
Hochschule Darmstadt

Fachbereich Mathematik und Naturwissenschaften &

Informatik

Visual Attention in Human Action Recognition

Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science (M. Sc.)

im Studiengang Data Science

vorgelegt von

Georg Frey

Matrikelnummer: 768145

Referent : Prof. Dr. Elke Hergenröther

Korreferent : Prof. Dr. Andreas Weinmann

Zusätzliche Betreuung : M. Sc. Fabian Sturm

Ausgabedatum : 14.06.2021

Abgabedatum : 29.11.2021

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröf-
fentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden
oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbe-
hörde eingereicht worden.

Darmstadt, 29.11.2021

Georg Frey

A B S T R A C T

Modern machine learning faces a number of challenges. Artificial neural networks have
long been known for their difficult interpretability, which has earned them some noto-
riety as black-box-models. With ever-increasing amounts of data and growing neural
network depths, this issue has only intensified. This is especially apparent in computer
vision and with video data. Among large amounts of noisy data, only a tiny fraction of
features may eventually contain relevant information.

This makes machine learning applications in computer vision not only costly and
resource-intensive to train, but also complicates the analysis of trained networks. Un-
wanted behavior and its causes may be difficult or infeasible to investigate. This is prob-
lematic, as neural networks can develop an unintended focus on secondary features. For
example, they could erroneously learn to detect rails, streets or clouds when they were
meant to classify trains, cars and planes.

Attention mechanisms present a promising approach to address these problems. Like
artificial neural networks themselves, they are inspired by nature. They attempt to mimic
how humans perceive their environment. Similar to how humans may pay attention
to an object of interest in a picture, attention mechanisms aim to incentivize a neural
network to concentrate its calculations during on relevant features.

This thesis investigates how different implementations of visual attention mechanisms
can improve results in the task of human action recognition as a subtask of video classi-
fication. Furthermore, the advantages of attention for interpreting the behavior of neural
networks are researched.

Z U S A M M E N FA S S U N G

Moderne Machine-Learning-Techniken sind mit einer Vielzahl von Herausforderungen
konfrontiert. Künstliche neuronale Netze sind seit langem dafür bekannt, schwer inter-
pretierbar zu sein und werden stellenweise kritisch als Black-Box-Modelle bezeichnet.
Dank des stetigen Anstiegs von Datenmengen und dem einhergehenden Wachstum von
neuronalen Netzwerkarchitekturen, hat sich dieses Problem zunehmend intensiviert. Be-
sonders offensichtlich ist diese Problematik im Bereich Computer Vision und bei der Ar-
beit mit Videodatensätzen. Die hier behandelten Daten sind besonders umfangreich und
enthalten große Mengen von Noise und nur ein Bruchteil der Daten enthalten relevante
Features.

Dies macht das Training von Machine-Learning-Applikationen im Bereich Compu-
ter Vision nicht nur Kosten- und Ressourcen-intensiv, es erschwert auch die Analyse der
Modelle. Unerwünschtes Verhalten kann nur schwer untersucht und festgestellt werden.
Dies ist problematisch, da neuronale Netze einen ungewünschten Fokus auf unbeabsich-
tigte Sekundär-Features entwickeln können. Beispielsweise könnte sie fälschlicherweise
lernen Schienen, Straßen oder Wolken zu erkennen, obwohl sie Züge, Fahrzeuge und
Flugzeuge klassifizieren sollten.

Sogenannte Aufmerksamkeit (engl. attention) stellt einen vielversprechenden Lösungs-
ansatz für diese Probleme dar. Wie künstliche neuronale Netze sind diese Mechanismen
auch von der Natur inspiriert und versuchen nachzuahmen, wie Menschen ihre Um-
gebung wahrnehmen. So wie Menschen möglicherweise in einem Bild ihre Aufmerk-
samkeit auf ein bestimmtes Objekt lenken, so sollen Aufmerksamkeitsmechanismen ein
neuronales Netz dazu bewegen, sich während des Trainings auf möglichst relevante
Features zu konzentrieren.

Diese Masterarbeit untersucht, wie verschiedene Implementierungen von visuellen
Aufmerksamkeitsmechanismen die Ergebnisse bei der Erkennung von menschlichen
Handlungen in Videodaten verbessern können. Weiterhin werden die Vorteile von Auf-
merksamkeit bei der Interpretation des Verhaltens von neuronalen Netzen untersucht.

The true art of memory is the art of attention

— Samuel Johnson

A C K N O W L E D G M E N T S

This thesis was written while working at, and with the support of, ORDIX AG1. I thank
all my colleagues for their assistance and their patience.

The simple act of paying attention to each other can take you a long way.

1 https://www.ordix.de/

https://www.ordix.de/

C O N T E N T S

i thesis

1 introduction 2

1.1 Motivation . 2

1.2 Outline . 3

1.3 Scope . 3

2 fundamentals 5

2.1 Human Action Recognition . 5

2.2 Neural Network Basics . 6

2.2.1 2-Dimensional Convolutional Neural Networks 7

2.2.2 3-Dimensional Convolutional Neural Networks 9

2.2.3 Residual Neural Networks . 9

2.2.4 Long Short-Term Memory Networks 10

2.3 Video Classification Architectures . 12

2.3.1 2-Dimensional Convolutional Neural Networks 12

2.3.2 3-Dimensional Convolutional Neural Networks 13

2.3.3 Long Short-Term Memory Networks 15

2.3.4 Two-Stream Networks . 15

2.3.5 (2+1)D CNN . 17

2.4 Attention . 18

2.4.1 Taxonomy . 18

2.4.2 Learn to pay Attention . 20

2.4.3 Attention-Gated Network . 21

2.4.4 Residual Attention Network . 23

2.4.5 Convolutional Block Attention Module 25

2.5 Post-Hoc Attention . 27

2.6 Video Datasets . 28

2.6.1 HMDB51 . 29

2.6.2 UCF101 . 30

2.6.3 Other Video Datasets . 30

2.7 Image Datasets . 31

2.8 Data Preprocessing . 32

2.8.1 Image Data Augmentation . 32

2.8.2 Optical Flow . 33

2.9 Evaluation Criteria . 33

3 related work 34

3.1 Attention . 34

3.2 Architectures . 35

3.3 Approaches . 37

3.4 Other Research . 38

contents viii

4 conception 40

4.1 Approach . 40

4.2 Selected Attention Mechanisms . 41

4.3 Selected Video Architectures . 42

4.4 Backbone Architecture . 43

4.5 Implementation and Benchmarks . 45

5 implementation 46

5.1 Hardware Specifications . 46

5.2 Software Overview . 46

5.3 Project Overview . 47

5.4 Backbone Prototypes . 47

5.5 Video Classification Models . 50

5.6 Attention Visualization . 51

6 findings 53

6.1 Training . 53

6.2 Attention . 54

6.3 Benchmarks . 57

7 discussion 58

7.1 Attention Modules . 58

7.1.1 Learn to pay Attention . 58

7.1.2 Attention-Gated Network . 59

7.1.3 Residual Attention Network . 59

7.1.4 Convolutional Block Attention Module 59

7.2 Challenges . 60

7.3 Relation to Post-hoc Attention . 60

8 conclusion and outlook 61

8.1 Conclusion . 61

8.2 Outlook . 61

ii appendix

Images . 63

Bibliography . 64

L I S T O F F I G U R E S

Figure 2.1 Simplified illustration of a residual 2D-CNN building block used
in residual learning. 9

Figure 2.2 Illustration of a LSTM-unit . 11

Figure 2.3 Fusion approaches. Red, green, blue and yellow boxes signify
convolutional, normalization, pooling and dense layers respec-
tively. White and gray boxes represent frames and selected frames
of the video. Image source: “Large-scale video classification with
convolutional neural networks” by Karpathy et al. 12

Figure 2.4 Multiresolution CNN. Red, green, blue and yellow signify con-
volutional, normalization, pooling and dense layers respectively.
Image source: “Large-scale video classification with convolutional
neural networks” by Karpathy et al. 14

Figure 2.5 Illustration of the 3D-CNN architecture by Tran et al., leveraging
small kernels. The numbers signify the number of filters or dense
neurons. Red, blue and yellow signify convolutional, pooling and
dense layers respectively. The final layer is a softmax layer. 14

Figure 2.6 Yue-Hei Ng et al. combine 2D-CNN to process spatial informa-
tion and LSTM to process temporal information. Image source:
“Beyond short snippets: Deep networks for video classification”
by Yue-Hei Ng et al. 15

Figure 2.7 Two-Stream architecture using a simple backbone architecture.
Image source: “Two-stream convolutional networks for action
recognition in videos” by Simonyan and Zisserman. 16

Figure 2.8 Illustration of a regular 3D-CNN block (left) and a factorized
(2+1)D block (right) . 17

Figure 2.9 "Learn to Pay Attention"-modules applied to the VGG16 architec-
ture. Image source: “Learn to pay attention” by Jetley et al. . . . 20

Figure 2.10 Gated attention unit. Here g has the spatial dimensions 3x3 and
local features (here F) are subdivided accordingly into a grid. Im-
age source: “Attention-gated networks for improving ultrasound
scan plane detection” by Schlemper et al. 23

Figure 2.11 Overview of the residual attention network architecture. Image
source: “Residual attention network for image classification” by
Wang et al. 24

Figure 2.12 Convolutional Block Attention Module applied to convolutional
features F. Image source: “Cbam: Convolutional block attention
module” by Woo et al. 26

Figure 6.1 Training curve (top) and test curve (bottom) for the CIFAR-100

dataset. 53

list of figures x

Figure A.1 A CIFAR-100 image of the class cattle 63

Figure A.2 A Imagenette image of the class parachute 63

L I S T O F TA B L E S

Table 2.1 Results of various convolution filters. 8

Table 2.2 Taxonomy of attention after Chaudhari et al.[7] 19

Table 4.1 Selected attention mechanisms. 42

Table 4.2 Comparison of backbone architectures when applied to the Ima-
geNet dataset. The assessment of the complexity may be subjective. 44

Table 5.1 Comparison of ResNetV2 backbone architecture implementations
for 100 classes . 49

Table 5.2 Comparison of MobileNet backbone architecture implementations
for 100 classes . 50

Table 6.1 Comparison of test scores of the backbone prototypes. 54

Table 6.2 Attention maps extracted from the models for the CIFAR-100

dataset. 55

Table 6.3 Attention maps extracted from the models for the Imagenette
dataset. 56

G L O S S A RY

3D-CNN 2-Dimensional Convolutional Block Attention Module

3D-CNN 3-Dimensional Convolutional Block Attention Module

API Application Programming Interface

BERT Bidirectional Encoder Presentations from Transformers

CAM Class Activation Mapping

CBAM Convolutional Block Attention Module

CNN Convolutional Neural Network

FLOPs Floating-Point Operations

GAN Generative Adversarial Network

Grad-CAM Gradient-weighted Class Activation Mapping

L2PA Learn to pay Attention

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

NLP Natural Language Processing

RAM Random-Access Memory

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SAGAN Self-Attention Generative Adversarial Network

STIP Space-Time Interest Points

I3D Two-Stream Inflated 3D-ConvNet

Part I

T H E S I S

1
I N T R O D U C T I O N

The roots of artificial neural networks date back at least to the 1950s.[45] But thanks to
increasingly cheap hardware and the emergence of more and more efficient use of graph-
ics processing units, they have become a crucial technology for a number of research
fields.[9] At the present day, most state of the art image-recognition software is based
or relies heavily on convolutional neural networks.[43] Yet, many of their fundamental
drawbacks are still present. They require sizable amounts of data and computational
power to be trained. Furthermore, their large number of trainable weights make them
notoriously difficult to analyze.[51]

1.1 motivation

A promising concept in dealing with the problems of artificial neural networks is the
concept of attention. Like a human would focus his or her attention on a specific object
in an image or a word in a sentence, attention mechanisms aim to force a neural network
to focus its calculations on a subset of relevant features. This may address all the issues
mentioned above while also potentially improving the model quality.[7]

Although this idea is not necessarily a new one and can be traced back to the 1960s
[42][68][7], practical implementations have recently gained in popularity, thanks in part
to the notable work of Bahdanau, Cho, and Bengio[2] and Vaswani et al.[63]. Even
though their work is primarily on natural language processing, the same principles
and underlying techniques can be applied to a variety of tasks, including image classifi-
cation [29] and video classification[52].

Importantly, video classification and its subfield of human action recognition suffer
especially from the general problems of artificial neural networks. Video data are rela-
tively large, and computer vision models in turn also have a high number of trainable
weights. If attention mechanisms can improve the efficiency of video classification mod-
els, it stands to reason they profit proportionally more than smaller models with fewer
parameters would. Likewise, numerous parameters may also make a model more dif-
ficult to analyze. For the same reasoning, it would be beneficial if video models could
benefit from additional analytic tools like attention.

Furthermore, processing video data in general is a topic of ongoing research. Improv-
ing the effectiveness and quality of various video models would be valuable, if it can be
accomplished with attention mechanisms.

1.2 outline 3

1.2 outline

This thesis will begin by describing the general task of human action recognition as
a subset of automated video classification. Typical approaches for these tasks will be
analyzed.

Modern deep architectures for video classification rely primarily on artificial neural
networks. Fundamentally, these architectures can be categorized into 3D-CNN, 3D-CNN

and LSTM. Furthermore, a number of more advanced general architectures types exist
which build upon these basics.

After discussing the task and identifying appropriate network architectures, the main
subject of this thesis, attention, will be formally introduced. To begin with, the broad
term is defined and a taxonomy of attention categories is presented. As more types of
attention mechanism exist than can be covered in this thesis, the main focus lies on a
number of variants which are promising for the task of video classification.

Finally, as with all data-driven applications and neural networks, datasets also play an
important role. For this thesis, the HMDB51 [39] and UCF-101 [56] are of particular in-
terest. Both are well-researched video datasets dealing specifically with the classification
of human interactions with objects. At the same time, both datasets are of reasonable
size, allowing to produce results even with relatively small computational resources.

At this point, the reader will have a thorough understanding of the fundamentals of
video classification and attention mechanisms. The first goal of this thesis is to show how
various attention mechanisms function and how they can be applied to the problem of
video classification. Subsequently, these approaches are to be empirically tested to verify
their claimed advantages. Finally, the aim is also to show how attention can help analyze
the results and problems a specific model may exhibit during and after training

For the empirical tests, the first goal is to showcase a number of neural network
implementations, initially without attention. They will subsequently be used as the basis
for the creation of attention versions of these networks. The aim is to keep each two
respective networks as similar as possible, with the only difference being the addition
or lack of attention-units. Using these networks and the described datasets, a number of
benchmarks will be created. Comparing the performance of the neural networks should
show measurable improvements when attention is used. It is assumed that different
neural network architectures may profit from different implementations of attention
mechanisms in different ways. Some architectures and attention mechanisms may also
be incompatible with one another. The dataset may also influence the results. Different
architectures, attention mechanisms and datasets are used to offset this.

1.3 scope

Due to the broadness of the fields involved and due to the limited availability of com-
putational resources, this thesis will not be able to be exhaustive.

1.3 scope 4

Regarding the types of attention, this work will lie its main focus on visual atten-
tion mechanisms. While many types of attention exist and may be relevant for human
action recognition, visual attention is especially interesting because of its specificity to
computer vision.

Analogously, too many architectures for image classification and video classification
exist to be fully investigated and implemented. Therefor the major archetype archetypes
will be researched and a number of suitable architectures will be chosen for implemen-
tation.

Regarding datasets, the same restrictions apply. Numerous image and video datasets
exist, only some of which may be used to evaluate the implementations and produce
benchmarks. To optimally use the limited resources, this work will focus on a small
number of well-researched, but relatively small datasets.

2
F U N D A M E N TA L S

This chapter aims to introduce the reader to the fundamentals necessary to understand
this thesis. It begins by describing the task and its properties and significance. Sub-
sequently, existing approaches are discussed. As there are numerous interdependent
strategies, the order has been chosen to give the reader bottom-up introduction into the
various relevant architectures. Afterwards, the central topic of attention is introduced,
and several approaches are investigated.

Finally, a few secondary topics are discussed. First, crucially, when working with data-
driven algorithms the datasets used must also be carefully examined. Secondly, data
processing steps are common when dealing with video data and therefor need to be ad-
dressed. Lastly, the evaluation criteria used to benchmark the findings are summarized.

2.1 human action recognition

Human action recognition is the task of identifying fully executed human actions in
video data and is a considered a fundamental task in computer vision.[35]

It can be regarded as a subset of the broader task of general video classification. More
specifically, action recognition can be further divided into action representation and
action classification. The former subject attempts to turn pixel data into an effective
machine-readable representation. The later task is directly occupied with final attribu-
tion of an action.

Furthermore, there are numerous related tasks:[35]

• Action prediction is the classification of task from incompletely executed actions.

• Human-object interaction can be considered a subtask of human action recogni-
tion.

• Image and video captioning aim to produce descriptions instead of a class score
prediction.

• Image and video segmentation intend to find relevant objects in the data.

Action recognition specifically is of importance, as there are a many applications for
this task[35]. For instance, it can be important for surveillance tasks or for quality assur-
ance in production environments. In both situations, a certain subset of action may be
disallowed to ensure safety.

Similarly, for autonomous driving, it may be desirable to detect or predict the actions
of passersby.

Lastly, for the entertainment industry, gadgets like the Kinect[81] use action recogni-
tion for gaming applications.

2.2 neural network basics 6

Lastly, video retrieval applications like search engines may need to classify or rank
videos in response to a query.

Video data in general and action recognition specifically face a number of challenges
inherent to the data and task.[35] Humans typically have different postures, gaits, quirks
or movement behaviors. Different people may perform the same action with an entirely
different sequence of movements. This variation is also contained in the datasets and
leads to a high variance within each class.

In addition, video data also contains large amounts of noise by default[35]. Video data
may be affected by different camera angles, by camera motion, by lighting conditions
and by various filming locations. Furthermore, sufficient and reliable annotated data
may be mussing in general, as labeling video datasets is costly. Large datasets have of-
ten been not annotated by hand, but with automated methods, and contain noisy labels.
Lastly, video data contains large amounts of redundant data and is therefor difficult to
process. At the same time, only a few key frames may contain information crucial to
classify the clip. In summary, video data is often times noisy, has high in variance and
has features of highly uneven discriminative quality.

To address these issues, generally two different approaches can be distinguished.
Historically, a number of so-called shallow approaches have existed. They typically

focused on finding efficient action representation which can then be classified. Many of
those methods relied on hand-crafted features and were thus time-consuming to craft
and prone to noise[35] and do not generalize well[30].

This thesis focuses on modern deep architectures which can automatically deduce
features and learn representations. Deepness in this context generally suggests artificial
neural networks with a high number of trainable variables.

2.2 neural network basics

When dealing with video classification, there are a number of artificial neural network
architectures one needs to understand. Most importantly, 2-dimensional convolutional
neural networks (2D-CNN) are the fundamental building block when working with
image data[35], and therefore they will be discussed first in this chapter.

Subsequently, when approaching other architectures an important distinction which
needs to be made is, that videos data can be regarded as a combination of spatial and
temporal features. The spatial data describes the image data contained in the individual
frames of a video and can be processed with 2-dimensional convolutions. The temporal
information is the data arising from the changes between frames and is sequential in
nature. This information cannot readily be captured by 2D-CNNs.[35]

Aside from architectural differences, the following networks often also represent dif-
ferent approaches when dealing with these parts of the information contained within
the videos.

2.2 neural network basics 7

2.2.1 2-Dimensional Convolutional Neural Networks

As the name suggest, convolutional neural networks use convolutions to process image
data. Convolutions themselves describe a technique originating in image processing and
are also known as kernels, convolution filters, convolution matrix or simply as masks.[74,
p. 49]

Although the dimensions may differ, the filter itself typically is a 3x3 matrix. This
filter is also called kernel. When applying this kernel to an image, the following steps
are performed:[74, pp. 6-7 49]

1. From the original image chose a subsection of pixels ("window") of the same size
as the kernel (e.g. a 3x3 matrix).

2. Perform an element-wise multiplication of the selected section and the kernel.

3. Calculate the sum of the elements of the resulting matrix. The value of this sum-
mation is the value of the pixel in the resulting image.

4. Repeat steps 1.-3. for all windows of the original image. On each iteration, the
relative position of the calculated pixel is maintained in respect to the location of
its source window.

Steps 1-3 of this algorithm are referred to as a convolution.[74, pp. 6-7] For an image with
multiple channels, like an RGB-image with three color channels, this process can simply
be conducted individually for each channel. Also, the attentive reader might notice, that
the resulting image will be of a smaller size as the original image, as the kernel cannot
be applied to windows at the edges of the image. To circumvent this problem, a number
of approaches exist, one of which is zero-padding. In this case, additional pixels with a
value of zero are presumed to be around the edges of the image.[74, p. 52] Thus, when
using zero-padding, the resulting image can be of the same dimensions as the source.

At first glance, it may be difficult to realize the potential of this technique, but it is
extremely potent and versatile. Depending on the kernel, a vast number of image ma-
nipulation applications like smoothing[74, pp. 54-61], edge detection[74, pp. 61-68] or
sharpening[74, pp. 89-90] can be performed with convolution filters. Table 2.1 displays
a few common examples.

Convolutional neural networks use convolution filters in their layers. Most impor-
tantly, here the values of the kernels are not fixed values, but variable weights which
are learned during training. Furthermore, if the input data contains multiple channels,
each channel will be assigned an individual kernel with separate variables.[70] So for a
gray-scaled image with a single channel, the number of weights is simply the number
of elements: the product of the height and width of the kernel. For an RGB-image with
three channels, there are effusively three kernels and the value is tripled. The dimensions
of each kernel is also known as kernel size.[43]

As understood from above, a convolution filter may help a neural network to abstract
a portion of the information which is contained in the input data. Yet the previous
example has also shown how the purpose of each convolution filter is fairly specific.

2.2 neural network basics 8

Description Filter matrix / Kernel Resulting image

Original image / identity filter

0 0 0
0 1 0
0 0 0

Smoothing

 1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Sharpening

 0 −1 0
−1 5 −1
0 −1 0

Edge Detection

0 1 0
1 −4 0
0 1 0

Table 2.1: Results of various convolution filters.

To enable an artificial neural network to learn different representations, a single filter
per layer is not enough. To increase the abstraction ability, each convolution layer will
typically have a number of individual filters which are applied to the input data.[70]
This number is can be referred to as the filter count or simply depth.[43]

Further convolution layer parameters are the application of zero-padding and stride.
Here, stride describes the step size between individual application of the convolution
kernel. The default convolution calculations can be viewed as having a stride of one.
A stride of two means every second window is skipped. A stride of three means the
convolution is only applied every three spatial positions, and so on.[70]

The final piece to understanding convolutional neural networks are pooling layers. Fun-
damentally, they function the same way convolution layers do, but have a few important
distinctions and are used for different purposes. Unlike convolution layers, they do not
have weights but perform a simple mathematical maximum or averaging operation on
their spatial window. Therefore, they are referred to as max-pooling and average-pooling
layers, respectively. Additionally, for pooling layers the kernel-size and strides are cho-
sen, so the subregions do not overlap.[70] This can for example be accomplished with a
2x2 kernel and a stride of two.[43] As a consequence, pooling will reduce the size of the
spatial dimension of the tensor. This way, pooling helps to reduce the complexity and
number of parameters of a neural network.

2.2 neural network basics 9

2.2.2 3-Dimensional Convolutional Neural Networks

Fundamentally, the concept of 3-dimensional convolutions is not difficult to grasp if one
understands 2-dimensional convolutions. Instead of a matrix with two dimensions (or
second order tensor) the kernel simply becomes a third order tensor with three dimen-
sions. Geometrically, one can visualize such a tensor as a cube of values. Instead of a
single image, this kernel can now be applied to a sequence of frames. A 3-dimensional
operation can thus process temporal information in addition to spatial information.[31]
Ji et al. show in 2012 that building deep neural networks based on 3-dimensional convo-
lutions is feasible and yielded competitive results at the time. Yet they relied on hand-
crafted convolutions in the first layer and deployed a comparatively simplistic architec-
ture by modern standards.

2.2.3 Residual Neural Networks

Residual neural networks were originally published in 2016 by He et al. after winning
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2015 and are con-
ceptually an important addition to many neural network architectures.[24]

Residual learning as a technique in itself is not necessarily specific to image-processing.
Yet, especially image networks have been shown to benefit greatly from this. Especially
in comparison to the earlier VGG architectures[55], ResNets were both more effective
and efficient, yielding better results at a fraction of the computational cost.

Blocks in residual networks possess an addition shortcut connection between their
input and output. The shortcut is typically the identity mapping of the input and is
combined with the block output by simple addition. See figure 2.1.

Figure 2.1: Simplified illustration of a residual 2D-CNN building block used in residual learning.

In their reasoning, He et al. cite the degradation problem as the core motivation for
residual learning. As conventional network sizes increase, the quality of the model (e.g.
accuracy-score) only follows up to a certain saturation point. Following this point, the

2.2 neural network basics 10

accuracy will start to degrade when more layers are added. This is counter-intuitive, as
a larger network should theoretically always perform at least as good as a smaller one.
Such a network could easily be constructed by a human by copying the parameters of
the smaller network and using neutral weights (i.e. identity mapping) in the additional
layers. Research has also indicates this problem does not stem from overfitting as one
may initially assume.[23][55] Thus, He et al. believed the degradation problem to be
rooted in the optimization-difficulty of a network.

In their analysis, the authors verify their residual learning approach on an aggressively
large residual network with 1202 layers. They find the shortcuts adequately address the
optimization difficulty problem, as the network exhibits only a relatively small differ-
ence in training and test error. They argue the remaining difference is due to overfitting.

Concerning the implementation, the authors offer a few options. First, regarding the
identity-shortcuts shown in figure 2.1 also consider a linear projection as alternative.
Here, the shortcut is additionally parameterized with a trainable weight-matrix. Al-
though the authors deem these parameters to be unnecessary and thus uneconomical in
their experimental setup.

Secondly, when the number of convolution filter change, as they typically do within
a CNN, the shortcut can not simply be applied to the layer output due to the mismatch
in dimensions. Here, two options are offered.

• The simplest approach is simple zero-padding: the missing dimensions are simply
filled with zeros.

• As previously discussed, projections can also be used to adjust the shortcut dimen-
sions. For instance, a convolutional layer with a 1x1 and appropriate filter size can
be used to adjust the number of channels.

Further research by Veit, Wilber, and Belongie has shown residual blocks help neural
networks combat the vanishing gradient problem by decreasing the average length of the
path the signal takes through the network.[64] Consequently, even very deep residual
networks may exhibit relatively shallow paths. The authors compare this behavior to an
ensemble of shallow networks and conclude network depth still to be an open research
topic.

2.2.4 Long Short-Term Memory Networks

Long short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber in 1997

as an extension to conventional recurrent neural networks RNN.[25] Recurrent neural
networks are an important class of artificial neural networks which allow processing
sequences of variable length. Thus, they are also of interest when analyzing video data
with its sequential temporal information. Long short-term memory networks were pri-
marily invented to address the vanishing and exploding gradient problems common
with recurrent network architectures. Hochreiter and Schmidhuber identified the un-
derlying issue as an error back-flow problem occurring during the back-propagation

2.2 neural network basics 11

through time algorithm. They solve this issue by enforcing a constant error flow through
the internal states of the LSTM-Units.
An important addition present in modern implementations of LSTM is the forget-gate,
proposed by Gers, Schmidhuber, and Cummins.[18] It allows each unit to learn which
information of previous cells to discard. In this chapter, solely the extended long short-
term memory-units with forget gates are discussed. Figure 2.2 shows the structure of
such a LSTM-Unit.

Figure 2.2: Illustration of a LSTM-unit

Each LSTM-unit can have three inputs: the sequential data stored in xt, the cell state of
the previous cell ct−1 and the hidden state of the previous cell ht−1. Here t denotes the
time step or position of the input sequence and LSTM-unit. A long short-term memory
cell consists of four internal gates, which can most concisely be expressed by equation
2.1 [77].

it

ft

ot

gt

 =

σ

σ

σ

tanh

 M

ht−1

xt

 (2.1)

Here it is the input gate, ft is the forget-gate, ot is the output gate and gt is the input
modulation gate. M denotes a matrix of trainable parameters of appropriate dimensions.

Element-wise multiplication of the gate information is used to calculate the cell state
ct and the hidden state ht of the current unit. See equations 2.2 and 2.3.[77]

ct = (ft ∗ ct−1) + (it ∗ gt) (2.2)

ht = ot ∗ tanh(ct) (2.3)

2.3 video classification architectures 12

To understand LSTM, one can think of the cell state ct as the memorized information of
each cell and the hidden state ht as the prediction of each cell. Each cell therefor con-
siders the input sequence xt, as well as the prediction and memory of the previous cell,
for its own predictions and state. Importantly for this thesis, it is also noteworthy that
the forget-gate and the input modulation gate fulfil similar roles as attention. The forget-
gate functions similar to the noise reduction properties of an attention mask, while the
input modulation gate respectively highlights features of interest.

2.3 video classification architectures

Now that the fundamental building blocks of neural networks have been explained
and a number of basic image classification architectures have been addressed, video
classification architectures can be examined.

2.3.1 2-Dimensional Convolutional Neural Networks

Despite being designed for image processing, 2-dimensional convolutional neural net-
works can be adapted for video processing with relatively little effort. Naively, one may
train a single network on a selection of frames and combine the predictions by averaging
to receive the final classification of a clip. It is trivial to see this approach is fairly limited,
as it ignores any temporal context.

Even more simply, Karpathy et al.[33] use a 2D-CNN trained on a singular frame of
the video as a baseline for their research into more advanced architectures. Firstly they
propose a number of simple architectures they differentiate by the stage the temporal
information is fused within the network structure. Appropriately, they name these ap-
proaches early, late and slow fusion. See Figure 2.3.

Figure 2.3: Fusion approaches. Red, green, blue and yellow boxes signify convolutional, normal-
ization, pooling and dense layers respectively. White and gray boxes represent frames
and selected frames of the video. Image source: “Large-scale video classification with
convolutional neural networks” by Karpathy et al.

For early fusion, they use a single 3-dimensional convolution layer (see section ??) to
process a small amount of T=10 frames together. Afterwards, they stack 2D-CNN layers
as usual.

2.3 video classification architectures 13

The late fusion network classifies individual frames in a distance of 15 frames. Both
network paths share the same parameters. The network is finalized by a stack of dense
layers which combine the outputs and may analyze temporal information resulting from
motion between the frames.

Finally, slow fusion aims to combine the other two approaches and makes heavy use
of 3-dimensional convolution layers. Notably, the parallel sections of layers share the
weights which each other.

As an alternative approach Yue-Hei Ng et al. experimented with another five 2D-CNN
architectures to classify video data.[75] Similarly, they first prepare convolutional fea-
tures from each video frame by using a regular 2D-CNN and then employ various
strategies to combine the network outputs. However, unlike Karpathy et al. they refer
do not refer to the combination approaches as fusion, but as pooling.

• Conv Pooling. Max-pooling is performed across the CNN-outputs. Afterwards,
fully-connected layers are used.

• Late Pooling. First fully-connected layers are used to process each CNN-output
individually before max-pooling is performed.

• Slow Pooling. Max-pooling and fully-connected layers are used in alternation,
while forming a hierarchical structure.

• Local Pooling. Several distinct max-pooling operations and fully-connected layers
are used over a window of frames.

• Time-Domain Convolution. A 1D-Convolutional layer is used to combine the 2D-
CNN outputs. Afterwards, a max-pooling and fully-connected layers is used.

Regardless of the pooling method, each network is finalized with a softmax layer.

As Karpathy et al. show, it seems only natural to eventually progress from 2-dimensional
convolutions to 3-dimensional convolutions to capture the temporal information con-
tained in video datasets.

2.3.2 3-Dimensional Convolutional Neural Networks

One such 3D-CNN architecture are the multiresolution CNNs also proposed by Karpa-
thy et al.[33] To use the limited computation power available, they divide the video data
into two different streams. First a context stream, which takes a 50% down-sampled ver-
sion of the input data and secondly the fovea stream, which takes the center-cropped
region with 50% of the size of the original input data. With this approach, they aim to
make use of the implicit camera-bias, suggesting the object of interest typically to be in
the center of the frame. The context-stream on the other hand is intended to efficiently
process larger scale context information.

As both stream inputs have the same spatial dimensions, the same network architec-
tures can be used. Finally, both streams are concatenated by two dense layers. See figure

2.3 video classification architectures 14

2.4.

Figure 2.4: Multiresolution CNN. Red, green, blue and yellow signify convolutional, normaliza-
tion, pooling and dense layers respectively. Image source: “Large-scale video classifi-
cation with convolutional neural networks” by Karpathy et al.

As an alternative, Tran et al. proposed another 3D-CNN architecture in 2015 which pri-
marily leverages small 3x3x3-kernels.[61] They use a stride of one in all directions and
2x2x2 3-dimensional pooling, which the notable exception to pool 1, which uses 1x2x2

and stride 1x2x2. This way, they intend to preserve the temporal information as long as
possible. See figure 2.7.

When trained on the Sports-1M dataset, they used 16 frames of 112×112 resolution and
managed to outperform the results of the earlier multiresolution CNN.

Figure 2.5: Illustration of the 3D-CNN architecture by Tran et al., leveraging small kernels. The
numbers signify the number of filters or dense neurons. Red, blue and yellow signify
convolutional, pooling and dense layers respectively. The final layer is a softmax layer.

However, when examining 3-dimensional convolutional neural networks, an important
observation has to be made. Due to the curse of dimensionality, the number of pa-
rameters and computing operations increase exponentially when using cubic convolu-
tions.[21] Efficient use of the available resources therefor becomes a pressing concern.

2.3 video classification architectures 15

2.3.3 Long Short-Term Memory Networks

Yue-Hei Ng et al. demonstrate how LSTM can relatively easily be used in conjunction
with a 2D-CNN to classify human actions.[75] They use a 2D-CNN as a feature extractor,
or embedding model, to analyze the spatial information in each frame and use the net-
work activations as a feature vectors. These vectors are fed into a deep, five-layer LSTM

with 512 units. See figure 2.6.

Figure 2.6: Yue-Hei Ng et al. combine 2D-CNN to process spatial information and LSTM to
process temporal information. Image source: “Beyond short snippets: Deep networks
for video classification” by Yue-Hei Ng et al.

Interestingly, this architecture allows using different image classification architectures as
backbones models. Yue-Hei Ng et al. use the AlexNet[38] and GoogLeNet[59] architec-
tures and verify their results on the Sports-1M[33] and UCF101[56] datasets.

2.3.4 Two-Stream Networks

Two-Stream architectures were first proposed by Simonyan and Zisserman[54] and are
particularly interesting because they allow the usage of conventional 2D-CNN architec-
tures to process temporal information. This has two major benefits:

• As a 2D-CNN used as backbone, advancements in image-classification can directly
be used to the benefit of this architecture.

• This architecture is very efficient, as only roughly twice the number of parameters
of the backbone architecture are used.

As the name suggest and similarly to the Multiresolution CNN,[33] this architecture ad-
dressed video data with two different networks and a late fusion approach. The first spa-
tial network classifies individual frames as earlier described in section 2.2.1. The second

2.3 video classification architectures 16

temporal network classifies the optical flow (see section 2.8.2) of the video dataset. Typ-
ically, both networks use the same 2D-CNN backbone architecture or versions thereof.

While this approach is fairly straight-forward, two implementation details should be
regard. First, Simonyan and Zisserman propose a number of different approaches to
utilize and stack the optical flow data. Secondly, there are multiple fusion methods for
the individual networks.

Regarding the optical flow, there are a high number of possibilities. Firstly, as a single
optical flow frame may yield too little information, the authors suggest stacking the
optical flow of multiple consecutive frames. These resulting displacement vectors can
easily be treated as individual channels for the usage in a 2D-CNN. This leads to a
number of 2L channels, where L is the number of stacked frames.

As a consequence of optical flow stacking, [33] differentiate between regular optical
flow stacking and trajectory stacking. The former is the calculation of optical flow be-
tween frames 1 and 2, 1 and 3, 1 and 4 ... and so on. Trajectory stacking track a pixel
across multiple frames, e.g. from frame 1 to 2, then from 2 to 3 and so on.

Furthermore, there is the option of bidirectional optical flow. As the name suggests
here, additional information is provided by additionally calculating the optical flow
stack in the opposite direction. This addition yields another two channels of informa-
tion for each optical flow stack.

To combine the predictions of the two streams, the authors recognize three different
fusion methods. Firstly, they address fusion by using dense layers but dismiss this as it
was not feasible due to overfitting. Subsequently, they identify fusion by averaging and
fusion by using a support vector machine as viable options.

Figure 2.7: Two-Stream architecture using a simple backbone architecture. Image source: “Two-
stream convolutional networks for action recognition in videos” by Simonyan and
Zisserman.

Simonyan and Zisserman verified their architecture on the HMDB51[39] dataset (see
chapter 2.6.1) and UCF101[56] dataset (see chapter 2.6.2).

As can be seen in figure 2.7 the authors use a rather simple backbone architecture for
the spatial and temporal network. Importantly, this backbone can be exchanged with
more advanced architectures like ResNets[24] (see chapter 2.2.3).

2.3 video classification architectures 17

2.3.5 (2+1)D CNN

As described in section 2.2.2, 3-dimensional convolutional neural networks suffer from
the curse of dimensionality. To combat this problem, Tran et al. in 2018 proposed "(2+1)D"
convolutions.[62] At its core, this (2+1)D convolution block simply factorized the 3-
dimensional CNN layer into a 2-dimenionsal CNN layer and a subsequent 1-dimensional
temporal CNN layer. See figure 2.8.

Figure 2.8: Illustration of a regular 3D-CNN block (left) and a factorized (2+1)D block (right)

Despite the apparent simplicity of this change, Tran et al. identify a number of benefits.
First, due to this change, the number of rectifier activations effectively doubles. The in-
creased number of nonlinearities allows the network to learn more complex functions.
Secondly, when directly compared to 3-dimensional convolutions (2+1)D-convolutions
are much easier to optimize, accelerating the training process. Lastly, when the same
number of filters are chosen, the (2+1)D-convolutions will have fewer parameters than
their 3-dimensional counterparts, making the network more lightweight.

In their experiments, Tran et al. adjust the number of filters in their (2+1)D blocks to
be roughly equal to the equivalent 3D block. Thus, they created networks which were
easily comparable thanks to their similar number of parameters. Furthermore, they com-
bined their research with the residual neural network concept described in section 2.2.3,
creating residual (2+1)D, or R(2+1)D-blocks.

For verification, the authors adapted the ResNet-34 architecture as 34-layer R(2+1)D
net. This architecture consistently performed better than their conventional counterparts,
both during training and validation. They used the HMDB51[39], UCF101[56], Sports-
1M[33] and Kinetics[5] dataset to verify their results and produced state-of-the-art re-
sults at time of publication for all four. Furthermore, they also showed various other
architectures, like the two-stream architecture (see section 2.3.4) profits from (2+1)D con-
volutions.

2.4 attention 18

2.4 attention

In the most general form, attention is a function of keys K, a query q and values V . The
goal is to weight the values in response to how important the key is in relation to the
respective query. Mathematically, the first step can be expressed by equation 2.4.[7]

c = a(K, q) (2.4)

Here, c can be understood as compatibility score of the key and query. The function a
can for instance be the simple dot-product or a function with learnable weights. The
attention is directly calculated from this score. See equation 2.5.[7]

α = p(a(K, q)) (2.5)

The function p can for instance be the softmax function to make sure the attention value
is within the bounds of [0, 1]. When this attention is applied to all values i, it can be
expressed like equation 2.6.[7]

A(q, K, V) = ∑
i

αi ∗ vi = ∑
i

p(a(ki, q)) ∗ vi (2.6)

In summary, the value is amplified or reduced by the attention α. In the context of
computer vision, the value typically is an image or contains similar visual data. Each
element vi could be a pixel in this example. Thus, each attention value highlights or
hides individual pixels or spatial regions in the visual data.[7]

Importantly, the key and query information which is used to calculate the attention
can come from various sources and can also stem from the spatial data. Further, the
calculations of function a and p can be much more complicated and contain a variety of
weights.

As this form is only the most general description of attention, a lot of detail is left to
the specific implementation. This chapter will give an overview of attention categories
and will discuss a number of specific implementations relevant for this thesis.

2.4.1 Taxonomy

An important part of attention mechanisms is not only how the attention is calculated,
but also how and where it is applied. To differentiate these For this thesis, the taxonomy
proposed by Chaudhari et al.[7] is used. Importantly, each category is not mutually ex-
clusive and a specific implementation of attention may fall into more than one category.
Also, not all types may directly apply for the task of video classification. See table 2.2.
Typically, when working with sequential data, only a single input sequence is considered
at a time. If the output is also a sequence, Chaudhari et al. refer to this as distinctive
attention. This type of attention can for example be found in machine translation tasks,
where an input sentence needs to be translated into an output sentence.

2.4 attention 19

Category Type

Number of Sequences distinctive, co-attention, self

Number of Abstraction Levels single-level, multi-level

Number of Positions soft/global, hard, local

Number of Representations multi-representational, multidimensional

Table 2.2: Taxonomy of attention after Chaudhari et al.[7]

In contrast, co-attention weights apply to multiple input sequences at the same time
and try to capture interactions between the inputs. For example, in the field of visual
question answering multiple questions may be regarded simultaneously to detect con-
text clues.

Lastly, self-attention concerns tasks like classification. Here, only the input is a se-
quence. Self-attention aims to capture relations of elements within the input sequence.
This approach can be useful in natural language processing (NLP) applications, as words
like verbs and nouns may or may not be in direct relation to each other.

When considering the number of abstraction levels, an attention mechanism may have
a single level or multiple levels. Good examples for multi-level attention are visual
attention modules, which can be inserted into various stages of a convolutional neural
network.[29][49][48][66][69] As each layer of a CNN works with different abstraction
levels of the input data, each attention module may capture different properties at each
level.

In the third category, hard and soft attention represent two opposing approaches to
attention. Hard attention aims to sample a subset of the input data for the network
to process. This approach can reduce the computational cost, as the amount of data is
reduced. At the same time, extracting a window from the input data results in a non-
differentiable network which can not easily be trained with backpropagation[73].

In contrast, soft attention (also called global attention) can be envisioned as a mask
of weights which is applied to the input. High values in the mask will highlight points
of interests, while values close to zero can effectively hide parts of the data. The neces-
sary weights can easily be learned through backpropagation, but in turn require more
computations to calculate.

Finally, local attention can be regarded as a compromise between soft and hard at-
tention. Here, the attention layer only considers a small window within the input data
for its soft attention mask. Thus, similar to hard attention, only a section of the data
is considered at a time. In comparison to the global soft attention mask, much fewer
computations need to be performed.

In the realm of natural language processing, feature representations like word-embeddings
are commonly used. Numerous embeddings exist, and each may capture different prop-
erties of the original input. Multi-representational attention may be used with two or
more representations of the input data to combine and evaluated them. Similarly, a word

2.4 attention 20

embedding typically is a vector and multidimensional attention can be used to weigh
the importance of the individual dimensions of the embedding.

In the following the focus is on visual attention approaches which can be used for
human action classification.

2.4.2 Learn to pay Attention

In 2018 Jetley et al. proposed a simple and modular attention unit which is intended
to be inserted into many 2D-CNN architectures.[29] As a shorthand, it will be referred
to as L2PA module. Their approach aims to correlate the high-order visual information
contained in the last layer of the CNN with the more local information contained in the
intermediate layers of the network. They denote these component as the global descrip-
tor g and the local descriptor L, respectively.[29]

L =

l1,1 l1,2 . . . l1,j

l2,1 l2,2 . . . l2,j
...

...
. . .

...

li,1 li,2 . . . li,j

 (2.7)

Here l is a tensor with the spatial dimensions i and j and a number of channels. The
specific dimensions of the values of the local descriptor depend on what layer it is
extracted from. g is a vector and has a size of 512 in the following example. Figure 2.9
illustrates this.[29]

Figure 2.9: "Learn to Pay Attention"-modules applied to the VGG16 architecture. Image source:
“Learn to pay attention” by Jetley et al.

2.4 attention 21

To calculate the attention first the compatibility score c is computed. This is the dot
product of a trainable weight vector u and the sum of each spatial entry L and the global
descriptor. The size of u is chosen appropriate to the dimensions of L and g.

ci,j = 〈u, li,j + g〉 (2.8)

Importantly, this calculation demands the number of channels of L and the number of
elements in g to be equal. Should the numbers differ, a dense layer is inserted to adjust
the size of g.[29]
After calculating the compatibility scores, the attention mask is derived by applying the
softmax function to the result. During implementation, careful attention should be paid
that this softmax function is applied over both spatial dimensions of c.[29]

ai,j =
exp(ci,j)

∑i ∑j exp(ci,j)
(2.9)

The final attention ga has the same spatial dimensions as its associated local descrip-
tor.[29]

ga =

a1,1 . . . a1,j

...
. . .

...

ai,1 . . . ai,j

 (2.10)

This attention module can be inserted at an arbitrary position in the base network. Al-
though the authors note, the module requires fairly mature abstractions in the local
descriptor. Therefor, they recommend inserting their module at the later stages of the
network. Furthermore, as depicted, multiple attention modules may be used. For this
approach, the authors propose two combination strategies. In their first approach, they
concatenate the attentions g1

a...gn
a and finalize the model with a fully connected layer. In

their second approach, separate classifies are used by attaching individual dense layers
to each result. Afterwards, these predictions are combined by averaging. In their find-
ings, the authors find the concatenation approach to yield slightly better results.[29]

Jetley et al. test their attention mechanism on the VGG16 architecture[55] and use the
32x32 CIFAR-10/CIFAR-100 dataset[37] and a 80x80 version of the CUB-200-2011 dataset[65]
to verify their results.

2.4.3 Attention-Gated Network

Attention-gated networks were proposed by, Schlemper et al. and can be understood as
an extension and generalization of the mechanism of Jetley et al.[29]. They contribute
three central improvements:[49][48]

• First they extend the core mechanism, thereby addressing the bottleneck described
in the previous chapter.

2.4 attention 22

• They propose a soft-attention alternative to the hard-attention used before.

• Finally, they propose a grid attention mechanism, which aims to evaluate localized
information in images more finely.

The crucial change of the attention mechanism is realized by expanding the compatibil-
ity score equation 2.8 to the following.[49][48]

ci,j = WΨσ(Wl li,j + Wgg + bg) + bΨ (2.11)

Here WΨ, Wl and Wg are learnable weights, while bg and bΨ are learnable biases.
Implementation-wise, this can easily be realized with 1D-CNN layers with a 1x ker-
nel and a dense layer. In this case, Wg and bg are part of a dense layer while Wl is part
of a 1D-CNN. The final parameters WΨ and bΨ are part of a second 1D-CNN.

Another advantage of this approach is the introduction of the internal channel count
Cint to describe the number of neurons of the dense layer and the number of filters in the
1D-CNN layers. Using this hyperparameter, the total number of trainable parameters of
the module can flexibly be scaled up or down if necessary. If not otherwise specified,
Cint = 1 is assumed.[49][48]

Concerning the implementation of soft-attention, the authors firstly notice the applica-
tion of the default softmax function (see 2.9) to be too sparse. Instead, they opt for using
the following alternative, which has similar properties but does not limit the sum of the
attention mask to be one.[49][48]

ai,j =
ci,j − cmin

∑i ∑j(ci,j − cmin)
(2.12)

Still, when utilizing hard-attention, the predictions are directly made from the gener-
ated attention. Schlemper et al. instead, propose to use the attention as a soft mask.
They element-wise multiply the attention mask ga with the original local descriptor L.
This way, the attention is able to highlight regions of interest in the spatial data while
also concealing background noise.[49][48]

Last but not least, the authors notice the use of the global descriptor g as a single vector
ignores a lot of the more localized spatial information. As an alternative, they propose
a grid-based processing of this data. For this, they extract the information of the last
2D-CNN layer before the final pooling is performed. This yields a new tensor g with
few spatial dimensions (e.g. 7x7) and a high number of channels (e.g. 1024). Each spatial
position of g is used as a separate 1024-size vector when calculating the compatibility
score and is applied to the respective spatial positions in L. As a consequence, when
choosing the layer to extract L from, one has to make sure the number of spatial posi-
tions is a multiple of the spatial positions of g. For example, g being of size 7x7 would
necessitate L to be of size 14x14, 21x21, 28x28 ... and so on. During the implementation
of equation 2.11 one can simply use another 1D-CNN layer with Cint filters instead of a

2.4 attention 23

dense layer to process the global descriptor.[49][48]

Figure 2.10: Gated attention unit. Here g has the spatial dimensions 3x3 and local features (here
F) are subdivided accordingly into a grid. Image source: “Attention-gated networks
for improving ultrasound scan plane detection” by Schlemper et al.

Schlemper et al. verify their mechanism on the SonoNet[3] architecture. As dataset, they
used a total of 2694 images of fetal ultrasounds with a final resolution of 208x272[48].

2.4.4 Residual Attention Network

In their attention mechanism, Jetley et al. and Schlemper et al. try to correlate local and
global features to produces attentive features for the class prediction. Wang et al. pro-
pose an entirely different approach. Instead, they suggest a fully end-to-end trainable
soft attention mask which can be inserted into residual neural network architectures
(see section 2.2.3). In their design, the attention module splits the network path into a
trunk branch and a mask branch. The trunk path contains regular residual layers as part
of the usual network setup and is thus trivial. The attention itself is calculated in the
mask branch. The mask branch first increases the receptive field by performing aggres-
sive down-sampling using pooling layers. This way, the mask branch intends to capture
global features in the data rather than local ones. Each down-sampling step is accompa-
nied by a number of residual layers to capture the relevant information. In the second
part of the mask branch, interpolation is performed to reproduce the original spatial
dimensions. Each interpolation step is also accompanied by further residual layers, and
an equal number of pooling and interpolation steps are performed.[66]

Lastly, the authors also introduce another shortcut connection before every pooling
layer and after every interpolation layer. This shortcut connection is also parameterized
by using a residual layer.[66]

The soft attention mask branch produces a tensor with the same number of spatial
dimensions and channels as the input. As a final operation of the mask branch, a so-
called attention function is applied. This function is essentially an activation function,
like a sigmoid function.[66]

2.4 attention 24

To merge the mask branch with the trunk branch, the authors employ a technique they
name attention residual learning. They note if the simple element-wise product were to
be performed, the attention module could potentially break desirable properties within
the trunk branch. Using multiple attention modules with consequently lead to a degra-
dation of the of features within the deep layers and a drop of the overall performance
of the model. Instead, they propose the following function:[66]

Hi,c(x) = Ti,c(x) + (Ti,c(x) ∗Mi,c(x)) = Ti,c(x) ∗ (1 + Mi,c(x)) (2.13)

Where H, M and T are the outputs of the attention module, mask branch and trunk
branch respectively. The operations are performed element-wise for all spatial locations
i and channels c.

Using this function in the worst case, the output of the mask branch can default to
zero and the attention module will produce the trunk output. This way, the authors
argue, a residual network with attention modules will always perform at least as good
as it would without them.

Figure 2.11 illustrates the structure of the entire attention module within a proposed
residual neural network architecture.[66]

Figure 2.11: Overview of the residual attention network architecture. Image source: “Residual
attention network for image classification” by Wang et al.

With this setup, the attention modules function both as feature selectors and noise sup-
pressors. High values in the mask branch highlight regions of interest, while low values
in the mask branch mask background information.[66]

Considering the implementation of this module, a few things have to be considered.
First, the authors recommend using multiple attention modules to best capture the in-
cremental nature of residual learning. Because the mask branch is intended to capture
global properties rather than local ones, at the start of the network more down-sampling
has to be performed. As the network progresses and the spatial dimensions decrease,
the amount of down-sampling necessary within the attention modules also decreases.
As every down-sampling and up-sampling is also accompanied by an additional short-

2.4 attention 25

cut path, the number of shortcuts can also be used to measure the size of the receptive
field of the module. In their proposed architecture Wang et al. use two, one and zero
shortcuts for their three attention modules respectively. Also, every pooling step halves
the spatial dimensions by two. Therefor, when inserting an attention module, the spatial
dimensions of the data need to be divisible by a respective power of two.[66]

For further customization, the authors introduce a few hyperparameters and alternatives
for their modules. First, as previously described, each attention module uses an attention
function. The authors suggest three variants for this function.[66]

• Mixed attention. Here, the simple logistic sigmoid activation is used. The authors
consider this the recommended default variant.

• Channel attention. The L2-norm is used.

• Spatial attention. A channel-wise z-score standardization is performed. After-
wards, the sigmoid activation is used.

Additionally, as can be seen in figure 2.11, the authors use the hyperparameters p, t,
and r to parameterize their modules. Each variable corresponds to the number of resid-
ual layers padding the attention module, within the trunk branch and within the mask
branch, respectively. The default value for p and r is one, and the default value for t
is two. Finally, the number of shortcuts as described above can also be considered a
hyperparameter.[66]

Wang et al. use the CIFAR-10, CIFAR-100[37] and ImageNet[11] datasets to validate their
proposals. As underlying residual network architectures, they use classic ResNets[24]
(see section 2.2.3) and the more advanced ResNeXt[72] and Inception-ResNet[58] archi-
tectures.[66]

2.4.5 Convolutional Block Attention Module

The convolutional block attention module (CBAM) was proposed by Woo et al. and follow
a modularized approach similar to the previously discussed residual attention modules.
Further, the authors note their convolutional block attention module to be an extension
of Squeeze-and-Excitation Networks (SENets)[28]. While SENets "use global average-
pooled features to compute channel-wise attention"[69], CBAMs also use max-pooled
features and additionally apply this technique to spatial information. Figure 2.12 shows
the structure of a convolutional block attention module. Here,

⊗
denotes the element-

wise product.[69]

The channel attention module intends to weight the importance of different features
contained in the channels. For this, the global average-pooling and global-max pooling
is collected from the original feature tensor F, resulting in two vectors. The size of both
vectors is the channel count of F. The authors deem average-pooling alone to be an

2.4 attention 26

Figure 2.12: Convolutional Block Attention Module applied to convolutional features F. Image
source: “Cbam: Convolutional block attention module” by Woo et al.

insufficient representation of the original features. They argue the max-pooling features
contain a different aspect of the data and are therefor valuable to include.[69]

To process both vectors, a simple multilayer perceptron (MLP) with a single hidden
layer is used. Its size of the output layer is equal to the input layer. The number of
neurons of the hidden layer is controlled by the reduction-ratio hyperparameter r. For
instance, a value of r = 2.0 would result in a hidden layer half the size of the input
layer and output layer. The authors suggest r = 16.0 as default value. Although the
multilayer perceptron is applied separately to each input, the weight-parameters shared.
The hidden layer uses the Rectified Linear Unit (ReLU) activation function.[69]

Finally, the both outputs of the multilayer perceptron are added, and the sigmoid
function is applied to the sum. Equation 2.14 concisely shows the operation done in the
channel attention module.[69]

Mc(F) = σ(MLP(GlobalAveragePooling(F)) + MLP(GlobalMaxPooling(F))) (2.14)

As previously seen, the resulting channel attention map Mc is then applied to F by
element-wise multiplying it with each spatial position to produce F′.

The spatial attention module intends to capture inter-spatial information within the
features. Mirroring the channel attention module first the channel-wise average-pooling
and max-pooling are performed. On a technical level, these operations are different from
the typical pooling operations performed in a neural network. More adeptly, they can
be described as mean-reduction or max-reduction along the channel-dimension. This
results with a tensor with the original spatial dimensions and two channels.

To this tensor, a convolutional layer with a single filter is applied. The kernel of this
operation is described by the hyperparameter k. The authors suggest the default value
of k = 7x7. Equation 2.15 summarizes all steps taken in the spatial attention module.[69]

Ms(F) = σ(ConvLayerk=7x7
f ilters=1(concatenate(ReduceAvg(F′); ReduceMean(F′)))) (2.15)

Just as previously, the resulting spatial attention Ms(F) by element-wise multiplying
it with each channel of F′ to produce F′′. F′′ in turn, is added to the original feature
tensor F to produce the final attended features.

2.5 post-hoc attention 27

Similarly to the residual attention module discussed beforehand, CBAM effectively
also uses the benefits of what Wang et al. describe as residual attention learning. The
attention is added to the original features the same way as seen in equation 2.13. In the
worst case, the convolutional block attention module can default to zero, leaving the fea-
tures unchanged. Thus, one can expect a network with additional convolutional block
attention modules to perform at least as good as one without them. Furthermore, each
module is lightweight, having only relatively few trainable weights.[69]

Unlike the attention mechanisms previously discussed, convolutional block attention
modules do not produce attention which can readily be visualized. Instead, the authors
use class activation mapping (CAM) to visualize their results. This technique is discussed
in detail in section 2.5.[69]

Specifically, the authors use Grad-CAM[50] to demonstrate that convolutional block
attention modules result in the network focusing better on the intended features in im-
ages.[69]

Woo et al. adapt the ResNet[24], ResNeXt[72], WideResNet[76] and MobileNet[27] archi-
tectures for their classification experiments. As dataset, they use ImageNet[11]. In their
results, they consistently outperform the respective baseline architectures, while the total
number of network parameters and computation operations remain largely unaffected.

2.5 post-hoc attention

Post-Hoc attention methods differs from the attention discussed so far, as they do not
require a module or learnable weights. Instead, they aim to produce visual explanations
from any trained neural network without any prerequisites.

Gradient-weighted class activation mapping (Grad-CAM) is one of these techniques and
extends regular class activation mapping[82]. It follows these four steps to calculate a
heat map for any convolutional layer of a neural network with an input:[51][50]

1. Forward-propagate through the network and save the activations for the convolu-
tional layer of interest.

2. At the output layer, set the gradients to zero, except for the desired class, which is
set to one.

3. Calculate the gradients for the layer of interest, by back-propagating through the
network.

4. Multiply the class activation scores and gradients for the layer.

The resulting score is the Grad-CAM heat map for the layer.
This technique has a number of major advantages. Firstly, the class activation can

be flexibly set in step 2. of the algorithm. This allows to inspect the class activation
mapping for the prediction of the neural network, but also allows investigating if the
network detects any other class of.

2.6 video datasets 28

Secondly, Grad-CAM can be combined with guided backpropagation to produce
a more fine-grained class activation mapping. This technique is called Guided Grad-
CAM.[50]

And finally, this technique is not limited to image classification and can easily be
adopted for other computer vision task like image captioning or visual question answer-
ing.[50]

2.6 video datasets

When discussing datasets for human action recognition, one first has to be mindful of
the task-specific challenges addressed in chapter 2.1. Each individual dataset may be
affected by these fundamental problems to a different degree, depending on its proper-
ties.

In their analysis of the subject, Kong and Fu [35] examine a number of popular
datasets. Beyond the obvious features of a classification dataset, namely the number
of records and the number of classes, they also identify further basic properties human
action recognition datasets can commonly be described by:
If the data is of a controlled or uncontrolled environment depends on where the video
data has been recorded. In a controlled environment, there typically is a single, fixed
recording position. The camera itself does not move, the illumination conditions are
stable, and the background is fixed. In an uncontrolled environment, none of these con-
ditions apply.
The number of views or angels a scene is recorded from. More views may yield addi-
tional information which would otherwise be obscured or hidden.
Most video-datasets are RGB-datasets, containing only information which can typically
recorded with cameras. More recently, RGB-D-datasets have been record, which contain
additional distance information.
In some datasets, the Number of subjects is known. This refers to the number of hu-
mans involved in recording the video data.

The information above is useful for a concise summary of a dataset. Yet there a many
more features and considerations which are important, but can not be evaluated at a
glance:

• Some datasets may contain inaccurate or noisy labels. For example, for the YouTube-
8M dataset the authors evaluated a variety of metadata, user input like anchor texts
and comments as well as other information to automatically generate labels [1].

• The video formats, resolutions and lengths, as well as the uniformity of those
features may be important details during implementation.

• Human actions can be subdivided into group actions and individual actions. A
dataset may contain both or exclusively one of the types.

• A dataset may be annotated with additional labels. Depending on what the
dataset is used for, information like this can be crucial.

2.6 video datasets 29

• The original source and the provider of the dataset may play a role for various
considerations. This can firstly be noteworthy when estimating the bias or other
shortcomings of the data. Secondly, license terms or information privacy consider-
ations may also be relevant when evaluating a dataset for its intended use.

• The predictability stage describes how quickly and when an action can be identi-
fied. Certain actions like playing billiard can be identified instantly or early, while
other actions like throwing can be predicted late [36].

• The specificity of a dataset may be an important property to consider. Some
datasets are concerned with highly specific parts of human actions, like gesture
detection. Other datasets are more generic, covering broader subjects like sports.
Finally, a heterogeneous dataset may contain action types from a broad spectrum
of situations [6].

Lastly, one may also want to consider other meta-properties which are difficult to deter-
minate. For example, it may play an important role in how well a dataset is researched. A
more widely analyzed dataset may have more reference implementations, benchmarks
and analysis, which in turn can help to verify new research and approaches.

2.6.1 HMDB51

The Human Motion DataBase (HMDB51) contains almost 7000 video clips manually
labeled into 51 categories and was the largest action dataset at time of release in 2011.[39]
For the creation of the datasets, students were asked to find video clips of humans
performing single non-ambiguous actions. These clips were chosen from movies, public
databases and internet sources like YouTube.

The authors subdivide the 51 classes into another five groups: 1) Facial actions like
smiling; 2) Facial action with objects like smoking; 3) Body movements like jumping, 4)
Body movements with objects like kicking a ball and 5) body movements with human
interaction like shaking hands. Practically this and other information is contained in the
additional meta-data annotations the authors provide:

• The visible body parts describes the visibility of the head, the upper body, the lower
body or the full body.

• The camera motion describes if the camera is moving or static.

• The relative view point describes if the actors are seen from the front, back, left or
right.

• The number of people describes if one, two, or multiple people are involved in the
action.

• The video quality described the presence of motion blur and compression artifacts
and is either low, medium or good.

Due to the varying data sources, the original videos differ in formats, resolutions and
frame rates. The data was scaled by the authors to a height of 240 pixels while main-
taining the original aspect ratio. The clips therefore vary in frame width. The frame rate

2.6 video datasets 30

was converted to 30 frames per second. Due to 59.9 % of the videos containing camera
motion, the authors assumed video-stabilization to be a common pre-processing step
and additionally provide a stabilized version of the same data.

An important note when working with HMDB51 is that individual clips were often cre-
ated from the same video source. As the authors point out, it is undesirably to use clips
from the same source in training and testing, as this would lead to uncharacteristically
good test scores. Furthermore, the various additional characteristics and annotations
should be distributed in a proportional fashion between the different sets. Therefore,
dividing the data in training and test sets is a non-trivial problem. Thus, the authors
provide three different splits which were hand-selected from randomly generated spits
while respecting the aforementioned criteria.

2.6.2 UCF101

The University of Central Florida UCF101 dataset[56] was conceived in response to a
number of perceived problems of video datasets of the time. The UCF101 is a superset
of its predecessor UCF Sports, UCF11 and UCF50. Many of which had relatively few
samples, records or were recorded in controlled environments. In distinction, UCF101

contains 13320 video clips across 101 action classes, contains clips from an uncontrolled
environment and was the largest video dataset at the time. The video data was manually
downloaded and labeled from YouTube. Similarly to the HMDB51 dataset, the authors
also subdivided UCF101 into 5 groups: 1)Human-Object Interaction like biking; 2) Body-
Motion Only like push-Ups; 3) Human-Human Interaction like hair cutting; 4) Playing
Musical Instruments like drumming and 5) Sports like fencing.

Unlike HMDB51, UCF101 does not have additional meta-data annotations. However,
the authors note their dataset to be challenging, as it contains poor lighting, cluttered
backgrounds and severe camera motion.

All videos have a resolution of 320x240 and a frame rate of 25 frames per second. The
clips vary in length, with an average length of 7.21 seconds. Some clips in the same
group share common features, such as backgrounds and actors, and there are three
different splits for action recognition provided. Additionally, a further three splits for
action detection and space-time interest points (STIP) features can also be downloaded.

2.6.3 Other Video Datasets

This section addresses another few noteworthy datasets, which warrant discussion but
can not be examined in detail.

The Sports-1M dataset consists of one million videos of 487 classes. A small amount
of the data is annotated with multiple labels. The labels were automatically generated
from metadata and may contain a small amount of inaccuracies and there may be a

2.7 image datasets 31

small overlap between the training and test data.Karpathy et al.

YouTube-8M is another dataset curated from YouTube videos, as the name suggests,
consisting of eight million videos. Instead of being a single-label classification dataset
like the other video datasets examined so far, YouTube-8M is a multi-label classification
dataset with a total of 4800 different entities.Abu-El-Haija et al.

The 20BN-something-something is noteworthy because of its unique focus on less spe-
cific actions. Rather than classifying specific actions like archery, the something-something
dataset has classes like picking [something] up, where [something] can be any object. Oth-
erwise, the dataset has over 100,000 videos ind 174 classes.[20]

2.7 image datasets

Image datasets are helpful when dealing with architectures like two-stream networks,
which internally use 2D-CNN. Firstly, they allow training and testing the backbone ar-
chitecture individually, before approaching video datasets. Secondly, pre-training may
be used. This section covers a few of the most common image datasets, before address-
ing this topic.

The CIFAR-10 and CIFAR-100 contain 60000 images in 10 and 100 classes respectively.
With a resolution of 32x32, it is a fairly small dataset, but is nevertheless commonly
used.[37] Due to its small size, it can be used to quickly train and test image classifica-
tion models.

The ImageNet dataset is arguable one of the most important image datasets due to its
size and due to its role in pre-training.[22] The project is constantly growing and the
largest image database.[11] The most used subset of the ImageNet data is the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset, containing 1,431,167 anno-
tated images in 1000 classes.[46]

The Imagenette dataset1 is a subset of ImageNet dataset with 10 easily identifiable
classes. It is therefor well suited to quickly train and troubleshoot image classification
models.

Finally, image datasets also play a small but important role in video classification. Pre-
training models on image-datasets, and especially the ImageNet dataset[11], is a well
established practice when using convolutional neural networks.[22]

This practice often helps image and video models to reach better scores on the tar-
get dataset. Although it should be noted that more recent research critical reevaluates
pre-training and shows that although it helps speeding up early training, it does not

1 See https://github.com/fastai/imagenette.

https://github.com/fastai/imagenette

2.8 data preprocessing 32

generally help to improve the final prediction quality, unless the video data used is
insufficiently in quantity.[22]

2.8 data preprocessing

This section addresses two data preprocessing steps common to computer vision. The
first topic of image data augmentation applies to image data and how it can be modified
to increase the amount of usable training data and reduce the risk of overfitting.

The second topic, optical flow, describes a technique which allows detecting and ex-
tracting motion information from video data. This is a crucial preprocessing steps for
two-stream networks and other architectures which rely on optical flow to process tem-
poral information.

2.8.1 Image Data Augmentation

A common problem in computer vision are insufficient quality and quantity of the
datasets, as both issues will usually result in overfitting. Image data augmentation en-
compasses a multitude of techniques to increase the number of usable training examples.
The core of these techniques is to modify the original data while leaving the image recog-
nizable. The resulting modified image can be used as another training example. Broadly
these techniques can be categorized into geometric image manipulations, advanced im-
age manipulations and deep learning based image manipulations.[53]

Basic geometric image manipulations consist but are not limited to flipping the image
vertically or horizontally, cropping the image, rotating the image, shear-rotating the im-
age, shifting the image, injecting noise or transforming the color space. Each method
should be evaluated carefully for the dataset. For example, horizontal flipping may be
useful for many image manipulation task, but may be detrimental when applied to a
character recognition dataset like MNIST[12]. The value ranges for each transformation
should also be selected carefully. For example, modifying the color space by adding too
large values may leave the image unrecognizable.[53]

More advanced manipulations like applying a kernel filter to an image can yield various
results, as seen in section 2.2.1. Other advanced techniques are combining images and
randomly erasing parts of images. Both of these techniques may be counter-intuitive to
understand, as they seem nonsensical from a human perspective. Yet they have been
shown to improve the results when training a neural network with data augmented this
way.[53]

Finally, a number of deep learning based techniques like adversarial training, GAN-
based data augmentation, neural style transfer or meta learning exist.[53] However, these
techniques can not be addressed here in detail, as they too advanced to fit the scope of
this thesis.

2.9 evaluation criteria 33

2.8.2 Optical Flow

Optical flow describes the movement of objects in relation to an observer, or the apparent
movements in case of a moving observer. Fundamentally, optical flow is calculated from
two images and aims to capture the motion that occurred between these images.[26]

Optical flow can be most easily be described by addressing a single pixel. First, as-
sume the exact positional change, both horizontally and vertically, of this pixel between
the images is known, then this change in the spatial positions can be described as a
vector. The resulting displacement vector contains the directions and magnitudes of this
apparent movement and is called the optical flow.[16]

In the case of dense optical flow, this vector has been calculated for each pixel in the
original images, resulting in a dense displacement field.[16]

The definition of optical flow depends on the assumption the exact positional change
of individual pixels is known. Practically, this is not a case and this has to be estimated.
Various methods to estimate optical flow and dense optical flow exist[4][16][44], which
can not be addressed within the scope of this thesis. Instead, the TV-L1 optical flow[44]
is used because it is readily available as part of the OpenCV library2 and because it is
commonly used in video classification with neural networks [5][57][32].

2.9 evaluation criteria

When evaluating a classifier, there are a few important metrics to consider.

• Top-1 accuracy. How often the classifier predicts the correct class. Sometimes the
top-1 misclassification score is used instead.

• Top-5 accuracy. How often the classifier has the correct class among its top five
predictions. The counter-value is the top-5 misclassification score.

• Training Time. Adding more trainable weight parameters will also affect the over-
all training time. The difference can for instance be measured by the number of
floating-point operations (FLOPs) involved in training the network.[69]

• Explainability. Specifically, when investigating attention mechanisms, the goal
also is to improve how well the neural network can be diagnosed. Visual attention
can help to show what a model focuses on. If the wrong objects or undesirable sec-
tions of a video are highlighted, the model maybe unsuitable or mistrained. This
property may also be difficult to determine, as the examination has to be done by
a human and can not be accurately judged by a metric. Also, evaluating more than
a few records of a dataset may be time-consuming.

Lastly, when evaluating these metrics, it is important to perform cross-validation to
ensure a high confidence in the produced values.

2 See https://docs.opencv.org/4.x/dc/d4d/classcv_1_1optflow_1_1DualTVL1OpticalFlow.html

https://docs.opencv.org/4.x/dc/d4d/classcv_1_1optflow_1_1DualTVL1OpticalFlow.html

3
R E L AT E D W O R K

So far, only subjects have been discussed which pertain directly to the subject of this the-
sis. Computer vision, artificial neural networks and the use of attention are extremely
broad fields of research and many relevant topics could not be included due to the scope
and time restraints of this work. This chapter intends to give an overview of other im-
portant developments and advancements, which may be relevant for interested readers.
For the sake of structure, this chapter has been subdivided into related work concern-
ing attention, other network architectures, different approaches to video classification in
general and finally other relevant research which does not fit into the aforementioned
categories.

3.1 attention

Attention itself is a broad and abstract concept and can be used in a multitude of ways.
Attention mechanisms in artificial neural networks were arguably conceived by Bah-
danau, Cho, and Bengio[2] and further popularized by Vaswani et al.[63]. These authors
work on the problem of machine translation, and attention generally enjoys popularity
in the domain of natural language processing.[17][7] Despite this, as shown in section
2.4 the concept can also be applied to computer vision.

So far, the topics discussed focused on image and video classification. Another im-
portant computer vision task is image detection and segmentation. In fact, the attention
mechanism proposed by Jetley et al., the gated-attention mechanism[48] and the convo-
lutional block attention module[69] were all also adopted and tested for this task. This

Another subject of interest is image synthesis and generation. For instance, atten-
tion can be used in generative adversarial networks (GAN). An example of this are Self-
Attention Generative Adversarial Networks (SAGAN). [78]

Further, some applications overlap into multiple domains. Visual question answering
and image or video captioning and description fall into both computer vision and nat-
ural language processing. xu2015show present one such attention model for the task of
image captioning, with a hard attention approach and a CNN-LSTM architecture[73].

Natural language processing concerning speech also intersects with the domain of
audio processing.

An entirely different field of research is the application of attention in graph mod-
els. Many modern tasks and problems can naturally be found as graph-problems. This
includes a number of topics originating in computer science and software design, like
the structure of the World Wide Web or social networks. Many real-world problems
from the domains of bioinformatics, chemoinformatics, urban planning and most impor-
tantly due to recent events, epidemiology, can leverage graphs. Due to the complexity

3.2 architectures 35

of patterns and relationships that can occur in graphs, attention is an attractive possible
solution to address these challenges.[40]

3.2 architectures

While some other image processing architectures have been mentioned, so far the focus
lied on regular CNN and their extension of ResNets.[24] Because many video processing
architectures use an image-model as backbone, it is important to be aware of more
recent advancements in this field. In the following, some of the most important recent
developments are chronologically summarized.

The GooGleNet architecture, also later known as Inception-V1, is based on a simple
observation.[59] Ideally, when linearly stacking convolutional layers in a model, the
kernel size should be selected depending on the size of the object of interest in the
images. I.e. a classifier for dogs would need different kernel sizes whether the dog was
photographed from a close or far angle. Accordingly, the authors proposed an inception
module which contains several parallel CNN layers with kernel sizes 1x1, 3x3, 5x5 and
a 3x3 max pooling operation. The resulting filters are concatenated at the end of each
block. This allows the network to detect features with receptive fields of various sizes
simultaneously. Additionally, to manage the number of necessary calculations the CNN
layer of kernel size 3x3 and 5x5 were prepended with CNN layers of kernel size of 1x1,
to limit the number of filters proactively.

This split-transform-merge strategy of dividing the data stream up with 1x1-convolutions
to process them individually was later adopted by the authors of the ResNeXt architec-
ture in a more extreme manner.[72] As a downside of the GooGleNet architecture, its
individual inception blocks have a need to be carefully balanced for the stages of the
network. In a ResNeXt block instead, there are numerous parallel paths consisting of
uniform components. In each path the data is split with a 1x1-convolution, transformed
by a 3x3-convolution and then merged with another 1x1-convolution. Most importantly,
the outputs of each path are combined by addition instead of concatenation, to preserve
the desirable properties seen in ResNets. As the name implies, ResNeXt also features an
additional residual shortcut connection in each block.

The use of residual connections and other advancements were also incorporated into
the architectures leading up to Inception-v4 and Inception-ResNet.[58] The central devel-
opments in these newer versions were the use of layer-level batch-normalization and the
factorization of convolutional layers. For example, a 5x5-kernel convolutional layer can
be factorized into two consecutive 3x3-kernel convolutional layers; a 3x3-kernel convo-
lutional layer can be factorized into consecutive 3x1- and 1x3-kernel convolutional layer.
Both factorization keep a similar ability to abstract information, but can do so much
more efficiently with fewer necessary computation.

Concurrently, recent architectural research has also been focused on efficiency in ad-
dition to effectiveness. One such example is the MobileNet architecture developed by
Howard et al. The authors noted, that convolutional layers are highly expensive in terms
of computations, as the cost scales multiplicatively with the number of channels in the

3.2 architectures 36

previous layer and the number of filters of the layer. As an alternative, they propose
depthwise convolutions, which establish a 1-to-1 relation between each input and out-
put channel. With this approach, the number of calculations for each convolutional layer
are divided by the number of channels. Subsequently, a simple so-called pointwise 1x1-
convolution is used to process inter-channel relationships and adjust the number of
channels if necessary. Using this approach, Howard et al. adapted the Inception-V3 ar-
chitecture and were able to reproduce similar accuracy scores while using 8 to 9 times
fewer calculations and weight parameters.[27]

Similarly Tan and Le also examined the effectiveness of network architecture design
trends and particularly focused on the question of network scaling. Traditionally, in-
creasing the network depth, i.e. number of layers, was the most common method to
scale an architecture up to achieve better accuracy scores. Other scaling methods are the
increase of width, i.e. the number of convolutional filters, and the increase of the reso-
lution of the initial image. The authors note, that adjusting these three scaling methods
has diminishing returns on accuracy gains. Due to this interdependence, focusing just
on a single method is therefor inefficient. For example, one may intuitively understand,
that increasing the input resolution also demands a larger receptive field to utilize this
information. Consequently, Tan and Le propose a compound scaling method for depth,
width and resolution and show how it can be used with the help of a resource-scaling
coefficient to construct efficient networks. Using this method, they develop a family
of networks called EfficientNets and compare their architecture to others like ResNet,
Inception-V4 or ResNeXt and generally reproduce accuracy scores with a fraction of the
weight parameters.[60]

Concerning other architectures for video classification, there are also more concepts
and architectures not yet covered. As described in chapter 2, many video classifica-
tion architectures indirectly use structural ideas and concepts from image-processing
or directly use an image-processing network as a backbone component. Examples for
this are the residual connections and two-stream networks, respectively. Another im-
portant idea is the inflation of 2D-convolutions into 3D-convolutionan to appropriate
image-classification networks for the task of video classification. This technique has been
demonstrated by carreira2017quo by inflating the Inception-V1 architecture trained on
ImageNet.[5] The inflation was achieved by expanding the convolutional kernels of size
NxN to size NxNxN by repeating the weights. The weights values were subsequently
divided by N to ensure the response of the kernel stays the same. The resulting network
was used as a backbone in a two-stream architecture, resulting in a Two-Stream Inflated
3D-ConvNet (I3D).

In another more recent development, Stroud et al. hypothesize modern spatio-temporal
network architectures should be able to abstract motion and should theoretically not
require optical flow preprocessing to do so. Despite this, 3D-convolutional network ar-
chitectures have consistently been shown to perform better with the addition of optical
flow in research. The authors show 3D-convolutional networks would fundamentally
able to calculate the optical flow information, but do not generally learn to do so during

3.3 approaches 37

regular training. Using this insight as a foundation, the authors develop a method of
distillation, using a teacher-network conventionally trained on optical flow data. This
teacher network is used to distill knowledge to a student network of the same archi-
tecture. The intermediate is goal is to reproduce the information available within the
teacher network in the student network, which uses the original RGB-information as
inputs. Subsequently, the resulting distilled 3D network (D3D!) requires no optical flow
information during further training and inference.[57]

Last but not least, another important development in neural network architectures are
transformers. They were introduced in 2017 by Vaswani et al. as an alternative to the
LSTM architecture commonly used for NLP tasks.[63] Transformers are doubly interesting,
because a) they allow processing sequential data in a parallel fashion without relying
on recurrent connections and b) because they use attention as a core component in
their architecture. Transformers are split into an encoder and decoder section. Both of
the sections consist of repeating attention units and densely connected units, both of
which also employ residual shortcuts and batch normalization. As attention function,
Vaswani et al. propose the simple scaled dot-product or a so-called multi-head attention
function, which conducts parallel scaled dot-product attention by linearly projecting the
input values. Regarding the taxonomy introduced in section 2.4.1 this type of attention
falls under self-attention.

A notable advancement are Bidirectional Encoder Presentations from Transformers
(BERT).[13] [32] The BERT architecture addresses a few problems commonly found in
natural language processing with self-supervised pretraining. For example, a network
can be pretrained on a neutral text-corpus like Wikipedia and can later be used on
the target problem. During training, this is achieved by masking individual words and
sentences and having the network predict the masked information. As a bidirectional
model, the sequences are evaluated from both directions. I.e. when processing the sen-
tence "opening a [bank] account" the network can use the information of opening a and
account to predict the word bank.

Since their initial conception, the use of transformers in computer vision has seen in-
creased interest.[34] At the time of writing, a transformer architecture called "CoAtNet",
combining convolutions and attentions, achieves state-of-the-art results on the ImageNet
dataset.[10]

3.3 approaches

So far, this thesis only discussed RGB-datasets with three color channels for red, green
and blue. In part due to consumer available recording devices like the Kinect more re-
search into evaluating depth information has been done.[71][35] Depth information is
particularly interesting, as it easily allows detecting objects of interest and can be used
to reducing background noise. This is intuitive, as depth information is invariant to
lighting conditions and objects of interest are often much closer to the camera. But RGB-
D-datasets also come with a new set of additional challenges. Firstly, they are even larger

3.4 other research 38

than regular video datasets, making it an even bigger problem to process them. For this
reason, many RGB-D datasets hold only a few hundred records.Zhang et al.[35][41] Ad-
ditionally, depth-based action recognition may be more susceptible to further problems
like viewpoint variations, biometric variations or occlusion of body parts.[41]

When discussing RGB-D datasets, a natural followup topic is skeleton-based action
recognition. Depth data can be used to efficiently detect human body parts and joints
to create a simplified 3-dimensional skeleton.[79] The detected joints or body parts can
then be used as features for a shallow or deep model.[67] Skeleton-features can also be
used in conjunction with regular depth information to increase the overall robustness of
the predictor.[67]

3.4 other research

Another few topics warrant discussion but could not be neatly fitted into the previous
categories.

As with all data-driven applications, the amount, quality and variety of the data are
important factors for the final quality of any model. This is especially a problem with
video datasets, as manual labeling of videos is much more time-consuming than labeling
images. Common practices to address this problem is to pretrain a video model on an
image-dataset like ImageNet or to incorporate other video-datasets during training. Yet
the central problem still remains, despite the huge amounts of video data being available
on the internet, only a tiny fraction is well-annotated and can readily be used to train
models.

Accordingly, solutions to this problem have been researched. An obvious solution
is to automatically generate annotations from available metadata, as it has been done
for datasets like YouTube-8M[1]. As a downside, these automatic generation-methods
themselves are not perfect and a certain amount of the data will be mislabeled. Further,
this method is still static in nature. The dataset still has to be curated and published.

As an alternative, webly supervised learning aims to directly leverage data from on-
line sources like search engines or image hosting websites.[14][8] This task, of course,
has also many challenges. Search engines may be biased towards easily recognizable re-
sults with a low diversity. Image hosting websites instead may have noisy labels. Newer
research to adapt this learning strategy for video recognition models also exist.[15]

Finally, the selection of frames has not been discussed in detail. Videos typically con-
tain more frames than can be feasibly processed, and only a small subset is selected
from the original video. So far, the frames have been uniformly sampled from the orig-
inal video. As discussed in section 2.1, one of the problems of action recognition is the
uneven amount of information contained in each frame. While most frames are redun-
dant, some key frames may be crucial to recognize an action. Selecting the right frames
can therefor affect the accuracy of a model positively. Selecting the unnecessary frames
will negatively affect the overall performance of a model. Based on this observation,

3.4 other research 39

Gowda, Rohrbach, and Sevilla-Lara propose a smart frame selection mechanism. They
train two auxiliary networks to weight the importance of frames a) individually and b)
across frames.[19] Using this method, they report improvements of the accuracies of the
tested architectures while also being able to reduce the computational cost necessary by
a factor of 4 to 10.

4
C O N C E P T I O N

The research in chapter 2 suggests many attention mechanisms can potentially be used
in video classifications models. Moving forward, there are three central questions this
thesis aims to answer:

• Which attention mechanisms can be adapted for video classification?

• Which video classification architectures can benefit from attention?

• How can these adaptions be implemented?

Due to the broadness of the topic, finding exhaustive answers to these questions would
require prohibitive amounts of research and empirical verification. Therefor, this work
will limit itself to a number of promising attention mechanisms and architectures. This
chapter describes the approach and the reasoning behind the decisions that were made.

4.1 approach

As described, the above questions are too broad to be fully answered and need to be
narrowed down. For this reason, this approach first subdivides the questions into a
number of steps which can more easily be answered.

1. Identifying suitable types of attention. Not all types of attention can be adapted
for the task of video classification. If too many candidates are found, a subset is
selected for implementation.

2. Identify suitable architectures for video classification. As witch attention mech-
anisms, only a few architectures may be implemented within the scope of this
thesis.

3. Choosing a backbone architecture. Typically, video classification architectures use
an image classification network as backbone. Ideally, the backbone network should
be compatible with most or all attention mechanisms and video classification ar-
chitectures selected.

4. Implementing image classification prototypes. Ideally, since the backbone archi-
tectures are preferred to be compatible with the attention mechanisms, pure image
classification models can be created as prototypes. This allows to test the imple-
mentations and verify their correctness before they are used within the video mod-
els. In many cases, this step can be viewed as a small replication study of the
original research papers of the respective attention mechanism.

5. Implementing video classification models. Finally, the prototypes can be used in
the actual video classification models as backbones.

4.2 selected attention mechanisms 41

6. Producing benchmarks. To verify the results, several benchmarks are produced.
This can be done preliminarily for the prototypes and afterwards for the video
models.

Using this approach, the goal is to show how attention can be used in video classification.
Furthermore, the intent is to show the efficacy and advantages of attention specifically
for a few selected architectures.

4.2 selected attention mechanisms

To first determine which types of attention are suitable, it is helpful to look back at table
2.2.

As each video only consists of a single sequence of frames, there are few options
when it comes to the number of sequences. Distinctive attention is used in sequence to
sequence tasks. The usage of co-attention is theoretically possible, but it is practically
prohibitively difficult to deploy attention to capture dependencies between different
videos. Processing videos is already difficult due to the large amount of data involved.
Processing multiple videos simultaneously to use co-attention would only exacerbate
this issue. Consequently, self-attention is the primary type of attention which will be
investigated.

Concerning the number of abstraction layers, the situation is less restricted. Convo-
lutional neural networks lend themselves well to multi-level attention. Using attention
at different stages of a CNN may capture different abstraction levels of the data. Using
modularized attention at different levels therefor seems like a promising approach.

The number of positions, again, leaves fewer choices. Hard attention typically makes
it difficult to train the network, as the model function becomes non-differentiable. This is
highly undesirable and poses further problems if the model is to be used as a backbone
within another architecture. Therefore, soft types of attention are more suitable, as they
leave the network end-to-end trainable and are less intrusive.

Finally, as a category, the number of representations generally only applies to lan-
guage models. In computer vision, embeddings are much less common. Even though
a CNN may be used to embed an image to produce a feature vector, it is highly un-
typical to use multiple such representations simultaneously. Similarly, one may regard
optical flow information as another representation of the original video data. But in
this case also the interdependencies between the original data and the optical flow data
are of little interest. In a typical two-stream architecture, both streams are processed
independently. Inserting this type of attention would require large adjustments of the
architecture.

In summary, the best candidates are soft self-attention mechanisms. Additionally,
modularized mechanisms may be particularly interesting, as they can easily be inserted
into existing architectures and can be used at multiple levels of a CNN to leverage dif-
ferent abstraction levels.

4.3 selected video architectures 42

Another important criteria is the visualization of the attention. One of the central
goals of attention is helping to make neural networks easier to interpret. This is espe-
cially true in the field of computer vision. It is therefor desirable to implement types of
attention which result in visually evaluable results. Based on this, the following attention
mechanisms were chosen. See table 4.1.

Attention mechanism Categories Modular? Visual?

L2PA Self-attention, multi-level, soft Yes Yes

Gated grid attention Self-attention, multi-level, soft Yes Yes

Residual attention Self-attention, multi-level, soft Yes Yes

CBAM Self-attention, multi-Level, soft Yes No

Table 4.1: Selected attention mechanisms.

As a downside of this selection, it has to be mentioned all these attention mechanisms
are designed for 2D-CNN and therefor work exclusively on spatial information. They
are unable to capture any temporal dependencies directly. Arguably, this downside is
mitigated when optical flow information is used, which allows processing temporal
information with spatial convolutions. Further, it can be argued the larger amount of
information in video sequences is visual, rather than temporal. Following this argumen-
tation, it is reasonable to focus on visual attention.

4.3 selected video architectures

First and foremost, simple 2-dimensional CNN can be excluded as a naive approach
to video classification. Depending on the fusion strategy, they have no effective way of
capturing temporal information. And even with more advanced fusion strategies, they
are very limited in this regard.

Instead, the focus lies on the following four architecture archetypes:

• 3-dimensional CNN and variations like (2+1)D-CNN. A backbone architecture can
not directly be integrated, but often the layout of 3D-CNN is inspired by image
classification models.

• Long short-term memory networks with a 2D-CNN used as backbone.

• Transformer networks.

• Two-stream networks also with a 2D-CNN used as backbone.

3D-CNN and (2+1)D-CNN use convolutions to capture both spatial and temporal in-
formation. Unfortunately, this also makes it more difficult to adapt them with the at-
tention mechanisms chosen. All the attention mechanisms are primarily designed for
2-dimensional convolutions. It is an open question if the mechanisms are even suitable
for adaption into 3-dimensional convolutions.

4.4 backbone architecture 43

Long short-term memory networks typically use a 2D-CNN to extract spatial features
from individual frames and subsequently use LSTM units to process temporal informa-
tion. This setup works well with visual attention modules, which can directly be inserted
into the backbone architecture with relatively little effort.

Transformers are an interesting and relatively new architectural archetype and can be
seen as a successor of long short-term memory networks. Especially in the natural lan-
guage processing domain, they have replaced LSTM as state-of-the-art solutions for
many tasks. Transformers also use self-attention as a fundamental building block within
their structure. For this research, however, this feature poses a problem. Directly utiliz-
ing different attention modules may conflict with the attention already in use, and the
attention modules chosen are primarily intended for 2D-CNN architectures and may
not be compatible with transformers.

Two-stream architectures, can directly use two separate 2D-CNN models as backbone
for spatial and temporal information. This makes them well-suited for adaption with the
attention modules chosen. The usage of optical flow data within two-stream networks is
a particularly interesting feature, as it allows using the attention modules discussed not
only for spatial information but also for temporal data. This also addresses the major
drawbacks of the attention modules chosen, being unable to process temporal informa-
tion directly. Furthermore, due to the prevalence of optical flow in the field of computer
vision, this poses another interesting research question. Are visual attention mechanisms
suited to be used for optical flow data? Due to these circumstances, two-stream networks
are of particular interest for this research.

In review of the suitability of the architectures discussed and the constraints and scope
of this thesis, the decision was made to focus on the two-stream architecture archetype.
This allows not only to research the overall general compatibility of visual attention
modules with video data, but may also particularly provide insight into the question of
their usage in conjunction with optical flow.

4.4 backbone architecture

Both the attention modules and the video classification architecture chosen rely on a
2D-CNN architecture. Hence, choosing one or multiple backbone models is also an im-
portant decision. A few major considerations were made for this decision.

• Effectiveness. If reconcilable with the other requirements, the architecture should
yield as good results as possible. Thanks to the prevalence of the ImageNet dataset,
the effectiveness of image classification architectures can relatively well be com-
pared by benchmarks on this dataset.

• Efficiency. Due to resources constraints, the efficiency of the chosen backbone ar-
chitecture is extremely important. More lightweight architectures allow for faster

4.4 backbone architecture 44

training and enable training with fewer resources. Therefore, the architecture should
be as efficient as possible.

• Adaptability. To be able to be used with the attention modules and as a back-
bone model, the architecture should be relatively simple and suitable for adaption.
More complex architectures may be more likely to be incompatible. However, the
assessment of this property may be difficult.

• Research status. It is preferable to use well-researched and well-established ar-
chitectures. Architectures with less research may be less reliable and have fewer
resources and reference-implementations available.

Based on these criteria, the following architectures were initially taken into account. All
the architectures were considered sufficiently well-researched. See table 4.2.

Architecture Parameters Top-1 Accuracy Complexity assessment

VGG16 [55] 138.3 Million 0.713 Low

ResNet50V2 [24] 25.6 Million 0.760 Low

InceptionV3 [58] 23.8 Million 0.779 Medium

InceptionResNetV2 [58] 55.8 Million 0.803 Medium

MobileNetV2 (α = 1.0)[47] 3.4 Million 0.713 Low

Table 4.2: Comparison of backbone architectures when applied to the ImageNet dataset. The
assessment of the complexity may be subjective.

The benchmarks in table 4.2 are taken from the reference implementations provided in
the Keras-API of TensorFlow1 and the exact number of parameters and accuracy-score
my vary in other implementation.

Both of the Inception architectures yield considerably high accuracy results, but also
have relatively advanced features. In contrast to other architectures, they do not fol-
low the depth-wise block-stacking structure often used and instead consist of carefully
crafted sections. They may be untypical and therefore not ideal for adaption.

As the VGG16 architecture is both, large and relatively ineffective it will be disre-
garded. The ResNet50V2 architecture has a fairly low number of parameters and a
high accuracy score. As an additional benefit, the ResNet architecture is extensively
researched and referenced and is often found as a baseline in research. Therefor, this
architecture will be chosen as a backbone.

Should the ResNet architecture turn out to be too costly for the resources available, the
MobileNet can be used as a fallback backbone architecture. The MobileNet architecture
is even smaller than the ResNet architecture, but still has a reasonably good accuracy-
score.

1 https://keras.io/api/applications/

https://keras.io/api/applications/

4.5 implementation and benchmarks 45

4.5 implementation and benchmarks

To implement the software, the TensorFlow2 framework will be used. TensorFlow’s
Keras-API3 allows constructing artificial neural networks in a convenient and adaptable
fashion. As a high level API, this also allows quick experimentation and implementation
of various models. Furthermore, the API-design is open and modifiable, which further
helps the implementation. This is ideal, as a variety of modules need to be inserted into
the architectures. Also, TensorFlow provides a number of reference implementations
which can readily be used.

Concerning the benchmarks, several datasets will be used. To test the image classifica-
tion prototypes, the CIFAR-100 and the Imagenette datasets will be used. The final video
classification models will be trained on HMDB51 and UCF101.

2 https://www.tensorflow.org/
3 https://keras.io/

https://www.tensorflow.org/
https://keras.io/

5
I M P L E M E N TAT I O N

This chapter intends to give the reader an overview of the hardware and software used
in the project and highlight the individual decisions taken during implementation. It
begins by describing hardware and software used. Afterwards, a broad overview of the
project is given, before the implementation details of the backbone models are discussed.
Here, a first quick evaluation and comparison of the models will be done.

After the implementation of the backbone architectures, the implementation of the
video classification architecture, namely the two-stream model, is discussed.

The code for this implementation can be found online at GitHub1.

5.1 hardware specifications

All benchmarks are conducted in a Google Cloud Platform Compute Engine using the
N1-highmen-4 profile with 4 virtual CPU-Cores2 and 26 GB of RAM. Furthermore, an
NVIDIA Tesla T4 graphics card is used.

5.2 software overview

Python 3.8 and TensorFlow 2.3 were used to implement all models. The conda package
manager was to organize the environments, software versions and libraries used.

The TensorFlow’s Keras-API provides prebuilt classes and functions to implement
artificial neural networks. The API’s various layer-classes were extensively used to im-
plement the neural networks and attention modules. Furthermore, the interface also
allowed to implement attention modules as Keras-layers and use them with the existing
ones.

Keras also provides various utilities. In some cases, these utilities and the package
tensorflow-datasets were used to access and manage the various datasets used. Addi-
tionally, Jupyter Notebooks were used to visualize the training and display the results
in a practically and graphically. This part was an optional addition, as the training can
also be done from command line. Software tests were implemented with the testing
framework pytest.

1 https://github.com/zr123/VideoClassificationWithAttention/tree/v1.0
2 More information about the used hardware can be found in this data sheet:

https://cloud.google.com/compute/docs/cpu-platforms. As of November 2021 the N1 profiles pri-
marily use processors of the Intel Xeon brand.

https://github.com/zr123/VideoClassificationWithAttention/tree/v1.0
https://cloud.google.com/compute/docs/cpu-platforms

5.3 project overview 47

The Python interface of OpenCV3 was used to implement various image manipulation
functions. This was especially helpful for the calculation of the optical flow information.

A full listing of the packages used can be found in the cpu-environment.yml and
gpu-environment.yml files in the root directory of the project.

5.3 project overview

The final project structure is shown below. Some files have been omitted for the sake of
clarity.

/

tests

...

TF_modification

...

VCWA

AttentionModels.py

Common.py

VideoDataGenerator.py

VideoModels.py

Attention

AttentionGate.py

CBAM.py

L2PAModule.py

ResidualAttentionModule.py

AttentionPrototypes.ipynb

Preprocessing.ipynb

VideoModels.ipynb

The test and build infrastructure was implemented with GitHub actions. Having tests
and automatic builds helped to uphold the project quality and detect possible problems
as early as possible.

The modifications of the TensorFlow models were kept separately in the package
TF_Modifications to separate the code licensed by the TensorFlow authors from the
remaining project.

For the most part, the project is contained in the package VCWA. The individual atten-
tion modules are implemented in the sub-package Attention. The Jupyter Notebook
files contained in the root structure provide functionality to easily start and monitor
training and preprocessing.

5.4 backbone prototypes

The majority of the work of implementation concerned the backbone architectures and
the attention modules. Initially, the ResNet50v2 architecture was used as a base model.

3 https://opencv.org/

https://opencv.org/

5.4 backbone prototypes 48

Conveniently, Keras provides an implementation which can be used and adapted4.

The Learn to Pay Attention (L2PA) modules were implemented as a Keras-layer by ex-
tending the provided layer-parent class. Jetley et al. discuss two compatibility functions,
the simple dot-product and a weighted-dot-product. Both variants were implemented
and can be chosen as a hyperparameter when instantiating the module. The weighted
compatibility function is used as the default value, as the authors report better results
with this function.

Even though the L2PA module itself is not very complicated, it can still be difficult to
use. Typically, it requires to 1) construct a 2D-CNN as one normally would; 2) create the
attention modules and connect them with inputs from various stages of the network, and
3) concatenate the outputs and finalize the new model. This structure differs strongly
from the usual block-wise construction of neural networks and may be unintuitive for
readers unfamiliar with the module.

The L2PA-implementation diverges slightly, as a densely connected mapping layer
was consistently used to scale the global features vector to the size of the local feature
vector. This layer is not strictly necessary, when both feature vectors are already of the
same size. The adjustment was made to have a similar amount of complexity in each
module. Finally, problems with over-fitting were found during testing and to combat
this problem a dropout of 0.5 as added to the final dense fusion layer.

The attention gated module was also implemented as a child of the Keras-layer-class.
This module was designed with hyperparameters for the internal channels (cint), the
attention function and a boolean parameter to enable grid-attention. The implementa-
tion was uncomplicated, as the compatibility function could be constructed out of the
Conv1D-, Conv2D- and Dense-layer-classes provided by Keras. The grid-attention was im-
plemented by nearest neighbor upsampling the data of the global features.

As attention functions, the sigmoid, softmax and the pseudo softmax functions pro-
posed by the authors were implemented. Pseudo softmax is used as default and for all
implementations. This and all other implementation details follow the original paper.
The individual attention gates were combined by average-fusion.

Unlike the previous modules, the residual attention module was not implemented as a
layer, but functionally as a stack of layers. This function has a larger amount of parame-
ters, p for the number of padding-blocks before and after the module, t for the number
of blocks in the trunk-branch and r for the number of blocks in the mask-branch and a
parameter to change the attention function. Additionally, this function takes a parame-
ter for the number of shortcuts and a takes a functional argument to build the residual
blocks within the module. With the help of a block construction function, the residual
attention module can be adjusted for a usage with various models. This block construc-
tion function constructs a residual blocks suitable for the respective model and is used
to create the internal blocks within the residual attention module.

4 See https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet50V2

https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet_v2/ResNet50V2

5.4 backbone prototypes 49

The entire process follows the specifications of the respective paper, including the de-
fault parameters of p = 1, t = 2, r = 1.

The convolutional block attention module (CBAM) was implemented like the residual
attention module as a function. Just as before, this module could be build primarily
from components of the Keras-API. A few operations were directly implemented using
TensorFlow’s tensor functions. Otherwise, the reduction ratio r of the channel attention
block and the kernel size k of the spatial attention block were implemented as hyper-
parameters. As default parameters, the recommended values of r = 16 and k = 7 were
adopted.

The described attention modules were used to create six backbone networks. Table 5.1
shows the names of the models and compares their complexity.

Model Parameters FLOPs

ResNetV2 23,769,700 6,988,783,832

ResNetV2 + L2PA
(Compatibility: weighted, Fusion: Dense 1024)

28,395,620 6,999,088,113

ResNetV2 + gated attention
(cint=32, Fusion: Dense 1024)

28,581,136 7,052,632,493

ResNetV2 + gated grid attention
(cint=32, Fusion: Dense 1024)

28,581,136 7,090,390,451

ResNetV2 + residual attention
(p=0, t=2, r=1)

33,274,980 12,879,604,452

ResNetV2 + CBAM
(r=16.0, k=7)

23,943,933 7,000,117,000

Table 5.1: Comparison of ResNetV2 backbone architecture implementations for 100 classes

In each version of the model, attention modules were inserted in three different places.
The position of each attention module was chosen in according to recommendations by
their respective authors.

As can be seen in table 5.1, most modules significantly increase the number of param-
eters of the model. The only exception is the CBAM, which increases the total number
of parameters only by a relatively small amount. Concerning the computational cost,
the residual attention module is the only module which significantly increases the num-
ber of floating-point operations for a singular forward-propagation. This is despite the
padding hyperparameter p already being reduced down to 0.

In preliminary tests, ResNetV2 turned out to be still fairly time-consuming and resource-
hungry. Consequently, the MobileNetV2 backbone was also implemented. See table 5.2.
Using the MobileNetV2 architecture reduces the number of parameters and floating
point operations roughly by a tenth. Interestingly, not all models are affected by this
equally. Especially, the L2PA module is surprisingly memory-intensive in this context.

5.5 video classification models 50

Model Parameters FLOPs

MobileNetV2

(α=1.0)
2,386,084 612,982,808

MobileNetV2 + L2PA
(Compatibility: weighted, Fusion: Dense 1024)

3,784,420 615,937,969

MobileNetV2 + gated attention
(cint=32, Fusion: Dense 1024)

3,126,928 620,158,221

MobileNetV2 + gated grid attention
(cint=32, Fusion: Dense 1024)

3,126,928 631,959,315

MobileNetV2 + residual attention
(p=0, t=0, r=1)

2,629,044 687,043,220

MobileNetV2 + CBAM
(r=16.0, k=7)

2,387,870 614,629,354

Table 5.2: Comparison of MobileNet backbone architecture implementations for 100 classes

This is because this module strongly scales with the number of channels, which stay
relatively high in the MovileNetV2 model.

As previously discussed, the size of the residual attention module was further reduced
to bring the model down to a similar size of the others. To compensate, the module
was implemented parallel to the existing convolutional blocks in the network. But, the
module still has the largest increase in floating point operations.

Also noteworthy, the CBAM is very lightweight both in memory and computation
cost, again.

The image augmentation was implemented using utility functions provided by Tensor-
Flow. Random rotation of up to 20 degrees, a random shear rotation of up to 20 degrees,
a random zoom range of up to 20% and random horizontal flips were used.

As backpropagation algorithm, the default SGD with a learning rate of 0.1, a momen-
tum of 0.9 and weight decay of 0.0001 was used. The batch size is 64. Initially, the ADAM
was used, but this lead to premature saturation problems.

5.5 video classification models

The two-stream model was uncomplicated to implement. Keras provides a TimeDistributed-
layer class, which facilitates reusing a stack of layers or an embedded model repeatedly
for temporal data. This is exactly the behavior wanted for two-stream models, where a
backbone model is applied to a time-distributed set of frames. The same functionality
can be used to implement the optical flow stream.

To be able to use different backbones and model versions, the two-stream models are
assembled using a function, which takes a spatial stream model and a temporal stream
model as arguments. This allows for maximum flexibility, as the backbone networks can
also be trained individually before assembling the two-stream model. Additionally, this
way the backbone models can be evaluated individually at an early stage, and various

5.6 attention visualization 51

fusion techniques can be tested relatively late, potentially saving training time.

The stacked dense optical flow was calculated using the OpenCV’s out-of-the-box imple-
mentation of the DualTVL1 algorithm. The usage of optical flow comes with two chal-
lenges. Firstly, calculating the stacked optical flow is computationally expensive and can
typically not be done dynamically during training. Secondly, stacking dense optical flow
leads to very large datasets. For example, for a video with 25 frames and a resolution
of 224x224, the 10-fold stacked optical flow tensor has the dimensions (15, 224, 224, 20).
Additionally, writing this data to disk is difficult because of the unusual content of the
data. Images and video-frames typically have 3-color channels with 8-bit integer data.
The optical flow tensor has 20 channels with 32-bit floating point data, resulting in up
to 80 times more data. Finally, the usual compression and file formats for images and
videos can not be used for this data.

It is important to address these issues, as reading the data from disk can become
the bottleneck during training, if the amount of data is too large. Firstly, 5-fold stacked
optical flow was used. Simonyan and Zisserman showed that 10-fold optical flow still
results in better accuracy scores, but the gain is comparatively small.[54] 5-fold stacked
optical flow therefore constitutes a reasonable compromise between quantity of data
and quality of results. After calculating the dense optical flow, the results were directly
converted to 8-bit integers. This conversion is lossy, but reduces the total amount of data
effectively. Finally, loss-free zip-compression was used to write the data to disk.

Another major issue was the implementing the training itself. For the training of the
image models, the datasets were small enough to be stored in memory. This is not always
feasible for the much larger video data. Consequentially, a class VideoDataGenerator
was written to generate batches for the training. This class was designed to work with
video data and optical flow data individually and simultaneously, so the spatial stream
model, optical stream model and two-stream model can all be trained using this class.
For this task, the class was also designed to be compatible with various data formats.

Finally, image augmentation support was also implemented.

For the training, the video datasets were down-scaled to 25 frames, which were uni-
formly sampled from each video. As before, the frames were augmented by random
rotation of up to 20 degrees, random shear rotation of up to 20 degrees, a random zoom
of up to 20 % and finally random horizontal flips of the frame. Also, just as before, the
SGD backpropagation algorithm with a learning rate of 0.1, a momentum of 0.9 and
weight decay of 0.0001 was used.

5.6 attention visualization

Extracting and visualizing the attention calculated within the modules also was an im-
portant part of the implementation. To a certain extent, this part of the implementation
was also the most straight-forward and accompanied by the fewest design decisions.

5.6 attention visualization 52

Three of the attention modules directly calculate an attention heat-map as part of their
functionality. Here it is only a technical matter of accessing this information during
validation.

For the CBAM, the module does not internally use a visual attention mechanism. In-
stead, Grad-CAM has to be used to calculate a heat map. This was function was imple-
mented accordingly. Beneficially, Grad-CAM can also be used to visualize the behavior
of the unmodified MobileNetV2.

Since each module is inserted at three different stages of the network, three attention
heat maps are created for each input. Usually these heat maps differ in size with each
other and from the input. To better visualize the attention, some additional utility was
implemented, to combine and compare this information.

6
F I N D I N G S

This chapter summarizes the results of this thesis. Firstly, this concerns the observations
made when training the prototype image classification architectures. Afterwards, the
visual attention heat maps produced by the modules are compared. Finally, the topic of
benchmarks is addressed.

6.1 training

The image prototype architectures were evaluated on the CIFAR-100 and Imagenette
datasets. Both datasets have the advantage of being relatively small and having short
training times. No pretraining was performed.

Figure 6.1: Training curve (top) and test curve (bottom) for the CIFAR-100 dataset.

6.2 attention 54

The first observation to be made is the L2PA module, the attention gated module and
the attention gated grid module have a negative impact on the overall performance of
the network. These three adaptions of the MobileNetV2 architecture perform worse than
the unmodified original network.

The residual attention module and the CBAM in comparison bring slight improve-
ments to the base network. The following table better illustrates the performance gains.
See table 6.1.

Model CIFAR-100

Top-1
CIFAR-100

Top-5
Imagenette
Top-1

Imagenette
Top-5

MobileNetV2 0.7285 0.9254 0.8158 0.9781

MobileNetV2 +
L2PA

0.5379 0.8108 0.7804 0.9628

MobileNetV2 +
Gated Attention

0.6463 0.8179 0.7659 0.9483

MobileNetV2 +
Gated Grid Attention

0.5788 0.8377 0.7203 0.906

MobileNetV2 +
Residual Attention

0.7324 0.9306 0.8504 0.9857

MobileNetV2 +
CBAM

0.7376 0.9299 0.8262 0.9824

Table 6.1: Comparison of test scores of the backbone prototypes.

As can be seen, the models augmented with residual attention modules and with CBAM
outperform the basic MobileNetV2 for both datasets.

6.2 attention

First, the attention for the CIFAR-100 is evaluated. Table 6.2 shows the results, for each
of the attention modules. The stage refers to the position of the attention module within
the network. The table also shows a combined attention map overlay, constructed by
up-sampling and averaging the attention results, and overlaying the original image. For
the unmodified MobileNetV2 and the network augmented with CBAM, Grad-CAM is
used to visualize create the heat maps.

An up-scaled version of the original image can be found in appendix A.1.

A number of observations can be made. Firstly, it is apparent the L2PA module did
not work as intended for this dataset and architecture. Instead of developing a visual
attention map, it seemingly only concentrated on singular spatial positions.

The gated attention module and gated grid attention module also developed this issue
for the late state module, but otherwise produced attention maps. Interestingly, the heat
map produced by the grid attention module exhibits borders around the lines of the
grid.

6.2 attention 55

Model
Attention

combined early stage medium stage late stage

MobileNetV2

(Grad-CAM)

MobileNetV2 +
L2PA

MobileNetV2 +
Gated Attention

MobileNetV2 +
Gated Grid
Attention

MobileNetV2 +
Residual
Attention

MobileNetV2 +
CBAM
(Grad-CAM)

Table 6.2: Attention maps extracted from the models for the CIFAR-100 dataset.

The residual attention module produced attention, but it is open for discussion if it
worked as intended. Especially the early stage module highlights the background, rather
than the object of interest. This is the exact opposite of the desired behavior. Also, the
late stage module produced attention which is difficult to interpret, as it is fairly evenly
distributed.

Finally, the class activation heat map produced by Grad-CAM for the unmodified
model and the CBAM version of the model are somewhat similar. Both clearly outline
the object of interest at an early stage, but continue to lose focus when extracted from
later stages of the network.

6.2 attention 56

The attention results are additionally analyzed on the Imagenette dataset. This dataset
has a much lower count of classes, but a higher resolution, and thus allows different
insights into the behavior of the modules. See table 6.3.

A higher resolution version of the original image can be found in appendix A.2.

Model
Attention

combined early stage medium stage late stage

MobileNetV2

(Grad-CAM)

MobileNetV2 +
L2PA

MobileNetV2 +
Gated Attention

MobileNetV2 +
Gated Grid
Attention

MobileNetV2 +
Residual
Attention

MobileNetV2 +
CBAM
(Grad-CAM)

Table 6.3: Attention maps extracted from the models for the Imagenette dataset.

When trained on Imagenette the L2PA module also did not develop the intended be-
havior. In contrast, the gated attention modules, especially the gated grid attention, did
not exhibit the same issues at the late stage. A possible explanation is the difference in
resolution between CIFAR-100 and Imagenette.

The residual attention modules show the same problems they did for CIFAR-100. The
attention maps seem highly general and unspecific. Especially the early stage module
seems to have produce no valuable attention.

6.3 benchmarks 57

Finally, the CBAM module seems to work as intended. The Grad-CAM for the un-
modified MobileNetV2 focuses strongly on background information, in this case the sky.
The model enhanced with CBAM instead focuses the objects of interest in the sky and
on the ground.

6.3 benchmarks

Regrettably, due to hardware constrains, the original goal of producing benchmarks
could not be reached. Initially, during the conception phase, the required resources were
underestimated. Even though the computational costs were scaled back, by using a small
backbone architecture, relatively small video datasets

A major limiting factor was the internal video RAM of the graphics cards used. When
training models, the video memory needs to be large enough to accommodate the ten-
sors operated on. If these tensors are too large, the solution is to reduce the tensor size
by choosing a smaller model, reducing the amount of data or by reducing the batch size.
Despite scaling down the architecture and the amount of data, this did not prove to be
enough. The last approach of reducing the batch size, technically solved this issue, but
lead to further problems. Small batch sizes lead to an inaccurate gradient and unstable
training. If the batch size is too small, the computed gradient will be too inaccurate and
the training will fail. This was the issue in this case.

7
D I S C U S S I O N

This chapter summarizes and comments on the results and observations of the previ-
ous chapter. First, the attention modules addressed individually, to cover their distinct
advantages and disadvantages. Afterwards, some general challenges of attention are dis-
cussed. This section also investigates problems specific to video classification and other
issues that may arise but were not encountered in this thesis. Finally, the relationship
between visual attention modules and post-hoc attention like GradCAM needs to be
reviewed.

7.1 attention modules

This section discusses the implemented attention modules individually and addresses
their individual strengths and problems.

7.1.1 Learn to pay Attention

When evaluating the theory behind L2PA modules, a few important observations and
criticisms need to be made.

First, the authors tested this attention module on the by 2018 outdated VGG16 archi-
tecture[55]. At the time, more efficient and better performing architectures like ResNet[24]
were readily available.

Secondly, Jetley et al. primarily use the CIFAR-10/CIFAR-100 dataset[37] and a down-
scaled version of the CUB-200-2011 dataset[65]. With 32x32 and 80x80 pixels, both datasets
used have a small resolution in comparison to other common datasets available in 2018.
For example, the VGG16 architecture was originally proposed with a 224x224 pixel ver-
sion of the ImageNet dataset in mind[55]. It is fully clear why these datasets were cho-
sen.

Finally, the attention modules introduce an information bottleneck into the network
in the form of the weight vector u. This may negatively impact the abstraction ability of
the network. If and how this problem practically impairs a network needs to be verified
in further empirical testing with different base architectures and datasets.

Practically, the L2PA did not produce visually interpretable attention and negatively
impacted the performance when integrated into the MobileNetV2 architecture. While
the VGG16 and MobileNetV2 architectures differ in a multitude of points, the most
likely cause of this misbehavior are the residual connections. However, this assumption
is speculative and more research is necessary to be unequivocally sure of the exact
causes.

7.1 attention modules 59

7.1.2 Attention-Gated Network

When examining the gated attention mechanism, largely the same observations can be
made, which were made for the L2PA-module. First and foremost, the bottleneck-issue
is addressed by increasing the number of trainable parameters and by introducing a
scaling mechanism with, Cint. However, Schlemper et al. primarily base their research
on classification networks on the fairly small SonoNet[3] architecture with SonoNet-8,
SonoNet-16 and SonoNet-32, which have only 0.16M, 0.65M and 2.58 parameters re-
spectively.[48] With 2694 images and a final resolution of 208x272 fetal ultrasounds, the
dataset they used is also fairly small and highly specific. Ideally, the authors should
have provided research into larger datasets like ImageNet and more modern network
architectures like ResNets.

This thesis conducted this research in a limited fashion, by applying the mechanism to
MobileNetV2 and with the CIFAR-100 and Imagenette datasets. While it may be prema-
ture to dismiss this attention mechanism entirely based on these results, the preliminary
findings are clearly unfavorable. The resulting network is slower to train and performs
worse than its unmodified original.

7.1.3 Residual Attention Network

The authors of the residual attention network verified their attention mechanism on a
variety of modern image classification architectures like ResNet, ResNeXt and Inception-
ResNet, and on a variety of datasets like CIFAR-100 and ImageNet.[66] This can be seen
as strong evidence for the functionality and maturity of this module.

As a major point of criticism, it has to be pointed out the residual attention module
comes with a high price in terms of network size and computational cost. However,
each module can also flexibly be scaled up or down with the provided hyperparameters
to fit specific needs.

Another downside of this module is the generated attention itself, which seems to
be inconsistent and highly dependent on the placement within the model. However,
this issue likely can be solved during modelling by placing the module in appropriate
positions.

7.1.4 Convolutional Block Attention Module

Woo et al. provide strong evidence for their convolutional block attention module, hav-
ing tested it with the ResNet, WideResNet, ResNeXt, MobileNet and VGG architectures
and the ImageNet dataset.[69]

The main advantage of this module is how lightweight it is, coming with a very
small footprint in terms of memory and computations. At the same time, it provides

7.2 challenges 60

a considerable benefit during training, helping the network focus and increasing the
overall accuracy.

The main disadvantage is CBAM does not provide visual attention on its own, and
additional techniques like Grad-CAM have to be used to calculate an attention heat map.

7.2 challenges

Adopting visual attention for architectures like regular two-stream networks is relatively
easy, as the backbone architecture can be directly modified. When using other architec-
tures like (2+1)D networks, on the other hand, one may encounter difficulties, as the
attention mechanisms may not necessarily translate into 3-dimnesional convolutions.
This is a problem, as techniques like inflation translate 2-dimensional convolutions into
3-dimensional convolutions, also posing a problem which needs to be addressed when
using attention. So even architectures which are usually well suited for visual attention,
like two-stream models, may be less suitable when this technique is used.

7.3 relation to post-hoc attention

Finally, when investigating visual attention, techniques like Grad-CAM pose a funda-
mental question. Are learnable visual attention even necessary?

Creating visual heat maps from 2-dimensional convolutions with Grad-CAM can be
done with any 2D-CNN. This technique can also flexibly be used on any layer within
the network. Lastly, this technique is very fast and can be used to create heat maps for a
multitude of inputs reasonably quickly.

Visual attention mechanisms on the other hand require the network to be retrained to
provide usable information. In the worst case, the only information the attention module
provides is about the module itself being misplaced, requiring repeated retraining with
trail-and-error. To some extent, it seems, visual attention is self-serving, rather than
helping the goal of model diagnosis.

In comparison, forgoing visual attention in favor of non-visual attention mechanisms
like CBAM seems to be more flexible, more lightweight and less prone to errors. Fur-
thermore, the behavior can directly be compared to the original network. In this regard,
learnable visual attention seems to have few advantages.

8
C O N C L U S I O N A N D O U T L O O K

This chapter finalizes this thesis and formulates what conclusions can and can not be
drawn from the results. Also, this thesis highlights a few research topics worth investi-
gating. In the outlook section, these research topics are addressed and summarized.

8.1 conclusion

The results of this research into visual attention has been, to some extent, underwhelm-
ing. While technically feasible, visual attention modules also come with a number of
caveats. Even the residual attention module, which yielded the best results, comes with
a significant increase in memory-consumption and computations, requires careful place-
ment within the network and may not always produce easily interpretable visual atten-
tion.

Yet, research also clearly shows attention generally is a useful tool for artificial neural
networks. Especially in natural language processing, attention is now a fundamental
part of modern architectures. Components like the convolutional block attention module
show attention can successfully be applied in computer vision and improve results at
relatively little costs.

8.2 outlook

In conclusion, as a way forward for attention in the field of neural computer vision, it
might be the best course of action to forego visual attention and focus research on more
lightweight attention components. Also, integrating attention as a more fundamental
building block, rather than a late addition, as it is done in the transformer family of
architectures, is another interesting path for attention.

Finally, there is still much research to be done, both concerning the application of at-
tention in the field of computer vision, and concerning human action recognition in
general.

This thesis focused on the application of spatial attention. Another interesting topic is
the application of temporal attention mechanisms with video data.

Part II

A P P E N D I X

I M A G E S

Figure A.1: A CIFAR-100 image of the class cattle

Figure A.2: A Imagenette image of the class parachute

B I B L I O G R A P H Y

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. “Youtube-8m: A
large-scale video classification benchmark.” In: arXiv preprint arXiv:1609.08675
(2016).

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine trans-
lation by jointly learning to align and translate.” In: arXiv preprint arXiv:1409.0473
(2014).

[3] Christian F Baumgartner, Konstantinos Kamnitsas, Jacqueline Matthew, Tara P
Fletcher, Sandra Smith, Lisa M Koch, Bernhard Kainz, and Daniel Rueckert.
“SonoNet: real-time detection and localisation of fetal standard scan planes in free-
hand ultrasound.” In: IEEE transactions on medical imaging 36.11 (2017), pp. 2204–
2215.

[4] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. “High accu-
racy optical flow estimation based on a theory for warping.” In: European conference
on computer vision. Springer. 2004, pp. 25–36.

[5] Joao Carreira and Andrew Zisserman. “Quo vadis, action recognition? a new
model and the kinetics dataset.” In: proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 6299–6308.

[6] Jose M Chaquet, Enrique J Carmona, and Antonio Fernández-Caballero. “A survey
of video datasets for human action and activity recognition.” In: Computer Vision
and Image Understanding 117.6 (2013), pp. 633–659.

[7] Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath. “An
attentive survey of attention models.” In: arXiv preprint arXiv:1904.02874v2 (2020).

[8] Xinlei Chen and Abhinav Gupta. “Webly supervised learning of convolutional
networks.” In: Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 1431–1439.

[9] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and
Jürgen Schmidhuber. “Flexible, high performance convolutional neural networks
for image classification.” In: Twenty-second international joint conference on artificial
intelligence. 2011.

[10] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. “CoAtNet: Marrying
Convolution and Attention for All Data Sizes.” In: arXiv preprint arXiv:2106.04803
(2021).

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet:
A large-scale hierarchical image database.” In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248–255.

bibliography 65

[12] Li Deng. “The mnist database of handwritten digit images for machine learning
research.” In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-
training of deep bidirectional transformers for language understanding.” In: arXiv
preprint arXiv:1810.04805 (2018).

[14] Santosh K Divvala, Ali Farhadi, and Carlos Guestrin. “Learning everything about
anything: Webly-supervised visual concept learning.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014, pp. 3270–3277.

[15] Haodong Duan, Yue Zhao, Yuanjun Xiong, Wentao Liu, and Dahua Lin. “Omni-
sourced webly-supervised learning for video recognition.” In: Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XV 16. Springer. 2020, pp. 670–688.

[16] David Fleet and Yair Weiss. “Optical flow estimation.” In: Handbook of mathematical
models in computer vision. Springer, 2006, pp. 237–257.

[17] Andrea Galassi, Marco Lippi, and Paolo Torroni. “Attention in natural language
processing.” In: IEEE Transactions on Neural Networks and Learning Systems (2020).

[18] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget: Con-
tinual prediction with LSTM.” In: Neural computation 12.10 (2000), pp. 2451–2471.

[19] Shreyank N Gowda, Marcus Rohrbach, and Laura Sevilla-Lara. “SMART Frame
Selection for Action Recognition.” In: arXiv preprint arXiv:2012.10671 (2020).

[20] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska,
Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos,
Moritz Mueller-Freitag, et al. “The" something something" video database for
learning and evaluating visual common sense.” In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. 2017, pp. 5842–5850.

[21] Ben Graham. “Sparse 3D convolutional neural networks.” In: arXiv preprint
arXiv:1505.02890 (2015).

[22] Kaiming He, Ross Girshick, and Piotr Dollár. “Rethinking imagenet pre-training.”
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 4918–4927.

[23] Kaiming He and Jian Sun. “Convolutional neural networks at constrained time
cost.” In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 5353–5360.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[25] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In: Neural
computation 9.8 (1997), pp. 1735–1780.

[26] Berthold KP Horn and Brian G Schunck. “Determining optical flow.” In: Artificial
intelligence 17.1-3 (1981), pp. 185–203.

bibliography 66

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. “Mobilenets: Efficient
convolutional neural networks for mobile vision applications.” In: arXiv preprint
arXiv:1704.04861 (2017).

[28] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks.” In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018, pp. 7132–7141.

[29] Saumya Jetley, Nicholas A Lord, Namhoon Lee, and Philip HS Torr. “Learn to pay
attention.” In: arXiv preprint arXiv:1804.02391 (2018).

[30] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J Black.
“Towards understanding action recognition.” In: Proceedings of the IEEE interna-
tional conference on computer vision. 2013, pp. 3192–3199.

[31] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. “3D convolutional neural networks
for human action recognition.” In: IEEE transactions on pattern analysis and machine
intelligence 35.1 (2012), pp. 221–231.

[32] M Esat Kalfaoglu, Sinan Kalkan, and A Aydin Alatan. “Late temporal modeling
in 3d cnn architectures with bert for action recognition.” In: European Conference
on Computer Vision. Springer. 2020, pp. 731–747.

[33] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. “Large-scale video classification with convolutional neu-
ral networks.” In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. 2014, pp. 1725–1732.

[34] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad
Shahbaz Khan, and Mubarak Shah. “Transformers in Vision: A Survey.” In: arXiv
preprint arXiv:2101.01169 (2021).

[35] Yu Kong and Yun Fu. “Human action recognition and prediction: A survey.” In:
arXiv preprint arXiv:1806.11230 (2018).

[36] Yu Kong, Zhiqiang Tao, and Yun Fu. “Deep sequential context networks for ac-
tion prediction.” In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1473–1481.

[37] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images.” In: (2009).

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In: Advances in neural information pro-
cessing systems 25 (2012), pp. 1097–1105.

[39] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. “HMDB: a large video
database for human motion recognition.” In: Proceedings of the International Confer-
ence on Computer Vision (ICCV). 2011.

[40] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee
Koh. “Attention models in graphs: A survey.” In: ACM Transactions on Knowledge
Discovery from Data (TKDD) 13.6 (2019), pp. 1–25.

bibliography 67

[41] Bangli Liu, Haibin Cai, Zhaojie Ju, and Honghai Liu. “RGB-D sensing based hu-
man action and interaction analysis: A survey.” In: Pattern Recognition 94 (2019),
pp. 1–12.

[42] Elizbar A Nadaraya. “On estimating regression.” In: Theory of Probability & Its
Applications 9.1 (1964), pp. 141–142.

[43] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural net-
works.” In: arXiv preprint arXiv:1511.08458 (2015).

[44] Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele Facciolo. “TV-L1 opti-
cal flow estimation.” In: Image Processing On Line 2013 (2013), pp. 137–150.

[45] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. “Ima-
genet large scale visual recognition challenge.” In: International journal of computer
vision 115.3 (2015), pp. 211–252.

[47] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. “Mobilenetv2: Inverted residuals and linear bottlenecks.” In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 4510–
4520.

[48] Jo Schlemper, Ozan Oktay, Liang Chen, Jacqueline Matthew, Caroline Knight,
Bernhard Kainz, Ben Glocker, and Daniel Rueckert. “Attention-gated networks
for improving ultrasound scan plane detection.” In: arXiv preprint arXiv:1804.05338
(2018).

[49] Jo Schlemper, Ozan Oktay, Michiel Schaap, Mattias Heinrich, Bernhard Kainz, Ben
Glocker, and Daniel Rueckert. “Attention gated networks: Learning to leverage
salient regions in medical images.” In: Medical image analysis 53 (2019), pp. 197–
207.

[50] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. “Grad-cam: Visual explanations from deep
networks via gradient-based localization.” In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 618–626.

[51] Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. “Grad-CAM: Why did you say that?”
In: arXiv preprint arXiv:1611.07450 (2016).

[52] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. “Action recognition using
visual attention.” In: arXiv preprint arXiv:1511.04119 (2015).

[53] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmenta-
tion for deep learning.” In: Journal of Big Data 6.1 (2019), pp. 1–48.

[54] Karen Simonyan and Andrew Zisserman. “Two-stream convolutional networks
for action recognition in videos.” In: arXiv preprint arXiv:1406.2199 (2014).

bibliography 68

[55] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition.” In: arXiv preprint arXiv:1409.1556 (2014).

[56] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A dataset
of 101 human actions classes from videos in the wild.” In: arXiv preprint
arXiv:1212.0402 (2012).

[57] Jonathan Stroud, David Ross, Chen Sun, Jia Deng, and Rahul Sukthankar. “D3d:
Distilled 3d networks for video action recognition.” In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2020, pp. 625–634.

[58] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
“Inception-v4, inception-resnet and the impact of residual connections on learn-
ing.” In: Thirty-first AAAI conference on artificial intelligence. 2017.

[59] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
deeper with convolutions.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 1–9.

[60] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolu-
tional neural networks.” In: International Conference on Machine Learning. PMLR.
2019, pp. 6105–6114.

[61] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
“Learning spatiotemporal features with 3d convolutional networks.” In: Proceed-
ings of the IEEE international conference on computer vision. 2015, pp. 4489–4497.

[62] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. “A closer look at spatiotemporal convolutions for action recognition.” In:
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018,
pp. 6450–6459.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need.” In:
arXiv preprint arXiv:1706.03762 (2017).

[64] Andreas Veit, Michael J Wilber, and Serge Belongie. “Residual networks behave
like ensembles of relatively shallow networks.” In: Advances in neural information
processing systems 29 (2016), pp. 550–558.

[65] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
“The caltech-ucsd birds-200-2011 dataset.” In: (2011).

[66] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,
Xiaogang Wang, and Xiaoou Tang. “Residual attention network for image classifi-
cation.” In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 3156–3164.

[67] Lei Wang, Du Q Huynh, and Piotr Koniusz. “A comparative review of recent
kinect-based action recognition algorithms.” In: IEEE Transactions on Image Process-
ing 29 (2019), pp. 15–28.

bibliography 69

[68] Geoffrey S Watson. “Smooth regression analysis.” In: Sankhyā: The Indian Journal of
Statistics, Series A (1964), pp. 359–372.

[69] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. “Cbam: Con-
volutional block attention module.” In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 3–19.

[70] Jianxin Wu. “Introduction to convolutional neural networks.” In: National Key Lab
for Novel Software Technology. Nanjing University. China 5.23 (2017), p. 495.

[71] Lu Xia, Chia-Chih Chen, and Jake K Aggarwal. “View invariant human action
recognition using histograms of 3d joints.” In: 2012 IEEE computer society conference
on computer vision and pattern recognition workshops. IEEE. 2012, pp. 20–27.

[72] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Aggre-
gated residual transformations for deep neural networks.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 1492–1500.

[73] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. “Show, attend and tell: Neural
image caption generation with visual attention.” In: International conference on ma-
chine learning. PMLR. 2015, pp. 2048–2057.

[74] Ian T Young, Jan J Gerbrands, and Lucas J Van Vliet. “Fundamentals of image
processing.” In: (1998).

[75] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. “Beyond short snippets: Deep net-
works for video classification.” In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 4694–4702.

[76] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks.” In: arXiv
preprint arXiv:1605.07146 (2016).

[77] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent neural network
regularization.” In: arXiv preprint arXiv:1409.2329 (2014).

[78] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-
attention generative adversarial networks.” In: International conference on machine
learning. PMLR. 2019, pp. 7354–7363.

[79] Hong-Bo Zhang, Yi-Xiang Zhang, Bineng Zhong, Qing Lei, Lijie Yang, Ji-Xiang Du,
and Duan-Sheng Chen. “A comprehensive survey of vision-based human action
recognition methods.” In: Sensors 19.5 (2019), p. 1005.

[80] Jing Zhang, Wanqing Li, Philip O Ogunbona, Pichao Wang, and Chang Tang.
“RGB-D-based action recognition datasets: A survey.” In: Pattern Recognition 60

(2016), pp. 86–105.

[81] Zhengyou Zhang. “Microsoft kinect sensor and its effect.” In: IEEE multimedia 19.2
(2012), pp. 4–10.

bibliography 70

[82] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
“Learning deep features for discriminative localization.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 2921–2929.

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Glossary

	 Thesis
	1 Introduction
	1.1 Motivation
	1.2 Outline
	1.3 Scope

	2 Fundamentals
	2.1 Human Action Recognition
	2.2 Neural Network Basics
	2.2.1 2-Dimensional Convolutional Neural Networks
	2.2.2 3-Dimensional Convolutional Neural Networks
	2.2.3 Residual Neural Networks
	2.2.4 Long Short-Term Memory Networks

	2.3 Video Classification Architectures
	2.3.1 2-Dimensional Convolutional Neural Networks
	2.3.2 3-Dimensional Convolutional Neural Networks
	2.3.3 Long Short-Term Memory Networks
	2.3.4 Two-Stream Networks
	2.3.5 (2+1)D CNN

	2.4 Attention
	2.4.1 Taxonomy
	2.4.2 Learn to pay Attention
	2.4.3 Attention-Gated Network
	2.4.4 Residual Attention Network
	2.4.5 Convolutional Block Attention Module

	2.5 Post-Hoc Attention
	2.6 Video Datasets
	2.6.1 HMDB51
	2.6.2 UCF101
	2.6.3 Other Video Datasets

	2.7 Image Datasets
	2.8 Data Preprocessing
	2.8.1 Image Data Augmentation
	2.8.2 Optical Flow

	2.9 Evaluation Criteria

	3 Related Work
	3.1 Attention
	3.2 Architectures
	3.3 Approaches
	3.4 Other Research

	4 Conception
	4.1 Approach
	4.2 Selected Attention Mechanisms
	4.3 Selected Video Architectures
	4.4 Backbone Architecture
	4.5 Implementation and Benchmarks

	5 Implementation
	5.1 Hardware Specifications
	5.2 Software Overview
	5.3 Project Overview
	5.4 Backbone Prototypes
	5.5 Video Classification Models
	5.6 Attention Visualization

	6 Findings
	6.1 Training
	6.2 Attention
	6.3 Benchmarks

	7 Discussion
	7.1 Attention Modules
	7.1.1 Learn to pay Attention
	7.1.2 Attention-Gated Network
	7.1.3 Residual Attention Network
	7.1.4 Convolutional Block Attention Module

	7.2 Challenges
	7.3 Relation to Post-hoc Attention

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook

	 Appendix
	Images
	Bibliography

