Analysis of face embeddings to facilitate UNIVERSITY OF APPLIED SCIENCES image pre-selection for face morphing

Roman Kessler (rkesslerx@gmail.com), Kiran Raja, Juan Tapia Farias, & Christoph Busch

Motivation

• Face Morphing Attacks jeopardize biometric systems and passport security

h da

HOCHSCHULE DARMSTADT

- Research needs large datasets of morphed face images e.g. to develop Morph Attack Detection (MAD)
- Finding appropriate image pairs for morphing must be conducted in an automated fashion to be scalable

Methods

- Face embeddings of different Face Recognition Systems (FRSs) have been evaluated for similarity-based image pre-selection
- Vulnerabilities to morphs were evaluated using different verification FRSs

Metrics

- APCER: Attack Presentation Classification Error Rate
- BPCER: Bona fide Presentation Classification Error Rate
- prodAvgMMPMR: product Average Mated Morph Presentation Match Rate
- RMMR: Relative Morph Match Rate

- Different morphing algorithms were applied
- Face embeddings have been evaluated to also facilitate MAD

Results:

Morph vulnerability assessment

- pre-selection based on embeddings improved the ability of resulting morphs to fool FRSs, as indicated by high prodAvgMMPMR (MagFace > ArcFace > VGG-Face > DeepFace)
- good FRSs were particularly vulnerable to attacks
- UBO morpher and NTNU morpher were most suited to jeopardise FRSs

MAD based on MagFace embeddings was more

successfull to detect morphed faces than MAD

based on ArcFace embeddings

Further Results

- Cosine and Euclidean distances were suitable metrics for pre-selection
- Commercial FRSs were similarly vulnerable to face morphs, and vulnerability increased with preselection via embeddings
- Deploying embeddings of soft-biometrics models was weak in improving morph vulnerability

ATHENE University of Applied Sciences Darmstadt – Biometrics and Internet Security Research Group **National Research Center** Norwegian University of Science and Technology – Norwegian Biometrics Lab for Applied Cybersecurity