific distribution is
vital, however, as it highlights the inherent skew and composition of the data artifact
upon which further experiments are based.

A separate analysis presented in the next section (Section 5.1.3) uses random sampling
to provide an approximation of the underlying intent distribution within the original
data partitions, offering a valuable contrast to the curated dataset’s composition.

Examining the composition of this final labeled dataset reveals the following:

* Most Frequent Intent: The offer_assistance category contains the highest num-
ber of labeled utterances across all splits.

¢ Substantially Represented Intents: A significant portion of the dataset comprises
intents related to coordination, communication, and scheduling.

* Notably Represented Intents: Categories associated with document handling and
routine administrative tasks are also well-represented.

* Less Frequent Intents: Several intents representing more specific functions, such
as IT issue management appear with lower frequencies.

* Rarest Intents: Intents observed with the fewest examples in the labeled splits
include social intents and more specific requests.

In summary, the final labeled dataset used for subsequent evaluations is composi-
tionally dominated by intents reflecting core operational communications (assistance,
meetings, calls, document exchange) typical of the analyzed corporate environment, a
direct outcome of the applied data curation methodology.
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5.1.3 Approximate Intent Distributions found in the respective dataset splits

To estimate the underlying distribution of the intents within the original, uncurated data
partitions and to assess the direct applicability of the final taxonomy, a supplementary
analysis was conducted by randomly sampling and manually labeling 100 utterances
from each original split.

* Domincance of General Intents: The intent offer_assistance was found to be
overwhelmingly dominant in the random samples across all three splits, constitut-
ing a significantly larger proportion than any other category.

¢ Presence of Core Communication Intents: Other intents consistently appearing
with moderate frequency in the random samples included standard adminis-
trative tasks, dealing with calls, requests for documents and the planning of
appointments.

* Sparsity of Specific Intents: A key finding was the extreme rarity or complete
absence of the vast majority of the 54 defined in-scope intents within these 100-
utterance random samples. Most specific task-related or administrative intents
occurred only one or twice, if at all, in any given sample.

¢ Labeling Challenges Observed: This manual labeling exercise on random samples
also highlighted significant challenges not fully reflected in the curated dataset.
Some of the sampled utterances were difficult or impossible to assign to an existing
category due to ambiguity, lack of context, or high specificity overall. Other
utterances, however, suggested potential new categories beyond the established
taxonomy.

While the small sample size per split (n=100) limits precise quantification for rare
intents, these results strongly indicate that most fine-grained intents identified in
this research are relatively sparse within the general email corpus. The underlying
distribution appears heavily skewed towards a few very common communicative
functions like offering assistance. This observation underscores the difference between
the composition of the final, curated dataset (enriched for specific intents via the
methodology) and the probable distribution in the raw data partitions, further justifying
the targeted approach taken for dataset creation while also highlighting the challenge
of achieving exhaustive intent coverage.

5.1.4 Semantic Structure Analysis

Figures Figure 5.1 and Figure 5.2 present the 2-dimensional UMAP projections derived
from the SBERT embeddings of the labeled dataset utterances and their corresponding
centroids, respectively, visualizing semantic relationships. For better clarity, the plots
are separated.

The visualization in Figure 5.1 indicates considerable overlap among many intent
classes within the 2D semantic space, suggesting a lack of clear separation for a large
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portion of the categories. However, some exceptions are observable; for instance, the
cluster corresponding to request_login_credentials (blueish cluster, bottom left quad-
rant) appears relatively distinct from the main grouping. Similarly, the cluster for
mark_calendar (orange cluster, bottom right quadrant) shows some separation.

Proximity between related intents is also visible. For example, intents related to meet-
ing scheduling, such as request_reschedule, propose_meeting, and request_meeting,
are located near each other in the bottom right quadrant, close to the mark_calendar
cluster.

Figure Figure 5.2 displays the calculated centroids for each class, illustrating their cen-
tral position within the embedding space relative to each other. The plot shows variation
in the spatial distribution of intent categories, with some appearing relatively tightly
grouped while others are more dispersed. Quantitative analysis of cluster separation
and cohesion is presented in Section 5.1.6.

UMAP Projection for the Labeled Dataset
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Figure 5.1: UMAP visualization of the embeddings produced for the labeled dataset. Best viewed
in color.
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UMAP Projection for the Labeled Dataset (Centroids)
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Figure 5.2: UMAP visualization of the centroids for the embeddings of a respective class.

5.1.5 Lexical Analysis

The lexical analysis provides insight into the characteristic vocabulary of each intent.

Some intents, such as purchase_order and request_login_credentials, utilize ter-
minology with minimal overlap compared to other intents.

Conversely, several classes exhibit significant lexical similarity, reflecting related
thematic content. For example, request_meeting and request_meeting_info share core
vocabulary related to meeting arrangements. Similar overlaps can be observed between
other functionally related intents.

5.1.6  Quantitative Cluster Quality

The internal cohesion of each intent class within the SBERT embedding space was quan-
tified by calculating the average intra-class cosine similarity, with results summarized in
Table 5.1. It reveals a range of cohesiveness across the different intent categories. The
highest average intra-class similarity was observed for the intent request_start_build
(0.446). High values were also recorded for offer_assistance (0.383), request_call
(0.359), request_fax and request_instructions_on_how_to_proceed with both being
at 0.357.
Conversely, several intents displayed lower internal similarity. The

request_confidentiality intent showed an average intra-class similarity of 0.203, while
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the oos category, by design containing diverse utterances not belonging to defined
intents, had an average similarity of 0.194. The lowest measured average intra-class
similarity was for the request_verify_information intent, at 0.184.

The overall mean of the average intra-class similarities, calculated across all 55 intent
classes, including the oos intent class, was 0.265.

Table 5.1: Top and bottom 5 intents by average intra-class cosine similarity in the Labeled dataset.

Intent Avg Intra Similarity Variance
request_start_build 0.446 0.049
offer_assistance 0.383 0.029
request_call 0.359 0.037
request_fax 0.357 0.042
request_instructions_on_how_to_proceed 0.337 0.043
request_confidentiality 0.203 0.020
request_run_test 0.202 0.021
00s 0.194 0.016
provide_link 0.192 0.021
request_verify_information 0.184 0.017

The semantic proximity between different intent classes was assessed by calculating
the average pairwise cosine similarity for all unique pairs of distinct intents. The pairs
exhibiting the highest similarities are presented in Table 5.2.

As displayed, the highest measured average inter-class similarity (0.429) occurred
between request_sign_fax and request_fax. Other pairs with notably high similarity
scores include request_close_bug and request_bug_report, reflecting their shared
focus on bug management processes.

Significant similarity was also observed among several meeting-related intents. For
instance, the pairs request_reschedule, request_meeting (similarity: 0.408), and
request_meeting_info, request_meeting (similarity: 0.383) all demonstrate consider-
able semantic overlap related to meeting logistics.

Finally, the overall quality of the intent class structure in the embedding space was
assessed using global clustering metrics, calculated with cosine distance as described in
Section 4.2. The Silhouette Score for the labeled dataset was 0.057 and the DBI was

3.257.
5.2 BENCHMARK DATASET CHARACTERISTICS

To provide a comparative context for the labeled corporate email dataset presented in
Section 5.1, this section details the results of applying the same analysis precedures
(outlined in Section 4.2.1) to four established benchmark datasets: SNIPS, BANKING?77,
CLINC150, and StackOverflow. The findings presented here for each benchmark, cover-
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Table 5.2: Pairs of intents with their respective cosine similarities

Intent 1 Intent 2 Cosine Similarity
request_sign_fax request_fax 0.429
request_close_bug request_bug_report 0.422
request_reschedule request_meeting 0.408
propose_meeting request_reschedule 0.389
propose_meeting request_meeting 0.387
request_meeting_info request_meeting 0.383
request_bug_report request_reproduction_steps 0.378
request_conference_call request_meeting 0.371
request_attendance_info request_attendance 0.368
request_meeting_info request_attendance 0.361
request_contact_information request_call 0.359
request_conference_call request_reschedule 0.357
request_conference_call request_call 0.347
request_attendance_info request_meeting_info 0.346
request_start_build request_create_baseline 0.342
request_close_bug request_reproduction_steps 0.341
request_availability request_meeting 0.341
request_meeting request_attendance 0.339
request_conference_call request_meeting_info 0.338
request_availability propose_meeting 0.336
request_conference_call request_attendance 0.333
request_conference_call propose_meeting 0.333

ing semantic structure, lexical patterns, and quantitative cluster quality metrics, establish
a baseline for understanding the relative properties of the dataset developed in this
research, which are quantitatively compared in Section 5.3.

5.2.1  SNIPS Dataset Analysis
The analysis results from the SNIPS dataset [Cou+18], including visualizations and
quantitative metrics, are presented in Figure 5.3 and Table 5.3.

Overall structural metrics calculated for SNIPS (7 intents) using the procedures

outlined in Chapter 4 include a include a Silhouette Score of 0.1508 and a DBI of 2.697.

Detailed metrics within the dataset are as follows:

¢ Semantic Structure (UMAP): The UMAP projection in Figure 5.3 visualizes the
utterance embeddings and class centroids. Observable semantic overlap exists
between certain classes, notably AddToPlaylist and PlayMusic, and also among
SearchCreativeWork, SearchCreativeWork and RateBook. In contrast, the
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GetWeather and BookRestaurant clusters appear visually distinct from other cate-
gories. Some outliers are present, for instance, the utterance “add nana tanimura to
a sudden rainstorm” (labeled AddToPlaylist) plots closer to the GetWeather cluster
space in this 2D projection.

Lexical Analysis: Table 5.3a lists the top 3 noun and verb lemmas for each of the 7
intent classes. Noun-verb pairs often correspond directly to the intent label, such as
"playlist"/"add" for AddToPlaylist and "restaurant"/"book" for BookRestaurant.
Some potentially verbal terms like "rate" in RateBook were identified as top nouns
by the POS tagger.

Intra-Class Similarity: The average intra-class cosine similarities for the intents are
shown in Table 5.3b, ranging from a minimum of 0.154 for SearchCreativeWork
to a maximum of 0.273 for SearchScreeningEvent.

Inter-Class Similarity: The matrix of average inter-class cosine similarities is
presented in Table 5.3c. The highest similarity (0.265) was observed between
PlayMusic and AddToPlaylist. Other notable similarities include 0.147 between
SearchScreeningEvent and SearchCreativeWork, and 0.126 between
SearchScreeningEvent and BookRestaurant.

Similar Utterance Examples: Table 5.3d provides examples of specific utterance
pairs from different intent classes that exhibit high cosine similarity, such as an
utterance for PlayMusic and AddToPlaylist having a similarity of 0.879.
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UMAP Projection for the SNIPS dataset
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Figure 5.3: UMAP visualization of the embeddings produced for the SNIPS dataset. Cluster
centroids with the respective labels are included. Best viewed in color.
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Table 5.3: Analysis of the SNIPS dataset.

Label Top Nouns Top Verbs
AddToPlaylist [playlist, song, tune] [add, want, call]
BookRestaurant [book, restaurant, table] [need, book, want]
GetWeather [weather, forecast, park] [s, go, tell]
PlayMusic [music, song, track] [play, hear, want]
RateBook [star, point, rate] [rate, want, get]
SearchCreativeWork [tv, game, saga] [find, call, look]

SearchScreeningEvent [movie, schedule, theatre] [play, find, animate]

(a) Top 3 nouns and verbs per intent category in the SNIPS dataset.

Intent Avg. Intra Similarity Variance
SearchScreeningEvent 0.273 0.037
BookRestaurant 0.269 0.025
AddToPlaylist 0.265 0.026
RateBook 0.248 0.028
PlayMusic 0.247 0.019
GetWeather 0.226 0.023
SearchCreativeWork 0.154 0.011

(b) Average intra-class cosine similarity and variance for SNIPS intents, sorted in descending order.

PlayMusic AddToPlaylist RateBook SearchScreeningEvent BookRestaurant GetWeather SearchCreativeWork

PlayMusic 1.000 0.265 0.086 0.122 0.085 0.023 0.145
AddToPlaylist 0.265 1.000 0.101 0.100 0.104 0.039 0.133
RateBook 0.086 0.101 1.000 0.084 0.111 0.058 0.101
SearchScreeningEvent 0.122 0.100 0.084 1.000 0.126 0.077 0.147
BookRestaurant 0.085 0.104 0.111 0.126 1.000 0.089 0.098
GetWeather 0.023 0.039 0.058 0.077 0.089 1.000 0.046
SearchCreativeWork 0.145 0.133 0.101 0.147 0.098 0.046 1.000

(c) Inter-cluster cosine similarity matrix between SNIPS intent categories.

Utterance 1 [Label 1] Utterance 2 [Label 2] Cosine Similarity
play my 70s smash hits playlist [ PlayMusic] add this track to the 70s smash hits playlist [AddToPlaylist] 0.879
what time is cabin fever: spring fever playing [SearchScreeningEvent] — play the cabin fever 2: spring fever saga [SearchCreativeWork] 0.831
play some house music [PlayMusic] play the home is where the music is tv series [SearchCreativeWork] 0.743

(d) Examples of very similar utterances stemming from different intent categories.
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5.2.2 BANKING77 Dataset Analysis

The analysis results for the BANKINGy7 dataset [Cas+20], featuring 77 fine-grained
intents within the financial services domain, are presented in Figure 5.4 and Table 5.4.
The overall structural metrics calculated for this dataset are a Silhouette Score of
0.1564 and a DBI of 2.470.
Detailed metrics observed within the dataset include:

¢ Semantic Structure (UMAP): The UMAP projection in Figure 5.4 shows a fluid
structure with considerable overlap between many of the 77 intent clusters. While
significant mixing is apparent, some intents associated with more specialized
terminology (e.g., those potentially involving "PIN", "fraud", "ATM") may occupy
relatively more distinct regions with the projection.

* Lexical Analysis: Table 5.4a shows the top 3 noun and verb lemmas for selected
BANKING77 intents. Recurring financial terms such as "card", "account”, and

nn nn

, get,
and "need" appear across multiple classes. Some intents feature more distinctive

"money" are frequent top nouns, while general-purpose verbs like "use give"

non

verbs, such as "verify", "withdraw", or "reject".

¢ Intra-Class Similarity: The average intra-class cosine similarities (Table 5.4b)
demonstrate high cohesion for certain intents, reaching a maximum of 0.426 for
activate_my_card. The lowest observed value was 0.247 for country_support.

¢ Inter-Class Similarity: Table 5.4c lists the top-5 most similar intent pairs based on
average inter-class cosine similarity. The highest similarity (0.575) was measured
between why_verify_identity and verify_my_identity. Other pairs with high
similarity include change_pin and get_physical_card (0.571), and
getting_virtual_card and virtual_card_not_working (0.570).

¢ Similar Utterance Examples: High similarity scores between specific utterances
from different classes are exemplified in Table 5.4d, such as a pair from
why_verify_identity and verify_my_identity achieving a similarity of 0.985.

58



5.2 BENCHMARK DATASET CHARACTERISTICS 59

UMAP Projection for the BANKING77 dataset
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Figure 5.4: UMAP visualization of the embeddings produced for the BANKING?77 dataset.
Cluster centroids are excluded due to the high amount of intent classes. Best viewed
in color.



Table 5.4: Analysis of the BANKING?77 dataset.
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Label

Top Nouns

Top Verbs

Refund_not_showing_up
activate_my_card
age_limit
apple_pay_or_google_pay
atm_support
virtual_card_not_working
visa_or_mastercard

why_verify_identity

wrong_amount_of_cash_received

wrong_exchange_rate_for_cash_withdrawal

[refund, statement, account]
[card, activation, process]
[account, age, child]

[apple, pay, watch]

[card, atm, money]

[card, work, payment]
[card, visa, mastercard]

[identity, account, verification]

[cash, money, app]
[rate, exchange, cash]

[show, request, check]
[activate, need, get]
[open, need, use]
[work, use, pay]

[use, accept, withdraw]
[work, reject, use]
[choose, use, like]

[give, receive, withdraw]
[get, apply, withdraw]

[verify, need, use]

(b) Average intra-class cosine similarity and variance for BANKING?77 intents, sorted in descending order.

(a) Top 3 nouns and verbs per intent category in the BANKING77 dataset.

Intent

Avg. Intra Similarity Variance

activate_my_card
cash_withdrawal_charge

card_payment_wrong_exchange_rate

card_payment_fee_charged

reverted_card_payment?

lost_or_stolen_phone
edit_personal_details
age_limit
automatic_top_up
country_support

0.426 0.079
0.395 0.053
0.393 0.061
0.393 0.055
0.387 0.047
0.268 0.045
0.264 0.051
0.262 0.060
0.249 0.066
0.247 0.050

Intent 1

why_verify_identity
change_pin
getting_virtual_card

wrong_exchange_rate_for_cash_withdrawal
get_disposable_virtual_card

Intent 2 Cosine Similarity
verify_my_identity 0.575
get_physical_card 0.571
virtual_card_not_working 0.570
card_payment_wrong_exchange_rate 0.550
getting_virtual_card 0.538

(c) Top-5 most similar query pairs based on cosine similarity.

Utterance 1 [Label 1]

Utterance 2 [Label 2]

Cosine Similarity

How to verify my identity [why_verify_identity] How do I verify my identity? [verify_my_identity] 0.985
How do I change my card PIN? [change_pin] How do I set-up my PIN for the new card? [get_physical_card] 0.890
What do I have to do to get my virtual card? [getting_virtual_card] ~What do I have to do to get the virtual card to work? [virtual_card_not_working] 0.884

(d) Examples of very similar utterances stemming from different intent categories.
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5.2.3 CLINC150 Dataset Analysis

The analysis results for the CLINC150 dataset [Lar+19], which includes 150 intents
across 10 domains, are presented in Figure 5.5 and Table 5.5.

The dataset yielded the highest Silhouette Score (0.220) and the lowest DBI (2.259)
among the evaluated benchmark datasets.

Detailed metrics observed include:

* Semantic Structure (UMAP): The UMAP projection in Figure 5.5 shows a highly
fragmented embeddding space with numerous small, relatively dense clusters
scattered throughout. While many clusters appear distinct, indicating separation
between numerous intents (e.g., potentially are_you_a_bot, book_flight), there
are also denser regions where multiple intents seem to overlap or blend (e.g.,
potentially involving terms like "balance”, "bill", "cancel”).

* Lexical Analysis: The top noun and verb lemmas for selected intents are shown
in Table 5.5a. Many classes exhibit distinct and indicative terminology, such as
"block"/"freeze" /"lock" for account_blocked and "work"/"employ"/"know" for
who_do_you_work_for, supporting the visual observation of distinct clusters for
many intents.

¢ Intra-Class Similarity: Average intra-class cosine similarities (Table 5.5b) var-
ied significantly, ranging from 0.081 for the definition intent up to 0.374 for
oil_change_how.

¢ Inter-Class Similarity: The top-5 most similar intent pairs are listed in Ta-
ble 5.5c. The highest similarity observed was 0.589 between oil_change_when
and oil_change_how. Other high-similarity pairs include credit_score and
improve_credit_score (0.543), and report_lost_card and damaged_card (0.512).

¢ Similar Utterance Examples: Table 5.5d presents examples of high-similarity
utterance pairs from the classes exhibiting the highest inter-class similarity.
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UMAP Projection for the CLINC150 dataset

15

=

Figure 5.5: UMAP visualization of the embeddings produced for the CLINC150 dataset. Cluster
centroids are excluded due to the high amount of intent classes. Best viewed in color.
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Table 5.5: Analysis of the CLINC150 dataset.

Label

Top Nouns

Top Verbs

accept_reservations
account_blocked

alarm
application_status

apr
where_are_you_from
whisper_mode
who_do_you_work_for

who_made_you
yes

[reservation, applebee, burger]

[account, bank, hold]
[alarm, tomorrow, pm]
[application, card, credit]
[card, apr, credit]

[place, home, origin]
[whisper, mode, voice]
[boss, person, employer]

[company, design, ai]

[answer, statement, response]

[take, know, tell]
[block, freeze, lock]
[set, need, create]
[process, know, go]
[tell, apr, know]

[bear, come, tell]
[switch, whisper, use]
[work, employ, know]
[know, program, tell]
[confirm, agree, want]

(a) Top 3 nouns and verbs per intent category in the CLINC150 dataset.

Intent

Avg. Intra Similarity Variance

oil_change_how

report_lost_card

apr
alarm

credit_score

ingredient_substitution

spelling
calculator
smart_home
definition

0.374
0359
0.354
0.351
0.347

0.151
0.145
0.139

0.135
0.081

0.127
0.106
0.107
0.088
0.107

0.027
0.022
0.021
0.029
0.013

(b) Top and bottom 5 intents by average intra-class cosine similarity in the CLINC150 dataset.

Intent 1

Intent 2

Cosine Similarity

oil_change_when

credit_score

report_lost_card

credit_limit

meeting_schedule

oil_change_how
improve_credit_score
damaged_card
credit_limit_change
schedule_meeting

0.589
0.543
0.512
0.491
0.482

(c) Top-5 most similar intent pairs based on cosine similarity in the CLINC150 dataset.

Utterance 1 [Label 1]

Utterance 2 [Label 2]

Cosine Similarity

do i need to change my oil [0il_change_twhen]

tell me the steps to getting my credit score [credit_score]
ilost my card and need to report it [report_lost_card]

what do i need to change my oil [oil_change_how]

what are some steps to building my credit score [improve_credit_score]
my card has been erased and i need to report it [danage_card]

0.861
0.865
0.882

(d) Examples of very similar utterances stemming from different intent categories.
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5.2.4 StackOverflow Dataset Analysis

The analysis results for the StackOverflow dataset, comprising 20 categories related to
technology topics, are presented in Figure 5.6 and Table 5.6.

Overall structural metrics calculated for this dataset include the lowest Silhouette
Score (0.129) among the benchmarks, and a DBI of 2.202.

Detailed observations from the analysis include:

* Semantic Structure (UMAP): The UMAP projection for StackOverflow utter-
ance embeddings is shown in Figure 5.6. The visualization displays a relatively
structured embedding space where several clusters corresponding to different
programming languages, frameworks, or technologies are visibly distinct. For
example, categories such as svn, qt, and matlab appear as relatively compact and
separated clusters. Other categories, including svn, qt, and matlab, are positioned
in more peripheral regions of the 2D projection. A denser region with more no-
ticeable overlap between classes exists near the center, involving categories like
magento, wordpress, drupal, and sharepoint. Despite this central mixing, many
categories maintain distinct centroid locations (indicated by black "X"s).

¢ Lexical Analysis: Table 5.6a displays the top 3 noun and verb lemmas for selected
categories. While general verbs like "use","create" and "run" appear frequently, the
noun distribution often feature the category label itself as the most frequent term

"non "non

(e.g., "apache", "bash", "spring", "svn").

¢ Intra-Class Similarity: The average intra-class cosine similarities, shown in Ta-
ble 5.6b, are generally low, raning from 0.031 for sharepoint to a maximum of
0.126 for ling.

¢ Inter-Class Similarity: Average inter-class similarities are also modest, as indicated
in Table 5.6c. The highest observed similarity was 0.165 between hibernate and
spring, followed by 0.138 between scala and haskell.

¢ Similar Utterance Examples: Table 5.6d presents examples of high-similarity
utterance pairs from the classes exhibiting the highest inter-class similarity.
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UMAP Projection for the StackOverflow dataset
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Figure 5.6: UMAP visualization of the embeddings produced for the StackOvertflow dataset.
Cluster centroids are included, but without the respective labels for better viewing.
Best viewed in color.
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Table 5.6: Analysis of the StackOverflow dataset.

66

Label Top Nouns Top Verbs

ajax [request, page, javascript] [work, return, update]
apache [apache, file, server] [redirect, rewrite, work]
bash [bash, script, file] [run, use, execute]
cocoa [cocoa, application, way]  [create, use, add]
drupal [drupal, view, node] [create, add, change]
sharepoint [sharepoint, list, web] [create, add, sharepoint]
spring [spring, bean, property] [use, create, base]

svn [svn, file, subversion] [commit, use, work]

visual-studio  [project, file, studio]
[post, page, category]

[add, use, debug]

wordpress [add, display, create]

(a) Top 3 nouns and verbs per intent category in the StackOverflow dataset.

Intent Avg. Intra Similarity Variance
linqg 0.126 0.043
svn 0.115 0.035
hibernate 0.106 0.034
qt 0.099 0.031
scala 0.098 0.030
05X 0.054 0.013
wordpress 0.046 0.011
magento 0.038 0.009
drupal 0.037 0.010
sharepoint 0.031 0.009

(b) Average intra-class cosine similarity and variance for intents in the StackOverflow subset.

Intent 1 Intent 2 Cosine Similarity
hibernate spring 0.165
scala haskell 0.138
svn visual-studio 0.097
matlab excel 0.092
hibernate ling 0.091

(c) Top-5 most similar intent pairs based on cosine similarity in the StackOverflow subset.

Utterance 1 [Label 1] Utterance 2 [Label 2] Cosine Similarity

Hibernate SessionFactory [hibernate] SessionFactory in Hibernate [spring] 0.986
AnkhSVN vs VisualSVN [svn] Which would you rather use: VisualSVN or AnkhSVN? [visual-studio] 0.955
Scala equivalent to Haskell Monads [scala] ~ Creating monads in haskell [Creating monads in haskell] 0.834

(d) Examples of very similar utterances stemming from different intent categories.
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5.3 COMPARATIVE SUMMARY OF STRUCTURAL METRICS

To contextualize the structural properties of the created labeled corporate email dataset,
its overall quantitative metrics were compared against those derived from established
benchmark datasets. The results of this comparative analysis, including overall average
intra-class similarity, overall average inter-class similarity, Silhouette Score and DBI, are
summarized in Table 5.7.

Table 5.7: Comparison of the intent benchmark datasets with the labeled dataset.

Dataset # Intents Avg. Intra Sim (Max) Avg. Intra Sim (Min) Avg. Class Intra Sim Top Inter Sim Avg. Inter Sim  Silhouette Score  DBI

SNIPS 7 0.273 (SearchScreeningEvent) 0,154 (SearchCreativeWork) 0240 0.265 (PlayMusic ¢> AddToPlaylist) 0101 0151 2,698
BANKING77 77 0.426 (activate_my_card) 0247 (country_support) 0332 0.575 (why_verify_identity + verify_my_identity) 0.206 0.156 2470
CLINC150 150 0374 (0il_change_how) 0.081 (definition) 0251 0589 (0il_change_when ¢ oil_change_how) 0.082 0.220 2.259
StackOverflow 20 0126 (ling) 0031 (sharepoint) 0077 0.165 (hibernate ¢+ spring) 0015 0129 2.202
Ours 54 0.431 (request_start_build) 0.178 (provide_link) 0265 0.429 (request_sign_and_fax +> request_fax) 0az2 0.057 3.257

Based on the values presented in Table 5.7:

* The overall average intra-class similarity of the created dataset (0.265) is compa-
rable to CLINC150 (0.251) and SNIPS (0.240), but lower than BANKING?77 (0.332)
and significantly higher than StackOverflow (0.077).

* The overall average inter-class similarity of the created dataset (0.172) is notably
higher than CLINC150 (0.082), SNIPS (0.101), and StackOverflow (0.015), but lower
than BANKING77 (0.206).

¢ The Silhouette Score achieved by the created dataset (0.057) is the lowest among
all evaluated datasets, with CLINC150 showing the highest score (0.220).

¢ Conversely, the DBI for the created dataset (3.257) is the highest (indicating poorer
separation to this metric) compared to the benchmark datasets, where CLINC150
and StackOverflow showed the lowest DBI values (2.259 and 2.202, respectively).

5.4 TEXTOIR RESULTS

This section presents the performance results obtained by applying selected algorithms
from the TEXTOIR framework to the labeled corporate email intent dataset under
various experimental configurations, as detailed in Section 4.2.4. The aim is to assess
how these standard methods handle the specific characteristics of the developed dataset

5.4.1 Open Intent Detection (ADB Performance)

The performance of the ADB algorithm [ZXL21] was evaluated on the labeled corporate
email intent dataset using the TEXTOIR framework to assess its effectiveness in both
classifying known intents and detecting OOD or unknown intents under varying
conditions. The experiments explored the impact of the amount of training data (LR)
and the proportion of known classes present during training (KIR).
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IMPACT OF LABELED RATIO (LR). Table 5.8 presents the ADB performance on
the labeled_dataset_stratified version (the version ensuring proportional class rep-
resentation) while varying the LR from 0.3 to 1.0, keeping the KIR fixed at 1.0 (i.e.,
all 54 intent classes were considered "known"). As expected, there is a clear trend of
improved performance as more labeled data becomes available. The F1-score for known
classes increases steadily from 69.88% at LR=0.3 to 85.80% at LR=1.0. Similarly, overall
Accuracy rises from 79.10% to 84.78%. Notably, performance is reasonably strong even
with limited labeled data (e.g., achieving approximately 82% accuracy with only 50%
of labeled data), though gains tend to show diminishing returns as LR approaches 1.0.
Since KIR is 1.0 in this setup, F1-open is consistently o, as no classes were designated as
unknown.

Table 5.8: Performance of ADB on our labeled dataset on varying degrees of labeled data, while
keeping the known class ratio fixed.

Dataset Fi-known | Fi-open F1 Acc | Method | Backbone | known_intent_ratio | labeled_ratio LossFn Seed | Epochs
labeled_dataset_stratified 69.8816 0.0000 | 68.6110 | 79.10 ADB bert 1.00 0.3 CrossEntropyLoss 0 100
labeled_dataset_stratified | 77.7429 0.0000 | 76.3294 | 80.60 | ADB bert 1.00 0.4 CrossEntropyLoss o 100
labeled_dataset_stratified 78.5840 0.0000 | 77.1552 | 82.09 ADB bert 1.00 0.5 CrossEntropyLoss o 100
labeled_dataset_stratified | 83.5058 0.0000 | 81.9876 | 84.48 | ADB bert 1.00 0.6 CrossEntropyLoss o 100
labeled_dataset_stratified 80.2103 0.0000 | 78.7519 | 81.79 ADB bert 1.00 0.7 CrossEntropyLoss o 100
labeled_dataset_stratified | 84.4547 0.0000 | 82.9192 | 83.28 | ADB bert 1.00 0.8 CrossEntropyLoss o 100
labeled_dataset_stratified | 85.6676 0.0000 | 84.1100 | 84.48 ADB bert 1.00 0.9 CrossEntropyLoss 0 100
labeled_dataset_stratified 85.7999 0.0000 | 84.2399 | 84.78 ADB bert 1.00 1.0 CrossEntropyLoss o 100

IMPACT OF KNOWN INTENT RATIO (KIR). Table 5.9 investiges the algorithm’s
performance under the more challenging open-set scenario by varying the KIR at 0.25,
0.50, and 0.75, while keeping LR fixed at 1.0 (using all available labeled data). This setup
compares both versions of our dataset (labeled_dataset_stratified and the original
labeled_dataset splits) against standard benchmarks.

Across all datasets, a general trend is observed where F1-known tends to increase
with higher KIR, as the model benefits from seeing more classes during training for the
closed-set part of the task. Conversely, the F1-open score, measuring the ability to detect
unknown intents, shows more complex behavior.

Table 5.9: Performance of ADB for varying degrees of known intent ratios, while keeping the
labeled ratio fixed.

Dataset Fi-known | F1-open F1 Acc | Method | Backbone | known_intent_ratio | labeled_ratio LossFn Seed | Epochs
labeled_dataset_stratified | 55.6016 89.0511 | 57.8315 | 81.94 | ADB bert 0.25 1.0 CrossEntropyLoss o 100
labeled_dataset_stratified | 73.0727 77.7328 | 73.2392 | 74.63 | ADB bert 0.50 1.0 CrossEntropyLoss o 100
labeled_dataset_stratified | 83.1964 76.0736 | 83.0227 | 80.90 | ADB bert 0.75 1.0 CrossEntropyLoss [ 100
labeled_dataset 70.582 93.908 | 72.137 | 90.12 | ADB bert 0.25 1.0 CrossEntropyLoss | o 100
labeled_dataset 78.123 85.288 | 78.343 | 83.74 | ADB bert 0.50 1.0 CrossEntropyLoss 0 100
labeled_dataset 83.140 72.283 | 82.8y5 | 83.74 | ADB bert 0.75 1.0 CrossEntropyLoss | o 100
BANKING77 72.909 85.117 | 73.520 | 79.35 | ADB bert 0.25 1.0 CrossEntropyLoss o 100
BANKING77 80.549 78.019 | 80.484 | 78.28 | ADB bert 0.50 1.0 CrossEntropyLoss | o 100
BANKING77 87.301 71.889 | 87.040 | 82.95 | ADB bert 0.75 1.0 CrossEntropyLoss o 100
CLINC150 80.647 90.840 | 8o.910 | 87.11 ADB bert 0.25 1.0 CrossEntropylLoss o 100
CLINC150 88.824 85.9499 | 88.786 | 86.80 | ADB bert 0.50 1.0 CrossEntropyLoss o 100
CLINC150 92.648 78.009 | 92.519 | 88.71 ADB bert 0.75 1.0 CrossEntropyLoss o 100
StackOverflow 78.349 90.795 | 80.423 | 86.60 | ADB bert 0.25 1.0 CrossEntropyLoss o 100
StackOverflow 87.275 89.293 87.459 | 88.35 | ADB bert 0.50 1.0 CrossEntropyLoss o 100
StackOverflow 87.952 75700 | 87.187 | 85.17 | ADB bert 0.75 1.0 CrossEntropyLoss o 100

¢ Performance on Custom Dataset Splits: Comparing the
labeled_dataset_stratified and original labeled_dataset (non-stratified) ver-
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sions reveals performance variations depending on the KIR and metric. For in-
stance, at KIR=0.75, the stratified version achieves rather similar F1-known (83.2%
vs. 83.14%) compared to its non-stratified counterpart, however for the F1i-open,
the stratified version reaches better results (76.07% vs. 72.28%). At lower KIR
values (0.25, 0.50), the original splits sometimes showed higher F1i-known and
F1-open scores. This could suggest the stratification to lead to more stable OOD
detection, however as only one random seed was used to produce results, more
experiments should be conducted to find whether the produced metrics occur
systematically.

¢ Comparison with Benchmarks: When compared to established benchmarks under
the same KIR conditions, our corporate email intent dataset proves challenging,
particularly for OOD detection. While the F1-known scores on our dataset (both
versions) are often comparable or higher than those on BANKING?77 and Stack-
Overflow, and sometimes approach CLINCi50 levels, the Fi-open scores are
consistently lower than those achieved on BANKING77 and CLINC150 across all
tested KIR values. StackOverflow generally also has low Fi-open scores, some-
times similar to our dataset. This indicates that the ADB model struggles more
significantly to distinguish unknown utterances from the known, fine-grained
intents within our dataset compared to benchmarks with greater topical diversity
(CLINC150) or perhaps stronger keyword signals (StackOverflow).

These findings align with the dataset characteristics identified earlier. The difficulty
in OOD detection (low F1-open) suggests that the semantic closeness of the fine-grained
intents makes it hard for ADB to establish clear, encompassing decision boundaries that
effectively exclude unseen concepts.



5.4 TEXTOIR RESULTS

5.4.2 Open Intent Discovery (Deep Aligned Performance)

This section examines the performance of the Deep Aligned Clustering

algorithm [Zha+21b], a representative method for semi-supervised intent discovery, on
our labeled corporate email intent dataset. The experiments, run using the TEXTOIR
framework, evaluated the algorithm’s ability to cluster utterances and discovery under-
lying intents under varying KIRs while operating in a low-resource setting with the
LR fixed at 10%. The primary evaluation metrics reported are Accuracy, ARI, and NMI.
Table 5.10 presents these findings.

It is important to note that the results for our dataset versions
(labeled_dataset_stratified and labeled_dataset) were obtained from runs using a
single random seed (Seed 0). The benchmark dataset results included in the table are
referenced from the original Deep Aligned Clustering paper [Zha+21b] for context, as
obtaining these was not feasible due to time constraints.

Examining the performance on our custom datasets reveals the following trends:

¢ Impact of Known Intent Ratio (KIR): For both the stratified and non-stratified
versions of our dataset, there is a general trend of improvement across all re-
ported metrics (Accuracy, ARI, NMI) as the KIR increases from 0.25 to 0.75. For
instance, on the non-stratified labeled_dataset, Accuracy increases from 34.50%
at KIR=0.25 to 52.75% at KIR=0.75, ARI increases from 24.64 to 44.18, and NMI
increases from 62.74 to 76.04. This indicates that providing the model with knowl-
edge of more intent classes during training assists the Deep Aligned Clustering
algorithm in producing better overall clustering structures, even with only 10%
labeled data.

¢ Comparison of Custom Dataset Splits: When comparing the performance be-
tween the labeled_dataset_stratified and the original labeled_dataset (non-
stratified) versions under these low-LR conditions, the non-stratified version
consistently achieved higher scores across all metrics for the tested KIR values. For
example, at KIR=0.75, the non-stratified dataset reached an Accuracy of 52.75%,
ARI of 44.18, and NMI of 76.04, compared to 43.28%, 22.94, and 70.49, respectively,
for the stratified version. While these single-seed results suggest the original data
split might be more conducive to Deep Aligned Clustering in this specific low-label
setting, further experiments with multiple seeds would be needed to confirm the
robustness of this observation.

¢ Comparison with Benchmark Datasets: When comparing the performance on
our corporate email dataset (both versions) to the benchmark datasets under these
identical low-label (LR=0.1) and varying KIR conditions, a clear performance gap
is evident. Our dataset consistently yields lower scores across Accuracy, ARI, and
NMI compared to BANKING77 and CLINC150 at all tested KIR levels (0.25, 0.50,
0.75). CLINC150 demonstrates the strongest performance overall, achieving sub-
stantially higher ARI and NMI scores, suggesting its structure is more amenable to
discovery by Deep Aligned Clustering even with limited labeled data. Performance
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on our dataset is also generally lower than on StackOverflow, particularly in terms
of ARI, although NMI scores are sometimes comparable or slightly higher at lower
KIR values compared to StackOverflow. For example, at KIR=0.75, the highest
ARI achieved on our dataset (44.18 on the non-stratified version) is considerably
lower than that on BANKING?77 (53.09), StackOverflow (60.09), and CLINC150
(79-94). This pattern holds across metrics and KIR levels, positioning our dataset

as demonstrably more challenging for the Deep Aligned Clustering algorithm

under these specific semi-supervised, low-resource conditions compared to these
standard benchmarks.

Overall, the results indicate that Deep Aligned Clustering can leverage partial su-

pervision (10% LR) to discover intent structures in the corporate email dataset, with

performance improving as more classes are known during training. However, the clus-

tering quality, particularly reflected by the ARI scores, remains moderate, highlighting
the difficulty of this task on the dataset.

Table 5.10: Performance of Deep Aligned for varying degrees of known intent ratios, while
keeping the labeled ratio fixed (at 10%). Due to time constraints the metrics re-
ported for benchmark datasets have been taken from the original Deep Aligned
paper [Zha+21b].

Dataset Accuracy | ARI | NMI Method Backbone | known_intent_ratio | labeled_ratio | Seed | Epochs
labeled_dataset_stratified 34.03 20.54 | 61.56 | DeepAligned bert 0.25 0.1 o 100
labeled_dataset_stratified 37.01 20.83 | 65.64 | DeepAligned bert 0.50 0.1 o 100
labeled_dataset_stratified 43.28 22.94 | 70.49 | DeepAlignedB bert 0.75 0.1 o 100
labeled_dataset 34.50 24.64 | 62.74 | DeepAligned bert 0.25 0.1 o 100
labeled_dataset 42.25 30.68 | 67.17 | DeepAligned bert 0.50 0.1 o 100
labeled_dataset 52.75 44.18 | 76.04 | DeepAlignedB bert 0.75 0.1 0 100
BANKING77 49.08 37.62 | 70.50 | DeepAligned bert 0.25 0.1 n/a 100
BANKING77 59.38 47.95 | 76.67 | DeepAligned bert 0.50 0.1 n/a 100
BANKING77 64.63 53.09 | 79.39 | DeepAligned bert 0.75 0.1 n/a 100
CLINC150 74.07 64.63 | 88.97 | DeepAligned bert 0.25 0.1 n/a 100
CLINC150 80.70 72.56 | 91.59 | DeepAligned bert 0.50 0.1 n/a 100
CLINC150 86.79 79.94 | 93.92 | DeepAligned bert 0.75 0.1 n/a 100
StackOverflow 54.50 37.96 | 50.86 | DeepAligned bert 0.25 0.1 n/a 100
StackOverflow 74.52 57.62 | 68.28 | DeepAligned bert 0.50 0.1 n/a 100
StackOverflow 77.97 60.09 | 73.28 | DeepAligned bert 0.75 0.1 n/a 100
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5.5 LABEL VERIFICATION USING CLEANLAB

To assess the consistency of the labels generated through the semi-automated workflow
and to identify potential areas of ambiguity or conflict within the dataset, a label quality
assessment was conducted using the Cleanlab framework. This analysis utilized the
out-of-sample predicted probabilities generated via 5-fold cross-validation, as detailed
in Section 4.2.3.

The Cleanlab analysis flagged a total of 281 utterances, representing approximately
4.2% of the 6,691 unique labeled data points (excluding the test set’s OOD category for
this specify analysis), as potential label inconsistencies based on the model’s predictions
versus the assigned labels.

Visualizations help illustrate the patterns within these flagged instances. The label
conflict heatmap (Figure 5.7) highlights the specific pairs of assigned labels and mode-
suggested labels that occurred most frequently among the 281 flagged items. Notably,
significant counts appear for confusion between semantically close intents, such as
request_meeting and propose_meeting. The network graph (Figure 5.8) further visual-
izes these relationships, showing that classes like request_meeting,
request_availability, offer_assistance are among the central nodes with numer-
ous incoming and outgoing conflict edges, indicating they are frequently involved in
potential inconsistencies.

Qualitative examination of the top-ranked potential label issues identified by Cleanlab
reveals important characteristics about the nature of these flagged inconsistencies.
Crucially, inspection suggests that many of these flagged instances do not necessarily
represent simple annotation errors, but rather highlight inherent complexities of the
dataset and the labeling task itself. Frequently observed patterns in the flagged data
include:

* Multi-Intent Utterances: Many flagged sentences appear to convey multiple,
distinct communicative simultaneously according to the established taxonomy.
For example, utterances requesting both sending a document and being copied
(request_send_document vs. request_add_cc), or expressing urgency while re-
questing submission (request_urgency_with_deadline vs.
request_send_document), were flagged. In such cases, the Cleanlab-suggested la-
bel often highlights a different, yet potentially equally valid, facet of the utterance’s
meaning compared to the originally assigned single label.

* Semantic Overlap and Fuzzy Boundaries: The high confusion rates between
classes like request_meeting and propose_meeting, or offer_assistance and
request_call, evident in the heatmap and network graph, are reflected in the
flagged examples. These often represent utterances lying in ambiguous semantic
territory where subtle phrasing differences or missing context make a definitive
single-label assignment challenging, leading to disagreement between the assigned
label and the model’s prediction based on learned patterns.

In summary, the Cleanlab analysis quantified potential label inconsistencies at approx-
imately 4.2%. More significantly, the qualitative inspection of these flagged instances
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Label Conflict Heatmap (Off-Diagonal Counts

single-label classification scheme to fine-grained intents within conversational corporate
email, even when attempting to simplify the problem by focusing on sentence-level

strongly suggests that many reflect fundamental challenges inherent in applying a
analysis, particularly concerning the prevalence of multi-intent expressions and the

fuzzy boundaries between closely related semantic categories.
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5.5 LABEL VERIFICATION USING CLEANLAB

Label Conflict Network Graph (Edge Thickness ~ Conflict Count)
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DISCUSSION

This chapter interprets the findings presented in Chapter 5, contextualizing the char-
acteristics of the generated labeled corporate email intent dataset and evaluating the
effectiveness and outcomes of the developed workflow. The discussion addresses the
research questions outlined in Chapter 1, reflects on the challenges inherent in analyzing
corporate email intents and acknowledges the limitations of this study.

6.1 SUMMARY OF FINDINGS

The research implemented a semi-automated workflow to produce a labeled dataset of
6,785 corporate email utterances across 54 intent classes. Key results indicated:

¢ A dataset composition heavily skewed towards common operational intents.

¢ Significant semantic overlap between many fine-grained intent classes (low Silhou-
ette Score: 0.057, high DBI: 3.257).

¢ High intra-class similarity for some intents but also high inter-class similarity
between related intents.

* Lexical analysis confirmed shared vocabulary across many classes.

¢ Structural comparisons positioned the dataset closer to BANKING77 in complex-
ity due to semantic similarity, differing from CLINC150’s topical diversity or
StackOverflow’s keyword reliance.

¢ Label quality assessment via Cleanlab flagged 4.2% of labels as potential issues,
often highlighting instances reflecting semantic overlap, fuzzy category bound-
aries, or multi-intent utterances inconsistent with the single-label assignment.

¢ Supplementary random sampling confirmed the sparsity of most defined intents
in the original corpus.

6.2 INTERPRETATION OF FINDINGS IN RELATION TO RESEARCH QUESTIONS

This section synthesizes the key findings presented in Chapter 5 and interprets them
directly in the context of the research questions posed in Section 1.2. By examining the
effectiveness and challenges of the proposed methodology (RQ1), the structural charac-
teristics of the resulting dataset compared to benchmarks (RQz), and the insights gained
from label quality assessment (RQ3), we can draw conclusions about the complexities
of fine-grained intent discovery in corporate email and the contributions of this work.
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6.2 INTERPRETATION OF FINDINGS IN RELATION TO RESEARCH QUESTIONS

6.2.1  RQ1: Identifying, Categorizing, and Labeling Intents with LLM Facilitation

The first research question explored methods for effectively identifying, categorizing
and labeling fine-grained intents in corporate emails, considering the potential role of
LLMs. The developed workflow (Chapter 3) demonstrated a viable semi-automated
approach, offering a more scalable alternative to purely manual annotation for large
corpora. Key insights regarding this question include:

WORKFLOW VIABILITY & LLM FACILITATION. The workflow, using LLMs for
quality scoring and rich feature generation (purpose summaries), successfully enabled
clustering and dataset creation where simpler methods might have failed due to semantic
nuance. LLMs acted as crucial facilitators and weak supervisors, bootstrapping the
process. However, the need for prompt refinement and the residual inconsistencies
suggest LLMs require careful integration and human oversight.

CHALLENGES IN CATEGORIZATION & LABELING. The process highlighted inherent
difficulties. While the workflow surfaced potential categories, the subsequent qualitative
analysis and Cleanlab results revealed that drawing clear, distinct lines between
conceptually close intents is challenging. The very act of assigning a single label,
even at the sentence level, often proved problematic, as discussed further under RQ3.
The workflow surfaced these challenges but didn’t automatically resolve the inherent
fuzziness, indicating taxonomy definition and refinement remain critical, expert-driven
tasks.

EFFECTIVENESS OF THE ALTERNATING REFINEMENT STRATEGY. The iterative
workflow employed an alternating strategy: using classifiers to populate known classes
and re-clustering the remainder to discover potential new ones. The classifier-based
population phase effectively increased example counts for established classes. The
re-clustering phase, applied to the progressively smaller unlabeled pool, did surface
additional clusters. However, manual inspection revealed challenges: Some clusters
grouped utterances based on overly specific LLM annotations (occasionally including
entities like names), fragmenting semantically similar intents rather than revealing
distinct new categories. This required careful manual merging or re-evaluation. Other
clusters contained utterances genuinely hard to categorize within the existing fine-
grained taxonomy. These often involved very specific, low-frequency requests or suffered
significantly from the lack of conversational context, making a definitive single-label
assignment problematic even for a human reviewer. Therefore, while the alternating
process allowed for exploration, it does not come without its limitations, highlighted by
the difficulty of categorizing niche or context-dependent utterances and the potential
for LLM annotations to sometimes be overly specific, demanding significant human
effort in validation and taxonomy management rather than straightforward discovery
of wellformed new intents.
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6.2 INTERPRETATION OF FINDINGS IN RELATION TO RESEARCH QUESTIONS

6.2.2 RQz: Structural Characteristics and Benchmark Comparison

The second research question investigated the structural properties of the generated
dataset and its relation to established benchmarks. The analyses presented in Chapter 5
reveal a dataset primarily characterized by a highly skewed intent distribution and
significant semantic overlap. While the skew towards common operational intents
is partly an artifact of the targeted discovery methodology, supplementary random
sampling confirmed the inherent sparsity of most fine-grained intents within the original
corpus. Beyond distribution, the dataset is marked by considerable semantic overlap
among its 54 fine-grained classes. This was consistently observed through quantitative
metrics, such as the low Silhouette Score (0.057) and high DBI (3.257), as well as
qualitative UMAP visualizations depicting fluid cluster boundaries. Although some
classes exhibit reasonable internal cohesion, the relatively high average inter-class
similarity (0.172) and supporting lexical analysis confirm that many distinct intents are
expressed using shared vocabulary, posing a significant challenge for discrimination.

The inherent difficulties suggested by these structural characteristics were empirically
validated through experiments using the TEXTOIR framework (Section 5.4). When
evaluating the ADB algorithm for open intent detection, the dataset proved challenging,
particularly for identifying unknown (OOD) intents. While performance on classifying
known intents was often comparable to or better than benchmarks like BANKING77 and
StackOverflow under similar conditions Table 5.9, the F1i-score for OOD detection was
consistently lower than that achieved on BANKING?77 and CLINC150. This suggests
that the high semantic overlap and fuzzy boundaries within our dataset make it difficult
for ADB to establish clear decision perimeters that effectively exclude closely related
but unseen concepts, a task potentially aided by greater topical diversity in datasets like
CLINC150.

This challenge posed by semantic overlap was further underscored by the intent
discovery results using Deep Aligned Clustering (Table 5.10). Operating under identical
low-label (LR=o0.1) and varying KIR conditions, our dataset consistently yielded lower
Accuracy, ARI, and NMI scores compared to all benchmark datasets. The particularly
low ARI scores highlight significant difficulty in forming clusters that align well with
the fine-grained ground-truth labels, even with partial supervision. This indicates that
the inherent blending of intents within the embedding space makes their unsupervised
or semi-supervised discovery substantially more difficult in this corporate email context
compared to the standard benchmark domains.

Contextualizing these findings, the dataset’s combination of reasonable intra-class
cohesion coupled with high inter-class semantic similarity most closely mirrors the
structural challenges of BANKINGy7, suggesting difficulty arises from needing to dis-
ambiguate functionally related intents using overlapping language. This contrasts with
the topical diversity of CLINC150 or the keyword reliance of StackOverflow. Therefore,
the combination of fine granularity, high semantic overlap, lack of strong unique key-
words, underlying sparsity, and the empirical performance results positions this dataset
as a demanding benchmark for models requiring nuanced semantic understanding,
especially for open-set recognition and low-resource discovery. However, it remains
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6.2 INTERPRETATION OF FINDINGS IN RELATION TO RESEARCH QUESTIONS

crucial to acknowledge that the 54-class taxonomy is not exhaustive, representing only
the intents discovered and populated via the applied methodology; strong performance
here reflects robustness to ambiguity within this scope, not necessarily comprehensive
open-world email intent classification proficiency.

6.2.3 RQ3: Assessing Label Quality and Domain Challenges.

The third research question addressed the assessment of label quality and the funda-
mental domain challenges revealed thereby. The application of Cleanlab provided a
systematic method for probing label consistency, identifying approximately 4.2% of
labels as potential issues based on OOS model predictions. More importantly than the
quantity, the qualitative examination of these flagged instances (Section 5.5) revealed
their nature: they frequently stemmed not from simple annotation errors, but from the
inherent complexities of the domain. Key patterns included the prevalence of multi-
intent utterances, where a single sentence serves multiple communicative goals (e.g.,
requesting a document and requesting to be CC’d), and utterances falling on inherently
fuzzy semantic boundaries between closely related categories (e.g., request_meeting vs.
propose_meeting), where subtle phrasing or missing context makes definitive single-
label assignment difficult even for humans.

Crucially, the nature of these label conflicts diagnosed by Cleanlab provides a direct
explanation for the performance limitations observed in the TEXTOIR experiments. The
prevalence of multi-intent and semantically ambiguous utterances inherently compli-
cates the task for single-label algorithms like ADB. Such instances are logically difficult
for the model to classify correctly against a single ground-truth label or to confidently
reject as OOD when they share features with known classes, thus contributing to the
lower F1-open scores observed. Similarly, for intent discovery, if utterances naturally
bridge multiple ground-truth categories, as suggested by the Cleanlab conflicts and high
inter-class similarity metrics, clustering algorithms like Deep Aligned will inevitably
struggle to partition them into pure, distinct groups matching the predefined taxonomy,
resulting in the lower ARI and NMI scores seen in the experiments.

Therefore, the Cleanlab assessment functions as more than just a noise estimation
tool; it serves as a diagnostic instrument confirming the fundamental challenges of
labeling fine-grained intents in this domain. The identified inconsistencies largely re-
flect the prevalence of multi-intent expressions and semantic ambiguity inherent in
conversational corporate email, which clash with the constraints of the single-label,
sentence-level classification paradigm employed. These inherent domain complexities,
rather than simple annotation mistakes, are significant contributors to the difficulties
faced by standard intent detection and discovery algorithms, as demonstrated empiri-
cally by the TEXTOIR results. This underscores the limitations of the chosen simplified
approach and points towards the need for methods better suited to the multi-faceted
nature of email communication.
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63 IMPLICATIONS OF THE FINDINGS

The combined results and interpretations carry several implications for the field of NLP,
particularly concerning email analysis and intent understanding.

THE DIFFICULTY OF REAL-WORLD EMAIL INTENT. This study underscores that
extracting fine-grained intents from diverse corporate email is substantially more chal-
lenging than often assumed based on performance on standard, often cleaner, benchmark
datasets. The high degree of semantic overlap, reliance on context, conversational nature,
and prevalence of multi-intent utterances necessitate models and approaches that go
beyond simple classification of isolated sentences. Progress in practical email automation
(e.g., summarization, task extraction) will likely depend on effectively tackling these
complexities.

LLMS AS POWERFUL BUT IMPERFECT TOOLS FOR DISCOVERY. LLMs demonstrably
facilitate the discovery process by generating richer semantic features than previously
feasible at scale, enabling clustering based on nuanced meaning. However, they are
not a silver bullet. Their outputs can be ambiguous, overly specific, or fail to capture
implicit meaning without careful prompt engineering and human validation. Their
most effective role in such workflows appears to be as sophisticated weak supervision
providers or feature generators within a human-in-the-loop system, rather than fully
autonomous labelers.

LIMITATIONS OF SINGLE-LABEL SENTENCE-LEVEL ANALYsIs. The consistent
emergence of multi-intent examples and context-dependent ambiguities, highlighted
particularly by the Cleanlab analysis, strongly suggests the limitations of the prevalent
single-label, sentence-level classification paradigm for accurately representing email
communication. Future work likely needs to embrace multi-label frameworks and
incorporate broader context (email body, thread history) for higher fidelity.

VALUE OF REALISTIC DATASETS. The generated dataset, precisely because it reflects
the skew, sparsity, overlap, and labeling ambiguities encountered through a practical
discovery process on real-world data, serves as a valuable and challenging benchmark.
Evaluating models on such datasets may provide a more realistic assessment of their
capabilities for handling genuine corporate communication compared to performance
on more sanitized or topically diverse benchmarks.

64 LIMITATIONS OF THE STUDY

It is essential to acknowledge the limitations inherent in this research, which frame the
scope and generalizability of the findings:

SINGLE ANNOTATOR AND LABEL ROBUSTNESS.  The entire manual labeling process,
including the initial inspection of clusters, refinement, and the supplementary random
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64 LIMITATIONS OF THE STUDY

sampling analysis, was conducted by a single annotator (the author). While efforts
were made towards consistency, this inherently limits the robustness of the assigned
labels. Utilizing multiple annotators and measuring Inter-Annotator Agreement (IAA)
would be crucial for developing a truly production-grade, reliable dataset. Disagree-
ments between annotators could have further highlighted inherently ambiguous cases or
weaknesses in the taxonomy definition. Consequently, the current dataset and workflow
leading to it should be viewed more as a proof-of-concept demonstrating the method-
ology and highlighting domain challenges, rather than a fully validated, gold-standard
labeling approach ready for direct deployment without further verification.

SINGLE CORPUS. The preliminary reliance on the Avocado dataset means that the
specific intent taxonomy, observed distributions, and potentially the degree of semantic
overlap might reflect the communication patterns unique to that specific (now-defunct)
IT company. Generalizability to other corporate environments requires further investi-
gation.

LLM DEPENDENCE. The results related to LLM annotation and feature generation
are specific to LLaMA 3 8B Instruct and the prompt strategies employed. Different
models (e.g., larger models, different architectures) or alternative prompting techniques
might yield quantitatively or qualitatively different outcomes.

SINGLE-LABEL METHODOLOGICAL CONSTRAINT. The workflow fundamentally
operated under a single-label assumption per sentence. This simplification does not
fully capture the multi-intent nature of many email utterances, and this limitation is
directly reflected in the label quality assessment results.

SENTENCE-LEVEL FOCUS. By design, the analysis focused on isolated sentences,
deliberately excluding email-level or thread-level context, which is often crucial for
disambiguation intent in real conversations.

EVALUATION METRICS. The quantitative metrics used (Silhouette, DBI, cosine sim-
ilarity) have known limitations regarding high-dimensional spaces, providing only
partial insights into the complex semantic structure.

CLEANLAB ASSESSMENT. The accuracy of the label quality assessment relies on
the quality of the OOS probabilities generated by the cross-validated SetFit/Logistic
Regression models. Errors or biases in these probabilities could affect the identification
of label issues.

VALUE AND LIMITATIONS OF THE GENERATED DATASET. The generated dataset,
because it encapsulates the observed skew, sparsity, semantic overlap, and labeling ambi-
guities encountered through a practical discovery process, serves as a valuable resource.
It provides a realistic testbed for developing and evaluating models robust to the
specific challenges inherent in fine-grained corporate email intent analysis. However, its
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64 LIMITATIONS OF THE STUDY

non-exhaustive nature must be acknowledged. High performance achieved by models
trained solely on this dataset reflects an ability to navigate ambiguity within the defined
54-class taxonomy, but does not necessarily equate to general proficiency in classifying
the potentially vast and open ended set of intents present in unrestricted corporate
communications. It serves best as a benchmark for specific robustness characteristics
rather than overall open-domain email understanding.
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CONCLUSION AND FUTURE WORK

This final chapter synthesizes the research effort undertaken in this thesis. It begins by
summarizing the core problem, objectives, and key findings derived from the investiga-
tion into fine-grained intent discovery and labeling within corporate email. Subsequently,
it highlights the principal contributions of this work to the field. Finally, based on the
insights gained and the limitations acknowledged throughout the study, it proposes
several promising directions for future research.

7.1 CONCLUSION

This thesis addressed the significant challenge of discovering and labeling fine-grained
user intents within the complex and often ambiguous domain of corporate email com-
munication. Motivated by the lack of suitable datasets and the limitations of applying
standard NLP techniques directly, the primary objective was to develop and evaluate
a systematic workflow for this task, characterize the resulting dataset, and assess the
quality of the generated labels.

To achieve this, a semi-automated, multi-stage workflow was designed and imple-
mented (RQ1), leveraging initial rule-based filtering, LLM-based quality scoring and
feature generation (using LLaMA 3 8B Instruct), semantic clustering, and an iterative
refinement process involving classifiers like SetFit. This workflow proved capable of
processing a large unlabeled corpus (the Avocado dataset) and generating a substantial
labeled dataset comprising 6,785 utterances across 54 distinct, fine-grained intent classes
reflecting typical corporate operations.

The structural analysis of this dataset (RQz) revealed characteristics distinct from
standard benchmarks. It exhibits significant intent frequency skew, high semantic
overlap between related classes (low Silhouette Score: 0.057, high DBI: 3.257), and relies
heavily on shared vocabulary, positioning its complexity profile closest to challenging
benchmarks like BANKINGy77. Crucially, supplementary analysis indicated that most
identified intents are likely sparse in the original corpus, highlighting that the final
dataset, while realistic in its challenges, is not exhaustive nor representative of raw
frequencies.

The assessment of label quality using Cleanlab (RQ3) identified potential inconsisten-
cies in approximately 4.2% of the labels. More importantly, the nature of these flagged
issues underscored fundamental domain challenges: the prevalence of multi-intent
utterances and the inherent fuzziness of boundaries between subtle, fine-grained intents
often clash with the single-label, sentence-level approach employed. This suggests that
many inconsistencies reflect the complexity of the communication itself rather than
simple annotation errors, a finding reinforced by the single-annotator nature of this
study’s labeling process.
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In conclusion, this research contributes: (1) A novel, adaptable workflow demonstrat-
ing the utility (and limitations) of LLMs as weak supervisors for intent discovery in a
complex domain. (2) A new, characterized labeled dataset reflecting the real-world chal-
lenges of fine-grained intent ambiguity and overlap in corporate email. (3) An analysis
highlighting the structural properties of such data compared to benchmarks and diag-
nosing label quality issues tied to inherent domain characteristics. While demonstrating
a viable path forward, the findings emphasize the need for context-aware, potentially
multi-label approaches to fully capture the richness of email communication.

7.2 FUTURE WORK

Based on the experiences and findings of this research, particularly the challenges sur-
rounding ambiguity and multi-intent utterances, future work should focus on evolving
the methodology and modeling approaches in the following key directions:

¢ Adopting a Flexible Multi-Label Framework: The current single-label assign-
ment often forced a choice when utterances contained multiple communicative
goals, a common occurrence highlighted by the LLM-generated features and the
Cleanlab analysis. Future work should transition to a true multi-label annotation
framework. This means allowing annotators (ideally multiple, for consensus) to
assign any combination of relevant atomic intent labels (from the established
or refined taxonomy) to a single utterance. For instance, an email sentence re-
questing a document and asking for it to be faxed could be labeled with both
request_send_document and request_fax. This approach offers greater fidelity to
the complex nature of email communication and directly addresses the limitations
encountered.

¢ Exploring Hierarchical Intent Structures: To better organize the potentially large
set of fine-grained intents and aid both annotation consistency and modeling,
future research could investigate structuring the intent taxonomy hierarchically.
This might involve defining broader, coarse-grained categories (e.g., Information
Exchange, Task Management, Scheduling, Social Communication as suggested by
prior work, or data-driven categories) under which the fine-grained intents re-
side. For example, request_meeting and request_reschedule could fall under
"Scheduling". This structure could:

- Guide annotators by providing layered choices.

- Enable models to potentially predict coarse categories first, then refine to
specific fine-grained intents (or multiple intents within/across branches).

- Offer different levels of granularity for downstream applications.
This hierarchical view complements the multi-label approach by providing organi-

zational structure to the set of potentially co-occurring fine-grained labels.

¢ Leveraging Context for Enhanced Feature Generation: The current sentence-
level analysis inherently misses contextual cues that could significantly aid intent
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disambiguation. A natural direction for future work is to explore methods for
incorporating broader context (e.g., the full email body, subject line, or preceding
messages) into the LLM feature generation process. The objective would be to
provide the LLM with richer information to produce more accurate semantic
features (like purpose summaries or implicit/explicit intent descriptors) for the
target sentence. However, achieving this effectively presents a known challenge:
ensuring the LLM utilizes the provided context appropriately for interpreting
the specific target sentence, rather than simply extracting information from the
context itself. Developing robust prompting strategies or employing LLMs with
advanced capabilities in focused, context-aware reasoning will be key to success-
fully implementing this enhancement and improving the quality of the initial
intent signals.

Pursuing these directions—specifically embracing flexible multi-labeling, potentially
organizing intents hierarchically, and refining context utilization—will be crucial for
developing NLP systems that can more accurately capture and act upon the nuanced
communicative intents prevalent in real-world corporate email.
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Table A.3: List of expressions implying a request, used to filter sentence candidates likely

containing an intent.

Expressions

please

can you

could you

would you

would it be possible to
may I

can we

could we

when

where

what

who

would it be okay if
I was wondering if
I'd appreciate it if
it would be great if
do you mind if
would you mind
I'd like to ask if

is it possible to

I'd like to request
might you

can I ask you to
let’s

shall we

how about

what if we

can’t we just

why don’t you
maybe you could
perhaps you can

if it’s not too much trouble
if you don’t mind
if possible

TABLES
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Table A.4: Created intent taxonomy:.

TABLES

Label

Description

request_conference_call
request_review_and_approval
request_update_contact_info
request_removal_from_list
request_addition_to_list
request_attendance_info
request_availability
mark_calendar
request_login_credentials
request_confidentiality
request_add_cc
propose_meeting
request_meeting_info
request_reschedule
request_close_bug
request_run_test
request_contact_information
request_call
request_meeting
request_send_document
inform_attachment
request_sign_and_fax
request_send_pricing_information
request_bug_report
offer_assistance
request_send_feedback
request_attendance
request_fax
request_specific_format
request_print
purchase_order
request_error_details
request_reproduction_steps
request_inclusion
request_urgency_with_deadline
request_start_build
request_create_baseline
request_instructions_on_how_to_proceed
request_disregard_of_previous_request
request_deletion
request_visit

request_access
request_further_information
request_verify_information
request_coordination
request_status_updates
request_reminder
request_holding_off
request_follow_up
express_apology
express_greetings
request_link

provide_link

introduction

A person is requesting or suggesting to have a conference call.
A person is requesting their recipient to review and approve a document or contract.

A person is informing their recipient(s) about changed contact information and is requesting to have them updated.

A person is requesting to be removed from a list, often a mailing list.
A person is requesting to be added to a list.

A person is inquiring information on whether their recipient will participate in a meeting or event.
A person is requesting information on when a recipient(s) is available for a call or meeting, etc.

A person is requesting for an event to be added to a calendar.

A person requesting login credentials such as a username and password.
A person is requesting to treat some information confidential.

A person wants to be copied (CC) in an email.

A person is proposing a meeting, sometimes also including the time and/or the location.
A person is requesting information on a meeting, e.g. when it takes place or where it takes place.

A person is requesting to reschedule a meeting.
A person is requesting a bug to be closed, as it has been resolved.

A person requesting their recipient to run test cases for a code or to otherwise test an application.

A person is requesting contact information, including phone or cellphone numbers, fax numbers, email addresses, etc.

A person is requesting their recipient to give them a call.
A person is requesting to set up a meeting

A person is requesting to be send a document, such as a presentation, NDA, contract, spreadsheets, etc.

A person is informing their recipient about an attachment included in a sent email.

A person is requesting for a document to be signed first and subsequently sent back via fax.

A person inquiring information in regards to the price for a product.

A person requesting their recipient to file a bug report.

A person is offering their assistance to the recipient.

A person requesting feedback, like thoughts and suggestions.

A person is requesting their recipient to attend a meeting or social event.

A person is requesting their recipient to send them a fax.

A person is requesting their recipient to send something in a specific format.

A person is requesting something to be print.

A person is requesting to issue a purchase order (PO).

A person is requesting information on why an error occurred.

A person is inquiring the reproduction steps necessary to replicate a bug or error.
A person requesting another person to be included in the discussion or to a meeting.
A person is requesting something involving a deadline.

A person is requesting their recipient to start a build for a server.

A person is requesting their recipient to create a baseline for a server.

A person is inquiring information on the next steps for a task.

A person is requesting their recipient to disregard a previous request or message.
A person is requesting the deletion of a file, email, etc.

A person is requesting their recipient to stop by at their office to visit them.

A person is requesting access for a facility or to a file.

A person is requesting further information.

A person is requesting to confirm a statement or to otherwise verify some information.

A person is requesting their recipient(s) to work with another co-worker.

A person is requesting status updates on an issue and wants to be kept in the loop.
A person requests to be reminded of an event occurring.

A person is requesting their recipient to actively delay an action.

A person is requesting their recipient(s) to follow up with another person.

A person is expressing their apologies.

A person is expressing greetings.

A person requests their recipient to provide them with a specific URL.

A person is providing their recipient(s) with a specific URL.

A person is introducing a new employee.
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offer_assistance
request_verify_information
request_send_feedback
request_call
request_availability
send_decument
request_send_document
inform_attachment
automated_message
request_notification
request_confidentiality
request_information
request_email_forwarding
request_add_cc
express_doubt
request_status_update
request_print
request_check_status
request_resend_email
request_feature_addition
request_coordination
request_file_transfer
request_check
request_further_information
request_add_to_agenda
request_kept_in_loop
request_pick_up_documents
request_logout
request_assistance
request_find_document
request_remove_eord
express_greetings
inform_start_time
request_mark_resolved
request_email_objectives
request_query_execution
request_change_field
request_meeting
request_email_response_with_urgency
request_modify_document
request_reschedule
request_shipping_info
request_test
request_server_setup
request_document_forwarding
request_create_baseline
request_contact_information
express_prohibition -
request_spelling_check
request_change_wording
notify_lockdown
request_instructions_on_how_to_proceed -
request_publish_changes -

Label

Class Distribution of Intent Labels found for the Samples collected from the Train Split

0

Frequency

Figure B.1: Barchart of the label distributions found for the training split.
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FIGURES

Class Distribution of Intent Labels found for the Samples collected from the Validation Split

offer_assistance
request_call
request_send_document
request_coordination
request_availability
request_send_feedback
request_verify_information
request_notification
request_sign_and_approval
inform_attachment
request_discussion
propose_meeting
request_timeframe
request_urgency_with_deadline
request_task_assignment
request_specific_format
request_reschedule
request_presentation_time
request_check_before_|eave
request_add_cc
request_product_info
provide_correction
request_alternative_options
request_check_records
request_instructions_on_how_to_proceed
request_lower_prices
request_send_url
request_relax_dresscode
request_reproduction_steps
request_deferral
request_boarding_pass
request_status_update
request_add_issue
request_fill_in_list
request_holding_off
request_document_location
request_immediate_response
request_share_details
request_no_interference
request_deletion
request_link
request_incorporation
review_and_approval
request_contact_information
request_email
request_read_text_carefully
request_file_upload
request_visibility_change
provide_link 4 |
request_create_build 1
request_unsubscribe
request_arrange_coverage
provide_referral
request_update_document
request_designation_as_point_of_contact
request_add_library
request_additional_input
request_information_on_absence 1

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Frequency

Figure B.2: Barchart of the label distributions found for the validation split.
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FIGURES

Class Distribution of Intent Labels found for the Samples collected from the Test Split

offer_assistance
request_send_document
request_call
request_availability
request_send_feedback
request_notification
request_contact
request_contact_information
review_and_approval
request_attendance
request_reschedule
request_collaboration
request_document_location
request_instructions_on_how_to_proceed
request_definition
exclude_person
request_update_priority
request_verify_information
request_acknowledgement
request_time_for_solution
offer_booking
request_removal_from_list
request_remove_special_character
request_deactivation
request_inclusion
request_absence
request_summary
reference_response
request_modify_display_header
request_attendance_info
provide_directions
provide_document_location
request_conference_call
request_discussion
request_review_and_approval
request_add_cc
request_include_costs
request_coordination
request_box_up_computer
request_create_bugzilla_entry
request_payment_bonus
request_import_file
request_send_test_suites
request_information
request_plans
request_add_item
request_confirm_meeting
request_explanation_on_financial_transaction
request_test_cases
provide_instructions
inform_attachment
request_event_name
request_testing
request_avoid_date_for_schedule 1
offer_to_opt_out
request_arrival_time
request_interest_level 4
request_sign_and_fax 7T
express_condolences |
request_customer_action
propose_send_feedback
request_express_opinion
request_meeting
request_disregard_of_previous_request
request_check_in_file
request_warranty_status -

0 2 4 6
Frequency

Figure B.3: Barchart of the label distributions found for the test split.
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You are a language model tasked with evaluating sentences for their suitability in
an intent-dataset. For each given sentence, assign the following **scoresxx
on a scale from 1 to 5, where:

- kklxkok

Very poor (does not meet the criterion at all)
Excellent (fully meets the criterion)

- xok5xok

#### Evaluation Criteria:

1. *xxClarity of Intent (Intent Clarity)x*x

Does the sentence clearly express an intent, such as a request, a task, or a
commitment to provide information?

- Score 5 if the intent is explicit and well-articulated, with no ambiguity.

N

*xCompleteness of Information (Self-Containment)x*x*

- Is the sentence complete in itself, with all necessary details provided to
understand the intent without requiring additional context?

Score 5 if the sentence provides all critical information (e.g., objects, people
, tasks) needed to fully interpret the intent.

3. x*xSpecificity (Task/Object Definition)xx*

Are the task, object, or entities involved in the intent well-defined and
specific?

- Score 5 if the task and any affected objects/entities are precisely described.

#### Additional Requirement:
If a sentence scores below **x4*x in any of these categories, briefly explain why
it fails to meet the criterion.

#### Input Format:
Provide each sentence as a separate input. For example:
"<example obfuscated>"

###4# Output Format:
For each input sentence, return the following JSON object:

{
"sentence": "<input sentence>",
"intent_clarity": <score (1-5)>,
"self_containment": <score (1-5)>,
"specificity": <score (1-5)>,
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"explanation": "<brief explanation if any score lower than 4>"

}

#### Examples:

Input:
"<example obfuscated>"

Output:
{
"sentence": "<example obfuscated>",
"intent_clarity": 5,
"self_containment": 5,
"specificity": 5,

"explanation": ""

}

Input:
‘Sentence: <example obfuscated>'’

Output:
{
"sentence": "<example obfuscated>",

"intent_clarity": 3,

"self_containment": 2,

"specificity": 1,

"explanation": "The intent is between vague and clear, it is some form of

commitment of deliver of information. However, 'Them’ is very vague and likely

refers to a third party to whom the information will be delivered, but

further context is necessary on who the information will be provided to and ’

it’ is also very vague since it’'s some form of information, however it needs
further specification of what the information even is."

Listing C.1: Prompt used to assign quality scores for subsequent filtering

You are an expert in analyzing user intents from sentences, both explicit and
implicit. When presented with a sentence, your task is to identify and
classify the underlying intent(s) using the most appropriate and clear
descriptors.

1. *=xExplicit Intent:xx When the intent is directly stated, classify it using a
precise label that clearly conveys the user’s purpose.

2. *#xImplicit Intent:** When the intent is not directly stated but can be inferred

from context or common understanding, classify it based on the implied
purpose.

3. *xAvoid Ambiguity:** Choose intent descriptors that avoid vagueness or multiple

interpretations. For example, "request_direction" is ambiguous because it
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could refer to asking for directions to a location or instructions on how to
proceed with a task. Be mindful of this distinction.

Your goal is to ensure that the intent descriptors are unambiguous, accurate, and
tailored to the context of the utterance.

#### Input Format:
"<example obfuscated>"

#### Output Format:
Return the following JSON object:

{
"explicit_intent": "<explicit_intent>",
"implicit_intent": "<implicit_intent>",
"purpose": "<brief summarization of the main purpose of the utterance, focusing
on the user’s goal or desired action>"
}

#### Examples:

Input:
"<example obfuscated>"

Output:
{
"explicit_intent": "request_call",
"implicit_intent": "offer_help",
"purpose": "A person is offering help in case the recipient is in need of
assistance."
}
Input:

"<example obfuscated>"

Output:

{
"explicit_intent": "request_phone_number",
"implicit_intent": "request_phone_number",

"purpose": "A person is requesting a phone number of an office."

Input:
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"<example obfuscated>"

Output:
{
"explicit_intent": "request_instructions",
"implicit_intent": "request_instructions",
"purpose": "A person is inquiring information on how to proceed."
}
Input:

"<example obfuscated>"

{
"explicit_intent": "request_contact",
"implicit_intent": "offer_assistance",
"purpose": "A person is inviting the recipient to contact them for any further
questions or comments, offering assistance."
}

Important: only output a valid JSON object without including anything else in your
response like any conversational or explanatory steps, no matter what!

Listing C.2: Prompt used for feature generation for subsequent clustering
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