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Motivation

Adapting self-supervised learning methods like VICReg (Variance-Invariance-Covariance Regu-
larization) [1] to computational chemistry provides a novel way to integrate diverse molecular
data types for improved representation learning. By combining graph, conformer, and chemical
language modalities within a unified training framework, this work aims to enhance the quality
and versatility of molecular encoders, contributing to the development of a chemical foundation
model. Evaluating these encoders on challenging ADME prediction tasks and benchmarking them
against established pre-training strategies addresses the need for more effective and generaliz-
able molecular representations in drug discovery and chemical research.

Research Questions

Multi-modal VICReg Architecture for different Molecule Modalities

| How do supervised model-agnostic pre-training strategies compare to self-supervised,
model-specific pre-training strategies?
I Can VICReg be successfully adapted to computational chemistry?
Il What experimental settings vield better downstream performance under VICReg?
v Does VICReg outperform other pre-training strategies?

Methods

Data

* Pre-training Data: The largemix [2] dataset, containing 5 million molecules with labels from
biochemical and quantum mechanical domains, is used for pre-training.

= Downstream Task Data: The public ADME dataset from Fang et al. [3] is used for drug
property prediction. Train/test splits are determined by molecule similarity using the Butina
clustering algorithm [4].

Evaluation

= Linear Evaluation: Pre-trained encoders are assessed by training a linear layer on frozen
encoder representations.

* Transfer Learning: Pre-trained encoders are fine-tuned with a small MLP, using a lower
learning rate for the encoder parameters.

= Statistical Assessment: Each evaluation is repeated 30 times with different parameter
initializations to quantify uncertainty. Results are analyzed using repeated measures ANOVA
and Tukey HSD post-hoc tests.

Experiments

= No Pre-training: Each encoder and an XGB [5] model are tuned on the downstream training
split using 5-fold cross-validation based on Butina clustering. Final parameters are used for
the encoders, with XGB as a benchmark.

* Pre-training Comparison: Each modality-specific encoder is pre-trained on largemix using
supervised model-agnostic multitask training and modality-specific self-supervised
pre-training. Node-attribute masking is used for GINs (Graph Isomorphism Networks) [6]
and EGNNs (Equivariant Graph Neural Networks) [7]; LSTMs (Long short-term memory)
networks [8] are pre-trained with masked language modeling (MLM) [2].

= VICReg Experiments: Various VICReg configurations are tested, including changes in data
size and encoder weight initialization (random vs. pre-trained weights).
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Different molecular modalities are represented by chemical language, graph, and conformer rep-
resentations. These modalities are then processed by modality-specific encoders.
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Figure 1. Various molecular modalities with corresponding encoders based on an Aspirin molecule [10]
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VICReg can be adapted to computational chemistry using a multi-modal approach. A batch of
SMILES strings serves as training data S and is processed by a modality-specific featurizer ¢ to
produce featurized inputs S°. Each modality-specific encoder generates a representation Y~ for
the same molecules. These representations are expanded by projectors P to create embeddings
7', which are used as inputs to the VICReg loss to align the different molecular views.
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Figure 2. Adaption of VICReg to work with molecules by aligning different molecule modalities.

Results

Conclusion

Research Questions

| The supervised pre-training shows the best results alongside the LSTM pre-trained with the
MLM approach.
I The VICReg results show that an adaption to the field of computational chemistry is
possible without encountering a representation collapse.
il VICReg benefits from different experimental settings such as larger datasets or different
encoder initializations.
v The VICReg performance is generally inferior to the supervised pre-training results.

Summary

The pre-training experiments demonstrate that VICReg can effectively be adapted to molec-
ular data. While supervised model-agnostic and MLM pre-training yield superior downstream
performance, VICReg’s ability to operate without labeled data and its inherent flexibility create
significant opportunities for experimentation. This scalability with unlabeled data not only es-
tablishes a strong foundation for future research but also allows for a wide range of innovative
approaches in the exploration of molecular data.

Future Works

Building on this work, next steps include an extensive ablation study to explore VICRegs full po-
tential in the domain of chemoinformatics. This includes using an even larger pre-training set
since VICReg doesn’t need any labels, improved encoder complexity by using transformer based
modality specific encoders, utilizing even more modalities such as the tabular representation of
molecules, different batch sizes, varying regularization parameter settings, larger projector archi-
tectures, the use of weight-sharing, and encoder parameter settings. Different downstream task
datasets could further evaluate the generalizability through classification benchmarks in biochem-
ically distinct domains like material science.
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The test MAE scores for each ADME downstream task is indicated by color. The supervised
model-agnostic pre-training achieves the best overall results, followed by the LSTM with self-
supervised MLM pre-training. Most pre-trained encoders perform at least as well as the XGB
baseline across the downstream tasks.
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Figure 3. Comparison between the test MAE downstream task scores of differently pre-trained encoders.
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