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A B S T R A C T

Machine Learning Operations (MLOps), the task of coordinating machine
learning projects with multiple models and team members, is growing in
importance and interest. Cloud computing resources are a popular option in
this scenario due to many reasons like easily accessible computing resources,
billing by usage time and further available services like a fully managed en-
vironment. Two approaches to monitor models in an MLOps environment
are compared by using two popular statistical time series forecasting mod-
els and two datasets from a widely known forecasting competition. One
approach is the default Amazon Web Services (AWS) model drift monitor-
ing and the other is a tracking signal monitoring. The goal is to reduce
economical and ecological costs generated by retraining deployed models
with more recent data in a cloud environment. The tracking signal monitor-
ing is shown to serve as a more generic approach which can reduce costs
when a decreased model performance is accepted for lower training costs.
The AWS monitoring with in-sample error metrics as monitoring threshold
used as retraining trigger shows a better performance at a comparable level
of retraining counts.



Z U S A M M E N FA S S U N G

Projekte des maschinellen Lernens mit mehreren Modellen und Teammit-
gliedern zu koordinieren (MLOps) ist eine Aufgabe wachsender Relevanz.
Aus verschiedenen Gründen wie dem leichten Zugang zu Rechenressourcen
und weiteren angebotenen Leistungen wie einer vollständig verwalteten Re-
chenumgebung sind Cloud Computing Ressourcen eine beliebte Option in
diesem Szenario. Die Abrechnung ist dabei meist an die Nutzungszeit ge-
koppelt. Um zu evaluieren, wie sich die Kosten in einer Cloud Computing
MLOps Umgebung in Verbindung mit Modellen aus dem Bereich der Zeitrei-
henvorhersage abhängig von der Überwachungsvariante verhalten, werden
verschiedene Herangehensweisen verglichen. Dabei sollen ökonomische und
ökologische Kosten, die durch das Nachtrainieren von Modellen mit neue-
ren Daten entstehen, reduziert werden. Dazu werden zwei beliebte statisti-
sche Modelle und zwei Datensätze aus einem bekannten zeitreihenprognose
Wettbewerb evaluiert. Als Überwachungsmethode wird die standardmäßige
Überwachungsvariante für MLOps Umgebungen von Amazon Web Services
(AWS) mit einer Tracking Signal gestützten Überwachung verglichen. Die
Tracking Signal Überwachung bietet einen generischeren Ansatz, welcher
Kosten reduzieren kann, wenn eine reduzierte Vorhersagekraft von Model-
len für verringerte Kosten durch das Nachtrainieren akzeptiert werden kann.
Die AWS Überwachung, welche die Fehlermetriken aus den Trainingsdaten
als Grenzwert nutzt um ein Nachtrainieren auszulösen, zeigt eine bessere
Leistung bei einem vergleichbaren Level von Nachtrainierungsiterationen.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation and application context

Mathematical models generated with statistical tools or Machine Learning
(ML) algorithms have prominently arrived in society. The usage of Artificial
Intelligence (AI) is discussed on a political scale, evaluating current trends,
opportunities and risks. On a european level, it is acknowledged that AI can
generate improvements in different sectors like healthcare, farming, climate
change, production efficiency or security although risks involved with AI

like opaque decision making, discrimination or criminal purposes need to
be observed. A shift to edge computing [Cao+20] and more industrial data
is expected but currently, cloud-based processing of consumer related data
is dominating. On this political level, policy options and objectives are dis-
cussed to succeed in the international race for AI leadership aiming e.g. for le-
gal certainty, enforcement of existing laws and fundamental rights, account-
ability, technical robustness and safety [Com20; Com21]. With progress in
big data and deep learning, the usage of AI and ML is present in various fields
[CML14; LBH15]. Typical applications include producing recommendations
[Zha+19], giving various kinds of forecasts [HLV16; AC20; SCH20], process-
ing images [O’M+20] and text [MRS08] or grouping and labeling entities
[Oye+19]. The increasing usage of those models often requires life cycle man-
agement to support the organization between the different roles involved in
producing, hosting and maintaining models which includes data scientists,
data engineers, software architects and Development & Operations (DevOps)
specialists. Besides the amount of different roles involved, the typically re-
quired large datasets for model training bring additional challenges with
data storage and management [Agr+19; Den+09]. These challenges lead to
the interest in Machine Learning Operations (MLOps) architectures that pro-
vide functions to organize the workflow connected to the model life cycle.
There are several solutions available providing MLOps services and as one of
the major actors in cloud computing, Amazon Web Services (AWS) provides
MLOps tools as well. Those are implemented in their fully managed environ-
ment and target a quick setup for the customer with minimal engineering
requirements. Especially time series forecast models need to be monitored
after deployment and retrained with new data since prediction accuracy can
quickly degrade when the underlying patterns that the original model was
trained on, change [DJI04]. Therefore, the special requirements of time series
forecast models in an MLOps environment need to be understood and solu-
tions need to be implemented to keep the model prediction accuracy and
the costs for maintaining the models on an efficient level.
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1.2 goal of this thesis

The possibilities to use AWS as an MLOps environment with focus on time
series forecasting are examined and possible weaknesses in the default mon-
itoring of model drift are investigated. As an alternative solution, monitoring
with a tracking signal is conducted. Since the usage of the MLOps tools at AWS

are connected to costs, the goal of this thesis is to identify, which monitor-
ing method results in minimal costs regarding the costs of retraining, the
costs of degraded model performance in a business case and the amount of
CO2 generated while retraining models depending on the different monitor-
ing options. To achieve this goal, two datasets with ten time series each are
monitored over 100 forecasting data points. Three different error measures
(Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE)) are evaluated over this time span with each two statistical
models (Autoregressive Integrated Moving Average (ARIMA), Error, Trend,
Seasonal (ETS)) and two monitoring options (AWS model drift, tracking sig-
nal) resulting in different amounts of model retraining times. To benchmark
these results, two more options to retrain the models are evaluated: never
retrain the model and retrain the model after every one-step-ahead predic-
tion with the latest data point. Two public time series datasets with different
characteristics are used. To compare the performance of the two monitoring
approaches at the same retraining count, an adapted tracking signal is ex-
amined additionally, which results in the same retraining count level as the
AWS monitoring method.

MLOps frameworks rely on automation and reusability. Monitoring meth-
ods and thresholds should follow these principles. The customization of
AWS monitoring thresholds is very specific to the data and the used mod-
els. Therefore, to adapt the level of the targeted retraining count, knowledge
about the data and the performance of the forecasting model is required. To
assess if the tracking signal monitoring can serve as a more generic moni-
toring method then the AWS approach, it is evaluated if a specific threshold
of the tracking signal results in comparable retraining counts over multiple
datasets and models. If a tracking signal can be adjusted to a specific level
and a retraining count can be expected from that threshold independent of
the data or model, the operation with tracking signals would be more uni-
versal.

With the results of this research, guidance can be given on how to decide
on a time series forecasting MLOps system and the best way on monitoring
and retraining scheduling can be implemented in a cost efficient manner.

1.3 structure

After this introduction to the topic and the goal of the research, chapter 2

gives a more detailed introduction to the theoretical background regarding
MLOps, time series forecasting including the characteristic data, prominent
and state-of-the-art models, different monitoring metrics and different kinds
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of possible drifts which can degrade the prediction accuracy of deployed
models. Chapter 3 explains the MLOps solutions provided by AWS and con-
nects the described goal of this thesis with possible weaknesses found in the
AWS framework by introducing the research hypothesis. Chapter 4 summa-
rizes related work in the time series forecasting monitoring field. In chapter
5 the datasets, the experiment framework and the experiment results are de-
scribed. Chapter 6 discusses the results of the two datasets in relation to the
research hypothesis. Finally, chapter 7 gives a conclusion of the research and
describes limitations and possible further research questions and methods.



2
T H E O R E T I C A L B A C K G R O U N D

2.1 ml ops

To understand why there is a need for MLOps and to understand what MLOps

is, the typical workflow of a ML project needs to be understood. The first step
towards a model which performs well in a real life scenario is the business
or research problem. For every problem, an evaluation should be conducted
on which kind of solution is a good approach for this specific problem. If the
answer is that a ML model in production is a good solution, the workflow
most machine learning specialists or data scientists know (fig. 2.1), begins.

Figure 2.1: Typical ML Workflow [Qin20]

Every ML and statistical model requires data to learn from and adjust
model parameters to. Therefore data relevant to the problem must be col-
lected and persisted for further engineering processes. Which data can be
considered as relevant is often not clear and also depends on the desired
usecase. The decision which data is considered relevant can be made e.g.
by data scientist, project leads or other stakeholders. Data can be already
stored but not sufficiently preprocessed or entirely new data has to be col-
lected. In this collection step, data stays in its raw format and just a very
rough differentiation between relevant and non relevant data is made, in
doubt all candidates for further processing can be persisted if storage capac-
ity permits. At this step it is crucial to have sufficient variance in the data
especially in the target value so that for example in a model which should
forecast if it will rain tomorrow there are days with rain and days without
rain in the dataset. For non target values this should also be taken into con-
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sideration. The data collection step can also include a first processing where
deviant data like null values or faulty data is dropped [AA20].

For supervised ML problems, a data labeling process follows where, mostly
manually, ground truth labels are added to the data. At the feature engi-
neering step, several possible operations to split, merge or transform data
enable the model to access the data. When the data is ready for usage, in
data partitioning, it is typically split into train, validation and test data with
different proportions to open the possibility of recognizing when a model
overfits. The goal is to avoid that a model is adjusted very well to known
data but performs much worse on unknown data. Depending on the given
circumstances, the training data split usually gets the biggest share of data
and is used to adjust the parameters or weights of a model to perform well
on this data. To make sure the model does not only work well on the train-
ing data, validation data is used to validate the performance of a model on
unseen data and to experiment with different hyperparameters. The final
assessment of the model performance is conducted on the test data in the
model evaluation. In the iterative process of going back to feature engineer-
ing, change the model algorithm or hyperparameters or even the need to
collect more or different data, a model which performs well on unseen data
is constructed.

Up to this step the classic data science team might be familiar with the
workflow but the life cycle of a model does not stop at this point, the respon-
sibility just transfers to engineering and operational teams to deploy and
monitor the model. The model has to be integrated into applications and a
production environment to benefit the business case [AA20]. The model has
to be constantly monitored to assure the performance does not degrade over
time with changing data or user behaviour. When a degrading model per-
formance is monitored, the whole process of the ML workflow has to begin
again (fig. 2.2). The monitoring of external factors like changing data or user
behaviour is one aspect why the model might require retraining or adjust-
ment. Another reason for change is when business requirements change and
the model does not serve as the desired solution anymore.

It should be clear that this process is very time consuming in each iter-
ation and a lot of development and communication over multiple teams is
required. On top of the costs for the software maintenance, which is much
higher then the costs for the initial development, the costs for model main-
tenance is added to the existing costs [AA20]. This is where the need for
MLOps originates with the goal to automate processes in the ML workflow so
"[...] at it’s core, MLOps is the standardization and streamlining of machine
learning life cycle management" [Tre+20]. Following this goal, DevOps con-
cepts to standardize and automate software development are integrated to
ML production frameworks. DevOps aims to reduce repetitive software inte-
gration work done by developers. This is reached by automating tests and de-
ployment, introducing postdeployment verification processes to detect and
resolve errors and enabling Continuous Deployment (CD) which liberates
developers to deploy code automatically to customer related production en-
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Figure 2.2: Realistic Workflow of Model Production and Maintenance [Tre+20]



2.1 ml ops 8

vironments without coordinating with other development colleagues. Addi-
tionally "DevOps practices rely heavily on tools of various kinds, including
tools for container management, continuous integration, orchestration, mon-
itoring, deployment, and testing." [ZBCS16]. Continuous Integration (CI) is a
software development practice where code gets published multiple times per
day with often minor improvements to reduce the time between releases and
improve quality and productivity. The final integration to the production en-
vironment often remains manual though after having produced production
ready code [SABZ17]. The required deployment cycle of new models ful-
filling current business demands can vary with the data collection interval
and changing business requirements but the most extreme deployment cy-
cle is the online learning [ACBG02] where the production model gets updated
with every user request. In practice, batch processing is used more often to
allow validation of the new data and new models before being deployed to
production [Bay+19].

Since for many organizations, creating and deploying multiple ML models
is a relatively new concept, the number of models maintained is limited and
therefore manageable without a sophisticated management concept. With
automated business decisions that are interacting with multiple parallel run-
ning models, managing models and related risk becomes more important
and more difficult. These risks can include having a model which is not
available for some time, getting bad model predictions or reduced model
fairness. Another possible risk is loosing essential personell for maintaining
the model [Tre+20]. This leads to a growing need and interest for reliable
and efficient production and maintenance of ML applications and their in-
frastructure in form of MLOps (see fig. 2.3).

Figure 2.3: Google Trends Worldwide Results for ’MLOps’ Search Scaled to Maxi-
mum 100, Monthly Results up to 2022-07, Peak in 2022-06
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2.1.1 ML Ops Levels

MLOps architectures can differ in their level of automation and integration
of code and modules within the framework. The most basic level is the
manual implementation where all steps of the described ML workflow are
performed by hand in a sequential manner and models are manually de-
ployed and implemented into the application by data-/software engineers
and software architects. Operational teams are responsible for maintaining
functionality and collecting monitoring data [AA20]. With periodic required
model adjustments or retrainings, this setup will result in repetitive manual
adjustments of the model and possibly the engineering steps to integrate the
model into the application.

The continuous model delivery level introduces pipelines to enable the
integration of different parts of the MLOps workflow into a partially auto-
mated framework. The goal is to automatically trigger a retraining of the
model after a retraining signal has been given and to deploy this model
to the production environment. This retraining signal can be given manu-
ally or automated via schedule, degrading model performance or changing
data patterns. New data is constantly or periodically added to the data store
where data preparation pipelines clean and process the data to add fresh
data to the feature store where more pipelines draw processed data from
[AA20]. This serves the purpose of creating a standardised procedure of
data preparation over multiple model versions. The model creation can con-
tain several pipelines prepared to create different model types with various
requirements regarding e.g. data format. With these pipelines, models can
be built, trained, validated and tested automatically including the tuning of
hyperparameters and optimizing performance. At some steps, manual input
might be required with more complex models but automation should per-
form most of the work to generate and deploy an optimal model [AA20]. To
achieve this integration and interchangeability of models, the pipeline code
needs to be generic so that an expected standardized input is given and the
output can be processed by the following pipelines without manual adjust-
ments. This code modularization also enables components to be reuasable
and potentially shareable across ML pipelines. Ideally, code is containerized
to allow code execution independently from the runtime it was created in
[Clo22]. After receiving a retraining signal and having produced an updated
model, it gets added to a model store often referred to as model registry where
storage and versioning of models and weights takes place and the best per-
forming model can be deployed to the application [AA20]. At this level, new
pipelines are tested manually before being integrated in the framework and
usually only a few pipelines are used to serve the automated retraining and
deployment of models with new data available [Clo22].

CI/CD Pipeline automation is the next step in MLOps hierarchy and aims
to equip data scientists with the necessary tools to quickly build, test and
deploy new pipelines for novel model architectures or feature engineering
ideas [Clo22]. This CI and CD of pipeline code improves the prior level in the



2.1 ml ops 10

extend that no manual testing of new pipeline code and it’s components is
needed. Changes of state-of-the-art model architectures or data requirements
can be adopted rapidly and can serve in combination with CD of the model
as an optimal ML environment [AA20].

2.1.2 Provider and Platforms

Many data scientists and companies like NVIDIA, Facebook, Spotify or Google
[VM21] have a demand for MLOps solutions to be able to constantly adjust
their ML models to new data, changing user behaviour or new trends in
model architectures. This increasing demand for MLOps opens the possibil-
ity for several providers to offer their solutions regarding pre-built MLOps

environments. Some of them can be integrated in On Premises (On-Prem) ar-
chitectures and others are build by or use the resources offered by cloud
computing companies.

One entry level open-source tool is MLFlow 1 which offers automatic mod-
ularization and pipeline creation to experiment collaboratively with different
models in an On-Prem environment, build staging zones for models where col-
leagues can inspect, comment or adjust provided models before they can be
easily deployed to the cloud environments of AWS, Azure or Google [AA20].
Monitoring of deployed models is not possible per default so there can be
no sophisticated CI/CD for pipelines and models without extensive custom
pipeline generation and maintenance. Other On-Prem open source MLOps so-
lutions with comparable functions are SACRED [Gre+17] or DVC [BEA21].

As a more advanced open-source tool, Kubeflow 2 is a Google initiated plat-
form to operate with ML workflows on Kubernetes. Containerized ML com-
ponents can be managed and deployed in a distributed manner to achieve
MLOps tasks like training, deploying, monitoring, logging, alerting, retrain-
ing and redeploying inside a Kubernetes cluster. Using Kubeflow, the tech-
nical overhead of the Kubernetes cluster management should stay at a mini-
mum level and offer a quickly accessible MLOps framework [Bis19]. Kubeflow
can be installed in an On-Prem Kubernetes clusters but also in cloud environ-
ments using Kubernetes which simplifies the portability between different
infrastructures [ZYD20].

If no Kubernetes Cluster is available or desired, Tensorflow Extended
[Bay+17] is another open-source MLOps framework by Google offering MLOps

functions with the Tensorflow training library but also gives the opportunity
to implement other learner algorithms.

There is also a landscape of commercial providers offering MLOps solutions
like Valohai 3, Neptune 4, Iguazio 5, Databricks 6 or DataRobot 7, which of-

1 https://mlflow.org/
2 https://www.kubeflow.org/
3 https://valohai.com/
4 https://neptune.ai/
5 https://www.iguazio.com/
6 https://databricks.com/
7 https://www.datarobot.com/

https://mlflow.org/
https://www.kubeflow.org/
https://valohai.com/
https://neptune.ai/
https://www.iguazio.com/
https://databricks.com/
https://www.datarobot.com/
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ten provide frameworks leveraging cloud computing resources and provid-
ing attractive GUIs. Choosing those providers, additional costs to the sole
computing resources pricing are to be expected.

Conducting experiments and projects using ML algorithms and tools, volu-
minous data storage capacities as well as considerable computing resources
in form of CPU, GPU and TPU are required, especially in the training phase
[Jou+17; Sze+17]. Subsequently, platforms offering MLOps capabilities need
to provide those resources to combine ML and DevOps capabilities [ZYD20].
Since cloud computing companies naturally offer these computing resources
and a broad scope of integrated algorithms and services [PIP16], they have
an advantage in offering MLOps framework over independent commercial
providers. For the customer it can be also beneficial to rely on cloud com-
puting resources because of the availability of large computing and storing
volumes on demand coupled with the costs proportional to the actual usage
as well as scalability and reliability [PIP16]. A lot of risks for MLOps practi-
tioners can be eliminated by evading the costs of an On-Prem computing envi-
ronment including costs of hardware, setup, maintenance and backup man-
agement. Additionally a lot of state-of-the-art resources and knowledge be-
comes available very easily which especially in countries or regions without
the availability of those resources can make a big difference for customers.
These resources can include available hardware for the required computing
or storage capabilities as well as highly skilled personell for development
and administration. On top of that, time needed for acquiring, building and
maintaining the infrastructure can drastically be cut down so more time
becomes available to focus on building the operations planned on that envi-
ronment. The benefits of cloud environments can be listed as [Sun20]

• Low Entry Barriers

• Pay-as-you-go

• Access to Leading Edge IT Resources, Skills, and Capabilities

• Quality Improvements

• Cost Savings

• Focus on Core Capabilities

• Greater Flexibility and Elasticity

• Reduced Time to Market and

• Lower IT Barriers to Innovation.

As downsides, lower costs in this case also mean sharing resources, giving
(security) control out of hand, external availability management, additional
required platform knowledge, vendor lock-in and limited service continuity
[Sun20]. For a lot of companies, this trade-off makes experimenting with pos-
sible ML solutions much easier and possibly more affordable when using on
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demand cloud solutions. This results in a sales volume of about 411 billion
US$ in 2021 regarding public cloud computing services [Sta22].

In an analysis of the biggest competitors in Cloud Infrastructure and Plat-
form Services, Bala et al. [Bal+21] build a Magic Quadrant visualization
(fig. 2.4) to cluster these companies regarding their momentary roles in the
market differentiating between Challengers, Niche Players, Visionaries and
Leaders. To be present in the magic quadrant, companies must fulfill several
requirements such as being among the top global providers for segments
like industrial and private cloud infrastructure and platform services. Com-
panies older then 3 years are required a minimum revenue of US$1 billion
in the previous year or at least US$500 million when younger then 3 years.
The axes completeness of vision and ability to execute are each a weighted
average of multiple evaluation criteria. Completeness of vision consists of:
market understanding, marketing strategy, sales strategy, product strategy,
business model, vertical/industry strategy, innovation and geographic strat-
egy. The ability to execute is evaluated by the criteria: product or service,
overall viability, sales execution/pricing, market execution, customer experi-
ence and operations. In their 2021 evaluation, there are 3 leaders identified:
AWS, Microsoft (Azure) and Google (Google Cloud Platform). Those market
leaders in Cloud Infrastructure and Platform Services all offer a broad scope
of resources and services including MLOps capabilities. Because of the domi-
nating relevance of AWS as the market leader, an overview of how an MLOps

project can be implemented with the services offered by AWS is given in chap-
ter 3.1. This overview is followed by the discussion of a possible weakness
in that framework when working with time series data and the introduction
of a possible solution to that problem.

2.2 time series forecasting and monitoring

Forecasting data or events is a highly demanded operation in various fields
like politics, industry, medicine, science or finance. Due to Montgomery, Jen-
nings, and Kulahci, most of the forecasting problems include time series data
which they define as "[...] a time-oriented or chronological sequence of ob-
servations on a variable of interest" [MJK15]. The temporal distance between
the observations of one time series is fixed but the spacing between those ob-
servations can vary between fragments of a second, possibly with industrial
sensors, to many years, like the evaluation of CO2 levels over time in drilled
ice cores [Fou22]. Predictions based on a time series or multiple time series
of a similar type can vary in their prediction/forecast horizon as well, meaning
the industrial sensor with an observation every second could get a forecast
just for the next second or for the next e.g. 1000 seconds. So forecasting prob-
lems can be categorized into short-term forecasting problems with just one
or a few time periods into the future, medium-term forecasting problems
extend from 1 to 2 years into the future and long-term forecasting prob-
lems can largely extend that period [MJK15]. One data point in a time series
can embody a snapshot of an actual event like the momentary rounds per
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Figure 2.4: Gartner [Bal+21] Magic Quadrant for Cloud Infrastructure and Platform
Services
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minute of a spinning machine or the cumulative amount of revolutions this
machine made during the day. Generating predictions with time series data
can help making short-term or strategic decisions in different scenarios. In
quantitative forecasting, historical data and their inherent patterns are used
to build a forecasting model with statistical means and to extrapolate the
observed data into the future. A prediction can then have the form of a point
forecast, so an exact value which will produce a forecast error almost certainly
or provide a prediction interval to accompany the point forecast [MJK15].

There are many ways, forecasting models can be built depending on the
forecasting problem, the available data and the resources at hand for build-
ing and maintaining that model. To evaluate the performance of a model,
one could calculate the forecasting errors of the data the model was built
on. This in-sample error only describes the model goodness of fit but what
is more important is the accuracy of the future predictions, the out-of-sample
forecast error [MJK15]. This error should be evaluated initially to decide if
a model performs according to the goals or expectations of the business or
research problem. If the model does not perform in a satisfying way, adjust-
ments or even a completely different model type are required. After having
decided on a model and having deployed it, the evaluation of the model per-
formance must continue over time to assure the accuracy is not degrading
over time. This is done by monitoring the model. There are multiple metrics
to assess the accuracy of a model but commonly a single forecast error is
calculated as one-step-ahead forecast error at timestep t

et(1) = yt − ŷt(t − 1), (2.1)

where ŷt(t− 1) is the forecast of yt that was made one period prior. et(1) is
the one-step-ahead forecast error at timestep t. This is done because changes
in the time series like a level change will typically be also visible in the
forecast error [MJK15]. Using larger forecasting horizons mostly leads to a
more difficult problem due to the increasing uncertainty [Wei18].

2.2.1 Time Series Data

Due to the definition of time series observations coming from one entity,
the observations are correlated and therefore standard statistical methods
requiring random samples (independent and identically distributed random
variables) are not applicable [Wei13]. Another characteristic of time series
data is the question of their stationarity. A time series Zt is strictly stationary
when the joint distributions of the observations x1, ..., xn is the same as the
joint distributions of the observations plus any integer k to generate a time
shift, so the distribution of a time series is invariant to a change of time
origin:

FZt1,...,Ztn(x1, ..., xn) = FZt1+k,...,Ztn+k(x1, ..., xn) (2.2)
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for any tuple (t1, ..., tn) where FZt1,...,Ztn(x1, ..., xn) is the joint distribution
function defined by FZt1,...,Ztn(x1, ..., xn) = P{Zt1 ≤ x1, ..., Ztn ≤ xn}. Because
of the impracticability to check that on a complete time series, often a weakly
stationary process, which only requires a time invariant mean and variance
is considered sufficient to classify a time series as stationary. To identify
stationarity, visual inspections when plotting the data or statistical tests can
be used [Wei13].

Figure 2.5: Stationary Time Series

Figure 2.6: Non-Stationary Time Series

Two more important concepts when modeling time series data are season-
ality and trend. The time series in (fig. 2.7) clearly displays an upward trend
over time and simultaneously a seasonal pattern of peaks and valleys is vis-
ible with a span of about 20 periods.

2.2.2 Time Series Forecasting Models

There are several types of models that can be built to serve as a forecasting
instance for time series data. Generally those can be divided into statistical
models using more classical methods and ML models which are becoming
popular more recently. Hybrid models aiming to combine the advantages
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Figure 2.7: Example Time Series for Seasonality and Trend

from both worlds are being developed as well, some of them challenging the
state-of-the-art performance [MSA18b].

2.2.2.1 Statistical Models

The most basic type of statistical time series forecasting model is the naïve
method also called random walk forecast which predicts the future solely
on the last known observation producing a practicable fit for financial data
[KT03] (source notation altered for uniform naming convention):

ŷt+1 = yt (2.3)

Some of the most popular time series forecasting models used today rely
on statistical foundations layed out in the 1950s and 1960s by Brown [Bro59;
Bro63], Holt [Hol57] and Winters [Win60]. These exponential smoothing ap-
proaches can partly model time series data with trend and seasonality where
"Forecasts produced using exponential smoothing methods are weighted av-
erages of past observations, with the weights decaying exponentially as the
observations get older. In other words, the more recent the observation the
higher the associated weight." [Ath14].

There are different types of exponential smoothing models available with
the simple exponential smoothing as the most basic variant for univariate data
with no trend or seasonality. It only requires one parameter alpha often re-
ferred to as smoothing factor or smoothing coefficient that influences the expo-
nential decay of the weights of older observations where "A value close to 1

indicates fast learning (that is, only the most recent values influence the fore-
casts), whereas a value close to 0 indicates slow learning (past observations
have a large influence on forecasts)" [SJ16].

The two extensions of this method are double exponential smoothing and
triple exponential smoothing where additional parameters in the model enable
the modeling of trends and seasonality. The double exponential smoothing
model with an additive trend is often referred to as Holt’s linear trend model
[Ath14], but it is also possible to model exponential trends. The triple ex-
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ponential smoothing model is also called Holt-Winters Exponential Smooth-
ing and the most sophisticated type of exponential smoothing being able
to model linear and exponential seasonalities. To improve modeling of the
seasonality, the span of the seasonal pattern needs to be provided when
building this model [SJ16].

Exponential smoothing models have widely been used since then and ex-
perienced some improvements and further variants especially in the 1980s
leading to a remarkably good forecasting performance [DH06].

One of these variants is the ETS model type which can additionally to a
point forecast give predictions for intervals. Every ETS model consists of an
equation that describes the observed data as well underlying unobserved
components like level, trend and seasonality as well as the change of those
components over time. Because of that emphasize of changing components,
these models are also referred to as (innovation) state space models with the
name-giving components error, trend and seasonality [HA18]. To build an ETS

model, maximum likelihood estimation is used in combination with obtain-
ing a good Akaike’s Information Criterion (AIC), Bayes Information Crite-
rion (BIC) or mostly Akaike’s Information Criterion corrected value [JM17]
which are all used to assess the quality of a model while considering simpler
models as beneficial.

Another established type of statistical time series forecasting modeling
is the ARIMA model group. Box and Jenkins [BJ70] combined the existing
concepts of Autoregressive (AR) and Moving Average (MA) models first in-
troduced by Yule [Yul27] to develop their "[...] three-stage iterative cycle for
time series identification, estimation, and verification (rightly known as the
Box-Jenkins approach)." [DH06].

These ARIMA models require 3 parameters to combine the subfunctions
of the model into a whole entity: the parameters p, d and q describe the or-
der of the AR, I (Integration) and MA parts. The AR part describes a linear
combination of the past values of the time series at a desired point. In other
words a regression on the variable itself is build. Just like any other linear
regression models, it is best if the predictors are independent and uncorre-
lated. This is why the I part of the ARIMA model describes the degree of
differencing required to turn a non-stationary time series into a stationary
time series without any trends or seasonality. The MA, has a comparable be-
haviour like the AR part in that sense that they both are a linear combination
of past values, but instead of using the predictor itself, the MA relies on the
most recent forecasting errors building a weighted moving average. Using
these parameters, non-seasonal time series data can be modeled but with
additional parameters, also seasonal data can be portrayed [HA18].

To find the best parameters to build an ARIMA model, the dependency on
the architects knowledge and experience can be eliminated by an automatic
search process comparing different combinations of those parameters and
the results regarding their one-step-ahead prediction errors while penaliz-
ing overfitting. For this model comparison popular metrics are the AIC, FPE
(Akaike’s final prediction error) or the BIC [DH06]. There are multiple vari-
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ants of ARIMA models available like ARARMA, multi-step-ahead forecasting
AR models selected separately for each horizon, multivariate VARIMA mod-
els, long memory ARFIMA models or different model types like ARCH/-
GARCH models focusing on the variance of time series data [DH06], which
will not be further discussed here.

2.2.2.2 ML Models

In the 1990s a different approach to time series forecasting joined the state-
of-the-art discussion: ML models, often relying on artificial neural networks.
This architecture was supposed to bring a novel approach to the forecasting,
especially of nonlinear processes with an unknown functional relationship
[DH06]. The inputs for the input layer are values of the observed time se-
ries, processed with the learned weights and biases in one or more hidden
layers to give one feed forward output as a prediction for the next data
point at the desired interval. There exist different types of ML time series
forecasting models but several studies observe an inferior predictive perfor-
mance when being compared to statistical methods [MJK15; DH06; MSA18b;
MSA18a]. ML models used in those comparisons are multiple types of neu-
ral networks (e.g. Long Short-Term Memory (LSTM), multi-layer perceptron),
decision trees, support vector regressions, nearest neighbor methods and
Gaussian processes. Cerqueira, Torgo, and Soares [CTS19] find that this pre-
vailing opinion of inferior performance exists due to the low sample sizes
used in comparative studies. Focusing on the small training sets used in
the M3 forecasting competition [MH00], they show that with larger training
sets, several ML forecasting models outperform statistical models when us-
ing univariate time series. The M3 competition is the third iteration of the M
competition series initiated by Spyros Makridakis to evaluate state-of-the-art
models and algorithms in time series forecasting. The M3 and the M4 com-
petition datasets have a comparable structure providing multiple univariate
datasets with e.g. yeary, monthly and daily intervals. The M3 data includes
3003 time series of limited length (e.g. all 1428 monthly time series below
150 observations - see fig. 2.8) and aims to include more methods, especially
neuronal networks [MH00]. The main differences to the M4 datasets is that
the M4 dataset is with 100.000 time series much bigger, the time series are
much longer and shorter intervals (daily & hourly) are provided additionally
(see appendix chapter A.1). One of the main objectives is to further evaluate
which models, statistical and ML models, perform well in which scenario
and when combinations of these methods perform best [MSA18b]. Since the
M4 competition [MSA18b] has larger training sets but still pure ML models
show a worse predictive performance then statistical models, a validation of
the results found by Cerqueira, Torgo, and Soares [CTS19] is required. The
strength of ML models at the state-of-the-art research can be shown either
with combining ML and statistical models [MSA18b] or using ML models as
global models (cross-learning) so to learn not only from one time series but
from many provided these time series are correlated [MSA22; HBB22]. The
most recent M competition, the M5 competition, even finds that a combina-
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tion of pure ML approaches can lead to superior forecasting accuracy using
models like LightGBM, DeepAR or N-BEATS [MSA22]. The data used in the
M5 competition is sales data provided by Walmart regarding product prices
(see fig. 2.9). The data has a hierarchical order and additional information
to the time series is provided e.g. about the day of the week, inventory lev-
els or promotional activities [MSA22]. These findings show that using ML

models in time series forecasting continues to act as a promising approach
to improve results.

Figure 2.8: Example Time Series from M3 Monthly Dataset - Index N1724

Figure 2.9: Example Time Series from M5 Dataset - Item ID HOBBIES_1_001 at Store
CA_1, The Dataset Shows Less Volatile Time Series then the M3 and M4

Datasets

2.2.3 Monitoring Metrics

Evaluating the performance of a time series forecasting model is a crucial
part of the forecasting process. When building a model, it must be assured
that the predictive performance of the selected model exceeds that of a ran-
dom or naïve process and that the selected model has the best performance
of all considered candidates. When having deployed a model, a continuous
quality control should be established to assure the predictive performance
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stays at the desired level and does not decrease beyond a defined limit. For
this performance evaluation and monitoring, appropriate metrics can help
within a data driven decision making process. When evaluating model per-
formance at the initial model selection, it is important to take into account
that the evaluation of the model should not happen on the training data, also
called in-sample prediction or goodness-of-fit approach because the quality
of a model fitting it’s training data "[...] does not really reflect the capabil-
ity of the forecasting technique to successfully predict future observations."
[MJK15]. Instead, a comparison of the out-of-sample forecast errors leads to a
model with promising forecasting capabilities.

When evaluating n out-of-sample observations for which one-step-ahead
predictions have been made, the forecast errors would be et(1) with the stan-
dard forecasting accuracy measures [MJK15]:

average error or mean error

ME =
1

n

n

∑
t=1

et(1), (2.4)

mean absolute deviation or mean absolute error (MAE)

MAE =
1

n

n

∑
t=1

|et(1)| (2.5)

and mean squared error (MSE)

MSE =
1

n

n

∑
t=1

[et(1)]
2 (2.6)

where the ME as expected forecast error should stay close to 0 when seek-
ing for an unbiased forecast. When a drift away from 0 is noticed, a change
in the regarding time series happened which the model could not process
as good as before. The MAE and the MSE both describe the variability of the
forecast error which should stay as small as possible [MJK15]. Since those
metrics all are scale variant and can only be interpreted when knowing the
unit of the time series, scale invariant metrics are required to offer a compar-
ison of predictive performance between time series of different scales. Based
on the relative forecast error or percent forecast error [%]

ret(1) =
yt − ŷt(t− 1)

yt
100 =

et(1)

yt
100 (2.7)

there are two established scale invariant measures, the mean percent forecast
error
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MPE =
1

n

n

∑
t=1

ret(1) (2.8)

and the Mean Absolute Percent Forecast Error (MAPE)

MAPE =
1

n

n

∑
t=1

|ret(1)| (2.9)

The selection of an appropriate monitoring metric is a task often underes-
timated due to the specific requirements of the mentioned and many other
available metrics [DF13]. Davydenko and Fildes give a thorough overview
about the weaknesses and areas of application of specific error measures
to monitor a time series forecasting process. Concerning percentage errors
like the MAPE, they emphasize possible weaknesses when the actual value
in the denominator yt is small or even zero which results in the MAPE be-
coming very large or even undefined. There can also be a bias to overrating
the performance of a model so as general requirements to an error measure,
they define scale-independence, robustness to outliers and interpretability,
admitting that scale independence measures are not always desirable.

When having found an appropriate error measure, it can then be used to
monitor the performance of a forecasting system and produce alerts when
some kind of outbreak is detected. This outbreak can be understood as a
trend or level change in the underlying data for example a disease outbreak.
So to give a helpful warning in case of an outbreak, the alert "[...] must occur
quickly after the outbreak begins, should detect most outbreaks, and should
have a low false alert rate." [LS09]. To produce an alert, often forecasting
errors are in some kind applied to a control chart where upper and lower
control limits are introduced to function as alerting threshold. The most
used types of control charts are the Shewhart control chart, the Exponen-
tially Weighted Moving Average and the Cumulative Sum [LS09] explained
in detail by Montgomery [Mon07].

Another approach to monitor a time series forecasting model is by using
a tracking signal. In general, tracking signals are defined as a ratio with the
nominator as a sum or weighted sum of forecast errors that should stay close
to zero in a well working forecasting model and the denominator with the
purpose to normalize by the long-term average variability of forecast errors
[GM05]. With this quantitative measure, an automatic monitoring of fore-
cast errors can be established that gives a retraining signal based on a given
threshold when an existing pattern or relationship has changed [DJI04]. Ad-
vancing on the examination by Brown [Bro62], who computes a tracking
signal by dividing the sum of the forecast errors by the MAE (see equation
2.5), Trigg [Tri64] introduces a tracking signal (TS) that comes back in con-
trol after an outbreak without needing to reset the cumulative error sum. He
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uses a smoothing parameter α to adjust the long term memory of the MAE

in the denominator. This solves the problem of manual interference with the
cumulative error sum and potential infinite values of the tracking signal in
case of a recently nearly perfect forecasting resulting in an infinitely small
denominator:

TS =
Errorsum

MAE
(2.10)

where Errorsum = previous sum of errors + latest error (smoothed)
and MAE = (1 - α) * previous MAE + α * latest absolute error (source notation
altered for uniform naming convention). This equation is a schematic repre-
sentation to introduce the tracking signal more clearly defined in equation
2.11.

McClain [McC88] found that this tracking signal is a good choice for prac-
titioners but improved Trigg’s tracking signal ratio in the denominator to
further emphasize the purpose of measuring the long-run average variabil-
ity of forecast errors in order to standardize the numerator. He used a sep-
arate smoothing parameter in his research, which is used in more modern
monitoring systems [DJI04; GM05] and is also examined in the experiment
conducted in this thesis:

TS = | α1et + (1 − α1)Et−1)

α2|et|+ (1 − α2)MAEt−1
| (2.11)

where et is the forecast error, the nominator is Et as smoothed errorsum and
the denominator is the smoothed MAEt. Initial values set for Et and MAEt

can result in a burn-in phase until reasonable results are computed (source
notation altered for uniform naming convention). During the burn-in phase
the initially set values for Et and MAEt, which are only an approximate
guess, change in an iterative process by calculating these parameters with
actual observations getting closer to the real value in each step. Investiga-
tions like by Cohen, Garman, and Gorr [CGG09] evaluate fitting values for
α1 and α2 in an experimental setup.

2.3 drift

The decrease of the predictive model performance over time can originate
in different sources and result in negative business effects. A requirement
for good performance monitoring is a correct ground truth for every fore-
cast being available in an acceptable timely spacing to the forecast. Another
attempt to monitor the performance is by only observing the input com-
ing to the model as request. If the training data differs strongly from the
recent data coming to the model, a deterioration of the performance can
be expected [Tre+20]. Since this thesis is comparing a time series forecast-
ing model monitoring with tracking signals in an MLOps environment to the



2.3 drift 23

state-of-the-art technology, which is using AWS as a platform for this endeav-
our, the monitoring possibilities offered by AWS will be described. Those in-
clude the performance monitoring approaches introduced earlier but extend
those as well.

AWS offers 4 types of monitoring for models produced with AWS Sage-
Maker, which is a fully managed machine learning service [Ser22n]. These 4

types can continuously monitor the model performance and produce alerts
that can then lead to a model retraining and redeployment: monitor data
quality, monitor model quality, monitor bias drift for models in production
and monitor feature attribution drift for models in production [Ser22l].

2.3.1 Data Drift

Monitoring data drift is a simple way to monitor a forecasting model that can
very quickly react to possible performance decreases since no new ground
truth labels are required. When training the model, a baseline dataset with
statistics of the training data is generated. These statistics include datatypes,
distributions and other descriptive statistics like mean, sum, standard devia-
tion, min and max. With these statistics, a constraint file is generated where
these metrics and completeness of columns are incorporated. When new
data is send to the deployed model to produce forecasts, the requests are
logged and periodically analyzed. If in this batch process violations of the
constraints like different data types, disproportionately missing values or a
changed value distribution within a column are recognized, an alarm can
be triggered [Ser22j]. Since the actual influence of the change in predictive
performance is unknown when monitoring data drift, additional monitoring
approaches should be implemented. When short term reactions to changing
data are necessary or no updated ground truth data is available after deploy-
ing a model, monitoring data drift becomes essential.

2.3.2 Model Drift

Monitoring the model quality directly means "[...] comparing the predictions
that the model makes with the actual ground truth labels that the model at-
tempts to predict." [Ser22k]. To achieve that in a deployed model, the model
requests need to be stored and then merged with the ground truth when
supplied to the monitoring system at a later point. The timely gap between
generating a prediction and comparing the result to the ground truth can
vary greatly between seconds to many years depending on the desired fore-
casting task. As a more common estimation of the frequency of new ground
truth and by that also new training data becoming available, a daily basis or
less seems reasonable [Tre+20]. The process of gathering ground truth data
can be challenging but in the case of time series data, this should be no ma-
jor problem since one must only collect more recent data of the same time
series the forecasts are made for.
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When forecasts and ground truth data are merged, one or multiple metrics
need to be defined in order to calculate the error of the model. When produc-
ing forecast for time series, error measures for regression problems can be
applied. A classification problem could also be established when the model
is tasked with alerting only when a step change in the data is detected but in
most applications a metric forecast of the time series is desired. AWS provides
4 error metrics when comparing forecasts and ground truth in a regression
problem: MAE, MSE, RMSE and R2. Additionally a standard deviation is cal-
culated each by randomly sampling 80% of the data 5 times [Ser22g]. These
metrics are calculated in a batch process for the most recent data points
where ground truth labels are available for and are then compared to the
same metrics calculated on the baseline dataset, where "Typically, you use a
training dataset as the baseline dataset" [Ser22f]. If a performance decrease
is detected at any point, an alert gets produced which can then trigger a
retraining of the model with more recent data.

2.3.3 Bias Drift for Models in Production

The Bias Drift for Models in Production is another method of alerting for
possible forecast performance deterioration without analyzing new ground
truth data. With the training set, a baseline is generated that gives statistics
and threshold suggestions. Within these limitations, a range is defined that
is used to control if forecasts produced by data used in inference of the
deployed model are valid. If the produced forecast is not in range of the
suggested boundaries, an alert is produced [Ser22h]. This kind of drift as
well as the following drift will not be further discussed but explained briefly
to complete the overview of possible drift monitoring methods.

2.3.4 Feature Attribution Drift for Models in Production

With the Feature Attribution Drift it becomes possible to monitor if the real-
isations of a feature have prominently changed compared to the realisations
in the training data [Ser22i]. Since this approach only relies on the drift of
the input data, no new ground truth data nor the results of model inference
are required. So if e.g. the highest educational qualification feature in the
training data is mainly high school level but later on in deployment most
of the requests sent to the forecasting model show an academic level in this
feature, an alert can be raised. This kind of monitoring seems unfit to be
used with univariate time series forecasting models.

Since this approach only relies on the drift of the input data, no new
ground truth data nor the results of model inference are required.
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R E S E A R C H H Y P O T H E S I S

When large ML projects with multiple teams or at least multiple team mem-
bers are executed, a framework to organize the different parts of the project
and the reuse of as many framework parts as possible are requirements to
succeed in fast changing environments or a constantly changing business de-
mand. Automation should also be implemented as much as possible to free
up development time for data scientists, data engineers, DevOps specialists
and other team members. This is why MLOps is experiencing the extreme
increase in demand shown and explained in chapter 2.1. Univariate time
series forecasting is a problem field where monitoring the predictive perfor-
mance is an essential part of the forecasting process since the underlying
data trends can quickly change and result in the need for an adapted fore-
casting model (see chapter 2.2). Due to the relatively new existence of MLOps

architectures, the implementation of the monitoring of such time series fore-
casting models in an MLOps environment is a young research topic. The uti-
lization of cloud computing resources brings many advantages where easy
accessability and nearly endless scalability options are benefits attractive to
many researchers and companies. Since it has been indicated that AWS is
the leading provider of cloud computing resources and services (fig. 2.4),
the way how MLOps coupled with time series forecast monitoring can be
implemented in an AWS environment is an important benchmark. This the-
sis provides an overview about how this MLOps framework can look when
implemented at AWS and examines a possible weakness in how the model
quality monitoring is implemented per default (see chapter 3.2). As an alter-
native, the implementation of a tracking signal for model quality monitoring
is benchmarked against the default AWS solution. Hereby, not only the pre-
dictive performance of different models is observed but a novel approach
of comparing estimated costs regarding the computing time on the cloud
resources and the ecological costs of the resources usage is introduced. This
aims to evaluate beneficial timings of when to retrain a time series forecast-
ing model regarding the resulting costs. Implementing pipelines to retrain
deployed models can be described as a standard MLOps usecase [Tre+20].
However, the state-of-the-art research is not picking up the question of when
hyperparameters need to be adjusted in a time series forecast task but rather
hyperparameter-fixed models are compared with their one-step-ahead pre-
diction accuracy ignoring the resulting economical and ecological costs (e.g.
[MSA18b; MSA22]) which gives another reason for the research conducted
here.

Our hypothesis is that the usage of the tracking signal will result in a
better cost-benefit relation since it is expected that the amount of retrainings
triggered with the AWS default approach will be very high and at almost
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every data point. This is expected because the performance thresholds are
set as error metrics from the in-sample predictive performance and with un-
known data we expect that this performance can rarely be reached. With
high economical costs resulting from a decreased model performance, re-
training at every data point should be the cheapest solution although the
costs for the retraining will be relatively high. Also, it is expected that the
tracking signal is a better fit inside an MLOps environment because the cus-
tomization of the error measure’s sensibility is more generic which can fur-
ther increase the progress towards automation and reusage.

3.1 ml ops at aws

The usage of AWS as an MLOps environment requires several services inter-
acting with one another. There is not one MLOps framework or solution pro-
vided at AWS but depending on the individual requirements, services and
components can be connected to build the desired framework (compare fig.
3.1). In this chapter, a description of an example framework is given to pro-
vide a better understanding of how MLOps can work in a real life scenario.

The surrounding template that defines the different services, resources
and interactions is called an AWS CloudFormation [Ser22a] which can be
published at the AWS Service Catalog [Ser22c] (1) to make that template ac-
cessible to other AWS users. Inside of that, there are two pipelines defined
with different responsibilities: building the model and deploying the model
to production. As heart of the operation, AWS SageMaker [Ser22n] is used
to execute the ML code for model training and producing baselines for the
monitoring statistics. With the integration of AWS CodeCommit and Code-
Build, a Git-based repository is provided to store, version and build all the
pipeline code in a collaborative environment [Ver20] (2). When the pipeline
is executed, data from the data storage S3 [Ser22e] is preprocessed, a model
is build and baseline statistics are generated. To compare different models
and save multiple model versions and artifacts, the produced model gets in-
tegrated in the SageMaker Model Registry [Ser22m] (3) where new models
are placed in a staging area and from there they can be reviewed and ap-
proved in a manual or automated manner (4). When a model gets approved,
the deployment pipeline is activated and the model is pushed to an endpoint
(5) where inference requests are processed and saved to S3. The monitoring
of the model (6) can include up to 4 of the described (see chapter 2.3) mon-
itoring approaches. Only when using the model drift monitoring, the merg-
ing of new ground truth data to the monitoring job is required. Otherwise
the saved inference requests can be compared to the statistics of the base-
line data coming from the training dataset to generate alerts for a potential
forecasting performance decrease. This can happen in an AWS CloudWatch
[Ser22d] event (7) that can result in a CloudWatch alarm that triggers an-
other execution of the pipelines for model building and deployment (8). The
execution of a monitoring job can be scheduled with the AWS CloudWatch
Schedule Trigger (9).
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Another popular service for MLOps operations on AWS not used in this ex-
ample is AWS Lambda [Ser22b], which is a serverless code execution service
that can be used as a trigger based connection between different services.

3.2 optimization of model drift monitoring via tracking sig-
nal

As described in chapter 2.3.2, the model drift monitoring at AWS is done by
calculating MAE, MSE, RMSE and R2 on the training dataset of a model in pro-
duction. This process generates the baseline statistics for the performance
monitoring of the model in production. The deployed model processes infer-
ence requests and produces forecasts based on the given data. These requests
are stored and when the ground truth data for those requests is available, the
request with it’s forecast and the ground truth is merged. With a time series
forecasting problem, it is often just a matter of time until ground truth data
becomes available since the forecasts are just extrapolations of the data used
for the inference request. No manual labeling is required. The threshold val-
ues from the baseline calculation can be altered so for example a higher MSE

could be set as a threshold but per default, the values calculated in the base-
line process are used. We criticize this default process because we expect
that the error threshold will be exceeded at nearly every new data point
because a model that was fit on known data probably does not perform as
good on unknown data. Exceeding this threshold results in an alarm that
in an MLOps environment triggers a retraining pipeline and potentially a de-
ployment pipeline for the new model resulting in economical and ecological
costs that possibly could be avoided when using a different kind of metric
to generate alarms for a decreasing predictive performance. Also, the possi-
bility of changing the default value is considered an inappropriate approach
for an MLOps environment because when only provided the different error
measures it is difficult to foresee the impact on the rate of retraining when
adjusting those values. With the usage of a tracking signal we expect a more
reliable retraining cycle when a specific threshold is provided so for example
when due to relatively high training costs, a lower frequency of retrainings
is desired, a tracking signal threshold of 1.8 will provide this approximate
relationship independent of the time series data or its scale. This scale in-
variance leads to a more standardized monitoring approach that benefits the
reusability of the monitoring code.
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Figure 3.1: AWS MLOps Architecture, Figure Derived from [Bri+21]
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R E L AT E D W O R K

The extrapolation of time series data is a research topic which has been dis-
cussed in modern research for at least 70 years and is still highly active
today [Bro59; MSA22]. The state-of-the-art research focuses on what kind
of models produce the best accuracy, often with one-step-ahead forecasts
[MSA18b; MSA22]. There is also active research regarding the challenges
and benefits of MLOps environments [ZYD20; BEA21; Bay+19; VM21; Tre+20].
Approaches are discussed about how to reduce economical and ecologi-
cal costs in cloud computing environments [Yah+21; Nay+18; COH14] but
these focus on algorithms that optimize load balancing, workflow schedul-
ing, ressource allocation, security or energy efficient task distribution. The
research approach in the intersection of cloud computing, time series fore-
cast monitoring and cost reduction has no comparable existing research. We
want to give a brief overview about relatable research concerning tracking
signals used for time series forecast monitoring [DJI04; GM05] and two al-
ternative approaches to monitor and select time series forecasting models in
an evaluation framework [Can+21; CGG09]. The presented related research
regarding tracking signals is also serving as a guideline regarding possible
implementations within an MLOps environment.

4.1 selected tracking signal research

Deng, Jaraiedi, and Iskander [DJI04] criticize that the research of monitor-
ing intelligent time series forecasting models is not widely and sufficiently
addressed. To respond to that problem, they conduct an experiment with a
tracking signal as monitoring metric. As univariate time series forecasting
model they use a neural network in the form of an Adaptive Neural Fuzzy
Inference System (ANFIS) model [Jan93]. After the model is trained, they
produce one-step-ahead forecasts by providing the three prior data points
x1, x2 and x3 to extrapolate to x4. To produce three-step-forward predictions
the model takes x1, x4 and x7 to output x10.

The dataset they use consists of 100 observations where the first 50 are
used for training and the remaining 50 serve as test data. They generate
three-step-ahead predictions which are used as inputs for further forecasts
until a decrease in model performance is noticed. As a monitoring metric
they use the tracking signal introduced in equation 2.11 which is also used
in the experiment we conduct.

As parameters for the tracking signal they set

• the initial value for Et = 0
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• the initial value for Mt is set equal to the average absolute deviation of
the training samples

• α1 = 0.4

• α2 = 0.2

• the threshold for the tracking signal to alert at 0.4

When the tracking signal detects that the forecasts are out of control, the
new observations available to this point are added to the training data and
the amount of those observations are dropped from the oldest observations.
After the model is retrained, new forecasts are produced until another cycle
of out of control tracking signal, adding of new training data, retraining the
model and generating new forecasts happens.

Deng, Jaraiedi, and Iskander find that in their setup and example time
series (see fig. 4.1), without the monitoring framework, "[...] forecast errors
are increasing over time after a certain number of periods into the forecast-
ing procedure and display a systematic tendency of being positive." [DJI04].
With the monitoring framework, the residuals of the test set display a ran-
dom pattern which indicates a good model performance also showing a
significant MSE decrease from 450.9 to 17.83.

(a) Example Time Series (b) Residuals for Training Set

(c) Residuals for Test Set without Monitor-
ing

(d) Residuals for Test Set with Monitoring

Figure 4.1: Example Results of Monitoring an Intelligent Time Series Forecasting
Model with a Tracking Signal [DJI04]

Gorr and McKay [GM05] are using a tracking signal based time series
forecast monitoring to enable an automated recognition of crime pattern
changes. They report that without automation, crime analysts have to vi-
sually inspect about 1000 time series plots of about five years length each
month for medium-sized cities resulting in an unacceptably large workload.
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When inspecting a crime related time series, "Analysts have to account for
regular noise versus departures from established time trend patterns such as
a sudden discrete change (step up or down) or a turning point (e.g., change
from a decreasing time trend to an increasing trend.)" [GM05]. Based on
the existing time series and their generated forecasts, for example locations
and the sequence of police patrols are planned and when there is a deviation
between the forecast and the most recent crime statistics is noticed, an adjust-
ment of that planning might be required. As a forecasting model, they use a
Holt exponential smoothing with smoothing parameters optimized [BO93]
producing one-month-ahead forecasts.

To monitor the forecasts, they use the same tracking signal as Deng, Jaraiedi,
and Iskander [DJI04] (see equation 2.11) with the parameters

• initial value for Et = 0

• initial value for Mt is unknown

• α1 = 0.4

• α2 = 0.05 and

• the threshold for the tracking signal to alert as an experiment value.

Relating to McClain [McC88] who states "A perfect tracking signal would
detect an out-of-control forecast (i.e., a time series pattern change) imme-
diately, and would never give a false alarm.", Gorr and McKay follow a
research design that questions the performance of the tracking signal as
monitoring metric to detect signal changes while controlling for false pos-
itives. To achieve that they choose 10 crime time series including 5 having
pattern changes and 5 not having any pattern changes. Gorr and McKay
both independently manually marked each time series for pattern changes
and outliers to generate a ground truth with 18 pattern changes or outliers
in the 5 time series.

As a threshold for the tracking signal they used 4 values where the low-
est value (0.84) detects most of the actual positives but also produces false
alarms, so signals when a step change is found but was not labeled as such.
As the other extreme, the threshold of 1.47, finds fewer actual positives but
produces a lot less false positives. Between those, the values of 1.05 and 1.26

were used. In their research, they had one-month-ahead forecasts for a 36

month period excluding the first 6 months for burn-in purposes of the track-
ing signal resulting in a 30 month evaluation period of 10 time series. A
crime analyst would have to assess these 10 time series every month, cumu-
lating to 300 assessments over 30 months. The results (table 4.1) show the
control limit as the threshold of the tracking signal, the amount of true posi-
tives detected with that limit, the average false positive rate per month and
the workload the analyst would still have to do when evaluating only the
time series where a trigger event took place. With the reported control limits,
the workload can be reduced from 10 time series per month to 4 per month
at a control limit of 0.84 and 94% of true positives detected. Together with
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Control
Limit

True Positives
Detected

Average Workload
(Time Series/Month)

Average False Positives
(Time Series/Month)

0.84 17 (94%) 4.0 2.9

1.05 13 (72%) 2.8 1.9

1.26 12 (67%) 2.1 1.4

1.47 11 (61%) 1.6 1.0

Table 4.1: Results of Tracking Signal Control Limits and their Detection Rates
[GM05]

the other results, it has been shown that with the usage of a tracking-signal-
based monitoring, a significant decrease in workload for crime analysts can
be reached. A challenge of this research design is that there needs to be a
manual labeling of all evaluated time series and there is no certainty, that
the labeling participants correctly and consistently label actual step jumps
or outliers. Depending on the data, there might also be sector-specific knowl-
edge required to correctly label the data.

4.2 alternative monitoring frameworks

Within the problem field of time series forecast monitoring, Candela et al.
[Can+21] suggest a framework where multiple time series forecasting mod-
els for a single time series are maintained in parallel and another model built
on top of that is charged with model performance monitoring and model se-
lection.

The data used are 18.000 time series from the travel industry branch where
one time series is the price of a flight to and a two day stay at a hotel in a
specific city on a worldwide scale. Additionally they test their framework
on the yearly and weekly M4 competition datasets [MSA18b]. They report
that it has become relatively cheap to develop a highly accurate statistical
model for time series price forecasting but the deployed model in production
generates most of the costs and difficulties [Ré+19; Scu+15] since monitoring,
maintenance and improvement need to be handled.

Candela et al. [Can+21] "[...] introduce a data-driven framework to contin-
uously monitor and maintain time-series forecasting models’ performance
in-production, i.e in the absence of ground truth, to guarantee continuous
accurate performance of travel products price forecasting models". In other
words, they predict a models forecasting error for several models and by do-
ing that, they can continously select the best performing model based on the
predicted forecasting error without the requirement to wait for the future
ground truth data.

The models generating the actual forecasts are called monitored models and
the framework around that producing the predicted forecast errors is called
model selection framework (fig. 4.2) with its monitoring models. The monitored
models are provided multiple time series X with each several observations.
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They produce forecasts and with the corresponding true values, the fore-
casting performance eg can be calculated. The model selection framework
respectively the monitoring models learn a function f to forecast the fore-
casting performance eg of the monitored models directly from observations
X . When having learned f , the monitoring models can predict e∗g given X ∗.

Figure 4.2: Model Selection Framework [Can+21]

To evaluate the forecasting performance, the Symmetrical Mean Absolute
Percentage Error (SMAPE) [CY04] is used which is based on the MAPE (see
equation 2.9). The known weaknesses of the MAPE that also apply with the
SMAPE when observed values or forecasts are zero or close to zero, are no
factor because the prices from the applied data are higher then in this prob-
lematic area.

The six monitored models used in their framework consist of five models
from the 10 benchmarks provided in the M4 competition [MSA18b]: Simple
Exponential Smoothing (ses), Holt’s Exponential Smoothing (holt), Damp-
ened Exponential Smoothing (damp), Theta and a combination of ses-holt-
damp (comb). Additionally, a Random Forest in monitored.

For the model selection framework, four models from the latest advances
in deep learning are tested:

• LSTM [HS97], which is a type of Recurrent Neural Network, that is
equipped with several additional gates to solve the issue of the vanish-
ing gradient problem [BSF94]. An advantage of LSTMs is that they can
handle sequences of varying length.

• Convolutional Neural Networks (CNNs) [LeC+98], which are neural
networks that are mostly used in image recognition and are used here
with 1D convolutional filters to work with time series and are based
on the LeNet [LeC+99] architecture.

• Bayesian Convolutional Neural Networks [GG16] as probabilistic CNNs
that can quantify the uncertainty of predictions.
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• Gaussian Processes [WR06], which are probabilistic nonparametric mod-
els that can also quantify uncertainty but can do that regardless of the
size of the data.

The Gaussian Process model is found to be best performing as monitor-
ing model. When a given monitored model falls below a set performance
(SMAPE) threshold, a model selection process is started where the expected
forecast error for every monitored model is evaluated and the model with
the lowest error forecast is placed as the new production model. With this
framework, quick indications of a predictive performance decrease can be
given since there are no new ground truth data required. The best perform-
ing monitored model can always be selected. By doing this, the moment
when a monitored model needs to be retrained could be extended by select-
ing another model as a first reaction. This could save costs when compared
to more frequent retraining. Candela et al. [Can+21] do not experiment with
model retrainings but limit the experiment to the model selection process.

Cohen, Garman, and Gorr [CGG09] have the understanding that "Time se-
ries monitoring methods have the purpose of detecting structural breaks or
other unexpected pattern changes in time series data reliably and as soon as
possible after those changes occur." which results in a binary classification
problem - a pattern change is observed or not. They criticize the common
approach used e.g. by McClain [McC88] to evaluate different methods and
parameters of monitoring metrics, including tracking signals, by using "[...]
idealized, simulated time series data and the average run length (ARL)."
[CGG09]. The average run length is the number of periods between a cho-
sen period and a signal trip where the average run length is desired "to be
large for time series undergoing no pattern changes, and small (or timely)
after a pattern change (or signal)." [CGG09]. In other words the average
run length is the expected time for a monitoring metric to generate an alert
with a given time series. For a time series with frequent unforeseeable pat-
tern changes, the ARL should be small since an alert is expected. Cohen,
Garman, and Gorr [CGG09] report that this results in a trade-off between
quickly and reliably detecting a signal change and generating false alerts
which is not discussed in literature. To address this and to give an alternate
to the ARL statistic using simulated data, a Reciever Operating Characteris-
tic (ROC) curve analysis using real data is introduced.

The major problem with establishing a ROC framework is that ground
truth values are required that label pattern changes [Swe88]. To supply the
required data, crime analysts labeled 30 time series from 606 available time
series of crime data in the USA between 1991 and 2000. Predictions are gener-
ated with a deseasonalized simple exponential smoothing model one-month-
ahead for 60 months, where the first 6 months are used as burn-in period
and as historical information for the analysts. From the 30 selected time se-
ries, 10 were randomly chosen and 20 were chosen by the authors with the
requirement of at least one potential step jump. In these 1620 months to eval-
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uate (30 time series ∗ 54 months), 44 step jumps and 79 outliers were labeled.
An example of step jump and outlier labeling is given in fig. 4.3.

Figure 4.3: Example Time Series Coded for Pattern Changes [CGG09]

Five methods and their parameters used for monitoring time series fore-
casts are evaluated with the ROC framework: the Brown Method, the Trigg
Method (which both are tracking signals), Standardized Forecast Errors (which
is also based on one step-ahead-forecast errors using exponential smooth-
ing), Percent Change and Standardized Observed value. As benchmark, ran-
dom classification and a random classification with a four month detection
window is given. Due to the high similarity in results between the Brown
and the Trigg Method, the Brown method is not displayed [CGG09].

The comparison of the ROC curves (fig. 4.4) shows that the tracking signals
(Brown and Trigg methods) perform best in the trade-off of True Positive and
False Positive Rate, followed by Standardized Forecast Errors, Standardized
Observations and the Percent Change. This is limited to the observed crime
data and the reliability of the ground truth coding though. For other do-
mains with different data, this assessment would have to be evaluated again
but in general, the ROC framework seems to be a valid alternative to the eval-
uation of monitoring metrics and their parameters to reach optimal moni-
toring performance with the help of ARL. It should be emphasized again
though that ground truth data for pattern changes is required for the ROC

framework. As another result, the authors find that when using a tracking
signal, the most recent forecast error should be used as the numerator and
for the denominator, the MAE of forecast errors should be smoothed with a
relatively low smoothing constant.
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Figure 4.4: ROC Curves for Alternative Time Series Monitoring Methods, Only
Trigg Tracking Signal (Trigg Frontier) Displayed, Tracking Signals with
best Performance [CGG09]
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O W N E M P I R I C A L A N A LY S I S A N D R E S U LT S

To answer the questions and hypothesis raised in chapter 3, the conducted
experiment of the benchmarking between the AWS default model quality
monitoring and a tracking signal is described here. The goal of the experi-
ment is to evaluate and potentially optimize the cost-benefit relation of costs
raised in a time series forecasting MLOps environment. First, the two datasets
of time series with hourly and daily interval are presented including the ran-
dom selection of sample data. Secondly, the monitored models are described
as well as the methodology of how the benchmarking is established. Finally,
the results of both datasets are presented and then discussed in the following
chapter 6.

5.1 data

Time series forecasting competitions have been an essential part in the re-
search advancement of time series forecasting for about 50 years since com-
puters became widely available [Hyn20]. After a controversial start, nowa-
days these competitions are well established and make important contri-
butions to the state-of-the-art research. Especially the M-competition series
which was first published in 1982 by Makridakis et al. [Mak+82] had a revo-
lutionary impact on time series forecasting [Hyn20]. Over the years, this com-
petition series was continued with the latest results from the M5 competition
[MSA22] and a running M6 competition until the end of 2023 with prizes in
worth over US$ 300.000 [Mak22; For22]. Besides the results of the competi-
tions, the published datasets for training and testing represent benchmark
datasets for the time series forecasting community used in several experi-
ments.

The experiment conducted here takes advantage of the data provided in
the M4 competition [MSA18b] (see fig. 5.1).

Figure 5.1: Number of M4 Time Series per Frequency and Domain [MSA18b]

100.000 time series divided over six different datasets/observation inter-
vals (yearly, quarterly, monthly, weekly, daily, hourly) are provided over 6 do-
mains. The randomly sampled data originates from the ForeDeCk database
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Daily
Index

Daily
Observations

Hourly
Index

Hourly
Observations

151 954 3 700

481 4196 25 700

558 2940 39 700

729 4197 156 700

2231 4196 165 700

2416 3444 222 960

2792 4197 274 960

2950 4197 334 960

3106 4197 343 960

3129 4197 354 960

Table 5.1: Daily and Hourly Sample Data

compiled at the National Technical University of Athens (NTUA) contain-
ing 900.000 continuous time series, built from multiple, diverse and pub-
licly accessible sources from several domains like industry, services, tourism,
imports & exports, demographics, education, labor & wage, government,
households, bonds, stocks, insurances, loans, real estate, transportation, and
natural resources & environment [Spi+20].

Two of the six available datasets are used in the conducted experiment
because a realistic scenario is expected in an MLOps environment with daily
and hourly frequencies. Also, the time series in these two datasets (daily
& hourly) show different characteristics which adds some robustness to the
results of the research. There is no differentiation between originating do-
mains. For each dataset, 10 non-intermittent time series were randomly se-
lected, which means the observation count can vary between the time series
but there are no missing values within one time series (see table 5.1).

5.1.1 Daily Dataset

In the original M4 competition, the forecast horizon, so the number of fore-
casts into the future which are used for model evaluation, is 14 one-step-
ahead predictions for the daily dataset. The participants were provided the
training dataset and after completion of the period to send in solutions, a
test dataset with 14 observations was provided and used to compare the
submitted solutions. In our research, a much longer monitoring horizon is
chosen of 100 forecasts to give a more realistic assessment of time series fore-
casting in an MLOps environment where retraining the model is planned. The
forecast horizon varies depending on the time of retraining. The test dataset
is ignored and the last 100 observations of the sampled time series from the
daily dataset are used as test data. The size of the training time series varies
between 854 and 4097 observations (table 5.1). This length is larger then in
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previous competitions like the M3 competition in order to avoid overfitting
and enable the generation of simple and complicated models that require
large amounts of training data [MSA20]. The monthly and especially the
yearly and quarterly datasets show much shorter lengths compared the daily
and hourly datasets. As a minimum length of a time series, 600 observations
are set for the sampling before splitting into test/training data to guarantee
a good relation between the amount of training to test data. The time series
are all non-stationary with changing trends and no clear seasonality. For an
example time series see fig. 5.2, for the complete 10 sampled time series see
appendix chapter A.1. The last 100 observations as test data are colored in
orange.

Figure 5.2: One Random Sample of Daily M4 Dataset with Training Data and 100

Test Data Points

5.1.2 Hourly Dataset

For the hourly dataset, the M4 competition defined a forecast horizon of 48

one-step-ahead predictions whereas we use a monitoring horizon of 100 like
with the daily dataset. The forecast horizon varies depending on the time of
retraining. Compared to the daily dataset, the hourly data is more uniform
with more clear seasonality and less changing trends. For an example time
series see fig. 5.3, for the complete 10 sampled time series see appendix
chapter A.2.

5.2 models and methodology

The monitored models in the research conducted here are chosen to repre-
sent widely used models for time series forecasting. The focus is laid on
the evaluation of the number and timings of model retrainings depending
on different monitoring approaches. The models used are not thoroughly
optimized to give the best possible forecast like it is the goal in the M com-
petition series where mostly models consisting of multiple models or even
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Figure 5.3: One Random Sample of Hourly M4 Dataset with Training Data and 100

Test Data Points

hybrid models score best. This results in two models being evaluated here:
ARIMA and ETS (see chapter 2.2.2.1).

To implement the ARIMA models, the Auto-ARIMA library from pmdarima
1 is used in a python environment. To build a model, training data is used
to generate multiple ARIMA models with different model parameters. When
the search with all parameter combinations within the search space is com-
pleted, the model with the lowest AIC is chosen. The default options for the
Auto-ARIMA process are selected. An explorative search with other param-
eters did not provide better results at longer evaluation times.

The ETS models utilize the statsmodels ETS library 2 where the parame-
ters seasonal and trend are added and true damped trend is used. Other
parameters remain on default.

For every time series, the evaluation procedure is identical and can be
listed as followed:

1. Isolate single time series from dataset

2. Preprocess data (drop null values at the end of the time series)

3. Generate test/training split

4. Further process data for specific model

5. Build model on training data

6. Evaluate performance on training data (in-sample predictions), gener-
ate baseline

7. Produce forecasts for complete monitoring horizon without retraining
(forecast horizon = 100), evaluate performance

1 https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.
html

2 https://www.statsmodels.org/devel/examples/notebooks/generated/ets.html

https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
https://www.statsmodels.org/devel/examples/notebooks/generated/ets.html
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8. Produce forecasts with retraining at every new observation (forecast
horizon = 1), evaluate performance

9. Produce forecasts with AWS default model monitoring method, retrain
at signal (variable forecast horizon), evaluate performance

10. Produce forecasts with tracking signal method and 2 thresholds, re-
train at signal (variable forecast horizon), evaluate performance

11. compare results regarding costs and performance

When using the AWS model monitoring method, only the first three of the
available monitoring metrics (MAE, MSE, RMSE and R2) are implemented in
the experiment described here because the R2 is typically not used in time
series monitoring (e.g. [DF13; DF16]) due to a changing mean and variance
over time which can distort the interpretability of the R2. The R2 is often used
in other regression problems to explain the influence of the independent
variables on the variance of the dependent variable.

Since the default thresholds for the AWS monitoring metrics are the errors
of the in-sample prediction, the error values of MAE, MSE and RMSE for the
in-sample prediction are used as such monitoring thresholds.

The AWS monitoring is implemented with a monitoring schedule every
3 observations, which can be translated to every 3 days or every 3 hours,
depending on the dataset. Within this window, the three monitoring met-
rics MAE, MSE and RMSE are calculated for the last 3 observations and their
ground truth data. At a first step, forecasts for the whole monitoring hori-
zon are generated without any retraining. Then this 3-observation-window
is slided over the forecasts and the error measures are calculated. When one
of the monitoring thresholds are exceeded, a retraining signal is given, all
observations to this point are provided to the model and a retraining takes
place. After the retraining, the remaining forecasts to the end of the moni-
toring horizon are generated. Then the next iteration of evaluation with the
sliding window, retraining and forecast generation takes place. This happens
until the end of the monitoring horizon is reached. The position of the re-
training points and the count of the different threshold violations are saved.
After this process, the error measures are evaluated over the whole monitor-
ing horizon.

As parameters for the tracking signal (see equation 2.11) we set based on
the recommendations from related research [GM05; CGG09; McC88]

• the initial value for Et = 0

• the initial value for Mt = 1

• α1 = 0.4

• α2 = 0.05
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• the threshold for the tracking signal to alert at 1.2 and as an experi-
ment value so that the number of retrainings in this adapted setup is
comparable to the number of retrainings that are triggered when using
the AWS monitoring method.

With the tracking signal monitoring, at first again 100 forecasts for the
whole monitoring horizon are generated. After a burn-in phase of 5 observa-
tions, the calculated tracking signal is compared with the provided threshold
and when it is exceeded, all observations to this point are provided to the
model and a retraining takes place after which further forecasts are gener-
ated. With the additional forecasts, another iteration of tracking signal eval-
uation, threshold exceedance, retraining and forecast generation takes place
until the end of the monitoring horizon is reached. The position of the re-
training points are saved and the error measures MAE, MSE, and RMSE are
evaluated over the whole monitoring horizon.

Besides the tracking signal threshold of 1.2, a tracking signal value of 0.4 is
found to generate a count of retrainings over the monitoring horizon, which
can be compared to the count of retrainings produced by the AWS monitoring
method. With this value, the process of the tracking signal monitoring is
repeated.

To evaluate the costs of the process, the prices of AWS EC2 instances appro-
priate for this computation are used. For m5.xlarge instances with 4 vcpus
and 16gb of RAM, hourly costs of US$ 0.23 apply 3. To estimate the eco-
logical footprint measured in CO2, the hourly value of 13.3 g is estimated
4. Also, m5.xlarge instances are used for the calculation and the european
frankfurt region is set. 50% CPU load is assumed at 28.2 Watts. The emis-
sions generated at producing the computing instance is considered as well.
All calculations are based on a public dataset 5 containing specifications of
multiple computing instances. At the time of writing, the ecological costs
are not to be compensated by the end user directly but there is a system of
CO2 certificate trading in place which forces companies to compensate their
negative ecological footprint by buying these certificates [Kom22]. This puts
a price on the CO2 emission which might in the future be payed for directly
by every user. With this price, a translation of the estimated grams of CO2

emission to costs in € is computed. As base price, € 55 per ton of CO2 is used,
which will be effective from 2025 on [Bun22].

To compute prices for the financial and ecological aspect, the time required
for the computation is needed as well. During the evaluation of the different
monitoring approaches, the training timings of the models are measured
and then multiplied with the hourly costs. Since we evaluate on a daily or
hourly schedule, it is assumed, that the deployed model stays in production
the whole time but separate instances for the retraining are activated only
when required. We experience startup times of about 5 minutes with AWS to

3 https://aws.amazon.com/de/ec2/pricing/on-demand/
4 https://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances/
?estimation=true&instance_id=2425&region_id=2247&compute_hours=1#calculator

5 https://docs.google.com/spreadsheets/d/1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_

Nv6jF3k/edit#gid=50475527

https://aws.amazon.com/de/ec2/pricing/on-demand/
https://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances/?estimation=true&instance_id=2425&region_id=2247&compute_hours=1#calculator
https://engineering.teads.com/sustainability/carbon-footprint-estimator-for-aws-instances/?estimation=true&instance_id=2425&region_id=2247&compute_hours=1#calculator
https://docs.google.com/spreadsheets/d/1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k/edit#gid=50475527
https://docs.google.com/spreadsheets/d/1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k/edit#gid=50475527
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prepare the training EC2 instance before the actual computation can begin
so this time is added at each training period.

The decrease of the model performance is another factor that has to be
implemented in the framework because depending on the business envi-
ronment, a decreasing model performance can result in high costs which
could have been reduced with a more frequent model training or the im-
plementation of different model types or parameters. The resulting costs of
the degrading model performance can heavily vary but for this research, we
assume € 0.01 per error value per period. Therefore, the costs in € of the
combination time series and monitoring method are calculated by MAE ∗
monitoring horizon ∗ 0.01.

As alternative experiment setup, the most recent observation could be
supplied to the models in every case without starting a new training but
rather update the existing model with the newest observation. This experi-
ment would have a different character and assess when a reevaluation of the
model parameters is required although the newest observation is supplied
at every step. This alternative approach is not followed in this research be-
cause of several reasons. Firstly, this research orientates on related research
like by Deng et al. [Den+09] to serve as benchmark. Secondly, the availability
of such an update method with time series forecasting models is limited. Re-
garding the used models, the Auto-ARIMA library offers an update method
to provide new observations without computing a retraining in the parame-
ter search space but the ETS model has no equivalent function. This could be
the case because of the fast training time with the ETS model that makes an
update function obsolete. Finally, in an MLOps environment as examined in
this research, the set goal is to reduce costs by limiting the times a computing
instance has to start to alter the model. In the alternative scenario, an update
or a retraining would take place at each step along the time series, requiring
to regularly start a computing instance that generates costs. We want to ex-
amine ways to reduce the times, computing instances are required to alter
the model, so an update of the model with every observation is not adequate
in this setup.

To report the process of the experiment even more transparent, for each
dataset with one time series, the journey through the evaluation framework
is explained in the following two subchapters. To present this more compact,
the two model types (ARIMA, ETS) are described in parallel. In the actual
experiment, the model types are build and evaluated sequentially.

5.2.1 Example Time Series of Daily Data

In the following, we describe the evaluation process with an isolated time
series from the daily M4 dataset with the index 151 displayed in fig. 5.2. At
this point, the time series is already preprocessed (all null values after the
last observation are dropped) and the test/training split is executed (the last
100 observations of the time series are declared as test data and the first 854

observations become training data). After that, further processing for the
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ETS model is required since the model library requires a series consisting of
values as numpy array and the observation time or index as date range.

In an iterative process, the ARIMA and the ETS models are build with the
model parameters being evaluated automatically by minimizing AIC or max-
imizing log likelihood [HA18]. The process of the Auto-ARIMA including
the final model parameters is displayed in fig. 5.4. The model parameters
tested can be viewed in the first column.

Figure 5.4: Iterative Auto-ARIMA Process - Daily Example

With the given model, the in-sample error metrics MAE, MSE and RMSE are
calculated, which later serve as threshold for the AWS monitoring approach.
The plot of in-sample forecasts against training data for the ARIMA model is
displayed in fig. 5.5. The plot for the ETS model is very similar and can be
found in the appendix as fig. A.3. Both in-sample forecast stay close to the
actual values, following the level and trend of the last observations resulting
in a small lag of the forecast curve after the ground truth curve. To present
this more clearly, only the last 100 forecasts and ground truth values of the
ARIMA model are displayed in fig. 5.6. The ETS model looks almost similar
showing the same offset character of the forecast curve behind the ground
truth curve and can be found in the appendix in fig. A.4. The error measures
for the in-sample prediction are slightly lower for the ARIMA model for this
time series but the two model types perform on a similar level.

The results for the in-sample error measures used as AWS monitoring
thresholds are listed in table 5.2. All metrics function as greater then thresh-
old meaning that if in later comparisons, values greater then the thresholds
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Figure 5.5: In-Sample Forecasts vs Training Data for ARIMA Model - Daily Example

Figure 5.6: In-Sample Forecasts vs Training Data for ARIMA Model, last 100 Obser-
vations - Daily Example
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Metric ARIMA ETS Threshold

MAE 40.89 40.91 greater then

MSE 3162.09 3179.99 greater then

RMSE 56.23 56.39 greater then

Table 5.2: In-Sample Error Measures - Daily Example

are monitored, an alert is produced that results in a model retraining with
the most recent available ground truth data.

With the two models at hand, predictions for the complete monitoring
horizon are generated, so a forecast horizon of 100 is set. Plots for ARIMA

and ETS models are in figure 5.7 and 5.8. In both figures only the last 100

observations of the training data are displayed to focus on the forecasts but
also provide reference to the latest data before the forecasting period.

Figure 5.7: In-Sample Forecasts vs Training Data for ARIMA Model - Daily Example

Figure 5.8: In-Sample Forecasts vs Training Data for ARIMA Model - Daily Example

It can be observed that with both models, the forecasts heavily depend on
the latest observation and extrapolate on that level with a minor seasonal
component, which is more visible for the ETS model. This is not an inherent
phenomenon of the model types but is an effect of the volatile time series
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that does not follow any clear trend or seasonality. To explore the follow-
ing monitoring also with a different forecasting behaviour, the hourly M4

dataset is analyzed as well.
The other extreme besides generating forecasts with the same model for

the complete monitoring horizon is to always generate a single forecast and
then retrain the model with the newest observation. This approach generates
the highest training costs but should keep the forecasting error on a mini-
mum since changes in the time series can very quickly be adapted to. Charts
for ARIMA and ETS models are in fig. 5.9 and appendix fig. A.5. Again, only
the last 100 observations of the training data are displayed. As with the in-
sample forecasts, a short lag of the forecast curve behind the ground truth
data is visible due to a relatively high weight of the forecast on the last ob-
servation and the supply of the newest ground truth observation at every
period. The error evaluation is displayed in table 5.3 and shows a almost
similar performance for ARIMA and ETS model.

Figure 5.9: Always Retrain Forecasts vs Training Data for ARIMA Model - Daily
Example

When using the AWS monitoring method, 33 retrainings are executed
with the ARIMA model (table 5.3) due to exceedance of the baseline thresh-
olds. In all cases, the MAE triggers an alarm and in 20 of the cases each, MSE

and RMSE thresholds are exceeded. For the ETS model, 34 retrainings are exe-
cuted where the MAE also is the dominating signal-generating error measure.
The plot of the last 100 training observations, the forecasts, the test data and
the retrainings generated by the AWS monitoring can be found for ARIMA

and ETS model in fig. 5.10 and appendix fig. A.6. In both figures, it can be
observed that a step change or trend change like around periods 870, 890

and 945 results in a higher count of retrainings there since the model’s need
to adapt to the new level or structure of the recent observations. The error
evaluation is displayed in table 5.3 showing the slightly better performance
of the ETS model over the ARIMA model which could be connected to the ex-
tra retraining for the ETS model. The extra retraining results in slightly higher
training costs but lower total costs can be observed due to the reduced costs
from the error induced by the model performance. The extra retraining also
results in a slightly greater ecological footprint and resulting CO2 costs.
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For a reference of the MAE over time impacted by the retrainings, a plot of
the error compared to the baseline of the MAE can be seen in fig. 5.11 for the
ARIMA model and in the appendix at fig. A.7 for the ETS model.

Figure 5.10: AWS Retrain ARIMA Model, last 100 Training Observations, Forecasts,
Test Data and Retrain Timings - Daily Example

Figure 5.11: MAE Over Time - ARIMA - Daily Example

With the tracking signal monitoring and a threshold of 1.2 the ARIMA

model is retrained 22 times and the ETS model 23 times (see table 5.3). Al-
though one less retraining is computed, the ARIMA model shows lower error
measures. Due to the lower retraining amount and a better performance, the
ARIMA model with the tracking signal monitoring and a threshold of 1.2 has
better cost values then the ETS model with the same monitoring in every
aspect including the ecological costs (see table 5.3. Plots for ARIMA and ETS

models can be found in fig. 5.12 and appendix fig. A.8. The timings of the
retraining are very similar with the most prominent difference at the end of
the time series, where the ETS model has an additional retraining.

In an explorative search, the tracking signal threshold of 0.4 is found to re-
sult in comparable retraining counts to the AWS method. This particular time
series is an outlier in that relationship though (compare table 5.4) resulting
for the ARIMA model in 68 retrainings against 33 with the AWS monitoring
and the ETS model 68 compared to 34 AWS retrainings. The results presented
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Figure 5.12: Tracking Signal Monitoring ARIMA Model, last 100 Training Observa-
tions, Forecasts, Test Data and Retrain Timings - Daily Example

(see table 5.3) show reduced error metrics of the adapted tracking signal
monitoring when compared to the AWS monitoring and the tracking signal
monitoring with a threshold of 1.2. With a tripled retraining count compared
to the higher tracking signal threshold and a doubled count compared to the
AWS monitoring, the errors are still about 20% higher then the always retrain
errors. At this error level, lower retraining counts are desirable to reduce eco-
nomical and ecological costs. For plots of the monitoring with the adapted
tracking signal see appendix fig. A.9 and A.10.

This walk through the evaluation framework is supposed to give a better
understanding of the way, results are computed. The shown data is only for
one time series and has thus limited explanatory power. In this scope, the
ARIMA model with the always retrain method shows the lowest total costs
since the costs of the decreasing model performance is about 16 times the
cost of the retraining. It should be emphasized that especially the costs of the
error (decreasing model performance) is extremely variable with the specific
usecase. Furthermore, the costs of the retraining are highly dependent on the
startup time of the cloud computing instance. With the following subchapter,
another example with a time series from the daily dataset is given but a
thorough discussion of the research and its results will take place in chapter
6 after the presentation of the overall results.
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5.2.2 Example Time Series of Hourly Data

In this subchapter the evaluation process of the time series with index 3

from the M4 hourly dataset (shown in fig. 5.3) is described. The approach is
the same as with the presented daily example time series. Here, only new
aspects resulting from the different dataset are presented. The Auto-ARIMA
process for the basic ARIMA model is displayed in appendix fig. A.11.

The in-sample forecasts are both very close to the training data and can be
found in the appendix as fig. A.12 and A.13. AWS monitoring thresholds from
the in-sample errors and results from the example time series are displayed
in table A.1.

The forecasts without retraining for ARIMA and ETS model displayed in fig.
5.13 and 5.14 show very different results with the ARIMA model following the
most recent seasonal pattern and the general downward trend whereas the
ETS model generates almost duplicates of the last known value. This extreme
behaviour is not observed with other daily time series (compare appendix
fig. A.14 or A.15 for two other time series from daily dataset). In other cases
the existing pattern is followed with the ETS model, but in a much weaker
manner then with the ARIMA model.

The monitoring approach of always retraining the model with the newest
data point shows no difference to the daily dataset for which reason an
additional display is omitted. The AWS monitoring generates 68 retrainings
for the ARIMA model and 65 for the ETS model. Due to the very good in-
sample fit, the forecasts very rarely are better then the thresholds from the
in-sample forecasts and a lot of alerts are generated as a result (see fig. 5.15

and A.16).

Figure 5.13: In-Sample Forecasts vs Training Data for ARIMA Model - Hourly Ex-
ample

With the tracking signal monitoring and the threshold of 1.2, for the ARIMA

model 32 and for the ETS model 36 retrainings (see table A.1) are triggered.
This is a substantial reduction compared to the AWS monitoring, which
comes with much larger error measures on the other hand. With the given
costs for the decreasing model performance, the AWS monitoring results in
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Figure 5.14: In-Sample Forecasts vs Training Data for ETS Model - Hourly Example

Figure 5.15: AWS Retrain ARIMA Model, last 100 Training Observations, Forecasts,
Test Data and Retrain Timings - Hourly Example
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lower total costs, but a higher environmental impact due to the higher re-
training count.

The adapted tracking signal enables the comparison between 68 AWS re-
trainings and 64 with the adapted tracking signal with the ARIMA model and
65 against 60 with the ETS model. With this time series, the retraining count
is on a comparable level but the error metrics are much higher with the
adapted tracking signal monitoring then with the AWS monitoring (see table
A.1). This also results in higher total costs due to the decreases predictive
performance.

Overviewing, the ARIMA model with the always retrain method has the
lowest total costs with the given error costs but the highest environmental
costs as well.

5.2.3 Results Daily Data

To give a more reliable understanding of the differences between the eval-
uated monitoring methods in combination with the monitored models, the
results of the 10 sampled time series from each dataset are collected and
presented as average results.

With the 10 time series from the daily M4 dataset (see table 5.4), the in-
sample error measures of the two model types lead to similar AWS mon-
itoring thresholds. The lowest total costs are generated by the ETS always
retrain method but the highest environmental impact is generated by the
ARIMA always retrain method since the Auto-ARIMA process used for every
retraining is computationally more expansive then the automated ETS model
training. Besides that, there are no major differences found between the two
model types.

Compared to the CO2 generated with the always retrain method, the AWS

method almost cuts the amount in half. The tracking signal monitoring with
the threshold of 1.2 produced about a quarter of the always retrain CO2

but with fewer retrainings, the error measures are increasing as well. The
MAE of the always retrain method is about 76 whereas the AWS monitoring
method increases the MAE to about 81 and the tracking signal results in
values around 120. If the trade-off of a reduced retraining count against
an increased forecasting error favours fewer retrainings and a performance
drop is accepted, the tracking signal is a fitting monitoring metric. With
the value set in this research, the method of always retraining generates the
lowest costs but also results in the highest environmental impact.

To never supply more recent observations to the model and adjust the
forecast with this information is an option which can not be recommended
when using this kind of monitoring horizon and time series since a massive
error increase results. On the other hand, the environmental impact caused
by updating the model is not existent.

The adapted tracking signal, compared to the AWS monitoring method, re-
sults in slightly increased retraining counts but fails to reduce the forecasting
error at the same time. It seems like the timings of the retrainings triggered
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by the AWS monitoring method are more fitting, probably closer to an actual
change in the time series, to reduce the error of future forecasts.

5.2.4 Results Hourly Data

With the 10 time series from the M4 hourly dataset, the ETS model has a
slightly better in-sample fit and lower always retrain error then the ARIMA

model (see table 5.5). In all other scenarios, which depend on good forecasts
on a forecast horizon greater then 1, the ARIMA model performs much better
then the ETS model. This can be related to the different forecast patterns gen-
erated and already displayed in figures 5.13 and 5.14. With the knowledge of
this relation, the ETS model with its selection process of the best parameters
should be adjusted to generate better forecasts over a longer forecast horizon
with this dataset.

The lower training costs of the ETS models are caused by a quicker training
process. The highest environmental impact is, just like with the daily dataset,
generated by the always retrain ARIMA model. The AWS monitoring method
reduces the retrainings from 100 to about 60 (ARIMA) and 55 (ETS) which
results in increased error metrics of about 13% compared to the always re-
train method when looking at the ARIMA model and about 35% with the ETS

model. The tracking signal with the threshold of 1.2 reduces the retraining
count to about 30 but the error measures increase by about double of the
always retrain value with the ARIMA model. Due to the bad performance of
the ETS model with this dataset, the error measures are drastically increasing
with a reduced retraining count.

The adapted tracking signal with the 0.4 threshold fails here, like with the
daily dataset, to produce comparable or even better error metrics then the
AWS method. At similar retrainings, especially the ETS model produces much
higher errors.
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6
D I S C U S S I O N O F R E S U LT S R E G A R D I N G H Y P O T H E S I S

One of the main hypotheses is that the cost-benefit relation of the tracking
signal monitoring is better then the AWS monitoring method which is based
on the in-sample error measures (MAE, MSE, RMSE) since retrainings at al-
most every data point are expected with the AWS retraining method. This
hypothesis can only conditionally be confirmed. The AWS monitoring results
in about 60 retrainings over both datasets and models. Therefore, the expec-
tations of a retraining at almost every data point can not fully be validated.
The in-sample error measures are a high standard for further predictions
but in many cases, the error of the forecasts stays below the threshold. This
is observed mostly when the trend and seasonality of the time series is sta-
ble and especially with observations that show almost the same value as
the ones prior to it. The tracking signal monitoring with the threshold of
1.2 is able to reduce the amount of retraining signals to about 26. However
the resulting higher error measures might come at a high costs. We set the
costs for an increased error at € 0.01 ∗ MAE ∗ monitoring horizon which
leads to higher total costs with the tracking signal monitoring then the AWS

monitoring. With a lower cost factor for reduced performance this relation
will change. This cost factor is highly dependent on the usecase and specific
requirements. With millions of parallel time series in production, maybe a
increased error is accepted when the training costs for a single time series
can be reduced.

The other factor influencing this relation is the cost of the training. With
both model types examined here, relatively fast training times resulting in
low training costs are experienced. A single retraining with the ETS model
takes a few seconds and for the ARIMA model up to a minute retraining time
is required. The major part of the cost calculation for the retraining consists
of the startup time of about 5 minutes required for the computing instance
to be prepared before the actual calculation is executed. Since this startup
time is added at every retraining, the computing time itself can almost be
neglected. We still see the heightened costs for the ARIMA model over the
ETS model. With other model types, especially with ML models like neural
networks or hybrid models, the computational requirements are expected to
be higher and thus much more expensive leading to the desire to keep the
retraining counts at a minimum. Therefore, the cost-benefit relation of the
tracking signal can only surpass the default AWS model quality monitoring
when either the training costs are high or a reduced model performance can
be accepted in favor of lower retraining costs.

The adapted tracking signal which is designated to result in a comparable
amount of retrainings to the AWS monitoring method resulted in a threshold
of 0.4 over both datasets and gives comparable but slightly higher retrain-
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ing counts. At this level, the adapted tracking signal monitoring results in
an error increase of about 13 % compared to the AWS monitoring for the
daily dataset and about 25% for the hourly dataset where the latter needs
to be interpreted with the knowledge of the generally bad fit of the ETS

model in this dataset with a forecasting horizon greater then 1. This poor
performance of the ETS model with the hourly data in combination with the
adapted tracking signal is also visible with the AWS monitoring but on a
lower scale, suggesting that the retraining timings are selected better than
with the adapted tracking signal monitoring. To give a generally valid as-
sessment of the performance of the tracking signal monitoring against the
default AWS model quality monitoring, adjusted AWS monitoring thresholds
are required to be tested against multiple tracking signal thresholds. Here,
only one direct comparison is evaluated that indicates the superior perfor-
mance of the AWS monitoring on that level.

The tracking signal monitoring can be seen as a better fit in an MLOps envi-
ronment due to the more generic approach of adjusting the desired retrain-
ing amount. Over both datasets and models, the tracking signal threshold
of 1.2 leads to 25-30 retrainings and the threshold of 0.4 results in 60-65 re-
trainings. This finding shows that certain threshold values result in related
retraining amounts so no further knowledge of the data or the in-sample
error metrics are required when aiming for a specific level of retrainings.
This finding should be validated in further experiments. The AWS method
results in 54-60 retrainings but to adjust this level, more knowledge about
the data and the in-sample error metrics are required to enable the manual
adjustment.

The monitoring framework also gives an overview about the costs gen-
erated by the training on cloud computing instances, the business costs
generated by a decreased model performance and the environmental costs
generated by the computing instances. We have no comparable costs for a
degraded model performance at hand so the set value is considered high.
With this assumption, the hypothesis of the always retrain method as eco-
nomically cheapest approach for the models tested can be confirmed but
ecologically the highest costs are generated due to the maximum retraining
count. The ecological costs are in general at a low level with one time se-
ries over a monitoring horizon of 100 and potentially 100 retrainings only
producing up to about 120g of CO2. This amount is the CO2 output equiva-
lent of about 2 liters of water heated in a electric kettle [Sch15] and can be
translated to below € 0.01 when using the price of CO2 emission certificates.



7
C O N C L U S I O N A N D F U RT H E R R E S E A R C H

The goal of this research is to evaluate the performance and usability of
a tracking signal in a time series forecasting MLOps environment including
economical and ecological costs. As a benchmark, an AWS MLOps architec-
ture and its default model monitoring is introduced beside the two extreme
methods of always and never retrain the models. The time series forecasting
models are limited to ARIMA and ETS models. With the results at hand, it is
not possible to give a global recommendation to any of the methods tested.
When retrainings are expensive, which is expected especially for more com-
plex ML or hybrid models which should be evaluated in further research,
the tracking signal monitoring might be the cheapest model monitoring so-
lution. Another benefit of the tracking signal is the ability to easily adjust the
monitoring threshold to a level of an expected retraining outcome. With the
adapted tested threshold value of 0.4 which functions as direct comparison
against the default AWS monitoring, the performance falls behind the AWS

monitoring and can thus not be recommended. Further research is required
with additional threshold values for the tracking signal and also adjusted
values for the error metrics of the AWS method in combination with addi-
tional data to come to a final conclusion.

We only tested one tracking signal with a specific parameter set. Different
parameters like different smoothing factors or a changed calculation of the
tracking signal are further possible research options to generate additional
insights regarding the performance of the tracking signal monitoring against
the AWS model monitoring approach with in-sample error metrics.

The largest part of training costs experienced here is based on the startup
time of the AWS EC2 instances prior to the actual computing time. Besides the
costs that can be reduced by a different scheduling of retrainings, the organ-
isation of the MLOps framework should be evaluated as well. When multiple
time series are updated at the same time, only one or a few instances should
be started and a sequential computation of the retraining should be imple-
mented to further cut costs. This is recommended especially with models of
low computational retraining requirements.

The ecological costs evaluated in this research are on a low level, how-
ever when utilizing such an MLOps environment as described here with AWS,
potentially millions of time series and models can be managed so the respon-
sibility of reducing costs should also apply to the reduction of the ecological
footprint.

The examined monitoring in this research is limited to the model quality
monitoring with ground truth data available on a regular basis. In a different
scenario, monitoring approaches that do not require further ground truth
data to create alerts like described in chapter 2.3 may be used additionally.
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The influence between those different approaches on the model performance
and the costs generated can be evaluated in further research.

The evaluation of the best monitoring methods to reduce required retrain-
ings in a time series forecasting problem is a topic which is not considered
on a broad scientific scope. With this research and the standard models and
datasets used, a benchmark is given for further research, especially in com-
bination with MLOps frameworks.
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A P P E N D I X
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A D D I T I O N A L F I G U R E S A N D TA B L E S

a.1 10 sampled time series of daily m4 dataset
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Figure A.1: 10 Random Samples of Daily M4 Dataset with Training Data and 100

Test Datapoints
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a.2 10 sampled time series of hourly m4 dataset
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Figure A.2: 10 Random Samples of Hourly M4 Dataset with Training Data and 100

Test Datapoints
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a.3 additional figures from own experiment

Figure A.3: In-Sample Forecasts vs Training Data for ETS Model - Daily Example

Figure A.4: In-Sample Forecasts vs Training Data for ETS Model, last 100 Observa-
tions - Daily Example
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Figure A.5: Always Retrain Forecasts vs Training Data for ETS Model - Daily Exam-
ple

Figure A.6: AWS Retrain ETS Model, last 100 Training Observations, Forecasts, Test
Data and Retrain Timings - Daily Example

Figure A.7: MAE Over Time - ETS - Daily Example
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Figure A.8: Tracking Signal Monitoring ETS Model, last 100 Training Observations,
Forecasts, Test Data and Retrain Timings - Daily Example

Figure A.9: Adapted Tracking Signal Monitoring ARIMA Model, last 100 Training
Observations, Forecasts, Test Data and Retrain Timings - Daily Example

Figure A.10: Adapted Tracking Signal Monitoring ETS Model, last 100 Training Ob-
servations, Forecasts, Test Data and Retrain Timings - Daily Example
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Figure A.11: Iterative Auto-ARIMA Process - Hourly Example

Figure A.12: In-Sample Forecasts vs Training Data for ARIMA Model - Hourly Ex-
ample
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Figure A.13: In-Sample Forecasts vs Training Data for ETS Model - Hourly Example

Figure A.14: Further Never Retrain Example Daily Dataset Index 25

Figure A.15: Further Never Retrain Example Daily Dataset Index 39
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Figure A.16: AWS Retrain ETS Model, last 100 Training Observations, Forecasts,
Test Data and Retrain Timings - Hourly Example
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