
Darmstadt University of Applied Sciences

Faculty of Mathmatics and Natural Sciences &
Faculty of Computer Science

Optimizing Pre-Training Strategies for a
Chemical Foundation Model Using VICReg

Peer Schliephacke

Matriculation number 1129023

First Supervisor: Prof. Dr. Jutta Groos

Second Supervisor: Prof. Dr. Elke Hergenröther

Submitted in partial fulfilment of the requirements for the degree of
Master of Science (M. Sc.) in Data Science

Issue Date: April 1, 2025
Submission Date: July 15, 2025

Eigenständigkeitserklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen
entnommen sind, sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen
in dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden
Quellennachweis versehen. Diese Arbeit ist in gleicher oder ähnlicher Form noch bei
keiner anderen Prüfungsbehörde eingereicht worden.

Während der Vorbereitung dieser Arbeit habe ich ChatGPT verwendet, um vere-
inzelte Textpassagen in englischer Sprache stilistisch anzupassen. Nach der Nutzung
dieses Tools/Dienstes habe ich den Inhalt nach Bedarf überprüft und bearbeitet und
übernehme die volle Verantwortung für den Inhalt der Veröffentlichung.
Darmstadt, July 15, 2025

Peer Schliephacke

i

Abstract

Recent advances in self-supervised representation learning have introduced VICReg
(Variance-Invariance-Covariance Regularization), a method designed to maximize agree-
ment between embedding vectors produced by different encoders to generate meaningful
representations. VICReg outperforms other self-supervised methods and does not rely on
collapse-prevention techniques (e.g., stop-gradient operations, memory banks, or out-
put quantization) addressing the common representation learning problem where models
produce nearly identical embeddings for all inputs, yielding meaningless representations.
Initially proposed for computer vision, VICReg uses differently augmented views of the
same image, training their representations to align. In this thesis, VICReg is adapted
to computational chemistry, where different molecular modalities serve as distinct views
in a multi-modal training approach. Specifically: Graph Isomorphism Networks (GIN)
capture graph-structured data, Equivariant Graph Neural Networks (EGNN) represent
conformational data, and Long Short-Term Memory (LSTM) networks encode chem-
ical language representations. The resulting modality-specific encoders are evaluated
after VICReg pre-training through both linear and transfer learning evaluation proto-
cols on an independent Absorption, Distribution, Metabolism, and Excretion (ADME)
dataset. Additional experiments compare against model-agnostic supervised pre-training
and modality-specific self-supervised pre-training using identical evaluation protocols.
This work addresses several research questions: (i) How do supervised model-agnostic
pre-training strategies compare to self-supervised, modality-specific approaches? (ii)
Can VICReg be successfully adapted from computer vision to computational chemistry
using multi-modal molecular representations without collapse? (iii) Which experimen-
tal configurations optimize downstream performance with VICReg? (iv) Does VICReg
outperform both modality-specific and model-agnostic pre-training strategies in down-
stream tasks?

ii

Zusammenfassung

VICReg (Variance-Invariance-Covariance Regularization) beschreibt eine Technik des
selbstüberwachten Repräsentationslernens, um die Übereinstimmung zwischen von un-
terschiedlichen Encodern erzeugten Embedding-Vektoren zu maximieren. VICReg über-
trifft andere selbstüberwachte Methoden und ist nicht auf Techniken angewiesen, um den
sogenannten „Collapse“-Effekt zu vermeiden (z.B. Stop-Gradient-Operationen, Mem-
ory Banks oder Output-Quantisierung), ein Phänomen, bei dem das Modell nahezu
identische Embeddings für alle Eingaben erzeugt. VICReg kommt ursprünglich aus
der Computer Vision Domäne und nutzt unterschiedlich augmentierte Ansichten des-
selben Bildes, um die encodeten Repräsentationen unter einander anzugleichen. In
dieser Arbeit wird VICReg auf den Bereich der Chemoinformatik übertragen, indem
verschiedene Modalitäten eines Moleküls als unterschiedliche Ansichten in einem multi-
modalen Trainingsansatz dienen. Konkret erfassen Graph Isomorphism Networks (GIN)
die Graph-Modalität, Equivariant Graph Neural Networks (EGNN) repräsentieren die
Konformer-Modalität, und Long Short-Term Memory (LSTM)-Netzwerke kodieren die
chemische Sprachmodalität. Die daraus resultierenden, modalitätsspezifischen Encoder
werden nach dem VICReg Pre-training mithilfe einer linearen Evaluierung und einer
Transfer-Learning-Evaluierung auf einem unabhängigen Datensatz für Absorption, Dis-
tribution, Metabolism und Excretion (ADME) getestet. Zudem wird in weiteren Ex-
perimenten jeder Encoder in einem modellunabhängigen, überwachten Pre-training und
in einem modalitätsspezifischen, selbstüberwachten Pre-training trainiert und mit der-
selben Evaluierungsstrategie evaluiert. Abschließend erörtert diese Thesis verschiedene
Forschungsfragen: (i) Wie vergleichbar sind überwachte, modellunabhängige Pre-training-
Strategien gegenüber selbstüberwachten, modellspezifischen Pre-training-Strategien?
(ii) Lässt sich VICReg erfolgreich von der Computer Vision auf die Chemoinformatik
übertragen, indem Graph-, Konformer- und Textmodalitäten eines Moleküls genutzt wer-
den? (iii) Welche VICReg Einstellungen führen zu besseren Downstream-Performances?
(iv) Übertrifft VICReg sowohl modalitätsspezifisches Pre-training als auch modellunab-
hängige Pre-training-Strategien in Bezug auf die Downstream-Performance?

iii

Contents

List of Figures vii

List of Tables x

List of Abbreviations xii

1 Introduction 1
1.1 Motivation and Research Questions 1
1.2 Structure . 3

2 Theoretical Background 4
2.1 Computational Chemistry and Pharmacology 4

2.1.1 Pharmacokinetics . 4
2.1.2 Simplified Molecular Input Line Entry System 5
2.1.3 Molecular Features . 7
2.1.4 Compound Similarity . 8

2.2 Modeling . 10
2.2.1 eXtreme Gradient Boosting 10
2.2.2 Multi-Layer Perceptron . 11
2.2.3 Language Modeling . 12
2.2.4 Graph Neural Networks . 17
2.2.5 Variance-Invariance-Covariance Regularization 22

2.3 Statistics . 25
2.3.1 Metrics . 25
2.3.2 Analysis of Variance . 26
2.3.3 Tukey Honestly Significant Difference Post-Hoc Test 28

iv

CONTENTS v

3 Methods 29
3.1 Data . 29

3.1.1 Pre-training Dataset . 29
3.1.2 Downstream Dataset . 31
3.1.3 Preprocessing . 33

3.2 Architecture Details . 37
3.2.1 Hyperparameter Tuning . 37
3.2.2 VICReg for Computational Chemistry 40

3.3 Performance Evaluation . 43
3.3.1 Evaluation Protocols . 43
3.3.2 Assess Performance Differences 45

3.4 Experiments . 45
3.4.1 No Pre-training . 45
3.4.2 Model-agnostic Pre-training 46
3.4.3 Model-specific Pre-training 50

4 Results and Discussion 54
4.1 Effect of Pre-training . 54

4.1.1 Linear Evaluation . 54
4.1.2 Transfer Learning . 56
4.1.3 Impact of Pre-training Strategies 58

4.2 Different VICReg Strategies . 60
4.2.1 ADME vs Largemix . 60
4.2.2 Different Pre-training Strategies 62
4.2.3 Impact of Differing VICReg Strategies 65

4.3 Across Experiments . 67
4.3.1 Linear Evaluation . 67
4.3.2 Transfer Learning . 69
4.3.3 Comparing VICReg to other Pre-training Strategies 70

5 Conclusions and Future Work 75
5.1 Conclusions . 75
5.2 Future work . 77

Bibliography 79

CONTENTS vi

Appendices 94

A Implementation Details 94
A.1 Data . 94

A.1.1 ADME Data . 94
A.2 Hyperparameter Tuning . 95

A.2.1 GIN . 95
A.2.2 EGNN . 96
A.2.3 LSTM . 97
A.2.4 XGB . 98

A.3 Resulting Architecture . 100
A.3.1 GIN . 100
A.3.2 EGNN . 101
A.3.3 LSTM . 102
A.3.4 XGB . 102

A.4 Used Hardware and Software . 105
A.4.1 Hardware . 105
A.4.2 Software . 105

B Further Results 106
B.1 Effect of Pre-training . 106

B.1.1 Aggregated . 106
B.1.2 GIN . 107
B.1.3 EGNN . 109
B.1.4 LSTM . 111

B.2 Different VICReg Strategies . 113
B.2.1 No Pre-training vs Pre-training 113
B.2.2 Agnostic Pre-training vs Specific Pre-training 120

B.3 Across Experiments . 127

List of Figures

2.1 Convert Molecules into SMILES . 6
2.2 Featurizing Molecules with the Morgan Fingerprint 8
2.3 Schema of a LSTM Cell . 12
2.4 Schema of Multihead Attention . 15
2.5 Pre-training of Language Models with Token Masking 17
2.6 Message Passing of GNNs . 18
2.7 Pre-training of GNNs with Node Masking 21
2.8 Structure of VICReg . 22

3.1 Featurized Molecule . 34
3.2 Tokenization of SMILES Strings . 36
3.3 Schema of Hyperparameter tuning based on Compound Similarity . . . 38
3.4 VICReg Architecture for Computational Chemistry 41
3.5 Linear Evaluation Protocol . 43
3.6 Transfer Learning Protocol . 44
3.7 Supervised Pre-train Agnostic Architecture 49
3.8 Node Masking Pre-training with Node Attribute Masking 52

vii

LIST OF FIGURES viii

4.1 Linear Evaluation Results for different Pre-training Strategies (MAE) . 55
4.2 Transfer Learning Results for different Pre-training Strategies (MAE) . 57
4.3 Linear Evaluation Results for VICReg (MAE) 61
4.4 Transfer Learning Results for VICReg (MAE) 62
4.5 Linear Evaluation Results for VICReg with pre-trained Encoders (MAE) 63
4.6 Transfer Learning Results for VICReg with pre-trained Encoders (MAE) 65
4.7 Linear Evaluation Results of different Pre-training Strategies (MAE) . . 68
4.8 Transfer Learning Results of different Pre-training Strategies (MAE) . . 70
4.9 Correlation of Downstream ADME Endpoints 73

B.1 Linear Evaluation Results for different Pre-trainings (R2) 106
B.2 Transfer Learning Evaluation Results for different Pre-trainings (R2) . . 106
B.3 Linear Evaluation of Pre-training using GIN (MAE) 107
B.4 Linear Evaluation of Pre-training using GIN (R2) 107
B.5 Transfer Learning Evaluation of Pre-training using GIN (MAE) 108
B.6 Transfer Learning Evaluation of Pre-training using GIN (R2) 108
B.7 Linear Evaluation of Pre-training using EGNN (MAE) 109
B.8 Linear Evaluation of Pre-training using EGNN (R2) 109
B.9 Transfer Learning Evaluation of Pre-training using EGNN (MAE) . . . 110
B.10 Transfer Learning Evaluation of Pre-training using EGNN (R2) 110
B.11 Linear Evaluation of Pre-training using LSTM (MAE) 111
B.12 Linear Evaluation of Pre-training using LSTM (R2) 111
B.13 Transfer Learning Evaluation of Pre-training using LSTM (MAE)) . . . 112
B.14 Transfer Learning of Pre-training using LSTM (R2) 112
B.15 Linear Evaluation Results for VICReg (R2) 113
B.16 Transfer Learning Results for VICReg (R2) 113
B.17 Linear Evaluation of VICReg using GIN (MAE) 114
B.18 Linear Evaluation of VICReg using GIN (R2) 114
B.19 Transfer Learning Evaluation of VICReg using GIN (MAE) 115
B.20 Transfer Learning Evaluation of VICReg using GIN (R2) 115
B.21 Linear Evaluation of VICReg using EGNN (MAE) 116
B.22 Linear Evaluation of VICReg using EGNN (R2) 116
B.23 Transfer Learning Evaluation of VICReg using EGNN (MAE) 117
B.24 Transfer Learning Evaluation of VICReg using EGNN (R2) 117
B.25 Linear Evaluation of VICReg using LSTM (MAE) 118
B.26 Linear Evaluation of VICReg using LSTM (R2) 118
B.27 Transfer Learning Evaluation of VICReg using LSTM (MAE) 119
B.28 Transfer Learning Evaluation of VICReg using LSTM (R2) 119

LIST OF FIGURES ix

B.29 Linear Evaluation Results for VICReg (R2) with Pre-trained Encoders . 120
B.30 Transfer Learning Results for VICReg (R2) with Pre-trained Encoders . 120
B.31 Linear Evaluation of pre-trained VICReg using GIN (MAE) 121
B.32 Linear Evaluation of pre-trained VICReg using GIN (R2) 121
B.33 Transfer Learning Evaluation of pre-trained VICReg using GIN (MAE) . 122
B.34 Transfer Learning Evaluation of pre-trained VICReg using GIN (R2) . . 122
B.35 Linear Evaluation of pre-trained VICReg using EGNN (MAE) 123
B.36 Linear Evaluation of pre-trained VICReg using EGNN (R2) 123
B.37 Transfer Learning Evaluation of pre-trained VICReg using EGNN (MAE) 124
B.38 Transfer Learning Evaluation of pre-trained VICReg using EGNN (R2) . 124
B.39 Linear Evaluation of pre-trained VICReg using LSTM (MAE) 125
B.40 Linear Evaluation of pre-trained VICReg using LSTM (R2) 125
B.41 Transfer Learning Evaluation of pre-trained VICReg using LSTM (MAE) 126
B.42 Transfer Learning Evaluation of pre-trained VICReg using LSTM (R2) . 126
B.43 Linear Evaluation Results for VICReg vs No VICReg (R2) 127
B.44 Transfer Learning Results for VICReg vs No VICReg (R2) 127
B.45 Linear Evaluation of VICReg vs No VICReg using GIN (MAE) 128
B.46 Linear Evaluation of VICReg vs No VICReg using GIN (R2) 128
B.47 Transfer Learning Evaluation of VICReg vs No VICReg using GIN (MAE) 129
B.48 Transfer Learning Evaluation of VICReg vs No VICReg using GIN (R2) 129
B.49 Linear Evaluation of VICReg vs No VICReg using EGNN (MAE) 130
B.50 Linear Evaluation of VICReg vs No VICReg using EGNN (R2) 130
B.51 Transfer Learning Evaluation of VICReg vs No VICReg using EGNN (MAE)131
B.52 Transfer Learning Evaluation of VICReg vs No VICReg using EGNN (R2) 131
B.53 Linear Evaluation of VICReg vs No VICReg using LSTM (MAE) 132
B.54 Linear Evaluation of VICReg vs No VICReg using LSTM (R2) 132
B.55 Transfer Learning Evaluation of VICReg vs No VICReg using LSTM (MAE)133
B.56 Transfer Learning Evaluation of VICReg vs No VICReg using LSTM (R2) 133

List of Tables

3.1 Pre-training Data . 31
3.2 Raw ADME Data . 32

A.1 ADME Training Data . 95
A.2 ADME Test Data . 95
A.3 GIN Architecture Hyperparameter Distribution 95
A.4 GIN Optimizer Hyperparameter Distribution 96
A.5 EGNN Architecture Hyperparameter Distribution 96
A.6 EGNN Optimizer Hyperparameter Distribution 97
A.7 LSTM Architecture Hyperparameter Distribution 97
A.8 LSTM Optimizer Hyperparameter Distribution 98
A.9 XGB RLM Hyperparameter Distribution 98
A.10 XGB HLM Hyperparameter Distribution 99
A.11 XGB MDR1-ER Hyperparameter Distribution 99
A.12 XGB Sol Hyperparameter Distribution 99
A.13 GIN Architecture . 100
A.14 EGNN Architecture . 101
A.15 LSTM Architecture . 102
A.16 XGB RLM Architecture . 102
A.17 XGB HLM Architecture . 103
A.18 XGB MDR1-ER Architecture . 103
A.19 XGB Sol Architecture . 104

x

List of Abbreviations

ASCII American Standard Code for Information Interchange 5

ADME Absorption, Distribution, Metabolism, and Excretion 3

AI Artificial Intelligence . 1

ANOVA Analysis of Variance . 26

BCE Binary Cross-Entropy . 47

BERT Bidirectional Encoder Representations from Transformers 16

BN Batch Normalization . 43

CLS Classification . 36

CV Computer Vision . 1

DL Deep Learning . 1

ECFP Extended-connectivity fingerprints . 7

EGNN Equivariant Graph Neural Networks . 2

ETKDG Experimental-Torsion Distance Geometry 34

GIN Graph Isomorphism Network . 2

GNN Graph Neural Network . 2

GPT Generative pre-trained transformer . 16

HLM Human Liver Micrososomal Stability 31

hPPB Human Plasma Protein Binding . 31

LSTM Long Short-Term Memory . 2

xi

LIST OF ABBREVIATIONS xii

MAE Mean Absolute Error . 25

MMFF Merck molecular force field . 35

MDR1-ER Multidrug Resistance Protein 1 Efflux Ratio 31

ML Machine Learning . 1

MLM Masked Language Model . 16

MLP Multi-Layer Perceptron . 11

MSE Mean Squared Error . 38

NLP Natural Language Processing . 1

PK Pharmacokinetics . 3

QSAR Quantitative Structure-Activity Relationship 2

ReLU Rectified Linear Unit . 46

RLM Rat Liver Micrososomal Stability . 31

RNN Recurrent Neural Network . 12

rPPB Rat Plasma Protein Binding . 31

SMILES Simplified Molecular Input Line Entry System 2

Sol Solubility . 31

TPE Tree-structured Parzen Estimator . 37

Tukey test Tukey Honestly Significant Difference Post-Hoc test 28

VICReg Variance-Invariance-Covariance Regularization 2

XGB eXtreme Gradient Boosting . 10

Chapter 1

Introduction

1.1 Motivation and Research Questions

Advances in Artificial Intelligence (AI) have significantly impacted multiple domains
including Natural Language Processing (NLP), Computer Vision (CV), and life sci-
ences such as computational chemistry, enabling the development of sophisticated Deep
Learning (DL) models that learn complex patterns from extensive datasets. These
breakthroughs span from chatbots utilizing large language models [1, 2, 3] to CV sys-
tems achieving human-level performance in image classification and object detection
[4, 5, 6] and life science innovations like AlphaFold [7], which revolutionized structural
biology through precise 3D protein structure prediction. Contemporary developments
feature foundation models which are large-scale, general-purpose DL systems trained
on broad datasets to capture universal patterns [8, p.44-50]. These models provide
transferable representations that reduce reliance on task-specific architectures [9]. The
evolution of foundation models has been driven by the transformer architecture [10],
whose self-attention mechanism captures contextual relationships. Furthermore, the in-
tegration of self-supervised learning [8, p.40-44], a DL paradigm where models derive
representations from unlabeled data through intrinsic tasks, enhances the development
of foundation models since no expensive data labels are needed. More recently, multi-
modal foundation models [11, 12, 13] process diverse data types (text, images, video)
to learn cross-modal representations, often employing joint embedding architectures
[14, 15] that align modalities in shared latent spaces enabling a model to learn even
more semantic relationships between large datasets.

In the domain of computational chemistry, the application of foundation models
offers potential for more accurate numerical representations of molecules [16] suitable
for Machine Learning (ML) algorithms to enhance drug discovery [17] and molecu-
lar modeling [18]. This could enable few-shot learning approaches [19], which would

1

CHAPTER 1. INTRODUCTION 2

be particularly useful given that labeled molecular data is expensive to generate [20].
Traditional molecular representations use global molecular descriptors and sparse bit-
maps indicating the presence of molecular substructures [21]. While such featurization
strategies show success in cheminformatics tasks like Quantitative Structure-Activity
Relationship (QSAR) prediction [22, 23, 24], DL strategies using graph-based represen-
tations through Graph Neural Network (GNN)s have become more prevalent in recent
years [25, 26, 27, 28]. The success of graph-derived representations may overcome
the task-specific nature of global molecular features and the sparsity of bit-map sub-
structure representations, which are suboptimal for many ML algorithms [29, p.270-
271]. However, there is no consensus that graph-based representations are universally
better than conventional featurization methods [30], suggesting chemical foundation
models could overcome these limitations [16]. Recent featurization approaches in-
clude conformer-based graph architectures [31] and text-based representations from the
Simplified Molecular Input Line Entry System (SMILES) notation [32], which functions
as a chemical language [33, 34]. These diverse molecular featurization strategies can
serve as distinct modalities for training multi-modal foundation models. Experiments
demonstrate multi-modal learning through combinations like structural formula images
with graph/conformer representations using auto-encoders [35, 36], image-graph pairs
with contrastive learning [37, 38], text-conformer alignment [39], and text-graph embed-
ding concatenation [40]. However, many approaches rely on contrastive learning, which
requires numerous negative pairs to prevent representation collapse and incurs substan-
tial computational costs. Variance-Invariance-Covariance Regularization (VICReg) [41]
provides an alternative by enforcing variance preservation across embedding dimensions,
invariance between differently projected embeddings of identical samples, and decorrela-
tion of embedding dimensions, eliminating both negative pair requirements and collapse
risks. This approach offers flexibility without labeled data and avoids dependence on
collapse-prevention techniques like large batch sizes [42], memory banks [43], momen-
tum encoders [44], quantization methods [45], or stop-gradient operations [46].

This thesis explores the adaptation of VICReg to computational chemistry by lever-
aging molecular modalities to investigate whether VICReg can be effectively trained as
a self-supervised molecular foundation model using text, graph, and conformer represen-
tations. The graph modality is processed by using a Graph Isomorphism Network (GIN)
[47], conformer properties is processed by using an Equivariant Graph Neural Net-
works (EGNN) [31], and the chemical language features are utilized by using a bidirec-
tional Long Short-Term Memory (LSTM) [48] with self-attention [10]. These encoding
networks represent established DL approaches in computational chemistry [49, 50, 51],
justifying their selection. Comparative experiments implement: model-agnostic super-

CHAPTER 1. INTRODUCTION 3

vised pre-training and modality-specific self-supervised pre-training to address: (i) How
do supervised and self-supervised pre-training strategies compare in Absorption, Distri-
bution, Metabolism, and Excretion (ADME) downstream performance? The core in-
vestigation implements VICReg for molecular representation learning, asking: (ii) Does
VICReg pre-training work for molecules without causing representation collapse [52]?
Multiple configurations are tested to examine: (iii) Do different VICReg settings signif-
icantly affect downstream performance? Finally, the performance comparisons address:
(iv) Is VICReg superior to conventional pre-training strategies for chemical foundation
models?

1.2 Structure

Chapter 2 contains fundamental theoretical background essential for understanding this
work. Section 2.1 outlines key concepts in Pharmacokinetics (PK) and computational
chemistry, while Section 2.2 focuses on ML and DL fundamentals for the implemented
algorithms and associated terminology. Subsection 2.2.5 details the theoretical frame-
work of the VICReg method. Section 2.3 describes evaluation metrics and corresponding
equations for model performance assessment, along with statistical methods for multiple
comparisons used in analysis.

Chapter 3 specifies implementation details: data sources and processing (Section
3.1), model architectures (Section 3.2), and evaluation protocols (Section 3.3). Section
3.4 comprehensively documents experimental designs. Chapter 4 presents and discusses
findings: Section 4.1 analyzes non-VICReg pre-training comparisons, Section 4.2 exam-
ines VICReg configuration outcomes, and Section 4.3 compares VICReg performance
against alternative pre-training approaches. Chapter 5 concludes with key insights (Sec-
tion 5.1) and future research directions (Section 5.2).

Appendix A provides supplementary technical details including in vivo assay spec-
ifications, hyperparameter search spaces, architecture optimization results, and hard-
ware/software configurations. Appendix B contains additional figures demonstrating
statistically significant differences between experimental conditions.

Chapter 2

Theoretical Background

2.1 Computational Chemistry and Pharmacology

2.1.1 Pharmacokinetics

The field of PK studies how drugs behave in the human body after administration
[53], emphasizing the mechanisms of compound transport rather than the identification
of target interactions. PK comprises four key properties collectively termed ADME.
Optimal ADME characteristics are essential for drug efficacy, as poor properties may
negate therapeutic potential despite effective target engagement.

Absorption

Absorption quantifies a compound’s entry into systemic circulation. The absorption
efficiency depends on chemical properties, formulation, and administration route [54,
53]. Critical physicochemical factors include aqueous solubility, permeability, molecular
weight, and ionization state. For example, high water solubility enhances gastrointestinal
absorption compared to hydrophobic compounds.

Distribution

Distribution describes compound dispersion through tissues and fluids post-absorption
[53]. Key properties include molecular size, polarity, lipophilicity, and plasma protein
binding affinity. Suboptimal distribution patterns, such as excessive protein binding or
poor tissue permeability, may lead to insufficient target site concentrations [54].

4

CHAPTER 2. THEORETICAL BACKGROUND 5

Metabolism

Metabolism characterizes enzymatic modification of compounds into metabolites [53,
54]. Hepatic enzymes are primarily responsible for converting parent compounds into
metabolites, which are often inactive. The metabolic rates depend on structural features
influencing enzyme-substrate interactions.

Excretion

Excretion encompasses compound and metabolite elimination [53, 54]. Renal clearance
predominates as excretion mechanism, though biliary excretion contributes for some
compounds. Incomplete excretion risks metabolite accumulation, potentially causing
adverse effects through interference with physiological processes.

2.1.2 Simplified Molecular Input Line Entry System

Motivation

Chemical compounds can be represented through structural formulas to emphasize
atomic connectivity and spatial relationships. Various formula types exist with distinct
syntax elements offering different detail levels [55]. The SMILES notation system [32]
encodes compounds as American Standard Code for Information Interchange (ASCII)
strings, serving as a cornerstone for computational chemistry.

Specification of SMILES Strings

The SMILES system employs defined syntactic rules to represent molecular graphs
G = (V , E), where vertices V denote atoms and edges E represent bonds between
atoms. Atom symbols constitute primary elements, with bond types specified using
"=" (double), "#" (triple), and ":" (aromatic). Aromatic atoms can also be implicitly
denoted through lowercase letters, while single bonds lack explicit symbols. Branching
uses parentheses, while cyclic structures employ numerical indicators following atomic
symbols for ring openings/closures.

Embedding of a Ciprofloxacin Molecule as SMILES String

Figure 2.1 [56] demonstrates the SMILES encoding for ciprofloxacin. Panel A displays
the structural formula with key functional groups (hydroxyl, ketone). Panel B annotates
cyclic structures (1-4), with yellow markers indicating ring openings/closures. Panel C
color-codes molecular components: green (backbone), other colors (branches). Panel
D shows the complete SMILES string:

CHAPTER 2. THEORETICAL BACKGROUND 6

• N1CCN initiates the first cyclic structure

• C1 closes this ring within a branch ((CC1))

• (C(F)=C2) encodes a fluorine containing a nested branch with a double bond

• Digits 2-4 manage remaining cyclic structures

• Subsequent branches follow analogous encoding rules

Figure 2.1: Two-dimensional structural formula of molecules can be con-
verted into a SMILES string by using well defined syntactical elements.

CHAPTER 2. THEORETICAL BACKGROUND 7

2.1.3 Molecular Features

Molecular Descriptors

A suitable numerical representation is required to process molecular structures with ML
algorithms. This is achieved through featurization methods that generate feature vectors
by encoding chemical structures and properties. These features are often global molec-
ular properties which are also known as molecular descriptors [57] describing numerical
values that quantify molecular characteristics from simple properties to complex topo-
logical indices [58]. Molecular descriptors were originally developed for QSAR analysis
[59], a method which correlates structural features with biological activity to enable pre-
dictive modeling of untested compounds. Examples include global molecular properties
like molecular weight and hydrogen-bond donor counts [47].

Structural Fingerprints

Additional featurization methods use local molecular characteristics, complementing
global molecular descriptors. A prominent approach generates bit-maps that systemat-
ically encode molecular substructures [21, 39]. These bit-maps (fingerprints) represent
compounds through binary vectors where the positions correspond to specific substruc-
tures, with bit values indicating presence/absence of such a substructure. Those fin-
gerprints are generated via substructure hashing into fixed-length vectors resulting in
large sparse bit-representations due to numerous possible substructures. The Extended-
connectivity fingerprints (ECFP) [60], based on the Morgan algorithm [61], encodes
molecular structure through atom types and connectivity within radial neighborhoods.

Figure 2.2 [39] demonstrates how the ECFP operates with varying radii. The repre-
sentation of an Aspirin molecule uses bit-map with a settable length where indices map
to substructures defined by radius r. At r=0, substructures represent individual atoms,
r=1 includes atoms with immediate neighbors and so on. Each unique radius depen-
dent substructure hashes to specific bit-vector indices. Across compounds, overlapping
substructures activate shared bits. Key limitations of molecular fingerprints include hash
collisions from finite vector lengths, mitigated through 1024− 2048 bit configurations.

CHAPTER 2. THEORETICAL BACKGROUND 8

Figure 2.2: An Aspirin molecule is projected onto a bit-map by capturing
the absence or presence of certain substructures. The definition of a sub-
structure can be regularized by a radius parameter r.

2.1.4 Compound Similarity

Pairwise Fingerprint Similarity

The Structural similarity between two compounds can be quantified using fingerprint
bit-strings generated by algorithms like ECFP. The Tanimoto coefficient Tsim [62]
measures fingerprint similarity as defined in Equation 2.1 [63] where FP1 and FP2

are the molecular fingerprints of two molecules. The numerator counts shared active
bits (substructures present in both compounds), while the denominator totals unique
active bits across either fingerprint. Values approaching 1 indicate a higher substructural
overlap.

Tsim(FP1, FP2) = |FP1 ∧ FP2|
|FP1 ∨ FP2|

= Shared Bits
Total Bits (2.1)

• Tsim as similarity function

• FP1, FP2 as two bit-strings

Butina Clustering

Compounds can be clustered based on their structural similarity using the Butina al-
gorithm [64]. The clustering algorithm is based on a fingerprint representation of a
compound and uses a configurable distance threshold to define the clusters. The dis-
tance is defined as 1−Tsim(FP1, FP2), where Tsim(FP1, FP2) represents the Tanimoto
similarity between the two fingerprints FP1 and FP2.

CHAPTER 2. THEORETICAL BACKGROUND 9

Algorithm 1 shows the pseudo-code of the Butina algorithm. A list of compounds
M is taken as input along with a distance threshold dcutoff. A pairwise distance matrix,
defined as D(FPi , FPj) = 1− Tsim(FPi , FPj), is computed by calculating the pairwise
Tanimoto distances for every pair of distinct compounds using their fingerprints. The
distance threshold dcutoff defines the maximum allowable dissimilarity for two compounds
to be grouped into the same cluster. For example, dcutoff = 0.2 corresponds to a
minimum similarity of Tsim = 0.8. The algorithm first sorts molecules by their number
of neighbors within dcutoff, prioritizing those with the most neighbors as cluster seeds.
Iteratively, each seed forms a cluster with its neighbors, which are then removed from the
pool of unassigned molecules. This process continues until all compounds are clustered
or remain as singletons.

Algorithm 1 Butina Clustering Algorithm
Input: List of molecules M, distance threshold dcutoff
Output: List of clusters C

1: Compute pairwise distance matrix D for all molecules in M
2: For each molecule mi , count neighbors Ni where Di j ≤ dcutoff
3: Sort molecules in descending order of Ni
4: Initialize empty cluster list C
5: Initialize unassigned molecules U ← M
6: while U ̸= ∅ do
7: Select first molecule mseed in sorted U
8: Find all neighbors of mseed in U : S ← {mj ∈ U | Dseed,j ≤ dcutoff}
9: Add cluster c ← {mseed} ∪ S to C

10: Remove all molecules in c from U
11: end while
12: return C

CHAPTER 2. THEORETICAL BACKGROUND 10

2.2 Modeling

2.2.1 eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGB) [65] is an ensemble ML algorithm that consists of
gradient boosted trees [66] with enhancements in regularization and scalability. The
model is trained sequentially to minimize the learning objective L(j)

XGB as shown in
Equation 2.3 [65] where j refers to the j-th iteration. The first term ℓ(yi , ŷ (j−1)

i + fj(xi))
describes a loss function which calculates the difference between the ground truth yi and
the prediction ŷi . Here, ŷ (j−1)

i refers to the prediction from the previous iteration j − 1
while fj(xi) is an additive correction term computed by the tree of the current iteration
j based on the input features xi . Therefore, the ensemble is trained in such a way that
each tree corrects the error from the previous tree. The second term Ω(fj) serves as a
combined regularization term of the tree fj where L corresponds to the number of leaves
and γsize as a regularization for the tree complexity, penalizing deep trees. The term
1
2λL2∥w∥2 uses a hyperparameter λL2 to apply L2 regularization to the tree’s weights,
helping to prevent overfitting.

L(j)
XGB =

n∑
i=1

ℓ(yi , ŷ (j−1)
i + fj(xi)) + Ω(fj) (2.2)

Ω(f) = γsizeL + 1
2λL2∥w∥2 (2.3)

• ℓ as differentiable loss function at iteration j for n datapoints

• fj as tree model with parameters w

• Ω as regularization function

• γsize as complexity regularization term, L as amount of leaves

• λL2 as L2 regularization term

• y as ground truth and ŷ as model prediction, x as input features

CHAPTER 2. THEORETICAL BACKGROUND 11

2.2.2 Multi-Layer Perceptron

An Multi-Layer Perceptron (MLP) (also known as an Artificial Neural Network) [29,
p.333-387] is a supervised DL algorithm that processes the input feature matrix x via
a stack of consecutive linear layers l , learning more complex features in the process.
The output is then compared with a target vector to calculate a loss value. Each layer
l consists of multiple tunable weights W (l) and a learnable bias term b(l). Equation
2.4 [67, p.218] describes how the propagation of an input through layer l is performed
via matrix multiplication. An input from the previous layer h(l−1) (with h(0) = x)
is multiplied by the weight matrix W (l), while the bias b(l) is added, resulting in a
representation repr (l). This representation is transformed with a non-linear activation
function fact , allowing the network to capture complex non-linear relationships between
the feature matrix x and the targets (see Equation 2.5 [67, p.218]). The result is a
transformed representation h(l), which serves as the input for the next layer. The last
layer can have one (single-task learning) or multiple (multi-task learning [68]) output
neurons, making MLPs suitable for single- and multi-task learning objectives. The
backpropagation algorithm [69] is used to compute gradients of the loss with respect
to the weights, while the gradient descent method [29, p.163] updates the weights by
adjusting them in the direction that minimizes the loss.

Pre-activation: repr (l) = W (l)h(l−1) + b(l) (2.4)
Activation: h(l) = fact

(
repr (l)) (2.5)

• W as weight matrix and b as bias term at layer l

• repr as pre-activation logits and h as logits

• fact as activation function

CHAPTER 2. THEORETICAL BACKGROUND 12

2.2.3 Language Modeling

Long Short-Term Memory

A LSTM [48] is a special type of Recurrent Neural Network (RNN) [70], invented to
overcome the issues of RNNs in capturing long-term dependencies in sequential data,
effectively addressing the problems of vanishing and exploding gradients that can occur
during training [71, 72]. The LSTM consists of a cell that incorporates different gating
mechanisms to regulate the flow of information, specifically the input gate, forget gate,
and output gate, allowing the network to retain relevant information over long sequences
while discarding unnecessary information. The LSTM cell features two types of inputs
besides the sequential input features x(t): a hidden state h(t−1), which carries information
from prior time steps, and the cell state c(t−1), which acts as long-term memory for a
timestamp t.

Figure 2.3 [73] outlines the propagation through a LSTM cell. A combination of
the previous hidden state h(t−1) and the current sequence input xt is used as input for
every gating function. The forget gate ft decides which elements should be discarded,
while the input gate it determines what new information to store. The control gate c̃t

[74] is used to update the cell state, and the output gate ot controls which parts of
the cell state are passed on to the next hidden state. The output of the forget gate
is combined with the previous cell state c(t−1) using the Hadamard product to update
the current cell state. Moreover, the Hadamard product of the outputs from the input
gate it and control gate c̃t is added to the current cell state, yielding the updated cell
state ct . The output gate’s result is elementwise multiplied by the new cell state ct ,
which is previously transformed by a tanh activation, yielding the new hidden state ht ,
enhancing the new hiddent state with long-term information.

Figure 2.3: A LSTM cell takes a cell state c, a hidden state h, and a
sequence input x as input and combines them involving different gating
mechanisms to maintain a long-term and a short-term memory.

CHAPTER 2. THEORETICAL BACKGROUND 13

Equations 2.6-2.8 [29, p.611] refer to the forget gate ft , input gate it and output
gate ot which follow the same form: A weight matrix Wh is multiplied by the hidden
states h(t−1) and added to the product of the weight matrix Wx and the sequence input
xt along a specific additive bias term b. A sigmoid activation function σ transforms
the result of the linear combination. The control gate c̃t has analogous weight matrices
and bias terms compared to the gates: A weight matrix Wh, a weight matrix Wx , and
a bias term bc . The linear combination of the control gate is transformed with a tanh
activation function instead of a sigmoid function σ. Equation 2.10 [29, p.611] refers to
the calculation of ct . The Hadamard product ⊙ of the outputs of the forget gate ft
and the previous cell state c(t−1) is added to the Hadamard product of the results from
the input gate it and control gate c̃t . Lastly, Equation 2.11 [29, p.611] refers to the
calculation of the hidden state ht which is the Hadamard product of the output gate’s
ot result and ct transformed with a tanh activation function.

The LSTM maintains short-term memory through its hidden state h(t), which inte-
grates the current sequence input x(t) and immediate context. Long-term memory is
maintained via the cell state c(t), which propagates critical information across time steps
and is regulated by the forget, input, control, and output gates. The forget gate selec-
tively discards outdated information from c(t−1), the input gate and control gate add
new relevant data, and the output gate modulates how ct influences ht [29, p.608-611].

ft = σ(Whf · h(t−1) + Wxf · xt + bf) (Forget gate) (2.6)
it = σ(Whi · h(t−1) + Wxi · xt + bi) (Input gate) (2.7)
ot = σ(Who · h(t−1) + Wxo · xt + bo) (Output gate) (2.8)
c̃t = tanh(Whc̃ · h(t−1) + Wxc̃ · xt + bc) (Control gate) (2.9)
ct = ft ⊙ c(t−1) + it ⊙ c̃t (Updated cell state) (2.10)
ht = ot ⊙ tanh(ct) (Hidden state) (2.11)

• σ(z) = 1
1+e−z [29, p.195] as sigmoid function

• W· as weight matrices and b· as bias terms

• h as logits

• t as timestamps

• xt as sequence input of the current timestamp

• ⊙ as Hadamard product

CHAPTER 2. THEORETICAL BACKGROUND 14

Self-Attention

Scaled Dot-Product Attention
An attention function specifies how much focus should be given to different parts of
the input data when making predictions, allowing the model to dynamically weight the
importance of various elements [29, p.620]. Self-Attention [10] refers to the case where
every element of an input sequence attends to all other elements in the given sequence,
thus learning contextualized relationships. Such a function can also be described as
assigning a query vector and a set of key-value pairs of vectors to an output vector,
resulting in a weighted sum determined by a compatibility function of the query. The
query, key, and value vectors are projections of the input data, derived from learned
linear transformations applied to the input embeddings.

Equation 2.12 [10] shows how self-attention can be defined as a scaled dot-product,
where Q, K ∈ Rdk and V ∈ Rdv are the projected embeddings. The dot product of
QK T outputs the similarity between the query and all keys. The similarity is scaled by
a factor of 1√

dk
to stabilize the gradients. A transformation with a softmax function

produces the attention weights. Lastly, these attention weights are used to compute a
weighted sum of the values.

Attention(Q, K , V) = softmax(QK T
√

dk
)V (2.12)

• Q, K , V as query, key and value vector

• dk as query and key dimension

• softmax(z)i = ezi∑K
j=1 ezj [67, p.204] as softmax function

Multihead Attention
Multihead Attention [10] refers to the application of the scaled dot-product attention
multiple times. Therefore, the query, key, and value vectors are linearly projected hhead

times with different learned projections.
Equation 2.14 [10] describes the multihead attention with hhead different heads. The

matrices QW Q
i , KW K

i , V W V
i are weight matrices which are specific to the attention

head i . They project the original query, key, and value vectors into different subspaces,
allowing each head to learn different aspects of the input data. Those heads are then
concatenated and multiplied by the weight matrix W O resulting in the final output.

CHAPTER 2. THEORETICAL BACKGROUND 15

MultiHead(Q, K , V) = Concat(head1, ..., headi , ..., headhhead)W O (2.13)
headi = Attention(QW Q

i , KW K
i , V W V

i) (2.14)

• W· as weight matrices

• Q, K , V as query, key, and value vector

• hhead as amount of attention heads

Figure 2.4 [10] visualizes the schema of the multihead attention. The key, query,
and value vectors are projected hhead times using different linear layers. Corresponding
projections of the input key, query, and value vectors are then used for the scaled dot-
product attention, resulting in hhead different weighted sums of the value vector, each
capturing different representations of the input sequence. These representations are
then concatenated and projected through a final linear layer.

Figure 2.4: Multihead Attention consists of multiple running Scaled Dot-
Product Attention layers.

CHAPTER 2. THEORETICAL BACKGROUND 16

Pre-training for Language Models

Pre-training [67, p.361-363] refers to a training method for ML and especially DL algo-
rithms where the model is initially trained on different tasks before tackling the actual
training objective. This can be done in a self-supervised or supervised manner, depend-
ing on the pre-training technique. For example, NLP models can be pre-trained with
an autoregressive approach [75] by predicting the next element of a given sequence,
which is suitable for generating decoder architectures like the Generative pre-trained
transformer (GPT) architecture [1, 10]. Encoder-only architectures can be trained with
a Masked Language Model (MLM), as seen in architectures such as Bidirectional En-
coder Representations from Transformers (BERT) [3]. The MLM trains an encoder by
randomly masking some of the input tokens with a special token T[MASK]. These input
tokens are predicted by the encoder, combined with a small MLP, based on the context,
making pre-training with an MLM self-supervised.

In contrast to autoregressive or causal [76, p.85] approaches, the MLM-based pre-
training strategy uses both left and right context, allowing the training of bidirectional
models. To address the problem of pre-training and fine-tuning mismatch [3], where
the T[MASK] token does not appear during fine-tuning or downstream task inference,
the model occasionally replaces the masked token with a random token or leaves it
unchanged during pre-training.

Figure 2.5 shows a schema of an MLM pre-training strategy, where Ti refers to
the input token i , Ei refers to the embedding of token Ti , and Ri denotes the learned
representation of Ti . Some tokens in the input sequence are randomly masked with a
masking probability p, resulting in a partially masked sequence. In this example, token
T2 is masked and replaced with a special T[MASK] token, whose embedding is denoted
as E[MASK]. An encoder propagates the embeddings and outputs a contextualized rep-
resentation Ri for each input embedding Ei . A classifier MLP is applied to the masked
representation R[MASK], where the output size of the MLP matches the vocabulary size.
The output logits are transformed with a softmax function to produce a probability
distribution over all possible tokens. The model is trained to predict the original token
T2 at the masked position, where the ground truth corresponds to the token ID of the
masked token. The MLM is optimized using the cross-entropy loss [77, p.206].

CHAPTER 2. THEORETICAL BACKGROUND 17

Figure 2.5: Schema of the MLM training process where a masked token is
predicted based on contextualized representations (Self-made Figure).

2.2.4 Graph Neural Networks

GNNs [78] are neural networks specialized for graph-structured data and problems such
as property prediction for an entire graph, specific nodes, or specific edges. GNNs have
specialized layers designed to learn embeddings from nodes and edges of a graph, which
are referred to as message-passing layers. Each node v consists of node features xv ,
which serve as the starting point for the message-passing process. The features of each
node v and its neighboring nodes N(v) are embedded with an MLP and aggregated
using an aggregation function (e.g., the mean value). Additionally, edge features can
be incorporated into the message-passing process to enhance the representation of re-
lationships between nodes. Afterward, the features of node v are updated based on the
aggregated value, capturing local structures of the graph. This message-passing proce-
dure can be repeated n times, aggregating information about the nth closest neighbors
of a node v . Many subtypes of GNNs exist, differing primarily in how they aggregate
and update node representations. Finally, to obtain a graph-level embedding suitable
for downstream tasks such as classification or regression, a readout function (e.g., sum,
mean, or max pooling over node embeddings) is applied.

CHAPTER 2. THEORETICAL BACKGROUND 18

Equation 2.15 [47] outlines the aggregation procedure of a message-passing layer
for a node v at layer l . An aggregation function is applied to capture the information
from every embedding at layer l − 1 of neighboring nodes u ∈ N(v). Equation 2.16
[47] describes the combination of the aggregated information a(l)

v with the previous
embedding h(l−1)

v of node v , allowing the model to integrate both the historical features
of the node and the newly aggregated information to produce an updated embedding
h(l)

v . A combine function can be concatenation or any aggregation function.

a(l)
v = aggregate(l)({h(l−1)

u : u ∈ N(v)}) (2.15)
h(l)

v = combine(l)(h(l−1)
v , a(l)

v) (2.16)

• v , u as nodes, l as layer index

• a as aggregation

• h as logits

• N(·) as neighbour nodes of a node ·

Figure 2.6 [79] visualizes the concept of message-passing. An input graph (left)
with six featurized nodes is used for the message-passing. The yellow node aggregates
information from its neighbor nodes (red, green, blue) after the first message pass (1-hop
neighbors). After the second message pass, the yellow node contains information from
every node in the graph (2-hop neighbors). However, after the second message pass, the
yellow node’s updated features reflect the contributions from its closest neighbors and
itself, allowing it to encapsulate both local and extended structural information about
the graph.

Figure 2.6: Schema of the message passing process of GNNs.

CHAPTER 2. THEORETICAL BACKGROUND 19

Graph Isomorphism Networks

A GIN [47] is a GNN [78] specialized in distinguishing between different graph structures.
The aggregation function of a GIN is defined in Equation 2.17 [47]. The embedding
h(l)

v for node v in layer l is calculated using an MLP, denoted as hΘ. The input for this
MLP consists of two terms: The first term (1 + ϵ) · h(l−1)

v includes a hyperparameter
ϵ, which regulates the importance of the embedding of node v from the previous layer
l − 1. The second term refers to the sum of the neighboring node embeddings h(l−1)

u .

h(l)
v = hΘ((1 + ϵ) · h(l−1)

v +
∑

u∈N(v)

h(l−1)
u) (2.17)

• v , u as nodes, l as layer index

• h as logits

• N(·) as neighbor nodes of a node ·

• ϵ as importance regularization term

• MLP hΘ

Equivariant Graph Neural Networks

An EGNN [31] is a GNN [78] that learns E (n)-equivariant graph representations. The
term E (n)-equivariant refers to learned node coordinates that transform predictably
under rotation, translation, and reflection (equivariance), while node features remain
invariant to these operations. Therefore, an EGNN produces equivariant coordinates and
E (n)-invariant features for a molecule, even when the input is transformed by rotation,
translation, or reflection. The EGNN explicitly processes node coordinates (e.g., spatial
positions) alongside node and edge features as input, updating them equivariantly across
layers.

Equation 2.18 [31] describes the message-passing process of EGNNs. The message
mvu from node u to node v is produced by an MLP hθm . This MLP takes as input the
embedding h(l)

v from node v , the embedding h(l)
u from node u, the squared Euclidean

distance between the coordinates of nodes u and v as |c (l)
v − c (l)

u |2, and the edge
attributes evu.

CHAPTER 2. THEORETICAL BACKGROUND 20

Equation 2.19 [31] refers to the calculation of the embedding hl+1
v for a node v ,

which is computed by an MLP hθf . This MLP takes the previous embedding h(l)
v and

the aggregated messages from neighbors
∑

u ̸=v mvu as input. The summation excludes
u = v to ensure updates depend only on neighboring nodes, not the node itself.

Equation 2.20 [31] shows how the coordinates c (l+1)
v are updated for node v . The

update consists of the previous coordinates c (l)
v and a sum which is scaled by a factor of

Cscale. The sum
∑

u ̸=v(c (l)
v −c (l)

u)hθc (mvu) calculates the relative coordinate differences
between a node v and its neighbors u weighted by a scalar calculated from an MLP hθc

by taking the message between nodes v and u as input. The coordinate update ensures
E (n)-equivariance by combining relative displacements between nodes (c (l)

v −c (l)
u) which

transform linearly under rotations, translations, or reflections with scalar weights yielded
by hθc . These scalars are derived from invariant inputs: the message mvu (Equation 2.18)
which depends on the squared Euclidean distance ∥c (l)

v − c (l)
u ∥2 (invariant to E (n)) and

node features h(l)
v , ensuring hθc is also invariant. Thus, the coordinate update c (l+1)

v

transforms predictably under E (n), while node features h(l+1)
v (Equation 2.19) remain

invariant, as they aggregate messages computed from invariant quantities.

Message: m(l)
vu = hθm

(
h(l)

v , h(l)
u , ∥c (l)

v − c (l)
u ∥2, evu

)
(2.18)

Feature Update: h(l+1)
v = hθf

(
h(l)

v ,
∑
u ̸=v

mvu

)
(2.19)

Coordinate Update: c (l+1)
v = c (l)

v + Cscale
∑
u ̸=v

(c (l)
v − c (l)

u)hθc (mvu) (2.20)

• v , u as nodes, l as layer index

• h as logits

• hθ· as MLPs

• e· as edge attributes

• c· as coordinates of node ·

• Cscale as scaling factor

• m·· as message between two nodes ··

CHAPTER 2. THEORETICAL BACKGROUND 21

Pre-training for Graph Neural Networks

GNNs can be pre-trained using various strategies that focus on different graph elements,
such as nodes, edges, a combination of nodes and edges, or entire graph structures [80],
combined with different training objectives like graph-property prediction, structural-
similarity prediction, or node/edge attribute prediction [81]. Pre-training based on
node/edge attribute prediction can be performed in a self-supervised manner, analo-
gous to NLP models [3].

In this approach, node/edge attributes are masked with a special mask indicator,
similar to the special mask token T[MASK] used in the NLP domain. The pre-trained GNN
predicts the masked attributes based on neighboring structures, yielding the respective
node/edge embedding. This embedding is then used in combination with an MLP to
predict the node/edge attribute.

Figure 2.7 [81] illustrates a schematic self-supervised pre-training process for GNNs
based on edge attribute prediction. The input graph consists of three nodes v1, v2, v3,
where all nodes are connected to each other. A masking model randomly masks edges
between the nodes with a special mask indicator. Then, a trainable graph encoder
processes the masked graph as input and outputs the corresponding embedding H . A
respective decoder is trained to predict the missing edge attributes.

Figure 2.7: Schema of a self-supervised GNN pre-training based on masked
edge attribute prediction.

CHAPTER 2. THEORETICAL BACKGROUND 22

2.2.5 Variance-Invariance-Covariance Regularization

VICReg [41] is a self-supervised representation learning method originating from the
domain of CV. VICReg trains different encoders by maximizing the agreement be-
tween embedding vectors based on differently data-augmented [82] views of the same
image, leading to information exchange across the encoders. Representation collapse
is a known problem in representation learning, where an encoder produces a constant,
non-informative representation that minimizes the loss but is impractical for downstream
tasks [52]. VICReg prevents this collapse by using two regularization terms applied to
the embeddings. One term maintains the variance across embedding dimensions to
prevent total representation collapse, while the other decorrelates each pair of variables
within an embedding to prevent dimensional collapse.

VICReg does not rely on established but expensive techniques to prevent the collapse
problem, such as large batch sizes [42], memory banks [43], momentum encoders [44],
quantization-based approaches [45], or a stop-gradient operation [46]. It even surpasses
these techniques, as well as its supervised counterpart, in downstream performance tasks
[41]. Furthermore, VICReg is highly flexible since the encoder and projector do not need
to follow a siamese shared-weight architecture [83].

Figure 2.8 [41] illustrates how VICReg operates with a shared-weight encoder and
projector for two inputs. A batch of images I is used as input data, where different
data augmentation transformations taug , t ′aug ∈ Taug (in the Figure referred to as t
and t ′) are applied to create different views X , X ′ of the same image. The encoders
produce different representations Y , Y ′ for the same image based on the different views
X , X ′. Each representation is further processed with a projection MLP, resulting in the
embeddings Z , Z ′. A specific loss function is applied to Z , Z ′ to maintain the variance
across a batch of embeddings, minimize the distance between the embeddings of the
same image, and decorrelate variables within each embedding.

Figure 2.8: Example architecture for VICReg based on weight sharing.

CHAPTER 2. THEORETICAL BACKGROUND 23

Variance Loss

The main objective of the variance loss is to maintain the variance across a batch
of embeddings. Equation 2.21 [41] defines the variance function Std(x , ϵstd) which
computes the standard deviation of a vector x which is stabilized with a stability term
ϵstd . Equation 2.22 [41] refers to VICRegs variance loss function ℓv . A batch of
embeddings Z serves as the input for ℓv . The embedding vector z j corresponds to
the j-th dimension from every sample within a batch. The loss function calculates the
standard deviation Std(z j) for every embedding dimension d across all embeddings in Z .
A hinge function ensures that only positive values are summed while a hyperparameter
γ can be used to set a minimum value for the function S to prevent a representation
collapse. Lastly, the loss is aggregated using the mean value.

Std(x , ϵstd) =
√

Var(x) + ϵstd (2.21)

• x as vector

• ϵstd as stability term

ℓv(Z) = 1
d

d∑
j=1

max(0, γ − Std(z j , ϵstd)) (2.22)

• γ as threshold parameter

• z j as embedding vector

• d as length of the embedding vectors

• Std as standard deviation with stability term ϵstd

Covariance Loss

The covariance loss prevents redundant representations of the embedding dimensions
by decorrelating the variables of the embeddings, thereby enforcing each embedding
dimension d to capture different information. Equation 2.23 [41] shows the calculation
of the covariance matrix Cov , where z̄ represents the mean value of an embedding
vector z . The covariance loss ℓc is defined in Equation 2.24 [41], which sums up
the off-diagonal terms of the covariance matrix Cov , corresponding to the correlation
between the embedding dimensions. The loss is scaled by the number of dimensions d .
The decorrelation at the embedding level also decorrelates the representations at the
encoder level [41].

CHAPTER 2. THEORETICAL BACKGROUND 24

Cov(Z) = 1
n − 1

n∑
i=1

(zi − z̄)(zi − z̄)T (2.23)

ℓc(Z) = 1
d
∑
i ̸=j

[Cov(Z)]2i ,j (2.24)

• Z as a batch of embedding vectors z ∈ Rd

• d as dimension

• z̄ as mean value of an embedding vector z

Invariance Loss

An invariance loss ℓs is defined to ensure that the embedding batches Z and Z ′ of two
differently augmented images are similar to each other in the latent space. Equation
2.25 [41] shows the invariance loss as the average mean-squared Euclidean distance
between the different embedded views zi and z ′

i , enforcing them to align.

ℓs(Z , Z ′) = 1
n∥zi − z ′

i ∥2
2 (2.25)

• Z , Z ′ as embedding batches

• zi , z ′
i as embedding vectors

Loss Function

Equation 2.26 [41] defines the VICReg loss function LV ICReg for the embeddings Z , Z ′

consisting of equations 2.22, 2.24, and 2.25. Thus, the loss function combines the
previously described losses and weights them according to their importance using the
hyperparameters λ,µ and ν.

LV ICReg(Z , Z ′) = λℓs(Z , Z ′) + µ[ℓv(Z) + ℓv(Z ′)] + ν[ℓc(Z) + ℓc(Z ′)] (2.26)

• λ as invariance regularization term

• µ as variance regularization term

• ν as covariance regularization term

• Z , Z ′ as embeddings of two differently augmented images

CHAPTER 2. THEORETICAL BACKGROUND 25

2.3 Statistics

2.3.1 Metrics

Mean Absolute Error

The Mean Absolute Error (MAE) refers to the mean average error based on the p1-norm
[84]. Equation 2.27 [84] describes the error metric based on n data points. The error
is calculated as the absolute value of the difference between the ground truth yi and
the prediction ŷi . Lower MAE scores correspond to a better-fitted model compared to
a model that yields high MAE scores.

MAE = 1
n

n∑
i=1
|yi − ŷi | (2.27)

• n datapoints

• y as ground truth and ŷ as prediciton

Coefficient of Determination

The Coefficient of Determination (also known as R2) quantifies the proportion of vari-
ance in the target variable that is explained by a regression model [85, p.556]. A higher
R2 value indicates that the model captures a greater amount of the variability in the
data. The R2 score is always a value between 0 and 1.

Equation 2.28 [85, p.556] defines the R2 score as the ratio of the sum of squares
explained by the regression model to the total sum of squares. The numerator mea-
sures how much the model’s predictions deviate from the mean, reflecting the explained
variance, while the denominator measures the total variance in the observed data.

R2 = Regression sum of squares
Total sum of squares =

∑n
i=1(ŷi − ȳi)2∑n
i=1(yi − ȳi)2 (2.28)

• n datapoints

• y as ground truth and ŷ as prediciton

• ȳ as mean ground truth value

CHAPTER 2. THEORETICAL BACKGROUND 26

2.3.2 Analysis of Variance

One-way ANOVA

The Analysis of Variance (ANOVA) is a statistical method used to test for significant
differences among the means of different groups by partitioning the total variance into
between-group and within-group components [86, p.161–218]. The F-statistic evaluates
the ratio of the between-group variance to the within-group variance, where a higher
value indicates greater evidence against the null hypothesis of equal group means.

Equation 2.33 [86, p.175] defines the F-statistic as the ratio of the mean square
between groups variability (MSb) to the mean square within groups variability (MSw).
The between-group sum of squares (SSb) and within-group sum of squares (SSw) are
calculated deviations where SSb captures the deviation between the group means, while
SSw measures the variation within each group. The MSb and MSw are derived by
dividing SSb and SSw by their respective degrees of freedom.

SSb =
G∑

g=1
n(X̄g − X̄)2 (2.29)

SSw =
G∑

g=1

n∑
i=1

(Xig − X̄g)2 (2.30)

MSb = SSb/(G − 1) (2.31)
MSw = SSw/(G · (n − 1)) (2.32)

F = explained variance
not explained variance = MSb

MSw
(2.33)

• G groups each containing n observations

• X̄g as group-specific means of a random variables Xg

• X̄ as grand mean value

• Xgi as the i-th realization of a random variable Xg

• MSb and MSw as the mean squares for the between and within group

CHAPTER 2. THEORETICAL BACKGROUND 27

Repeated Measures ANOVA

ANOVA for repeated measures extends the one-way design to handle within-subjects
factors, where the same participants are measured under multiple conditions or time
points [87, p.461–499]. This method partitions the total variance into between-subject
variability, within-subject treatment effects, and residual error. The F-statistic evaluates
whether systematic differences across conditions within subjects exceed the expected
random variability.

Equation 2.40 [87, p.469] defines the F-statistic as the ratio of the treatment mean
square (MStreat) to the error mean square (MSerror). The treatment sum of squares
(SStreat), calculated via Equation 2.34 [87, p.467], quantifies condition-specific devia-
tions from the grand mean. The total variability (SStotal) is computed as the sum of
squared deviations from the grand mean (Equation 2.35 [87, p.467]), while between-
subjects variability (SSsub) isolates differences attributable to individual subjects (Equa-
tion 2.36 [87, p.467]). The error sum of squares (SSerror), derived in Equation 2.37 [87,
p.467], represents residual variability after accounting for subject and treatment effects.
Mean squares are obtained by dividing sums of squares by their respective degrees of
freedom (Equations 2.38 [87, p.463] and 2.39 [87, p.463]).

SStreat = n
G∑

g=1
(X̄·g − X̄)2 (2.34)

SStotal =
n∑

i=1

G∑
g=1

(Xig − X̄)2 (2.35)

SSsub = G
n∑

i=1
(X̄i · − X̄)2 (2.36)

SSerror = SStotal − SSsub − SStreat (2.37)
MStreat = SStreat/(G − 1) (2.38)
MSerror = SSerror/((n − 1)(G − 1)) (2.39)

F = treatment variance
error variance = MStreat

MSerror
(2.40)

• n subjects measured at G groups (conditions)

• X as random variable

• X̄ as grand mean, X̄i · as subject mean, X̄·g as group mean

• Xig as a realization of the random variable X·g for the i-th subject and group g

CHAPTER 2. THEORETICAL BACKGROUND 28

2.3.3 Tukey Honestly Significant Difference Post-Hoc Test

The Tukey Honestly Significant Difference Post-Hoc test (Tukey test) is a post-hoc
procedure used after a significant ANOVA to identify which specific group means differ
across multiple comparisons [87, p.391–393]. It employs the studentized range distribu-
tion [87, p.389–391] to compute critical values for pairwise mean differences, ensuring
robustness against Type I error inflation.

Equation 2.41 [87, p.392] defines the minimum significant difference as a function of
the within-group mean square (MSw), the number of groups (G), and the sample size
per group (n). Pairwise differences exceeding this threshold are considered statistically
significant.

qα,tr ,df

√
MSw

n (2.41)

• G groups with equal sample size n per group

• MSw as within group mean from one-way ANOVA (Equation 2.30)

• df = G(n − 1) as degrees of freedom for the error term

• qα,tr ,df as critical value from the studentized range distribution at significance
level α for tr treatments

Chapter 3

Methods

3.1 Data

3.1.1 Pre-training Dataset

Beaini et al. [88] gathered and combined existing public molecular datasets to develop
new datasets that are appropriate for training large-scale molecular foundation mod-
els. Additionally, more high quality experimental labels were added to provide relevant
compound properties for supervised pre-training approaches. Three different datasets
are introduced which consists of smaller datasets from different molecular related do-
mains. For the model pre-training in this experiment the largemix dataset is used due
to its size and mixture of quantum and biochemical properties. The largemix dataset
involves four different datasets: PCQM4M_G25_N4, PCBA_1328, L1000_VCAP, and
L1000_MCF7.

PCQM4M_G25_N4

This dataset originates from the PubChemQC project [89], where quantum properties
of 3.8M (million) small molecules were computed. The molecules come from PubChem
[90], a database that contains chemical structures and bioactivity data. Beaini et al.
use given quantum properties like the HOMO-LUMO gap [91] and compute additional
3D descriptors based on the precomputed quantum properties, resulting in 25 regression
task labels. The labels of the regression tasks are standardized using z-scores to improve
training stability.

29

CHAPTER 3. METHODS 30

PCBA_1328

The PCBA_1328 dataset comprises 1.56M molecules annotated with 1328 distinct bi-
nary classification tasks derived from PubChem bio-assays [90]. For that, PubChem’s
bio-assay repository was systematically parsed by selecting assays that met stringent
criteria: each must include over 6000 molecules labeled as either Active or Inactive,
with at least 10 examples in both categories. The found molecular identifiers were
converted to canonical SMILES to unify the assays into a single dataset. Bio-assays
are experimental protocols that measure a molecule’s biological activity (e.g., binding
affinity, inhibition) against specific targets, such as proteins or cellular pathways. In this
context, Active denotes molecules exhibiting the desired biological effect (e.g., inhibiting
a disease-related enzyme), while Inactive refers to those lacking such activity [90].

L1000_VCAP/MCF7

The data in the L1000 datasets are from the LINCS L1000 database [92], containing
high-throughput transcriptomics data. VCAP and MCF7 refer to prostate and human
breast cancer cell lines, respectively, where 978 landmark genes [93] were screened
with around 30.000 perturbations. These perturbations originated from small drug-like
molecules that were added to the cell lines in order to investigate changes in gene ex-
pression. Therefore, the 978 landmark genes describe 978 ranked classification tasks
per dataset. Both L1000 datasets are excluded from the largemix dataset since the
proposed datasets can degrade performance for certain downstream tasks [94].

Table 3.1 summarizes the construction of the used pre-training data, highlighting their
diversity in data types, tasks, and scale. The PCQM4M_G25_N4 dataset contains
3.8 million (M) molecules annotated with 25 quantum mechanical properties for re-
gression (R) tasks. PCBA_1328 contains 1.6M molecules across 1328 bio-assay based
classification (C) tasks, capturing binary activity labels (active/inactive) against diverse
biological targets. The transcriptomics datasets L1000_VCAP and L1000_MCF7 are
smaller in scale (15.000 and 12.000 molecules, respectively) but include 978 multi-task
ranked classification (RC) labels each, derived from gene expression profiles in cancer
cell lines. The L1000 data are not considered due to their noisy behavior regarding
downstream tasks [94]. Therefore, the pre-training dataset consists of 5.4M molecules
with 25 regression tasks and 1328 binary classification tasks, capturing quantum and
biochemical properties of compounds. Intersecting SMILES between the pre-training
data and the downstream task data are removed in favor of the downstream dataset to
prevent bias due to previously seen molecules.

CHAPTER 3. METHODS 31

Dataset Type Task # mol. Labels Used
PCQM4M_G25_N4 Quantum R 3.8M 25 ✓

PCBA_1328 Bio-assays C 1.6M 1328 ✓

L1000_VCAP Transcriptomics RC 15k 978 ✗

L1000_MCF7 Transcriptomics RC 12k 978 ✗

Table 3.1: Properties of the pre-training data showing the used datasets,
corresponding dataset domain, task type, amount of molecules and amount
of labels.

3.1.2 Downstream Dataset

The public ADME dataset from Fang et al. [95] serves as a downstream dataset to
compare the different experiments, as the named dataset contains publicly available
high-quality ADME data [96]. Originally, Fang et al. compiled a comprehensive ADME
dataset by curating and standardizing experimental measurements over a span of two
years. They published a comparable ADME dataset consisting of 3516 unique com-
pounds, which are similar to the collected dataset based on pairwise compound similarity,
spanning an equivalent chemical space. The dataset contains molecules from commer-
cial vendor libraries and pre-clinical compounds, with six different endpoints: Human
Plasma Protein Binding (hPPB), Rat Plasma Protein Binding (rPPB), Solubility (Sol),
Rat Liver Micrososomal Stability (RLM), Human Liver Micrososomal Stability (HLM),
and Multidrug Resistance Protein 1 Efflux Ratio (MDR1-ER). The curated and prepro-
cessed version from Polaris [97] is used in this experiment.

Endpoints

All endpoints are regression tasks for different ADME properties, showing how a drug
behaves in the human body. For example, hPPB and rPPB both describe the plasma
protein binding [98, p.187-195] property of a drug, indicating how strongly a molecule
binds to proteins in blood. A low binding affinity can limit the drug’s ability to interact
with target proteins, a critical factor in the distribution phase of ADME. Plasma protein
binding is measured as a percentage of Bound Drug

Total Drug ×100, where the numerator represents
the amount of drugs bound to proteins, while the denominator includes the amount of
bound and unbound drug. The endpoints RLM and HLM [98, p.145-170] measure
how quickly a drug is metabolized by liver enzymes (metabolism in ADME). This is
quantified using the half-life t1/2, which describes the time required for 50% of the
drug to be metabolized. A short half-life indicates rapid metabolism, which reduces the
drug’s duration of action, leading to a higher dosing frequency.

CHAPTER 3. METHODS 32

The Sol of a drug quantifies how much a drug dissolves in water, describing the
absorption properties of compounds. Sol [98, p.56-86] can be expressed as a fraction
of dissolved mass to volume: Mass Dissolved(µg)

Volume(mL) , where low solubility values lead to poor
absorption. MDR1-ER [98, p.111-121] evaluates whether a drug is actively expelled
from cells by a specific protein, the MDR1 transporter, which influences a compound’s
absorption and distribution properties. MDR1-ER measures how strongly a drug is
pushed out of cells versus how well it enters a cell. It’s calculated by comparing the
drug’s exit speed to its entry speed, which is called the efflux ratio (ER). A higher
value means that a drug is less effective due to the cell’s active rejection system. The
particular equations of the in vitro assays used by Fang et al. [95] for the endpoints
hPPB, rPPB, RLM, HLM, and MDR1-ER can be found in Appendix A.1.1 as Equations
A.1-A.4.

Dataset Properties

The ADME endpoint values are transformed using the decadic logarithm operation for
stability purposes. Table 3.2 shows the number of compounds per endpoint, as well
as the mean, standard deviation, minimum, quartiles, and maximum value of each
endpoint. The count column shows that both plasma protein binding endpoints (hPPB
and rPPB) have far fewer data points compared to the four other endpoints. Labels
for the endpoints HLM and RLM are provided for around 87% of all given ADME
compounds, while 75% of all compounds have a label for the endpoint MDR1-ER and
62% of all molecules provide a Sol label. Labels for the endpoints rPPB and hPPB are
provided for only 6% of all molecules.

Task count mean std min 25% 50% 75% max
LOG HLM CLint 3082 1.32 0.62 0.68 0.68 1.20 1.80 3.37
LOG RLM CLint 3049 2.26 0.75 1.03 1.69 2.31 2.84 3.97
LOG MDR1-MDCK ER 2640 0.40 0.69 -1.16 -0.16 0.15 0.90 2.73
LOG HPPB 194 0.77 0.85 -1.59 0.17 0.87 1.50 2.00
LOG RPPB 168 0.76 0.80 -1.64 0.23 0.78 1.38 2.00
LOG SOLUBILITY 2173 1.26 0.68 -1.00 1.15 1.54 1.69 2.18

Table 3.2: Descriptive statistics for the unsplitted downstream dataset con-
taining six ADME endpoints (tasks).

CHAPTER 3. METHODS 33

The endpoints hPPB and rPPB are removed due to limited data availability. The
remaining data are split into a train and test set based on compound similarity clusters.
The Butina [64] algorithm is used to create clusters based on compound similarities
measured by the Tanimoto distance, with a distance cutoff threshold of dcutoff = 0.65
(equivalent to a Tanimoto similarity of 0.35) [99]. The corresponding molecular finger-
prints are calculated using the Morgan fingerprint [61] with 1024 bits and a radius of
2. After cluster calculation, the data is sorted based on cluster frequency, with com-
pounds assigned to the most frequent clusters listed first. The dataset is split so that
the 80% most frequent clusters are assigned to the training set, while compounds from
the 20% least frequent clusters are assigned to the test set. This ensures that the test
dataset contains the most structurally dissimilar compounds, challenging the model’s
generalization ability, unlike popular alternatives such as random splits or scaffold-based
approaches [100, 101]. Furthermore, the test split contains all singletons that were not
assigned to any similarity clusters. The distribution of the train and test splits can be
found in Appendix A.1.1 as Table A.1 and Table A.2.

The endpoint data is combined as a multi-task ADME dataset, since multi-tasking
is a known and efficient way to boost ADME prediction performance for neural network-
based models [102, 103]. Consequently, compounds can contain null values for tasks
where no label was provided. In addition, the datasets are also modeled as single-task
datasets using XGB to provide a performance baseline. Each single-task dataset consists
of one target column per endpoint, while both the single-task and multi-task models
involve the same compounds in their train and test splits, with the number of tasks
being the only difference.

3.1.3 Preprocessing

Tabular Representation

The tabular featurization strategy from Fang et al. [95] is implemented to represent
molecules as a combination of molecular descriptors and fingerprint bits. Accordingly, a
Morgan fingerprint [61] with 1024 bits and a radius of 2 is used to assess local features,
and 316 RDKit [104] descriptors are used as global features, resulting in a feature vector
of length 1340 per molecule.

CHAPTER 3. METHODS 34

Graph Representation

The graph representation is calculated using node and bond features per molecule with
Chemprop [26] graph featurizers. The following atom features are used for every atom
in a molecule: atom symbol, node degree, formal charge, chiral type, number of hydro-
gen atoms, atom mass, aromaticity information, and hybridization type, resulting in a
feature vector of length 72 consisting of 71 one-hot encodings of categorical features
and 1 continuous feature (atom mass). Atom bonds are featurized using a one-hot
encoded edge feature vector of length 14, involving bond information such as bond
type, conjugation, whether a bond is part of a ring structure, and information about
the stereochemistry.

Figure 3.1 [105] shows a schema of a featurized molecule which is constructed as a
graph G with edges E and vertices V where |V| corresponds to the amount of atoms
and |E| describes the amount of bonds betweem two atoms. Each vertex consists of
its own features as a feature vector of length dv , describing each atom i as a vector
vi ∈ Rdv . Each edge between two vertices i and j can also be featurized. Therefore, an
atom bond can be expressed as a vector ei ,j ∈ Rde of length de.

Figure 3.1: Schema of a molecular graph where each atom vi and bond ei ,j
consist of it’s own features.

Conformer Representation

A conformer is a distinct 3D spatial arrangement of a molecule’s atoms, arising from
rotations around single bonds and representing thermally accessible geometries, often
separated by low rotational barriers [106, p.22, p.41-44]. Hence, the conformer rep-
resentation uses the same node and edge features as the graph representation but
augments them with 3D coordinates. The 3D coordinates are calculated using a dis-
tance geometry-based method [107], which incorporates an experimental torsion angles
method named Experimental-Torsion Distance Geometry (ETKDG) [108]. A multi-step

CHAPTER 3. METHODS 35

approach is used to calculate the 3D coordinates, since these coordinates are not ob-
tainable for every molecule due to structural ambiguities and algorithmic limitations
[109].

Algorithm 2 shows this multi-step approach as pseudocode. The procedure to gen-
erate the coordinates takes a SMILES string and an integer (max_attempts) as input.
First, a SMILES string is converted into a molecule object, which is a structured rep-
resentation of a chemical compound as a graph. Then, hydrogen atoms are explicitly
added to the molecule because their positions affect bond angles, molecular volume,
and stability [109] when generating 3D coordinates. Afterwards, the ETKDG algorithm
[108] is applied to generate the 3D coordinates. If the first attempt fails, it retries with
randomized starting positions. The number of repetitions is parameterized by the argu-
ment max_attempts which was set to 100 in this work. Upon successful completion,
the 3D positions are refined using a method called Merck molecular force field (MMFF)
[110] to adjust the structure to a more realistic configuration with a low-energy state.
If the generation of the 3D coordinates fails (e.g., the molecule is too large or com-
plex [111]), a flat 2D representation is calculated instead. Lastly, the coordinates are
returned and added as a trainable graph feature.

Algorithm 2 Conformer Generation
1: procedure GenerateConformers(SMILES, max_attempts)
2: mol← Convert SMILES to molecule ▷ Initial parsing
3: Add hydrogens to mol ▷ Explicit hydrogen modeling
4: 3D_success← False
5: for attempt← 1 to max_attempts do
6: 3D_success← Attempt 3D coordinate generation (EmbedMolecule)
7: if 3D_success then
8: break
9: else

10: Randomize starting positions ▷ Retry with new initialization
11: end if
12: end for
13: if 3D_success then
14: Energy minimization (MMFF) ▷ Refine geometry
15: coords← mol.Get3DCoordinates() ▷ Retrieve optimized 3D coordinates
16: else
17: Generate2DCoordinates(mol) ▷ Fallback to 2D representation
18: coords← mol.Get2DCoordinates() ▷ Retrieve 2D coordinates
19: end if
20: return coords ▷ Return 3D or 2D coordinates based on success
21: end procedure

CHAPTER 3. METHODS 36

Text Representation

The text representation is created by implementing a SMILES tokenizer, which tokenizes
[76, p.35] the SMILES strings at the character level. Thus, each syntactical element
of the SMILES string is mapped to a unique integer representing a token to build up a
vocabulary of the SMILES language. Furthermore, special tokens for sequence padding,
unknown characters, and a Classification (CLS) token are added. A CLS token is a
special token typically used to aggregate information from the entire sequence to solve
a certain downstream task. Lastly, each token corresponds to an embedding vector
E ∈ Rd with an embedding dimension d of 128.

Figure 3.2 [112] outlines the featurizing process of a molecule suitable for training
language models. A molecule is expressed as a SMILES string and tokenized into unique
elements, which are mapped to unique integers. These integers are the token IDs, which
serve as indices for an embedding layer table containing trainable dense representations
of a token [29, p.506-507].

Figure 3.2: Schema of SMILES preprocessing for language models.

CHAPTER 3. METHODS 37

3.2 Architecture Details

3.2.1 Hyperparameter Tuning

Optuna [113] is used as a hyperparameter optimization framework to find an optimized
model architecture for the XGB, GIN, EGNN, and LSTM models based on the training
split of the ADME dataset. For this, a Bayesian [114] sampling algorithm is used, the
Tree-structured Parzen Estimator (TPE) [115]. The TPE algorithm iteratively models
the hyperparameter space by distinguishing high-performing configurations from poor
ones, prioritizing regions where optimal parameters are statistically likely. This enables
efficient exploration of the search space for all four architectures, balancing exploration of
new configurations and exploitation of known high-performing trials. The performance
is measured by the mean validation MAE based on a similarity 5-fold cross-validation.

Figure 3.3 outlines the hyperparameter tuning schedule. The training split of the
downstream dataset is used for tuning. The validation split is generated using the
Butina clustering algorithm [64] to validate a hyperparameter configuration on a 5-fold
cross-validation based on molecular similarity. This approach ensures that structurally
dissimilar compounds are partitioned into the test fold, minimizing bias from analogous
chemical structures during evaluation. Each model has its own pre-defined hyperparam-
eter space from which the TPE algorithm samples the model configuration by choosing
random parameters at first. For each hyperparameter tuning trial, 5 model instances are
created with the same sampled hyperparameters. Each model instance is trained on a
different fold out of the 5-fold cross-validation. The MAE on the test fold is aggregated
using the mean value. The mean validation MAE is assigned to the current hyperpa-
rameter set. After n initial trials, the TPE algorithm leverages this data to construct a
probabilistic model of high-performing configurations, prioritizing hyperparameters that
statistically minimize the validation MAE. The hyperparameter set that minimizes the
validation MAE the most is used as the model configuration for all further experiments.

CHAPTER 3. METHODS 38

Figure 3.3: Schema of Bayesian hyperparameter tuning based on compound
similarity in combination with a 5-fold cross-validation (Self-made Figure).

Neural Networks

Masked Multi-task Loss
A masked multi-task loss function is implemented to handle missing target values for
multi-task regression problems. This is crucial since not every compound in the multi-
task evaluation set contains a value for every endpoint (see Table 3.2). Thus, an
indicator function m(i)

t (Equation 3.1) is defined, which yields 1 if a target value yi ,t is
not NaN and 0 if it is. The index i refers to the sample index, while the index t refers
to the corresponding task (endpoints in the case of the ADME data). Additionally, the
function Nt (Equation 3.2) uses m(i)

t to identify the number of non-NaN values per task
in a batch B. Consequently, the function T ′

task (Equation 3.3) is defined as the indicator
function 1(Nt > 0), which counts the number of tasks containing at least one non-NaN
value per batch.

Equation 3.4 shows the masked multi-task loss function for regression tasks. Each
task t ∈ Ttask (four ADME endpoints) is viewed separately within the batch B to
calculate the task-specific loss. More specifically, for each task-specific target value yi ,t ,
the Mean Squared Error (MSE) is calculated as m(i)

t · (ŷi ,t − yi ,t)2, where the term m(i)
t

ensures that the MSE is calculated only for target values that are not missing. The
scaling term 1

max(Nt ,1) uses a max function to prevent a zero division error in case of a
batch where a task contains only NaN values by dividing by 1. Otherwise, the scaling
term uses the number of non-NaN values per task within a batch, denoted as Nt . This
results in a MSE calculation where the mean is based only on non-NaN values. Lastly,
another scaling term 1

T ′
task

and the indicator function 1(Nt > 0) ensure that the task-
specific loss values are aggregated by the mean operation, involving only tasks with
non-NaN values.

CHAPTER 3. METHODS 39

m(i)
t =

1 if yi ,t is not NaN
0 otherwise

(3.1)

Nt =
B∑

i=1
m(i)

t (3.2)

T ′
task =

Ttask∑
t=1

1(Nt > 0) (3.3)

LMSE = 1
T ′

task

Ttask∑
t=1

[
1

max(Nt , 1)

B∑
i=1

m(i)
t · (ŷi ,t − yi ,t)2

]
· 1(Nt > 0) (3.4)

• B as bach size

• Ttask as tasks

• ŷi ,t as prediction and yi ,t as target for sample i , task t

Tuning Details
For each neural network model (GIN, EGNN, and LSTM), thp = 100 tuning trials are
used. Inspired by the Google tuning playbook [116], the architecture hyperparameters
are tuned first, and the optimizer parameters are tuned afterwards based on the previ-
ously found architecture. While tuning the architecture, the AdamW [117] optimizer is
used with its standard parameters. The architecture tuning runs for t(a)

hp = ⌊t · s⌋ =
⌊100 · 0.66⌋ = 66 trials and uses n = t(a)

hp /2 = 33 starting trials, where s ∈ [0, 1] is
the fraction of trials used for architecture tuning. The architecture parameters involve
predictor parameters, which describe parameters of a regular MLP: hidden dimension,
dropout probability [118], and depth. Every encoder tunes the hidden dimensionality
of the encoder, the encoder depth, and the output dimensionality. The GIN and the
LSTM also tune the dropout probability of the encoder, which is left out for the EGNN
since its original implementation does not feature dropout layers [31]. The LSTM also
tunes the number of attention heads.

The optimizer tuning uses the previously best neural network architecture, identified
during the architecture tuning, to tune the parameters of an AdamW optimizer. There-
fore, t(o)

hp = ⌊t · (1 − s)⌋ = ⌊100 · 0.34⌋ = 34 describes the number of trials for the
optimizer tuning, with n = t(o)

hp /2 = 17 starting trials. The tuned optimizer parameters
are the coefficients for computing the running averages of the gradient and its square

CHAPTER 3. METHODS 40

(β1, β2), a numerical stability term ϵ, the initial learning rate ηinit , and the weight de-
cay coefficient λwd . Each network is trained for 1000 epochs with early stopping [119]
based on the validation loss, parameterized by a patience value of 20 for each fold.
Every network uses 5 warmup epochs [120] to gradually increase the learning rate to
stabilize training. A cosine-annealing scheduler with warm restarts [121] is used to adapt
the learning rate during training, with number of iterations T0 = 20, increasing factor
TM = 1, and a minimal learning rate ηmin = 1e−6. Furthermore, Monte Carlo dropout
[122] layers are used with 150 iterations for validating the test folds. Additionally, the
LSTMs are trained with 7 SMILES-augmentations [34] per SMILES string. SMILES-
augmentation refers to a method that creates different SMILES representations for the
same compound by using varying starting atoms and paths along the molecular graph,
resulting in different string representations. A fixed batch size of 128 is used for every
network architecture.

XGB

The XGB architecture is tuned for thp = 100 trials on every single-task (RLM, HLM,
Sol, MDR1-ER) ADME dataset. For that, n = thp/2 = 50 starting trials are used for the
hyperparameter tuning of XGB. The XGB hyperparameter space consists of the fraction
of column samples per tree, the algorithm’s learning rate, tree depth, minimum child
weight, number of trees, λL2 (L2) and αL1 (L1) regularization term, and the fraction of
a subsamples per tree. The hyperparameter spaces and their descriptive statistics are
described in Table A.3-A.12 in Appendix A.2. The best hyperparameter set for each
model can be found in Table A.13-A.19 in Appendix A.3.

3.2.2 VICReg for Computational Chemistry

In the original VICReg [41] paper, a siamese neural network [83] is trained on different
augmented views X , X ′ of the same image I ∈ I. This can be done in a self-supervised
manner since labels are not needed to align the output representations of the encoders
with the VICReg loss function (see Equation 2.26). The authors also state that VICReg
can be applied to multiple encoders without weight sharing. Different views X , X ′

of the same image I can be seen as different representations through transformations
taug , t ′aug ∈ Taug [82]. Applied to the domain of computational chemistry, different rep-
resentations S ′ of the same SMILES string S can be derived by using different modalities
through various SMILES featurizers ϕ·. Thus, various representations of the same com-
pound are created by utilizing the graph, conformer, and text modalities, with each
modality being processed by its respective encoder (GIN, EGNN, and LSTM).

CHAPTER 3. METHODS 41

Figure 3.4 shows how VICReg is adapted to the domain of computational chemistry.
A batch of compounds S serves as unlabeled training data, while different featurizers
ϕ′,ϕ′′,ϕ′′′ transform the compounds S into their corresponding modality representations
S ′, S ′′, S ′′′. Specifically, featurizer ϕ′ tokenizes and embeds the compounds S based on
the SMILES language, yielding a batch of d-dimensional embeddings S ′ to represent
the text modality. Featurizer ϕ′′ utilizes the graph modality of the compounds S by
featurizing every atom and bond between atoms of the compound with predefined node
and edge features, resulting in a batch of graph representations S ′′. Lastly, the featur-
izer ϕ′′′ uses the conformer modality by leveraging the 3D positions of compounds S
to create the conformer representations S ′′′. The different views of compounds S prop-
agate through their respective encoders to output batches of encoder representations
Y ′, Y ′′, and Y ′′′. Each encoder representation is further processed by a distinct pro-
jector P ′, P ′′, and P ′′′ to output batches of embeddings Z ′, Z ′′, and Z ′′′. Finally, the
projections are used with the VICReg loss function to minimize the invariance between
the embeddings Z ′, Z ′′, Z ′′′ and to maintain the variance within a batch Z ·. Further-
more, the loss function decorrelates the embedding dimensions d of every batch of
embeddings Z ·. Afterward, the projectors are discarded and each encoder can be saved
for further downstream task evaluation.

Figure 3.4: Transfering the VICReg architecture to computational chem-
istry where S is a batch of compounds, ϕ· is a modality specific featurizer
and S ′, S ′′, S ′′′ are batches of different compound views. Each encoder
yields a representation Y · which is expanded through a projector P · to
output an embedding Z ·. The VICReg loss function operates on the em-
beddings Z (Self-made Figure).

CHAPTER 3. METHODS 42

The invariance loss function (see Equation 3.7) is slightly adapted to provide train-
ing stability when using more than two encoders. The invariance loss ℓs calculates the
pairwise mean squared Euclidean distance (see Equation 2.25) between two embedding
batches Zi and Zj . Consequently, the invariance loss is calculated as the sum of every
unique pairwise combination of two embedding batches Zi and Zj from a list of em-
bedding batches ZList = [Z1, ..., Zn]. Thus, ZList contains the embeddings from each
modality-specific encoder, resulting in a list of 3 batches (graph, conformer, and text
modality). For stability purposes, the invariance loss is scaled with a factor of λ

Ccomb

to ensure training stability where Ccomb is the result of the binomial coefficient
(|ZList |

2
)

resulting in
(3

2
)

= 3 pairwise invariances. A function P(ZList) (Equation 3.5) is defined
for a list of embedding batches Z to yield every unique pair of two distinct embed-
ding batches Zi , Zj ∈ ZList | i ̸= j . Accordingly, the variable Ccomb (see Equation 3.6)
corresponds to the cardinality of the resulting set P(ZList) which is equivalent to the
binomial coefficient

(|ZList |
2
)
.

P(ZList) = {{Zi , Zj} | 0 ≤ i < j < |ZList |} (3.5)

Ccomb =
(
|ZList |

2

)
= |P(ZList)| (3.6)

Equation 3.7 shows the VICReg loss function LV ICReg adapted to n encoders. The
encoder outputs result in a list of embedding batches ZList containing batches Z1, ..., Zn.
The regularized variance loss µ · ℓv(Zi) and the regularized covariance loss ν · ℓc(Zi) are
calculated independently for every batch Zi ∈ ZList . The invariance loss is computed as
the mean of the pairwise invariance losses over all unique unordered pairs of elements
in ZList, and is scaled by the regularization term λ.

LV ICReg(ZList) = λ

Ccomb

Ccomb∑
i ,j

ℓs(Zi , Zj) + µ
∑

i
ℓv(Zi) + ν

∑
i

ℓc(Zi) (3.7)

• ZList as a list of embedding batches Z1, ..., Zn yielded by n different encoders

• Ccomb as amount of pairwise embedding batch combinations (Equation 3.6)

• P(Z) (Equation 3.5) as function to provide embedding pairs

• λ,µ, ν as VICReg regularization terms

• ℓs as invariance loss (Equation 2.25), ℓv as variance loss (Equation 2.22) and ℓc

covariance loss (Equation 2.24)

CHAPTER 3. METHODS 43

3.3 Performance Evaluation

3.3.1 Evaluation Protocols

Linear Downstream Evaluation

A linear evaluation protocol is implemented similarly to the works of self-supervised rep-
resentation learning models from the CV domain [41, 43, 42, 46]. For this, an evaluation
schedule is used in which a linear multi-task regressor is trained on the frozen repre-
sentations of a pre-trained encoder and evaluated on the test split. Each regressor is
trained for 200 epochs with the masked multi-task loss (Equation 3.4). A linear learning
rate warmup with 10 epochs, a batch size of 256, an AdamW optimizer with default pa-
rameters, and a cosine-annealing scheduler with maximum number of iterations Tmax =
190, minimal learning rate ηmin = 1e−6, initial learning rate (after warumup) ηinit = 1e−3

is used for the training process. For stability purposes, Batch Normalization (BN) lay-
ers [123] are added to normalize the frozen representations. The evaluation process is
repeated with 30 different random seeds resulting in a distribution of test metrics for
every encoder [124, 125, 41, 97].

Figure 3.5 visualizes the linear evaluation protocol. A batch of compounds S is
featurized with a modality-specific featurizer ϕ·, yielding a different representation of
compounds S ·. The featurized compounds S · are propagated through a frozen encoder,
which outputs the corresponding representations. These representations are used to
train a BN layer paired with a linear layer that outputs the downstream prediction.
After training, the linear regressor is evaluated on the unseen test split.

Figure 3.5: Schema of the linear evaluation protocol. A linear layer paired
with a BN layer is trained on the frozen encoder representation to test an
encoder’s representation capability (Self-made Figure).

CHAPTER 3. METHODS 44

Transfer Learning Downstream Evaluation

A more flexible evaluation protocol is implemented using transfer learning [67, p.602-
607] to evaluate the effect of the different pre-training strategies. For this, only the
encoders’ BN layers are kept frozen, as this approach helps maintain the stability of
feature representations during training [126]. Instead of a linear layer, an MLP with
4 layers, 512 hidden dimensions, BN layers, dropout layers with dropout probability
pdrop = 0.2, and the Mish [127] activation function is used for the downstream task.
The AdamW optimizer is used with default parameters, except the initial learning rate
after the warmup epochs, which is set to 1e−3 for the predictor and 1e−4 for the
encoder to ensure that the learned weights are not changed too drastically. Again, the
downstream task is described by the ADME dataset, which is why the masked multi-task
loss function is used. The transfer learning evaluation protocol uses the same training
schedule configuration as the linear evaluation protocol. Furthermore, each transfer
learning evaluation run is also performed 30 times with different random initializations
to capture uncertainties in the test metric distributions.

Figure 3.6 visualizes the transfer learning protocol. A batch of compounds S is
featurized by a featurizer ϕ· to provide a batch of suitable compound modalities S · for
the corresponding encoder. The encoder and the predictor are trained while the encoder
BN layers remain frozen.

Figure 3.6: Just the parameters of the encoders BN are kept frozen for the
transfer learning evaluation protocol. An MLP is trained on the downstream
task instead of just a linear layer (Self-made Figure).

CHAPTER 3. METHODS 45

3.3.2 Assess Performance Differences

The resulting test metric distributions from the evaluation runs are used for statistical
tests with multiple comparisons. Therefore, each model evaluation run results in 30 R2
and MAE samples, which capture the performance and uncertainty of the correspond-
ing model. These metrics are compared to assess whether significant differences exist
between different experiments by using a repeated measures ANOVA. If the p-value is
≪ 0.05, a Tukey test serves as a post-hoc procedure to show which experiment differs
significantly from the rest. The test metric distributions are always compared within the
same endpoint.

3.4 Experiments

Several experiments are conducted to investigate how different training strategies influ-
ence the encoders’ performance on the downstream task with the ADME dataset. The
experiments can be grouped by similar types of training strategies, while sub-experiments
differ in chosen aspects.

3.4.1 No Pre-training

The "No Pre-training" experiment involves the training and evaluation without using
the largemix pre-training dataset. Therefore, only the training split of the ADME is
used for model training.

XGB and Neural Networks

Every model is trained on the training split and evaluated on the test split of the ADME
data, while a 10% fraction of the training split serves as a validation split for techniques
such as early stopping. The validation split is based on structural compound similarity
using Butina clusters as the splitting criterion. The XGB models are trained with the
tabular compound representation and serve as the baseline models for each respective
endpoint. Hence, each encoder paired with an MLP is trained and evaluated on the
same ADME data based on the previously determined hyperparameter configurations.
The neural networks are trained with the masked multi-task loss, while the XGB uses
the MSE for single-task problems.

CHAPTER 3. METHODS 46

The XGB, GIN, EGNN, and LSTM models are trained 30 times with different random
weight initializations to generate test metric distributions, which are further utilized for
statistical testing. The neural networks use the previously determined architecture and
optimizer hyperparameters instead of using the default AdamW parameters or a pre-
defined MLP configuration like in the transfer learning evaluation.

VICReg

The VICReg model is trained with a batch size of 512 for 300 epochs. The encoders
are configured with the best architecture hyperparameters found during hyperparameter
optimization, except for the encoder output size, which is set to 512. Each encoder
uses a distinct projector with 3 layers, where each layer has 512 hidden units and the
output layer has 1024 hidden units. The projectors have BN layers and a Rectified Lin-
ear Unit (ReLU) activation function. An AdamW optimizer is used with a weight decay
coefficient of 1e−3 and an initial learning rate after the warmup epochs of ηinit = 1e−2.
A cosine annealing scheduler is used to adapt the learning rate with the parameters
Tmax = 295, ηmin = 1e−5, while 5 warmup epochs are used to provide a stable start to
the training process. The VICReg regularization parameters, which resulted from the
ablation study of the original work, where λ = µ = 25 and ν = 1, are used since they
performed the best [41]. Each VICReg encoder is saved and evaluated with both eval-
uation protocols, yielding a test metric distribution for each endpoint. This experiment
should provide initial insights into VICReg’s test performance, making comparisons to
other experimental settings possible.

3.4.2 Model-agnostic Pre-training

A supervised, model-agnostic pre-training strategy is implemented, which uses the
labeled largemix dataset. The dataset contains 3.8M compounds labeled with 25
quantum-based regression tasks (PCQM4M_G25_N4) and 1.6M compounds labeled
with 1328 binary bio-assay classification tasks (PCBA_1328). The dataset is sparse
and does not contain every task label for every compound, which is why the masked
multi-task loss from Equation 3.4 is used again. The same issue is present for the
binary classification tasks. Consequently, a masked multi-task binary classification loss
function is defined, analogous to the masked regression loss function.

CHAPTER 3. METHODS 47

Masked Multi-task Classification Loss

The masked classification loss is created by using the Binary Cross-Entropy (BCE) [77,
p.206], which is shown in Equation 3.8. The BCE quantifies the dissimilarity between
the probability distribution of the ground truth label y and the predicted probabilities
derived from logits ŷ . The term σ(ŷ) denotes the sigmoid function applied to the logits
to obtain probabilities. For each sample, the BCE combines two terms to compute the
loss value.

The first term −y log(σ(ŷ)) calculates the loss for predicting the positive class (y =
1). The term yields a small loss if the ground truth is similar to the transformed logits
σ(ŷ), since the log transformation outputs smaller numbers for values that converge
to 1. The sign ensures that the loss is a positive value because the log transformation
of numbers between 0 and 1 is always negative. In contrast, the loss magnitude is
higher when the transformed logit value converges to 0, since the logarithm of values
approaching zero tends to negative infinity, resulting in a larger penalty.

The second term, −(1−y) log(1−σ(ŷ)), describes the loss calculation for predicting
0 labeled targets (y = 0). This term yields a small value if the transformed logit refers
to a lower probability towards the positive class, since − log(1− σ(ŷ)) becomes smaller
due to the log transformation of a number converging to 1. In the opposite case, the
loss increases.

Equation 3.9 displays the masked multi-task classification loss function. For each
task t ∈ Ttask , the BCE is calculated for each sample i within a batch B. If sample
i has no label for task t, the function m(i)

t (Equation 3.1) yields 0, while in any other
case it is weighted wit 1. Accordingly, the sum

∑B
i=1 m(i)

t · ℓBCE(ŷi ,t , yi ,t) sums up the
BCE loss for every case where a valid label yi ,t is provided for observation i and task t.
A scaling factor 1

max(Nt ,1) provides the scaling factor for an effective mean aggregation
operation, depending on the amount of missing values within a batch of a multi-task
dataset, where Nt (Equation 3.2) refers to the number of observed tasks t in batch
B. If the batch contains only NaN values, a value of 1 is used in the denominator to
prevent a zero division error. The function T ′

task (see Equation 3.3) serves as a sum of
indicator functions Nt (see Equation 3.2) to count the number of tasks that have at
least one non-NaN value per batch, to aggregate the task-wise losses as the mean value
through a scaling factor 1

T ′
task

.

CHAPTER 3. METHODS 48

ℓBCE(ŷ , y) = −y log(σ(ŷ))− (1− y) log(1− σ(ŷ)) (3.8)

LBCE = 1
T ′

task

Ttask∑
t=1

[
1

max(Nt , 1)

B∑
i=1

m(i)
t · ℓBCE(ŷi ,t , yi ,t)

]
· 1(Nt > 0) (3.9)

• σ(z) = 1
1+e−z [29, p.195] as sigmoid function

• B as batch size

• Ttask as tasks

• ŷi ,t as prediction logits and target yi ,t for sample i , task t

• ℓBCE as BCE loss function

Hybrid Supervised model-agnostic Pre-training Architecture

A multiheaded MLP architecture is implemented, which uses the masked multi-task
regression (Equation 3.4) and classification (Equation 3.9) losses to train any encoder
architecture on the labeled largemix dataset in a supervised manner.

Figure 3.7 visualizes the pre-training process when using the hybrid supervised,
model-agnostic pre-training strategy. A batch of compounds S is featurized by a featur-
izer ϕ· into a batch of featurized compounds S · suitable for a modality-specific encoder.
The supervised pre-training model consists of the encoder and a multiheaded MLP,
which is composed of a projector P and two loss-specific multi-task heads H1 and H2.
The encoder yields a batch of representations Y for every compound in S ·. These repre-
sentations are expanded by the projector into a batch of embeddings. The embeddings
are used to train a head H1 for regression tasks and a head H2 for classification tasks.
The heads H1 and H2 are smaller, task-specific, multi-task MLPs.

CHAPTER 3. METHODS 49

Figure 3.7: Architecture of the model-agnostic pre-training network. An
encoder is trained with the largemix data in a supervised manner where a
projector P has a head for regression and for classification tasks. The loss
is calculated independently and aggregated to update the weights of the
model (Self-made Figure).

Agnostic Pre-training Experiments

Encoder-wise
A GIN, EGNN, and LSTM encoder are pre-trained with the hybrid supervised, model-
agnostic pre-training architecture on the largemix dataset. Each agnostic pre-training
run is conducted over 1000 epochs using early stopping based on the validation loss
configured with a patience of 30. The validation split is generated using a random split
with a fraction of 10%. The batch size is set to 4096 and the encoder output size
to 1024, while the remaining encoder architecture parameters are set to those found
by hyperparameter tuning. Each training run uses 5 warmup epochs, an AdamW op-
timizer with default parameters, and a cosine annealing scheduler with warm restarts,
where T0 = 20, and ηmin = 1e−5. SMILES strings with a length longer than the 0.99
quantile regarding sequence length are removed, since long sequences can cause GPU
bottlenecks for large batch sizes. As a consequence, around 5k compounds are dropped
from the pre-training dataset. Additionally, the LSTM uses two A100 GPUs instead of
one, with a data parallel strategy that allows for efficient training by splitting the input
data across the GPUs. The LSTM is also trained with 5 SMILES augmentations per
SMILES string. After the model-agnostic pre-training terminates, the encoder is saved
while the multiheaded MLP is discarded. Each saved encoder is evaluated using both
the linear and the transfer learning evaluation protocols. The LSTM evaluation uses the
tokenizer that was built on the training split of the pre-training set.

CHAPTER 3. METHODS 50

VICReg
The VICReg model is trained with the same constraints as the LSTM on the largemix
pre-training dataset. Thus, SMILES strings longer than the 0.99 length quantile are
removed, two A100 GPUs are used instead of one, and the training tokenizer is used
for the LSTM evaluation. The VICReg model is trained for 30 epochs with a batch
size of 4096. The encoder dimension is set to 2048 and the projector dimension to
4096. The remaining parameters are set analogously to those of the No Pre-training
VICReg experiment. In contrast to the VICReg parameters of the experiment without
the largemix pre-training, gradient clipping [67, p.322] is used and the initial learning
rate after the warmup epochs ηinit is set to 1e−3 preventing unstable gradients.

VICReg on Pre-trained Encoders
A VICReg model is trained using the pre-trained encoders from the model-agnostic
pre-training to investigate whether the use of already pre-trained encoders makes a
difference for pre-training with VICReg. For this purpose, the same setting from the
VICReg training on largemix is used, with the only difference being that the encoders
are already pre-trained instead of randomly initialized.

3.4.3 Model-specific Pre-training

The third experiment focuses on modality-specific self-supervised pre-training strategies.
Therefore, the largemix dataset is still used as the pre-training dataset, but the labels
are not part of the training process. An MLM-based approach is used for the LSTM,
while both GNN architectures are trained with a node masking strategy.

Specific Pre-training Architectures

LSTM
An MLM is implemented to pre-train the LSTM encoder for the specific pre-training
experiments. In contrast to BERT [3], only the token masking strategy is deployed and
no sentence prediction task is used. Therefore, a batch of token IDs is randomly masked
with a masking probability of 15%, and the LSTM tries to predict the masked tokens
with a small classifier. The cross-entropy [77, p.206] loss is used as the loss function.

GIN and EGNN
The GIN and EGNN encoders are trained with the same specific self-supervised pre-
training strategy, since both modalities operate on graph-structured data. A masked
node attribute pre-training strategy [80] is implemented with a mask probability p =

CHAPTER 3. METHODS 51

15% to decide which nodes are masked out in the current batch, using the zero vector
as an attribute mask for each chosen node. Thus, the node feature matrix contains the
targets for the self-supervised training in combination with a small predictor for each
node feature. Different loss functions are used since the node attributes involve different
feature types. Additionally, only the predictions for the masked-out nodes are taken into
account for the loss calculation to prevent overfitting on the given node attributes. The
loss value for the multilabel classification tasks is calculated with cross-entropy, the loss
for the binary feature is calculated using BCE, and the loss for the regression task is
calculated with the MSE. The different loss values are aggregated as a mean value.

Figure 3.8 visualizes the GNN-based pre-training using node attribute masking as a
self-supervised method. A graph consisting of 3 nodes serves as an input example. The
colors yellow, orange, and red indicate the types of different features: yellow-colored
features are categorical features with more than 2 categories, orange-colored features
refer to binary classification features, and red-colored features are continuous regression
features.

The first step ("1. Featurizing") of the pre-training schedule is the featurizing step.
The result of featurizing a graph is an adjacency matrix representing the connectivity
between atoms and a node feature matrix. The node feature matrix contains the features
of every node, where the rows correspond to the nodes and the columns to the features.
Different features are concatenated, resulting in a long feature vector with either bits
or continuous numbers to represent a featurized atom.

The second step ("2. Feature Masking") shows how node features are masked.
A node mask is calculated based on the masking probability p to choose which nodes
are masked out. In this example, node 3 is masked out with the corresponding mask
[0, 0, 1]. The masked-out node is highlighted with a red border in the node feature
matrix, consisting of only 0 values for each node attribute.

Finally, step three ("3. Self-Supervised Training") visualizes how the GNNs are
trained in a self-supervised manner. The node feature matrix containing the masked-out
nodes propagates through the GNN-based encoder, yielding logits for each node. The
true labels are inferred from the unmasked node feature matrix. The encoder logits of
each feature are used to train a linear head, where each feature has its own classification
or regression head. The output is used with the ground truth realization to calculate a
loss based on the feature type. The losses are aggregated as a mean value.

CHAPTER 3. METHODS 52

Figure 3.8: Example of a GNN specific pre-training run with a molecule
consisting of three nodes. The properties of the third node are masked
out using a zero vector, enabling a self-supervised training for the GNN by
predicting the masked features (Self-made Figure).

Specific Pre-training Experiments

Encoder-wise
The three modality-specific encoders are pre-trained on the largemix dataset with the
respective modality-specific pre-training strategy. Each pre-training uses an AdamW op-
timizer with default parameters, a batch size of 4096, and a cosine-annealing scheduler
with Tmax = epochs and ηmin = 1−6. Due to a fast training loss convergence the GNNs
are pre-trained for 7 epochs, with 2 warmup epochs and a masking probability p = 15%,
while the LSTM is pre-trained for 30 epochs with 5 warmup epochs, a masking prob-
ability p = 15%, and 5 SMILES augmentations per SMILES string. Again, the LSTM

CHAPTER 3. METHODS 53

runs on two A100 GPUs, and compounds with a compound length ≥ 0.99 compound
length quantile are removed from the pre-training data.

VICReg on Pre-trained Encoders
To investigate whether it makes a difference if a VICReg model is pre-trained with
agnostic pre-trained encoders, modality-specific self-supervised pre-trained encoders, or
no pre-trained encoders, a VICReg model is trained on the largemix dataset with the
modality-specialized pre-trained encoders. The hyperparameters are chosen analogously
to the VICReg training parameters from the largemix data.

Chapter 4

Results and Discussion

4.1 Effect of Pre-training

In the following, the effect of model-agnostic supervised and model-specific self-supervised
pre-training is investigated by comparing the results of the respective pre-training strate-
gies with those of the baseline model (XGB). The results are also compared with those
of neural networks that used optimized hyperparameters for the optimizer and predic-
tor without pre-training, to determine whether different pre-training strategies provide
any benefit for ADME prediction as downstream tasks. Each section follows the same
schema, where the linear and transfer learning evaluation results are described first and
then discussed. Moreover, after each results subsection, a brief summary of the supple-
mentary material is provided to support the observed results with additional information.

4.1.1 Linear Evaluation

Figure 4.1 shows the different test MAE distributions depending on encoder type, ex-
periment, random state, and downstream task for the linear evaluation protocol. The
y -axis shows the test MAE, while each column represents a different model type. The
x -axis refers to the different experiments, which describe the two different pre-training
strategies in this case, where "Agnostic Pretrain" refers to the model-agnostic supervised
pre-training and "Special Pretrain" refers to the modality-specialized self-supervised pre-
training strategies depending on the encoder modality. The color corresponds to the
four different ADME downstream tasks: blue-colored values refer to the RLM test
scores, orange-colored values refer to the HLM test scores, green-colored values refer
to the Sol test scores, and red-colored values refer to the MDR1-ER test scores. The
dotted lines provide information regarding the single-task XGB models as baseline per-
formance. Each endpoint contains 30 different value points per experiment, referring

54

CHAPTER 4. RESULTS AND DISCUSSION 55

to 30 re-trained model instances that were initialized with different random seeds to
capture the uncertainty of each experiment.

The results show that the agnostic pre-training strategy yields superior results com-
pared to the modality-specific pre-training for GNN-based models (GIN and EGNN), as
the results of the agnostic pre-training have lower test MAE values for each endpoint.
The LSTM results differ from this observation, as the modality-specific pre-training
yields better results for the Sol endpoint. However, the agnostic pre-training is still
superior for the remaining three endpoints. Additionally, the GNN models even surpass
the MDR1-ER scores of the XGB with the linear evaluation protocol. The modality-
specific pre-trained LSTM results are on par with the XGB’s Sol results, while the XGB
outperforms every other linear evaluated model for every other endpoint.

Figure 4.1: Test MAE results regarding the linear evaluation protocol for
the ADME downstream tasks. Generally, the agnostic pre-training shows
superior results which can even surpass the XGB results for MDR1-ER.

Supplement Figure B.1 shows the test R2 scores for the same evaluation procedure,
capturing the same observation since the agnostic pre-training achieves superior results
compared to the modality-specific pre-training results. The agnostic pre-trained GNN
models even surpass the test R2 scores of the XGB for the endpoints Sol and MDR1-ER
based on the linear evaluation.

The model-agnostic supervised pre-trained GIN model is significantly better than
the self-supervised pre-trained GIN for both test metrics, except for the R2 results on
endpoint HLM (see Supplement Figures B.3 and B.4). The EGNN results from the
agnostic pre-training are significantly superior to those from the modality-specific pre-
training when using the linear evaluation protocol (see Supplement Figures B.7 and
B.8). The LSTM results show a similar trend except for endpoint Sol, where the MLM-
based pre-training shows superior performance on both test metrics for that particular
endpoint (see Supplement Figures B.11 and B.12).

CHAPTER 4. RESULTS AND DISCUSSION 56

4.1.2 Transfer Learning

Figure 4.2 follows the same construction schema as Figure 4.1. Therefore, the figure vi-
sualizes the test MAE performance of different encoders coming from the transfer learn-
ing evaluation protocol. Additionally, the results from the models without pre-training
which contain optimized predictor and optimizer hyperparameters are also included and
referred to as "No Pretrain." Again, the GNN-based models (GIN and EGNN) show
similar results compared to the linear evaluation, as the results of the agnostic super-
vised pre-training strategy exceed those of the self-supervised pre-trained models and
the models without pre-training. This is particularly visible for the endpoint MDR1-ER
when comparing the agnostic pre-trained model results to the model results without
pre-training, and for the endpoints MDR1-ER, RLM, and HLM regarding the modality-
specific pre-trained GNN model results.

Thus, the GNN models without pre-training show similar results to the agnostic
pre-trained GNNs, yielding better results than the modality-specific pre-trained GNNs.
Nevertheless, the supervised pre-trained GNN and the GNN models without pre-training
outperform the baseline XGB on every endpoint. The supervised pre-trained GNN mod-
els also show superior performance compared to the GNN models without pre-training.
Both GNN models with the self-supervised, modality-specific pre-training perform at
least as well as the baseline XGB, depending on the random seed since the RLM per-
formance seems worse than the XGB performance for most of the random states.

The LSTM results differ from the GNN results because the results from the modality-
specific pre-trained model surpass those from the LSTM without pre-training. Analogous
to the GNNs, the supervised agnostic pre-training yields better results than the model
without pre-training. However, the LSTM results based on the modality-specific pre-
training outperform the supervised pre-training results for the endpoints HLM, Sol, and
RLM. The LSTM with supervised pre-training yields the best test MAE scores for the
endpoint MDR1-ER. Lastly, both LSTM pre-training strategies outperform the baseline
XGB results on all four endpoints. The LSTM without pre-training shows inferior test
MAE scores for all four endpoints.

CHAPTER 4. RESULTS AND DISCUSSION 57

Figure 4.2: Summary of the transfer learning evaluation protocol for dif-
ferent pre-training strategies regarding the test MAE scores. The agnostic
pre-training seems superior for graph based models, while the MLM based
approach performs the best for the LSTM model.

Supplement Figure B.2 displays the transfer learning results regarding the test R2
score. The GNN-based models show a similar trend compared to the MAE results, as the
agnostic pre-training yields superior results for all endpoints. The modality-specific pre-
trained GNN results are inferior to the models using the optimized configuration without
pre-training and the baseline XGB. The GNN models without pre-training are superior
to the baseline XGB but inferior to the model-agnostic pre-trained GNNs. The LSTM
without pre-training shows inferior R2 results compared to the baseline model for every
endpoint. However, both LSTM pre-training strategies lead to test R2 distributions that
are at least as good as the XGB results for every endpoint.

The test MAE results for the agnostic pre-trained GIN model from the transfer
learning evaluation protocol are significantly superior for endpoints RLM, HLM, and
MDR1-ER compared to the other experiments, while the GIN model without pre-training
achieves similar results for HLM (see Supplement Figure B.5). The Sol results of all
three GIN experiments show no significant differences, resulting in similar test MAE
scores that are significantly better than the XGB’s MAE scores. For the test R2 scores,
the agnostic pre-trained GIN model significantly outperforms every other model for every
endpoint (see Supplement Figure B.6), with the exception that the GIN model without
pre-training shows similarly high R2 scores for endpoint HLM.

The agnostic pre-trained EGNN model yields significantly better test MAE and R2
scores for every endpoint compared to the other EGNN models in this experiment,
while the EGNN model without pre-training yields similar results for RLM and HLM
(see Supplement Figures B.9 and B.10). The transfer learning results of the LSTM
encoder show that the specialized pre-training strategy provides significantly better MAE
scores compared to the other LSTM models for endpoints RLM, HLM, and Sol (see
Supplement Figure B.13). The agnostic pre-trained LSTM achieves the best MAE scores
for MDR1-ER.

CHAPTER 4. RESULTS AND DISCUSSION 58

The test R2 results are endpoint-dependent: the XGB baseline and the specialized
pre-trained LSTM achieve the best results for endpoint Sol, the agnostic pre-trained
LSTM achieves the best results for MDR1-ER, the self-supervised pre-trained LSTM
achieves the best results for endpoint RLM, and both the agnostic pre-trained LSTM
and the specialized pre-trained LSTM achieve the best results for endpoint HLM (see
Supplement Figures B.14).

4.1.3 Impact of Pre-training Strategies

The results of the linear evaluation protocol provide a first impression of the represen-
tation capability of the different encoders, since only the parameters of a BN and a
linear layer are trained, resulting in only a few adjustable parameters for the ADME
downstream tasks. The transfer learning evaluation leverages a slower encoder up-
date to retain the information gained from the pre-training step through the use of a
lower encoder-specific learning rate. Generally, the pre-trained models show superior
and significantly better results for every modality-specific encoder, which proves that
the pre-training of different neural network architectures can have beneficial advantages
regarding downstream task performance [128, 129, 3], making the domain of computa-
tional chemistry no exception [130, 131, 80].

The supervised model-agnostic pre-training strategy yields the best results for the
GNN-based models regarding the ADME downstream task performance scores (see Sup-
plement Figures B.3-B.10). Hence, the agnostic pre-trained GNN models provide better
representation abilities compared to the baseline XGB and the other pre-training strate-
gies. This observation aligns with findings from GNN-specific pre-training experiments,
which show that supervised pre-training can be overall superior to self-supervised pre-
training when using node attribute masking as a self-supervised pre-training strategy
[80]. Furthermore, the GNN results from the node attribute masking pre-training strat-
egy are inferior to those of the GNNs without pre-training, mostly because the GNNs
without pre-training have optimized predictor and optimizer hyperparameters tailored to
the ADME data space. Therefore, those models might contain hyperparameters already
adjusted to the properties of this particular ADME dataset, while the predictor and
optimizer parameters of the pre-trained models are fixed to default parameters, making
the superiority of pre-trained models in this comparison even more meaningful.

However, the LSTM benefits from both pre-training strategies, as both pre-trained
LSTM models outperform the LSTM without pre-training and the XGB for most down-
stream tasks. One reason is certainly the poor performance of the LSTM without
pre-training, which yields the worst results for every endpoint (see Supplement Figures
B.13 and B.14). This result may originate from the small size of the training split

CHAPTER 4. RESULTS AND DISCUSSION 59

from the ADME dataset (see Supplement Table A.1), since language models require
large data sources to work properly [132, 133]. Therefore, pre-training the LSTMs with
SMILES augmentations [34] is a crucial step, as the augmentation of SMILES strings
expands the size of the pre-training dataset even further. This is particularly important
for self-supervised pre-training using MLM, as it enables the LSTM to leverage vast
amounts of diverse unlabeled data, allowing it to learn different contextual relation-
ships and patterns of the chemical language expressed through the SMILES notation
system. Consequently, both supervised and self-supervised pre-training are valid strate-
gies, yielding competitive test metrics on the downstream tasks and confirming that
language models combined with self-attention are highly capable of learning complex
patterns from large data sources [3, 134].

The superiority of the supervised agnostic pre-training strategy could also originate
from a closer relation between the supervised tasks and the downstream task [135] since
the largemix dataset contains bio-assay expression data. Thus, the captured information
about biochemical activities may give the agnostic pre-training strategy an advantage
towards the ADME downstream task [136] making it suitable for supervised model-
agnostic pre-training experiments for bio-chemical related tasks.

An additional factor for the "poor" performance of the self-supervised GNN pre-
training approach might lay in the diversity of different node attributes using chemical
featurizing approaches because these attributes may not capture the full complexity of
the chemical structures represented in the SMILES strings. This limitation could be
coming from the overrepresentation of carbon atoms in organic chemistry [106, p.1]
datasets, which dominate most molecular structures and may make the atom attribute
prediction easier compared to other self-supervised or supervised pre-training tasks.

Exploring alternative more sophisticated self-supervised GNN pre-training strategies
such as contrastive learning [137, 138], Graph level similarity prediction [139, 140], a
combination of node and edge masking [81], or contextualized node predictions [80]
might better account for the nuanced roles of carbon and other heteroatoms.

In summary, pre-training strategies can significantly enhance model performance
in computational chemistry for ADME prediction as downstream tasks. A solely self-
supervised pre-training approach seems to be inferior compared to supervised pre-training
strategies for GNNs confirming findings from other experiments [80], while language
models benefit from self-supervised learning via MLMs. The supervised model-agnostic
pre-training leads to outperforming results for every modality specific encoder.

CHAPTER 4. RESULTS AND DISCUSSION 60

4.2 Different VICReg Strategies

This section focuses on experiments involving different pre-training strategies with
VICReg to investigate which settings result in the most beneficial outcomes for the
ADME downstream tasks.

4.2.1 ADME vs Largemix

One experiment is conducted where a VICReg model is trained with the largemix data
and another where a VICReg model is trained with the training split of the evaluation
data, to investigate how different pre-training dataset sizes affect VICReg’s downstream
performance. Thus, the experiment with the VICReg model trained on the ADME data
is labeled "ADME," while the VICReg model trained with the largemix dataset is labeled
"Largemix." The resulting encoders from both experiments are evaluated using the linear
and transfer learning evaluation protocols on the ADME data.

Linear Evaluation

Figure 4.3 summarizes the results of the linear evaluation protocol for the test MAE
metric, using the same visualization as in the pre-training comparison. The MAE is
generally lower for the encoders where the VICReg model was trained with the largemix
dataset. This is particularly evident for the endpoints MDR1-ER, RLM, and HLM, as
the performance gap between the experiments is rather large. However, the performance
benefit for Sol is also present, though smaller. This is especially notable for the LSTM
encoder, since the performance gaps are larger between the different LSTM results.
The baseline XGB shows superior test MAE scores on every endpoint compared to every
encoder, indicating that the yielded representations are not sufficient to train a linear
layer.

CHAPTER 4. RESULTS AND DISCUSSION 61

Figure 4.3: Aggregated VICReg results for each encoder on each endpoint
(color). Each point refers to a different random seed for the linear eval-
uation protocol. ADME refers to the pre-training on the ADME training
split, while largemix refers to the pre-training on the largemix dataset. The
y-scale refers to the test MAE coming from an evaluation of the ADME
dataset.

Supplement Figure B.15 shows the linear VICReg evaluation for the test R2 met-
ric. The results are analogous to the MAE results, where the VICReg trained on the
largemix data consistently outperforms the VICReg results trained on the ADME data
for the linear evaluation protocol. The results from the linear-evaluated VICReg en-
coders trained with the largemix dataset are significantly superior to the results from
the ADME pre-training for every encoder and every test metric (see Supplement Figures
B.17 and B.18 for GIN, Figures B.21 and B.22 for EGNN, and Figures B.25 and B.26
for the LSTM).

Transfer Learning

Figure 4.4 shows the results of the transfer learning evaluation protocol for different
dataset sizes. The VICReg model trained on the largemix pre-training dataset achieves
overall better results, similar to the linear evaluation protocol. Each encoder achieves
better test MAE scores on each endpoint, with the LSTM showing the largest im-
provements. Comparing the results to the baseline XGB scores, it is notable that the
downstream task performance of VICReg trained on the ADME dataset is inferior for
every endpoint. On the other hand, the VICReg performance resulting from pre-training
on the largemix dataset shows that every encoder achieves at least similar performance
compared to the XGB, depending on the random state. The EGNN shows superior
MDR1-ER results and similar Sol results, while the RLM and HLM results are inferior
compared to the XGB. The GIN encoder shows similar results, with the difference be-
ing the outperforming HLM performance of the GIN model, while the LSTM seems to
outperform the XGB on every endpoint.

CHAPTER 4. RESULTS AND DISCUSSION 62

Figure 4.4: Aggregated VICReg results for each encoder on each endpoint
(color). Each point refers to a different random seed for the transfer learn-
ing evaluation protocol. ADME refers to the pre-training on the ADME
training split, while largemix refers to the pre-training on the largemix
datasetThe y-scale refers to the test MAE coming from an evaluation of
the ADME dataset.

Supplement Figure B.16 displays the transfer learning evaluation for the test R2
metric. The GIN encoder yields analogous results compared to the MAE results for every
endpoint, where the results from the largemix pre-training appear to be slightly better.
The EGNN shows overall better test R2 scores with lower variance when pre-trained on
the largemix data, which is also true to a larger extent for the LSTM encoder. Analogous
to the linear evaluation differences, every transfer learning difference is significantly
better when using the larger pre-training dataset for VICReg training on every metric-
endpoint combination (see Supplement Figures B.19 and B.20 for GIN, Figures B.23
and B.24 for EGNN, and Figures B.27 and B.28 for LSTM).

4.2.2 Different Pre-training Strategies

Furthermore, the effect of using different pre-trained encoders for the VICReg training
is investigated. For that, the results of a VICReg training with randomly initialized
encoder weights, a VICReg model that uses the encoder weights of the model-agnostic
pre-trained experiment, and a VICReg model that uses the encoder weights of the
modality-specific pre-trained experiment are compared to show if a VICReg training with
pre-trained encoders yields a benefit over a VICReg training using randomly initialized
encoder weights.

CHAPTER 4. RESULTS AND DISCUSSION 63

Linear Evaluation

Figure 4.5 shows the results of the linear evaluation protocol for VICReg trained with
either randomly initialized encoders (referred to as "Largemix"), encoders from the
model-agnostic supervised pre-training (referred to as "Pre (Agnostic)"), and encoders
from the modality-specific pre-training (referred to as "Pre (Specific)"). Starting with
the GIN results, it is notable that the VICReg results based on the agnostic pre-trained
encoders show lower test MAE scores for the endpoints RLM and HLM, while the results
for the endpoints Sol and MDR1-ER seem worse compared to the other two weight
initializations. The EGNN shows analogous results. However, the test MAE results of
the randomly initialized VICReg appear to be worse than the pre-trained encoder variants
for the LSTM. Thus, for the LSTM results, both VICReg runs with differently initialized
encoder weights based on different pre-training strategies yield lower MAE scores for
every endpoint, where the training with the agnostic pre-trained weights shows lower
error scores for the endpoints RLM and HLM, while the training with the specialized
pre-trained weights shows lower error scores for every endpoint. The comparison to the
XGB is analogous to the previous comparison between the linear evaluated VICReg and
XGB, since the baseline model outperforms every encoder on every endpoint.

Figure 4.5: Aggregated VICReg results for each encoder on each endpoint
(color). Each point refers to a different random seed for the linear evalua-
tion protocol. Largemix refers to a VICReg training with random initializa-
tion, Pre (Agnostic) refers to a VICReg training with agnostic pre-trained
encoders, while Pre (Special) refers to a VICReg training with modality
specific pre-trained encoders.

Supplement Figure B.29 shows the test R2 scores for this experiment. The GNN-
based models show similar trends, where the training with the agnostic pre-trained
encoders is superior to the other two alternatives. The specialized pre-trained encoder
weights show no clear benefit, yielding similar test R2 scores compared to the random
initialization. Analogous to the MAE results (Figure 4.5), the VICReg model with the
agnostic pre-trained weights shows benefits for the endpoints RLM and HLM, while no

CHAPTER 4. RESULTS AND DISCUSSION 64

clear benefits are observable for the results of the endpoints Sol and MDR1-ER. The R2
results for the LSTM encoder show that the agnostic pre-trained weights provide better
test R2 scores for every endpoint compared to the random initialization. Additionally,
the modality-specific pre-trained weights yield better test results for every endpoint
except RLM compared to the randomly initialized weight experiment.

Supplement Figures B.17, B.18, B.21, and B.22 show that the use of agnostic pre-
trained encoder weights results in significantly better outcomes for the endpoints RLM
and HLM when using GNN-based architectures. However, the results for the endpoints
Sol and MDR1-ER are still superior when using the randomly initialized weights. Figures
B.25 and B.26 show that either one of the pre-training weights demonstrates significantly
better results depending on the endpoint. The use of the agnostic pre-trained encoder
weights yields the best results for the endpoints RLM and HLM, while the specialized
pre-trained weights result in the best outcomes for the endpoints Sol and MDR1-ER.

Transfer Learning

Figure 4.6 shows the transfer learning results for VICReg models trained with either
randomly initialized or pre-trained encoder weights. The downstream task performance
of the GIN encoder varies by the used encoder weights because the VICReg model using
randomly initialized weights shows worse performance for the endpoints Sol and RLM
compared to the test scores from the VICReg model with the pre-trained encoders.
Furthermore, the MDR1-ER and HLM performance seem to be better when using the
model-agnostic pre-trained encoder weights since the uncertainty of the VICReg trained
with the randomly initialized encoders seems higher indicated by the larger variance of
the test metric distributions. The EGNN results from the randomly initialized VICReg
model and the model instance where the specialized pre-training weights were used are
rather similar regarding the Sol, RLM, and HLM MAE performance. The randomly ini-
tialized model shows better MDR1-ER results compared to the VICReg experiment with
the specialized pre-trained weights. Nevertheless, the EGNN results from the agnostic
pre-trained experiment are generally better for any given endpoint when compared to the
other two EGNN results. The LSTM also shows that the results from a VICReg training
based on agnostic pre-trained encoder weights surpass the results from the random ini-
tialization and specialized pre-trained encoders. The randomly initialized LSTM results
seem better than the results from the VICReg model using the specialized pre-trained
encoders for every endpoint. Comparing the VICReg model with randomly initialized
weights and the model using the supervised pre-trained encoders to the XGB baseline
scores shows that the use of the pre-trained encoders results in a larger gap between
the downstream task performance and the baseline model for every endpoint and every

CHAPTER 4. RESULTS AND DISCUSSION 65

encoder. The gap is usually larger for the endpoints MDR1-ER and HLM.

Figure 4.6: Aggregated VICReg results for each encoder on each end-
point (color). Each point refers to a different random seed for the transfer
learning evaluation protocol. Largemix refers to a VICReg training with
random initialization, Pre (Agnostic) refers to a VICReg training with ag-
nostic pre-trained encoders, while Pre (Special) refers to a VICReg training
with modality specific pre-trained encoders. The y-scale refers to the test
MAE coming from an evaluation of the ADME dataset.

Supplement Figure B.30 shows the respective results for the R2 test scores. All
encoders show the same trend, where the results from the agnostic pre-trained encoders
yield the highest test R2 scores for any tested endpoint except for the LSTM since the
Sol performance is marginally worse for some random states compared to the other two
evaluation strategies.

Supplement Figures B.33, B.34, B.37, and B.38 show that using the weights from
agnostic pre-trained GNN models yields overall significantly better results for most of
the endpoints. Only the endpoints RLM and Sol show that the modality-specific pre-
trained GIN results are on par with the GIN results coming from the model-agnostic
pre-trained GIN encoder, while the results from the randomly initialized VICReg model
are always inferior. For every endpoint except Sol, the LSTM yields significantly better
results when using the agnostic pre-trained encoder weights. The test R2 scores for
Sol show no significant differences across all three experiments, while the test MAE
results indicate that the random initialization yields similar results compared to the use
of model-agnostic pre-trained encoders.

4.2.3 Impact of Differing VICReg Strategies

Both the VICReg pre-training on the ADME training split and the pre-training on the
largemix data yield test performances showing that VICReg is capable of learning mean-
ingful representations of molecules. However, the pre-training on the largemix results in
superior test scores, underscoring the importance of dataset scale for self-supervised pre-

CHAPTER 4. RESULTS AND DISCUSSION 66

training [141], providing supporting evidence that the domain of computational chem-
istry is no exception [142]. The results also highlight that the regularization setting
from the original VICReg [41] work is most likely to prevent the collapsing problem with
λ = µ = 25, ν = 1, since not a single VICReg experiment suffered from representation
collapse.

Furthermore, it appears that the weight initialization of the VICReg encoders sig-
nificantly affects the performance of downstream tasks, outlining that better VICReg
representations can be obtained by using pre-trained encoders for the VICReg training.
For that, it appears that VICReg models using the agnostic pre-trained encoders yield
the best test results. This observation aligns with the results from the pre-training ex-
periments (Section 4.1), showing that the learned representations from the previously
pre-trained encoders are further utilized, which affects the downstream task performance
significantly. On the other hand, the modality-specific pre-trained encoders yield only
significant benefits for some of the four downstream tasks. In some cases, the ran-
domly initialized VICReg model shows superior performance compared to the use of the
modality-specific pre-training weights (e.g., Endpoint HLM in Supplement Figure B.32
or endpoint MDR1-ER in Supplement Figures B.33, B.34, B.35, and B.36). This is
more often the case for the EGNN encoder than for the other encoder types, outlining
that the use of pre-trained encoders may not affect every encoder equally.

Ultimately, the use of different encoder weights reflects a similar trend to the pre-
training evaluation without VICReg. This seems plausible since the exact encoder
weights resulting from the pre-training experiments were used as initialization for the
VICReg training, which heavily influences the training process. Consequently, the bio-
assay information regarding the downstream tasks, as well as the inferior performance
coming from the self-supervised GNN pre-training, is reflected in the VICReg results.
The superiority of the MLM-based pre-training for the LSTM encoder is not apparent
in the VICReg results because the agnostic pre-trained encoder initialization dominates
the LSTM results (See Supplement Figure B.39-B.42), indicating that the gained infor-
mation from the self-supervised pre-trained LSTM is overshadowed by the information
from the self-supervised pre-trained GNNs. Hence, the use of pre-trained encoders can
significantly affect the VICReg training process for downstream performance and the
representation capability of VICReg.

CHAPTER 4. RESULTS AND DISCUSSION 67

4.3 Across Experiments

Lastly, the results from the VICReg experiments are compared to the results from the
pre-training experiments without VICReg to investigate if VICReg provides any benefits
for training chemical foundation models. Therefore, the results from the VICReg models
(either randomly initialized, initialized with agnostic pre-trained encoders, or initialized
with specific pre-trained encoders) are compared with the results from the agnostic/spe-
cific pre-trained encoders without VICReg. The XGB results and the results of the tuned
task-specific model architectures without pre-training are shown as references.

4.3.1 Linear Evaluation

Figure 4.7 displays the results for the linear evaluation protocol, reflecting the previously
described results. For the GIN encoder, the supervised model-agnostic pre-training yields
the best test MAE scores for any endpoint, visible through a rather large gap compared
to the other experiments. The second-best results come from the node masking self-
supervised pre-training, which yields the second-best results for any endpoint except
MDR1-ER and RLM because the VICReg model with the random and the self-supervised
pre-training initialization shows better MDR1-ER results and the VICReg model using
the agnostic pre-trained encoders shows better RLM results. The remaining GIN results
reflect the outcome of the previously discussed experiment, where the VICReg with
the agnostic pre-trained weight initialization has the best performance except for the
endpoint MDR1-ER. The EGNN shows similar results, where the supervised model-
agnostic pre-training scores the best test MAE results with a large gap compared to the
other experiments. The second-best results are endpoint-dependent, since the second-
best MDR1-ER results come frome the VICReg strategy using the randomly initialized
encoders, the second-best HLM and RLM results come from the VICReg model with
the supervised agnostic pre-trained weight initialization, and the second-best Sol results
come from the self-supervised pre-trained EGNN model. The LSTM results yield no
model that is superior to the others since the ranking is endpoint-dependent. There-
fore, the VICReg model with the agnostic pre-trained weight initialization yields the best
RLM results, the self-supervised pre-trained encoder using a MLM provides the best Sol
results, and the agnostic pre-trained encoder achieves the best MDR1-ER and HLM
results. Using the XGB as a baseline model, it appears that a simple linear layer can
achieve even higher results by using frozen representations in some cases. This observa-
tion is visible for the endpoints MDR1-ER when using the agnostic pre-training strategy
for GNN-based models and Sol when using the self-supervised MLM-based pre-training.

CHAPTER 4. RESULTS AND DISCUSSION 68

Figure 4.7: Aggregated VICReg and pre-trained results without VICReg
for each encoder on each endpoint (color). Each point corresponds to a
different random seed used in the linear evaluation protocol. Pre (Agnos-
tic) refers to supervised agnostic pre-training, while Pre (Special) refers
to modality-specific pre-trained encoders. VICReg (Agnostic) denotes the
use of an agnostic pre-trained encoder for VICReg training, VICReg (Ran-
dom) indicates VICReg pre-training with randomly initialized encoders, and
VICReg (Special) shows results from VICReg with modality-specific pre-
trained encoders. The y-axis represents the test MAE score obtained from
evaluation on the ADME dataset.

Supplement Figure B.43 shows the test R2 scores for the same models. Again, the
GNN-based models show similar observations, with the difference that the supervised
agnostic pre-training achieves the best R2 scores for every endpoint. For the LSTM,
the results show no model that achieves the best results for every endpoint at the same
time. The best test R2 scores for MDR1-ER come from the VICReg model with the
self-supervised initialized weights and the model-agnostic pre-training. The best RLM
and HLM R2 scores are the outcome of the VICReg with the supervised agnostic pre-
training initialization, while the best Sol scores originate from the self-supervised MLM
approach. The GNN models pre-trained with the supervised schedule can still compete
with the XGB test results regarding the endpoints MDR1-ER and Sol.

Supplement Figures B.45, B.46, B.49, and B.50 show that the supervised pre-trained
GNN-based models achieve significant superiority regarding the linear evaluation pro-
tocol (excluding XGB) for both test metrics. Like before, there is no LSTM training
strategy that yields the best results for every endpoint. Supplement Figures B.53 and
B.54 show that the self-supervised MLM-based pre-training provides the best Sol scores,
the supervised agnostic pre-training provides the best MDR1-ER scores, the VICReg
model with the agnostic pre-trained weights provides the best RLM results, while the
best HLM results are achieved by the agnostic pre-trained LSTM and the LSTM coming
from the VICReg experiment with the model-agnostic pre-trained initialization.

CHAPTER 4. RESULTS AND DISCUSSION 69

4.3.2 Transfer Learning

Figure 4.8 shows the transfer learning results for the test MAE scores. This comparison
also includes the results from the models involving optimized predictor and optimizer
hyperparameters, which is referred to as "No Pre" (No Pre-training). The GIN results
show that the supervised agnostic pre-trained GIN model achieves the best test MAE
scores for every endpoint, which is closely followed by the results of the task-specific
GIN architecture without pre-training. The EGNN results follow a similar trend, since
the supervised agnostic pre-trained EGNN yields the best results, followed by the EGNN
without pre-training. The best LSTM results are shared by the supervised agnostic and
the self-supervised pre-training, since the MLM-based approach shows the best HLM,
RLM, and Sol results, while the supervised pre-training provides the best MDR1-ER
results. It is notable that every pre-training strategy achieves better results than the
LSTM without pre-training. Comparing the pre-training results to the XGB baseline, it
appears that almost every experiment reaches at least the same test MAE scores for the
endpoints HLM and Sol, depending on the random state except for the modality specific
pre-trained EGNN and the LSTM without pre-training. The same observation is visible
for MDR1-ER, except for the LSTM model without pre-training and the one pre-trained
with the VICReg model involving the specialized pre-trained encoders. The XGB’s
RLM performance is superior in most cases since only the optimized models without
pre-training (except LSTM) or models using the agnostic pre-training outperform the
baseline model on this endpoint.

CHAPTER 4. RESULTS AND DISCUSSION 70

Figure 4.8: Aggregated VICReg and pre-trained results without VICReg
for each encoder on each endpoint (color). Each point corresponds to a
different random seed used in the linear evaluation protocol. The x-label
"No Pre" shows the results without pre-training but with optimized predic-
tor and optimizer parameters. Pre (Agnostic) refers to supervised agnostic
pre-training, while Pre (Special) refers to modality-specific pre-trained en-
coders. VICReg (Agnostic) denotes the use of an agnostic pre-trained
encoder for VICReg training, VICReg (Random) indicates VICReg pre-
training with randomly initialized encoders, and VICReg (Special) shows
results from VICReg with modality-specific pre-trained encoders. The y-
axis represents the test MAE score obtained from evaluation on the ADME
dataset.

Supplement Figure B.44 shows the test R2 scores for the same models. Again, the
GNN-based models show similar observations to the MAE results, with the difference
that the supervised agnostic pre-training achieves the best R2 scores for every endpoint,
closely followed by the results from the model without pre-training. The highest test
R2 scores from the LSTM are the outcome of the supervised and self-supervised pre-
training closely followed by the VICReg, yielding similar results. Notably, the VICReg
results with the supervised initialization are on par with the best results.

Supplement Figures B.47, B.48, B.51, and B.52 show that the supervised agnostic
pre-training dominates the transfer learning evaluation protocol significantly for GNN-
based models, followed by the VICReg with the agnostic pre-trained weights. Sup-
plement Figures B.55 and B.56 show that either the self-supervised or the supervised
pre-training leads to the best LSTM results with a significant difference.

4.3.3 Comparing VICReg to other Pre-training Strategies

The results show that the best downstream task evaluation performance scores originate
from the supervised model-agnostic pre-training, highlighting the success of pre-training
as a prevalent technique to leverage model performance [128, 80, 15, 142, 139]. How-
ever, the GNN-based models without pre-training yield the second-best results (See
Figure 4.8), underlining that the models without pre-training exhibit two advantages

CHAPTER 4. RESULTS AND DISCUSSION 71

described by optimized predictor and optimizer hyperparameters. This finding indi-
cates that the separate tuning schedule regarding the architecture and optimizer tuning
strategy from the Google tuning guide [116] yields effective results. Additionally, those
hyperparameters were tuned on a strict cross-validation evaluation schedule through
the use of a similarity cross-validation based on the Butina [64] clustering algorithm,
enhancing the generalization ability of those models.

The success of the supervised model-agnostic pre-training may originate from the
fact that the supervised pre-training tasks contain bio-assays, describing a related do-
main to the ADME downstream tasks, since ADME describes biochemical properties of
a drug. A beneficial effect using the PCBA bioassay data as supervised pre-training for
biochemical-related tasks was already shown in an experiment by Laufkötter et al. [136],
where pre-training on the PCBA dataset improved binding prediction tasks. Therefore,
the learned representations from the model-agnostic pre-training and the models without
pre-training yield good results for the ADME downstream task, showing that the labeled
largemix data is appropriate for pre-training for biochemical-related downstream tasks
and that task-specific models trained with rigid splitting techniques are still relevant.
Nevertheless, an evaluation on a completely different downstream task would provide
evidence of whether the supervised agnostic pre-training remains superior compared to
the other pre-training methods. As previously discussed, the masking of node attributes
alone may be to simply due to the high amount of carbon atoms as nodes, explaining
the poor performance of the conducted self-supervised GNN pre-training experiments.

However, the evaluation scores of VICReg are often similar to the test scores of
the self-supervised GNN pre-training methods, indicating that deploying VICReg to the
domain of chemoinformatics doesn’t provide any benefit based on the results of this
experiment, since the supervised agnostic pre-training and the models without pre-
training are outperforming VICReg on the ADME downstream task. Even so, this
doesn’t mean that VICReg isn’t suitable as a method to create chemical foundation
models, because the conducted experiments are all based on one VICReg setting derived
from the original VICReg implementation [41]. An extensive ablation study is needed to
fully reveal the potential of VICReg, similar to the ablation study of the original work.
This could involve longer training, since the VICReg model is trained for 30 epochs due
to training convergence, experiments with different batch sizes, experiments with larger
encoder settings since the encoder settings are tied to the hyperparameter optimization
on the small ADME training split, experiments using even more data since labels are not
needed, experiments using shared weights architectures [83] like in the original VICReg
paper, experiments using different projector sizes, or experiments that test different
regularization settings for the VICReg hyperparameters λ,µ, and ν.

CHAPTER 4. RESULTS AND DISCUSSION 72

Nonetheless, the adaptation of VICReg to the domain of computational chemistry
is possible without encountering a representation collapse and still leverages the LSTM
downstream performance compared to the LSTM without pre-training, indicating that
language models with self-attention benefit from pre-training on large datasets [3, 15,
142]. Regardless, this was not the case for the GNN-based models, since the task-specific
results are outperforming the self-supervised pre-training experiments. Additionally, the
MLM-based self-supervised pre-training shows results that are at least on par with the
supervised agnostic pre-training results, demonstrating that techniques from the field of
NLP can be successfully adapted to the domain of chemoinformatics. This highlights
the use of SMILES augmentations [34] due to the ease of generating larger datasets
from scratch, which is particularly useful for self-supervised approaches. Also, most
of the pre-training procedures (including the VICReg results) yield results that are at
least as good as the XGB baseline results, which are powerful on their own, because the
XGB models are tuned on the single-task endpoints using the same rigid cross-validation
tactic.

Consequently, VICReg is capable of yielding meaningful representations in a self-
supervised manner, meaning that labels are not needed for model training, making
it a promising technique for building chemical foundation models that scale with the
amount of available unlabeled training data. Further experiments need to be conducted
to investigate which VICReg settings are preferable in the domain of computational
chemistry, since the performance of GNNs and MLM-pre-trained LSTMs are powerful
alternatives that outperformed the VICReg results in the described experimental settings.

Another notable observation is the performance trend regarding the test metrics of
the different ADME downstream tasks, namely the endpoints RLM, HLM, Sol, and
MDR1-ER. In most of the results, the endpoint MDR1-ER is coupled with the best
performance metrics, followed by HLM. The other two endpoints (RLM and Sol) are
assigned lower performance scores overall, indicating that the downstream tasks are
correlated with each other. Figure 4.9 shows the pairwise correlation matrix between the
targets of the downstream ADME tasks. The pairwise correlations are only calculated
if two entries for the same molecule exist. The matrix visualizes the Pearson correlation
ρ ∈ [−1, 1], where a value near 0 indicates no correlation. It appears that the endpoints
RLM and HLM are highly correlated, with a correlation coefficient ρ = 0.76. This is
plausible since RLM and HLM are described by the same in vitro assay [95], with the
only difference being that the liver microsomes come from rats (RLM) [143] instead
of humans (HLM), capturing similar ADME properties. Another positive correlation
is observable between Sol and MDR1-ER, with a ρ = 0.18, describing a relationship
between the solubility and permeability properties of a molecule [144]. In contrast to

CHAPTER 4. RESULTS AND DISCUSSION 73

the named correlations, further negative correlations are apparent between the Clint
assays (RLM and HLM), permeability assay (MDR1-ER), and the solubility assay (Sol),
indicating that the ADME downstream tasks are connected to each other [145, 146, 147],
making the ADME dataset suitable for multi-task learning [68].

Figure 4.9: The correlations between downstream tasks reveal that ADME
properties are related to each other which is in particular visible for RLM
and HLM.

Moreover, the results for the endpoint Sol contain lower test R2 and higher test MAE
scores compared to the other endpoints (See Figures 4.1-4.8). This reflects inherent
limitations in representing solubility through molecular features alone, which isn’t an
uncommon problem for ADME prediction tasks [148, 95]. Similarly, the results for
the endpoint RLM also have higher test MAE values compared to the other endpoint
results. A possible explanation could be described by the correlation between RLM,
Sol, and the other endpoints. Thus, the multi-task training leverages the predictions
on the other endpoints [143] at the cost of the RLM and Sol performances due to
the aggregated masked multi-task loss function (See Equation 3.4), as the individual
loss values are combined using the mean operation. This aligns with observations in
multi-task learning where negative transfer arises from conflicting gradient dynamics or
misaligned task hierarchies [149, 150]. Future work could explore task-specific weighting
schemes or hybrid single/multi-task architectures to mitigate these trade-offs. However,
the single-task XGB test performances follow the same pattern, where the RLM and Sol
test scores are generally worse than the test performance regarding the endpoints HLM

CHAPTER 4. RESULTS AND DISCUSSION 74

and MDR1-ER. Therefore, another hypothesis could be that the similarity-based train
and test split is simply more favorable for the endpoints HLM and MDR1-ER.

Ultimately, the experiments reveal that while supervised pre-training and non-pre-
trained GNNs outperform VICReg on ADME tasks, VICReg’s self-supervised approach
shows promise for label-free foundation models, particularly benefiting LSTMs through
pre-training on SMILES strings. Despite VICReg’s current limitations, potentially due
to suboptimal hyperparameters or a lack of diversity in downstream tasks, its adapt-
ability and the success of MLM-based methods highlight the viability of state-of-the-art
methods from other domains such as CV (VICReg) and NLP (MLM) in chemoinfor-
matics. Future work should explore architectural adjustments, extended training, and
task-specific optimization to unlock VICReg’s full potential.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work has explored the adaptation of VICReg to the domain of computational chem-
istry by employing three different chemical modalities for self-supervised learning. In
particular, a GIN encoder was used to assess the graph modality, an EGNN encoder was
used to provide the conformer modality, and an LSTM encoder produced the chemical
language representation of a molecule.

In addition to VICReg pre-training, a supervised model-agnostic pre-training ap-
proach and self-supervised, modality-specific pre-training techniques were developed: a
MLM-based approach was used for the LSTM encoder and a node-attribute masking
approach was used for the GNN-based architectures. All three pre-training architectures
were trained on a large-scale public dataset suitable for creating chemical foundation
models. The pre-trained models were evaluated using both linear and transfer learning
evaluation protocols on four different ADME prediction downstream tasks. Single-task
XGB and multi-task GIN, EGNN, and LSTM models were optimized on the ADME data,
serving as baseline results. The following findings provide answers to the previously de-
fined research questions (see Section 1):

(i) Based on the conducted experiments, the supervised, model-agnostic pre-training
strategy generally outperformed the self-supervised, modality-specific approach.

(ii) This thesis shows that a multi-modal adaptation of VICReg to computational
chemistry is both feasible and effective. By integrating a graph (GIN), a conformer
(EGNN), and a chemical language (LSTM) modality, the approach successfully
learns molecular representations without encountering a representation collapse,
highlighting the method’s flexibility and robustness. Furthermore, VICReg per-
formed at least as good as the basline XGB for some of the endpoints using the

75

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 76

transfer learning evaluation protocol, indicating that the learned molecule repre-
sentations are meaningful.

(iii) VICReg performed significantly better on the largemix dataset compared to the
pre-training on the ADME training split. Also, the VICReg model using pre-
trained weights from the supervised agnostic pre-training performed significantly
better than the randomly initialized VICReg outlining that VICReg shows a lot of
potential if the right experimental setting can be provided.

(iv) VICReg can compete with the baseline XGB and the self-supervised GNN results
on some endpoints but the supervised model-agnostic pre-trained model strategy
outperformed VICReg on every downstream task for every encoder type labeling
VICReg as inferior compared to the supervised pre-training based on the conducted
experimental setting. Moreover, the other self-supervised pre-training results are
also at least as good as VICReg’s results indicating that other self-supervised
learning strategies might be preferable over VICReg depending on the encoder
and the experimental setting.

Lastly, the insights gained from the rigid train-test splitting approach, hyperparam-
eter optimization, and the integration of diverse molecule modalities suggest promising
starting points for future research. Potential directions include exploring even larger and
more heterogeneous compound databases since VICReg learns in a self-supervised man-
ner and does not need expensively labeled data. Furthermore, this thesis only scratched
the surface regarding a chemical foundation model based on VICReg since a variety of
further experiments need to be done to uncover the method’s true potential in capturing
deeper and more robust chemical representations without collapsing.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 77

5.2 Future work

The results show that simple node-attribute masking self-supervised pre-training is in-
ferior to model-agnostic pre-training for GNN-based models. Therefore, more sophis-
ticated self-supervised pre-training strategies could provide a better option for investi-
gating how self-supervised pre-trained encoders affect downstream task performance in
combination with VICReg. Furthermore, in this thesis, GINs, EGNNs, and LSTMs are
used as the respective modality encoders due to their prominent status in the domain
of chemoinformatics. Nevertheless, foundation models are often based on the trans-
former architecture, making them large and complex to capture intricate data patterns
[8, p.47]. Thus, an interesting direction for future work would be to investigate how
VICReg performance changes when using more complex, modality-specific encoders such
as molecular BERT [33] for the text modality, the Equiformer [151] for the conformer
modality, and the Graphformer [152] for the graph modality.

The XGB results also indicate that descriptor- and fingerprint-based featurization
strategies remain powerful. Hence, another future experiment could incorporate the
tabular representation as a fourth modality to explore whether a static, deterministic
tabular representation positively affects the representation capability of the other en-
coders. Similarly, an image-based encoder could be used as a fifth modality by utilizing
images of the structural formulas. Another promising approach would be to use even
larger datasets for self-supervised pre-training, such as the ultralarge dataset [88], since
the largemix dataset has already demonstrated that the capability of foundation mod-
els scales with the amount of data and expensive labels are not needed. Additionally,
encoder parameters could be adjusted to better accommodate larger datasets, as the
current hyperparameter choices are all optimized on the training split of the ADME
dataset.

Additionally, more experiments on a broader diversity of downstream tasks could be
conducted to gain a better understanding of the representations learned by the respective
encoders, since the ADME tasks all originate from the same field of PK. For example,
incorporating a classification problem such as predicting material property categories
[153] would provide an insightful enhancement as a downstream task, complementing
the regression-focused ADME benchmarks. This would not only test the generalizability
of the learned representations across different task types but also validate whether their
robustness extends to chemically distinct domains, such as material science, beyond PK.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 78

Furthermore, an ablation study similar to that in the original VICReg paper could
illustrate how different VICReg settings impact downstream performance. Important
variables for such a study would include batch size, projector size, the use of shared
weights for the projector, and different values of λ,µ, ν as regularization terms. Another
interesting experiment could examine the benefits of bi-modal settings, where only two
encoders are used, to investigate if the aligned representations differ from those produced
in the VICReg experiment with three encoders.

The original VICReg paper used a siamese weight-sharing [83] encoder and projector;
this approach could also be applied to the chemical language modality, since SMILES
augmentations [34] are analogous to data augmentation techniques. Therefore, it would
be worthwhile to pursue a VICReg approach using only one encoder with augmented
views of the same SMILES string to closely mimic the original VICReg work. A similar
strategy could be applied to the conformer modality, as multiple conformers can be
generated from a single molecule. Additionally, knowledge-infused graph augmentation
techniques could be employed to utilize siamese architectures for the graph modality
[154].

Finally, another benchmark objective could involve comparing the uncertainty esti-
mation of models trained with and without VICReg, to investigate whether pre-training
with VICReg yields improved uncertainty estimates using model-agnostic uncertainty
methods such as conformal prediction [155] or ordinal confidence level assignments
[156].

Bibliography

[1] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving language
understanding by generative pre-training,” 2018.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings of
the 2019 conference of the North American chapter of the association for com-
putational linguistics: human language technologies, volume 1 (long and short
papers), pp. 4171–4186, 2019.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” CoRR, vol. abs/1512.03385, 2015.

[5] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[6] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,” CoRR,
vol. abs/1311.2524, 2013.

[7] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al., “Highly accurate protein
structure prediction with alphafold,” nature, vol. 596, no. 7873, pp. 583–589,
2021.

[8] C. Huyen, AI Engineering: Building Applications with Foundation Models.
O’Reilly, 2025.

[9] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al., “On the opportunities and
risks of foundation models,” arXiv preprint arXiv:2108.07258, 2021.

79

BIBLIOGRAPHY 80

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[11] C. Akkus, L. Chu, V. Djakovic, S. Jauch-Walser, P. Koch, G. Loss, C. Marquardt,
M. Moldovan, N. Sauter, M. Schneider, et al., “Multimodal deep learning,” arXiv
preprint arXiv:2301.04856, 2023.

[12] P. P. Liang, A. Zadeh, and L.-P. Morency, “Foundations and trends in multimodal
machine learning: Principles, challenges, and open questions,” arXiv preprint
arXiv:2209.03430, 2022.

[13] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat, Y. LeCun,
and N. Ballas, “Self-supervised learning from images with a joint-embedding pre-
dictive architecture,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15619–15629, 2023.

[14] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from
natural language supervision,” in International conference on machine learning,
pp. 8748–8763, PmLR, 2021.

[15] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-agnostic vi-
siolinguistic representations for vision-and-language tasks,” Advances in neural
information processing systems, vol. 32, 2019.

[16] J. Choi, G. Nam, J. Choi, and Y. Jung, “A perspective on foundation models in
chemistry,” JACS Au, vol. 5, no. 4, pp. 1499–1518, 2025.

[17] Y. Chang, B. A. Hawkins, J. J. Du, P. W. Groundwater, D. E. Hibbs, and F. Lai,
“A guide to in silico drug design,” Pharmaceutics, vol. 15, no. 1, p. 49, 2023.

[18] T. Casalini, “Not only in silico drug discovery: Molecular modeling towards in silico
drug delivery formulations,” Journal of Controlled Release, vol. 332, pp. 390–417,
2021.

[19] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33, pp. 1877–
1901, 2020.

BIBLIOGRAPHY 81

[20] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu,
K. Leswing, and V. Pande, “Moleculenet: a benchmark for molecular machine
learning,” Chemical science, vol. 9, no. 2, pp. 513–530, 2018.

[21] J. Xu and A. Hagler, “Chemoinformatics and drug discovery,” Molecules, vol. 7,
no. 8, pp. 566–600, 2002.

[22] D. Boldini, F. Grisoni, D. Kuhn, L. Friedrich, and S. A. Sieber, “Practical guide-
lines for the use of gradient boosting for molecular property prediction,” Journal
of Cheminformatics, vol. 15, no. 1, p. 73, 2023.

[23] R. D. Jawarkar, S. Mali, P. K. Deshmukh, R. G. Ingle, S. A. Al-Hussain, A. A.
Al-Mutairi, and M. E. Zaki, “Synergizing ga-xgboost and qsar modeling: Break-
ing down activity aliffs in hdac1 inhibitors,” Journal of Molecular Graphics and
Modelling, vol. 135, p. 108915, 2025.

[24] A. U. Khan et al., “Descriptors and their selection methods in qsar analysis:
paradigm for drug design,” Drug discovery today, vol. 21, no. 8, pp. 1291–1302,
2016.

[25] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise of
deep learning in drug discovery,” Drug discovery today, vol. 23, no. 6, pp. 1241–
1250, 2018.

[26] K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez,
T. Hopper, B. Kelley, M. Mathea, et al., “Analyzing learned molecular represen-
tations for property prediction,” Journal of chemical information and modeling,
vol. 59, no. 8, pp. 3370–3388, 2019.

[27] B. Chen, R. Barzilay, and T. Jaakkola, “Path-augmented graph transformer net-
work,” arXiv preprint arXiv:1905.12712, 2019.

[28] J. Li, D. Cai, and X. He, “Learning graph-level representation for drug discovery,”
arXiv preprint arXiv:1709.03741, 2017.

[29] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. " O’Reilly Media,
Inc.", 2022.

[30] D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen, D. Cao, J. Wu,
and T. Hou, “Could graph neural networks learn better molecular representation
for drug discovery? a comparison study of descriptor-based and graph-based
models,” Journal of cheminformatics, vol. 13, pp. 1–23, 2021.

BIBLIOGRAPHY 82

[31] V. G. Satorras, E. Hoogeboom, and M. Welling, “E (n) equivariant graph neu-
ral networks,” in International conference on machine learning, pp. 9323–9332,
PMLR, 2021.

[32] D. Weininger, “Smiles, a chemical language and information system. 1. introduc-
tion to methodology and encoding rules,” Journal of chemical information and
computer sciences, vol. 28, no. 1, pp. 31–36, 1988.

[33] J. Li and X. Jiang, “Mol-bert: An effective molecular representation with bert for
molecular property prediction,” Wireless Communications and Mobile Computing,
vol. 2021, no. 1, p. 7181815, 2021.

[34] T. B. Kimber, M. Gagnebin, and A. Volkamer, “Maxsmi: Maximizing molecu-
lar property prediction performance with confidence estimation using smiles aug-
mentation and deep learning,” Artificial Intelligence in the Life Sciences, vol. 1,
p. 100014, 2021.

[35] R. Yin, R. Liu, X. Hao, X. Zhou, Y. Liu, C. Ma, and W. Wang, “Multi-
modal molecular representation learning via structure awareness,” arXiv preprint
arXiv:2505.05877, 2025.

[36] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” CoRR,
vol. abs/2003.05991, 2020.

[37] Z. Wang, J. Mi, S. Lu, and J. He, “Multimodal-learning for predicting molecular
properties: A framework based on image and graph structures,” arXiv preprint
arXiv:2311.16666, 2023.

[38] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an
invariant mapping,” in 2006 IEEE computer society conference on computer vision
and pattern recognition (CVPR’06), vol. 2, pp. 1735–1742, IEEE, 2006.

[39] T.-H. Nguyen-Vo, P. Teesdale-Spittle, J. E. Harvey, and B. P. Nguyen, “Molecu-
lar representations in bio-cheminformatics,” Memetic Computing, vol. 16, no. 3,
pp. 519–536, 2024.

[40] J. Wu, Y. Su, A. Yang, J. Ren, and Y. Xiang, “An improved multi-modal
representation-learning model based on fusion networks for property prediction
in drug discovery,” Computers in Biology and Medicine, vol. 165, p. 107452,
2023.

BIBLIOGRAPHY 83

[41] A. Bardes, J. Ponce, and Y. LeCun, “Vicreg: Variance-invariance-covariance reg-
ularization for self-supervised learning,” arXiv preprint arXiv:2105.04906, 2021.

[42] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for con-
trastive learning of visual representations,” in International conference on machine
learning, pp. 1597–1607, PmLR, 2020.

[43] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsuper-
vised visual representation learning,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 9729–9738, 2020.

[44] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Do-
ersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al., “Bootstrap your own
latent-a new approach to self-supervised learning,” Advances in neural information
processing systems, vol. 33, pp. 21271–21284, 2020.

[45] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsuper-
vised learning of visual features by contrasting cluster assignments,” Advances in
neural information processing systems, vol. 33, pp. 9912–9924, 2020.

[46] X. Chen and K. He, “Exploring simple siamese representation learning,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15750–15758, 2021.

[47] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” arXiv preprint arXiv:1810.00826, 2018.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[49] J. Cremer, L. Medrano Sandonas, A. Tkatchenko, D.-A. Clevert, and G. De Fab-
ritiis, “Equivariant graph neural networks for toxicity prediction,” Chemical Re-
search in Toxicology, vol. 36, no. 10, pp. 1561–1573, 2023.

[50] Y. Peng, Y. Lin, X.-Y. Jing, H. Zhang, Y. Huang, and G. S. Luo, “Enhanced graph
isomorphism network for molecular admet properties prediction,” Ieee Access,
vol. 8, pp. 168344–168360, 2020.

[51] J. Guan and J. Liu, “Lstm molecular descriptor-free qsar application research
based on genetic algorithm optimization,” in 2022 3rd International Conference
on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE),
pp. 625–628, IEEE, 2022.

BIBLIOGRAPHY 84

[52] L. Jing, P. Vincent, Y. LeCun, and Y. Tian, “Understanding dimensional collapse
in contrastive self-supervised learning,” arXiv preprint arXiv:2110.09348, 2021.

[53] S. Grogan and C. V. Preuss, “Pharmacokinetics,” in StatPearls [Internet], Stat-
Pearls Publishing, 2023.

[54] P. Wu, S. Lin, G. Cao, J. Wu, H. Jin, C. Wang, M. H. Wong, Z. Yang, and
Z. Cai, “Absorption, distribution, metabolism, excretion and toxicity of microplas-
tics in the human body and health implications,” Journal of Hazardous Materials,
vol. 437, p. 129361, 2022.

[55] W. Goodwin, “Structural formulas and explanation in organic chemistry,” Foun-
dations of chemistry, vol. 10, pp. 117–127, 2008.

[56] Fdardel, “deriving the smiles representation of a chemical molecule, shown ex-
ample: ciprofloxacin, a fluoroquinolone antibiotic..” Wikimedia Commons, 2010.
Slight edit by DMacks.

[57] R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics: vol-
ume I: alphabetical listing/volume II: appendices, references. John Wiley & Sons,
2009.

[58] S. Hayat, S. Wang, and J.-B. Liu, “Valency-based topological descriptors of chem-
ical networks and their applications,” Applied Mathematical Modelling, vol. 60,
pp. 164–178, 2018.

[59] L. Xu, H.-Y. Wang, and Q. Su, “A newly proposed molecular topological in-
dex for the discrimination of cis/trans isomers and for the studies of qsar/qspr,”
Computers & chemistry, vol. 16, no. 3, pp. 187–194, 1992.

[60] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” Journal of chemical
information and modeling, vol. 50, no. 5, pp. 742–754, 2010.

[61] H. L. Morgan, “The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service.,” Journal of chem-
ical documentation, vol. 5, no. 2, pp. 107–113, 1965.

[62] T. T. Tanimoto, An elementary mathematical theory of classification and predic-
tion. International Business Machines Corporation, 1958.

[63] T. G. Kristensen, J. Nielsen, and C. N. Pedersen, “A tree-based method for the
rapid screening of chemical fingerprints,” Algorithms for Molecular Biology, vol. 5,
pp. 1–10, 2010.

BIBLIOGRAPHY 85

[64] D. Butina, “Unsupervised data base clustering based on daylight’s fingerprint and
tanimoto similarity: A fast and automated way to cluster small and large data
sets,” Journal of Chemical Information and Computer Sciences, vol. 39, no. 4,
pp. 747–750, 1999.

[65] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pp. 785–794, 2016.

[66] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”
Annals of statistics, pp. 1189–1232, 2001.

[67] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT
press Cambridge, 2016.

[68] R. Caruana, “Multitask learning,” Machine learning, vol. 28, pp. 41–75, 1997.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[70] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–
211, 1990.

[71] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in International conference on machine learning, pp. 1310–1318,
Pmlr, 2013.

[72] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Diploma,
Technische Universität München, vol. 91, no. 1, p. 31, 1991.

[73] J. Luo, Z. Zhang, Y. Fu, and F. Rao, “Time series prediction of covid-19 transmis-
sion in america using lstm and xgboost algorithms,” Results in Physics, vol. 27,
p. 104462, 2021.

[74] F. Deng, Z. Chen, Y. Liu, S. Yang, R. Hao, and L. Lyu, “A novel combination
neural network based on convlstm-transformer for bearing remaining useful life
prediction,” Machines, vol. 10, no. 12, p. 1226, 2022.

[75] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

[76] L. Tunstall, L. Von Werra, and T. Wolf, Natural language processing with trans-
formers. " O’Reilly Media, Inc.", 2022.

BIBLIOGRAPHY 86

[77] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning,
vol. 4. Springer, 2006.

[78] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20,
no. 1, pp. 61–80, 2008.

[79] P. Maheshwari, “Self-supervised learning for
graphs.” https://medium.com/stanford-cs224w/
self-supervised-learning-for-graphs-963e03b9f809, 2021. Accessed:
2023-04-29.

[80] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec, “Strate-
gies for pre-training graph neural networks,” arXiv preprint arXiv:1905.12265,
2019.

[81] P. Tang, C. Xie, and H. Duan, “Node and edge dual-masked self-supervised graph
representation,” Knowledge and Information Systems, vol. 66, no. 4, pp. 2307–
2326, 2024.

[82] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.

[83] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification
using a" siamese" time delay neural network,” Advances in neural information
processing systems, vol. 6, 1993.

[84] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model performance,”
Climate research, vol. 30, no. 1, pp. 79–82, 2005.

[85] G. Casella and R. Berger, Statistical inference. CRC press, 2024.

[86] K. Backhaus, B. Erichson, and R. Weiber, Fortgeschrittene multivariate Anal-
ysemethoden: eine anwendungsorientierte Einführung. Springer-Verlag, 2015.

[87] D. C. Howell, Statistical methods for psychology. PWS-Kent Publishing Co, 1992.

[88] D. Beaini, S. Huang, J. A. Cunha, Z. Li, G. Moisescu-Pareja, O. Dymov,
S. Maddrell-Mander, C. McLean, F. Wenkel, L. Müller, et al., “Towards foun-
dational models for molecular learning on large-scale multi-task datasets,” arXiv
preprint arXiv:2310.04292, 2023.

https://medium.com/stanford-cs224w/self-supervised-learning-for-graphs-963e03b9f809
https://medium.com/stanford-cs224w/self-supervised-learning-for-graphs-963e03b9f809

BIBLIOGRAPHY 87

[89] M. Nakata and T. Shimazaki, “Pubchemqc project: a large-scale first-principles
electronic structure database for data-driven chemistry,” Journal of chemical in-
formation and modeling, vol. 57, no. 6, pp. 1300–1308, 2017.

[90] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker,
P. A. Thiessen, B. Yu, et al., “Pubchem 2025 update,” Nucleic Acids Research,
vol. 53, no. D1, pp. D1516–D1525, 2025.

[91] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
“Open graph benchmark: Datasets for machine learning on graphs,” Advances in
neural information processing systems, vol. 33, pp. 22118–22133, 2020.

[92] M. C. for Molecular Therapeutics (Massachusetts General Hospital), “Mgh (cmt)
growth inhibition assay protocol (3 compound doses) – dna staining,” 2014.

[93] A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. Lu,
J. Gould, J. F. Davis, A. A. Tubelli, J. K. Asiedu, et al., “A next generation
connectivity map: L1000 platform and the first 1,000,000 profiles,” Cell, vol. 171,
no. 6, pp. 1437–1452, 2017.

[94] M. Sypetkowski, F. Wenkel, F. Poursafaei, N. Dickson, K. Suri, P. Fradkin, and
D. Beaini, “On the scalability of gnns for molecular graphs,” Advances in Neural
Information Processing Systems, vol. 37, pp. 19870–19906, 2024.

[95] C. Fang, Y. Wang, R. Grater, S. Kapadnis, C. Black, P. Trapa, and S. Sciabola,
“Prospective validation of machine learning algorithms for absorption, distribu-
tion, metabolism, and excretion prediction: An industrial perspective,” Journal of
Chemical Information and Modeling, vol. 63, no. 11, pp. 3263–3274, 2023.

[96] G. A. Landrum and S. Riniker, “Combining ic50 or k i values from different sources
is a source of significant noise,” Journal of chemical information and modeling,
vol. 64, no. 5, pp. 1560–1567, 2024.

[97] J. R. Ash, C. Wognum, R. Rodríguez-Pérez, M. Aldeghi, A. C. Cheng, D.-A.
Clevert, O. Engkvist, C. Fang, D. J. Price, J. M. Hughes-Oliver, et al., “Practically
significant method comparison protocols for machine learning in small molecule
drug discovery.,” 2024.

[98] L. Di, E. H. Kerns, and G. T. Carter, “Drug-like property concepts in pharma-
ceutical design,” Current pharmaceutical design, vol. 15, no. 19, pp. 2184–2194,
2009.

BIBLIOGRAPHY 88

[99] X.-T. D. Tran, T.-L. Phan, V.-T. To, N.-V. N. Tran, N.-N. S. Nguyen, D.-N. H.
Nguyen, N.-T. N. Tran, and T. N. Truong, “Integration of the butina algorithm
and ensemble learning strategies for the advancement of a pharmacophore ligand-
based model: an in silico investigation of apelin agonists,” Frontiers in Chemistry,
vol. 12, p. 1382319, 2024.

[100] Chemaxon, “Bemis-murcko clustering,” 2024. Accessed: 2024-04-28.

[101] G. W. Bemis and M. A. Murcko, “The properties of known drugs. 1. molecular
frameworks,” Journal of medicinal chemistry, vol. 39, no. 15, pp. 2887–2893,
1996.

[102] J. A. Napoli, M. Reutlinger, P. Brandl, W. Wang, J. Hert, and P. Desai, “Multitask
deep learning models of combined industrial absorption, distribution, metabolism,
and excretion datasets to improve generalization,” Molecular Pharmaceutics,
vol. 22, no. 4, pp. 1892–1900, 2025.

[103] J. Wenzel, H. Matter, and F. Schmidt, “Predictive multitask deep neural net-
work models for adme-tox properties: learning from large data sets,” Journal of
chemical information and modeling, vol. 59, no. 3, pp. 1253–1268, 2019.

[104] G. Landrum, “Rdkit: Open-source cheminformatics software,” 2016.

[105] K. Atz, F. Grisoni, and G. Schneider, “Geometric deep learning on molecular
representations,” Nature Machine Intelligence, vol. 3, no. 12, pp. 1023–1032,
2021.

[106] H. P. Latscha, U. Kazmaier, and H. A. Klein, Organische Chemie: Chemie-
Basiswissen II. Springer-Verlag, 2008.

[107] J. M. Blaney and J. S. Dixon, “Distance geometry in molecular modeling,” Re-
views in computational chemistry, pp. 299–335, 1994.

[108] S. Riniker and G. A. Landrum, “Better informed distance geometry: using what
we know to improve conformation generation,” Journal of chemical information
and modeling, vol. 55, no. 12, pp. 2562–2574, 2015.

[109] T. Seidel, C. Permann, O. Wieder, S. M. Kohlbacher, and T. Langer, “High-quality
conformer generation with conforge: algorithm and performance assessment,”
Journal of Chemical Information and Modeling, vol. 63, no. 17, pp. 5549–5570,
2023.

BIBLIOGRAPHY 89

[110] T. A. Halgren, “Mmff vi. mmff94s option for energy minimization studies,” Journal
of computational chemistry, vol. 20, no. 7, pp. 720–729, 1999.

[111] S. Wang, J. Witek, G. A. Landrum, and S. Riniker, “Improving conformer gener-
ation for small rings and macrocycles based on distance geometry and experimen-
tal torsional-angle preferences,” Journal of chemical information and modeling,
vol. 60, no. 4, pp. 2044–2058, 2020.

[112] Z. Xie, X. Evangelopoulos, Ö. H. Omar, A. Troisi, A. I. Cooper, and L. Chen,
“Fine-tuning gpt-3 for machine learning electronic and functional properties of
organic molecules,” Chemical science, vol. 15, no. 2, pp. 500–510, 2024.

[113] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 2623–2631, 2019.

[114] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the
human out of the loop: A review of bayesian optimization,” Proceedings of the
IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[115] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing systems,
vol. 24, 2011.

[116] V. Godbole, G. E. Dahl, J. Gilmer, C. J. Shallue, and Z. Nado, “Deep learning
tuning playbook,” 2023. Version 1.

[117] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv
preprint arXiv:1711.05101, 2017.

[118] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[119] Y. Bai, E. Yang, B. Han, Y. Yang, J. Li, Y. Mao, G. Niu, and T. Liu, “Under-
standing and improving early stopping for learning with noisy labels,” Advances
in Neural Information Processing Systems, vol. 34, pp. 24392–24403, 2021.

[120] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of
the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265, 2019.

BIBLIOGRAPHY 90

[121] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” arXiv preprint arXiv:1608.03983, 2016.

[122] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning,” in international conference on machine
learning, pp. 1050–1059, PMLR, 2016.

[123] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning, pp. 448–456, pmlr, 2015.

[124] N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter, “Tabpfn: A trans-
former that solves small tabular classification problems in a second,” arXiv preprint
arXiv:2207.01848, 2022.

[125] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep learning
models for tabular data,” Advances in Neural Information Processing Systems,
vol. 34, pp. 18932–18943, 2021.

[126] F. Kanavati and M. Tsuneki, “Partial transfusion: on the expressive influence of
trainable batch norm parameters for transfer learning,” in Medical Imaging with
Deep Learning, pp. 338–353, PMLR, 2021.

[127] D. Misra, “Mish: A self regularized non-monotonic activation function,” arXiv
preprint arXiv:1908.08681, 2019.

[128] X. Jiang, X. Cheng, and Z. Li, “Why pre-training is beneficial for downstream
classification tasks?,” arXiv preprint arXiv:2410.08455, 2024.

[129] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve model
robustness and uncertainty,” in International conference on machine learning,
pp. 2712–2721, PMLR, 2019.

[130] M. Xu, H. Wang, B. Ni, H. Guo, and J. Tang, “Self-supervised graph-level rep-
resentation learning with local and global structure,” in International conference
on machine learning, pp. 11548–11558, PMLR, 2021.

[131] S. Liu, M. F. Demirel, and Y. Liang, “N-gram graph: Simple unsupervised rep-
resentation for graphs, with applications to molecules,” Advances in neural infor-
mation processing systems, vol. 32, 2019.

BIBLIOGRAPHY 91

[132] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”
arXiv preprint arXiv:2001.08361, 2020.

[133] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford,
D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, et al., “Training compute-
optimal large language models,” arXiv preprint arXiv:2203.15556, 2022.

[134] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of machine learning research, vol. 21, no. 140, pp. 1–67,
2020.

[135] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and
V. Pande, “Massively multitask networks for drug discovery,” arXiv preprint
arXiv:1502.02072, 2015.

[136] O. Laufkötter, N. Sturm, J. Bajorath, H. Chen, and O. Engkvist, “Combining
structural and bioactivity-based fingerprints improves prediction performance and
scaffold hopping capability,” Journal of cheminformatics, vol. 11, pp. 1–14, 2019.

[137] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive
learning with augmentations,” Advances in neural information processing systems,
vol. 33, pp. 5812–5823, 2020.

[138] Y. Wang, J. Wang, Z. Cao, and A. Barati Farimani, “Molecular contrastive learn-
ing of representations via graph neural networks,” Nature Machine Intelligence,
vol. 4, no. 3, pp. 279–287, 2022.

[139] N. Navarin, D. V. Tran, and A. Sperduti, “Pre-training graph neural networks
with kernels,” arXiv preprint arXiv:1811.06930, 2018.

[140] Y. Bai, H. Ding, Y. Qiao, A. Marinovic, K. Gu, T. Chen, Y. Sun, and W. Wang,
“Unsupervised inductive whole-graph embedding by preserving graph proximity,”
in Proceedings of the seventh international conference on learning representations
(ICLR 2019), 2019.

[141] Y. Liu, J. Cao, C. Liu, K. Ding, and L. Jin, “Datasets for large language models:
A comprehensive survey,” arXiv preprint arXiv:2402.18041, 2024.

[142] S. Chithrananda, G. Grand, and B. Ramsundar, “Chemberta: large-scale
self-supervised pretraining for molecular property prediction,” arXiv preprint
arXiv:2010.09885, 2020.

BIBLIOGRAPHY 92

[143] P. Shah, V. B. Siramshetty, E. Mathé, and X. Xu, “Developing robust human
liver microsomal stability prediction models: Leveraging inter-species correlation
with rat data,” Pharmaceutics, vol. 16, no. 10, p. 1257, 2024.

[144] V. Pade and S. Stavchansky, “Link between drug absorption solubility and perme-
ability measurements in caco-2 cells,” Journal of pharmaceutical sciences, vol. 87,
no. 12, pp. 1604–1607, 1998.

[145] C. Lipinski, “a, lombardo, f., dominy, bw & feeney, pj experimental and compu-
tational approaches to estimate solubility and permeability in drug discovery and
development settings,” Adv. Drug Deliv. Rev, vol. 46, no. 3, pp. 00129–0, 2001.

[146] L. Di, P. Artursson, A. Avdeef, L. Z. Benet, J. B. Houston, M. Kansy, E. H.
Kerns, H. Lennernäs, D. A. Smith, and K. Sugano, “The critical role of pas-
sive permeability in designing successful drugs,” ChemMedChem, vol. 15, no. 20,
pp. 1862–1874, 2020.

[147] L. Z. Benet, C. M. Hosey, O. Ursu, and T. I. Oprea, “Bddcs, the rule of 5 and
drugability,” Advanced drug delivery reviews, vol. 101, pp. 89–98, 2016.

[148] P. Llompart, C. Minoletti, S. Baybekov, D. Horvath, G. Marcou, and A. Varnek,
“Will we ever be able to accurately predict solubility?,” Scientific Data, vol. 11,
no. 1, p. 303, 2024.

[149] A. Lakkapragada, E. Sleiman, S. Surabhi, and D. P. Wall, “Mitigating negative
transfer in multi-task learning with exponential moving average loss weighting
strategies (student abstract),” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, pp. 16246–16247, 2023.

[150] D. Li, H. L. Nguyen, and H. R. Zhang, “Identification of negative transfers in mul-
titask learning using surrogate models,” arXiv preprint arXiv:2303.14582, 2023.

[151] Y.-L. Liao and T. Smidt, “Equiformer: Equivariant graph attention transformer
for 3d atomistic graphs,” arXiv preprint arXiv:2206.11990, 2022.

[152] J. Yang, Z. Liu, S. Xiao, C. Li, D. Lian, S. Agrawal, A. Singh, G. Sun, and X. Xie,
“Graphformers: Gnn-nested transformers for representation learning on textual
graph,” Advances in Neural Information Processing Systems, vol. 34, pp. 28798–
28810, 2021.

[153] P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao, H. Metni,
C. van Hoesel, H. Schopmans, T. Sommer, et al., “Graph neural networks for

BIBLIOGRAPHY 93

materials science and chemistry,” Communications Materials, vol. 3, no. 1, p. 93,
2022.

[154] H. An, X. Liu, W. Cai, and X. Shao, “Explainable graph neural networks with data
augmentation for predicting p k a of c–h acids,” Journal of Chemical Information
and Modeling, vol. 64, no. 7, pp. 2383–2392, 2023.

[155] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal prediction
and distribution-free uncertainty quantification,” arXiv preprint arXiv:2107.07511,
2021.

[156] S. Kearnes and P. Riley, “Ordinal confidence level assignments for regression model
predictions,” Journal of Chemical Information and Modeling, vol. 64, no. 24,
pp. 9299–9305, 2024.

[157] A. Paszke, “Pytorch: An imperative style, high-performance deep learning library,”
arXiv preprint arXiv:1912.01703, 2019.

[158] W. Falcon and The PyTorch Lightning team, “PyTorch Lightning.” https://
github.com/Lightning-AI/lightning, Mar. 2019.

[159] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geo-
metric,” arXiv preprint arXiv:1903.02428, 2019.

[160] M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. Aivazis, “Building a
framework for predictive science,” arXiv preprint arXiv:1202.1056, 2012.

[161] JGraph, “draw.io.” https://github.com/jgraph/drawio, Oct. 2021.

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/jgraph/drawio

Appendix A

Implementation Details

A.1 Data

A.1.1 ADME Data

In Vitro Essays

All details regarding the in vitro essays can be found in the paper from Fang et al. [95].

hPPB and rPPB

%Unbound = avgPAR in the buffer side
avgPAR in the plasma side × 100 (A.1)

RLM and HLM

CLint = 0.693
T1/2

× incubation volume
mg of microsomal protein (A.2)

MDR1-ER

Papp = (dCr

dt)× Vr

(A× CE) (A.3)

Mass balance = 100× ((Vr × Cfinal
r) + (Vd × Cfinal

d))
(Vd × CE) (A.4)

94

APPENDIX A. IMPLEMENTATION DETAILS 95

Statistics of Train/Test Split

count mean std min 25% 50% 75% max
LOG HLM activity 2475 1.33 0.63 0.68 0.68 1.22 1.82 3.37
LOG RLM activity 2449 2.28 0.75 1.03 1.71 2.35 2.86 3.97
LOG MDR1 ER activity 2112 0.37 0.68 -1.16 -0.17 0.12 0.86 2.73
LOG Sol activity 1771 1.27 0.68 -1.00 1.19 1.55 1.69 2.15
butina cluster 2813 327.40 365.16 0.00 50.00 192.00 490.00 1605.00

Table A.1: Descriptive statistics of the evaluation data (train split)

count mean std min 25% 50% 75% max
LOG HLM activity 607 1.27 0.58 0.68 0.68 1.14 1.73 3.00
LOG RLM activity 600 2.16 0.74 1.03 1.56 2.21 2.72 3.97
LOG MDR1 ER activity 528 0.50 0.72 -0.85 -0.13 0.30 1.04 2.18
LOG Sol activity 402 1.20 0.72 -1.00 1.09 1.51 1.67 2.18
butina cluster 703 1061.58 345.61 120.00 817.00 1114.00 1289.50 1607.00

Table A.2: Descriptive statistics of the evaluation data (test split)

A.2 Hyperparameter Tuning

A.2.1 GIN

Architecture Tuning

count mean std min 25% 50% 75% max
Val MAE 66 0.3561 0.0209 0.3335 0.3398 0.3487 0.3663 0.4107
params encoder dim 66 316.2424 110.3647 133.0000 231.2500 316.5000 405.7500 507.0000
params encoder dropout 66 0.1169 0.0700 0.0030 0.0564 0.1253 0.1736 0.2372
params encoder layer 66 3.6212 1.4333 1.0000 3.0000 4.0000 5.0000 5.0000
params encoder output 66 704.3182 191.6995 283.0000 546.5000 742.5000 837.7500 1020.0000
params predictor dim 66 417.6212 231.9407 150.0000 245.2500 345.5000 549.0000 991.0000
params predictor dropout 66 0.2115 0.1007 0.0019 0.1455 0.2277 0.2972 0.3454
params predictor layers 66 3.2879 0.7599 2.0000 3.0000 3.0000 4.0000 4.0000
Val MAE LOG HLM activity MAE 66 0.3420 0.0194 0.3204 0.3271 0.3348 0.3517 0.3950
Val MAE LOG MDR1 ER activity MAE 66 0.3325 0.0214 0.3049 0.3163 0.3249 0.3401 0.3823
Val MAE LOG RLM activity MAE 66 0.4054 0.0222 0.3780 0.3878 0.3984 0.4161 0.4636
Val MAE LOG Sol activity MAE 66 0.3445 0.0218 0.3189 0.3262 0.3374 0.3559 0.4013

Table A.3: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for GIN. The parameters are used to tune the
encoder/predictor architecture.

APPENDIX A. IMPLEMENTATION DETAILS 96

Optimizer Tuning

count mean std min 25% 50% 75% max
Val MAE 34 0.3545 0.0337 0.3315 0.3339 0.3403 0.3656 0.5025
params beta1 34 0.9653 0.0148 0.9503 0.9525 0.9595 0.9753 0.9960
params beta2 34 0.9731 0.0136 0.9522 0.9628 0.9720 0.9797 0.9973
params epsilon 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
params lr 34 0.0016 0.0021 0.0001 0.0002 0.0006 0.0020 0.0087
params wd 34 0.0007 0.0018 0.0000 0.0000 0.0001 0.0003 0.0081
Val MAE LOG HLM activity MAE 34 0.3429 0.0325 0.3166 0.3220 0.3288 0.3581 0.4750
Val MAE LOG MDR1 ER activity MAE 34 0.3323 0.0360 0.3065 0.3117 0.3209 0.3372 0.5013
Val MAE LOG RLM activity MAE 34 0.4045 0.0383 0.3729 0.3804 0.3860 0.4175 0.5623
Val MAE LOG Sol activity MAE 34 0.3381 0.0287 0.3174 0.3209 0.3260 0.3475 0.4704

Table A.4: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for GIN. The parameters are used to tune the
optimizer parameters.

A.2.2 EGNN

Architecture Tuning

count mean std min 25% 50% 75% max
Val MAE 66 0.3778 0.0387 0.3341 0.3421 0.3788 0.3935 0.5298
params encoder dim 66 271.2121 106.5597 129.0000 173.0000 268.5000 359.7500 498.0000
params encoder layer 66 3.3939 1.4558 1.0000 2.0000 3.0000 4.0000 6.0000
params encoder out 66 551.3030 224.2448 265.0000 369.0000 491.0000 731.7500 1017.0000
params predictor batchnorm 66 0.6515 0.4801 0.0000 0.0000 1.0000 1.0000 1.0000
params predictor dim 66 665.2424 270.3726 164.0000 420.0000 746.0000 891.2500 1012.0000
params predictor dropout 66 0.3143 0.1442 0.0057 0.1994 0.3469 0.4242 0.4934
params predictor layers 66 4.1212 0.9690 2.0000 4.0000 4.0000 5.0000 5.0000
Val MAE LOG HLM activity MAE 66 0.3620 0.0357 0.3196 0.3290 0.3612 0.3768 0.5021
Val MAE LOG MDR1 ER activity MAE 66 0.3606 0.0506 0.3071 0.3173 0.3568 0.3876 0.5507
Val MAE LOG RLM activity MAE 66 0.4302 0.0394 0.3844 0.3967 0.4319 0.4459 0.5916
Val MAE LOG Sol activity MAE 66 0.3583 0.0334 0.3224 0.3309 0.3545 0.3699 0.4737

Table A.5: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for EGNN. The parameters are used to tune the
encoder/predictor architecture.

APPENDIX A. IMPLEMENTATION DETAILS 97

Optimizer Tuning

count mean std min 25% 50% 75% max
Val MAE 34 0.3698 0.0414 0.3314 0.3378 0.3515 0.3999 0.4503
params beta1 34 0.8585 0.0586 0.8010 0.8128 0.8334 0.8977 0.9857
params beta2 34 0.9340 0.0269 0.9023 0.9128 0.9284 0.9504 0.9945
params epsilon 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
params lr 34 0.0004 0.0003 0.0000 0.0001 0.0002 0.0007 0.0010
params wd 34 0.0006 0.0018 0.0000 0.0000 0.0000 0.0001 0.0081
Val MAE LOG HLM activity MAE 34 0.3558 0.0424 0.3124 0.3219 0.3378 0.3847 0.4313
Val MAE LOG MDR1 ER activity MAE 34 0.3416 0.0392 0.3068 0.3134 0.3205 0.3727 0.4143
Val MAE LOG RLM activity MAE 34 0.4224 0.0443 0.3796 0.3874 0.4079 0.4522 0.5213
Val MAE LOG Sol activity MAE 34 0.3592 0.0403 0.3179 0.3294 0.3419 0.3857 0.4341

Table A.6: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for EGNN. The parameters are used to tune the
optimizer parameters.

A.2.3 LSTM

Architecture Tuning

count mean std min 25% 50% 75% max
Val MAE 66 0.3853 0.0313 0.3482 0.3667 0.3768 0.3922 0.4959
params encoder dim 66 394.1818 104.2841 160.0000 340.0000 432.0000 480.0000 512.0000
params encoder dropout 66 0.3303 0.1391 0.0054 0.2465 0.3523 0.4585 0.4960
params encoder layer 66 2.2576 0.7905 1.0000 2.0000 2.0000 3.0000 3.0000
params encoder output 66 618.7121 197.4318 259.0000 476.7500 571.5000 751.2500 995.0000
params n heads 66 8.2121 5.7660 2.0000 2.5000 8.0000 16.0000 16.0000
params predictor batchnorm 66 0.1818 0.3887 0.0000 0.0000 0.0000 0.0000 1.0000
params predictor dim 66 550.5758 200.4236 164.0000 405.0000 554.5000 675.2500 940.0000
params predictor dropout 66 0.2678 0.1350 0.0072 0.1649 0.2604 0.3848 0.4928
params predictor layers 66 3.9848 1.0596 2.0000 3.0000 4.0000 5.0000 5.0000
Val MAE LOG HLM activity MAE 66 0.3929 0.0320 0.3618 0.3743 0.3822 0.3953 0.5091
Val MAE LOG MDR1 ER activity MAE 66 0.4110 0.0405 0.3656 0.3818 0.4013 0.4194 0.5562
Val MAE LOG RLM activity MAE 66 0.4724 0.0332 0.4393 0.4536 0.4624 0.4742 0.5975
Val MAE LOG Sol activity MAE 66 0.3854 0.0313 0.3482 0.3669 0.3769 0.3924 0.4957

Table A.7: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for LSTM. The parameters are used to tune the
encoder/predictor architecture.

APPENDIX A. IMPLEMENTATION DETAILS 98

Optimizer Tuning

count mean std min 25% 50% 75% max
Val MAE 34 0.3794 0.0213 0.3457 0.3627 0.3707 0.3913 0.4301
params beta1 34 0.8538 0.0589 0.8010 0.8099 0.8252 0.8903 0.9857
params beta2 34 0.9334 0.0293 0.9005 0.9073 0.9240 0.9571 0.9945
params epsilon 34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
params lr 34 0.0004 0.0003 0.0000 0.0001 0.0002 0.0007 0.0010
params wd 34 0.0008 0.0019 0.0000 0.0000 0.0001 0.0002 0.0081
Val MAE LOG HLM activity MAE 34 0.3961 0.0366 0.3612 0.3707 0.3820 0.4003 0.4862
Val MAE LOG MDR1 ER activity MAE 34 0.4078 0.0406 0.3572 0.3846 0.3948 0.4143 0.5225
Val MAE LOG RLM activity MAE 34 0.4761 0.0335 0.4399 0.4498 0.4681 0.4857 0.5502
Val MAE LOG Sol activity MAE 34 0.3794 0.0213 0.3461 0.3625 0.3706 0.3913 0.4304

Table A.8: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for LSTM. The parameters are used to tune the
optimizer parameters.

A.2.4 XGB

RLM

count mean std min 25% 50% 75% max
Val MAE 100 0.4540 0.0333 0.4302 0.4365 0.4404 0.4507 0.6107
params colsample bytree 100 0.8303 0.1132 0.6082 0.7416 0.8513 0.9278 0.9981
params learning rate 100 0.0267 0.0246 0.0011 0.0069 0.0201 0.0377 0.0939
params max depth 100 6.1000 3.3530 2.0000 4.0000 5.0000 7.2500 15.0000
params min child weight 100 10.7900 5.6627 1.0000 6.0000 11.0000 16.0000 20.0000
params n estimators 100 932.0000 357.4969 150.0000 687.5000 1000.0000 1250.0000 1500.0000
params reg alpha 100 1.7746 3.9859 0.0012 0.0064 0.0765 1.2375 19.5767
params reg lambda 100 1.6164 3.5500 0.0011 0.0059 0.0355 0.5106 17.2959
params subsample 100 0.7829 0.1052 0.6066 0.7049 0.7603 0.8763 0.9887

Table A.9: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for XGB for endpoint RLM

APPENDIX A. IMPLEMENTATION DETAILS 99

HLM

count mean std min 25% 50% 75% max
Val MAE 100 0.3891 0.0301 0.3663 0.3727 0.3769 0.3885 0.5227
params colsample bytree 100 0.8015 0.1101 0.6082 0.7296 0.8079 0.8778 0.9993
params learning rate 100 0.0303 0.0268 0.0011 0.0059 0.0201 0.0464 0.0976
params max depth 100 6.4500 3.2702 2.0000 4.0000 6.0000 8.0000 15.0000
params min child weight 100 12.4100 5.4848 1.0000 8.7500 14.0000 17.0000 20.0000
params n estimators 100 1018.5000 410.0169 100.0000 700.0000 1150.0000 1362.5000 1500.0000
params reg alpha 100 1.6143 3.9441 0.0010 0.0064 0.0855 0.6952 19.5767
params reg lambda 100 1.6840 3.6554 0.0010 0.0042 0.0214 0.4967 17.2959
params subsample 100 0.7816 0.1064 0.6048 0.6958 0.7976 0.8612 0.9887

Table A.10: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for XGB for endpoint HLM

MDR1-ER

count mean std min 25% 50% 75% max
Val MAE 100 0.3782 0.0365 0.3508 0.3596 0.3638 0.3739 0.5462
params colsample bytree 100 0.8016 0.1133 0.6045 0.7134 0.8042 0.8853 0.9943
params learning rate 100 0.0296 0.0262 0.0011 0.0060 0.0214 0.0447 0.0884
params max depth 100 5.8400 3.4749 2.0000 3.0000 5.0000 7.2500 15.0000
params min child weight 100 7.3800 5.9996 1.0000 2.0000 5.0000 12.0000 20.0000
params n estimators 100 954.5000 404.4010 100.0000 600.0000 1000.0000 1312.5000 1500.0000
params reg alpha 100 2.8534 5.2419 0.0010 0.0124 0.3665 2.1874 24.0251
params reg lambda 100 2.3730 4.6625 0.0011 0.0042 0.0438 1.8905 19.5485
params subsample 100 0.8305 0.1157 0.6066 0.7334 0.8412 0.9410 0.9935

Table A.11: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for XGB for endpoint MDR1-ER

Sol

count mean std min 25% 50% 75% max
Val MAE 100 0.3921 0.0196 0.3777 0.3811 0.3848 0.3925 0.4885
params colsample bytree 100 0.7536 0.1199 0.6009 0.6428 0.7387 0.8534 0.9943
params learning rate 100 0.0155 0.0184 0.0011 0.0042 0.0082 0.0191 0.0841
params max depth 100 8.5200 3.6639 2.0000 5.0000 9.0000 11.0000 15.0000
params min child weight 100 12.7800 5.9571 1.0000 8.7500 14.0000 18.0000 20.0000
params n estimators 100 984.0000 398.7911 150.0000 637.5000 1050.0000 1350.0000 1500.0000
params reg alpha 100 1.6692 3.9260 0.0010 0.0056 0.1368 1.1306 19.5767
params reg lambda 100 2.3037 4.3608 0.0011 0.0136 0.0803 2.1761 20.5340
params subsample 100 0.7474 0.1137 0.6034 0.6426 0.7185 0.8407 0.9887

Table A.12: Descriptive statistics of the butina based 5-fold cross validation
hyperparameter tuning for XGB for endpoint Sol

APPENDIX A. IMPLEMENTATION DETAILS 100

A.3 Resulting Architecture

A.3.1 GIN

Value
params encoder activation relu
params encoder dim 243
params encoder dropout 0.0759
params encoder layer 5
params encoder output 563
params predictor activation leaky
params predictor dim 264
params predictor dropout 0.3388
params predictor layers 4
Val MAE 0.3315
params beta1 0.9504
params beta2 0.9555
params epsilon 0.0000
params lr 0.0004
params wd 0.0000
Val MAE LOG HLM activity MAE 0.3188
Val MAE LOG MDR1 ER activity MAE 0.3077
Val MAE LOG RLM activity MAE 0.3795
Val MAE LOG Sol activity MAE 0.3198

Table A.13: Resulting encoder/predictor/optimizer parameters for GIN.

APPENDIX A. IMPLEMENTATION DETAILS 101

A.3.2 EGNN

Value
params encoder activation leaky
params encoder aggregation sum
params encoder dim 248
params encoder layer 4
params encoder out 436
params encoder pooling add
params predictor activation silu
params predictor batchnorm 1
params predictor dim 965
params predictor dropout 0.3203
params predictor layers 4
Val MAE 0.3314
params beta1 0.8127
params beta2 0.9214
params epsilon 0.0000
params lr 0.0010
params wd 0.0000
Val MAE LOG HLM activity MAE 0.3166
Val MAE LOG MDR1 ER activity MAE 0.3068
Val MAE LOG RLM activity MAE 0.3813
Val MAE LOG Sol activity MAE 0.3201

Table A.14: Resulting encoder/predictor/optimizer parameters for EGNN.

APPENDIX A. IMPLEMENTATION DETAILS 102

A.3.3 LSTM

Value
params encoder dim 384
params encoder dropout 0.3805
params encoder layer 3
params encoder output 548
params n heads 8
params predictor activation leaky
params predictor batchnorm 0
params predictor dim 608
params predictor dropout 0.4598
params predictor layers 4
Val MAE 0.3457
params beta1 0.8132
params beta2 0.9032
params epsilon 0.0000
params lr 0.0007
params wd 0.0000
Val MAE LOG HLM activity MAE 0.3612
Val MAE LOG MDR1 ER activity MAE 0.3572
Val MAE LOG RLM activity MAE 0.4455
Val MAE LOG Sol activity MAE 0.3461

Table A.15: Resulting encoder/predictor/optimizer parameters for LSTM.

A.3.4 XGB

RLM

Value
Val MAE 0.4302
params colsample bytree 0.7551
params learning rate 0.0186
params max depth 5.0000
params min child weight 15.0000
params n estimators 1250.0000
params reg alpha 0.0040
params reg lambda 0.0259
params subsample 0.6960

Table A.16: Resulting XGB architecture for endpoint RLM.

APPENDIX A. IMPLEMENTATION DETAILS 103

HLM

Value
Val MAE 0.3663
params colsample bytree 0.7703
params learning rate 0.0375
params max depth 5.0000
params min child weight 13.0000
params n estimators 1350.0000
params reg alpha 0.0046
params reg lambda 0.0198
params subsample 0.7810

Table A.17: Resulting XGB architecture for endpoint HLM.

MDR1-ER

Value
Val MAE 0.3508
params colsample bytree 0.8340
params learning rate 0.0168
params max depth 4.0000
params min child weight 3.0000
params n estimators 1500.0000
params reg alpha 0.0010
params reg lambda 0.0024
params subsample 0.9466

Table A.18: Resulting XGB architecture for endpoint MDR1-ER.

APPENDIX A. IMPLEMENTATION DETAILS 104

Sol

Value
Val MAE 0.3777
params colsample bytree 0.6081
params learning rate 0.0080
params max depth 11.0000
params min child weight 20.0000
params n estimators 1250.0000
params reg alpha 0.0032
params reg lambda 0.0057
params subsample 0.6236

Table A.19: Resulting XGB architecture for endpoint Sol.

APPENDIX A. IMPLEMENTATION DETAILS 105

A.4 Used Hardware and Software

A.4.1 Hardware

Mltiple Intel Xeon Platinum Processors were used for cpu related tasks while multiple
NVIDIA A100 GPUs with each 80 GB VRAM were used for the neural network related
tasks.

A.4.2 Software

The xgboost python package version 3.0.0 was used for the XGB implementation. Graph
featurizers were implemented using the Chemprop [26] package version 2.1.2. The
neural networks were implemented with PyTorch [157] version 2.6.0, PyTorch lightning
[158] version 2.5.1, and PyTorch geometric [159] version 2.6.1. Compound processing
related tasks like descriptor calculation, butina clustering, and conformor creation are
utilized by the RDKit [104] version 2024.9.6. Optuna [113] version 4.2.1 was used
for hyperparameter optimization. The graph and conformer features are retrived by
using multiprocessing with the pathos [160] python package version 0.3.3. All self-made
Figures are made by using the software "draw.io" [161] (also knwon as "diagrams.net").

Appendix B

Further Results

B.1 Effect of Pre-training

B.1.1 Aggregated

Figure B.1: Test R2 scores resulting from linear evaluation protocol based
on different pre-training strategies for different ADME endpoints.

Figure B.2: Test R2 scores resulting from transfer learning evaluation proto-
col based on different pre-training strategies for different ADME endpoints.

106

APPENDIX B. FURTHER RESULTS 107

B.1.2 GIN

Linear

Figure B.3: Tukey plot to assess significant differences between pre-training
strategies for the linear evaluation protocol regarding the test MAE.

Figure B.4: Tukey plot to assess significant differences between pre-training
strategies for the linear evaluation protocol regarding the test R2.

APPENDIX B. FURTHER RESULTS 108

Transfer Learning

Figure B.5: Tukey plot to assess significant differences between pre-training
strategies for the transfer learning evaluation protocol regarding the test
MAE.

Figure B.6: Tukey plot to assess significant differences between pre-training
strategies for the transfer learning evaluation protocol regarding the test R2.

APPENDIX B. FURTHER RESULTS 109

B.1.3 EGNN

Linear

Figure B.7: Tukey plot to assess significant differences between pre-training
strategies for the linear evaluation protocol regarding the test MAE.

Figure B.8: Tukey plot to assess significant differences between pre-training
strategies for the linear evaluation protocol regarding the test R2.

APPENDIX B. FURTHER RESULTS 110

Transfer Learning

Figure B.9: Tukey plot to assess significant differences between pre-training
strategies for the transfer learning evaluation protocol regarding the test
MAE.

Figure B.10: Tukey plot to assess significant differences between pre-
training strategies for the transfer learning evaluation protocol regarding
the test R2.

APPENDIX B. FURTHER RESULTS 111

B.1.4 LSTM

Linear

Figure B.11: Tukey plot to assess significant differences between pre-
training strategies for the linear evaluation protocol regarding the test MAE.

Figure B.12: Tukey plot to assess significant differences between pre-
training strategies for the linear evaluation protocol regarding the test R2.

APPENDIX B. FURTHER RESULTS 112

Transfer Learning

Figure B.13: Tukey plot to assess significant differences between pre-
training strategies for the transfer learning evaluation protocol regarding
the test MAE.

Figure B.14: Tukey plot to assess significant differences between pre-
training strategies for the transfer learning evaluation protocol regarding
the test R2.

APPENDIX B. FURTHER RESULTS 113

B.2 Different VICReg Strategies

B.2.1 No Pre-training vs Pre-training

Aggregated

Figure B.15: Aggregated VICReg results for each encoder on each endpoint
(color). Each point refers to a different random seed for the linear evalu-
ation protocol. The label "ADME" refers to a pre-training on the ADME
training split, while "Largemix" refers to the pre-training on the largemix
dataset. The y-scale refers to the test R2 coming from an evaluation of
the ADME dataset.

Figure B.16: Aggregated VICReg results for each encoder on each end-
point (color). Each point refers to a different random seed for the transfer
learning evaluation protocol. The label "ADME" refers to a pre-training
on the ADME training split, while "Largemix" refers to the pre-training on
the largemix dataset. The y-scale refers to the test R2 coming from an
evaluation of the ADME dataset.

APPENDIX B. FURTHER RESULTS 114

GIN

Linear Evaluation

Figure B.17: Tukey plot to show significant test MAE differences on the
ADME dataset among GIN encoders depending on the VICReg strategy
regarding linear evaluation.

Figure B.18: Tukey plot to show significant test R2 differences on the
ADME dataset among GIN encoders depending on the VICReg strategy
regarding linear evaluation.

APPENDIX B. FURTHER RESULTS 115

Transfer Learning

Figure B.19: Tukey plot to show significant test MAE differences on the
ADME dataset among GIN encoders depending on the VICReg strategy
regarding transfer learning.

Figure B.20: Tukey plot to show significant test R2 differences on the
ADME dataset among GIN encoders depending on the VICReg strategy
regarding transfer learning.

APPENDIX B. FURTHER RESULTS 116

EGNN

Linear Evaluation

Figure B.21: Tukey plot to show significant test MAE differences on the
ADME dataset among EGNN encoders depending on the VICReg strategy
regarding linear evaluation.

Figure B.22: Tukey plot to show significant test R2 differences on the
ADME dataset among EGNN encoders depending on the VICReg strategy
regarding linear evaluation.

APPENDIX B. FURTHER RESULTS 117

Transfer Learning

Figure B.23: Tukey plot to show significant test MAE differences on the
ADME dataset among EGNN encoders depending on the VICReg strategy
regarding transfer learning.

Figure B.24: Tukey plot to show significant test R2 differences on the
ADME dataset among EGNN encoders depending on the VICReg strategy
regarding transfer learning.

APPENDIX B. FURTHER RESULTS 118

LSTM

Linear Evaluation

Figure B.25: Tukey plot to show significant test MAE differences on the
ADME dataset among LSTM encoders depending on the VICReg strategy
regarding linear evaluation.

Figure B.26: Tukey plot to show significant test R2 differences on the
ADME dataset among LSTM encoders depending on the VICReg strategy
regarding linear evaluation.

APPENDIX B. FURTHER RESULTS 119

Transfer Learning

Figure B.27: Tukey plot to show significant test MAE differences on the
ADME dataset among LSTM encoders depending on the VICReg strategy
regarding transfer learning.

Figure B.28: Tukey plot to show significant test R2 differences on the
ADME dataset among LSTM encoders depending on the VICReg strategy
regarding transfer learning.

APPENDIX B. FURTHER RESULTS 120

B.2.2 Agnostic Pre-training vs Specific Pre-training

Aggregated

Figure B.29: Aggregated VICReg results for each encoder on each end-
point (color). Each point refers to a different random seed for the linear
evaluation protocol. Largemix refers to the VICReg training on the largmix
dataset, Pre (Agnostic) refers to the use agnostic pre-trained encoder for
the VICReg training, while Pre (Special) shows the results of VICReg with
modalitiy specific pre-trained encoders. The y-scale refers to the test R2
coming from an evaluation of the ADME dataset.

Figure B.30: Aggregated VICReg results for each encoder on each end-
point (color). Each point refers to a different random seed for the transfer
learning evaluation protocol. Largemix refers to the VICReg training on
the largmix dataset, Pre (Agnostic) refers to the use agnostic pre-trained
encoder for the VICReg training, while Pre (Special) shows the results of
VICReg with modalitiy specific pre-trained encoders. The y-scale refers to
the test R2 coming from an evaluation of the ADME dataset.

APPENDIX B. FURTHER RESULTS 121

GIN

Linear Evaluation

Figure B.31: Tukey plot to show significant test MAE differences on the
ADME dataset among GIN encoders depending on the VICReg initializing
strategy regarding linear evaluation.

Figure B.32: Tukey plot to show significant test R2 differences on the
ADME dataset among GIN encoders depending on the VICReg initializing
strategy regarding linear evaluation.

APPENDIX B. FURTHER RESULTS 122

Transfer Learning

Figure B.33: Tukey plot to show significant test MAE differences on the
ADME dataset among GIN encoders depending on the VICReg initializing
strategy regarding transfer learning evaluation.

Figure B.34: Tukey plot to show significant test R2 differences on the
ADME dataset among GIN encoders depending on the VICReg initializing
strategy regarding transfer learning evaluation.

APPENDIX B. FURTHER RESULTS 123

EGNN

Linear Evaluation

Figure B.35: Tukey plot to show significant test MAE differences on the
ADME dataset among EGNN encoders depending on the VICReg initializ-
ing strategy regarding linear evaluation.

Figure B.36: Tukey plot to show significant test R2 differences on the
ADME dataset among EGNN encoders depending on the VICReg initializ-
ing strategy regarding linear evaluation.

APPENDIX B. FURTHER RESULTS 124

Transfer Learning

Figure B.37: Tukey plot to show significant test MAE differences on the
ADME dataset among EGNN encoders depending on the VICReg initializ-
ing strategy regarding transfer learning evaluation.

Figure B.38: Tukey plot to show significant test R2 differences on the
ADME dataset among EGNN encoders depending on the VICReg initializ-
ing strategy regarding transfer learning evaluation.

APPENDIX B. FURTHER RESULTS 125

LSTM

Linear Evaluation

Figure B.39: Tukey plot to show significant test MAE differences on the
ADME dataset among LSTM encoders depending on the VICReg initializ-
ing strategy regarding linear evaluation.

Figure B.40: Tukey plot to show significant test R2 differences on the
ADME dataset among LSTM encoders depending on the VICReg initializ-
ing strategy regarding linear evaluation.

APPENDIX B. FURTHER RESULTS 126

Transfer Learning

Figure B.41: Tukey plot to show significant test MAE differences on the
ADME dataset among LSTM encoders depending on the VICReg initializ-
ing strategy regarding transfer learning evaluation.

Figure B.42: Tukey plot to show significant test R2 differences on the
ADME dataset among LSTM encoders depending on the VICReg initializ-
ing strategy regarding transfer learning evaluation.

APPENDIX B. FURTHER RESULTS 127

B.3 Across Experiments

Aggregated

Figure B.43: Aggregated VICReg and pre-training results without VICReg
are shown for each encoder on each endpoint (color-coded). Each point
corresponds to a different random seed used in the linear evaluation pro-
tocol. Pre (Agnostic) refers to supervised agnostic pre-training, while Pre
(Special) refers to modality-specific pre-trained encoders. VICReg (Ag-
nostic) denotes the use of an agnostic pre-trained encoder for VICReg
training, VICReg (Random) indicates VICReg pre-training with randomly
initialized encoders, and VICReg (Special) shows results from VICReg with
modality-specific pre-trained encoders. The y-axis represents the test R2
score obtained from evaluation on the ADME dataset.

Figure B.44: Aggregated VICReg and pre-trained results without VICReg
for each encoder on each endpoint (color). Each point corresponds to a
different random seed used in the linear evaluation protocol. No Pre shows
the results without pre-training but with optimized predictor and optimizer
parameters. Pre (Agnostic) refers to supervised agnostic pre-training, while
Pre (Special) refers to modality-specific pre-trained encoders. VICReg (Ag-
nostic) denotes the use of an agnostic pre-trained encoder for VICReg
training, VICReg (Random) indicates VICReg pre-training with randomly
initialized encoders, and VICReg (Special) shows results from VICReg with
modality-specific pre-trained encoders. The y-axis represents the test R2
score obtained from evaluation on the ADME dataset.

APPENDIX B. FURTHER RESULTS 128

GIN

Linear Evaluation

Figure B.45: Tukey plot to show significant test MAE differences on the
ADME dataset among GIN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
linear evaluation.

Figure B.46: Tukey plot to show significant test R2 differences on the
ADME dataset among GIN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
linear evaluation.

APPENDIX B. FURTHER RESULTS 129

Transfer Learning

Figure B.47: Tukey plot to show significant test MAE differences on the
ADME dataset among GIN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
transfer learning evaluation.

Figure B.48: Tukey plot to show significant test R2 differences on the
ADME dataset among GIN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
transfer learning evaluation.

APPENDIX B. FURTHER RESULTS 130

EGNN

Linear Evaluation

Figure B.49: Tukey plot to show significant test MAE differences on the
ADME dataset among EGNN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
linear evaluation.

Figure B.50: Tukey plot to show significant test R2 differences on the
ADME dataset among EGNN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
linear evaluation.

APPENDIX B. FURTHER RESULTS 131

Transfer Learning

Figure B.51: Tukey plot to show significant test MAE differences on the
ADME dataset among EGNN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
transfer learning evaluation.

Figure B.52: Tukey plot to show significant test R2 differences on the
ADME dataset among EGNN encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
transfer learning evaluation.

APPENDIX B. FURTHER RESULTS 132

LSTM

Linear Evaluation

Figure B.53: Tukey plot to show significant test MAE differences on the
ADME dataset among LSTM encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
linear evaluation.

Figure B.54: Tukey plot to show significant test R2 differences on the
ADME dataset among LSTM encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
linear evaluation.

APPENDIX B. FURTHER RESULTS 133

Transfer Learning

Figure B.55: Tukey plot to show significant test MAE differences on the
ADME dataset among LSTM encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
transfer learning evaluation.

Figure B.56: Tukey plot to show significant test R2 differences on the
ADME dataset among LSTM encoders depending on the VICReg with ini-
tializing strategies and conventional pre-training without VICReg regarding
transfer learning evaluation.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation and Research Questions
	Structure

	Theoretical Background
	Computational Chemistry and Pharmacology
	Pharmacokinetics
	Simplified Molecular Input Line Entry System
	Molecular Features
	Compound Similarity

	Modeling
	eXtreme Gradient Boosting
	Multi-Layer Perceptron
	Language Modeling
	Graph Neural Networks
	Variance-Invariance-Covariance Regularization

	Statistics
	Metrics
	Analysis of Variance
	Tukey Honestly Significant Difference Post-Hoc Test

	Methods
	Data
	Pre-training Dataset
	Downstream Dataset
	Preprocessing

	Architecture Details
	Hyperparameter Tuning
	VICReg for Computational Chemistry

	Performance Evaluation
	Evaluation Protocols
	Assess Performance Differences

	Experiments
	No Pre-training
	Model-agnostic Pre-training
	Model-specific Pre-training

	Results and Discussion
	Effect of Pre-training
	Linear Evaluation
	Transfer Learning
	Impact of Pre-training Strategies

	Different VICReg Strategies
	ADME vs Largemix
	Different Pre-training Strategies
	Impact of Differing VICReg Strategies

	Across Experiments
	Linear Evaluation
	Transfer Learning
	Comparing VICReg to other Pre-training Strategies

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Appendices
	Implementation Details
	Data
	ADME Data

	Hyperparameter Tuning
	GIN
	EGNN
	LSTM
	XGB

	Resulting Architecture
	GIN
	EGNN
	LSTM
	XGB

	Used Hardware and Software
	Hardware
	Software

	Further Results
	Effect of Pre-training
	Aggregated
	GIN
	EGNN
	LSTM

	Different VICReg Strategies
	No Pre-training vs Pre-training
	Agnostic Pre-training vs Specific Pre-training

	Across Experiments

