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A B S T R A C T

This thesis deals with the use of state-of-the-art deep learning algorithms in
the creative field of generating new content. The aim is to develop a deep
learning model that can generate a random song in the electronic music
genre without vocals. This is motivated by the objective to expand the ex-
isting customer base of the partner company of this thesis by presenting AI
expertise on a fair or conference. The resulting model can serve as an exhibit.

There are three mayor ways to present audio data to a computer that are
used for generative tasks. The physical analog waveform can be digitized
by measuring the change in air pressure over time for a certain location,
and then by taking a certain number of samples from these values each sec-
ond. This resulting vector of values is the raw audio data. Every waveform
is a superstition of several waveforms with a consistent frequency. These
base frequencies can be extracted by the Fourier Transform and presented
over time in a spectrogram. The last format called Midi incorporates mu-
sical knowledge into events. An event indicates which musical note from
which instrument should be played in what way. Different authors tackled
the task of generating music in various combinations of audio formats and
deep learning architectures. The most intriguing is the WaveGAN [12] that
uses a Generative Adversarial Network (GAN) to model raw audio data. It
can only generate audio of one second. In 2018 an architecture called pro-
gressive growing of GANs [31] showed that GANs can be used to generate
over one million pixels in a coherent image when trained iteratively. This
magnitude would result in audio of over a minute. This thesis implements
this algorithm for raw audio.

Raw audio is the most challenging format due to its high dimensional
properties. To reduce computational cost, the generated song is kept at eleven
seconds, resulting in 262, 144 samples for the final sampling rate. The gener-
ator uses a CNN architecture to upsample and analyze a latent vector to a
song of eleven seconds. The discriminator is a mirrored version of the gener-
ator and downsamples a song to a single value, which indicates whether the
discriminator thinks the song is real or fake. Both networks grow iteratively,
starting with a low sampling rate and therefore fewer samples for the eleven
seconds of audio. The sampling rate along with the output size of the gen-
erator and the input size of the discriminator is doubled every iteration. In
that way the model first learns lower frequencies and global structure and
later local details.

The results of the conducted model development and training showed that
working with raw audio data has very high computational requirements.
The model can successfully generate songs that can be steered by the user.
The audio lacks global coherence and still contains noise. Increasing the ker-
nel size of the convolutional networks could improve global structure but



would increase the model size considerably. The occurring noise is mainly
due to the small amount of training data and the shorter training time com-
pared to networks of similar size. Some further development and training
resources are needed to use the model as an exhibit for a fair or conference.



Z U S A M M E N FA S S U N G

Diese Arbeit befasst sich mit dem Einsatz modernster Deep-Learning-Algo-
rithmen im kreativen Feld der Generierung neuer Inhalte. Ziel ist es, ein
Deep-Learning-Modell zu entwickeln, welches einen zufälligen Song im elek-
tronischen Musik Genre ohne Gesang generieren kann. Dies ist motiviert
durch die Zielsetzung, den bestehenden Kundenstamm des Partnerunter-
nehmens dieser Arbeit zu erweitern, indem KI-Expertise auf einer Messe
oder Konferenz präsentiert wird. Das resultierende Modell kann als Expo-
nat dienen.

Es gibt drei Möglichkeiten Audiodaten, die für generative Aufgaben ver-
wendet werden, einem Computer zu präsentieren. Die physikalische analoge
Welle kann digitalisiert werden, indem die Veränderung des Luftdrucks über
die Zeit an einem bestimmten Ort gemessen wird und aus den Messungen
jede Sekunde eine durch die Samplingrate definierte Anzahl an Messwerten
gespeichert werden. Dieser resultierende Vektor von Werten sind die rohen
Audiodaten. Jede Audiowelle ist eine Überlagerung von mehreren Wellen
mit einer einheitlichen Frequenz. Diese Grundfrequenzen können durch die
Fourier-Transformation extrahiert und in einem Spektrogramm mit zeitli-
cher Abhängigkeit dargestellt werden. Das letzte Format, Midi genannt, ent-
hält musikalisches Wissen in Form von Ereignissen. Ein Ereignis gibt an,
welche Musiknote von welchem Instrument auf welche Weise gespielt wer-
den soll. Verschiedene Autoren haben sich mit der Aufgabe befasst, Musik
in verschiedenen Kombinationen von Audioformaten und Deep-Learning-
Architekturen zu erzeugen. Am faszinierendsten ist das WaveGAN [12], das
ein Generatives Adversariales Netzwerk (GAN) zur Modellierung von Audio-
Rohdaten verwendet. Es kann nur Audio mit einer Länge von einer Sekunde
erzeugen. Im Jahr 2018 zeigte eine Architektur namens Progressive Growing
of GANs [31], dass GANs verwendet werden können, um über eine Milli-
on Pixel in einem zusammenhängenden Bild zu erzeugen, wenn sie iterativ
trainiert werden. Diese Größenordnung würde zu einem Audiosignal von
über einer Minute führen. In dieser Arbeit wird dieser Algorithmus für rohe
Audiodaten implementiert.

Rohes Audiomaterial ist aufgrund seiner hohen Dimensionalität das schwie-
rigste Format. Um die Rechenzeit zu reduzieren, wird der generierte Song
auf elf Sekunden beschränkt, was zu 262.144 Samples für die endgültige
Samplingrate führt. Der Generator verwendet eine CNN-Architektur, um
einen latenten Vektor auf einen Song von elf Sekunden hochzuskalieren und
zu analysieren. Der Diskriminator ist eine gespiegelte Version des Genera-
tors und skaliert einen Song auf einen einzigen Wert herunter, der angibt,
ob der Diskriminator den Song für echt oder unecht hält. Beide Netzwerke
wachsen iterativ, wobei sie mit einer niedrigen Samplingrate und daher mit
weniger Samples für die elf Sekunden Audio beginnen. Die Samplingrate



wird zusammen mit der Ausgangsgröße des Generators und der Eingangs-
größe des Diskriminators bei jeder Iteration verdoppelt. Auf diese Weise
lernt das Modell zunächst die niedrigeren Frequenzen und die globale Struk-
tur und später die lokalen Details.

Die Ergebnisse der durchgeführten Modellentwicklung und des -trainings
zeigten, dass die Arbeit mit rohen Audiodaten sehr hohe Rechenanforderun-
gen hat. Das Modell kann erfolgreich Songs generieren, die vom Benutzer
gesteuert werden können. Den Audiodaten fehlt es allerdings an globaler
Kohärenz und sie enthalten immer noch Rauschen. Eine Vergrößerung der
Kernelgröße der CNNs könnte die globale Struktur verbessern, würde aber
die Modellgröße erheblich erhöhen. Das auftretende Rauschen ist hauptsäch-
lich auf die geringe Menge an Trainingsdaten und die kürzere Trainingszeit
im Vergleich zu Netzen ähnlicher Größe zurückzuführen. Es sind noch eini-
ge Entwicklungs- und Trainingsressourcen erforderlich, um das Modell als
Exponat für eine Messe oder Konferenz zu verwenden.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

Through the ever-growing amount of data and the ever-growing compu-
tational capabilities, also German companies have picked up on the trend
of using the already existing data to generate new insights and intelligent
machines. This new field of Data Science and Artificial Intelligence (AI) is
becoming more and more popular, not only in the research community but
also in the business sector. This thesis is written in cooperation with ORDIX
AG, a German consultant company based in Paderborn. The main expertise
and what the company is well-known for is everything related to databases.
In the recent years the goal has been to acquire knowledge in newer technolo-
gies in the areas of Big Data, Cloud and Data Science and to communicate
this new expertise to already existing but also new customers. The Data Sci-
ence department is the most recent one. Besides building the actual expertise,
the marketing for this expertise is of great importance.

To get the attention of possible customers and to demonstrate its expertise,
ORDIX AG attends fairs and conferences every year. The aim of this thesis
is to gain expertise in the area of AI and to develop some sort of exhibit that
can be presented on fairs and conferences to show this expertise. Music is a
great way to call for attention because everyone is in some way attached to
it. Furthermore, it intrigues people what a computer is already able to do.
Therefore, the AI should be able to generate a random song and the user
should be able to influence it to get some interactive experience.

1.2 scope

The field of generative algorithm is large and has a long history. In this
thesis, only deep learning techniques will be examined. These techniques
only became popular within the last decade through the already mentioned
vast amount of data and computational advancements. Concretely, the deep
learning architectures Generative Adversarial Networks and Autoencoders
with their various implementations will be considered and compared. There-
fore, papers that already make use of deep learning techniques for audio
generation will be reviewed. The aim is to use new knowledge to improve
upon these already existing architectures. Transformer networks and the at-
tention mechanism are out of scope for this thesis. Covering these topics in
detail would go exceed the usual volume, and another student is simultane-
ously writing his thesis about these type of networks for the ORDIX AG and
is already gathering the wanted expertise.



1.3 structure 3

Audio data can be presented to a computer in several formats. Different
approaches use these different types of format to already generate audio
data to some success. The aim is to gather knowledge about the different
representations, to compare them and to select a suitable one for this thesis.

The resulting program should allow for an interactive music generation
process. Therefore, some sort of user interface is needed. The scope of this
thesis does not include designing a full executable product, but rather to
focus on the algorithm and to allow for some kind of user interaction. The
AI will focus on learning music from the electronic music genre without
vocals to make the task manageable.

In this thesis instead of AI the more academically term model or network
is used.

1.3 structure

The second chapter “Audio Signal Processing” explains what sound is in
the physical world and how it can be captured and digitized such that it can
be processed by a computer. The digitized signal can be analyzed in its raw
format or converted into some higher level representation. The raw format
along with three other audio data representations are explained at the end
of the chapter. Chapter three “Deep Learning Algorithms” deals with the al-
gorithm used to process the data. The three typical types of neural networks,
feed forward, convolutional and recurrent, are explained. Every network has
certain hyperparameters that have to be set prior to the training. These hy-
perparameters and their impact on the resulting model are presented. In the
second part of the chapter, the generative architectures Autoencoders and
Generative Adversarial Networks are explained along with advanced imple-
mentations. The next chapter analyzes current architectures used for audio
generation. It shows what the algorithms are already capable and lays the
foundation for chapter five. In this chapter, the different audio representa-
tions and possible model architectures are discussed and the most suitable
ones for this thesis selected. Furthermore, requirements for the outcome of
the developed model are defined. The chapter “Concept” explains the idea
that is used to improve one of the architectures of chapter four and how
this strategy can help to achieve the aim of the thesis and the defined re-
quirements. Chapter seven then elaborate the developed concept and shows
how this can be implemented using Tensorflow and Keras in the Python
programming language. This part is accompanied by a Git repository that
contains the code and the data. Chapter eight discusses the results that the
model is able to produce. The last chapter summarizes the thesis and gives
an outlook of what still has to be done and how the developed model can
be further improved.



2
A U D I O S I G N A L P R O C E S S I N G

To approach the task of generating music, the first step is to understand
music itself and how it can be presented to a machine. As will be shown,
there are several ways to encode music in different levels of abstraction.

It is not the aim of the author to explain in-depth musical concepts, rather
to give an overview and to explain the aspects necessary to understand the
approaches that have been taken by the author and by the authors of the
analyzed papers to generate new music.

2.1 audio representation

In its most basic form, sound can be seen as waves travelling through the
air as alterations in air pressure. The vibration of an object causes the air
molecules to oscillate and transmit energy. This deviation in air pressure
from its usual value can be measured and encoded into an audio signal.
This audio signal contains all information needed to reproduce a piece of
music.

2.1.1 Sound and Waveforms

In physical terms, waves can be divided into longitudinal and transverse
waves. The difference is the direction of the particles’ movement respective
to the direction of the energy transport. When an object starts vibrating,
the surrounding air molecules start to move back and forth, energizing the
adjacent molecules, triggering a chain reaction. This motion results in re-
gions of compression and regions of rarefaction. Due to this back and forth
movement, the energy is transmitted in the direction of particle movement,
resulting in a longitudinal wave. The upper part of Figure 2.1 depicts this lon-
gitudinal character of the wave. If now the shift in air pressure is measured,
with compression resulting in higher pressure and rarefaction resulting in
lower pressure, at every point between the sound source and the receiver,
the sound wave can be described with a sine wave, as shown in the lower
part of Figure 2.1



2.1 audio representation 5

Figure 2.1: Soundwave transmitted through air [44]

The amplitude encodes the intensity of the displacement of air molecules,
reflecting the loudness of the sound. The frequency of the soundwave (how
many crests or troughs occur within a second) reflects the pitch of the sound,
meaning how the sound is perceived in terms of higher and lower sounds.

2.1.2 Properties of Sound

As was shown, sound can be described with sinusoids. [9] To discuss this
concept further, a classical sine function is shown in equation 2.1 and dis-
cussed in this section.

x(t) = A cos(2π(ω ∗ t− φ)) (2.1)

2.1.3 Frequency

Frequency (ω) is a physical term to describe how many oscillations happen
per second, measured in Hertz (Hz) or 1/s. The higher the frequency of
the sinusoid, the higher the perceived sound. Humans can generally hear
sounds in between 20 Hz and 20, 000 Hz. If the oscillations occur in a con-
sistent pattern, the sound wave is called periodic and the produced sound
is called a tone. The wave form in Figure 2.1 is periodic and can be defined
by the equation 2.1. Music theory coined the term pitch to refer to the per-
ception of higher and lower sounds. A common pitch is the musical note A4,
which is represented by a sinusoid with a frequency of 440 Hz.[37] Humans
perceive two pure tones to be similar, if they differ by a power of two.[56]
Hence, a tone with frequency 880 Hz sound similar to the pitch A4 with 440
Hz. To account for this relationship, music theory introduced the concept
of an octave, where a pure tone with 880 Hz is called A5, being one octave
or eight notes above A4. Since humans perceive sound logarithmically, the
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perceived distance between the pitches A4 and A5 is the same as between
A5 and A6. [38]

In reality, when you play a certain note on an instrument, there is not just
one single harmonic sinusoid with one frequency produced. The resulting
sound is a superposition of several harmonic sinusoids. If the note A4 is
played, for example, the resulting sound also consists of the frequencies of
the pitches A5 and A6. All occurring sinusoids are called partial, and the si-
nusoid with the lowest frequency is called the fundamental frequency. If the
frequency of a sinusoid is an integer multiple of the fundamental frequency,
it is called a harmonic partial. Instruments are generally tuned so that all
occurring partials are harmonic. [16]

2.1.3.1 Amplitude

The amplitude (A) of the sinusoid determines the amount of energy that is
transmitted by a source of sound per second. This amount can be calculated
with the formula A2/2 and is also called the power of sound, measured in
watt (W). [9] A more known term to describe the energy of sound is the
intensity level expressed by decibel (dB). The sound intensity describes the
sound power per unit area (W/m2), with dB expressing the ratio between
two intensity values. Decibel is a logarithmic scale where an increase of 3dB
corresponds with approximately a doubling of intensity. An overview of
common intensity values is presented in figure 2.2. The threshold of hearing
(TOH) is defined as the sound intensity of a pure tone that a human is able
to hear. [38]

Figure 2.2: Typical intesity values given in W/m2, decibles and by a factor compred
with the TOH [38]

The term loudness refers to a perceptual property of sound. Sounds with
the same intensity may be perceived differently by an individual depending
on the age of the individual, the frequency of the sound and the duration of
the sound. [17]

2.1.3.2 Phase

The phase (φ) does not have a perceptual correspondence in the physical
world. It solely indicates where the sinusoid is in its cycle at time zero. So, it
can be thought of as a time-shift of the sinusoid. [9]
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2.1.3.3 Timbre

Timbre is a concept that helps musicians to distinguish between a musical
tone that is played with the same pitch and the same loudness by different
instruments. To make timbre more tangible, the energy behavior over time
and the energy distribution across the occurring partials is analyzed.

Figure 2.3 shows that at the beginning of a sound there is a spike of en-
ergy called the attack phase where the sound builds up. In that phase, there
are many non-harmonic and non-periodic partials present due to noise that
comes with the physical behavior of an instrument. After this spike in en-
ergy, the noise components fade away in the decay phase and the sound
stabilizes into the sustain phase. In the final release phase, the musical tone
fades away. The duration, the amplitude, and the shape of these phases vary
a lot depending on the instrument, thus determine how the sound is per-
ceived. [56]

Figure 2.3: Attack (A), Decay (D), Sustain (S), Release (R) phases of a muiscal tone

To analyze which partials make up a certain sound, the intensity of the
occurring frequencies can be visualized. The resulting plot is called a spec-
trogram. A more detailed explanation is given in section 2.3.

2.1.3.4 Duration

As seen in the preceding subsection, the duration of a sound influences its
timbre and its loudness, and therefore how the sound is perceived. It refers
to how long a certain note is played.

2.2 digital signals

So far, audio was presented as air pressure oscillations in the physical world,
defined by certain sinusoids. These type of signals that occur in the real
world are called analog signals. Analog signals are continuous and have
therefore an infinite number of values. An example of an analog signal is
the sine function in equation 2.1. To be able to process these continuous
signals, it is necessary to convert it into some discrete representation that a
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computer is able to save and manipulate. This conversion is called analog-to-
digital-conversion (ADC) or digitization. [45] In the field of audio, the two
techniques sampling and quantization are used.

2.2.1 Sampling

Sampling is a technique used to convert the continuous time values of an
analog signal to a finite number that can be stored on a computer. Con-
cretely, the applied procedure is the equidistant sampling where a positive
real number T of samples with equal distance to each other is taken from the
analog signal. This leads to the equation 2.2, where x(n) is the nth sample of
the analog signal xa, taken at time n ∗ T. T is the sampling period and de-
fines the distance in seconds between two samples. The inverse of T is called
the sampling rate or the sampling frequency Fs, and indicates the number of
samples taken per second, measured in Hertz (Hz).

x(n) := xa(n ∗ T) (2.2)

To not lose spectral information, that means, the spectrum of the analog
signal can be fully recovered from the spectrum of the discrete signal, the
sample rate has to be selected large enough. C. E. Shannon and H. Nyquist
laid the foundation for the Shannon Nyquist sampling theorem [40][57],
which states that, if there is a sufficient condition for a sample rate estab-
lished, a finite signal can capture all the spectral information of an analog
signal. Specifically, the sampling rate must be double the size of the high-
est frequency that the discrete signal should capture. This sampling rate
presented in equation 2.3 is known as the Nyquist rate, with the highest
frequency Fmax captured by the discrete signal called the Nyquist frequency.
That is the reason songs on a Compact Disc (CD) are sampled with a sam-
pling rate of 44, 100 Hz. Humans can hear sounds up to about 20, 000 Hz so
with this sampling rate, all frequencies that humans care about are captured
by the discrete signal on the CD.

Fs = Fmax ∗ 2 (2.3)

To better understand what happens when the sampling rate is below the
Nyquist rate, an analog signal in the form of a sine wave with frequency
of 1 Hz is plotted in Figure 2.4 in blue. This analog signal is then sampled
with the Nyquist rate of 2 Hz and with a sampling rate of 1 Hz and plotted
with the red and yellow lines respectively. The sampled points have been
interpolated with straight lines. The higher frequencies of the analog signal,
that lay above the Nyquist frequency, occur in the discrete signal as lower
frequencies. The analog signal in our example, sampled with a sample rate
of 1 Hz, results in the yellow signal in a frequency of 1

10 Hz. Each frequency
above the Nyquist frequency in the analog signal has a corresponding lower
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frequency (an alias) in the discrete signal. These artifacts are thus called
aliasing.

For a mathematical proof and more details, please refer to the original
papers of H. Nyquist [40] and C. E. Shannon [57] or to [45].

Figure 2.4: Sine wave with 1 Hz sampled with sample rates of 2 Hz and 1 Hz

2.2.2 Quantization

So far, it was shown how the continuous time component of an analog signal
can be converted to a discrete representation. However, the amplitude of an
audio signal in its physical form is also continuous and has to be discretized.
Therefore, each amplitude value of the analog signal gets represented by a
value from a finite set of values. The summed difference between the original
and the quantized values is called the quantization error.

Figure 2.5 depicts the quantization procedure with the analog signal 0.9t

as an example. Every sample xq(n) is mapped to its closest value of the
quantizer (here values between 0 and 1 with step size 0.1). The more levels
of quantization are used, the lower the quantization error. In practice, this is
often achieved by simply truncating the value to a certain precision.

Figure 2.5: Quantization of an analog sinal 0.9t [45]

For CD quality, 16bit quantization is used. That means, the amplitude
is represented by 65, 536 possible values. This value is again chosen in a
way that the information loss due to the discretization is not noticeable for
humans.
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2.3 fourier analysis

This section will give a high-level overview about the Fourier Analysis named
after the French mathematician and physicist Jean Baptiste Joseph Fourier
and its application in digital signal processing, as it is needed to understand
further concepts explained in this thesis. For technical and mathematical de-
tails and proofs, please refer to the literature linked in this section.

Fourier analysis describes the study of using trigonometric functions to
define or approximate other, more complex functions. For audio processing,
it can be used to figure out of which underlying frequencies a signal is
composed.

2.3.1 Fourier Transform

Fourier transform is the specific process of transforming a signal that de-
pends on time into a signal that depends on frequency, and is part of the
Fourier analysis. This is also called a transformation from the time domain
to the frequency domain. For audio signal processing, the idea is to decom-
pose a given signal into its overlaying sinusoids. The signal is compared with
various sinusoids of different frequencies. For each considered frequency,
there is a magnitude coefficient and a phase coefficient determined. The
magnitude coefficient is large for sinusoids that are similar to the signal.
That means that the signal contains a periodic component at that sinusoid
frequency. The phase coefficient indicates, for which phase of the sinusoid,
the comparison yields the highest magnitude coefficient. Since sinusoids are
periodic, the phase has to be considered only in a certain interval and the
magnitude coefficients repeat themselves.

The original signal can be reconstructed with the magnitude and the phase
coefficients of all the periodic components of the signal. Therefore, all sinu-
soids of all the frequencies are superimposed and weighted by their magni-
tude coefficient and shifted by their phase coefficient. This reconstruction is
called the Fourier representation of the original signal. In Figure 2.6 a signal
(blue line) is compared with different sinusoids (red line) with the frequen-
cies 3 Hz, 10 Hz and 3.5 Hz in the plots (a), (b) and (c) respectively. In plot (a)
and plot (b) there is substantial overlap between the red and the blue signal,
and therefore the respective magnitude coefficient is large, meaning the blue
signal probably contains frequencies of 3 and 10 Hz. The red line in plot (c)
appears to have less overlap, and therefore the magnitude component of 3.5
Hz is lower. The phase coefficients were selected in a way that leads to the
maximum overlap.
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Figure 2.6: Comparison of ground signal with signal of various frequencies

Mathematically, to determine how similar two functions are, the integral
of the inner product of these functions is taken. If the signals are similar,
most of the coefficients of the values for some time t are both positive or
both negative, resulting in a positive value. If the signals are dissimilar and
their coefficients for some time t are different, the resulting values are nega-
tive, resulting in a lower integration value and therefore a lower magnitude
coefficient. The pair of magnitude and phase coefficient is represented as a
complex number in the complex space. The Fourier transform f̂ (ω) can then
be calculated by Formula 2.4. Hence, the real part of the complex number is
obtained by comparing the analog signal f (t) to a cosine function and the
imaginary part by comparing the analog signal to a sine function. For more
details, please refer to [38] [41] [55].

f̂ (ω) =
∫

t∈R
f (t) cos(−2πωt)dt + i

∫
t∈R

f (t) sin(−2πωt)dt (2.4)

The result of the Fourier transform is perfectly displayed by Müller [38]
with Figure 2.7 showing the resulting magnitude coefficients for the wave-
form of the note C4 played by different instruments. It shows that depending
on the instrument, the magnitude of the present frequencies in C4 changes.
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Figure 2.7: Waveform and magnitude coefficients of the note C4 of different intru-
ments (a) Piano, (b) Trumpet, (c) Violin, (d) Flute

For digital signals instead of the integral, the sum of the pointwise multi-
plication of the sampled values is taken, where the regarded trigonometric
function is sampled in the same way as the analog signal. To make it com-
putational feasible, only a finite number of samples and a finite number of
frequencies is considered. This is called the discrete Fourier transform. If
certain mathematical conditions are enforced, this algorithm can be made
much more efficient by exploiting redundancies of sinusoids with different
frequencies, increasing its importance. The foundations for this faster algo-
rithm, called the fast Fourier transform, were laid by Joseph Fourier and Carl
Friedrich Gauss [26].

2.3.2 Spectrograms

So far, the Fourier transform transmuted the signal from the time domain
to the frequency domain. The information about the time was lost in this
process. If an algorithm is to generate a new sound, it has to be provided
with information about the distribution of the frequencies over time. Den-
nis Gabor laid with his in 1946 published paper [19] the foundation for an
algorithm now called short-time Fourier transform. He applied the Fourier
transform to time windows. Therefore, a window function, that is zero out-
side a certain interval, is multiplied with the signal and shifted along the
time axis by a certain hop length, producing the respective signal windows.

In the discrete case, a certain number of samples lie in each window. For
each window, a finite number of frequencies is considered when computing
the Fourier transform. This results in bins with complex numbers for all
considered frequencies for each window, as explained in 2.3.1. The squared
magnitude of these complex numbers can now be represented in color in a
2-d heatmap, with the time on the horizontal axis and the frequencies on
the vertical axis. This representation is called a spectrogram and offers an
overview of the frequency distribution of a signal over time. To make also



2.4 encoding of audio 13

frequencies with little energy visible, the magnitude can be transformed into
a dB representation.

A spectrogram for a C4 major scale played by a piano is plotted in Figure
2.8 with a logarithmic scale for the frequency. The MP3 file for the audio
to create the spectrogram was downloaded from [18]. The fundamental fre-
quency of the note C4 is 262 Hz, which is shown by the lowest most left
horizontal line. The horizontal lines above are the harmonic partials of the
note C4. The scale is played upwards from C4 to the C5 and reversed.

Figure 2.8: Spectogram for Major C4 scale

2.4 encoding of audio

So far, the reader was introduced to the physical representation of audio,
how it can be saved on a digital device and to some first processing steps that
lead to a visual representation of frequencies over time. To teach a computer
to produce new content, it has to be presented with information that can be
used by the algorithms presented in chapter 3. Four types of encoding will
be presented in this section.

2.4.1 Raw Audio

Raw audio is the most basic format. The amplitude values of the sound wave
are saved as floating-point numbers in an array-like format. If the sample
rate and the bit resolution is high enough, there is nearly no information
lost in the preprocessing step. The downside is the enormous amount of
data that is used to save audio files. If the 16 bit encoding with a sample rate
of 44, 000 Hz of a CD is considered, one minute of audio takes up 16bits ∗
44000(1/s) ∗ 60s = 42, 240, 000bits ≈ 5.28MB memory.

2.4.2 Sheet Music Representation

Sheet music is arguably the most known format of encoded music. In sim-
ple words, it is a visual presentation of musical notes. In an orchestra, the
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different musicians with their instruments follow the instructions on which
notes when and how to play printed on paper to create the musical play.
Therefore, to understand sheet music, profound knowledge of music theory
is needed. The instructions on the sheet music are not distinct. A musician
can vary the tempo, dynamics, and articulation of the printed notes, thus
creating their own style. [38] Due to its non-uniqueness in the interpretation
and its graphical presentation, this type of encoding usually is not used for
generative tasks.

2.4.3 Symbolic Representation

Symbolic representation is the most used format for generative tasks. Several
distinct entities are defined that tell the computer what specific sound, in
which loudness and for how long it has to produce. There is a finite number
of entities, so that each piece of music is fully defined by its composition of
entities. The two most common formats are the piano-roll representation and
the Musical Instrument Digital Interface (MIDI) representation. A piano-roll
representation is a two-dimensional sheet where the abscissa encodes the
time and the ordinate encodes the pitch to play. With this encoding, the
beginning, the duration, and the pitch of the sound is uniquely defined. As
the name indicates, this format is mainly used to encode a play performed
on a piano. It lacks information on how fast the keys were pressed, therefore
missing the loudness of the played note.

MIDI files contain information on how a specific instrument was played
or how a computer should play an instrument. The most important features
for this task are MIDI note number, note-on, note-off and velocity. In MIDI
files for a piano, the note-on and note-off events tell the computer when to
press and release a key. Each note-on or note-off event is equipped with its
corresponding MIDI note number and velocity. The velocity feature defines
the velocity with which the key is pressed or released encoded with an in-
teger between 0 and 127 and thus controlling the intensity of the produced
sound or its attenuation. This velocity value corresponds with the concepts
of timbre and loudness that were introduced earlier in this chapter. The
MIDI note number encodes the pitch of the sound with an integer between
0 and 127. For the piano example, it indicates which key is to be pressed.
With the equation 2.5 the corresponding frequency F to the MIDI number p
can be inferred. The note A4 with the MIDI note number 69 hence leads to
the frequency 440 Hz.

Fpitch(p) = 2(p−69)/12 ∗ 440 (2.5)

To allow multiple instruments playing concurrently, a MIDI event can pro-
vide a channel to which an instrument can be assigned. MIDI files measure
the time in ticks. At the beginning of the file, the number of ticks per quarter
note is defined. The time feature of a MIDI event consists of the number
of ticks that determines after how many ticks after the last MIDI event the
corresponding MIDI event is executed. Therefore, the duration of a note is
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specified by how many ticks after the note-on event, the note-off event is
executed.

Midi files do not contain the audio signal itself, and thus their size is
small compared to other formats such as MP3 or WAV. Thanks to their small
size, their standardized format and their easy manipulation, MIDI files are
widely used to save, distribute and generate music. Since 1985 there is even
an organization that helps to promote and further develop this technology.
[60] The MIDI format itself is not human-readable, but can be converted to
a comma separated value (CSV) format. Since September 2019, there is a
respective python package called midicsv. [46]

2.4.4 Image Representation

As seen in subsection 2.3.2 music can be represented as an image. Therefore,
image processing and image generation techniques can be applied to the
spectrogram representation. The pixel values of the spectrogram are saves
as floating-point number in an 2-d array.



3
D E E P L E A R N I N G A L G O R I T H M S

In this chapter, the deep learning algorithms and overall architectures that
are used in generative tasks are discussed. The aim is to give an overview
over the possibilities of choices in the field of music generation and provide
information about the parameters that have to be considered when creating
a deep learning system.

3.1 artificial neural networks

Artificial Neural Networks are widely known in their first developed and
most basic form, the Feed Forward Network (FFN). For spreadsheet like
data, this type of network performs good. It struggles with spatial data or
data with a time dependency, as it is the case for audio data. Thus, other
types of network have been developed.

For an extensive overview about the historical developments and contri-
butions of different researchers that lead to the presented algorithms, please
refer to the thorough technical report of Jürgen Schmidhuber [54], an inter-
nationally acknowledged researcher in the field. More recent advancements
and claims to specific algorithms will be appropriately cited.

3.1.1 Feed Forward Networks

To provide an overview about the general functionality of Artificial Neural
Networks and to provide a better entry point for readers with less back-
ground in this field, the principles of basic FFN will be elucidated in this
first subsection. Most of these principles are also used in the other types of
neural networks.

3.1.1.1 General structure of a FFN

A FFN consists of an input layer, one or more hidden layer and one output
layer. If it has more than one hidden layer, it is also called a deep neural
network. The input layer is a representation of some numerical input data
that is sent through the network. One neuron represents one feature. The
neurons of the hidden layers conduct the calculations of the network. Every
neuron receives the output from the preceding layer, runs its calculations and
sends its output to the succeeding one. In the output layer, the information
is consolidated and transformed to a suitable interval of values. The number
of output values depends on the number of neurons in this layer. Because
every neuron is connected with all the neurons of the preceding and the
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succeeding layer, this type of layers is also called a fully connected layer. In
Figure 3.1 this structure is shown.

Figure 3.1: Structure of a feed forward network

3.1.1.2 Calculations of a single neuron

To better understand the calculation, a single neuron and its dependencies is
depicted in Figure 3.2. This schema is the same for neurons of the hidden and
the output layer. The neurons of the input layer are merely a representation
of the input values without any calculation happening. Every connection
between two neurons is assigned a weight wi. The output of a neuron is
represented with an ai.
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Figure 3.2: Schema of the calculation of a single neuron

The considered neuron takes the products of the outputs of the preceding
neurons with their respective weights ai ∗ wi as an input. The weights there-
fore determine in what way the output is considered in the next layer. These
products are summed up, and a bias b is added. The bias is a floating-point
number that shifts the input into a positive or negative direction. The bias
and the weights are adjusted during the training of the network.

In the next step, this sum is fed into an activation function f , which maps
each input value to an output value. The simplest activation function is a
linear function f (x) = x where each output value equals its input value.
For better training stability and to get the desired output for neurons in the
output layer, activation functions usually map the input values to a distinct
interval of values. Activation functions are separately discussed in 3.1.4.2.
The output of the activation function gets then sent to the next layer, or is
returned as the prediction, in the case of the output layer.

3.1.1.3 Training process

FFN are trained in a supervised manner. That means the output of the net-
work is compared to what was expected to be the network’s output. There-
fore, appropriate training data is needed. To explain the training concept, a
FFN for a binary classification problem is considered. The network has a sin-
gle output neuron with its output mapped to a value between zero and one.
The output value hence signify how certain the network is that the input
data is part of category one.

To assess the network’s quality, a loss function has to be designed that
gives feedback to the network on how well it is performing. For this example,
the simplest loss function is the squared difference between the prediction
and the true output value. The loss gets smaller when the network’s predic-
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tion is closer to the true value, and bigger when the network performs badly.
That is a desired property of a loss function. Loss functions are discussed in
more depth in section 3.1.4.4.

During the training process, the network adjusts its weights and biases
to improve its performance assessed by the loss function. Mathematically, it
tries to minimize the loss function by altering its trainable parameters. There
is no analytical feasible solution to directly calculate the optimal values for
all parameters of the network, in a way that minimizes the loss function.
Therefore, a numerical approach called gradient descent is used. It calculates
the gradient of the loss function with respect to (w.r.t.) the weights and biases.
Then a step in the direction of the negative gradient is taken by updating
the weights and biases accordingly. The aim is to update the parameters
step by step until a local minimum is reached. Figure 3.3 illustrates this
procedure graphically in a simplified way. Every red arrow represents one
gradient descent step. The step size can be adjusted by a learning rate. A
higher learning rate results in larger steps. Selecting a good learning rate is
part of the optimization for gradient descent. A wide variety of optimization
algorithms have been developed. Section 3.1.4.3 explains the most important
optimizers for this thesis.

Figure 3.3: Gradient descent steps for a loss function represented by red arrows

The loss is calculated only with the output value of the network. Hence,
the influence of the parameters of the output layer is directly related to the
loss. The hidden layers do not have this direct feedback. Therefore, the one
loss function has to be used to also update the weights and biases of the
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hidden layers. Mathematically, the output of the network depends on all
weights of the network. This relationship can be presented with a chain of
products. For the simple network shown in Figure 3.4 and a linear activation
function f (x) = x, this chain is given by equation 3.1.

Figure 3.4: Simple FFN with two hidden layers and one neuron per layer

ŷ = a3 = a2 ∗ w3 + b3 = (a1 ∗ w2 + b2) ∗ w3 + b3

= ((x ∗ w1 + b1) ∗ w2 + b2) ∗ w3 + b3
(3.1)

To update the parameters of the earlier layers, the differential of the loss
function w.r.t to their parameters can be calculated using the chain rule. This
backward flow of the error is called backpropagation. For the example net-
work, the gradient of the loss function Loss(weights, biases, y, X) = (y− ŷ)2

w.r.t. the weight w2 is calculated by equation 3.2 and w.r.t the weight w1 by
equation 3.2. It is calculated by plugging equation 3.1 into the loss function
and then by differentiating this formula w.r.t. to the weight. The formula to
update the weights is given by equation 3.4 with alpha being the learning
rate.

∆Loss(weights, biases, y, X)

∆w2
= 2 ∗ (y− ŷ) ∗ a1 ∗ w3 (3.2)

∆Loss(weights, biases, y, X)

∆w1
= 2 ∗ (y− ŷ) ∗ x ∗ w2 ∗ w3 (3.3)

wi+1 = wi − α
∆Loss(weights, biases, y, X)

∆wi
(3.4)

Note that the biases are updated the same way. For bigger networks, the
formulas get exponentially more complex, but the underlying principles stay
the same. For a more complex example of the presented principles, please
refer to [4]. Further information can additionally be found in [15] and [24].

3.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are mostly known for their applica-
tion in the field of Computer Vision for image processing, object detection
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and classification. As the name indicates, CNNs have at least one layer that
performs a mathematical operation called convolution. For this, the data has
to exist in a grid-like topology. That means adjacent data points are related
to each other. The pixels of images are numerical values in a 2-D grid, where
a group of pixels is needed to define an object. But also audio data can be
processed by convolutions. The audio data is merely a 1-D grid representa-
tion, with coherent data depending on time. Hence, there are 1-D and 2-D
convolutional operations. Following, the concept of 1-D convolutions will be
explained. But the same concept and wording applies to 2-D convolutions
as well.

3.1.2.1 Convolutions

A convolution is basically the operation of applying a kernel function to
some data with the explained format. Figure 3.5 shows a simple example of
a kernel function that calculates the average value for a sample xj and its
two neighbors to the left and to the right.

Figure 3.5: Simple convolution operation on a vector

The x values or the function that produces these values is called the input,
the kernel function K is called the kernel and the output is referred to as
the feature map of the convolution. In this example, the kernel is of size
five. The feature map is calculated by sliding the kernel with a certain step
size over the input data and calculating the value for every input sample.
For a 2-D operation the kernel slides from left to right and after reaching
the end it slides downwards to the next row of pixels. If the step size is
one, the feature map has the same dimensions as the input. To calculate the
feature map value for x1 the input data has to be extended, since x1 does not
have neighbors to its left side. The easiest way is to pad the needed number
of zeros to the input, in this case two zeros to the left side. This strategy is
therefore called Zero Padding. Thus, the feature map value of x1 is calculated
by: K(x1) =

0+0+2+3+4
5 = 1.8. Following this procedure, the full feature map

for a step size of one is given by the vector [1.8, 2.6, 3.6, 4.4, 5.4, 5.8, 5.0, 4.0]
Other padding strategies will be explained when they are needed.

In CNNs for the convolution operation, the kernel function is a matrix
of weights that is multiplied with the input values and updated during the
training. The network learns which input values are more important and
should therefore be assigned a higher weight. In CNNs, there is usually
more than one kernel applied to the input, resulting in several feature maps.
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In that way, the network has the possibility to portray different information
by different feature maps. To each feature map, a bias is added.

3.1.2.2 Pooling

Pooling describes the application of a kernel that gives a summary statistic.
That could be the maximal value of the input for the max pooling operation
or the average input value for the average pooling operation. So, the exam-
ple of the last section was basically the application of average pooling. The
difference to the convolution operation is that the weights of the kernel are
determined by the network itself for the convolutions. Furthermore, pooling
operation usually reduce the size of the input. A common approach is to
set the step size to two, which leads to a reduction by factor two for 1-D
representation and to a reduction of factor four for 2-D representations.

Pooling helps the network to make their representation of certain features
invariant to translation of the input. That means, if a convolution is to detect
a face, pooling helps to detect the face in different locations of the picture. Be-
cause pooling summarizes the information over a certain region, the informa-
tion about the feature are kept. In that way, by stacking several convolution
layers and pooling layers, the information in the input can be concentrated
by continuously reducing the size of the feature maps. [8]

3.1.2.3 Transposed Convolutions

Increasing the step size when applying a kernel to some input leads to down-
sampling. This can be done either by using a convolution operation such that
the network learns its own parameters when executing the downsapmling
or with a pooling operation with a priorly defined procedure.

For some use cases, upsampling is required as well. The simplest way to
do this is by replicating the occurring values. This operation is often simply
called upsampling. If the network should decide by itself how the upsam-
pling is done, transposed convolutions are used. [14] It is done by creating
a new, longer vector by inserting zeros between the input values. Then each
input value is multiplied with each parameter of the kernel and the results
are copied to the new vector. For example, with a kernel size of three, each
input values results in three new values. By writing the resulting values into
the new vector, some results of different input values might overlap. It is
possible to take the average or the sum of these values and write it to the
vector.

3.1.3 Recurrent Neural Networks

3.1.3.1 Original RNN

Recurrent Neural Networks (RNNs) are used for sequence data, where the
length of the data can be variable. Examples for sequence data are text data
where the words or the characters represent the sequence, or audio data
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where the samples of the amplitude represent the sequence. In essence, a
simple RNN can be seen as a FFN with one input neuron, one hidden neuron
and one output neuron that processes one sample at a time. The output of
the first network is passed as an input to the next network that processes
the next sample in the sequence. The information that is passed from one
neuron to the next is also called the internal state of the network. Through
this internal state, information from earlier inputs can be used to influence
predictions at the current time step. The amount of time that information
from a certain time step is kept in the hidden state is not fixed. As will be
shown, it depends on the weights and on the input data.

In Figure 3.6 the schema of a RNN is pictured. One neuron at time step
t takes the hidden state ht−1 of the previous neuron and an input xt as an
input, processes it, and then passes its hidden state ht to the next neuron. At
every time step t, an output yt is returned. This does not have to be the case.
For classification problems, the networks only return a single output at the
end of the sequence.

Figure 3.6: A simple visualization of the principles of a RNN

To calculate the hidden state ht and the output yt, equations 3.5 and 3.6
are used respectively. f1 and f2 are activation functions. Whh, Whx and Wyh
are the weights matrices used by the network and bh, by the bias vectors.

ht = f1(Whh ∗ ht−1 + Whx ∗ xt + bh) (3.5)

yt = f2(Wyh ∗ ht + by) (3.6)

These formulas indicate that the weight matrix for every time step t is
reused. That means the weights are shared across time. To train the network,
a loss can be computed at every time step by comparing the output value
yt with the expected value from the training data. The sum of these indi-
vidual losses is the total loss of the network. To now adjust the weights, an
algorithm called Backpropagation Through Time defined by Werbos [64] is
used. To adjust the weights matrices, the errors for all past time steps are
considered. Additionally, the error of the current time step flows backwards
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through the network to account for the effect that a previous hidden state
has on the current error. This same principle was explained in section 3.1.1.3
where the error of the FFN was propagated backwards to determine the in-
fluence of an early neuron on the error. For long sequences, this involves a
repeated multiplication of the weight matrices. As pointed out by Hochreiter
[27] [28], this results in vanishing or exploding gradients. If the weights lie
in an interval (-1,1), the change in the loss function w.r.t to the weights of
an early neuron gets infinitesimal small, resulting in a vanishing gradient.
If the weights are big, a repeated multiplication results in extremely high
gradients, making the training unstable due to large changes of the weights
for every time step.

This vanishing or exploding gradient problem is not specific to RNNs.
Deep FFNs and CNNs with many layers face this problem as well. Possible
solutions will be discussed in 3.1.4. An extensive explanation of RNNs can
be found in [1].

3.1.3.2 Long-Short-Term-Memory Networks

RNNs have an internal state that keeps information about past events. As
was explained, the time span over which information is kept depends solely
on the weights and the inputs. [6] This time span in often not larger than
five to ten discrete time steps, making it useless for many tasks. A solu-
tion is offered by Long-Short-Term-Memory (LSTM) Networks developed
by Sepp Hochreiter and Jürgen Schmidhuber in 1997. [29] LSTM networks
enforce constant error flow back into earlier time steps through some spe-
cial units called memory cells with gate units. The memory cell consists of
several mathematical operations. A memory cell is basically a more complex
RNN neuron. Each memory cell has a cell state that contains information
from previous memory cells. The memory cell can now add or remove in-
formation from the cell state. This is done by the gates, which consist of
neural network layers with specific activation functions that only let certain
information from the input and the previous output through. Each memory
cell then decides which information is returned as the output. This output
is also given to the next memory cell. Through this complex architecture,
LSTM network can save information over a longer period of time.

3.1.4 Hyperparameters

Hyperparameters describe the parameters that the model engineer can set
prior to the training. They define how the training process is executed and
in what way the model will adjust its trainable parameters during training.
Besides selecting the right type of model for the considered use case, the hy-
perparameter selection is the most important aspect for a successful machine
learning model with a stable training process.



3.1 artificial neural networks 25

3.1.4.1 Layer and network size

The easiest to understand hyperparameter is the size of the model. For FFNs,
that relates to the number of hidden layers and the number of neurons per
layer. The more layers and neurons in the FFN, the better the network is able
to represent the relationship between the input and the output data. How-
ever, bigger networks are harder to train. The number of parameters that
have to be adjusted during training grows rapidly with additional neurons
and layers. That is because every neuron is connected with all neurons of
the preceding and succeeding layer. Furthermore, with bigger networks the
model engineer has to account for the vanishing gradient problem increas-
ing the complexity of the network and the demand of respective knowledge.
With increased complexity, the training time and the memory cost of the
network increases as well. Another important concept to have in mind is the
bias-variance trade-off. A complex model might explain the training data
very well w.r.t to the already known output, but fails to generalize for new
data, resulting in low performance on unseen data.

For CNNs, the size of a convolutional layer is determined by the input
data, the kernel size and the number of kernels applied to the input data. For
a 1-D convolutional layer, the input size is fixed by the number of samples of
the input. The kernel size defines the number of samples that are considered
when computing the feature map value. The number of kernels gives the
network more possibilities to encode the information, presented in the input
data, in different ways.

For RNNs, the network size is fully determined by the length of the input
or output sequence.

3.1.4.2 Activation functions

Activation functions are basically just normal mathematical functions that
take in some input x and output the corresponding values f (x). They are
usually used after every layer for all considered type of networks. In the
hidden layers they help to stabilize the training and to enforce non-linearity,
and in the output layer to make the output interpretable.

Consider a FFN that has to predict whether an email is spam or not. To
make the output interpretable, it should output a probability of how certain
it is that a given email is spam. Therefore, the output of the network has
to be mapped to the interval [0, 1], representing the probability. Other use
cases need the values to be in a different interval. Hence, several activation
functions have emerged that are used in the output layer of a network.

In the hidden layer, the network should be able to represent a non-linear
relation between the input and the output. The first reason is that most use
cases require a non-linear function to model its dependency. For the second
reason, consider a network with only linear activation functions as the one
earlier in this chapter in Figure 3.4. The output value can be calculated using
the input value by multiplying the weights and adding the biases, as was
shown by equation 3.1. This same relationship can be accomplished by a
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network using only two neurons. To show this, the brackets in equation 3.1
are multiplied and the relationship between the weights and the biases of
the two-neuron network and the four-neuron network is established as in
Figure 3.7 shown.

Figure 3.7: A flat 4-neuron FFN and a flat 2-neuron FNN are the same when meeting
the depicted relation

Therefore, additional layers do not bring value to the network if a linear
activation function is used.

After having seen why activation function are needed, the relevant ones
for this thesis will be discussed in the following.

sigmoid activation The sigmoid activation function maps the input
value to an interval between zero and one. One use case for this function was
already mentioned. In the hidden layers, the sigmoid function is only used in
special use cases like the attention mechanism. Since its gradient is close to
zero for large positive and negative values, the vanishing gradient problem
is intensified when the sigmoid function is used in the hidden layers.

sigmoid(x) =
1

1 + exp (−x)
(3.7)

Figure 3.8: Sigmoid activation funciton
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hyperbolic tangent (tanh) The tanh activation function maps the
input values to the interval [−1, 1]. It is used in normalized regression prob-
lems in which all values were normalized to this interval. Since sound waves
are modeled with an amplitude in this interval, it can also be used in the out-
put layer for a generative architecture. When used in the hidden layers, the
vanishing gradient problem is the same as explained for the sigmoid func-
tion.

tanh(x) =
exp (x)− exp (−x)
exp (x) + exp (−x)

(3.8)

Figure 3.9: tanh activation funciton

softmax The softmax activation function is also used for output layers
and represents a probability distribution like the sigmoid function. The sig-
moid function is used for binary classification problems, since it outputs a
value between zero and one. The softmax function outputs a probability dis-
tribution over several classes and is therefore used for multi classification
problems. That means all K output values so f tmax(x)i for an input vector x
add up to one. This is shown in equation 3.9.

so f tmax(x)i =
exp (xi)

∑K
j=1 exp (xj)

(3.9)

rectifier linear unit (relu) The ReLU activation function returns
x if x is greater than 0 and 0 for every x less than 0. Mathematically, the
ReLU function is defined by equation 3.10 plotted in Figure 3.10. Several
experiments have shown that ReLU performs better than a sigmoid or a tanh
activation function when used for the hidden layers. The first high-scale use
in a deep learning architecture was for image classification. [33] The greatest
reason for this is its computational simplicity. Since the gradient for positive
values is one, the ReLU does not intensify the vanishing gradient problem.
For negative values, however, the neuron outputs a zero and is therefore
called “off”. Since the gradient for these “off” neurons is zero, no learning is
happening during the backpropagation step. If a neuron has a large negative
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bias, the output of this neuron for most or all inputs is negative, hence the
weights and biases of this neuron are never changed. This is known as the
dead neuron problem.

ReLU(x) = max(0, x) (3.10)

Figure 3.10: ReLU activation funciton

leaky rectifier linear unit As shown, for x values below zero, the
ReLU function simply returns zero. That means the information about the
magnitude of the negative value is lost. Every neuron that outputs a nega-
tive value is treated the same. Additionally, no learning is happening dur-
ing backpropagation. Therefore, the Leaky ReLU returns the negative value
scaled by a factor of 0.01 as shown in equation 3.11 and Figure 3.11.

LeakyReLU(x) = max(0, x) + min(0.01 ∗ x, 0) (3.11)

Figure 3.11: Leaky ReLU activation funciton

3.1.4.3 Learning Rate and Optimizers

As was seen in equation 3.4, the step size for the parameter adjustments dur-
ing backpropagation is scaled by a learning rate. The learning rate, therefore,
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determines if bigger or smaller steps are taken in the direction of the nega-
tive gradient of the loss function w.r.t. the adjusted parameter. The learning
rate has a major influence on the success of the training. Ian Goodfellow, a
leading researcher in the deep learning field and the founder of the Gener-
ative Adversarial Network (GAN) architecture, describes the learning rate
as the “perhaps most important hyperparameter”. [21] Figure 3.12 shows is
relation to the training error. The training error gets large if the learning rate
is too high or too low. A small learning rate leads to a super slow adjustment
of the parameters, that might cause the network to not learn at all. A large
learning rate changes the parameters in too big steps, not moving in the di-
rection of the loss function’s minimum. The optimal learning rate can only
be reached by monitoring the loss of the network and tuning the learning
rate accordingly.

Figure 3.12: Relationship between the learning rate and the training error for an
arbitrary example [21]

In addition to only the learning rate, the gradient descent algorithm can
further be optimized by extending the learning rule by additional terms. The
overall goal of the learning process is to find the global minimum of the loss
function w.r.t to the networks’ parameters. Following the gradient descent
approach, the algorithm can get stuck in a local minimum or a saddle point,
failing to find an optimal solution. In practice, the loss function is a multidi-
mensional plane with many local minima and saddle points. In 1986, it was
shown that adding a momentum term to the learning rule can increase the
training speed and quality [49] [59]. It is an analogy to physics, where a ball
gains momentum rolling down a hill and is able to surpass small hallows or
flat surfaces on the way to the lowest point. In the update rule, this momen-
tum term is a fraction of the update vector of the previous updating step that
is added to the equation. The update rule 3.4 defined earlier in this chapter
can therefore be extended to the equation 3.12. λ is the momentum param-
eter, determining how strongly the gradient of the preceding updating step
should be considered at the current updating step.

wi+1 = wi− α(
∆Loss(weights, biases, y, X)

∆wi
+ λ

∆Loss(weights, biases, y, X)

∆wi−1
)
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(3.12)

Adding momentum was the first approach taken in trying to optimize
the learning process of ANNs trained by gradient descent. Since then, many
algorithms have emerged tackling this problem. The two most known and
commonly used algorithms today are called RMSprop and Adam.

So far, the learning rate was a single rigid hyperparameter that was set
at the beginning of the training and stayed the same during the training
process. RMSprop Adam use an adaptive learning rate for every parameter.
That means, the learning rate is adjusted over time and every parameter has
its own learning rate. This follows the fundamental idea that parameters that
are already close to the optimum need less adjustment than other parame-
ters. The adjustment of the learning rate over time also shows to have better
convergence towards the optimum. The idea of using different learning rates
for every parameter and every time step was first proposed by John Duchi
and his colleagues with an algorithm called Adagrad. [13] Jeffrey Dean and
his colleagues have then shown that this idea of an adaptive learning rate
works well for deep networks. [10] RMSprop is an extension of the Adagrad
and was first introduced in a lecture from Geoffrey Hinton. [39]

RMSprop uses a moving average of the squared past gradients for each
weight to scale the learning rate at every time step for every parameter.

Adaptive Moment Estimation (Adam) builds further on the idea of RM-
Sprop and not only stores a moving average of squared past gradients but
of the past gradients as well. The moving average of the squared past gradi-
ents is still used to scale the learning rate. The moving average of the past
gradients is used as the step size for the parameter adjustment. Adam was
introduced in 2015 by Diederik P. Kingma and Jimmy Lei Ba. [32]

3.1.4.4 Loss functions

The loss function is usually not considered a Hyperparameter. The loss func-
tion depends on the considered use-case and should therefore be selected
prior to the tuning of the network. Sometimes there is more than one loss
function possible for the desired outcome. Therefore, it is a valid view to
consider the loss function a hyperparameter that has to be tuned and can
be changed during the development of the network. The only important
property of a loss function is that its reduction should lead to the desired be-
havior of the network. Since loss functions are very specific to the regarded
use case, the relevant ones will be discussed in later chapters.

3.1.4.5 Batch size

The batch size basically determines after how many training examples the
network update its weights. It plays a vital role for memory allocation be-
cause it defines for how many samples the computer has to calculate and
save the gradients before executing a gradient descent step.
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The vanilla gradient descent updates the weights after having seen all
training examples. With the “knowledge” how every training example influ-
ences the loss, the algorithm can take a carefully thought step in the direction
of the negative gradient. However, this can be very slow for deep learning
architectures and intractable for data sets that do not fit into random-access
memory (RAM).

The stochastic gradient descent updates the weights after every single
training example. This is much faster than the vanilla approach but might
lead the weights to take steps into random directions due to the variance of
the training set.

Therefore, the algorithm called mini-batch gradient descent tries to com-
bine both advantages and executes the optimization step after seeing a cer-
tain number of samples called a batch. In that way, the variance is lower
without having to process every single training example before taking a step.

However, it was shown that stochastic gradient descent can be faster and
perform better for datasets with low variance than mini-batch gradient de-
scent. Furthermore, the random steps that are sometimes taken by the al-
gorithm can lead to a better solution by forcing the algorithm to explore a
wider range of possible values for the parameters. [34]

3.1.4.6 Normalization

Normalization refers to scaling a variable to a well-defined scale. The two
most common techniques are the min-max normalization and the z-score
standardization. For the min-max normalization, the maximum value is scaled
to a one and the minimum value is scaled to a zero and all other values re-
spectively. With the z-score standardization, the values are scaled with the
z-score to a mean of zero and a standard deviation of one.

For FFN the input is usually scaled with the min-max normalization to
speed up the training process. For data that follows a normal distribution,
z-score standardization is used. As was already seen, the learning process
on ANN involves a multiplication of the input data with different weights
and the calculation of a loss value. Having every input data scaled to the
same or similar values helps the network to faster identify patterns because
it does not have to account for larger and smaller input values and every
input value influences the loss in the same magnitude. [7] [34]

Since normalizing the input values worked, new approaches also tried to
normalize the outputs of the activation function of every layer. That lead to
two major benefits. The training speed further increased and the initializa-
tion of the weights was less important.

The gradients for the parameters of a layer are calculated under the as-
sumption that the parameter of the other layers do not change. In practice,
all parameters are updated simultaneously. Hence, the minimum that the
parameters tried to reach is now in a different spot. Another way to see it is
that the distribution of the output values of every layer is constantly chang-
ing. The authors of the paper that introduced Batch Normalization (Batch-
Norm) referred to this as “internal covariant shift”. [30] BatchNorm tries to
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coordinate the updates of the parameters across layers by normalizing the
outputs of the activation functions with the z-score normalization per mini-
batch, resulting in similar distributions after every parameter update. Since
the mean and the variance depend highly on the samples in a mini-batch,
the z-score scaled value is multiplied by a learnable parameter γ and shifted
by a learnable parameter β. A later paper suggest that the benefit of faster
convergence comes from smoothing the landscape of the loss function. [52]
With this smoothed hyperplane, greater steps can be taken towards the op-
timum. This smoothed hyperplane also reduced the need for proper weight
initialization.

After BatchNorm further normalization techniques were developed like
Weight Normalization [50] or Layer Normalization [5] that try to further
optimize the learning process for specific problems.

3.1.4.7 Regularization

The bias-variance trade-off was already mentioned in 3.1.4.1. Regularization
techniques aim to improve exactly this concept. They limit the capacity of
the model by enforcing some constraint. Thus, the model’s ability to learn
is weakened. This usually reduces the performance on the training data but
might increase the performance on unseen data, improving the ability to
generalize the learned relation between input and output. To achieve this,
several techniques can be used.

Parameter penalty is a technique not exclusive for deep learning algo-
rithms. It adds another term to the loss function. This term penalizes, for
example, large weights, reducing the model’s free parameter choice. α is a
hyperparameter that controls the impact of the penalty term Ω.

Loss(weights, biases, y, X) = Loss(weights, biases, y, X)+ αΩ(weights) (3.13)

Other common regularization techniques include Dropout, Data Augmen-
tation and Early Stopping.

3.2 generative architectures

3.2.1 Autoencoders

3.2.1.1 Original Autoencoder

An autoencoder is an ANN architecture that aim it is to copy its inputs to
its outputs. The number of neurons in the input and in the output layer are
therefore the same. The idea now is to introduce a constraint in the form of a
bottleneck layer, which is a hidden layer with fewer neurons than the input
and output layer. In that way, the network cannot use all information given
by the input data when trying to make a copy. Its aim now is to learn which
information is important and which information can be discarded. The gen-
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eral structure of an autoencoder is depicted in Figure 3.13. It consists of two
ANNs, the encoder and the decoder. These network can be all discussed
types of ANN and are usually a mirrored version of each other. They are
connected by the bottleneck layer.

Figure 3.13: Basic Structure of an Autoencoder with FFNs

The task of the encoder is to compress the input data to the sparse represen-
tation in the bottleneck layer. This sparse representation is called the latent
representation in the latent space. Next, the decoder tries to reconstruct the
original data from the latent representation. The encoder and the decoder
are trained together by comparing the output of the decoder to the original
data and backpropagating the error backwards through the network.

By learning the latent representation of the data, an autoencoder can be
used as a dimensionality reduction technique such as the principal compo-
nent analysis. To be used as generative models, the latent space of the latent
representation has to be modeled. Subsequently, new points in the latent
space can be given to the decoder to generate a new data sample.

Autoencoders in this simple form have been used by different authors
starting in the 90s. [54]

3.2.1.2 Variational Autoencoders

A more recent development is the Variational Autoencoders (VAE) used for
generative tasks. [62] A later paper from the same authors with more in-
depth information can be found with [63].

The problem of the normal autoencoder is that there is no guarantee that
the data in the bottleneck layer is organized in a way that makes adequate
sampling possible. The features of the latent representation could lay ran-
domly in a multidimensional space, and sampling of these features could
lead to arbitrary and unwanted results.

VAEs try to give the latent space suitable properties such that it can be
more easily modeled. It does this by regularizing the encoded distribution
of the latent representation. The general structure of the architecture stays
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the same. Only the bottleneck layer changes. Instead of encoding the input
as mere points, they are encoded as a multivariate normal distribution. Then
points from this distribution are sampled and given to the decoder for de-
compression. The VAE is trained to learn the mean vector and the covariance
matrix of the distribution, which is now the latent space. The regulariza-
tion happens because, in practice, this distribution is kept close to a stan-
dard normal distribution. To enforce this constraint, a regularization term is
added to the loss. Concretely, the Kulback-Leibler divergence between the
computed distribution and the standard normal distribution is used. This
basically leads to a distribution where points that lay close together in the la-
tent space are decompressed to similar results, and all points sampled from
this distribution lead to realistic results. For the in-depth information and
the underlying mathematics, please refer to the cited papers.

3.2.2 Generative Adversarial Networks

3.2.2.1 Original Generative Adversarial Network

Generative adversarial networks (GAN) follow the idea of a two player game.
Both players try to improve to be able to beat the other player. A GAN
therefore consists of two parts, a generator G and a discriminator D. G tries
to generate new samples that fool D and D tries to distinguish fake samples
from real ones.

GANs were formally introduced by Ian Goodfellow and his team in 2014
[22], while Schmidhuber claims the credit for this idea with his earlier work.
[53] However, the name GAN was coined by Ian Goodfellow and is credited
by most of the community by ongoing citations. In this first version, both
the G and the D consist of FFN, but all types of networks can generally be
used.

The general structure of a GAN is shown in Figure 3.14.
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Figure 3.14: Basic idea of a GAN with the output D(x) = 1 for real samples and
D(x) = 0 for fake samples [20]

On the left side, D is presented with a sample from the real training data.
It aims to correctly identify it as real. The activation function of the output
layer of D is the sigmoid function. Therefore, output values close to one
indicate real samples and output values close to zero indicate fake samples.
On the right side, D is presented with a fake sample generated by G. To
generate that sample, G is fed some random input noise, for example, a
vector of samples drawn from a uniform distribution. G processes this vector
and sends its output to D. G tries to fool D by achieving that D outputs a one
for its fake sample. D tries to correctly identify this fake sample as fake by
outputting a zero. This is called a minimax game, where G tries to maximize
the error of D and D tries to minimize it.

D can be trained directly by comparing its output to the expected value.
The error can then be backpropagated. To train G, the output of D is needed.
For every generated sample, it can be examined whether G successfully
fooled D. Concretely, the loss functions in equation 3.14 and 3.15 are used.

LossD = −1
2

Ex∼pdata log(D(x))− 1
2

Ez∼pz log(1− D(G(z))) (3.14)

LossG = −1
2

Ez∼pz log(D(G(z))) (3.15)
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pdata refers to the probability distribution of the training data and pz to
the probability distribution of the noise variable z. G, therefore, implicitly
defines a new probability distribution pg that is obtained by the samples
G(z) with z ∼ pz. The aim of G can hence be formulated as minimizing
the divergence of pdata and pg. In this specific case, it can be shown that for
an optimal D this minimax game resembles the minimization of the Jensen-
Shannon (JS) divergence. For the mathematical proof, please refer to the
linked papers of Ian Goodfellow.

Goodfellow suggests an iterative training of both models where D is trained
k times for every training iteration of G. His reason is that a G that is too
fast too good, can collapse too many input values to the same output values
that worked well when minimizing the loss.

3.2.2.2 Wasserstein Generative Adversarial Network

As was mentioned in the previous subsection, the original GAN tries to
minimize the JS divergence under the condition of an optimal D. If two
distributions differ too much, the gradient of the JS divergence will diminish
because the values approach some upper boundary. With no gradient, the
generator is unable to learn and to minimize the divergence. This means if
pdata and the initial pg are too different, and it is too easy for D to distinguish
between fake and real, no improvement is happening. For this reason, D and
G have to be kept close to some equilibrium and applying this algorithm
to complex data with a complex probability distribution is hard or even
impossible. This was shown by Martin Arjovsky and his colleagues. [2]

To tackle this problem, he and his colleagues have suggested in a later
paper from the same year the usage of a different divergence measurement
called the Wasserstein or Earth-Mover distance. [3] The resulting GAN is
called a Wasserstein Generative Adversarial Network (WGAN). The advan-
tage is that the Wasserstein distance has a smoother gradient everywhere,
leading to a more stable training. The generator learns, regardless of how
well it or the discriminator performs. Arjovsky illustrates this with Figure
3.15. Even though pdata (here: “Density of real”) and pg (here: “Density of
fake”) have no overlap, this new approach results in a gradient on all parts
of the space. The discriminator in a WGAN is sometimes called a critic be-
cause it does not output a probability through a sigmoid function, rather a
critic score through a linear activation function.



3.2 generative architectures 37

Figure 3.15: Optimal discriminator and critic when learning to differentiate two
Gaussians [3]

The critic score is a feedback score for the generator that reflects how fake
or real the critic thought the sample was.

The only problem with the wasserstein distance is that it is intractable.
To make an approximation possible, a certain constraint has to be enforced.
Concretely, the discriminator has to be a 1-Lipschtiz function. Arjovsky and
his colleagues showed that it is possible to meet this constraint by using a
linear activation function in the output layer and by clipping all weights such
that they lay inside a certain interval (−c, c) where c is a hyperparameter.

3.2.2.3 Wasserstein Generative Adversarial Network with Gradient Penalty

As already pointed out in their first paper, weight clipping is a “[. . . ]clearly
terrible way to enforce a Lipschitz constraint. If the clipping parameter is
large, it can take a long time for any weights to reach their limit, thereby
making it harder to train the critic till optimality. If the clipping is small, this
can easily lead to vanishing gradients when the number of layers is big, or
batch normalization is not used.“ [3] The hyperparameter c therefore has to
be tuned carefully and acts as a regularization method reducing the capacity
of the model.

A different approach to enforce the Lipschitz constraint is the gradient
penalty, resulting in a network called Wasserstein Generative Adversarial
Network with gradient penalty (WGAN-GP). It was developed also by Mar-
tin Arjovsky with a different team in 2017 only several months after the
WGAN paper. [23]

The idea is to penalize the norm of the gradient of the critic w.r.t to its
input. A function is 1-Lipschtiz if it has gradients with norm at most one
everywhere. To achieve this, they add a penalty term to the critic’s loss func-
tion that penalizes gradients that deviate from one. This penalty term is
shown in equation 3.16. x̃ is a sample drawn from the distribution Px̃. Px̃ is
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a data distribution defined by sampling uniformly along straight lines be-
tween pairs of points sampled from the data distribution Pdata and Pg. λ is a
hyperparameter.

gp = −λ ∗Ex̃∼Px [(||∆x̃D(x̃)||2 − 1)2] (3.16)
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C U R R E N T A R C H I T E C T U R E S F O R A D U I O G E N E R AT I O N

In the last couple of years, thanks to the ongoing developments of respec-
tive algorithms, several authors addressed the topic of music generation
with deep learning architectures. Different approaches with different archi-
tectures have been taken. This chapter aims to give an overview about the
work that has already been done by other authors and to point out their
advantages and disadvantages that help to develop the concept in chapter 6.

4.1 wavenet

The first paper that approach the task of modelling raw audio was the
WaveNet paper from Aaron van der Oord and his colleagues in 2016. [42]1

Inspired by other generative networks for images and text, their goal was to
generate raw audio waveform for human speech and musical fragments that
are only a few seconds long.

Their generative process is a product of conditional probabilities of a wave-
form x = x1, ..., xT as follows:

p(x) =
T

∏
t=1

p(xt|x1, ..., xt−1) (4.1)

Each sample xt is therefore conditioned on all previous samples. This is
called an autoregressive model. To model this, they use a CNN without any
up or down sampling layers. So, the input and the output size of the net-
work is the same. To make one sample depend on only previous ones, they
use several so called dilated casual convolutions. As was explained in 3.1.2,
normal convolutions take values to the left and to the right into considera-
tion when calculating the feature map value. Casual convolutions have filters
where only values to the left side are considered. For 2-d convolutions, this
concept is called a masked convolution. To now distend the receptive field of
one sample, they use stacked dilated casual convolution. as shown in Figure
4.1.

1 Samples: https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
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Figure 4.1: Idea of dilated casual convolution [42]

This dilated convolution skips samples along the sequence when calculat-
ing the feature map value. Hence, they do not use all previous sample to
predict the next one, but rather define the receptive field based on the num-
ber of stacked convolutions and the dilation factor. The reason for this is the
computational efficiency.

The raw audio that they use is encoded with 16 bit, resulting in 65, 536
possible values for the amplitude for each time step. The output layer of
the network uses the softmax function, predicting which amplitude value is
the most probable. To make this more computational efficient, they further
reduce the number of possible values by quantizing it to 256 values. The
network is optimized by maximizing the log-likelihood of the data w.r.t. the
parameters.

It is also possible to condition the network to some discrete feature h by
extending the model as shown in equation 4.2.

p(x|h) =
T

∏
t=1

p(xt|x1, ..., xt−1, h) (4.2)

The author states that training a CNN with casual convolutions is much
faster than training a RNN because all output values can be predicted in
parallel during training because the input data x is known for all time steps t.
A RNN has to predict each sample subsequently, resulting in longer training
time. Creating new content is rather slow for the CNN approach as well
because to generate a new sequence, every generated sample has to be fed
back into the model to produce the next sample in the sequence. Their model
lacked long-term dependency, resulting in a change of style, volume, and
quality every second.

4.2 midinet

As the name suggests, MidiNet is an architecture that uses the MIDI format
to generate new sound. The architecture uses the GAN algorithm and was
developed by Li-Chia Yang and his colleagues in 2017. [65]2 They use a
2-D MIDI representation of pop music songs. The MIDI files are divided

2 Samples: https://soundcloud. com/vgtsv6jf5fwq/sets

https://soundcloud. com/vgtsv6jf5fwq/sets
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into intervals with a fixed time length called bars. Each time step can have
one or more notes assigned to it. In that way, the model does not generate
melodies as a continuous sequence but rather one bar after another, in a
successive manner. The generator uses random noise to generate a MIDI
file, and the discriminator has to predict whether a MIDI file is real or fake.
Hence, they use the GAN architecture as explained in Section 3.2.2.1 with a
sigmoid activation function in the discriminator. To achieve a larger receptive
field, they train another CNN called the conditioner CNN to incorporate
information from previous bars into the generator CNN. To account for the
problem of mode collapse, they add a regularization term to the loss function
but do not give mathematical explanation to why they take this approach.
They can also condition their network by using the chords given by the
MIDI files. Chords are basically a set of notes that are used for a certain
section of a song. In the generation process, the network can be told which
notes from which chord should be used for the bars. Besides note and chord
information, the remaining data that MIDI files contain was not used.

4.3 samplernn

The author Soroush Mehri and his colleagues combined a FNN and several
RNN to generate raw audio data. They called the resulting architecture de-
veloped in 2017 SampleRNN. [36]3 They state that other approaches that use
high-level representation of audio (such as spectrograms or MIDI) often re-
sult in degraded quality and the necessity of corrective measurements that
require extensive domain knowledge. To model long-range dependencies,
they use a hierarchy of three RNNs that each processes audio on differ-
ent clock-rates. The lowest model operates at each individual sample, and
the higher models on an increasing longer timescale and a lower resolution.
Each model conditions the model below it, and the lowest model outputs
the samples. This general structure is shown by Figure 4.2. Each sample of
the higher models is upsampled.

Figure 4.2: General idea of the SapleRNN with a hierarchy of three RNNs and an
upsampling factor of four [36]

3 Samples: https://soundcloud.com/samplernn/sets

https://soundcloud.com/samplernn/sets


4.4 melnet 42

In the lowest level, a FFN with a softmax activation function is used to pre-
dict the sample value. They quantized the possible output values of a 16 bit
encoding to 256 as in the WaveNet architecture. To predict a sample, past
samples are needed and therefore in the generating processe, the model has
to be run repeatedly to feed each sample back into the model to predict the
next one. For their RNNs they use LSTM and Gated Recurrent Unit (GRU)
units but find that GRU units work slightly better. GRU is another variant of
the memory cells used in LSTM.

4.4 melnet

MelNet is an architecture based on the autoregression idea. It uses audio in
the spectrogram representation to generate new content. It was developed by
Sean Vasquez and Mike Lewis in 2019. [61]4 They state that “[. . . ] long-range
dependencies are difficult to model directly in the time domain [and they]
show that they can be more tractably modelled in two-dimensional time-
frequency representation such as spectrograms”. WaveNet and SampleRNN
only take into consideration a fraction of a second when generating new
samples, and therefore lack high-level structure. The temporal axis of a spec-
trogram is much more compact, allowing for longer dependencies. But the
authors also recognize that through loss of information, local characteristics
of the audio cannot be modelled with high-fidelity. To limit the information
loss when converting raw audio into a spectrogram and during the inverse
operation, they try to create the spectrograms with as much detail as pos-
sible. They achieve this by decreasing the hop length and increasing the
number of frequency bins.

As other autoregressive models for image data generate an image by pre-
dicting the image pixel for pixel, their network generates a new spectrogram
by iterating over the time and the frequency axis of the spectrogram. To
model this, they use a complex RNN architecture with LSTM cells. They
state that an RNN architecture has shown to be superior in the past to
CNN architecture for modelling spectrograms. They use a stacked architec-
ture with a time-delayed stack extracting time-depending information and
a frequency-delayed stack extracting frequency-depending information. The
output of layer l of the time-delayed network is fed as an input into layer l
of the frequency-delayed stack.

The time-delayed stack uses three one-dimensional RNNs. One runs along
the time axis, one runs along the frequency axis, and one runs backwards
along the frequency axis. The output at each layer is the concatenation of
the three RNN hidden states. The frequency-delayed stack uses only one
one-dimensional RNN that runs along the frequency axis. They used piano
music and generated samples of 10 seconds.

4 Samples: https://audio-samples.github.io

https://audio-samples.github.io
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4.5 wavegan

A first approach of applying a GAN architecture to raw audio was taken by
Chris Donahue and his colleagues with the development of the WaveGAN
in 2019. [12]5 Their network is capable of generating coherent sounds of one
second, suitable for sound effect generation. The biggest advantage over the
already existing WaveNet that they mentioned was the speed advantage in
the generating process. GANs can generate all samples simultaneously when
generating a new sound. Besides WaveGAN, they also developed a network
called SpecGAN that generates sound with the image representation of the
sound in form of spectrograms. The authors emphasize that “[. . . ] spectro-
grams are non-invertible and cannot be listened to without lossy estimation
or learned inversion models”. For the SpecGAN they therefore design a spec-
trogram that allows for approximate inversion. For both networks, they use
the Deep Convolutional Generative Adversarial Network (DCGAN) architec-
ture by Alec Radford and his colleagues from 2016. [47] Since the DCGAN
architecture was aimed at image processing tasks and uses 2-D convolutions,
they flatten it to operate on one dimension for the WaveGAN.

The DCGAN architecture tries to define setting that allow stable training
for deeper GANs with convolutional layers. The first adjustment that they
made was the use of the all convolutional net. [58] They do not use pooling
layers for the upsampling and downsampling tasks, but rather convolutions
with an increased step size such that the network can learn the best param-
eters for these tasks itself. Next, they avoid stacking fully connected layers
(layers from a FFN) on top of or before the CNN. They reshape the input
layer of the generator to the shape needed for the first convolutional layer
and flatten the last convolutional layer of the discriminator and feed it di-
rectly into an activation function. This proofed to stabilize the training and
yielded better results for deeper networks. For the third setting, they used of
BatchNorm to allow gradients to flow into deeper layers and to avoid prob-
lems of poor parameter initialization. They used BatchNorm for all layers
besides the input layer of the discriminator and the generator output layer.
In experiments, this also proofed to be the best setting. In the generator, they
used the ReLU activation function for all hidden layers. For the discrimina-
tor, the Leaky ReLU activation function worked well.

The WaveGAN and SpecGAN architecture use both the WGAN-GP strat-
egy for the learning process. Samples produced by the WaveGAN were bet-
ter than samples from the SpecGAN based on subjective measurement of
human listeners. For this reason, the architecture of WaveGAN will be ex-
plained in the following.

The generator of the WaveGAN is shown in Figure 4.3. The first column
describes the type of layer that is used with the stride length for the trans-
pose convolutions. In the second column the first number is the kernel size
as it was explained in this thesis. The second number indicates the number
of input feature maps, and the third number the number of output feature

5 Samples: https://chrisdonahue.com/waveganexamples/

https://chrisdonahue.com/wavegan_examples/
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maps. d is a hyperparameter that adjusts the number of filters used in the
network. c is set to one for this network and corresponds to a concept ex-
plained in chapter 7 in this thesis. The last column is the output shape of
each layer, where n is the batch size, the middle number is the output length
and the last number is the number of feature maps.

Figure 4.3: Structure of the generator of the WaveGAN [12]

They start with a vector of length 100 with samples drawn from a uni-
form distribution between −1 and 1. This vector is then reshaped and fed
into a transposed convolutional layer. They use a filter size of 25 to have a
large enough receptive field to model longer-range dependencies. They then
upsample by a factor of four until they have a vector with 16, 384 samples.
Since they use a sample rate of 16 kHz, this results in an audio file of slightly
longer than a second. The discriminator is a mirrored copy of the generator,
where they use convolutions with a step size of four to downsample the au-
dio file to a single number. The kernel size of the convolutions is as well 25.
They do not use BatchNorm in the generator nor in the discriminator. They
do not give a reason why.

4.6 musicvae

MusicVAE is a recurrent VAE with a hierarchical decoder. It was developed
by Adam Roberts and his colleagues for the Google Magenta project. [48]6

They use Midi files to model sequences of musical notes. Their reason to
use a VAE is that it results directly in a latent space with which targeted
changes to the output can be made. The hierarchical decoder RNN helps the
model to learn long-term structure in the music. The RNNs that are used in
the VAE produces the output sequence autoregressively. The overall archi-
tecture is shown in Figure 4.4. For the encoder, they use a two-layer LSTM
network. The last hidden state of the second layer LSTM is then fed into
two fully connected layers to produce the latent distribution parameters of
the bottleneck layer z. For the decoder, the latent vector is passed through a

6 Samples: https://goo.gl/magenta/musicvae-examples

https://goo.gl/magenta/musicvae-examples
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fully connected layer and then fed as an input to a two-layer LSTM network
called the conductor. The original input sequence is segmented into U sub-
sequences. The conductor network is built in such a way that it outputs U
numbers of outputs called the embedding vector c. Each value of c is then
individually passed through a shared fully connected layer to produce the
initial hidden states for the decoder RNN. The decoder RNN also consists
of a two-layer LSTM network and produces a distribution over Midi events
with a softmax activation function. They produced 38 seconds long drum
and piano pieces.

Figure 4.4: Structure of the MusicVAE [48]

4.7 jukebox

Jukebox is arguably by far the best music generating architecture currently
developed. It is a product by the OpenAI team and was published in 2020.
[11]7 It can generate coherent songs up to multiple minutes with sung lyrics
in different genres. It uses the raw audio format with a 44, 100 Hz sample
rate and a 32 bit encoding. To make this complex task feasible, they com-
press the audio data with an autoencoder to a lower space. Concretely, they
use a Vector Quantized Variational Autoencoder (VQ-VAE). The difference
to the normal VAE is the discretized bottleneck layer. They use a codebook
with discrete values and map every output value of the bottleneck layer to its
nearest value in the codebook. They use three different VQ-VAE. Every VQ-
VAE uses non-casual, dilated 1-D convolutions with different hop-length (di-
lation factor) for the dilation. To compress the data, they use downsampling
convolutions in the encoder and upsampling convolutions in the decoder.
They conditioned on artist and genre. To generate new audio, they use an
autoregressive transformer network. It is a progression of the RNN architec-
ture with the possibility to allow for longer dependencies, which was outside

7 Samples: https://jukebox.openai.com/

https://jukebox.openai.com/
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the scope of this thesis. This transformer network uses the three latent rep-
resentations generated by the three VQ-VAE to upsample this compressed
representation back to the original space.



5
A N A LY S I S A N D R E Q U I R E M E N T S

5.1 analysis of audio representation

The first question to ask when building a generative system for music is
which representation of audio to use. In section 2.4 different types were
explained. In chapter 4 different approaches used spectrograms, Midi files
or raw audio representation to tackle this generative task and all approaches
were able to produce audio in some form. All representations come with
advantages and disadvantages that will be described and discussed in the
following.

midi Midi files are a high-level representation of the audio. They do not
contain the audio itself and therefore are smaller in memory size compared
to MP3 or WAV format. This allows the algorithm to process the Midi files
faster, resulting in reduced training time or more data different files can be
used. The reduced complexity also makes the task of learning the structure
of the data easier. This reduces the requirements of the used architecture
and increases the probability of the desired result. With Midi files, it is also
possible to condition the model on certain chords, velocity or other aspects
of the music. Since Midi files are used by musicians and encode their way
of thinking in the process of making music, knowledge in music theory is
needed to fully understand the information in Midi files and how it plays
together to define the music. However, Midi files cannot capture all the di-
versity of music. In the process of expressing the actual music with a Midi
file, information is lost. They are also limited to predefined events with cer-
tain frequencies of certain instruments that they can concatenate. Therefore,
it is impossible for an algorithm to produce new sounds. Midi files have to
be generated when producing a song. It is not possible to convert an exist-
ing MP3 file into a Midi representation. Hence, the data that can be used for
generative tasks is limited to already existing data sets.

spectrograms Like Midi files, spectrograms compress the actual mu-
sic to some high-level representation, resulting in information loss. Spectro-
grams are also invertible. This means after the algorithm has generated a
new file in the form of a spectrogram, the conversion into an audible repre-
sentation is again a lossy operation. This limits the achievable quality of the
audio. Since spectrograms compress the time into certain bins, it is easier
to model long-term dependencies with a spectrogram than with raw audio.
An advantage over Midi files is that spectrograms can be generated out of
arbitrary MP3 or WAV audio files. Therefore, an individual data set can be
generated that fits the needs of the developer. Moreover, more research has
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been dedicated to the generation of images so far. Already well-working
architectures can hence be used for the task of audio generation with spec-
trograms as well.

raw audio Raw audio data represent the waveform of the audio directly.
The discretized wave can be saved in a vector. Most architectures that mod-
elled raw audio data have so far used a 16 kHz sampling rate. That means
16, 000 values are saved for each second of audio. For a song of one minute,
the model has to predict 960, 000 values. This makes the task of modeling
raw audio data challenging and computationally expensive. To model long-
range dependency in the raw audio format, very deep architectures with
wide receptive fields are needed. These deep architectures are hard to train
and often have to perform many calculations that are computationally ex-
pensive and therefore need a long time to execute. Humans can perceive
frequencies up to 20 kHz. As was explained in section 2.2, a sample rate be-
low 40 kHz results in some information loss during the digitization because
frequencies above half of the sampling rate are not represented in the digi-
tized audio signal. For most music, a sample rate of 16 kHz is sufficient to
capture all relevant frequencies. Modelling in the raw audio representation,
allows for higher fidelity. The sounds are processed by the model as they
are, and the model is not limited to some already pre-defined entities. The
discretized waveform can also be extracted from every raw audio file format,
such as MP3 or WAV. The developer can create their own dataset to train the
model.

5.2 analysis of architectures

When building a generative deep learning model, two different questions
have to be answered. Which type of network should deal with the data pro-
cessing, and how should the overall architecture of the model be designed to
foster the generative process. For audio data, the processing, and prediction
can be done by RNNs as well as CNNs. The two most common architectures
for deep generative modelling are autoencoders and generative adversarial
networks, but also stacked RNN architectures are possible.

There is no clear scientific belief which type of network is better suited
for processing sequential data. Aaron van den Oord, says that RNNs are
harder to train and parallelize than CNNs. He showed this by comparing
his PixelCNN network with a PixelRNN network for the same task. [43] But
as was shown in chapter 4 other authors preferred RNNs. However, because
of their autoregressive property, RNNs take longer than CNNs to generate
new content. For an autoencoder and a GAN architecture, the network has
to predict new data, which increases the training time with RNNs.

There is also no clear scientific belief whether autoencoders or GANs are
the better deep generative architecture. It is still a matter of active research.
However, more authors seem to prefer GANs over autoencoder. An advan-
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tage of GANs is that the generator never sees the training data. The generator
is trained solely with gradients flowing backwards from the discriminator.
In that way, components from the training data are not copied directly. Con-
tent from VAEs often resemble the input data. A disadvantage of GANs is
that there is no explicit latent representation of data that it generates. The
generator is fed a random vector that it maps to the representation of the
generated content. VAEs learn a latent space based on real data, therefore
the interpolation in this latent space works better.

5.3 requirements and design choices

When selecting the audio representation, there is a trade-off between the
higher complexity and the audio quality and diversity that the model can
ideally produce. For this thesis, the author has decided to tackle the task of
raw audio generation. To fully take advantage of the information encoded in
a Midi file, musical knowledge is needed that the author does not thoroughly
possess. By presenting the model raw audio data from solely one genre,
the model can learn the important aspects of the music by itself. Another
reason is that in the future, with increasing computational power, models for
raw audio generation will likely surpass all other music generation models
because the model is not limited in any way. Raw audio also increases the
importance of a deep model with the right settings, which is the essential
data science related objective of this thesis.

After the decision which audio representation to use, the next decision
has to be how the generative deep learning model should be designed. Due
to the shorter training time of CNN compared to RNN, the author will use
a CNN-based architecture for this thesis. Another important aim of this the-
sis is to create a model where the user can influence the generation process.
Autoencoder as well as GAN-based architecture allow for interpolation of
the latent space and have the possibility to condition on additional features.
The author decided to implement a GAN-based architecture. So far, not too
much research has been done on applying GAN architectures to raw au-
dio data. The WaveGAN architecture is able to only produce audio of one
second. The aim of the thesis is to improve upon this architecture to allow
for longer sequences. To keep it computationally feasible, the aim is to gen-
erate musical pieces of around ten seconds. The genre of electronic music
without vocals will be used. The model should be able to model long-term
dependencies. Therefore, the underlying beat of the musical piece must not
alternate too much over the period of ten seconds. The requirements for the
deep generative model of this thesis can be summarized by Table 5.1.
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Table 5.1: Requirements of the deep generative model that will be developed in this
thesis

Requirement 1 The model has to produce a song of
at least 10 seconds

Requirement 2 The model has to model long-term
dependencies. The underlying beat
must not alternate too much, result-
ing in a coherent song

Requirement 3 The user should be able to influ-
ence the produced song in some
way

Requirement 4 The song has to be free of noise,
and it should be pleasant to listen
to it
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C O N C E P T

6.1 growing gan general idea

The WaveGAN is based on the DCGAN architecture that stabilizes the train-
ing for deeper GAN networks. However, The WaveGAN can only output
16384 samples. At a sampling rate of 16 kHz at least 160, 000 samples are
needed to produce a song of ten seconds or longer. Increasing the size of this
architecture by simply adding new layers results in an unsatisfying outcome,
as was tested by the author https://github.com/dennis31197/Master_Thesis
/tree/master/WGAN-GP. Inspired by the paper “Progressive Growing of
GANSs For Improved Quality, Stability, and Variation” [31] of Tero Karras
and his colleagues from the year 2018, the aim of this thesis is to achieve the
bigger network size by progressively growing the discriminator and the gen-
erator of the GAN. The paper showed that it is possible to apply this strategy
for image generation to generate coherent images of 1024×1024 pixels with
good quality. They started with downscaled images of 4×4 pixels and trained
the networks for this resolution. Then in each iteration they doubled the res-
olution by adding new layers to the networks while keeping the parameters
of the already trained layers. The idea is that it is easier to learn the map-
ping from a random initial latent vector to a complex high-resolution image
in steps rather than directly. First, the GAN learns global structure of the
images through the lower resolution and in later iterations more and more
details. It is yet to be shown that the same principle can be used for 1-D
audio data as well. With their chosen end resolution, their network can gen-
erate 1, 048, 576 samples, which corresponds to 65.5 seconds of audio with a
sample rate of 16 kHz. The architecture that they used for the fully grown
network is shown in Figure 6.1. In the first column of both the generator and
the discriminator, the type of layer and the kernel size for the convolutional
layers is indicated. In the second column, the activation function is named.
The first number of the output shape is the number of feature maps (also
called channels) and the last two numbers indicate the current resolution
of the image. In the last column, the number of parameters that each layer
uses is shown. The generator is fed with a latent vector with points sam-
pled from a standard normal distribution. This latent vector is upsampled
by transposed convolutions to the first 4×4 image. For every growing itera-
tion, one convolutional block consisting of one upsampling layer (through
replication) and two convolutional layers with a 3×3 kernel is added. The
generator outputs a 3×1024×1024 image, where the three channels are the
three different colors of an RGB image. Likewise, the discriminator takes
a 3×1024×1024 image as an input and downscales the image with average
pooling until it outputs a single number. The wasserstein loss is used, there-

https://github.com/dennis31197/Master_Thesis/tree/master/WGAN-GP
https://github.com/dennis31197/Master_Thesis/tree/master/WGAN-GP
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fore, the last layer of the discriminator uses a linear activation function. The
discriminator and the generator are simultaneously scaled such that the out-
put size of the generator matches the input size of the discriminator for every
iteration.

Figure 6.1: GAN Architecutre to generate 1024×1024 images [31]

Another strategy that they implemented is that they do not introduce the
higher resolution suddenly, but rather fading in the new convolutional blocks
smoothly. Figure 6.2 shows this strategy.

Figure 6.2: Strategy of fading in new convolutional blocks in the growing GAN
architecture [31]

The fields “toRGB” and “fromRGB” stand for the operation of transforming
data to an RGB image or the inverse. In (a) the generator outputs an 16×16
image that is sent to the discriminator. (b) represents the fade in phase where
a new higher resolution is introduced. The 16×16 image is upsampled by a
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factor of two and sent through two different routes. In one path, the upsam-
pled version is directly turned into an RGB image and in the other path it is
first passed through another convolutional block represented by the 32×32
field. The circle with the plus represents a weighted sum layer where the
two inputs are scaled with α and 1− α respectively and then added up. α is
slowly increased from zero to one, increasing the weight of the new convo-
lutional block until the state (c) is reached. The reason for the smooth fade
in is that the network should not unlearn the already learned mapping by
changing the parameters too much when presented with an entirely new rep-
resentation of the data. By smoothing in the higher resolution, the network
has time to slowly adapt.

6.2 growing gan for audio data

To use the growing GAN algorithm, as it was implemented by Karras, for au-
dio data, some adjustments have to be made. Details of the implementation
and the specific architecture choices will be discussed in the next chapter. In
this section, it will be shown how the growing GAN algorithm can help to
meet the in the previous chapter defined requirements for this thesis.

requirement 1 The length of the song depends on two factors. The first
factor is the number of samples generated by the generator network in its
output layer. The second factor is the sample rate that is used. The higher
the sample rate, the more samples are needed to produce one second of au-
dio, increasing the quality of the audio. Requirement 1 can therefore be met
by having a generator network with the required output size defined by the
sample rate. In the simplest form, the generator could map the input latent
vector directly to the output size for a low sample rate. The growing GAN
algorithm is hence not necessarily needed to meet requirement 1. However,
training a GAN architecture with a high enough sample rate and the re-
quired output size right away results in insufficient quality. The output size
and the sample rate have to be selected deliberately.

requirement 2 To model long-term structure, every generated sample
has to be conditioned on enough surrounding samples. In the WaveGAN pa-
per, the authors explain that for the musical note A4 with a frequency of 440
Hz and a sample rate of 16 kHz, 36 samples are needed to complete a whole
cycle of the soundwave. [12] To model the lowest frequency that humans can
hear (20 Hz) at the same sampling rate, 16000Hz

20Hz = 800 samples are needed. To
model coherent change in the frequency over time, an even wider receptive
field is needed. When using convolutional layers, the receptive field of every
output sample is determined by the kernel size of the convolutional filters
and the number of stacked layers. This concept was well shown by Oord in
the WaveNet paper explained in section with Figure 4.1. The WaveNet is an
autoregressive model, so every sample is conditioned only on previous ones
with casual convolutions. The GAN architecture can predict all samples at
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once, and can therefore also use future samples for the prediction. This con-
cept is depicted in Figure 6.3 with a simplified case of a kernel size of five.
Each sample of the upper layer takes nine samples into consideration if two
convolutional layers are stacked.

Figure 6.3: Receptive field for normal convolutions with a kernel size of five

For a deeper network like the WaveGAN or the network shown in Figure
6.1, the generator starts with a shorter latent vector that is upsampled sev-
eral times. For a deep enough network and a large filter size, every value
of the latent vector influences every output sample if the vanishing gradient
problem is handled well. Therefore, these type of networks have the ability
to model long-term structure. As was already mentioned in the last section,
learning this mapping directly is a complex task. The growing GAN algo-
rithm decomposes this complex task into smaller, more feasible ones.

It starts with learning a lower representation of the data. For audio data,
that corresponds to a lower sampling rate. If, for example, a sampling rate
of 100 Hz is used, the network has to predict only 100 samples for one
second of audio. This way, it is easier to learn the global structure of the
song. According to the Shannon Nyquist sampling theorem, all frequencies
above half the sampling rate are lost. This lower representation therefore
contains only the low frequencies of the signal that are first learned by the
model. The Shannon Nyquist sampling theorem additionally says that the
higher frequencies are mapped to lower alias frequencies that are contained
as well in the signal as artifacts. In music processing, anti-aliasing filters can
be used to reduce this effect. In this thesis, a standard python library for
music processing will be used that does not contain such filters.

For every growing iteration of the network, the sampling rate is increased
simultaneously with the network size, such that the length of the song stays
the same for every iteration. The model is thus introduced to higher fre-
quencies every iteration. As Karras pointed out, following this strategy, in
each iteration the model is asked a much simpler question compared to dis-
covering a mapping from a latent vector to some complex data right away.
The model can concentrate on lower frequencies and global structure at the
beginning, and then on the high-fidelity features in later iterations.
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requirement 3 To manipulate a song, a lower representation of the
song is needed, or the model has to be conditioned on some predefined
features. The GAN architecture takes a latent vector as input that it maps to
a song. Even if this latent vector is just sampled from a probability distribu-
tion, the network learns to map these number to the complex data structure.
When giving the network the same input vector twice, the output is both
times the same. The input vector therefore determines the song and can be
manipulated. When the network is trained well, latent vectors that are close
in the hyperspace should result in similar songs. Another way to manip-
ulate the song is by giving the network an additional feature as an input.
The generator is then presented by a random latent vector plus, for example,
the beats per minute of the song or the genre. When the network is trained,
these features can be used to steer the outcome of the generator. Both ways
are possible for the growing GAN architecture.

requirement 4 The main aspect of good sound quality is the sampling
rate used to process the audio signal. If it is too low, higher frequencies
cannot be captured. The growing GAN architecture helps to further improve
sound quality for longer sequences, with the same principle explained for
requirement 2. The network does not have to learn too many relations at
once, which improves the quality of the outcome. Additionally, the smooth
fade in facilitates to stabilize the growing iteration. If the outcome is still
noisy, an anti-aliasing filter can further be used to avoid artifacts when using
a low sampling rate and therefore to improve the sound quality.

6.3 data collection

The model should be able to model arbitrary music. Hence, different songs
from the electronic music genre without vocals were collected from the inter-
net. The songs had to be in the MP3 or WAV format and should be legally
free to use to avoid any legal complications. The website where the music
was collected from is “Free Music Archive”. 1 The author listened to songs
from the subgenres “Techno”, “Minimal Electronic” and “Drum & Bass” to
make sure they do not contain vocals and are of decent quality. That way,
252 songs in the MP3 format were collected. The data preprocessing will be
explained in the following chapter.

1 https://freemusicarchive.org/

https://freemusicarchive.org/
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7.1 preliminary considerations

Before preprocessing the data and designing the specific model, some over-
all design choices have to be made. Both the generator and the discriminator
will be progressively grown. Therefore, the number of growing iterations
along with the initial and the final sampling rate have to be defined. The
sampling will be done by the python library Librosa. [35] It helps program-
mers to extract information out of audio data. In this thesis, it is used to
extract the waveform data from the MP3 files and to visualize it. When load-
ing the waveform data with Librosa, the sampling rate can be specified. The
final sampling rate should be high enough to provide a sufficient audio
quality. CD quality uses a sampling rate of 44100 Hz, as it is also used in the
Jukebox model. To lower the computational cost and especially the memory
consumption of the model, the final sampling rate will be half that size for
this thesis. The author listened to the songs downsampled to 22050 Hz and
the audio quality was for this use case only negligibly compromised. The
growing strategy is based on the original paper of Karras, where the reso-
lution is doubled for every iteration with eight iterations. The starting sam-
pling rate is therefore 22050

28 = 86.1328125, which is also the lowest possible
sampling rate for Librosa. The original growing GAN architecture of Karras
was able to produce 1, 048, 576 samples in the fully grown size, which would
be 1,048,576

22050 = 47.55 seconds of audio. To again lower the computational cost
and the memory consumption of the network, the final output size will be a
quarter of this, resulting in 262, 144 samples and 11.89 seconds of audio, still
satisfying the requirements. The output size of the generator and the input
size of the discriminator also grows by a factor of two each iteration, start-
ing by 262,144

28 = 1024 samples in the first level, such that the song duration
always stays the same. This is because for a lower sampling rate, fewer sam-
ples are needed for the same duration. Thus, increasing both by the same
factor keeps the duration the same.

7.2 data preprocessing

The discriminator of the GAN has to be provided with real training data.
Therefore, the MP3 files have to be converted into vectors of float numbers,
representing the amplitude values of the wave. The load method of the Li-
brosa library is used.

librosa.load(path, sr=22050, mono=True,

offset=0.0, duration=None,

dtype=<class ’numpy.float32’>,
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res_type=’kaiser_best’)

It takes seven arguments. The path argument is the path to the input file.
sr stands for the sampling rate. mono indicates whether the signal should
be converted to type mono. Stereo signals save two or more waveforms in
parallel. This way, 3-D audio effects can be produced. Mono signals only
store one waveform. The duration is the time in seconds that is loaded, and
offset defines after how many seconds it starts to load the signal. With dtype
the python data type can be defined to store the data. res_type is the resample
type that defines how a signal is interpolated when the sampling rate used
to load the signal differs from the sampling rate that the signal is currently
stored with.

For the growing GAN strategy, the data has to be loaded and stored with
nine different sampling rates, as defined in the previous section. The mono
argument is kept true, so the network only has to deal with one waveform.
The network cannot process varying input lengths. Therefore, every MP3 file
has to be divided into sections of equal length for every iteration. The first
level discriminator takes 1024 samples as an input. The MP3 files are loaded
entirely (this corresponds to keeping the duration argument at None) and
then sliced into vectors with 1024 values each. The offset argument is set to
five to avoid modelling the initial build up of a song. The python data type
is kept at default, as is the res_type argument. The default encoding is 16bit
and cannot be directly changed with Librosa load method. With the same
procedure, the training data for all nine levels is generated. Every vector is
saved as an NumPy array in a dedicated folder for every level.

7.3 structure of the model

In Appendix in Table A.1 and Table A.2 the structure of the generator and
the discriminator respectively for the final level is shown. The following
subsections explain the concepts and components of the networks.

7.3.1 Input and Output Blocks

The input of the generator is a random latent vector sampled from a prob-
ability distribution. The WaveGAN architecture uses a uniform distribution
between negative one and one. The same sampling for the latent vector will
be used in this thesis, since this distribution already simulates a waveform.
There is no general rule to select the right length of the latent vector. The
more values the generator gets as an input, the more freedom it has to gen-
erate the output and the easier it gets to map the input to the output. At
the same time, it is preferable to have a small input vector such that the
generator learns a compact latent space that can easily be explored and in-
terpolated. The WaveGAN architecture uses a latent vector of size 100 to
generate 16, 384 samples and the original growing GAN architecture a la-
tent vector of size 512 to generate 1, 048, 576 samples. Following this order
of magnitude, the latent vector for this thesis will be of size 256. As in the
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WaveGAN architecture, the latent vector will then be passed through a fully
connected layer and reshaped into the shape 1024×4 representing the output
of a 1-D convolution with four feature maps. This representation will then
be passed as input into the further network. The output size of the gener-
ator depends on the iteration level and is doubled every iteration starting
by 1024. The output layer will be a convolutional layer with only one fea-
ture map. The tanh activation function is used, which maps the feature map
values to values between negative one and one representing the waveform.

The discriminator takes the output of the generator and the prepared train-
ing data as an input. Therefore, the input size is already defined and changes
for every iteration. This input is then processed by a convolutional layer with
kernel size one with a leaky ReLu activation function. This was done by
Karras in the original progressive GAN architecture. The kernel of size one
allows the discriminator to scale and shift the values if necessary to facilitate
the discrimination. This representation is then passed as input into the fur-
ther network. The output of the last convolutional layer of the discriminator
will be flattened and connected to a single neuron with a linear activation
function. Using several fully connected layers on top of a CNN architecture
was proven disadvantageous by the DCGAN paper. [47]

7.3.2 Convolutional Blocks

For the generator, every convolutional block that is added for a new itera-
tion consists of an upsampling layer and two convolutional layers. For the
upsampling the Keras UpSampling1D layer with the standard parameters is
used which replicates every value by a factor of two. This type of upsam-
pling keeps the already learned structure of the soundwave. The convolu-
tional layers have a kernel size of 25 and the number of kernels used for
the layers decreases for later levels. It is better to use a larger kernel size,
but this increases the computational cost and memory consumption signifi-
cantly. The number of kernels at the initial blocks is greater, so the model has
more possibilities to save different aspects of the song at the beginning but
has to consolidate this information into a single soundwave over time. The
number of kernels is mainly copied from the original growing GAN paper
from Karras, since it already worked well for learning global structure in im-
ages. Every convolutional layer has a Leaky ReLU activation function with a
leakiness of 0.2 as suggested by Karras. The normalization mechanisms are
explained in subsection 7.3.4.

The discriminator is a mirrored implementation of the generator. For every
block, the input is processed by two convolutional layers and then downsam-
pled by the AveragePooling1D layer from Keras with a pool size and stride
length of two. The padding strategy is set to “same”. It pads the first few
and last few values of the vector to the beginning and the end, respectively,
such that the pooling operation can be performed for every position of the
vector. The convolutional layers also have a kernel size of 25 and the number
of kernels is increasing for later blocks. The leaky ReLu activation function
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with a leakiness of 0.2 is used as well. In the last convolutional block before
the output block, another layer constructed by Karras in the original grow-
ing GAN paper is added. This layer is called Minibatch Standard Deviation
and calculates statistics over a minibatch and adds it as a feature map. This
idea originally stems from Salimans and his team and was simplified by
Karras. [51] For every position of the vector, the standard deviation over the
minibatch for every feature map is calculated. The average of all values for
every position and every feature map is then calculated, such that only one
number remains. This number is replicated to the original size of a feature
map. The resulting constant feature map is finally added to the data and
sent to the next layer. The generator in a GAN struggles with modelling the
variation found in the training data, as pointed out by Salimans. Adding this
additional statistic helps the network to increase its variation.

7.3.3 Loss Function for the Generator and Discriminator

The loss function of the network will be the wasserstein loss, enforced with
the gradient penalty. The discriminator therefore outputs a critic score through
a linear activation function. To calculate the loss used to train the discrimina-
tor, the discriminator is shown one batch of real songs and one batch of fake
songs created by the generator. The discriminator calculates the critic score
for every sample in the real and the fake data. It then averages the score for
the real and the fake data, respectively. The loss can now be calculated by
subtracting the average score of the real data from the average score of the
fake data. Hence, the goal of the discriminator is to output large numbers
for real songs and small numbers for fake songs. It does not matter if the
numbers are positive or negative, as long as the distance between the scores
for fake and real data is large enough. Additionally, the gradient penalty is
added to this loss and scaled by a weight set to ten. Another term that is
added by Karras to this loss is a drift score, that calculates how far the dis-
criminator’s output has drifted from zero. Large numbers for the loss can
impede the training, indicating exploding gradients. Therefore, a large neg-
ative or positive output is penalized by this term. This was observed to be
only needed for the last two levels of the growing strategy. The final loss
equation can now be expressed by Equation 7.1.

d_loss = f ake_critic_score_mean− real_critic_score_mean+
gp ∗ gp_weight + dri f t ∗ dri f t_weight

(7.1)

The loss function of the generator is simply the negative average score for
the fake songs from the discriminator. The discriminator tries to output small
numbers for fake samples and large numbers for reals samples. Therefore, if
the generator successfully generates songs that the discriminator assesses as
real, the discriminator will output a large number, which leads to a large neg-
ative loss. If the discriminator successfully recognizes the generated songs
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as fake, it will output a small positive or large negative number, resulting in
a large loss for the generator. The generator loss is shown in Equation 7.2.

g_loss = − f ake_critic_score_mean (7.2)

7.3.4 Normalization in the Generator and Discriminator

Karras introduced pixelwise feature vector normalization for the generator.
The same normalization technique will be used in this thesis, since it already
showed good results for a very deep architecture. The WaveGAN architec-
ture does not use any normalization technique, neither in the generator nor
in the discriminator. Another advantage is, that it does not have any learn-
able parameters compared to BatchNorm. It scales the feature vector for
every position to unit length. The feature vector is the vector of feature map
values for the same position (for images it is pixels). This is done by Equation
7.3 where bx is the scaled value at position x and ax the original.

bx =
ax√

1
N ∑N−1

j=0 (aj
x)2 + ε

(7.3)

As in the WaveGAN and the original growing GAN architecture, no normal-
ization technique will be used for the discriminator.

7.3.5 Fade in of a new Convolutional Block

After the generator and discriminator are trained for one level, the new level
is faded in smoothly. In Figure 7.1 the output of the Keras method plot_model
for the fade in model of the second level is shown. The first level outputs
1024 samples. This is upscaled to 2048 for level two. The fade in generator
takes the output of the last convolutional block of the previous level and
splits it into two paths. Therefore, all layers from the previous level with
the according weights are reused. At the top of Figure 7.1 the last convolu-
tional layer with its normalization and activation of level one forwards its
output to two upsampling layers. The right path sends the upsampled sig-
nal directly into an output layer. In the left path, the upsampled signal is
first processed by another convolutional block of the level two generator be-
fore being passed into an output layer. The “weighted_sum_layer” takes the
outputs from both paths and multiplies them by a weight before summing
them up. The left output is multiplied by α and the right output by 1− α.
The weight alpha is incrementally increased from zero to one after every
epoch. Thus, at the beginning of the training, the new convolutional block
of level two does not influence the outcome. When alpha reaches one, the
transformation from level one to level two is completed and the right path
can be dropped.
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Figure 7.1: Fade in process of smoothing in level two for the generator

The new level of the discriminator is faded in the same way. The difference
is that the discriminator is extended at the beginning of the network to be
able to receive the larger input size. Both networks are trained together and
the weight increase for alpha happens at the same time with the same factor.

7.3.6 Other Hyperparameters and Settings of the Model

The main idea of selecting the hyperparameters is to make the model able
to learn efficiently, even for deep architectures. Since, the settings for the
growing GAN architectures of Karras worked well for a similar architecture,
the same optimizer with its parameters will be used. The generator and the
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discriminator will therefore be trained with the Adam optimizer with the
parameters α = 0.001, β1 = 0 and β2 = 0.99. Karras also observed that using
Adam alone still leads to suboptimal training due to exploding or vanishing
gradients. This lead to introducing another restriction to the model called
equalized learning rate. The weights are scaled at runtime for every layer
with a per-layer normalization constant c. Equation 7.4 shows the formula.

ŵi =
wi

c
(7.4)

The per-layer normalization constant c was defined by He in 2015 and is
given by equation 7.5. [25] It calculates the standard deviation for the weights
of each layer, with k being the kernel size and d the number of filters. The
weights are hence scaled by dividing by their standard deviation. This pre-
vents them from becoming too small or too large

c =

√
2

k2 ∗ d
(7.5)

Another hyperparameter to consider is the discriminator learning steps.
The mathematical assumption for the wasserstein loss holds true for an op-
timal discriminator. Therefore, usually the discriminator is trained several
steps for every training step of the generator. Karras deviates from this strat-
egy and alternates directly between optimizing the generator and the dis-
criminator. For the WaveGAN architecture, the discriminator was trained
with five optimization steps before optimizing the generator once. In this
thesis, a factor of two will be used to still have some benefits of a better
discriminator without increasing the computational requirements too much.

7.4 structure of the accompanying git repository

The code for the whole thesis can be found in the following Git repository:
https://github.com/dennis31197/Master_Thesis. The code was written in
Jupyter Notebooks. The author decided to keep the code in Jupyter Note-
books to be able to add markdown fields to provide explanations additional
to the comments in the code. In the folder “Growing_GAN” is all the code
for the growing GAN algorithm. The notebook “preprocessing.ipynb”, con-
verts the MP3 files into the needed format as described in section 7.2. The
notebook “model.ipynb” contains the code to build and train the whole
model, consisting of the generator and the discriminator for the different
levels. The notebook “generating_music.ipynb” loads an already trained gen-
erator and uses it to generate new music. The folder “Monitoring” contains
the final discriminator and generator models.

7.5 training time and hardware

The first four levels of the network were trained on a Nvidia GeForce GTX
1650 Max-Q GPU and on a computer with 16 GB RAM for a week. The full

https://github.com/dennis31197/Master_Thesis
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networks were trained for 14 epochs and the fade in networks for 7 epochs
with a batch size of 16 for the first two levels, 8 for the third level and 4 for
the fourth level. Due to the increasing network sizes, the 4 GB of vRAM and
16 GB of RAM were not sufficient for later levels. The training was further
executed on a Nvidia Tesla T4 GPU with 16 GB vRAM on a computer with
26 GB RAM in the Google Cloud. Level five was trained with a batch size of
8 for 6 epochs for the fade in networks and 12 epochs for the full networks.
Level six was trained with a batch size of 8 for 5 and 10 epochs, respectively.
For level seven, a batch size of 4 was used, and the networks were trained for
3 and 4 epochs, respectively. The last level of the model could not be trained
because of a timeout error that occurred and that will be discussed in the
next chapter. The whole training of levels five to seven took eight days.

7.6 code debugging and optimization strategies

For Keras models, graph execution is automatically enabled. That means be-
fore the training begins, the whole network is converted into an executable
graph that is then internally optimized. This lengthens the time that the pro-
gram needs to start the training process but reduces the training time per
batch significantly. In order that the graph can successfully build and exe-
cuted, all data types have to be TensorFlow own datatypes. All functions that
are involved in the training process can only take tensors as input and only
return tensors or None. There are other prerequisites that have to be con-
sidered with graph execution that are linked in the Git repository. Besides
these prerequisites, another downside of graph execution is the enormous
memory consumption or deep models. Models that can be trained with ea-
ger execution result in an out of memory error for graph execution. This is
due to the graph being built in RAM and has to be loaded into vRAM for
training.

Eager execution can be explicitly set prior to the training. This helps with
debugging the code because it is run line by line and possible errors are
shown at the exact spot. Graph execution can result in a crash of the machine
if it takes too long to build the graph, if certain prerequisites are not met or
if an error occurs during the execution of the graph. The program does not
know where the error occurs during the execution and therefore, no explicit
error message is shown.

To make sure the graph can be successfully built, the code was tested for
lower levels with a smaller network size to reduce the building time. The
used functions for the training process are the same for all levels, so if the
graph is built for the lower level, it can technically be built for the final level
as well.

The whole training with all growing iterations was tested with only two
batches and one epoch for every level to make sure it can run entirely with-
out an error and that the monitoring works as intended.

To lower the strain on the RAM, batch generation was used to provide the
training data to the model without having to load the whole dataset. In the
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fit method of the Keras model, the number of batches that should be loaded
into memory can be set. This helps to optimize the training time. The batch
loading is done by the CPU and the batch processing is done by the GPU.
With this strategy, the GPU never has to wait for a batch and can be used
efficiently without having all data in memory. For this thesis, 8 batches were
loaded into RAM. After every epoch of training, the python garbage collect
and the TensorFlow clear session is called. Both commands delete objects
from memory that are no longer needed. This also helps reducing the load
on the RAM.
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Figure 8.2 shows the loss history of level seven for the generator and the dis-
criminator in epoch four. The generator loss in orange has a high volatility.
It is defined by the critic score of the discriminator for the generated sam-
ples of the generator. Fluctuating values indicate that the discriminator has
not found a good rule to differentiate between real and fake samples. The
discriminator loss stays close to zero, indicating that the critic scores for fake
and real samples for a training batch of the discriminator are of similar mag-
nitude with a different sign. This behavior still needs further investigation.

Figure 8.1: Loss history for epoch four for the discriminator (d_loss) and generator
(g_loss) of level seven; The y-axis is the loss value and the x-axis is the
batch number

Figure 8.2 shows the loss history of the generator and discriminator of
level three for epoch 14. The generator loss has again a high volatility, but
the values are closer together in terms of magnitude. This shows that the
discriminator does a better job identifying real and fake samples than it did
in Figure 8.1. There is also a downwards trend recognizable, indicating that
the generator improves during this epoch. The discriminator loss fluctuates
as well around zero.
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Figure 8.2: Loss history for epoch 14 for the discriminator (d_loss) and generator
(g_loss) of the third level; The y-axis is the loss value and the x-axis is
the batch number

A possibility to visualize the song is to plot of its waveform. In Figure 8.3
the waveform of an eleven second segment of a song from the raining data is
shown. In Figure 8.4 the waveform of a fake song generated by the generator.
The real song tends to have more of a clear beat that stays along the whole
song. Whereas, the waveform of the generated song seems to have a rather
random pattern.

Figure 8.3: Waveform of a eleven second segment of a real song from the training
data
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Figure 8.4: Waveform of a eleven second segment of a fake song created by the
generator

The loss values and the plot of the waveform only give a notion of how
well the model is actually doing. To assess the quality of the GAN properly,
the generated songs have to be listened to. Therefore, the Jupyter Notebook
“generating_music.ipynb” from the Git repository can be used. The written
code loads the latest generator and lets the user generate a random latent
vector that is used by the generator to generate a song. Another option is
to manipulate the single values of the latent vector with sliders to steer the
outcome of the song.

The model successfully outputs a song of eleven seconds and fulfills re-
quirement 1. To generate a random song, the model needs less than one
second. The user has also the possibility to alter the soundwave of the song.
The latent space has to be further explored to recognize possible dependen-
cies between the values of the latent vector and the resulting song. Hence,
requirement 3 is fulfilled. The songs still contain a lot of noise, and the beat
changes over the course of the song. Nevertheless, some structure can be
identified, and the outcome is a step into the right direction. The model has
to be further improved, and the last level has to be trained to also fulfill re-
quirements 2 and 4. The author refrained from sending the results to people
to listen to and to judge the quality of the song, because the audio quality is
still no good enough to compare it to the training data.

The idea to use the growing architecture to reduce the computational cost
by giving the network simpler tasks in every step did not succeed fully. Espe-
cially in the earlier levels, a decreasing generator loss could be observed, as
shown in Figure 8.2. A longer training time therefore would further improve
the generator. The resources for this thesis were limited and hence restricted
the author in the testing and training of the model. One epoch for final seven
took ten hours of training time on a Nvidia Tesla T4 GPU in the Google
Cloud. To not produce too high cost, the number of epochs was lowered for
the later levels. As seen in Figure 8.1 after only four epochs the discriminator
of level seven was still very unsure about whether the song was real or fake.



results 68

Google also deals with a shortage of GPUs at the moment and sometimes
could not provide a respective machine. To train the last level of the model,
it was planned to use the better Nvidia Tesla V100 GPU, which was not
available for the required period. Training the final level with the available
machine resulted in a timeout error before the actual training started. This
timeout only occurred for graph execution. This means the creation of the
network graph cannot be finished. For graph execution, Tensorflow does not
output error messages, hence, the problem of insufficient memory can only
be assumed. The network starts training when eager execution is enabled,
but one epoch would need 40 hours to complete. When at the beginning, the
whole algorithm with all levels was trained with only two batches and one
epoch, no timeout occurred.

The training data with 252 songs which were divided into 7288 segments
was also small. In the original growing GAN paper, they used 30, 000 images
and trained the model with eight Nvidia Tesla V100 GPUs with a vRAM of
32GB each for four days. If a linear relation is assumed, that would result in
32 training days on that respective GPU. Currently, the best architecture for
audio generation using raw audio is Jukebox. They used 256 Nvidia Tesla
V100 GPUs for several days.

To address this problem, the whole architecture of the model has to be
modified. In the current architecture, two convolutional layers for every con-
volutional block are used. Using only one layer with more filters would re-
duce the memory capacity of the network and would make it easier to train.
Tensorflow also uses a 32bit float format to save all values of the model. The
raw audio data was saved in a 16bit format. By creating the model with also
a 16bit encoding, the memory capacity could have been reduced without
losing valuable information. In chapter 4 dilated convolutions were intro-
duced. By using this type of convolutions, the receptive field of the network
could be increased without changing the needed memory. This would help
the network with learning long-term dependencies. Using a high-level rep-
resentation of audio like Midi files or Spectrograms would highly reduce
the requirements of the network and the training. Until more computational
power is easier and cheaper accessible, the use of these high-level formats
should be favored over the use of raw audio data for all use cases besides
research.
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This thesis laid a good foundation for further research in the audio genera-
tion area. The different data representations that can be used were explained
and benefits as well as disadvantages presented. Audio data depends on
time and can be processed by different types of networks. So far, there has
not emerged a single best approach, and algorithms change and improve
constantly. This thesis used CNN networks paired with a GAN architecture
to model raw audio data. Raw audio data is very complex and high dimen-
sional. Therefore, networks struggle to detect and model long-term depen-
dencies. Until the computational power of computers suffice to easily train
deep enough models, it is a good idea to use a lower dimensional represen-
tation of audio. This means to divert to Midi files or to use Autoencoders
to get the lower representation of the raw audio data to train a generative
model. Midi files also give already pre-defined events that make sure that
the generated sound is melodious. The generator of the GAN in this thesis
was fed with a latent vector of values from a uniform distribution between
negative one and one. Its task was to make sense of this randomness and
find structure related to the structure of a song. Instead of giving the gener-
ator a random vector, it could be given a latent representation of the songs
calculated by an Autoencoder. The downside is that it would make the gener-
ator more likely to generate songs similar to the training data. Another way
that might help the generator to model long-term dependency is to use di-
lated convolutions to increase the receptive field of the convolutional layers
without increasing the computational cost.

The final generator of the trained model can generate audio segments
of eleven seconds. There is no long-term structure, but some kind of beat
can be identified. To use this model at a fair, the audio quality has to be
increased. This can be done by collecting more training data and by training
the model for the final level and for a loner time with a better GPU with
more vRAM. The program has an interactive interface for the generation
process. To present this to possible customers, the user interface should be
developed with an appropriate framework. This thesis could serve as the
foundation for later student project of the ORDIX AG. The model could be
further improved or, with the acquired knowledge, it is possible to develop
a more target-oriented model.
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Table A.1: Structure of the generator in the final level

Generator Act. Norm. Output
shape

Params

Latent vector - - 256 × 1 -
Dense - - 4096 × 1 1, 052, 672
Reshape - - 1024 × 4 -

Conv1D (25) LeakyReLu PixNorm 1024 × 256 25, 856
Conv1D (25) LeakyReLu PixNorm 1024 × 256 1, 638, 656

Upsampling - - 2048 × 256 -
Conv1D (25) LeakyReLu PixNorm 2048 × 256 1, 638, 656
Conv1D (25) LeakyReLu PixNorm 2048 × 256 1, 638, 656

Upsampling - - 4096 × 256 -
Conv1D (25) LeakyReLu PixNorm 4096 × 128 819, 328
Conv1D (25) LeakyReLu PixNorm 4096 × 128 409, 728

Upsampling - - 8192 × 128 -
Conv1D(25) LeakyReLu PixNorm 8192 × 64 204, 864
Conv1D (25) LeakyReLu PixNorm 8192 × 64 102, 464

Upsampling - - 16384 × 64 -
Conv1D (25) LeakyReLu PixNorm 16384 × 64 102, 464
Conv1D (25) LeakyReLu PixNorm 16384 × 64 102, 464

Upsampling - - 32768 × 64 -
Conv1D (25) LeakyReLu PixNorm 32768 × 32 51, 232
Conv1D (25) LeakyReLu PixNorm 32768 × 32 25, 632

Upsampling - - 65536 × 32 -
Conv1D (25) LeakyReLu PixNorm 65536 × 32 25, 632
Conv1D (25) LeakyReLu PixNorm 65536 × 32 25, 632

Upsampling - - 131072 × 32 -
Conv1D (25) LeakyReLu PixNorm 131072 × 16 12, 816
Conv1D (25) LeakyReLu PixNorm 131072 × 16 6, 416

Upsampling - - 262144 × 16 -
Conv1D (25) LeakyReLu PixNorm 262144 × 16 12, 816
Conv1D (25) LeakyReLu PixNorm 262144 × 16 6, 416

Conv1D (1) tanh - 262144 × 1 17

Total trainable parameters 7, 896, 017
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Table A.2: Structure of the discriminator in the final level

Discriminator Act. Norm. Output
shape

Params

Input Song - - 262144 × 1 -
Conv1D (1) LeakyReLu - 262144 × 16 32

Conv1D (25) LeakyReLu - 262144 × 16 6, 416
Conv1D (25) LeakyReLu - 262144 × 16 6, 416
AveragePooling - - 131072 × 16 -

Conv1D (25) LeakyReLu - 131072 × 16 6, 416
Conv1D (25) LeakyReLu - 131072 × 32 12, 832
AveragePooling - - 65536 × 32 -

Conv1D (25) LeakyReLu - 65536 × 32 25, 632
Conv1D (25) LeakyReLu - 65536 × 32 25, 632
AveragePooling - - 32768 × 32 -

Conv1D (25) LeakyReLu - 32768 × 32 25, 632
Conv1D (25) LeakyReLu - 32768 × 64 51, 264
AveragePooling - - 16384 × 64 -

Conv1D (25) LeakyReLu - 16384 × 64 102, 464
Conv1D (25) LeakyReLu - 16384 × 64 102, 464
AveragePooling - - 8192 × 64 -

Conv1D (25) LeakyReLu - 8192 × 64 102, 464
Conv1D (25) LeakyReLu - 8192 × 128 204, 928
AveragePooling - - 4096 × 128 -

Conv1D (25) LeakyReLu - 4096 × 128 409, 728
Conv1D (25) LeakyReLu - 4096 × 256 819, 456
AveragePooling - - 2048 × 256 -

Conv1D (25) LeakyReLu - 2048 × 256 1, 638, 656
Conv1D (25) LeakyReLu - 2048 × 256 1, 638, 656
AveragePooling - - 1024 × 256 -

MiniBatchStDev - - 1024 × 257 -
Conv1D (25) LeakyReLu - 1024 × 256 1, 645, 056
Conv1D (25) LeakyReLu - 1024 × 256 1, 638, 656

Flatten - - 262144 × 1 -
Dense linear - 1 × 1 262, 145

Total trainable parameters 8, 724, 945
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