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A B S T R A C T

Face Morphing Attacks pose a novel threat to the security of identification
documents. The fusion of the face images of two or more – similarly look-
ing – individuals during the application process for a new travel document
(i.e., passport) or identity card enables both individuals to travel with the
same document. In order to develop algorithms to detect morphing attacks,
large data sets of morphed face images are needed, for which in turn many
similarly looking individuals need to be paired.

The study at hand uses face embeddings of openly accessible face recog-
nition models to describe similarity between individuals. It aims at finding
appropriate face recognition models, metrics to quantify similarity, morph-
ing algorithms to fuse facial images of paired individuals, and soft biometric
characteristics to analyze the attack potential of face morphs.

Results demonstrate, that image pre-selection based on Cosine or Euclidean
distances between face embeddings highly improves the attack potential of
morphs. Especially ArcFace and MagFace provide valuable face embeddings
to quantify similarity for pre-selection. Both open source, as well as Commer-
cial Off-The-Shelf Face Recognition Systems get fooled by morphed faces.
Landmark-based, closed source morphing algorithms pose high risk for any
of the tested Face Recognition Systems. On the other hand, MagFace embed-
dings further emerge as valuable means to detect morphed face images. Soft
biometrics characteristics however were only partially relevant to predict
morph success, if morphing has been conducted within similar age, gender,
and race groups.

The results emphasize that face embeddings are valuable instruments on
both sides of the morphing attack, image pre-selection for face morphing
and detection of morphed faces.



Z U S A M M E N FA S S U N G

Gesichtermorphing Angriffe stellen eine neue Gefahr für die Sicherheit von
Idenditätsnachweisen dar. Die Verschmelzung zweier – sich ähnlich sehen-
der – Lichtbilder zu einem Morph, der in der Antragsstellung für ein Iden-
titätsdokument (Pass, Personalausweis) eingereicht wird, ermöglicht es bei-
den Beteiligten gleichermaßen mit dem ausgestellten Dokument zu reisen.
Um Algorithmen für die Erkennung solcher Morphing Angriffe zu entwi-
ckeln werden große Mengen von Morphs benötogt, welche wiederum aus
vielen – sich ähnlichen – Gesichter-Paaren zusammengesetzt sein müssen.

Die hier vorliegende Studie benutzt Gesichter-Embeddings von Open Sour-
ce Gesichtserkennungs-Modellen um Ähnlichkeit zwischen Individuen zu
beschreiben. Das Ziel ist, passende Gesichtserkennungs-Modelle, Ähnlich-
keitsmaße, Morphing-Algorithmen, und Soft-Biometrische Eigenschaften zu
analysieren, um das Angriffspotential von Morphs zu verbessern.

Die Ergebnisse zeigen, dass wenn die Cosinus-Distanz oder die Euklidi-
sche Distanz zwischen zwei Gesichtern als Ähnlichkeitsmaß für die Paa-
rung von Lichtbildern genommen wird, das Angriffspotential der resultie-
renden Morphs erhöht wird. Speziell ArcFace und MagFace stellen geeigne-
te Gesichter-Embeddings für die Berechnung dieser Ähnlichkeit bereit. So-
wohl Open Source, als auch kommerzielle Gesichtserkennungssysteme wer-
den von den resultierenden Gesichtermorphing Angriffen getäuscht. Landmark-
basierte, nicht-öffentliche Morphingalgorithmen generieren hochwertige Mor-
phs, welche ein hohes Risiko für die getesteten Gesichtserkennungssysteme
darstellen. Andererseits stellen sich vor allem MagFace Gesichter-Embeddings
als nützliches Werkzeug für die Erkennung von gemorphten Gesichtern her-
aus. Soft-Biometrische Eigenschaften sind nur zum Teil für den Erfolg des
Morph-Angriffs ausschlaggebend, zumindest wenn innerhalb bestimmter
Alter-, Geschlechts- und Ethnizitätsgruppen gemorpht wurde.

Die Ergebnisse betonen die Wichtigkeit von Gesichter-Embeddings auf bei-
den Seiten des Angriffs. Zum einen können sie für die Paarfindung vor dem
Morphing eingesetzt werden, zum anderen wiederum für die Erkennung
von gemorphten Gesichtern.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

Automated biometric recognition plays an integral role in settings of access
control, criminal investigation, and surveillance [Kor+20]. In particular for
automated border control, the observation and analysis of the face character-
istics is becoming increasingly important for identity verification [Rio+16].
For instance, to support immigration officers at borders or airports, auto-
mated Face Recognition Systems (FRSs) increase the throughput of travelers
and similarly reduce costs.

In a typical identity verification process, a biometric reference image – i.e.,
a passport photograph – is compared to one or multiple probe images – i.e.,
live photographs taken at the border. A similarity score is then computed
between reference and probe image, and the subject might cross the border
if their similarity score exceeds a certain threshold.

The operation of an automated FRS requires a particular security of the
system. Security however can be compromised by means of a so-called mor-
phing attack [Sch+16]. In a morphing attack, the face images of two or more
subjects are combined to form a morphed face image (see e.g., Fig. 7). This
morphed face image serves as biometric reference for the FRS, and is stored
for instance in the passport. The calculated similarity score between the mor-
phed face reference image and a bona fide probe image can be high enough
to exceed some decision threshold τ, resulting in a successful verification of
identity. As a consequence, two or more individuals may use the same pass-
port for border crossing, and a one-to-one association between a passport
and an individual is broken.

A significant research area is the so-called Morphing Attack Detection
(MAD), in which algorithms are created or trained to recognize a morph-
ing attack [Ven+21]. These algorithms are often based on machine learn-
ing. Therefore, an enormous amount of data for training is required (e.g.,
[FFM21]). However, high quality morphs often need manual post-processing
to reduce artifacts [Sch+16; Sch+17], limiting the amount of high quality
morphs available for large-scale training of MAD algorithms.

For these reasons, it is important to develop criteria which allow for an
informed selection of two (or more) individuals, suitable to create a high
quality morph image [RSB20], which does not – or to a less extent – rely on
manual postprocessing. These criteria can then be used to find large num-
bers of possible pairs of suitable source images, from which morphs can be
generated in an automated fashion, and a database of morphed images can
be created for future research on MAD.



1.2 previous works 11

1.2 previous works

Previous research has shown, that an adequate pre-selection of possible
morph pairs can diminish two things: First, the choice of the morphing al-
gorithm applied is of less relevance [RSB20]. Second, the amount of artifacts
produced by an automated morphing algorithm is reduced, rendering a FRS

more vulnerable to the morph attack [RSB20]. A large database of morphed
images not only allows for better training and testing of MAD algorithms.
It further allows for an statistical analyses of the performances of FRSs, and
may ultimately lead to a better understanding of the image properties which
are predictive for the success of a morph attack.

For manual image pre-selection, some heuristic criteria have been applied
in the past. For instance, soft biometrics characteristics have been used, to
morph only subjects of similar age, same gender, or same race [Rag+17;
Raj+20; Sch+17]. Further, other characteristics such as shape of hair, skin
tone, differences in landmark position and euclidean distance between face
embeddings extracted from the OpenFace model [ALS] have shown positive
effects on the performance of a morph [RSB20].

1.3 face embeddings as a key for image pre-selection

In the study at hand, feature embeddings are used to perform image pre-
selection. Feature embeddings are low-dimensional representations of high-
dimensional input images, such as faces [Wil18]. In the context of face recog-
nition termed face embeddings, feature embeddings are point representations
in latent space learned during the training of a face recognition neural net-
work [SJ19]. The distance between two face embeddings – for instance, the
Euclidean distance between them – directly corresponds to the similarity of
the faces [SKP15]. Therefore, for face identity verification, one can calculate
distances on the embeddings and apply some threshold τ on the distance
value (or accordingly on the similarity value) to decide whether the two face
samples originate from the same identity or not.

The general idea is the following: a small distance between two subjects’
face embeddings corresponds to a high similarity perception in a human
observer. In turn similar looking faces could be able to produce more re-
alistic morphs compared to a combination of two facial images which do
not look particularly similar. Therefore, instead of manually handcrafting
face pairs from a large database, choosing corresponding faces based on
the similarity of their embeddings can automate the pair selection process.
Further, automating the pair selection process (i.e., pre-selection) renders it
comprehensible, reproducible, scalable, and lastly less subjective than man-
ual approaches.
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1.4 face recognition, morphing , and attack detection

A variety of face recognition models based neural networks or convolutional
neural networks have been published during the last years (e.g., [Tai+14;
PVZ15; Den+19; Men+21]). These networks produce different embeddings
for the same face image. Consequently, the distances between the face em-
beddings, and the pair selection of face images will be different, depending
on which face recognition model was used to extract the embeddings.

Furthermore, different face morphing algorithms have been published
(e.g., [Que; FFM14; Zha+21; Raj+20; Rag+17]). The majority of algorithms is
landmark-based [KS14; Que; FFM14; Raj+20; Rag+17], fusing the raw faces
images to an average face based on estimated facial landmarks. Others are
based on Generative Adversarial Networks (GANs), morphing in latent space
and generating the resulting morph from the latent space [Zha+21].

Both the choice of FRS for image pre-selection, and the FRS for verification
of the morph can exert an influence on the success of the morph, i.e., its
success to fool the verification FRS. Likewise, the morphing algorithm used
can have a similar effect on the success of the morph, as well as the distance
metric used for image pre-selection.

The embeddings of a particular FRS have already been tested alongside
with other characteristics to enhance image pre-selection [RSB20]. The study
used OpenFace [ALS] to extract face embeddings for image pre-selection
and compared this pre-selection method to alternative pre-selection meth-
ods based on e.g., several soft biometrics or visual descriptors. Pre-selection
based on OpenFace embeddings outperformed the alternatives in terms of
fooling a FRS to generate higher similarity measures between morphs and re-
spective bona fide images, and the morph to escape the detection of a MAD

algorithm [RSB20].

1.5 aims of the present study

The study at hand aims at an excessive analysis of image pre-selection based
on embedding vectors.

• First, different distance metrics for image pre-selection – applied on
the face embeddings – are evaluated. Therefore, the application of Eu-
clidean distance, Cosine distance, and a similarity metric based on mu-
tual information are tested. Pairs are selected based on low distance or
high similarity, respectively. The resulting pairs are morphed, and the
resulting morphs be evaluated based on the vulnerability they pose
to a FRS, i.e., how likely a FRS is successfully tricked by the morphed
image.

• Second, face embeddings can be produced by different FRSs, and new
evolutions of FRSs are published frequently. Therefore, several state-of-
the-art FRSs are deployed to generate the embeddings which are then
used for image pre-selection. Further, the very same FRSs are also exam-
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ined for identity verification of the morphs, alongside with two Com-
mercial Off-The-Shelf (COTS) FRSs.

• Third, different morphing algorithms can be used to generate the morphs.
The present study examines how different morphing algorithms con-
tribute to the success of a face morph attack based on pre-selected
images.

• Fourth, the resulting morphed images are evaluated using a MAD algo-
rithm to assess if pre-selection is beneficial to exceed a better recogni-
tion score and reduce the probability that a MAD algorithm successfully
detects the morphed image.

• Fifth, randomly morphed images are analyzed to disentangle factors
increasing the success probability – in terms of fooling an FRS – of a
morph attack.

• Finally, embeddings of soft biometrics models are tested on their abil-
ity to predict the success of a morph attack. Separate soft biometrics
models are applied for gender, age, and race to evaluate if the similar-
ities between subjects in those soft biometrics embeddings contributes
to the success of a morph attack.



2
M E T H O D S

To answer the current research questions, three general analysis tracks were
constructed (Tab. 1). The tracks differed with respect to the underlying face
data sets (Section 2.2), the FRSs used to extract face embeddings for im-
age pre-selection (Section 2.3), the distance metrics applied for pairing (Sec-
tion 2.5), the morphing algorithms used (Section 2.7), the FRSs used for veri-
fication (Section 2.3), or the application of MAD (Section 2.11).

This section is structured as follows: First, the coarse processing tracks
will be summarized (Section 2.1). After that, more detailed descriptions of
the single processing steps follow (Sections 2.2–2.11).

track I track II track III

data set FRGCv2 UNCW UNCW

pre-selection
embeddings

ArcFace

ArcFace
DeepFace
VGG-Face
MagFace

age model (VGG)
gender model (VGG)

race model (VGG)

pre-selection
distance\
similarity

Euclidean
Cosine

mutual information
Cosine

element-wise
-Euclidean

morphing
algorithm

Alyssaq
UBO

NTNU

Alyssaq
UBO

NTNU
MIPGAN

Alyssaq

verification
FRS

ArcFace

ArcFace
DeepFace
VGG-Face
MagFace
COTS1

COTS2

ArcFace

MAD
embeddings

ArcFace
MagFace

Table 1: Different analysis tracks were used in the present study. The tracks are
displayed in a vertical direction. Each track varied in the data sets used,
the FRSs used to extract embeddings for image pre-selection, the distance
metrics applied for pairing, the morphing algorithms used, the verification
FRS used, or if MAD was applied.
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2.1 processing tracks

2.1.1 Track I

Track I (Tab. 1, Fig. 1) was conducted to find an suitable distance metric
(or similarity metric) for image pre-selection. A suitable metric for image
pre-selection should therefore increase the mated morph verification rates
of the resulting morphs. Therefore, the rather small FRGCv2 data set (Sec-
tion 2.2.1) has been analyzed, using embeddings of the ArcFace model (Sec-
tion 2.3.3) for image pre-selection. Three different distance (or similarity)
measures have been calculated, Euclidean distance (Section 2.5.1), Cosine
distance (Section 2.5.2), or Mutual Information as measure of similarity (Sec-
tion 2.5.3). After pairing the images based on low distance (or high simi-
larity), three different morphing algorithms have been deployed, Alyssaq
morpher (Section 2.7.1), UBO morpher (Section 2.7.2), and NTNU morpher
(Section 2.7.3). All morphs were verified against bona fide probe images of
each subject using ArcFace (Section 2.3.3).

Figure 1: General workflow for track I and track II. The displayed processing steps
were performed using different FRS to extract embeddings, different dis-
tances, different morphing algorithms, and different FRS for mated morph
verification. See Table 1 for more information. In addition, track II in-
cluded a MAD step.

2.1.2 Track II

Track II (Tab. 1, Fig. 1) was primarily conducted to evaluate the FRSs from
which the embeddings were retrieved for image pre-selection. For this, the
larger UNCW database was used (Section 2.2.2). Only Cosine metric was
applied to determine the distances between the single face images (Sec-
tion 2.5.2), since this metric performed best in Track I (Section 3.1). Morphing
has been conducted using Alyssaq FaceMorpher (Section 2.7.1), UBO mor-
pher (Section 2.7.2), NTNU morpher (Section 2.7.3), and additionally using
MIPGAN (Section 2.7.4). Image verification has further been conducted with
several FRSs, ArcFace (Section 2.3.3), DeepFace (Section 2.3.1), VGG-Face
(Section 2.3.2), MagFace (Section 2.3.4), and two COTS algorithms termed
COTS1 and COTS2 (Section 2.3.5). Furthermore, the morphs of Track II were
evaluated using a Differential-image Morphing Attack Detection (D-MAD) al-
gorithm (Section 2.11).
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2.1.3 Track III

Track III (Tab. 1, Fig. 2) aimed at evaluating if image pre-selection can be
done based on the embeddings of soft biometrics models. Therefore, the
larger UNCW database has been used (Section 2.2.2). Embeddings were ex-
tracted using an age, gender, and race models (Section 2.4). All three models
were derived from the VGG-Face model (Section 2.3.2). Euclidean distances
have been calculated element-wise between the embeddings of the two bona
fide images (Section 2.4). All pairs have been morphed using Alyssaq mor-
pher (Section 2.7.1), because of its ability to conduct a large amount of
morphs with low computational burden. Morphs have been verified using
ArcFace (Section 2.3.3). In this track, a feature selection approach in com-
bination with a regression model was deployed to evaluate if a subset of
embeddings was able to predict the success of a morph attack (Section 2.12).

Figure 2: General workflow for track III. Contrary to track I and track II, the single
processing steps were only performed once. However, all possible morph
pairs were created, resulting in an extensive database of morphed images.

In the following, the respective data sets, FRSs, the calibration of FRSs, dis-
tance metrics, pre-selection, feature selection algorithms, face morphing al-
gorithms will be introduced, alongside the MAD procedure, statistical meth-
ods and single processing steps.

2.2 face image data sets

Within the course of this study, two different face image data sets were used
for different purposes.

2.2.1 FRGCv2

The Face Recognition Grand Challenge database version 2 (FRGCv2) [Phi+05]
database originated from a data science challenge and originally comprised
several thousand face images. Here, an in-house built subset of face im-
ages was used. The face images in this data set were already the result of a
handcrafted pre-selection procedure. Further, several processing steps were
conducted for the images to align with the International Civil Aviation Or-
ganization (ICAO) standard for machine-readable travel documents [Int15].
Therefore the presently used FRGCv2 data set comprised around 70 data sub-
jects with around 10 face captures each. Morphing was conducted between
morphs of equal gender.
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2.2.2 UNCW

The UNCW-MORPH face data set (academic version, short: UNCW) is dis-
tributed by the face aging group of University of North Carolina Wilming-
ton (UNCW) [NCW]. It comprised over 55, 000 face images of more than
13, 000 data subjects, captured between 2003 and 2007. Contrary to its name,
the UNCW database contained bona fide face images rather than morphed
images. The images show frontal faces with (largely) neutral expressions,
rendering the data set viable for face morphing. The image resolution was
between 200× 240 px and 400× 480 px. Each image was accompanied by
labels for exact age, gender (binary), and race (e.g., white, black, hispanic).

Figure 3: Samples from two exemplary data subjects from the UNCW data set. Each
row illustrates five captures from a particular data subject. Captures were
retrieved over a period of up to four years. Adapted from [UNC].

The raw data set was processed as follows: First, all samples were checked
for neutral facial expressions. Therefore, the emotion model of the LightFace
package [SO20] was used. All samples, for which "neutral" was not the dom-
inant emotion, or samples, where the emotion model failed, were discarded
from morphing. Afterwards, all subjects with less than five remaining sam-
ples were dismissed, as four bona fide probe samples are needed for vul-
nerability analysis illustrated in Figure 12. For the remaining data subjects,
the first sample (in chronological order) was used for morphing. Out of the
55, 134 samples from 13, 618 data subjects of the raw data set, 22, 992 samples
from 3, 337 data subjects remained in the data set.

Morphing then was conducted based on several criteria. Each candidate
pair (based on their distances) was evaluated based on the labels of the soft
biometrics age, gender, and race. A pair was only morphed if they corre-
sponded in gender and race affiliations. Further, a pair was only morphed if
the age difference of the two data subjects was less or equal to 5 years.
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FRS # of embeddings

ArcFace 512

DeepFace 4096

VGG-Face 2622

MagFace 512

age (VGG) 4096

gender (VGG) 4096

race (VGG) 4096

Table 2: The number of embeddings per FRS.

2.3 face recognition systems

Different state-of-the-art implementations of FRSs have been used to extract
either face embeddings for image pre-selection or for biometric verification.
ArcFace (Section 2.3.3), VGG-Face (Section 2.3.2), DeepFace (Section 2.3.1),
and MagFace (Section 2.3.4) were deployed for pre-selection based on face
embeddings. The lengths of the embeddings vectors are illustrated in Ta-
ble 2). The same FRSs have been used for verification, alongside with two
COTS FRSs (Section 2.3.5).

For ArcFace, VGG-Face and DeepFace (Facebook), Tensorflow implemen-
tations of the respective models have been used which were embedded in
the software distribution of the LightFace1 repository [SO20]. Faces (bona
fide and morphed faces) were aligned and cropped using mtcnn [Zha+16]
and rescaled to 112 × 112 px before validation. Lastly, the respective FRSs

returned different numbers of face embeddings, which are illustrated in Ta-
ble 2.
In the following, face recognition models are listed based on their publica-
tion dates.

2.3.1 DeepFace

DeepFace was developed and published 2014 by researchers of Facebook
[Tai+14]. Like all other open source FRSs used in the present study, DeepFace
is based on convolutional neural networks [AMAZ17] trained with a large
scale face image database. At the time of publication, it outperformed most
state-of-the-art FRSs and nearly reached human-level performance in face
recognition [Tai+14].

1 The LightFace repository [SO20] is also called DeepFace repository, but is not to be confused
with the DeepFace model [Tai+14] which was developed by Facebook. The repository is not
related to Facebook, but includes an implementation of its DeepFace model alongside other
face recognition models.
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2.3.2 VGG-Face

VGG-Face2 was published in 2015 [PVZ15]. It outperformed the performance
of Facebook’s DeepFace model, and was further trained on an openly ac-
cessible face data set, contrary to the DeepFace model. The model’s coarse
architecture is depicted in Figure 4.

Figure 4: VGG-Face model. Image retrieved from https://sefiks.com/2018/08/
06/deep-face-recognition-with-keras/. The input face image is prop-
agated through a network consisting of several convolutional and max-
pooling layers, followed by several fully connected layers. The output of
a the network is a Softmax layer with 2622 neurons. The activations of
those neurons correspond to the embeddings used to describe the face
and to verify the identity by applying a distance function. The VGG-Face
model was further used as baseline architecture for models estimating soft
biometrics (see Section 2.4).

2.3.3 ArcFace

ArcFace was published 2019 and since than counts as state-of-the-art model
for face recognition [Den+19]. The main contribution of the ArcFace model
was the "Additive Angular Margin Loss", which has been shown to enhance
discriminate power of the feature embeddings [Den+19]. ArcFace outper-
formed competing open source face recognition models at the time of publi-
cation.

2.3.4 MagFace

In their recent work, Meng et al. refined the ArcFace loss in a way to in-
corporate image quality in the model’s learning process [Men+21]. MagFace
learns the distribution of a class (i.e., identity) by locating the high quality
samples in the center of the distribution and the low quality samples at its
margins. MagFace slightly outperformed the ArcFace algorithm [Men+21]
at the time of publication.

2 The titel of the paper is "Deep Face Recognition" [PVZ15]. To not confuse it with the DeepFace
model [Tai+14], which was published a short time before, it is commonly called "VGG-Face"
model.

https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/
https://sefiks.com/2018/08/06/deep-face-recognition-with-keras/
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2.3.5 COTS

Two COTS FRSs have been deployed for verification purpose, which will be
called COTS1 and COTS2. COTS FRSs are proprietary software, only return-
ing verification scores and thresholds. Therefore, both COTS FRSs have only
be used for the verification in the vulnerability analyses, not for image pre-
selection. A typical automated border control scenario rather includes such
a COTS FRS than an open source FRS. Therefore, the vulnerability of a morph
within a COTS system is of high relevance for security considerations regard-
ing morphing attacks. The name of the COTS FRSs will not be disclosed.

2.4 soft biometrics models

Similar to embeddings of FRSs – i.e., embeddings to verify identities – the
study at hand also aimed at analyzing embeddings of models which were
trained to predict soft biometrics. For this aim, the LightFace [SO20] imple-
mentations of age, gender and race models were deployed. Those were re-
trained models (i.e., transfer learning) of the VGG-Face model (Section 2.3.2,
Fig. 4). All convolutional and max-pooling layers were frozen for transfer
learning, whereas the last four layers remained trainable. Furthermore, the
last two layers were replaced by a fully connected layer and a softmax layer,
of size 101 (age model), 2 (gender model), or 6 (race model), respectively.

The concept of the activation of the last layer (i.e., embeddings) is differ-
ent for face recognition models than for models which predict a soft bio-
metrics feature such as gender. Furthermore, the number of neurons in the
respective last layers varied between age, gender, and race models. Therefore
activations from an earlier layer of the respective models were extracted to
retrieve embeddings for the respective soft biometrics. For this, the third last
layer with 4, 096 neurons each was chosen (Fig. 4), as this was the last layer
until the coarse structure of the models (but not the weights and therefore
not the activations) were identical.

2.5 distance metrics

Different metrics were applied to calculate the distances between face em-
beddings for image pre-selection and identity verification. For pre-selection,
the first sample of each data subject was used, and the distances between
all data subjects were calculated pair-wise. The pair-wise distance (or simi-
larity) values were aggregated into a distance (or similarity) matrix (Fig. 5).
In track I, three different distance (or similarity) metrics were used for pre-
selection (Sections 2.5.1–2.5.3). In track II, only Cosine distance was used for
pre-selection (Section 2.5.2). In all tracks, Cosine distance was deployed for
verification (Section 2.5.2) of the open source FRSs. The distance matrix in
the case of image pre-selection was then used to find the closest subjects in
embedding space (see Section 2.6 for more details).
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Figure 5: Scheme of distance calculations. The embeddings vectors of two non-
mated data subjects were used to calculate a distance (e.g., Cosine dis-
tance). The resulting distance was saved into the distance matrix. Pair
selection has been performed based on these distances.

2.5.1 Euclidean distance

The Euclidean distance [Mal13] between embeddings of two images A and
B is the Pythagorean theorem in many dimensions, e.g., 512 dimensions for
the ArcFace embeddings (Tab. 2).

deucl(A, B) =

√
n

∑
i=1

(ai − bi)2 (1)

in which

a i i-th element of the embedding vector of image A

bi i-th element of the embedding vector of image B

n length of the embedding vector

The Euclidean distance is defined in range [0; ∞]. Sometimes, the L2-norm
or the dot product on the normalized embeddings vectors is used [Tai+14].
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2.5.2 Cosine distance

The Cosine similarity [NB10] is defined by

scos(A, B) =
aTb

||a|| · ||b|| (2)

in which

a embedding vector of image A

b embedding vector of image B

and is defined in range [−1; 1]. Correspondingly the Cosine distance is

dcos(A, B) = 1− scos(A, B) (3)

2.5.3 Mutual Information Score

Mutual Information Score (MIScore) is a measure of similarity between two
discretized vectors [VEB09]. Here, face embeddings have been discretized
into 10 bins, and Mutual Information Score has been calculated between
each pair of face embeddings. Mutual Information Score is symmetric, there-
fore exchanging A and B returns identical distances, making it suitable as
similarity metrics.

MI(A, B) =
|a|

∑
i=1

|b|

∑
j=1

∣∣ai ∩ bj
∣∣

n
log

n
∣∣ai ∩ bj

∣∣
|ai|
∣∣bj
∣∣ (4)

MI Mutual Information Score

|a| length of embedding vector of image A

|b| length of embedding vector of image B

2.6 pre-selection algorithm

First, distance matrices were calculated based on a particular distance met-
rics (e.g., Cosine distance). Only one triangle of the matrix was selected.
Then, the lowest off-diagonal value was selected to identify the face pair
with the lowest distance. Then, it was checked if the participating data sub-
jects match according to their soft biometrics labels, i.e., if they have the
same gender, ethnicity (only in the UNCW data set), and if their age does
not differ more than 5 years (only in the UNCW data set). If soft biometrics
matched, the images were morphed. Both data subjects were removed from
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the distance matrix as a result (i.e., by removing row and column of these
data subjects). If soft biometrics did not match, only the element under eval-
uation was deleted from the distance matrix, therefore both data subjects
were still available to be matched with different data subjects. This method
was continued until all data subjects were either matched, or did not find a
corresponding data subject within the soft biometrics prerequisites.

2.6.1 Alternative: K-means constrained clustering

In track I, an alternative algorithm to create pairs has also been tested. The
algorithm was a deviation from a k-means clustering method, in which
the number of samples in a leaf can be constrained (K-means constrained)
[BBD00]. The similarity of two samples was evaluated using the Euclidean
distance between samples. The number of samples in a leaf was set to 1− 2,
therefore, in all leaves with 2 samples, both data subjects in the leaf have
been morphed.

2.7 morphing algorithms

In the study at hand, three out of four morphing algorithms were landmark-
based (Alyssaq, NTNU, & UBO morpher), and had the following common-
alities, or were used according to the following fashion:

• Morphing was based on averaging the two morph candidate images’
positions of facial landmarks. 68 facial landmarks were extracted by
the OpenCV dlib library [KS14], using an ensemble of regression trees
to estimate their positions. Figure 6 shows the landmarks projected to
an exemplary face image.

• A morphing factor (alpha) of 0.5 was applied, returning an "average"
face, rather than shifting the landmark position of the morphed image
disproportionately to one of the single morph candidates.

• No image preprocessing or postprocessing has been done other the
steps included in the respective morphing packages. Rescaling and
cropping was however performed for face recognition.

Exemplary morphs for all used morphing algorithms are displayed in Fig-
ure 7.

2.7.1 Alyssaq morpher

Alyssaq morpher (FaceMorpher, version 1.0) is an open source python imple-
mentation by Alyssa Quek to morph two or more faces [Que]. The created
morphed face is returned on a black background.
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Figure 6: Dlib facial landmarks (blue dots) [KS14] on an example face image. 68

landmarks were estimated.

Figure 7: Exemplary morphed face images. The very left and right images represent
two bona fide face images, respectively. Those face images were morphed
using different morphing algorithms (central columns). The upper row
represents images of two subjects, which had a low prior distance (i.e.,
high similarity of the bona fides prior to morphing) of the bona fide face
images. The lower row represents images of two subjects with relatively
high prior distance, i.e., low similarity before morphing.
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2.7.2 UBO morpher

UBO morpher is a landmark-based morphing algorithm developed at Uni-
versity of Bologna (UBO) [FFM14; FFM16; FFM18; FFM19]. It was designed
to investigate morphing attacks and automatically generates high quality
morphed images. The package is not publicly available.

In addition to the 68 dlib landmarks (Fig. 6), UBO morpher required the
position of centers of the left and right eye. For this, the 6 landmarks around
each of the respective eye were used. The respective center was determined
by the arithmetic mean of all x- and y-coordinates of each eyes’ landmarks.
The images were further retouched and color equalized. The created mor-
phed face images were projected back to the image background of one of
the two morph candidates.

2.7.3 NTNU morpher

NTNU morpher was developped at Norwegian University of Science and
Technology (NTNU), and is – similarly to the UBO morpher, not publicly
available. It conducts morphing based on facial landmarks of two morph
candidates [Rag+17; Raj+20].

NTNU morpher processed the images as follows: First, the images were
cropped to 1400× 2100 portrait. Then 68 landmarks were estimated using
dlib model [KS14]. Each respective two images were then morphed by calcu-
lating the average landmark positions, and calculating Delaunay triangles for
both images. Both images were transformed to the average landmarks with
an affine transformation of the triangles. Hue and saturation were copied
from the first to the second image. Lightness was adjusted by smoothing his-
tograms of both images, and by then adding the difference of the maximum
location in both histograms to one of the two images. The average (mor-
phed) face was projected on one of the backgrounds of the original images.
The eyes were replaced to avoid double-iris artifacts. The images were fur-
ther cropped. OpenCV Seamless Cloning 3 [Bra00] was performed to project
the morphed images back to the background of both original face images,
respectively. Therefore a total of two images were returned per morph pair.

2.7.4 MIPGAN

Lastly, one alternative morphing algorithm was deployed, which did not rely
on dlib facial landmarks, but was build upon GANs.

Morphing through Identity Prior driven Generative Adversarial Network
(MIPGAN) [Zha+21] is derived from StyleGAN [KLA19]. MIPGAN directly
morphs two face images in the latent space, and generates a new face im-

3 Without the OpenCV Seamless Cloning, the morphed images comprised a lot of color arti-
facts.
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age based on the morphed embeddings [Zha+21]. Here, MIPGAN2 [Zha+21]
was used4, which is based on StyleGAN2 [Kar+20].

2.8 calibration of the decision thresholds

To obtain comparable performance evaluations for different biometric sys-
tems, a common metric had to be deployed. Biometric systems are often
trained or used in different data sets. Therefore, a particular verification
threshold τ on the similarity or distance score can be determined individu-
ally for a data set. The score might be dependent on the particular use case.
For instance, in a use case in which the number of false positive verification
(i.e., False Match Rate (FMR)) must be very low, the proportion of false nega-
tives (i.e., False Non-Match Rate (FNMR)) might increase likewise. FRONTEX
[Fro15] proposed a FMR of ≤ 0.1% for secure biometric systems.
For the FRGCv2 and the UNCW data sets, as well as for each individual
open source FRS for verification, the decision thresholds were defined seper-
ately and as follows: First – and only in the UNCW data set – a subset of 500

data subjects were sampled. From those subjects (respectively all subjects
in FRGCv2 data set), all possible one-to-one combinations of mated pairs
were compared using the respective FRS. Then, all possible combinations of
non-mated comparison scores were calculated. Because the total amount of
possible non-mated comparison highly outnumbered the amount of possible
mated comparison scores, a uniform sampling from all possible non-mated
pairs was performed. In the end, the number of mated comparisons equaled
the number of non-mated comparisons.

Detection Error Trade-off (DET) curves were calculated for each FRS. Ac-
cording to ISO/IEC 19795-1:2021(E) [ISO21] DET curves visualize the rela-
tionship between false-negative and false-positive errors of a binary classi-
fication system as the discrimination threshold varies. From the respective
DET curves, the decision thresholds τ for FMRs of 0.1% were empirically deter-
mined for each FRS (see Fig. S1 & Fig. S2) using PyEER [Mar]. All thresholds,
alongside with the corresponding FNMRs are illustrated in Table 3.

For the COTS FRSs, a default threshold for a FMR of 0.1% was used, and not
separately determined as with the open source FRSs.

2.9 verification system performance metrics

The resulting morphed images were verified against bona fide probe images
of the two contributing data subjects. For images of track I, track II, and
track III, prodAvgMMPMRs (eq. 6) were calculated. In addition, for images of
track II, Relative Morph Match Rate (RMMR) (eq. 7) and Morph Vulnerability
Rate (MVR) (eq. 6) were calculated.

The following metrics were defined by [Sch+16; Sch+17; ISO21]. In the
present study, all rates will be reported as decimal fractions, therefore dis-
tributing in the interval [0; 1].

4 MIPGAN1 was also tested, but the resulting images exhibited an abundance of artifacts.
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data set FRS
FMR 0.1%
(=̂0.001)
threshold

FNMR at
FMR 0.1%
(=̂0.001)

FRGCv2 ArcFace 0.4765 0.00326

UNCW ArcFace 0.4982 0.05105

DeepFace 0.1245 0.784

VGG-Face 0.146 0.318

MagFace 0.666 0.0035

Table 3: The verification thresholds on the unnormalized distances for each open
source FRS, calculated with the FRGCv2 and the UNCW data sets. The cor-
responding FNMRs are illustrated next to the thresholds as decimal fractions.
The thresholds used to calculate product Average Mated Morph Presenta-
tion Match Rate (prodAvgMMPMR) have been set at a FMR of 0.1% (=̂0.001 dec-
imal fraction). The corresponding DET curves are illustrated in Figures S1

and S2.

2.9.1 MMPMR

The Mated Morph Presentation Match Rate (MMPMR) [Sch+16] is defined for
similarity scores (eq. 5). The appropriate formulation for the distance scores
replaces the > sign with a < sign.

MMPMR =
1
M

M

∑
m=1
{( min

n=1,...,Nm
Sn

m) > τ} (5)

in which

M total number of morphed images

Sn
m mated morph comparison score of subject n at morph m

Nm total number of subjects constituting to morph m

τ decision threshold

2.9.2 prodAvgMMPMR

The prodAvgMMPMR [Sch+17] is a version with allows for a more probabilistic
interpretation about the success of morph attacks

prodAvgMMPMR =
1
M

M

∑
m=1

[
Nm

∏
n=1

(
1
In
m
·

In
m

∑
i=1
{Sn,i

m > τ})] (6)

in which, additionally to above,
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In
m number of samples of subject n within morph m

Sn,i
m mated morph comparison score of sample i of subject n at morph m

An example: One morphed image was evaluated. Two data subjects con-
tributed to the morph with one image each. Three bona fide samples per
subject were tested against the morph. For one data subject, 2

3 of the compar-
ison scores exceeded the threshold τ. For the other data subject, 3

3 compar-
ison scores exceeded the threshold τ. The prodAvgMMPMR then was simply
the product of 2

3 and 3
3 , therefore 2

3 .

2.9.3 RMMR

The RMMR metric [Sch+17] on the other hand takes the FNMR of a biometric
system into account. Different biometric systems, calibrated at a particular
FMR, can have different FNMRs. If the FNMR is high, the system is less suited
for an operation in a particular scenario, e.g., access control. Consequently, it
might produce low MMPMR or prodAvgMMPMR – therefore be less vulnerable
to morph attacks – but at the same time rejects a large proportion of mated
verification attempts. Therefore the RMMR relates the MMPMR to the FNMR.

RMMR = 1 + MMPMR− TMR (7)

RMMR = 1 + MMPMR− (1− FNMR)

RMMR = MMPMR + FNMR

FNMR, True Match Rate (TMR), and MMPMR are specific for the chosen
decision threshold τ. If MMPMR is high, therefore if the morphs fool the FRS

at τ, and at the same time if the FRS performs well by having a low FNMR,
the RMMR would be around 1. On the other hand, if both the attack quality is
low (low MMPMR), and the FRS also performs weakly by having a high FNMR,
the RMMR would still be around 1. On the other hand, it the quality of the
attack is poor (i.e., low MMPMR), and the FRS performs well by having a low
FNMR, the RMMR would be around 0. For completeness, if the attack is of high
quality (high MMPMR), and the FRS performs poorly (high FNMR), the RMMR

could theoretically go up to 2. However, that would require the morphed
comparison distances to be lower than the mated comparison distances.

2.9.4 MVR

Furthermore, a MVR represents a matrix-like representation of the success of
a data set D of morphed images, evaluated on different FRS [Fer+22]5. All
FRSs (e.g., 6 different systems) verify the same number of bona fide images
(e.g., 4) of each subject against the respective morph. MVRD

4,6 then represents

5 The MVR metric was first used within the image Manipulation Attack Resolving Solutions
(iMARS) project (https://cordis.europa.eu/project/id/883356).

https://cordis.europa.eu/project/id/883356)
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the 4x6 matrix where element (i, j) indicates the decimal fraction of morphed
images, for which at least i verification attempts have been successful by both
contributing data subjects, and for at least j FRSs (Fig. 8).

Figure 8: Morph Vulnerability Rate (MVR). The MVR is a matrix describing the suc-
cess of a data set of morphed images. Several FRS (x axis) are attacked with
several mated morph attack attempts (y axis). The element of a MVR matrix
describes the proportion of successful verifications of both attackers (i.e.,
both contributing subjects of each contributing morph) at a given number
of attempts (i.e., number of different bona fide images for both subjects)
and with a particular number of fooled FRSs. Note that MVR was calculated
as decimal fraction within range [0; 1].

2.10 multilevel modeling

In order to gain some insights from the morphed images, multilevel model-
ing has been performed on the morphed images of track II (Section 2.1.2).
Only randomly pre-selected morphs have been used. The general intuition
was to describe the prodAvgMMPMR as a function of several predictor vari-
ables. prodAvgMMPMR was used because it allows for a probabilistic interpre-
tation of the morph vulnerabilities (eq. 6). However, a substantial degree of
data points in such an analysis would be co-dependent, that is, they were
generated by the same data subjects. Therefore, in addition to usual (fixed ef-
fects) predictor terms, a random (effects) intercept has been added for each
data subject. Modeling was performed using R (version 4.0.3 (2020-10-10))
[To13] packages lmerTest (version 3.1-3) and lme4 (version 1.1-27.1) [LB90;
Bat+15].

The following model was specified:

prodAvgMMPMRi = β0 + β1 · αi + β2 ·γi + β3 · ρi + β4 ·µi + β5 ·ψi +ui,1 +ui,2 + ε

(8)
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β0 (fixed effect) intercept

βk (fixed effect) slopes

i index of morphed image

prodAvgMMPMRi prodAvgMMPMR of morph i

αi average age of both subjects contributing to morph i

γi gender of the subjects contributing to morph i

ρi race of the subjects contributing to morph i

µi morphing algorithm used

ψi FRS used for verification

ui,j (random effects) intercept of subject j of morph i

ε random error
Whereas all βk were fixed effects regression coefficients, ui,j followed a Nor-
mal distribution centered around 0 with variance σu, and εi followed a Nor-
mal distribution centered around 0 with variance σε. Consequently, any data
subject j received their own (random) intercept, indicating a – in general
– higher prodAvgMMPMR (if positive) or lower prodAvgMMPMR (if negative)
than the other data subjects. Parameter estimation was performed mini-
mizing log-likelihood rather than using REML criterion. Regarding ψi, only
prodAvgMMPMRs were used which have been calculated using ArcFace and
MagFace.

2.11 morphing attack detection

MAD can be conducted in different ways. Single-image Morphing Attack
Detection (S-MAD) approaches evaluate the nature (i.e., bona fide or mor-
phed) of an image by classification approaches of the presented face image
[Sch+20]. On the other hand, D-MAD approaches compare a presented image
with a trusted bona fide capture to evaluate the nature of the presented im-
age [Sch+20]. In the present study, a D-MAD has been performed with the
resulting suspected images. The presently used D-MAD approach was intro-
duced by Scherhag et al. [Sch+20] and used differential analysis of ArcFace
embeddings to train a Support Vector Machine (SVM) classifier. More specif-
ically, the ArcFace embeddings have been extracted for suspected images
(to be analyzed), and for of bona fide probe images of one of the participat-
ing morph candidates (Fig. 9). Both vectors were subtracted from each other.
The resulting difference vectors of length 512 portray the samples of mor-
phed (differential) images. As samples of bone fide (differential) images, the
same procedure has been done subtracting the embeddings of two different
bona fide captures of the same data subject. The resulting difference vec-
tors have been scaled to follow a standard Normal distribution with µ = 0
and σ = 1. In the present study, this procedure has been closely following
[Sch+20] using ArcFace embeddings. Further the same procedure has been
repeated in an analogous way using MagFace embeddings (Fig. 9).
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Figure 9: D-MAD pipeline. ArcFace or MagFace embeddings were extracted from
bona fide images and morphed images. Differential embeddings have
been created by subtraction of either the embeddings of a bona fide image
from a morphed image or by the subtraction of a bona fide image from
a different bona fide image. The differential vectors have been re-scaled
to N(0, 1). A classifier was trained (on ArcFace and MagFace differential
embeddings, separately) to differentiate between bona fide images and
morphed images.

Only morphs of track II have been used for MAD training and testing. Ac-
cording to [Sch+20], a strict separation of morphed samples from the origi-
nating subjects has to be conducted, to avoid overfitting of the trained clas-
sifier. Therefore, for the bona fide distances, the subjects have been used
for calculation which have not been used for morphing (i.e., because they
did not meet the criteria such as having not more than 5 bona fide sam-
ples in the raw data set). For training, only a subset of 80% of randomly
pre-selected morphs were used. i.e., without pre-selection based on any em-
beddings similarities. Further, morphed images of all morphing algorithms
have been used together. Therefore, of a pair that has been morphed, the
morphs of all four used morphing algorithms were put either in the train-
ing or testing set. A subset of 80% of all non-morphed data subjects (having
at least 2 face samples, which were around 10, 000 data subjects) have been
used for training on the bona fide differential embeddings, and accordingly
20% for testing. For testing, further the remaining subset of the randomly
pre-selected morphs have been used, and separately all morphs which were
created based on pre-selection from embeddings from different FRS, such as
ArcFace, DeepFace, VGG-Face, & MagFace.

A subject was either only in the training set, or in the testing set, when
random pre-selection is conducted. However, because the same subjects have
been used for different pairings, when different pre-selection was conducted,
a training subject also appeared in the testing sets (of non-randomly pre-
selected morphs), but as part of a different morph. Further, because the
difference vectors between morphs and bona fides were calculated, the data
should be less dependent than if the raw embeddings would have been used.
This bias was unavoidable in the present analysis pipeline. However, if a bias
is still present, the performance (i.e., accuracy) of a trained machine might
be over-fitted on the testing sets with non-random pre-selection. Therefore,
non-randomly pre-selected morphs should be slightly easier recognized by
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this machine as a morphed image than they would be in independent data
sets

2.11.1 Testing metrics regarding morphing attack detection

To evaluate MAD algorithms, ISO/IEC 30107-3 [ISO17] proposes to calculate
Attack Presentation Classification Error Rate (APCER) and Bona fide Presen-
tation Classification Error Rate (BPCER), which will be illustrated in the fol-
lowing. Similar to the metrics in Section 2.9, all rates will be reported in a
range of [0; 1].

• APCER: proportion of attack presentations using the same presentation
attack instrument species incorrectly classified as bone fide presenta-
tions in a specific scenario

• BPCER: proportion of bona fide presentations incorrectly classified as
presentation attacks in a specific scenario

APCER subserves as security measure, i.e., the proportion of attack pre-
sentation incorrectly classified as bona fide presentations should be low for
a secure biometric system. In the contrary, BPCER subserves as convenience
measure, i.e., a low number of false negatives is wanted in a biometric sys-
tem which is operational.

Oftentimes, the BPCER at which the APCER is 10% (= 0.1) (BPCER10) is also
reported [Sch+20]. BPCER10 can subserve as a convenience metric, at a given
security level. For instance, if BPCER10 is 0.05, it means that at a given security
level of detecting 90% of morphed images as such, 5% of bona fide images
however get incorrectly classified as morphs.

2.12 feature selection algorithms

Feature selection was performed on the soft biometric embeddings vectors
of track III. The aim was to evaluate the influence of each single element
of the embedding vectors on prodAvgMMPMR, but similarly the influence of
the gender, age, and race embeddings of the re-trained VGG-Face model
separately (Section 2.4).

The feature selection algorithm was based on a design matrix X ∈ Rn×m

and a target vector y ∈ Rn, whereas n is the number of observations, i.e.,
morphs, and m is the number of features, i.e. elements in a embeddings vec-
tor. The target vector y was chosen to be the prodAvgMMPMR of the morphs.
Importantly, each row Xi,· of X was composed of the absolute difference be-
tween the embedding vectors of the two bona fide images which composed
the morph:

Xi,· = |eb f 1 − eb f 2| (9)
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with eb f 1 and eb f 2 being the 4, 096 dimensional (Tab. 2) embedding vectors
(for each soft biometric model) of the two bona fide images, from which the
morph was composed. The elements yi of the target vector y were calculated
as the prodAvgMMPMR of each morphed image, calculated by verifying bona
fide images of both data subjects (eq. 6).

For this analysis, a large number of randomly pre-selected morphs have
been created by Alyssaq morpher (Section 2.7.1), to generate a reasonable
data dimension for feature selection. All data subjects have been split into
either training or testing sets. ArcFace has been used for biometric verifica-
tion.

For each soft biometrics (i.e., age, gender, & race) embeddings, all columns
of the respective design matrices were discarded which had zero variance in
the training set. This were around 50% to 85% of columns, depending on
the particular soft biometrics model used. The remaining columns under-
went a transformation to standard Normal distribution N(0, 1). The result-
ing design matrices underwent a feature selection using minimal Redun-
dancy, Maximal Relevance (mRMR) (Section 2.12.1).

mRMR (Section 2.12.1) has been run for the design matrix composed of em-
bedding differences for each model (i.e., age, gender, & race) individually.
mRMR returned relative feature importances, i.e., the relative importance of
each element of the embeddings vector, when included to the other, already
selected, feature candidates. Using these relative feature importances, a rank
of each feature (i.e., element of embeddings vector) has been created. Then,
LGBM regression models (Section 2.12.2) have been constructed for feature
sets of particular sizes. The sizes were of 20 equi-distant steps in (0; Ntotal ],
with Ntotal being the number of maximally available features for the respec-
tive model after discarding features with zero variance. Each model was then
trained on the respective feature set, and regression performance has been
evaluated using Root Mean Squared Error (RMSE).

After having evaluated an optimal number of features from each kind of
soft biometrics model, those respective features were concatenated into a
huge design matrix to train another LGBM regression model (Section 2.12.2).
The performance of this final, optimized model across soft biometrics types
was then compared to the performances of the single models (i.e., using only
age, gender, or race embeddings) without feature selection, and a combined
model using the entire embeddings set of all soft biometrics models without
feature selection. Chance prediction levels have further been calculated for
each model by shuffling the predictions and calculating the respective RMSEs.

2.12.1 mRMR

An implementation of mutual information – often used in feature selection
– is mRMR [DP05]. In mRMR, two terms are computed based on mutual infor-
mation. First, the mutual information between a feature Xi and the outcome
class c is computed. A high mutual information between these two variables
indicates a high relevance of this particular feature, i.e., high predictability of
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the target class c by the feature variable X. Second, the redundancy to other
features is calculated. The redundancy term in this formulation is the aver-
age of mutual information of the feature to all other features, which have
already been selected. Redundancy therefore is to be minimized, whereas
relevance is to be maximized, when a new feature is selected. With the com-
bination of those two terms, such as for example in equation 10, the relevance
term of a feature is penalized by the redundancy to other, already selected,
features.

mRMR(Xi) = I(Xi, c)− 1
|S| ∑j∈S

I(Xi, Xj) (10)

mRMR = relevance− redundancy (11)

2.12.2 LGBM

LGBM is a gradient boosting algorithm based on decision trees [Ke+17].
Boosting generally combines several weak learning algorithms to combine
them to a strong learner [Sch90]. It was developed among other things to
allow for the analysis of larger data sets, and on the same hand, is supposed
to return higher accuracies [Fri01].



3
R E S U LT S

3.1 evaluation of distance metrics for image pre-selection

First, different distance or similarity metrics were evaluated based on their
ability to enhance the morph attack success rate of morphs created using a
small data set (i.e., track I, Section 2.1.1). Pairs for morphing have been found
based on different distance (or similarity) metrics, i.e., Euclidean distance,
Cosine distance, mutual information (similarity), or with an entirely differ-
ent pairing algorithm (k-means constrained). For comparison, pairs were
generated randomly. Figure 10 illustrates the distributions of the prodAvgMMPMRs

of the resulting morphs.

Figure 10: Mated morph comparison success rates for different image pre-selection
metrics. prodAvgMMPMRs (y axes) are illustrated for different pre-selection
methods (x axis & color-coded). Data density is plotted in horizontal
direction. Median values are illustrated by horizontal black bars. The
same pairs have been morphed by different morphing methods (rows).
Random assignment of the morphing pairs are displayed in the left-
most column. Cosine distance and Euclidean distance show higher me-
dian prodAvgMMPMRs, similar to images pre-selected by the k-means con-
strained algorithm. On the contrary, image pre-selection based on mutual
information (MIScore) only slightly increased morph attack success rate.
Note that prodAvgMMPMR was calculated as decimal fraction within range
[0; 1].

All pre-selection methods tested have improved morph attack success rate,
compared to randomly generated morphs. However, Cosine distance and Eu-
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clidean distance performed better than image pre-selection based on mutual
information. Using a k-means constrained algorithm, morphs performed
nearly as well as using Cosine and Euclidean distances. All tested morphing
algorithms, Alyssaq, UBO, and NTNU morpher, profited from image pre-
selection. However, morphs produced by UBO morpher and NTNU morpher
showed higher median prodAvgMMPMRs than morphs produced by Alyssaq
morpher. Notably, even morphs created by random face pairs produced pos-
itive values for prodAvgMMPMR.

3.2 evaluation of face recognition systems for image pre-selection

In a next series of analyses (track II, Section 2.1.2), embeddings of different
FRSs have been evaluated based on their ability to increase morph attack
success rate.

3.2.1 Mated morph comparison performance

Figure 11 illustrates the distribution of prodAvgMMPMR values, produced by
face morphs which have been pre-selected using different FRSs, morphed
with different morphing algorithms, and verified against bona fide probe
images using again different open source FRSs.

In general, image pre-selection as compared to random pairing increases
morph attack vulnerability when the resulting morphs are verified using
ArcFace or MagFace. Using MagFace for verification, highest morph vulner-
ability was shown, followed by ArcFace. VGG-Face and more so DeepFace
showed lowest vulnerability to morph attacks. See Section 3.2.2 for in detail
analysis of this behavior.

In the following, the focus is narrowed down on morphs verified with
ArcFace and MagFace: Figure 11 further illustrates, that image pre-selection
based on embeddings from ArcFace and MagFace created best morphing
attacks, followed by VGG-Face and lastly DeepFace. The exact ranking of
ArcFace and MagFace for image pre-selection was dependent on whether
ArcFace or MagFace has also been used for image verification. If the same FRS

was used for verification, pre-selection based on the same system performed
best. If COTS FRSs have been used for verification, this bias vanishes (Fig. S3).
Further, using COTS FRSs, the prodAvgMMPMR is mostly accumulating around
1, indicating high vulnerability, even for morphs with random pre-selection
applied (Fig. S3). However, the morphs created with MIPGAN and verified
using COTS FRSs illustrate again the benefit of image pre-selection.

Importantly, the patterns described before were highly similar, regardless
of which morphing algorithm has been used. However, there was a distin-
guishable difference in morph attack success. NTNU morpher and UBO mor-
pher produced best morphing attacks, followed by Alyssaq morpher and
lastly MIPGAN (Fig. 11 & S3).

The MVR has been introduced as a general measure of morph attack suc-
cess across different verifying FRSs (Section 2.9.4). Briefly, the elements of
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Figure 11: Mated morphs comparison success rates for different image pre-selection
embeddings. prodAvgMMPMRs (y axes) are plotted for different pre-
selection methods (x axis & color-coded). Density is plotted in horizontal
direction. Median values are illustrated by horizontal black bars. The
same pairs have been morphed by different morphing methods (rows).
Random assignment of the morphing pairs are displayed in the left-most
column. All morphs have been evaluated by different open source FRSs
(columns). Note that prodAvgMMPMR was calculated as decimal fraction
within range [0; 1].

an MVR matrix contain the proportions of successful morph attacks (with
both participating data subjects), at a particular number of FRSs and a given
number of attempts. As higher the values, and as further high values spread
towards the lower border and the rightmost border of the matrix, the more
effective are morphs of a tested data set.

Figure 12 illustrates MVRs for morphs created by the UBO morpher. Again,
using pre-selection generally increased the MVRs. All non-random pre-selection
methods have lead to the successful outwitting of at least four (out of six)
FRS in around 70 to 90% of cases with one attack attempt. Contrarily, random
morphs only exceed 47%. In around 17% to 47% of cases, all four morph at-
tack attempts were able to fool four different FRS, when pre-selection was
conducted. However, only single-digit percentages of morphs were able to
fool four FRSs with all four attack attempts.

The numbers were comparable when morphs were created by NTNU mor-
pher instead of UBO morpher (Fig. S4). The numbers were considerably
lower when morphs were created by Alyssaq morpher (Fig. S5), and even
lower for morphs created by MIPGAN (Fig. S6). However, a definite dis-
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tinction between morphs pre-selected by different FRS embeddings is more
complex.

3.2.2 Relative mated morph comparison performance

To further examine the different pre-selection methods, as well as the behav-
ior of the verification algorithms, the distributions of the raw distance scores
of mated comparisons, non-mated comparisons, and mated morph compar-
isons (exemplary for the UBO morpher) have been visualized in Figure 13.

Across all four open source verification FRSs it can be seen, that the mated
morph comparison scores were distributed between mated scores and non-
mated scores. However, they were closer aligned to the mated scores than
the non-mated scores, even for morph pairs without pre-selection (i.e., ran-
dom assignment). However, all pre-selection methods were better than ran-
dom pre-selection. Again, the same verification system showed preference
for morphs pre-selected by its own embeddings before morphing.

However, the comparison decision highly varied between the verification
FRSs. Whereas DeepFace falsely verified only a very small number of morphs
successfully, followed by VGG-Face, ArcFace and most significantly Mag-
Face falsely accepted nearly all morphs as mated comparisons. On the con-
trary, at the calibrated threshold of FMR = 0.1%, DeepFace and to a less
severe extend VGG-Face exhibited high FNMR, therefore falsely rejecting a
large proportion of mated verification attempts (Tab. 3). However, ArcFace,
and more strikingly MagFace, had very low FNMRs at the given FMR (Tab. 3).
This has lead to a higher vulnerability of better – in terms of low FNMR at a
given FMR – FRS for morphing attacks.

Figures S7, S8, & S9 show the respective distributions for morphs created
with the other morphing algorithms. The general patterns were the same as
in Figure 13. However, whereas the distance distributions of mated morph
comparisons with NTNU morphs closely aligned to those morphs created
with UBO morpher, both Alyssaq and MIPGAN showed higher distances,
leading to higher amount of rejections of mated morphs at the given decision
thresholds.

Whereas mated morph distances of good FRSs – such as ArcFace and Mag-
Face – were distributed between mated distances and non-mated distances,
Figure 13 indicates that there is a chance of separating morphs from mated
comparisons by adjusting decision thresholds. This could dramatically lower
the vulnerability for MagFace, where the distance distributions of mated
and morphs showed only a slight overlap, and to a smaller degree for Arc-
Face, where there was still a strong overlap, and where threshold adjustment
would lead to significant higher FNMR. Contrarily, the distributions of mated
morph distances of bad FRSs such as DeepFace and VGG-Face closely aligned
to the distribution of the mated distances (Fig. 13). In case of DeepFace, espe-
cially when image pre-selection as well as verification was performed with
the same FRS, mated morph distances were even smaller than mated dis-
tances.
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Figure 12: Morphs vulnerability rates (MVR) of morphs generated by the UBO mor-
pher. Different FRSs have been used for image pre-selection, i.e., ArcFace,
DeepFace, VGG-Face, or MagFace (different heatmaps). Alternatively, a
random assignment of pairs has been conducted (bottom heatmap). For
each FRS used for pre-selection, the resulting morphs have been verified
against four bona fide images of each data subject. The ratio of success-
ful attempts for both data subjects is illustrated on each y axis of each
individual plot. Further, different FRSs have been used for mated morph
verification, four open source FRSs and two COTS FRSs. The proportion of
successful attacks across several FRSs is illustrated on each x axis. The
MVR is indicated in each cell, as well as color-coded, and describes the
proportion of successful verifications for a given number of attempts (y
axes) and FRSs (x axes). Note that MVR was calculated as decimal fraction
within range [0; 1].
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Figure 13: Empirical Cumulative Distribution Functions (ECDFs) for distance scores
of the open source FRSs. Mated, non-mated, and mated morph compar-
isons have been conducted. Morphs were created by UBO morpher. The
difference distances for the comparisons are displayed on the x axis. The
(cumulative) proportion of positive verifications at a particular distance
score is plotted at the y axes. Different FRS have been used for verification
(rows). Color-coded are the different type of comparisons, i.e., mated or
non-mated, or mated morph comparisons, with morphs pre-selected by
the help of face embeddings of particular FRS. The dotted vertical lines
indicate the 0.1% FMR threshold, individually for each FRS used for verifi-
cation.
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Figure 14 further illustrates the ECDFs of the similarity scores using COTS

FRSs. As the COTS FRSs have not been used for pre-selection, the results are
more neutral with respect to the pre-selection algorithm. First, all kind of
morphs, even with random pre-selection, were likely to get positively veri-
fied by the COTS FRSs. However, similar to the open source FRSs, the distribu-
tions of the mated morph comparisons shifted towards the distributions of
the mated comparisons, when pre-selection was applied. A hierarchy can be
seen, between the different pre-selection methods. Morphs derived from a
pre-selection with MagFace generated highest similarity scores, followed by
ArcFace, VGG-Face, and lastly DeepFace.

Figure 14: ECDFs for similarity scores of the COTS FRSs. Mated, non-mated, and mated
morph comparisons have been conducted. Morphs were created by UBO
morpher. The difference similarities for the comparisons are displayed
on the x axis. The (cumulative) proportion of positive verifications at a
particular similarity score is plotted at the y axes. Note that because sim-
ilarities instead of distances are used, so the interpretation of the x axes
must be flipped compared to Figure 13. Different COTS FRS have been
used for verification (rows). Color-coded are the different type of com-
parisons, i.e., mated or non-mated, or mated morph comparisons, with
morphs pre-selected by the help of face embeddings of particular FRS.
The dotted vertical lines indicate the 0.1% FMR threshold, individually
for each FRS used for verification.

To further take into account the performances of the single FRSs, the RMMR

was calculated using the open source FRSs for verification. The RMMR corrects
the MMPMR for the FNMR (eq. 7). Therefore, the strong inflation of mated
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morph comparison values of the previous chapter can be corrected for, es-
pecially in FRSs with high FNMRs. Table 4 illustrates the RMMR values for
differently pre-selected, morphed, and verified images. The pattern mani-
fests, that if the same FRS is used for pre-selection and verification, the RMMR

is highest in most cases. The second highest RMMR however often happened
to derive from a pre-selection with MagFace, followed by ArcFace and VGG-
Face. Higher RMMR can further be observed for morphs created by UBO
morpher and NTNU morpher.

verification
pre-selection morpher random ArcFace DeepFace VGG-Face MagFace

ArcFace Alyssaq 0.24 0.64 0.39 0.55 0.63
DeepFace 0.78 0.78 0.78 0.78 0.78

VGG-Face 0.35 0.44 0.37 0.6 0.45
MagFace 0.44 0.64 0.52 0.65 0.76

ArcFace UBO 0.32 0.79 0.51 0.65 0.72
DeepFace 0.79 0.81 0.84 0.8 0.81
VGG-Face 0.42 0.57 0.45 0.71 0.58
MagFace 0.72 0.95 0.87 0.95 0.97

ArcFace NTNU 0.31 0.78 0.49 0.64 0.72
DeepFace 0.79 0.8 0.84 0.81 0.81
VGG-Face 0.4 0.53 0.45 0.71 0.55
MagFace 0.65 0.91 0.83 0.91 0.97

ArcFace MIPGAN 0.13 0.44 0.22 0.32 0.37
DeepFace 0.79 0.79 0.8 0.79 0.8
VGG-Face 0.33 0.37 0.35 0.44 0.37
MagFace 0.28 0.6 0.45 0.54 0.68

Table 4: RMMRs. Images have been morphed using different morphing algorithms,
pre-selected using embeddings of different FRSs or alternatively, been ran-
domly pre-selected, and verfied using different FRSs. The RMMR corrects the
MMPMR by the FNMR of the verification FRS (see eq. 7). The highest values
row-wise have been highlighted in bold, leaving out the quasi-diagonal ele-
ments, i.e., if pre-selection and verification FRSs coincided. Note that RMMR
was calculated as decimal fraction within range [0; 1].

Table 4 can be summarized in the following fashion. To get some idea
about how good the single pre-selection FRSs have performed across morph-
ing algorithms and open source verification FRSs – using RMMR as a metric –
each row of Table 4 has been converted to ranks (1 to 5). 5 indicated the FRS

for pre-selection (columns) which had highest RMMR compared to the other
elements, and 1 indicated the FRS with lowest RMMR, respectively. If same
values occurred in a row, decimal numbers have been used. The ranks were
then averaged across rows, therefore averaged across morphing algorithms
and verification FRSs. Table 5 illustrates the average ranks for the different
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pre-selection methods. Pairs based on MagFace embeddings had the highest
chance of creating high RMMR values, followed by ArcFace, VGG-Face, and
finally, DeepFace. Randomly pre-selected pairs perform worst across differ-
ent morphing algorithms and verification systems.

pre-selection average rank

random 1.1250

ArcFace 3.6250

DeepFace 2.6250

VGG-Face 3.5625

MagFace 4.0625

Table 5: Average ranks for RMMR values for the different pre-selection methods, i.e.,
random assignment or based on embeddings of 4 different FRSs.

3.2.3 Morph attack detection performance

A D-MAD algorithm – motivated by [Sch+20] – has been trained with ran-
domly pre-selected morphs and tested with randomly and non-randomly
pre-selected morphs. Differential embeddings have been calculated using Ar-
cFace and MagFace embeddings in two seperate runs. Figure 15 illustrates
the corresponding BPCER10 values of the MAD classifiers, tested on morphs
with different pre-selection applied (and bona fide images). The operational
point values BPCER10 were lower for the D-MAD classifier trained and evalu-
ated with MagFace embeddings, than the ones trained and evaluated with
ArcFace embeddings. Furthermore, BPCER10 on the test data sets were low-
est for randomly pre-selected pairs for morphing, and higher if the test set
contained morphs of pre-selected pairs. This trend was more pronounced
in morphs created by NTNU morpher and even more in morphs created by
UBO morpher. On the other hand, morphs created by Alyssaq morpher or
MIPGAN did not lead to such a high rise in BPCER10 values.

Further, BPCER10 values were lowest for morphs with randomly pre-selected
pairs, but higher if pre-selection was performed, especially if pre-selection
was performed based on embeddings from MagFace or ArcFace. BPCER10 val-
ues were lowest when morphs of MIPGAN were tested, followed by morphs
by Alyssaq morpher, and where highest for morphs created by UBO mor-
pher and NTNU morpher. A high value of BPCER10 renders the MAD sys-
tem inconvenient for practical purpose. The BPCER10 was increased by pre-
selection (i.e., MagFace and ArcFace) and by the morphing algorithm used
(i.e., UBO morpher and NTNU morpher). The trend is illustrated in more
detail in Figure 16. Higher BPCER and APCER values were produced by the
respective FRSs, if pre-selection has been performed, and especially if it has
been performed using ArcFace or MagFace embeddings. This was consistent
across different morphing algorithms.
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Figure 15: D-MAD algorithm performances. BPCER10 values of the classifiers tested
on differently morphed and differently pre-selected testing data sets is
shown. Left: metrics from an D-MAD algorithm trained with ArcFace em-
beddings. Right: metrics from an D-MAD algorithm trained with MagFace
embeddings. The images morphed by different morphing algorithms are
illustrated in different colors. The pre-selection method to generate the
pairs for morphing are distributed along the x axes. Note that BPCER10

was calculated as decimal fraction within range [0; 1].

High differences can be observed regarding which FRS is used to extract
embeddings to train and test D-MAD classifiers. BPCER10 values were approxi-
mately half in size when MagFace was used for D-MAD, irrespective of which
FRS was used to extract embeddings for image pre-selection (Fig. 15). On the
other hand, the advantage of attacks morphed by UBO morpher over em-
beddings morphed by NTNU morpher disappears when MagFace is used
for D-MAD compared to ArcFace (Fig. 15). The same can be seen in more de-
tail in the DET curves (Fig. 16). The APCER and BPCER values were generally
smaller, indicating a better performance of the MAD algorithm.

Interestingly, in some cases in Figure 16, it can be observed that there was
not a consistent bias of the D-MAD algorithms towards being fooled from
morphs pre-selected by embeddings of the same FRS than used for D-MAD.
MagFace embeddings for pre-selection performed best in most cases to fool
the D-MAD algorithm, even if it was trained with ArcFace embeddings.
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Figure 16: DET curves of the D-MAD approaches. Left column: D-MAD approach which
deployed ArcFace embeddings (original version). Right column: D-MAD
approach which deployed MagFace embeddings. Morphs of the different
morphing algorithm are separated by rows. Data sub-sets of differently
pre-selected morph pairs are color coded. The BPCER is plotted against
the APCER. Dotted lines indicate the positions where BPCER or APCER are
0.1 (i.e., 10%) and 0.05 (i.e., 5%). Note that both rates were calculated as
decimal fraction within range [0; 1].
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3.2.4 Statistical analysis of morph attack success rates

The prodAvgMMPMRs of randomly pre-selected morphs of the open source
FRSs have been further analyzed using a multi-level linear model (eq. 8).
Table 6 illustrates all fixed-effects predictor variables, alongside with their
estimated magnitudes, t, and p values. The intercept represented a black,
female data subject, aged 28 years, morphed with Alyssaq morpher, and the
prodAvgMMPMR calculated using ArcFace. Only p values < 0.0001 will be in-
terpreted, to account for a sufficient correction of multiple comparisons. The
intercept was significantly positive, indicating an average prodAvgMMPMR of
around 0.216 for this scenario. Using NTNU morpher, or in particular UBO
morpher for morphing, increased the average prodAvgMMPMR by 0.134 or
0.174, respectively. Contrarily, using MIPGAN decreases prodAvgMMPMR by
around 0.136. Interestingly, age, as linear predictor, had a negative impact
on prodAvgMMPMR of −0.003. Therefore, 1 year of age increase leads to a re-
duction of prodAvgMMPMR by around 0.003. Accordingly, increasing age by
30 years would lead to an increase of prodAvgMMPMR by around 0.1, which
is 10%. Further, gender and hispanic race did not change prodAvgMMPMR

significantly. However, affiliation to caucasian race significantly decreased
prodAvgMMPMR by 0.144, indicating less vulnerability of FRSs in this data set.
Furthermore, using MagFace for verification significantly increased prodAvgMMPMR
1.

3.3 feature selection on soft biometrics embeddings

Feature selection and regression on embeddings of soft biometrics models to
predict mated morph comparisons has been performed to evaluate their suit-
ability for image pre-selection (track III, Section 2.1.3). Figure 17 illustrates
the RMSE of regression models with differently sized feature subsets of the x
most important features. For all types of soft biometrics models, the reduc-
tion of the numbers of features slightly reduced the testing error compared
to a full model. However, the reduction was only minimal, as can be seen
on the scaling of the y axis (Fig. 17). However, the number of features could
effectively be reduced to a small fraction of the original number of features.

Furthermore, testing errors of resgression models with and without fea-
tures selection are illustrated in Figure 18. Without feature selection, the
errors of regressions based on age, gender, and race embeddings did not dif-
fer markedly, but there was a slight trend to lower errors for the race model.
Combining the embeddings of all three models did not lead to a better pre-
diction. Selecting an educated subset, i.e., a subset after feature selection did
not improve the prediction, but rather lead to a subtle increase in the error.

1 The same analysis has also been repeated using the two verification FRSs separately, to ac-
count for possible interaction effects. The qualitative outcome of the analyses were identical
to the results described here.
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predictor parameter estimate t p

intercept 0.216 6.1 < 0.0001
morpher_MIPGAN −0.136 −13.7 < 0.0001

morpher_NTNU 0.134 14.5 < 0.0001
morpher_UBO 0.174 17.5 < 0.0001

age −0.003 −4.0 < 0.0001
gender_male −0.069 −2.0 0.05
race_hispanic −0.153 −1.3 0.19

race_caucasian −0.144 −4.0 < 0.0001
verification_MagFace 0.321 51.2 < 0.0001

Table 6: Multilevel model results. prodAvgMMPMR of randomly pre-selected morphs
has been modeled as a function of several fixed effects predictor variables
and subject-specific random intercepts (eq. 8). Fixed effects predictors are
illustrated in columns, alongside their parameter estimates, t and p values.
The model’s intercept corresponds to a black, female data subject, aged 28
years, which was morphed with Alyssaq morpher, and the prodAvgMMPMR
was calculated using ArcFace. Age was modeled as linear predictor in
years. The other predictors were categorical, therefore either the morph-
ing algorithm, gender, race, or verification FRS increased or decreased the
prodAvgMMPMR on average by the value of the respective parameter estimate.
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Figure 17: Testing errors for morph attack success prediction on different feature
subsets of embeddings of the different soft biometrics models. The x axis
indicates the number of (most important) features used for regression.
Importance of the features has been evaluated using mRMR. The y axis
corresponds to the RMSE on predicting prodAvgMMPMR. The soft biomet-
rics models to extract embeddings for prediction are separated by color.
Dashed horizontal lines indicate the RMSE of a model without features
selection applied, therefore including all features with non-zero variance.
Note that the x axis is cut at 500, whereas the total number of features
with non-zero variance is higher for most models.
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Figure 18: Testing errors for morph attack success prediction for different soft bio-
metrics models. Along the x axis, different types of soft biometrics mod-
els have been used to extract embeddings for prediction. Either the em-
beddings of the age, gender, or race models have been used for predic-
tion, or a combination of all three models, or an educated subset of most
important features after feature selection. The y axis corresponds to the
RMSE on predicting prodAvgMMPMR. Train and testing errors are illustrated
in light and dark blue, respectively. A chance level of training and testing
errors (model-dependent) is illustrated in light and dark green, respec-
tively.



4
D I S C U S S I O N

4.1 cosine or euclidean distances are suitable for image pre-
selection

With track I (Section 2.1.1), different distance and similarity metrics have
been evaluated for image pre-selection (Section 3.1). Cosine distance and Eu-
clidean distance performed best, alongside a k-means constrained algorithm
(Fig. 10). The presently used implementation of mutual information (Sec-
tion 2.5.3) however did not perform that well, in terms that it did not level
up prodAvgMMPMR as strongly as pre-selection based on Euclidean or Co-
sine distance did. However, resulting morphs still produced prodAvgMMPMR

higher than random assignment. In the present implementation of mutual
information (Section 2.5.3), a discretization step needed to be performed,
and a number of 10 bins has been chosen for. Other numbers of bins have
also been tested, but no qualitative difference was observed (not shown).
Further, a continuous formulation of mutual information [Bel+18] has also
been tested to avoid discretization, but the results were similar.

It must be noted however that the absolute results, i.e., the magnitudes
of prodAvgMMPMRs are over-estimated. That is because the FRS used for pre-
selection and the FRS used for verification were identical, namely the ArcFace
model (Section 2.3.3). It is unlikely that an attacker would use by incidence
the same system for potential pre-selection, as will be used in a real-world
verification. Firstly, because the real-world verification FRS are rather closed-
source commercial algorithms, and secondly by the sheer amount of differ-
ent available FRSs. However, the analysis aimed at comparing pre-selection
distances, so the relative relationship of the metrics’ distributions is unlikely
to differ if pre-selection and verification FRSs vary.

4.2 open potential for the pre-selection algorithm

Because Cosine distance performed slightly better than the competing pre-
selection distances (i.e., Euclidean distance and Mutual Information score)
and pre-selection methods (i.e., k-means constrained), for further analyses
only the Cosine distance has been considered. Further, the k-means con-
strained algorithm would have run into troubles when more constrains were
applied, such as there have been in track II. For instance, constrains can be
set on how many samples (i.e., identities) were put into a leaf of the cluster
tree. However, in its current implementation it would fail when more con-
strains were applied, such as age, gender and race constrains. To account
for gender and race constrains, clustering could just be performed into sub-
groups of similar gender and race. However, to account for age, the data set
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might have been split into many age groups to perform the clustering only
within age (and gender, and race) subgroups. Possible matching pairs would
be separated by group borders because an (arbitrary) cutoff on the age vari-
able lied between them, as a result of the discretization of the variable.

Furthermore, more sophisticated algorithms could have been used for im-
age pre-selection, instead of the naïve top down selection of pairs based on
their similarity or distance, such as the Hungarian algorithm [Dro+21]. For
instance Rottcher et al. used an algorithm based on minimum weight match-
ing to optimize the distribution of the distance scores within the pairings
of a data set [RSB20]. This algorithm would, similar than the k-means con-
strained algorithm above, be confronted with drawbacks such as the need for
discretization of the age constrain. In a future version, the algorithm could
be adjusted to penalize a high difference in a particular soft biometrics char-
acteristics between the data subjects.

4.3 comparison of face recognition models for pre-selection

Regarding the FRS for extracting embeddings for image pre-selection, dif-
ferent models have been evaluated. The results showed, that the recently
published MagFace algorithms performed best, tightly followed by ArcFace.
VGG-Face and in particular DeepFace showed relatively bad performance.
However, all pre-selection methods improved the success of the morph at-
tacks (Fig. 11, S3, 12, 13 & 14, Tab. 4 & 5). Further, a bias was seen, so that
if the same FRS has been used for pre-selection as for verification, the FRS is
more vulnerable to the resulting morphs (Fig. 11 & 13). However, using two
COTS FRSs, this bias was not introduced and the pattern was still the same
Fig. S3 & 14.

A – at first glance – counterintuitive observation can be made in Figure 11:
Whereas good FRSs such as MagFace and ArcFace were quite vulnerable to
morphing attacks, bad FRSs such as VGG-Face or DeepFace did not show any
considerable vulnerability, as the prodAvgMMPMR when verified with those
FRSs were mostly accumulating around 0. This trend is indicating, that by
generally improving FRSs, so that after calibrating to a given FMR of 0.1%
the FNMR becomes lower, these – in terms of recognition accuracy – better
FRSs will become more vulnerable to morph attacks. The key figure is the de-
cision threshold, which is located somewhere in between the distributions
of the mated distances and the non-mated distances (Fig. 13). As long as
a considerable proportion of the distribution of the morphed images is lo-
cated below the threshold towards the mated comparisons, the FRS will be
quite vulnerable. Adjusting the decision threshold towards the distribution
of the mated comparisons would diminish this vulnerability. Adjusting that
decision threshold would best be possible in MagFace as verification model,
as the mated and morphed distributions showed a small overlap (Fig. 13).
With a model as good as ArcFace as well as the two COTS FRSs, the distri-
butions were however already showing a considerable overlap, impeding
an simple solution via adjustment. Furthermore, by adjusting the decision
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threshold in the direction of the mated comparisons, FMR would decrease,
which in general makes the system more secure – also against zero-effort im-
postor attacks. This in turn would inevitably increase the FNMR, rendering
the system less convenient for practical purpose. In addition, the presently
used morphs were produced in an automated fashion. A real world attacker
would be able to invest time and resources into creating one single, high
quality morph, by manual intervention and various image post-processing
steps. Comparison scores by such manually created morphs would be even
more challenging to distinguish from mated comparisons, even when using
MagFace for verification.

From the distribution of the prodAvgMMPMRs in Figure 11 – the high vul-
nerability of MagFace and ArcFace and the low vulnerability of VGG-Face
and DeepFace – some inference on the results of the MVRs can be drawn
(Fig. 12). In particular, the high values of the four leftmost columns in each
MVR matrix are likely to derive from the more vulnerable MagFace and Ar-
cFace FRSs, and the two COTS FRSs. Analogously, the quite low values in the
two rightmost columns are likely to be driven be the less vulnerable FRSs

DeepFace and VGG-Face.
When correcting the mated morph rates for the FNMR of a verification FRS

as has been done using the RMMR metric (eq. 7, Tab. 4), the general pattern
persisted that a verification FRS was most vulnerable to morphs from image
pairs pre-selected with the embeddings of the identical FRS. However, by
ranking the RMMR row-wise and average across pre-selection methods and
morphing algorithms (Tab. 5), the pattern manifests that MagFace is best
suited for pre-selection among the tested FRSs. ArcFace follows MagFace,
then VGG-Face, and lastly DeepFace. Poorest performance has constantly
been seen by randomly pre-selected morphs.

4.4 evaluation of morphing algorithms for pre-selection

A clear performance gap between morphing algorithms runs like a com-
mon thread through all analyses. Morphed images created by UBO mor-
pher, closely followed by those morphed by NTNU morpher, performed
best in fooling both FRSs (Fig. 10 & 11 and Tab. 4) and also D-MAD algorithms
(Fig. 15 & 16). Morphs created by Alyssaq morpher and MIPGAN however
performed worse in the present analyses. As especially Alyssaq morpher is
extremely effective in terms of computational time, it can still be used as
invaluable tool to generate a large amount of morphed images, as has been
done e.g., for track III.

What can be seen from Figure 15 and Figure 16 is that the morphing algo-
rithm deployed has a higher impact on the success of the D-MAD algorithm,
than the pre-selection. Similar accounts for the success in terms of fooling the
verification FRSs, as can be seen in Figure 11, and by comparing the MVRs be-
tween morphers (Fig. 12, S4, S5, & S6). Alyssaq and MIPGAN morphers per-
formed rather low in fooling the D-MAD algorithm, even with pre-selection
applied. The reason for Alyssaq morpher might for instance be the shape of
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the resulting morph (Fig. 7). Alyssaq morpher returned morphs which were
cropped at the facial borders in a non-rectangular fashion (Fig. 7), and not
projected back to one of the original images’ backgrounds. This has probably
helped the D-MAD algorithm in its decision both during training and testing.
Real world attackers would not use such a morph i.e. in a passport fraud sce-
nario. Furthermore, MIPGAN morpher produced very blurry images (Fig. 7).
In the original implementation of MIPGAN [Zha+21], the morphs were of
higher quality, but also the original images used for morphing were of better
image quality than the database used in the study at hand. The morphing in
the latent space might therefore in the present case have dropped many fa-
cial characteristics, that might have been helpful to facilitate a morph attack.

4.5 morph attack detection performance

Instead of adjusting decision thresholds to counter morphing attacks as pro-
posed in Section 4.3, MAD algorithms might be interposed in a face veri-
fication process. The presently used D-MAD algorithm was introduced by
[Sch+20] and learned to differentiate between the distribution of the differ-
ences of two bona fide images and the distribution of differences of morphs
and bona fide images (Fig. 9, Section 2.11), all in the embedding space.

Testing on random morphing produced lowest BPCER10 values, indicating
highest accuracy (Fig. 15). Testing on the other morphs increased BPCER10

values. Therefore, highest vulnerability of the D-MAD classifier has been seen
for morphs pre-selected by MagFace, then ArcFace, VGG-Face, and lastly
DeepFace. This was irrespective of whether the classifier was trained and
tested with ArcFace embeddings or with MagFace embeddings.

In fact, the D-MAD algorithm trained with MagFace embeddings revealed
considerable lower BPCER10 values, irrespective of the type of pre-selection.
Therefore, using MagFace instead of ArcFace might be a significant improve-
ment to the D-MAD classifier proposed by Scherhag et al. [Sch+20]. Please
note that only the embeddings of the MagFace algorithm have been used
and not an additional quality metrics returned by the model. However, the
quality of an image was still incorporated in the embeddings by the way the
loss function was constructed. In MagFace’s loss function, high quality sam-
ples of an individual are drawn towards the center of the multidimensional
distribution, whereas the low quality samples are pushed towards its bor-
ders [Men+21]. In other words, during training of MagFace, the magnitude
of the face embeddings were made proportional to the Cosine distance to
the respective class (i.e., individuals) centers [Fu+21]. Therefore, by having
different image qualities for the bona fide images and the morphed images
results in an easier separation of the both groups by the classifier, as their
positions in 512-dimensional embedding space are farther apart than the
positions of two high quality bona fide images.

One aims of large-scale image pre-selection based on embeddings was to
evaluate a method for providing a sufficiently large data set of morphed
face images to train MAD algorithms. Interestingly, a recent study showed,



4.6 soft biometrics and morph attack success 54

that for training MAD algorithms, image pre-selection might be done in the
opposite fashion than in the present study [Dam+19]. They demonstrated,
that that training morphing pairs with low similarity can increase the MAD

algorithm’s performance [Dam+19].
In the study at hand, separate D-MAD algorithm were trained on either

ArcFace or MagFace embeddings. However, a fusion of both might result in
constructive effects. In particular, it is not yet shown if the combination of
both D-MAD algorithms would perform better than using MagFace embed-
dings alone. Moreover, if subsets of the embeddings of both (and other FRSs)
embedding vectors might be used. This could similarly improve computa-
tion time for pre-selection by at the same time reaching high performance.
On the other hand, extracting embeddings of several FRSs adds considerable
computation time in the first place. Moreover, if feature selection for dimen-
sionality reduction on face embeddings adds as high value than in other use
cases is still open. That is because the face recognition models learn the, e.g.
512-dimensional, representations, and removing any dimension might lead
to a drop in accuracy, assuming that the variance in each dimension is equal.
In that case, the whole might be more then the sum of its parts.

4.6 soft biometrics and morph attack success

Previous studies have already used image pre-selection based on soft biomet-
rics such as age, gender, or race (e.g., [Raj+20]). In the setting of a real world
morphing attack, pre-selection based on these soft biometrics make sense as
there expression is often linked to the issued identification document, and
deviations might be suspicious to the authority issuing the document. Fur-
ther, the resulting morph might appear less authentic when morphing was
performed across gender or race, or with high age difference.

The results of the multilevel model (Tab. 6) demonstrate differences in
the morph attack potential related to the expression of the soft biometrics
characteristics, even if they closely match between individuals. For instance,
increasing age diminished the morph attack success, as well as the affiliation
to ethnicity. Contrary, gender did not play a role for morph success. However,
the data set is very unbalanced according to soft biometrics characteristics.
Results must be confirmed by in-depth analysis of more balanced data sets
such as for example FairFace [KJ21]. FairFace however had the disadvantage
of comprising faces-in-the-wild, which introduces an abundance of artifacts
in the resulting morphs. Similar data sets with more controlled and ICAO

compliant [Int15] images might however be used.
Using embeddings of soft biometrics model to predict morph attack suc-

cess was less promising (Section 3.3). The embeddings only slightly de-
creased the error on the prediction of the MMPMRs compared to chance level
(Fig. 18). It was however shown, that a small subset of the soft biometrics
embeddings was sufficient to predict morph success to a similar level, but
with generally still a high error and a slightly higher error than without fea-
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ture selection (Fig. 17). However, reducing the number of features can still be
useful to speed up calculation time for pre-selection within large data sets.

The main issue in this analysis might however be the data foundation in
the first place. The activations of a middle layer of each soft biometrics model
were extracted as embeddings. Activations were of very heterogeneous dis-
tributions, and not easily to normalize to a convenient distribution, which
typical statistical models would have been possible to be applied to. There-
fore, a tree-based algorithm (Section 2.12.2) has been used, which were more
naïve to the heterogeneous data distribution by using multiple, binary splits
of the multidimensional data space.

Moreover, the three different types of soft biometrics embeddings all per-
formed similarly, with only small deviations (Fig. 18). This might in part
be related to the fact, that all derived from the same original model, the
VGG-Face model (Fig. 4). Although the three soft biometrics models all re-
turned the same number of embeddings, the number of embeddings with
non-zero variance across observations was very different, with the age model
returning around 500, the gender around 1000, and the race model around
2000 potential features. Combining features from all models did not improve
morph attack success prediction. This kind of analysis should however be re-
investigated with embeddings of more elaborate soft biometrics models than
the presently used.

The weak performance of the approach to use soft biometrics embeddings
to enhance image pre-selection for morphing however lines up to related
findings from earlier work [RSB20]. There, similarity in characteristics such
as age, skin tone, or hair shape has been used as potential features for pre-
selection. However, that method for image pre-selection was outperformed
by the approach of pre-selection using face embeddings [RSB20].

4.7 conclusion

The study at hand conducted a detailed analysis of face embeddings in the
context of image pre-selection for morphing. Face embeddings were highly
suitable for image pre-selection, especially when MagFace or ArcFace em-
beddings have been used. Furthermore, MagFace embeddings turned out to
be particular useful to increase performance of D-MAD, and offer new poten-
tial for further research in this field.
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A P P E N D I X



A
S U P P L E M E N TA RY M E T H O D S

a.1 det curves of verification frs

During calculation of the verification thresholds for the FRGCv2 (Fig. S1)
and the UNCW (Fig. S2) data set (Section 2.8), each FRS was tested with
several genuine and impostor comparisons.

Figure S1: DET curves for the used open-source FRS on the FRGCv2 data set. The
FNMR (y axis) is plotted against the FMR (x axis), both of which were
determined by varying the verification threshold τ of the FRS.
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Figure S2: DET curves for the four used open-source FRSs on the UNCW data set.
The FNMR (y axis) is plotted against the FMR (x axis), both of which were
determined by varying the verification threshold τ of the FRS. The FRSs
are illustrated in different colors. The best overall performance – in terms
of both low FMR and low FNMR – showed MagFace, followed by ArcFace,
VGG-Face, and lastly DeepFace.
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B
S U P P L E M E N TA RY R E S U LT S

b.1 mated morph presentation match rates on cots frss

Figure S3: Mated morphs comparison success rates for different image pre-selection
embeddings. prodAvgMMPMRs (y axes) are plotted for different pre-
selection methods (x axis & color-coded). Density is plotted in horizontal
direction. Median values are illustrated by horizontal black bars. The
same pairs have been morphed by different morphing methods (rows).
Random assignment of the morphing pairs are displayed in the left-
most column. All morphs have been evaluated by different COTS FRSs
(columns). Note that prodAvgMMPMR was calculated as fraction within
range [0; 1].
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b.2 morph vulnerability rates (mvr)

Figure S4: MVR of morphs generated by NTNU morpher. See Figure 12 for details.
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Figure S5: MVR of morphs generated by Alyssaq morpher. See Figure 12 for details.
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Figure S6: MVR of morphs generated by MIPGAN morpher. See Figure 12 for de-
tails.
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b.3 distribution of mated morph comparison scores (open source

frss)

Figure S7: ECDFs for distance scores of the open source FRSs. Morphs were created
by NTNU morpher. See Figure 13 for details.
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Figure S8: ECDFs for distance scores of the open source FRSs. Morphs were created
by Alyssaq morpher. See Figure 13 for details.
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Figure S9: ECDFs for distance scores of the open source FRSs. Morphs were created
by MIPGAN morpher. See Figure 13 for details.
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b.4 distribution of mated morph comparison scores (cots frss)

Figure S10: ECDFs for similarity scores of the COTS FRSs. Morphs were created by
NTNU morpher. See Figure 14 for details.
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Figure S11: ECDFs for similarity scores of the COTS FRSs. Morphs were created by
Alyssaq morpher. See Figure 14 for details.
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Figure S12: ECDFs for similarity scores of the COTS FRSs. Morphs were created by
MIPGAN morpher. See Figure 14 for details.
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