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ABSTRACT 

The manual processing and analysis of videos from camera traps is a time consuming 

process and includes several steps from the filtering of false triggered footage to the 

identification and reidentification of individuals. 

The program developed in the course of this thesis provides a tool to automatically 

process videos from camera traps without the need of manual interaction. The 

recognition of individuals in the animal kingdom differs between species and is not 

possible across all species based on visual characteristics. The work described here 

addresses the identification of animals with unique fur patterns. The system can only be 

applied to animal species that meet specific requirements. The species of interest must 

be uniquely identifiable based on visual characteristics, similar to the human fingerprint. 

The inspected species should have a mainly solitary behavior, which is required for the 

basic assumption. It is assumed that only the same individual can be seen throughout one 

triggered video sequence. 

The program includes components of analytical computer vision as well as Deep Learning 

methods like Convolution Neural Networks. The assignment of individuals is based on the 

SIFT algorithm. In addition, other components were implemented to substitute the 

otherwise necessary interaction of a human. Based on similarity between frames from the 

video material, calculated by the Feature Detector, clusters are formed. A cluster 

represents an individual and groups the available data to this individual. It is not required 

to know the single individuals prior to the analysis. 

The program was tested on the leopard dataset from the PanAfrican Programme and 

achieved a rate of over 85% for correct assignments between previously unknown 

individuals. 
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ABSTRACT GERMAN 

Die manuelle Auswertung von Videos aus Kamerafallen vom Herausfiltern von 

Fehlauslösern bis hin zur Erkennung von Individuen ist ein zeitintensiver Prozess. 

Das hier entwickelte Programm stellt ein Werkzeug dar, mit welchem Videomaterial aus 

Kamerafallen automatisch ausgewertet werden kann, ohne die Notwendigkeit manueller 

Interaktion durch den Anwender. Die Wiedererkennung von Individuen im Tierreich 

unterscheidet sich zwischen den Tierarten und ist nicht für jede Spezies basierend auf 

visuellen Merkmalen möglich. Die hier beschriebene Arbeit befasst sich mit der 

Identifizierung von Tieren mit eindeutigen Fellzeichnungen. Das System kann nur für 

Tierarten angewendet werden, die spezifische Voraussetzungen erfüllen. Die zu 

identifizierende Tierart muss anhand von visuellen Merkmalen eindeutig erkennbar sein, 

ähnlich dem menschlichen Fingerabdruck. Des Weiteren sollte die betrachtete Spezies 

hauptsächlich ein Einzelgänger Verhalten aufweisen. Daraus ergibt sich für die 

Bildauswertung die grundlegende Annahme, dass nur ein Individuum in einer 

Videosequenz zu sehen ist. 

Das Programm beinhaltet Komponenten der analytischen Computer Vision als auch Deep 

Learning Verfahren wie Convolution Neural Networks. Die Zuordnung von Individuen 

basiert auf dem SIFT Algorithmus. Zusätzlich wurden weitere Komponenten, 

implementiert, um die sonst notwendige Interaktion eines Menschen zu ersetzen. Anhand 

der Matching Scores zwischen Frames aus dem Videomaterial, berechnet durch den 

Feature Detector, werden Cluster gebildet. Ein Cluster repräsentiert ein Individuum und 

gruppiert die vorhandenen Daten zu diesem Individuum. Vor Beginn muss keines der 

Individuen bereits bekannt sein. 

Das Program wurde auf dem Leoparden Datensatz des PanAfrican Programmes getestet 

und erreichte eine Quote von über 85% für korrekte Zuordnungen zwischen zuvor 

unbekannten Individuen. 
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1 INTRODUCTION 

Efficient and reliable monitoring of wild animals in their natural habitats is essential for 

wildlife conservatory, but a complex and time intense task for ecologists. It is a crucial 

step to answer hypotheses on incidences, behavior, habitat ranges, social relationships, 

potential conflicts with humans and livestock as well as their general way of life. 

Performing population census on a certain species gives scientists insights on the 

specie’s endangerment, their impact on the ecosystem they are part of and helps to 

achieve conservation objectives to adequately protect the population. 

Individual identification is an often used method to estimate a population. Over the past 

years camera traps became an increasingly popular tool for wildlife monitoring. Camera 

traps are equipped with motion and/or infrared sensors and are therefore suitable to 

unobtrusively monitor wildlife. The low acquisition costs and maintenance 

requirements make camera traps a cost-effective way to collect large volumes of data 

without invading the habitat and disrupting animal’s natural behaviors. The bottleneck 

in this process is the researcher’s time consuming and monotonous task to analyze the 

enormous volume of data. First to filter the empty false-triggered videos and images and 

later to establish connections between the appearing individuals. 

Leopards (Panthera pardus) are disappearing at an alarming rate and were categorized 

as vulnerable on the IUCN Red List. Leopards represent an important conservation icon 

due to their prominent fur pattern and general popularity for people and children. They 

are distributed from the tropical forest area to semi-deserts. Often confused with 

jaguars (Panthera onca) due to their similar pelage, leopards are only indigenous to 

Africa and Asia and do not have a common living space with jaguars from South America. 

As a large carnivore they have a crucial impact on ecosystems, wherefore it is of big 

concern to ecologists to estimate their population in an ecosystem. Like many other 

large carnivors, especially big cats (Felidae), leopards are difficult to monitor and rarely 

seen by humans. Camera traps offer a non-invasive solution to gather video data on 

leopards. Due to the fact that leopards have large territories and a low population 

density very few of the motion-triggered videos are likely to contain footage on leopards 

besides many other species. 

The target of this thesis is to address the problem of the time consuming identification 

task of individual animals by developing a program that automatically processes the data 

taken from camera traps with computer vision methods, eliminating the manual tagging 

conducted by ecologists. The developed system visually identifies individuals by means 

“We only know a tiny proportion about the complexity of the natural world. Wherever you 
look, there are still things we don’t know about and don’t understand. [...] There are 

always new things to find out if you go looking for them.” 
― Sir David Attenborough 
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of their distinctive body marks or fur patterns using tools from the analytical computer 

vision and is therefore only applicable for species with those characteristics. Throughout 

this thesis the system will be demonstrated on a dataset of leopards collected by the 

PanAfrican Programme. 

Making use of the fact that a leopard’s coat pattern has the same characteristic as a 

human’s fingerprint to uniquely identify an individual, it is desired to label each 

individual seen in the camera trap data with a unique name ID, if possible. This task can 

be challenging, because the data was collected in the wild and may differ in lighting and 

quality, especially for partly nocturnal animals like leopards. Major obstacles for the 

identification are pose variations of the animals and the varying viewpoints. Unlike 

zebras for instance, leopards are a solitary species, which offers the opportunity for the 

core assumption for this thesis. It is assumed that within one motion-triggered video the 

exact same individual is seen throughout the frame sequences. 

The analysis of the data includes several steps from extracting the frames from the video 

to the final identification of the individual by a feature detection and matching 

algorithm. For a more robust system interim steps built on deep learning methods are 

implemented to detect the animal within each frame and to check for the viewpoint are 

implemented to overcome the versatility of the data caused by the animal’s natural 

habitat and behavior. The frames of one video are automatically tagged with the same 

name ID and are queried against the database containing frames of other videos. If a 

match is detected the name IDs of the videos are merged for all frames in the database. 

Finally, all images that contain the same individual are clustered in the database. 
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2 DESIGN AND DEVELOPMENT OF THE RESEARCH ISSUE 

This chapter highlights my approach previous to the actual data science task. I decided 

to approach wildlife conservation organizations for a collaboration. My wish is to help 

bring wildlife conversation forward by taking part in the development of tools that 

support an ecologist’s work to protect ecosystems all over the planet. 

2.1 The PanAfrican Programme 

The PanAfrican Programme project was initiated by the Max Planck Institute for 

Evolutionary Anthropology in Leipzig with many local partners in Africa. The full name 

of the project is “The PanAfrican Programme : The Cultured Chimpanzee”. The main 

target of the project is to collect data on chimpanzees in order to get insights into their 

behavior. Therefore, the setup for the data collection was specifically designed to collect 

footage on chimpanzees. Data taken of other species is used for other projects as well. 

All data is captured by automatically triggered camera traps. The PanAfrican Programme 

hosts research sites in central and west Africa.  

The main idea of this thesis is to support ecologists in their work to conserve wildlife. In 

a dialog with one of the program’s scientists, Dr. Mimi Arandjelovic, we modeled my 

research issue. First ideas included to develop a system for automated identification of 

individuals for chimpanzees. But chimpanzees have a monochromatic fur and cannot be 

identified by a coat pattern. The individual identification for monkeys in general is 

mostly done on their faces or sometimes buttocks. Deep Learning methods for 

identification require a large amount of labeled data, which seemed hard to get for 

chimpanzee’s faces. Further brainstorming lead to the idea that, if not enough labeled 

data for deep learning approaches is available classical computer vision methods might 

be the solution. For animals with a patterned coat those methods can be applied. The 

dataset of the PanAfrican Programme includes a subset of footage triggered by leopards, 

which fulfill the requirement of individual coat patterns. 

2.2 Leopards 

The identification of individuals in the animal kingdom can only be automated for 

species with distinctive visual properties. Those distinguishing features can be body 

marks, fur patterns or the shape of recognizable body parts. For species without fur like 

rays, sharks and whales, body marks like the spots on their skin or the contour of flukes 

and fins can be distinctive features to reidentify an animal. Many species of the Felidae, 

from both Pantherinae (big cats) and Felinae (small cats), wear patterned coats. The 

colloquial terms for Felinae and Pantherinae are misleading, because the distinction 

“To restore stability to our planet, therefore, we must restore its biodiversity, the very thing 
we have removed. It is the only way out of this crisis that we ourselves have created.  

We must rewild the world!” 
― Sir David Attenborough 
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between them is not defined by their size. Pantherinaes with a body pattern are jaguars 

(Panthera onca), leopards (Panthera pardus), tigers (Panthera tigris), snow leopards 

(Uncia uncia), clouded leopards (Neofelis nebulosa), whereas the patterned cheetahs 

(Acinonyx jubatus), lynxes (Lynx lynx), ocelots (Leopardus pardalis) and servals 

(Leptailurus serval) belong to the fur-patterned Felinae. Individual identification based 

on fur patterns does not work for all species of the family. Lions (Panthera leo), caracals 

(Caracal caracal) and cougars (Puma concolor) among others do not have a coated fur 

pattern with characteristics for an individual identification. For the species mentioned 

in the beginning the pattern for each individual is unique and therefore the individuals 

can be uniquely identified and reidentified [1]. 

Most species of the Felidae family are solitary and territorial animals for the most time, 

exceptions are the mating season and rearing of the cubs. 

Leopards (Panthera pardus) belong to the family of Felidae and the sub-family 

Pantherinae, have a patterned coat and are solitary. Leopards are classified as 

“Vulnerable” by the IUCN Red List of Threatened Species [2].  

Leopards can be divided in eight subspecies based on their fur coloring [3], [4]. They 

inhabit mostly the savanna and rainforests, but are also seen in the sub-Saharan area as 

well as Asian coniferous forests [5]. Their territories range from 5-30 km² for females 

and 16-96 km² for males according to a study conducted by and in the Kruger National 

Park. The territories of females in adjoining territories can overlap as well as the territory 

of a male with multiple female individuals [6]. Therefore, different leopards can be 

caught by a fixed camera trap location. The rearing of the cubs can take up to 13-18 

months. For the first months the mother hides the cubs in a den and hunts alone [7], 

[8]. Only during rearing phase, mating or in territorial fights more than one leopard could 

be caught by a camera trap in a scene. By the time the cubs become independent male 

leopards usually leave and aim for territories far away while females may stay close and 

could be caught in camera traps nearby. 

The method described in this thesis is only applicable for solitary animals with patterned 

fur coats, demonstrated on a dataset containing African leopards (Panthera pardus 

pardus). The spots on a leopard’s fur are called rosettes and are mostly concentrated on 

the back, the flanks, the hind limbs and the upper tail. The pattern on an individual’s 

coating is very distinctive so that a match of an individual in different images can 

sometimes be verified by as few as a single rosette or a combination of three rosettes. 

The underbelly, paws and throat are free of rosettes, but spotted. On the basis of those 

parts it is harder to identify an individual, but it must also be mentioned that those parts 

are less likely caught on camera based on the natural movement of a leopard. For the 

method developed in this work it is important to mention that the left and right side of 

a leopard do not have the same pattern. The patterns on the flanks are totally 

independent and do not display mirrored images or other relations [9].  
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2.3 Core assumptions and scheme 

The best basis for the research on leopards in an area would be to have images of the 

individuals from diverse perspectives, knowing that it is the same individual. Making use 

of the video data instead of only images, it could be possible to extract that information 

from different frames, if the collected data allows. For the planned concept the following 

assumptions must be made: 

1. The inspected animal species has a solitary behavior. 

2. Within one triggered video the same individual is seen throughout the frame 

sequences. 

3. The inspected species is uniquely identifiable by coat or body marks. 

Assumption two arises from assumption one.  

For animals with herd-behavior like zebras this will mostly not be given. Within one 

video several animals might be seen in every frame changing their position to each other 

or occluding individuals, making it nearly impossible to automatically collect detections 

of one individual from different viewpoints. The fact that most solitary species do not 

have a solitary behavior during the rearing phase and obviously not during mating is 

neglected for the course of this thesis. It is assumed that the majority of the videos show 

single individuals. 

The third mandatory prerequisite is a technical necessity for the use of computer vision 

methods. The species to be analyzed must be uniquely identifiable by visual features. A 

feature recognition can only take place, if distinctive features are visible on the animal. 

Leopards fulfill the above mentioned assumptions. For the leopard the third 

requirement is met by its pelage with the spots and rosettes pattern. Not all Felidae are 

uniquely identifiable by just a small part of their fur coat. The system would not work on 

cougars for instance, because of the missing coat pattern. And even less for lions, which 

miss the distinctive coat pattern for individuals and live in packs. For species that do not 

meet the required assumptions the system is not applicable. With the above mentioned 

independency of the animal’s flanks in mind, it must be ensured that individuals are not 

counted twice into the population or right flanks are compared to left flanks in general. 

Video data in which the leopard might be shown from different viewpoints are 

beneficial. Here the second core assumption comes back in. If for the most cases only 

one leopard is displayed in one video and if it is the same individual throughout the 

frame sequence, there is a chance to get footage of the leopard from different 

viewpoints.  Initially all frames of one video containing a leopard are labeled with the 

same name ID for that individual. 

The scheme in Figure 2.1 illustrates the concept on a pictographic example. Video 1, 

Video 2 and Video 3 were taken at different camera spots A, B and C. Initially we tag 

every frame of Video 1 with the name ID Leo 1 and the one in Video 2 with Leo 2 and 

analogue for Video 3. For simplicity only one prominent distinctive feature is highlighted 
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in each frame as a star. Stars of the same color display the same feature. In Video 2 and 

Video 3 the animal is shown from opposite sides. If only Video 2 and Video 3 are available 

the animals are incomparable. But, if the dataset offers a video with the characteristics 

in Video 1, the three videos become comparable. The first frames of Video 1 can be 

matched with Video 3 by means of the red star feature, whereas the last frames of Video 

1 match Video 2 by the blue star feature. This implies that the captured image of the 

leopards in Video 2 and Video 3 belong to the same individual. Based on this knowledge 

the leopard in all three videos can be identified as the same individual. 

 

Figure 2.1 Pictographic illustration of the concept 
The animal is only seen from one side in two of the videos. The third video shows the animal on both sides 
and enables a matching of the three videos, if the same individual is shown. 

2.4 Definition of research issue 

The objective of this thesis is to develop a program that automatically identifies and 

reidentifies individual animals with computer vision tools, provided the species fulfil the 

requirements explained in the last chapter. The program will be implemented in Python 

and demonstrated on the leopard dataset at hand. To minimize manual interaction, the 

program should not require labeling of the dataset of interest. Additionally it is aimed 

to use and combine algorithms that already have proven themselves for the use on 

wildlife data and, if necessary, to implement additional components that eliminate the 

otherwise needed manual interaction of a human.  
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3 DATA 

The data foundation which is used to demonstrate the system in this thesis was provided 

by the PanAfrican Programme. The PanAfrican Programme hosts 39 temporary and 

collaborative research sites. For 29 sites the data collection is completed. Up to now, 

almost 400 000 video clips have been taken and 21 000 organic samples were collected 

by scientists. During the whole project the members mastered more than 3000km for 

recces, transects and maintenance visits [10]. 

The videos were taken by camera traps in different regions in central and west Africa 

across several countries, including the Democratic Republic of the Congo, Guinea, Ivory 

Coast, Liberia, Gabon, Senegal, Uganda, Congo and Guinea-Bissau. Figure 3.1 shows the 

regions in which the research sites are located and Figure 3.2gives a closer insight on 

the sites. The main intention of the project was to collect systematic ecological, social, 

demographic and behavioral data on 35 to 40 chimpanzee populations.  

 

Figure 3.1 Research regions 
The wider research regions in which the data collections sites are located [11]. 

 

Figure 3.2 Research sites 
Research sites with real names. On Zooniverse fake names are used [12]. 
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To get the best results from a conservation research point of view systematic sampling 

was conducted. Systematic sampling implies that the camera traps are placed in 

predefined grids. Random sampling, in contrast to systematic sampling, implies that 

camera traps are placed at random locations. Randomly placed cameras rarely take 

useful images, because most species do not use their habitat randomly. Instead, they 

have spots they visit regularly, and travel paths they use to move in their territory. So 

far there is no official research available for leopards, but in comparison for chimpanzees 

it is assumed that a minimum of 50-80 good videos are required to estimate the 

chimpanzee density in an area. Camera trap studies at different sites have revealed 

chimpanzee visitation rates of about 1-3 events per camera and month, depending on 

local chimpanzee density. Thus 20 cameras at a study site should provide about 20 or 

more chimpanzee videos per month. However, only about 30% of chimpanzee footages 

are usable when it comes to the identification of individuals, which is roughly 6-7 

videos/month [13], [14]. 

The data is captured in a predefined data collection zones of 20 to 100km² with a grid of 

cells of size 1x1 km each. The systematic camera placement requires one camera to be 

placed per grid cell (see  

Figure 3.3). The available hardware includes 20 Bushnell cameras for every data 

collection zone. If the data collection zone covers more than 20 grid cells the 

systematical placement should be retained by placing them in every second cell. In 

addition to the systematic design, remaining cameras are non-systematically placed in 

promising high-activity area. 

The Bushnell cameras are placed in Tupperware boxes and sealed with cling film for 

protection against wildlife damage or insects (see  

Figure 3.3 left). Previous experience also shows that the high humidity and rain in the 

rainforest affects the hardware. The cameras are equipped with a motion and infrared 

sensor. 

 

Figure 3.3 Camera trap and grid 
cell 
Left: The camera traps are sealed 
and placed in a box for protection.  
Right: The grid cell for camera 
locations [13]. 

 

Camera spots should be open enough to ensure that individuals can be filmed clearly 

without being blocked. Travel paths in general work well, especially at intersections. 

Elephant paths often suit the requirements well, but also bear the risk of the cameras 

getting damaged or moved, if an elephant rubs on a tree or tears it down. Therefore 

bigger trees for the mounting of the camera are preferable. Locations like water holes 
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or natural bridges are often visited by many different species. Natural bridges are fallen 

trees or other obstacles that build a path over a body of water. Natural bridges are an 

ideal location to collect data for identification tasks. Two cameras are placed facing each 

other at either end of the bridge. In this way it is likely to get footage from two 

viewpoints of one individual. 

Due to the fact that the main target of the project was to collect data on chimpanzees 

the cameras were set in their favor. Scientists hiked the area looking for evidences on 

the recent presence of chimpanzees. Indications on their recent presence can be faeces, 

fur, food remains or sticks and stones that have indications like dents and scratches, 

showing that they were likely used as tools by monkeys. Open fields without trees are 

avoided by chimpanzees. Therefore no cameras were placed in those cells and no 

statement of the presence of leopards can be made. Leopards or carnivores in general 

may prefer different locations as chimpanzees.  

For the most cases it can be said that the jungle is a complex application area to take 

image and video data. The images may have high differences in quality. Many objects 

can cause occlusions or false triggers of the camera traps and animals can be hidden 

very well in the footage. The cameras can be triggered any time during daylight and in 

the night with large variations in illumination. The missing light during night complicates 

the situation and the videos can be of a lower quality. The snapshots on the animal or 

animals itself can vary in distance, be blurred or very close up. Touches of animals to the 

camera are common  [13], [15]. 

The triggered video clips have a duration of one minute each. While collection a large 

amount of automatically taken data it is important to have a systematical way to save it 

and to hold the entire metadata. Metadata includes the maintenance time, the GPS 

location in UTM of the camera spot, the cell in the grid and the camera in that cell, a site 

code and the site name. 

Loango\Loa_d12\d12_Loa_cam38_012345_012345_20170912\09180056 .mp4* 

Sitename\grid cell\camera in that cell_ geodata in UTM_maintenance date of 

camera\videoname.mp4 

*geo data changed to hide real location and protect wildlife 

For the conduct of this thesis a subset of the dataset collected by the PanAfrican 

Programme is used. The videos of the subset are preselected videos including leopards 

tagged by volunteers and experts on Zooniverse [16]. The seen individuals were partly 

tagged with a unique name by experts, if the data allowed. The information on the 

individuals will only be used for the evaluation, not for the process itself. For secrecy 

reasons the site names were changed to fake site names and the GPS information not 

included for the publications on the Zooniverse platform.The subset encompasses 40 

GB of footage from the time between 2012 and 2018 from over 250 camera spots and a 

total of around 800 videos. 
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4 FUNDAMENTALS OF COMPUTER VISION 

The chapter outlines methods in the area of computer vision that are needed to visually 

identify and reidentify objects in images or videos. Methods from the analytical 

computer vision and machine learning approaches are considered. 

4.1 Feature detection and feature description 

A feature is a distinctive characteristic in an image. In the field of computer vision 

features are small areas that should be as identifiable as possible. Distinctive 

characteristics can be contrasts or edges for example. Feature detection is mostly 

applied as part of feature tracking tasks, meaning that a program tries to find the same 

object or feature in another image. Objects are collections of pixels that can move or 

can be changed in conjunction throughout images or in a video. Humans perform this 

task by intuitively scanning the image with their eyes for the object or the feature. For a 

human it seems easy to find the same object, also in another shape or pose. For 

example, a person or an animal that has moved to another pose or position. For 

computers this task is less intuitive.  

A previous approaches in feature detection was template matching, in which an area 

was searched having the highest accordance with the template. But this method is 

limited in terms of scaling and rotation. To overcome this problems the same template 

was used in different scales and rotations, causing many combinations to the detriment 

of computing time. The issues caused by rotation, scaling and distortions can be solved 

with markers. A marker is an object known to the algorithm that was visibly placed in 

the scene during the data collection. With the marker as a reference the algorithm can 

calculate scaling, rotation and distortions. But the use of markers brings limitations. For 

some research cases it is not feasible to place markers on the objects of interest previous 

to the collection of data. This also applies for the use case investigated in this thesis. 

Newer algorithms for feature detection and tracking are scale- and orientation invariant. 

The main components of feature tracking are usually the following: first a feature 

detector that identifies distinctive characteristics in an image (the features), second a 

descriptor to convert the characteristics into a vector and lastly a matching part that 

finds similar characteristics in another image by repeating the first steps on the new 

image and comparing the feature descriptors. Areas with similar characteristics lead to 

vectors with a small metric distance in the feature space, whereas dissimilar areas lead 

to large distances. Thus, the task of feature matching is to find a feature with a vector 

that is close to the feature vector of the region of interest that is tracked. 

The following three algorithms belong to the most known in this are: ‘Scale Invariant 

Feature Transform’ (SIFT), ‘Speeded Up Robust Features’ (SURF) and ‘Oriented FAST and 

Rotated BRIEF’ (ORB). For this thesis the SIFT algorithm will play a central role and 

therefore it will be further explained in the next chapter [17], [18]. 
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4.2 SIFT algorithm 

The Scale Invariant Feature Transform algorithm, for simplicity from now on called SIFT, 

was developed by David G. Lowe in 2004 [19]. The Brithish Columbia University holds 

the US-patent. Other than template matching algorithms, the SIFT algorithm can deal 

with rotation, distortion, changes in illumination and occlusions to a certain extend. 

Instead of searching for a whole object the SIFT algorithm searches for a few very 

descriptive unique features (keypoints), which can be reliably matched between 

different views of objects or scenes. 

The first component of the algorithm is its feature detector. The features are detected 

by the following steps. First of all, the image is stacked up to a pyramid, where each level 

has a different scaling. Scaling down towards the top of the pyramid each level halves 

the resolution. For each level the image is copied multiple times and each copy is 

Gaussian blurred with different factors (standard deviations σ). The Gaussian blur 

eliminates some noise in the image. Inside one level of the pyramid the Difference of 

Gaussian (DOG) between two adjacent images is calculated (see Figure 4.1 left). The 

DOG offers an approximation to the scale-normalized Laplacian of Gaussian that is 

needed to handle scale invariance as stated in the research of Lindeberg and is low in 

computing time [20]. Still within the level the pixels with the maximum and minimum 

value are selected by comparing each pixel to its eight neighbors in the same copy of 

the image and respectively to the 9 pixels in the image above and below as illustrated in 

Figure 4.1 on the right. The pixel selected during this step are candidates for keypoints. 

In this way only the pixel that are generally unique and differ their neighbors enough in 

terms of intensity are selected. Additionally, a filter is implemented that disqualifies the 

candidate that are located on an edge. The reason is that pixels along an edge are too 

similar. The remaining points are the SIFT keypoints. As soon as the keypoints are 

detected the effect of scale can be removed by normalization with the known sigmas. 

 

Figure 4.1 Difference of Gaussian for pyramid levels & keypoint candidate selection 
Left: Two levels of the stacked pyramid for feature detection. Within each level the Difference of Gaussian 
is calculated for adjacent images of different Gaussian blurs. Right: Selection of pixels with minimum and 
maximum values as keypoint candidates [19]. 
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The next step strengthens the algorithm against rotations of features in different 

images. To cope with rotation Lowe represents the keypoint relatively to its orientation. 

A grid is placed over the area containing the keypoint (see Figure 4.2 left, blue circle). 

For every pixel in that grid the gradient is calculated returning the magnitude and 

orientation between the pixels. The gradient visualizes the surface of the gray values 3D 

plotted on the (x,y)-plane. For every quadrant shown in Figure 4.2 the gradients of every 

grid cell are sorted into an orientation histogram consisting of 8 bins for the directions 

shown in Figure 4.2 on the right. Normalizing the length of the gradient, the magnitude, 

strengthens the algorithm towards changes in illumination. The largest bin of the 

orientation histogram states the principal orientation of the keypoint. The feature 

descriptor is the vector concatenating the values of all the entries in the orientation 

histograms. For the simplified depiction illustrated in Figure 4.2 a 2x2 array of 

orientation histograms on a region of the pixel size 8x8 is used. Most implementations 

of the SIFT algorithm work with 4x4 descriptors and an area of 16x16 pixel, resulting in 

a feature vector of the length 4x4x8=128, where 8 is the number of bins in the 

orientation histogram.  

 

Figure 4.2 Gradients of SIFT algorithm 
Left: Grid over the area containing the keypoints. Right: Directions of the orientation histogram. 
2x2 descriptor on a feature region of size 8x8. Most implementations of the SIFT algorithm work with 4x4 
descriptors and an area of 16x16 pixels. The histogram for each has 8 bins resulting in a feature vector of 
the length 4x4x8 = 128 [19] 

 

After the feature vectors are learned they can be used for matching. If a new unseen 

image is given the algorithm starts to calculate the feature descriptors for the keypoints 

in the same manner. By comparing the new feature descriptors to the known ones in 

the database potential matches can be found. The best candidate for a match is most 

likely the nearest neighbor in the database. The nearest neighbor is defined as the 

keypoint with the minimum Euclidean distance between the two feature vectors 

mapped in the feature space [18], [19], [21], [22]. 

 

4.3 Convolutional neural networks 

Convolutional neural networks, for the ease of reading from now on called CNNs, are a 
subclass of Deep Learning, a field in artificial intelligence. Deep learning algorithms are 
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extremely powerful machine learning algorithms and can learn to differentiate between 
arbitrary categories on images, if they were trained on those categories. Machine 
learning systems are generally composed of a dataset, model, loss function and 
optimization algorithm [23]. The model learns the relationship between input and 
output on its own based on the dataset. Neural networks are comprised of many 
connected layers consisting of nodes, inspired by biological neural networks. 

Convolutional neural networks are a specialization of classic neural networks and a 
popular tool for computer vision tasks like image classification and object detection. The 
vast majority of applications of convolutional neural networks focus on image data. 
Convolutional neural networks have historically been the most successful of all types of 
neural networks. In 2016 it was proven that CNNs can outperform humans in the task of 
image classification [24], [25].  

Analogue to classic neural networks the calculation of convolutional neural networks 

can be divided into the fundamental components of feedforward and backpropagation. 

During those steps the later described weights of the network are iteratively updated to 

minimize the loss function, which in turn measures a distance between a prediction and 

the ground truth. The detailed explanation on the fundamental theory of feedforward 

and backpropagation exceeds the scope of this thesis and are not further explained. 

Even though deep learning algorithms, especially CNNs, are extremely powerful there is 

a downside. A large amount of training data with ground truth information is necessary, 

which usually requires some kind of labeling. 

The specialty of CNNs is their ability to process image data and to detect patterns in the 

images. The architecture of a CNN is a stack of the three main types of layers, namely 

convolutional layers, pooling layers and fully-connected layers. Each output of a layer is 

the input for the next layer.  

As an input it consumes images, which are usually preprocessed to be of the same size 

and a label for each image stating the CNN the ground truth. The labels are the catalogue 

of outputs the CNN learns, for example the different classes for a classifier. The input of 

the image is 3-dimensional, height and width of the resized image and the depth, which 

depends on whether the image is in gray scales in this case the depth is one or in color 

channels like RGB leading to a depth of three. 

Within each convolution layer a convolution operation is conducted by a predefined 

number of 3-dimenesional learnable filters (in some literature also called kernels), able 

to learn and detect patterns. A filter is a matrix (tensor) of a fixed size. Its values are the 

weights. The filter can be visually imagined as a small window that is slid over the image 

row by row and calculates the dot product from the values covered by the window at 

each step. The sliding movement of the filter is referred to as convolving, giving the 

model its name. The resulting dot products form the feature map of the previous layer 

are then fed into the next layer. This procedure is illustrated in Figure 4.3. For the 

position on the bottom left the filter calculates the dot product as follows:  



26 
 

5 ∗ 1 + 8 ∗ 0 + 1 ∗ 1 + 8 ∗ 1 + 0 ∗ 0 + 1 ∗ 0 + 6 ∗ 0 + 4 ∗ 0 + 1 ∗ 2 = 16. 

A padding can be added around the image to enlarge the edges of the image so that 

every pixel is consumed equally and the edges and corners are not neglected. 

 

Figure 4.3 Convolution operation in a convolution layer 
A filter matrix with weights convolves over the matrix of the image and calculates the dot product [24]. 

 

The first layers of the network recognize primitive shapes like edges, corners and circles. 

The deeper the convolutional layer into the network, the more sophisticated features 

can be recognized [24]. Depending on the use case and the input images those features 

can be fur or feathers for animals or wheels and other components for cars. Figure 4.5 

visualizes which filters detect which patterns. The example shows a handwritten 7 from 

the MNIST dataset (see Figure 4.4) [26]. The values in the matrixes can be decoded by 

color with -1 being black, 1 white and 0 as grey. The abstracted versions of the original 

image of a handwritten seven shows the output after a convolution operation with the 

according filter (see Figure 4.5). The image of a handwritten 7 is a good visual example 

for how the filter detects the horizontal and vertical edges of the relevant parts. 
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Figure 4.4 Handwritten 7 from the MNIST dataset 
[26] 

 

Figure 4.5 Different filters in a convolutional layer 
Different filters and the patterns they detect. The filters detect horizontal and vertical edges [27]. 

 

In a CNN architecture pooling layers are periodically inserted between the convolution 

layers. The operation of a pooling layer downsamples along width and height of the 

filters. The most common type of pooling is the max pooling. Here a filter of a predefined 

size with a predefined step width convolves over the image and returns the maximum 

of the observed window at each stop. In this way the pooling layer progressively reduces 

the spatial size of the original input data through the layers also in favor of computing 

power and to limit the risk of overfitting. The original input image gets transformed 

through the layers into a final score leading to a classification. Overfitting occurs if the 

network is too specialized on the training data and does not perform well on new unseen 

data. Overfitting is often caused by too limited training data.  An example of a pooling 

layer operation is demonstrated in Figure 4.6. 
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Figure 4.6 Pooling layer of a CNN 
Pooling reduces the special size of the data selecting the maximum at each stop of the convolution [28]. 

The last layers of the network are fully connected layers. The spatial layout of the pixels 
in multiple dimensions from the hidden convolutional layers is no further needed. To 
transform the spatial data into a one-dimensional vector it is flattened: 

[
1 2 3
4 5 6
7 8 9

]       (1 2 3 4 5 6 7 8 9)𝑇 

The fully connected layers are of the same type than in a classic neural network. The 

very last layer consists of nodes representing the classes. When new data, meaning an 

unseen image, is fed into the CNN a predicted likelihood for each class is returned.  

When a CNN is built from scratch all initial weights are random. Transfer learning can 

improve the performance of a CNN and saves time on training. The idea of transfer 

learning is to use a pretrained network and to retrain the existing weights. The weights 

are already calibrated on previously learned simple and general features and patterns. 

Either all weights are further retrained, the weights from the last fully connected layers 

or just the last layer are retrained. All other weights are frozen. This procedure saves 

computing time and requires less data to train. Nevertheless, the weights for the final 

classification must be trained on the classes of the dataset at hand to match the desired 

classes for the application case. 

The performance of a CNN can be improved by hyperparameter optimization. 

Hyperparameters manage the trainings process by means of batch size, epochs or the 

chosen optimizer. Furthermore, the technique on how training and test data is split for 

example cross validation or data augmentation can enhance the performance. Dropout 

layers can be added to prevent overfitting. Those topics exceed the scope of this thesis 

and are no further discussed here [23]. 

Currently the most popular libraries for CNNs or neural networks in general for Python 

are Keras, TensorFlow and PyTorch [29]–[31]. In the implementation for the leopard 

identification Keras and TensorFlow are used. 

Flattening 
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4.4 Pose estimation 

Pose detection and estimation means to capture the posture of a human or animal being 

and is a branch of the computer vision field. The ability to track body movements 

improved many fields of application including healthcare, fitness and robotics. 

The algorithms have to deal with a large number of visual appearances, because humans 

can exhibit a wide range of variations on poses. For different animals this number of 

variations is even larger. Back in 1973 it was already researched that only a few 

keypoints moving as a unit are sufficient to detect human motions. Motion of living 

beings can be abstracted as a geometric structure formed by several pendulum-like 

motions of the extremities relative to a joint [32]. As figurative imagination: the knee 

when dangling legs. 

Keypoints are the points of interest, for example body parts, and are represented by 

coordinates in an image space. Motion capture systems aim to detect and track those 

keypoints from videos. For pose estimation of living beings body parts like knees, snout, 

elbows or eyes can be relevant keypoints. What is defined as a keypoint tremendously 

depends on the application case and the object of interest. Pose estimation on humans 

is further developed than on animals. For humans much more training data exists due 

to the fact that they are usually more cooperative than animals in the data collecting 

process.  

To assist the tracking of objects in computer vision tasks, markers can be attached to 

the objects of interest. Those markers display a known feature to the computer-based 

tracking system that can be rediscovered. Another option for marker-based systems is 

to highlight the parts of interest by colors or light. In any case this method requires 

preparation that must be considered before collecting the data. Depending on the 

specific application the object of interest may not be cooperative or even known before 

caught on camera. For instance, when collecting data in the wild it is impossible to make 

preparations on the animals that might cross the path of the camera.  

For use cases in which no preparation was done or cannot be done, markerless pose 

estimation algorithms were developed. For this approach no preparation on the object 

of interest is necessarily required, instead ground truth labeled trainings data is needed. 

The advantage is that this can even be done after collecting the data, but the downside 

is that this procedure generally requires manual labeling of the keypoints in the data. 

Pose estimation algorithms are basically object detection algorithms. On the one hand 

there is an encoder that extracts visual key features from the data, learning poses. And 

on the other hand is a prediction model, a decoder, that predicts the locations of the 

learned keypoints in new unseen data. A convolutional neural network (see chapter 4.3) 

can learn pose estimation [17]. 

For the loss function, the pose prediction can be evaluated by the distance between the 

ground truth keypoints and the keypoints in the prediction [33], [34]. Alternatively, the 
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percentage of correct predicted keypoints can be evaluated, counting the keypoints that 

are within a defined distance to the ground truth keypoints [35], [36]. 

Several open source packages for pose estimation exist for Python with different 

pretrained weights on different large datasets. Open pose, DeepPose, DeepCut and 

DeeperCut or modules part of the OpenCV library are the most prominent ones [37]–

[41]. But no matter how large the training datasets are even the best architectures fails 

to generalize to “atypical” postures that are not displayed in the trainings dataset as 

illustrated in the error collection on yoga poses predicted by OpenPose [42]. The 

challenge in pose estimation on animals is complex due to the large amount of poses an 

animal can take. 
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5 TOOLS FOR AUTOMATED IMAGE PROCESSING OF ANIMALS 

The chapter presents tools that have been developed for image processing on animals. 

The tools are chosen to be embedded into the program, because they have stand the 

test in other case studies. The MegaDetector and IBEIS have been successfully used on 

data taken in the wild. 

5.1 MegaDetector – Detector 

Conservation biologists invest a huge amount of time reviewing camera trap images. 

Not only for identification, reidentification or classification, much time is spent on 

sorting out empty images. The MegaDetector aims to accelerate this process. The 

MegaDetector is part of Microsoft’s AI for Earth program that supports groups working 

to solve global environmental challenges with AI tools and computing power [43]. 

Previous work has shown good results on classifiers for species with camera trap data, 

but the problem is that those models do not adapt well to new geographical regions and 

other species, because they were trained on specific species from that area. If the 

classifier is used in an ecosystem with species unknown to the system, those cannot be 

classified. But also for known species different backgrounds due to another region are 

hard to handle for the systems. The aim of the MegaDetector is to find the lowest 

common denominator for researches with camera traps. One task that has to be done 

by all applications is sorting out the empty images caused by a false trigger. This number 

strongly depends on the project, but is estimated to be around 70% on average. The 

MegaDetector was trained to be a generalizable detector that can be applied in new 

regions. The system detects the object and classifies it into one of the three classes: 

animal, human, vehicle. Cameras can be also triggered by humans or vehicles, 

depending on the project this data is of very high interest (i.e. to fight poaching) or 

irrelevant for the study (i.e. count of species). The MegaDetector only detects animals, 

but does not classify them by species. If an animal is detected the four values of the 

bounding box around the animal are returned. A visualization of detected bounding 

boxes is depicted in Figure 5.1. All annotations can be exported in a JSON file. If the 

results are not satisfactory, it is possible to label a small dataset for this region and feed 

it back into the system for fine-tuning [44], [45]. 

The first version of the MegaDetector was released in 2018. Since then it was constantly 

improved. The current model, the MegaDetector v4.1 was released in April 2020. It is 

based on Faster-RCNN with an InceptionResNetv2 base network, and was trained with 

the TensorFlow Object Detection API. The network was trained on millions of pictures 

from different ecosystems from over 23 datasets. Across all datasets approximately 75% 

percent of the images are labeled as animals, 5% as vehicles and 20% as humans. 

Additional data sources are incorporated for re-training. Two of the largest datasets are 

the Caltech Camera Traps dataset and Snapshot Serengeti. The Caltech Camera Traps 

dataset contains 243,000 images from 140 camera locations in the United States. The 



32 
 

dataset from the Snapshot Serengeti dataset contains an incredible amount of over 7 

million images from different sites. In this dataset approximately 76% of the images are 

labeled as empty. The dataset includes 150,000 bounding box annotations for 78,000 

images [46], [47]. Thanks to the diverse input data the MegaDetector is able to detect 

several individuals in one image. Furthermore, the team of MegaDetector collaborates 

with LILA BC (Labeled Information Library of Alexandria: Biology and Conservation). LILA 

BC is a repository for data sets related to biology and conservation, intended to bring 

together people with machine learning expertise and people or organizations that have 

the data and would provid from automatized processing [48]. 

The code is freely available in a GitHub repository [47]. The model is well documented 

in terms of use, but no technical documentation on the model itself is available. The 

project focuses more on the user side for ecologists and conservation biologists with 

detailed manuals and videos. For the first steps an easy to use web-based demo is 

available. A few images can be quickly analyzed by drag-and-drop. For larger datasets 

only limited programming skills are required. A template for the application of the model 

is offered in Google Colab. Running the analysis in Google Colab has the advantage of 

using Google’s GPUs [45], [49], [50]. 

MegaDetector’s infrastrutcture is extremly efficient on millions of images by dividing 

them over multiple nodes. To accelerate the process MegaDetector can be run on GPU, 

but having a GPU is not a requirement. The general estimation for a laptop from the 

mid-range segment without GPU that is sold in 2021 is 8-20 seconds per image, adding 

up to 4,000 to 10,000 images a day. In comparison for a GPU from the mid-range 

segment the MegaDetector need 0.3 to 0.5 seconds per image adding up to 200,000 and 

250,000 a day. For a human it would probably take several weeks to review the amount 

of images. The above mentioned statistics make the MegaDetector also suitable for little 

research laboratories, wildlife reservoirs or private users. 

 

Figure 5.1 Detections by the MegaDetector 
The MegaDetector detects animals in frames and put bounding boxes around the location. Multiple 
animals can be detected in one frame [44]. 

 

By the time this thesis is written the MegaDetector works on a classifier prototype, but 

it is not available and not known yet for which species it will work. 
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The MegaDetector is used in the Wildlife Protection Solutions project in real-time to 

support anti-poaching scenarios. As soon as a vehicle or a person is detected in certain 

areas an alarm is triggered, enabling the organization at site to protect threatened 

animals and arrest poachers[51]. 

5.2 DeepLabCut – Pose estimator 

DeepLabCut is a freely available software package for Python 3.6.x and higher developed 

at Harvard University and the Mathis Group & Mathis Lab at EPFL [52], [53]. It offers a 

deep neural network system for pose estimation making use of transfer learning. The 

newest version includes a graphical user interface and is compatible with Linux Ubuntu, 

Windows 10 and MacOS. A Python environment with tensor flow is required. 

The DeepLabCut algorithm can track user-predefined body parts in multiple species, 

extracting the pose of an animal with limited training data. DeepLabCut builds on a 

state-of-the-art human pose estimation algorithm, DeepCut. The software package of 

DeepLabCut comes with an out of the box tool that allows the user to create his own 

project where the user can build an own training dataset by labeling own data. A new 

individual network can be created by retraining the given neural network from 

DeepLabCut with its weights. In this way the user can define the keypoints and decide 

which parts of the animal are of interest for each project. Thanks to transfer learning 

only limited annotated data is required from the user. Only a few hundred annotations 

are sufficient to achieve good results for different pose estimations. 

DeepLabCut is is a deep convolutional neural network (CNN). The network consists of a 

variant of DeepCut and its successor, which in turn is based on ResNet. With the 

difference that ResNet’s last layer, the classification layer, is replaced by 

deconvolutional layers, which up-sample the visual information and and produces 

spatial probability densities, which shows the probability density of a body part benig 

present in a location. ResNet itself is a concolutional neural network that was trained on 

the ImageNet dataset. The dataset consists of over 14 million labeled images and many 

subsets. It is used for many other computer vision tasks and is often used as a 

benchmark for object recognition [54]. DeepCut is a state-of-the-art algorithm for 

human pose estimation meeting all the benchmarks on the popular pose estimation 

datasets [55]. DeepLabCut utilizes DeeperCut’s feature detectors consisting of either 50 

or 101 layers and its deconvolutional layers [56]. 

Thanks to the deep learning-based pose estimation, DeepLabCut can deal with varying 

and busy backgrounds as well as inconsistent illumination or distortions. Consequently 

no simplifiying of the data collection area is required like blank monochromatic 

backgrounds and high contrasts. The algorithm is more robust against occlusion or 

motion blurs, because no consistency is required for the features over a frame 

sequence. As soon as the feature is visible it can be detected. Other methods, like the 

Lucas-Kanade method for instance, rely on the information gathered over a sequence of 

images [57], [58].  
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In a nutshell, DeepLabCut is a specialized version of DeepCut or rather DeeperCut on 

animals. From this starting point the user can fine-tune an own network for an individual 

project by labeling a subset of frames from the own data with the keypoints of interest 

and retrain the weights of the basic network. It is recommended by the developers of 

DeepLabCut to label maximally diverse images (i.e., different poses, different 

individuals, luminance conditions and backgrounds), if applicable. After this step is 

completed the trained convolutional neural network can be used to estimate poses on 

unseen frames. The predicted labels can be manually corrected for further fine-tuning, 

if wished, adding an active-learning loop. Nevertheless, no system is perfect and every 

deep learning algorithm is only as good as its input and labeling. The pitfall of minimal 

data labeling is that labeling errors can severely disadvantage the performance. Another 

issue that has been experienced with pose estimation are flipped labels of right and left 

of the same body part. 

For the evaluation of the predicitons the manual labeled data is assumed as a ground 

truth. In other words the DeepLabCut method aims to match human labeling accuracy. 

The preciseness of the pose prediction is quantified by the root mean square error 

(RMSE) to the human labeling. 

DeepLabCuts first application case were mice following odor trails. They extracted 1080 

frames from multiple videos and manually labeled the keypoints: snout, left ear, right 

ear and tail base. The frames included 7 different mice captured from two camera spots. 

Nice surprise was that, although the network has only been trained with images 

displaying a single mouse, it reacted well on unseen images with multiple mice 

interacting [34]. 

DeepLabCut offers pretrained weights on different species in its Modelzoo. At this time 

the weights for the following species are freely available: cats, dogs, primate faces, 

macaques, cheetahs, humans, horses, rodents and pupils of mice [59]. For this thesis the 

weights of the net for cheetahs will become relevant due to their similar body 

proportions to leopards. 

With the DeepLabCut system not only the main body parts like legs, head and tail can 

be tracked. Everything can be tracked, if it can be labeled in the trainings data [60], [61]. 

Preceding projects focused on tracking of pupils on mice. Pupil tracking is of great 

importance for visual neuroscience. A study used head-fixed cameras and DeepLabCut 

for pupil tracking to reveal two distinct types of coupling between eye and head 

movements. The International Brain Lab implemented DeepLabCut for pupil tracking for 

the research on decision-making on mice [17], [62], [63]. 

Another enhancement that has been researched for DeepLabCut is 3D pose estimation 

with multiple cameras. One network is trained on a combination of cameras, which 

generalizes across the views. DeepLabCut was coupled with standard camera calibration 

techniques for 3D locations resolving [41], [64]. The 3D pose estimation was 

independently investigated on a cheetahs in the wild dataset and Drosophila, known as 

fruit flies, in a 3D behavioral chamber [34], [65]. At present the 3D pose estimation is 
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not relevant for the work of this thesis, but could be worth trying for a future 

enhancement.  

An advantage to mention from the technical point of view is that DeepLabCut can run 

on GPU (Graphics processing unit), if the hardware is available. The processing on GPU 

speeds up the process by a factor of 10-100 [64]. Another technical benefit is that 

DeepLabCut does not require images to have a fixed frame size, as the feature automatic 

rescale during training. 

If a user does not have a suitable GPU it can be either run on CPU, but much slower, or 

on Google Colab using Google’s GPUs to speed up the process [66].  

As many other research groups, DeepLabCut uses the support of volunteers for labeling 

and developed an app in this scope [67]. 

5.3 IBEIS and HotSpotter – Individual identifier for animals 

IBEIS (Image Based Ecological Information System) and HotSpotter are computer 

programs for the individual identification of animals. The underlying algorithm uses the 

SIFT algorithm and a nearest neighbor approach. 

IBEIS is the further developed version, but still includes the HotSpotter program as its 

centerpiece. Both were developed by Jonathan Crall in the course of his dissertation 

[68]. Further development and maintenance of IBEIS are taken over by the WildMe 

organization [69]. WildMe has set itself the target to fight extinction by building open 

source software based on machine learning and artificial intelligence techniques. 

WildMe hosts several datasets on multiple species, the WildBook. 

The original HotSpotter application is an out of the box version with a Windows installer 

[70]. For the identification process the user must import the images and define a region 

of interest and the orientation of the animal within that region by putting a rectangular 

bounding box around the animals (see Figure 5.2). Each region surrounded by a 

bounding box is added as an annotation to the database. The whole process takes place 

in a simple graphical user interface (GUI). The successor IBEIS is available as a Python 

module with an open Github respository, but only in a Linux environment [71]. IBEIS also 

comes with a GUI. The GUI offers a few more functions than the one from the simple 

HotSpotter. The core matching algorithm remains the HotSpotter algorithm. The newer 

IBEIS program works with the same type of annotations as described above for the 

HotSpotter. The target is to label each annotation with a name that uniquely identifies 

the displayed individual and collect them in a database grouping the annotations that 

show the same individual under one name. 

For each annotation keypoints are located. The features of the keypoints are extracted 

and described with the SIFT algorithm. In order to speed up the matching of the feature 

descriptors from the annotations in the database their IDs are indexed for a nearest 

neighbor search based on the feature descriptors.  
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When a new annotation is added to the 

database it can be queried against 

existing annotations to figure out 

whether the individual in the 

annotation is a new unseen one or 

already known to the database. Again, 

the viewpoint is a challenge. Two 

annotations are only comparable, if 

they both include a region with 

distinctive patterns visible in both 

annotations. If not, no statement on 

similarity can be made. 

The upgraded IBEIS version offers an 

additional function. The imported 

images can be grouped into 

occurrences — a term for biodiversity 

data standards defined by the Darwin 

Core. An occurrence groups images 

that were taken within a small time frame and in a near location. It is assumed that only 

a small numbers of individuals is seen in an occurrence [72]. In favor of computing time 

it can be chosen to query the annotations within one occurrence against each other first, 

because it is more likely to see the same animal within one occurrence. Subsequent to 

the intra occurrence query the annotations can be queried against the master database 

to determine, if an annotation shows an already known individual to the database or an 

unseen individual. 

In general, the output of the query is a list of matching candidates ranked by a matching 

score. A high score is an indication that the annotations queried against each other have 

a high likelihood of displaying the same individual. If the highest ranked annotation has 

a low score it is likely that the animal in the queried annotation is unknown to the 

database. The user of the software has to make the final decision which annotations 

should be matched. 

From the technical point of view: the ranking score is aggregated from different 

components. First, a nearest neighbor algorithm calculates the correspondences 

between the queried annotation and the annotations in the database, based on the L2-

distance of the feature descriptors. The so won scores of the annotations, describing the 

similarities between the single annotations, are aggregated into a name score. The name 

score for that name ID in the database is the highest correspondences between the 

queried annotation and all the annotations belonging to this name ID. Resulting in a 

single score for each name in the data base and the queried annotation. Further 

mathematical components contribute to the final name score measuring distinctiveness 

compared to the database and a value for the probability of the feature belonging to 

Figure 5.2 HotSpotter input image 
Input image with bounding box and orientation 
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the foreground and not the background. The further theoretical construct of the 

HotSpotters matching algorithm can be read in the dissertation of J. Crall . 

The IBEIS system was used in a huge case study called the ‘Great Zebra Count’ and took 

place at the Nairobi National Park on March 1st and 2nd, 2015. The goal was to estimate 

the number of plain zebras (Equus quagga) and masai giraffes (Giraffa tippelskirchi) in 

that area. To make wildlife conservation more popular volunteers were included in the 

data collection. They equipped the volunteers with GPS dongles and assigned them 

routes through the park. On this routes the volunteers tried to take as many good 

images of the zebras. To overcome the challenge of opposing sides the photographers 

were instructed to only take pictures from the left side. During the event 9406 useful 

images were taken, resulting in a dataset of 48 GB [73]. 

Other application areas of the IBEIS algorithm included Grévy zebras (Equus grevyi) and 

even humpback whales (Megaptera novaeangliae) or manta rays (Mobula birostris) and 

seadragons (Phyllopteryx taeniolatus) [74]. 



38 
 

6 RELATED WORK 

This chapter outlines works and case studies related to the work of this thesis. The 

methods mentioned here severed as a base for the concept and pipeline or state reasons 

why such a method is probably unsuitable for my application task, even if they were 

used in similar tasks. 

6.1 Computer Vision in animal detection and classification 

Camera traps are a cheap and popular tool for ecologists, because large amounts of data 

can be produced with manageable preparation time. Over the past years an immense 

amount of videos and images was collected, which exceeds the processing workload 

that can manually be accomplished by experts. The overlap of computer science and 

wildlife conservatory is a growing field with many platforms and communities arising in 

the Internet. Large well-known companies like Google and Microsoft support projects 

with their expertise and hardware [43], [75]. 

Non-prefiltered datasets taken by motion triggered camera traps in the wild include 

many empty frames and different species. An automated detector and classifier is vital 

for ecologists to save time to cope with the large amount of data given. While the field 

of re-identification of individuals for animals is still in its infancy, the classification of 

different species has been investigated over the past years [76]. Automatically taken 

datasets usually include a spectrum of many different species living in the ecosystem 

where the camera traps were set up. Often it is of interest to analyze only one specific 

species, even though from the biological point of view it is very important to have an 

overview of the different species and their prevalence in an area. In both cases some 

kind of classification has to be done, either for the species or just dividing into the classes 

‘animal’ and ‘empty’. Manual classification is time-consuming [47]. For datasets with 

thousands or even millions of records the processing of the data lasts years [46].  

6.2 Citizen science 

Platforms like Zooniverse [16] offer scientists to publish their data and include 

volunteers in the process. The volunteers become so called citizen scientists. With this 

approach many organizations and projects can process the data much faster with a 

positive side effect to draw the public’s attention on wildlife conservatory.  

The Snapshot Safari project with its flagship Snapshot Serengeti was the first Zooniverse 

camera trap project in 2012 and is one of the world’s largest camera trapping initiatives 

on a continent-wide scale, bringing together conservation organizations across many 

countries. More than 1500 cameras are deployed in over 40 protected areas in Africa. 

Together they generate millions of images per year. The sheer amount of data is not 

manageable for the researchers, therefore volunteers were included in the labeling 

process. The labeling process automatically evaluates itself. A label is only valid, if 10-25 

volunteers labeled it into the same class and 5-10 volunteer labels are required for the 
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simpler task to classify the image as ‘empty’ or ‘non-empty’. From 2013 to 2020 over 

138,000 volunteers across the globe have labeled more than nine million images in the 

Snapshot Safari project [46], [77], [78]. 

The idea of citizen science is to generate a data basis for the training of machine learning 

algorithms to support wildlife conservatory. The labeled data is freely available on LILA. 

The LILA platform hosts many labeled datasets. The label mostly include species 

classifications, but very few datasets have annotations for the individuals (zebra, 

giraffes, amur tigers and whale sharks) [48].  

Solely on Zooniverse, over 635 million classifications were made by almost 2.4 million 

volunteers in different projects so far [16]. Other large citizen science projects are the 

‘Great Zebra Count’ containing images of plains zebra (Equus quagga) and masai giraffe 

(Giraffa tippelskirchi) with individual identifications and bounding boxes [48], [79]. 

Some projects remove sensitive information for privacy reasons for humans or to keep 

the location of endangered species a secret from poachers. In general citizen science 

brings benefits and problems. Volunteers usually do not have the knowledge of experts 

with many years of experience, which can result in inaccurate labeled data. Especially 

for rare, not well-known species. But the time-saving fact for experts far outweigh this 

drawback[80]. Most of the platforms including citizen scientists in their process provide 

comprehensive guides on how to classify the animals to limit mistakes. 

The idea of adding volunteers to the process was taken to the next level in other projects 

concentrating on the monitoring of animals in specific regions. A reservoir in South 

Africa places camera traps throughout its field and uploads the data near-realtime on a 

website. When volunteers see a vehicle or a suspect human on the images they can 

trigger a warning. With this method the reservoir gets warned for poachers early and 

can react to poachers before they become active killing wild animals. With volunteers 

from all over the world the night bearing the most risk is covered as well. Besides 

triggering warnings the user can categorize the seen animals in an image by a given 

dictionary of animals. This data is later used to train a CNN as an animal classifier given 

the different species in that area. 

Not only the data for labeling is shared online for other scientists, citizen scientist or 

computer vision enthusiasts. Conversely, platforms exist that offer a ready-to-use 

system in the internet browser to classify own data. On ‘ZambaCloud - Computer vision 

for wildlife conservation’ a user can upload an own dataset and have it classified for the 

given species [76]. 

Another effort that was made to get experts and people interested in machine learning 

on board are public challenges. Usually a dataset is provided and the relating research 

issue stated. After the deadline the best team is selected. Some challenges offer an 

award for the winner. A popular platform for machine learning challenges across many 

application areas is kaggle. This year they hosted a challenge on counting the numbers 

of individuals in camera trap data[81]. DrivenData is a provider that hosts challenges in 
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which a global community of data scientists competes. They hosted the Hakuna Ma-data 

challenge for the identification of wildlife had over 800 participants and a prize of 

$20,000 from Microsoft AI for Earth [43], [82]. 

6.3 Convolutional Neural Networks for Image Classification 

Deep-learning methods have revolutionized our ability to train computers in the 

computer vision field of object recognition and classification, including many use cases 

like human face recognition, support in autonomous driving and wildlife conservatory. 

Deep learning methods can reduce human effort substantially. 

The open source library MML Spark combines the Microsoft Cognitive Toolkit with the 

distributed computing framework Apache Spark. Microsoft additionally integrated 

OpenCV for image-based deep learning applications. As a prove of work they tested the 

system on the snow leopard dataset of the Snow Leopard Trust [83] and trained a deep 

neural network based on the ResNet50 taking advantage of transfer learning. They 

provided the organization with an end-to-end solution program for the automated 

classification of their camera trap data to identify snow leopards [84]. 

A group of students from the Sri Ramakrishna Engineering College in India trained a 

Convolutional Neural Network to classify 48 different species including cheetahs and 

elephants. The CNN was trained on data pre-labeled by volunteers. They reached an 

accuracy of 93.8% on the Snapshot Serengeti dataset [77], [85]. Another research team 

used a long-term database of more than 3 million labelled pictures to train a CNN to 

automatically recognize 48 African animal species [86]. The Zamba classifier mentioned 

in the previous chapter is based on a CNN as well [76]. 

Another team succeeded for identifying the three common species taken in a habitat in 

Australia comparing the Convolutional Neural Network architectures AlexNet, VGG-16 

and ResNet-50 reaching similar accuracies for the different architectures. Before 

conduction the classification itself they used another CNN to classify into classes: 

‘animal’ versus ‘non-animal’, which in this case replaces the detector. The downside of 

this procedure is that the prediction only states whether a detection is expected in the 

image and not where it is located [87]. In another study the researchers focused on 

limiting the pre-labeled data that is needed to train Deep Learning algorithms by using 

transfer-learning methods. They demonstrated how trained models can be applied to 

new unknown data in combination with a low number of human classified images. The 

few needed manual annotations were also won in citizen science projects. For the 

training of the convolutional neural network the weights of the convolutional layers 

were copied from previous projects. Just the fully connected layer was retrained with 

the little available labeled data at hand [80].  

The drawback of CNNs and often a problem in the use with wildlife data, is the openset 

problem. A traditional classifier can only sort into a dictionary of known-classes it was 

trained on. The classifier will always pick the class that fits the most, even if none of the 

classes fits from a human perspective. Studies on the open-set class try to overcome this 
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issue, but have not been used on wildlife data to my knowledge at the point this thesis 

was written. Open-set classifiers are able to classify into known classes but also to detect 

outliers in the dataset and identify them as unknown [88]. For the rare case of capturing 

an unknown species it would be sorted into the class of the best matching species. 

For wildlife conservatory the rare species are often of particular interest. The problem 

is that for those species the least data for training is available [89]. 

6.4 Pose estimation 

Nature’s beauty in the versatility in shape and motion of living beings poses a problem 

for the automatized procession of camera trap data. Computer vision methods for rigid 

objects and steered movements in industry machines are often not prepared for the 

nearly infinite amount of poses and movements from living creatures. Research has 

previously been done for pose estimations for humans and animals. The insights of those 

studies can be of value for the economy, e.g. for robotics and healthcare and also for 

the analysis of the orientation and pose of an animal in an image [90]. 

In general, due to the fact that the generation of training data on humans is easier to 

generate, the machine learning methods for humans are more developed than for 

animals. Techniques in this application field already reach estimations in realtime. The 

most popular system for multi-person 2D pose detection is OpenPose. The open-source 

software localizes anatomical keypoints for the whole body, hands and faces of humans 

for video and image data. 

For the application on data containing human beings, work exists to not only predict 

single poses, but of multi-persons and their interactions. Unstructured pairwise 

relationships between body parts of different people are encoded by a set of flow fields, 

called part affinity fields [37], [91].  

A few studies exist that applied and further developed the knowledge won in researches 

with human data. A dataset including 30 horses of different breeds was generated. 22 

body parts were manually labeled in 8114 frames to train a convolutional neural 

network. Different models of neural networks, including MobileNet, ResNet and 

EfficientNet, were tested on the 30 known as well as unknown horses. All models 

performed better on the known horses, but reached accuracies of up to 88% und unseen 

horses [92].  

Interestingly a large amount of the researches in the field of pose estimation for animals 

focus on 3D estimations. Three-D Safari used a neural network to predict 3D poses and 

shapes of zebras using images taken in the wild and digitally generated data. For humans 

it was tried to translate 2D pose estimations from frame sequences to 3D pose 

estimations without having ground truth information on real 3D data [93]. 

To conquer the problem that animals are less cooperative than humans when creating 

training data, a group generated training data with 3D scans of toy figures of four-legged 
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mammals to train their model. Another similar approach was explored by generating 

the training data with a FBX animation file of a cougar from which the 2D and 3D 

coordinates of the skeleton were extracted and trained into the OpenPose model [94], 

[95]. 

Further ideas were explored for a cross-domain adaption. It is impossible to have a 

labeled dataset on poses for every existing species. Animals of different species may still 

share similarities in proportion and size, e.g. limb proportion for animals walking on 4 

limbs versus animals with an upright posture like some monkeys [96]. 

The research supported by the South African National Research Foundation dealt with 

the 3D pose estimation of running cheetahs. The dataset for their 3D training, namely 

‘AcinoSet’, is freely available and includes 7588 images with ground truth information 

on 20 fixed body part keypoints of the cheetah, e.g.; neck, head, tail, right knee front 

[65], [97], [98]. 

6.5 Reidentification and recognition of individuals 

The reidentification and recognition of individuals differs to the above task of species 

classification. In the above mentioned classification tasks an animal is classified as a 

species, while for individual recognition this very specific individual is recognized being 

labeled with a name ID. 

6.5.1 Applications on humans:  Person re-identification 

Computer vision, pattern recognition and machine learning are a widespread use for 

person reidentification with many application areas ranging from security and 

surveillance to retail and healthcare. Person reidentification methods often relying upon 

conventional biometrics such as face recognition. For face recognition high resolution 

images are required and depending on the captured data are not always given.  

CNNs are a go-to solution for many works targeting person recognition. A large amount 

of CNNs were trained on that purpose [99]. Many open labeled datasets are available in 

the internet including humans [100]–[103]. But nevertheless, the use and training of 

deep neural networks for reidentifiation of individuals is tricky, because a deep neural 

network requires a large labeled dataset [104]–[106]. For the application on images with 

humans, approaches exist where trained CNNs are used for person reidentification in 

unseen domains and minimal fine-tuning of a pre-trained CNN is done [107], [108]. For 

animals this is hard to apply, because the pre-trained CNNs that could analogously be 

fine-tuned, would have to exist for every species or work cross-species, making the task 

even more difficult [104], [109]–[112]. 

In the application area of monitoring and surveillance the identification of people across 

non-overlapping camera views with different viewpoints and lighting conditions is a 

challenge. In those cases face recognition is often not applicable. Alternatives features 

for reidentification in surveillance applications can be the coloring and type of the 
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person’s clothing or body parts [113], [114]. The application of surveillance of people is 

close to the task of monitoring wildlife for conservation reasons. In both cases the data 

collection is non-invasive and non-cooperative with the individual of interest [115]. 

Some works go one step further and built end-to-end systems for non-cooperatively 

taken datasets. In those approaches a detection algorithm was combined and added 

previous to a reidentification method to isolate the region of interest, for example 

studies on detection and reidentification used a dataset of persons in the ‘wild’ including 

pedestrians or the detection and reidentification of persons in data from photo albums 

[116], [117]. 

The above mentioned approaches consume images, contrary a few studies 

concentrated on the processing of video input data for reidentification tasks for person 

and vehicles taking advantage of additional information from metadata on time and 

location [118]–[120]. Same as for image-based tasks, the training of deep learning 

networks for videos requires a large amount of labeled data. Data labeling in videos is 

even more time intense than for images. In many cases the single frames must be 

labeled individually. 

6.5.2 Applications on animals 

The community of computer vision scientists and conservation ecologists has grown 

markedly over the last few years. The technical progress over the past decades enables 

less invasive research methods on animals including the use of camera traps and the 

identification by natural body marks instead of artificial marks tagged to animals for 

mark-recapture techniques [121]–[123],[122].  

The first application of computer vision in the field of animal re-identification was 

introduced in 1990. On scanned images of sperm whale flukes (Physeter microcephalus) 

noticeable characteristics were manually tagged to a database. Similarity was measured 

by the maximum sum of similarities of the descriptors [123]–[125]. A more independent 

system automatically extracted the features of unique body marks on fins of different 

marine mammals [126]. A different approach was the identification on their trailing edge 

of their fins that were represented as integral curvatures [127]. A rough timeline of 

computer assisted approaches for animal reidentification until 2017 is illustrated in 

Figure 6.1. It shows a few milestones in that area, but is far from completeness stating 

all the work in that field. 

The first ever fully automated estimation of a population was performed on African 

penguins (Spheniscus demersus). With penguins the advantage is that they follow 

certain paths every day on which the cameras can be placed. Sadly, this will not work 

for every species [123], [128]. 
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In recent years deep learning methods emerged in the field of animal individual 
identification of ringed seals [129], whales [130], snow leopards [84], [123], small birds 
[131] and others. Neural networks can extract features from animals with distinctive 
body marks. The southern Great Barrier Reef green turtle (Chelonia mydas) population 
is monitored based on a neural network system that extracts shell patterns [123], [132].  
The above described works have all in common that either a labeled dataset was 

available, the data was collected under non-wild conditions or in a short period of time 

or the interaction of an expert or a human in general is necessary to make decisions or 

draw bounding boxes. 

While citizen science as described in chapter 6.2 can be a great support for the 

classification and detection of species, it requires experts to label individuals of a 

species. Even for experts the identification of individuals in wild environments can be 

challenging [133], [134]. 

A group from the Shanghai Jiao Tong University tackled the issue of missing labeled data 

for animal applications. Together with the WWF they generated a dataset of 92 Amur 

tigers in wild zoos containing 8072 high-resolution video clips. The dataset is labeled 

with ground truth information on the tiger’s identity, pose keypoints, bounding boxes 

and the viewpoint on the animal. Just as for leopards the individual identification of 

Amur tigers is based on their stripe patterns. Furthermore, they tested common re-

identification methods that are said to generalize well to new tasks on the new dataset. 

Compared to the application on vehicles and persons the methods struggled with the 

tiger dataset, due to the varying poses of tigers and the perspective distortions of the 

stripe pattern. They added a component that align the distortions of the pattern based 

on the pose of the animal that outperformed the previously tested models. The 

downside of this approach is that a very accurate pose estimation is required. In their 

work they did not conquer the challenge of opposite flanks of tigers. Different sides were 

Figure 6.1 Timeline individual identification on animals 
Timeline of computer assisted approaches on the individual identification of animals [123]. 
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treated as different entities. In the worst case scenario they would double the number 

of the population, which is significant on a dataset including 92 individuals and in general 

it is estimated that only around 600 Amur tigers remain in the wild. For such small 

populations this would affect the population census tremendously [135].  

Another approach to cope with the distortion of the stripes was made by modeling a 3-

dimensional surface model of the animal. Here manual labeling of certain keypoints in 

the images are necessary. The aspiration of this research was to have a database of living 

tigers caught by camera traps and be able to match the tigers with confiscated tiger skins 

to fight the trade [136].  

Non-deep learning researches for animal re-identification are based on the classic 

analytical computer vision for pattern recognition and matching, including algorithms 

like WildID or HotSpotter for animals with strong patterns like zebras, jaguars and 

giraffes [137], [138]. The HotSpotter algorithm described in chapter 5.3 is a fast cross-

species algorithm using the SIFT algorithm and nearest neighbor search to identify 

individuals against a labeled database of known individuals. The application area 

included several application cases with the biggest one being the ‘Great Zebra Count’ 

[68], [137].  

The basic approaches for the identification and reidentification of species with unique 

patterns are similar and for the most part use either CNNs or the SIFT algorithm. Besides 

mammals and birds with fur or feather patterns applications for other body marked 

animals exist, too. Manta rays were identified by unique spot patterns on their ventral 

surface and humpback whales by their pigmentations and scars on the flukes. Inspired 

by deep learning for face-identification on humans they adapted a face reidentification 

CNN to learn features for the body marks. In their work they tackled the challenges of 

unseen individuals and robustness to changing viewpoints. But ultimately, the final 

decision for matching was always made by an expert manually interacting [139]. 

For species that lack unique markings other methods were tested. With the same 

concept as for humans bears, primates, pandas and pigs were identified by facial 

recognition [140]–[151].  

The program BearID detects a face and keypoints in it, reorientates and cropps the face 

based on the keypoints and classifies it to a known database of 132 individual brown 

bears (Ursus arctos) with a deep CNN ResNet architecture. The database was generated 

for this research and consists of 4674 images taken by photographers and staff in 

National Parks in Canada and Alaska with ecotourism where the bears are used to 

humans being in the vicinity, therefore the images are of a higher quality and better 

viewpoints than the ones automatically taken from camera traps[152]. Another 

approach for animal species lacking unique markings was to use spline curve matching 

techniques to surround elephant individuals in images [153]. But it seems, that this 

technique was not established in the area of animal individual identification, probably 

due to the vast amount of poses animals are seen in.  
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The difficult obstacle with facial recognition are the required datasets. The above 

mentioned studies had pre-labeled data on the population of interest at hand in mostly 

optimal conditions. For applications in the wild it is extremely difficult to sort out 

appropriable data in good quality from camera traps, if any. 
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7 CONCEPT 

The objective of this thesis is to develop a program that automatically identifies and re-

identifies individual animals, but does not require the input of previously labeled data, 

minimizing the manual interaction needed from ecologists. It is aimed to use algorithms 

that already have proven themselves for the use on wildlife data, but to implement 

additional components that substitute the otherwise needed manual interaction. 

The research in this thesis is based on the leopard dataset from the PanAfrican 

Programme explained in chapter 2.2. With leopards being classified as vulnerable and a 

vital part of ecosystems this thesis aims to address the problem of identifying individual 

animals by automatically processing the data taken from camera traps to give ecologists 

a good tool to estimate a population census on the leopard species in the area of 

interest. Individual identification and their territorial behavior are crucial steps to 

answer questions on how to protect leopards and their habitats. 

The system is only applicable for species that fulfil the three assumptions from chapter 

2.3: 

1. The inspected animal species has a solitary behavior 

2. Within one triggered video the same individual is seen throughout the frame 

sequences 

3. The inspected species is uniquely identifiable by coat or body marks 

Based on this assumption it is presumed that one video clip, triggered by a motion, 

contains the same individual in all frames. Except the animal moves out of the area 

captured by the camera leaving part of the video empty during the one minute of 

recording. 

The other challenge that has to be kept in mind is the incomparableness of the opposite 

flanks. It has to be prevented that individuals are counted twice into the population.  

To tackle the challenges and requirements the system is built up of several components 

explained in more detail in the upcoming subchapters. For a more robust system interim 

steps are planned to cope with the versatility of the data caused by the animal’s natural 

habitat and behavior. 

Due to the independent flanks of a leopard it is important to have a mechanism that 

prevents the comparison of opposite sides. The planned steps to overcome that issue is 

to sort the frames of right flanks and left flanks into different databases, only comparing 

flanks within one database at a later point. 
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7.1 Object detection – The MegaDetector 

The first step is intended to find out, if a leopard is shown in the frame and where it is 

located. The frames are extracted from the video and are treated as single frames. 

Starting the process, the frames of the videos are fed into the MegaDetector. The 

MegaDetector returns the likelihood with which it detects an object and the location of 

it via a rectangular box that surrounds the animal, if an animal is found. The area inside 

the rectangular is from now on the region of interest, in which the animal is presumed, 

cutting off most of the background for that frame (see Figure 7.1 top). The region of 

interest is called an annotation and is surrounded by the rectangular bounding box. 

It is assumed that there is no animal in the frame, if the algorithm does not detect an 

object with the likelihood exceeding a preselected threshold. Empty frames are not 

further analyzed in the process. 

For the rare case mentioned in chapter 2.2 that more than one 

individual at the same time is seen in the image, the 

MegaDetector will return two rectangular boxes. The video the 

frame was derived from can be treated separately. In rare cases 

that show two individuals within one video, ecologists probably 

want to look at the videos manually anyhow, because much 

lessons can be learned on their behavior when interacting with 

conspecifics or other living beings.  

7.2 Pose estimator – DeepLabCut 

The raw video is passed to the DeepLabCut pose estimator. 

Depending on the species a set of body parts is defined on which 

the algorithm was trained, like: right front knee, left back foot, 

head, tail and others. When a new unseen video is processed the 

algorithm returns a prediction for all the body parts of the set 

with the predicted location as (x,y) coordinates and the 

probability. For simplicity only two keypoints are shown in the 

pictogram (Figure 7.1). 

7.3 Frame selection 

The frame selection component acts as a backup solution and 

indirectly verifies the body part predictions with the result of the 

MegaDetector. In the rain forest the background can be noisy. If 

the pose estimator predicts a body part outside of the annotation, 

it is assumed to be a wrong estimation (see tail prediction in Figure 

7.1). The prediction for this specific body part is dropped for the 

further process. 

Figure 7.1 
Preparation for 
feature detection 
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7.4 Side predictor 

The newly acquired knowledge from the pose estimator on body part predictions feeds 

the side predictor. The side predictor is a pre-trained classification algorithm using a 

neural network. It gets the predicted (x,y)-coordinates and the likelihood from the 

DeepLabCut body part estimations for each frame as an input and predicts the viewpoint 

(left, right) on the animal in that frame. The class left means that the animal’s left flank 

is visible. 

The known viewpoint will later on help to prevent that two flanks of opposite side will 

be compared. Based on the side prediction the frames are split into different databases. 

Furthermore, the information given by the side prediction is later needed for the 

HotSpotter to define the orientation of the animal in the frame, stating the directions of 

the head and tail of the animal (see Figure 7.1), which later on makes the feature 

detection and matching algorithm more robust. 

The above mentioned side predictor is the only section in the process for which labeled 

data will be necessary. It will be trained on a cheetah dataset. In the course of this thesis, 

the only required labeling task is to sort the cheetah dataset into the classes: ‘right side’ 

and ‘left side’ (see chapter 8.2.5.1Fehler! Verweisquelle konnte nicht gefunden 

werden.). The side predictor is believed to be suitable for other animals with similar 

body proportions than cheetahs and can later on be used cross-species for the leopard 

dataset. The concept is assumed to be applicable across different species that meet the 

above mentioned requirements. If the underlying data quality allows, it can be applied 

to all solitary Felidae with distinctive pelage without further manual labeling. 

7.5 The Databases 

Once the viewpoint is identified the data is split into two databases. One contains 

leopards shown with their left sides and one with their right sides visible.  

Initially, each frame of one video is tagged with the same name ID, assuming it is the 

same animal. Going back to the example from the definition of the research issue in 

chapter 2.4 (see Figure 7.2) each non-empty frame from ‘Video 1’ gets the name ID ‘Leo 

1’ analogue for ‘Video 2’ and ‘Video 3’. All leopards visible from the right side and 

therewith showing the feature marked as a red star go into the database for the right 

flanks named ‘DB Right’. Analogue the left flanks with the blue star feature in ‘DB Left’ 

(see Figure 7.3). It is important that during the process the information on name IDs and 

based on that the video ID from which the frame was extracted does not get lost, here 

marked as ‘Video 1’, Video 2’ and ‘Video 3’ in Figure 7.2. From this point on the two 

databases are treated independently. 
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Figure 7.2 Automatic labeling of the frames 
Each frame gets automatically labeled with a name ID related to the video it was extracted from. 

 

Figure 7.3 Database split 
The frames are split into the databases  
based on the viewpoint on the animal. 

 

7.6 Feature detection and matching – IBEIS with HotSpotter 

The HotSpotter program seems to be a suitable component for the pipeline, not having 
to reinvent the wheel and build on a program that has proven itself for a use case with 
zebras. Together with the other components added to the pipeline and the core 
assumptions for solitary species the issue of manual interaction can be overcome.  
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The feature detection and matching process is performed on both databases 

individually. The IBEIS program, with the HotSpotter as its heart, gets for each frame the 

name ID and the related bounding box from the MegaDetector. Besides the bounding 

box it requires the orientation of the animal in each frame. Usually the bounding box 

and the orientation are manually assigned in the GUI by the user. The manual interaction 

for the bounding box is replaced by the MegaDetector’s output. The labeling of the 

orientation is theoretically already circumvented by the database split. For the database 

containing the left flanks the animal is oriented facing left. The head will be most likely 

located farther left than the tail and vice versa for the right flanks. With this approach it 

would only pose a problem, if the animal is seen upside down in the image. For leopards 

or Felidae in general this is an unusual scenario. Most of the data taken by camera traps 

capture animals walking by. A possible, but rare scenario, could be a leopard rolling on 

its back right in front of the camera. In this way the head would face left, but the right 

flank would be visible. No problems are expected to originate from such rare scenarios. 

Nevertheless, if it appears to become a problem an additional neural network could be 

trained similar to the side predictor on the classes stating the orientation left or right, 

with a special respect to those rare scenarios. 

As soon as the algorithm got all the required input the spots and rosettes of a leopard 

will be analyzed by a feature detector. An annotation can then be queried against other 

annotations in the database. The algorithm calculates a score between the queried 

annotation and each annotation in the database, based on their feature descriptors. 

For each name ID in the database, meaning each known individual, the score from its 

annotation reaching the highest score is taken. The top ranked name ID score states the 

best matching individual of the database to the queried image. If the score exceeds a 

previously specified threshold it is a match and the name IDs are merged, meaning that 

all annotation of the name ID the queried annotation originated from are believed to 

show the same known individual as the annotations belonging to the name ID that had 

the highest ranked score. For a simpler explanation the nearest neighbor indexing as 

described in chapter 5.3 is ignored in this concept.  

7.7 Merging of databases 

Previously the frames of the videos were divided up into two databases, ‘DB Left’ and 

‘DB Right’. After the feature detection and matching within one database is completed 

the databases can be merged back together. The information for each frame from which 

video ID it was extracted was carried along during the process. The databases are 

merged back together on the video IDs. During this process additional matches can be 

found. 

For the example here, the assumption is that in ‘DB Left’ ‘Leo 1’ and ‘Leo 2’ were 

matched and in ‘DB Right’ ‘Leo 1’ and ‘Leo 3’ were independently matched. From the 

initial labeling of the frames belonging to the same video it is beneficial that ‘Leo 1’ is 

represented in both databases, because within one video both flanks were visible. Now 
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knowing from ‘DB Left’ that ‘Leo 1’ and ‘Leo 2’ are the same individual, as well as ‘Leo 1’ 

and ‘Leo 3’ from ‘DB Right’ and obviously the frames from ‘Leo 1’ in both databases show 

the same individual it can be concluded that all three videos show the same leopard. 

Without ‘Video 1’ the other two videos are incomparable. 

In cases where one individual is only seen from the same side all the time, without any 

information on the front or back or no change in direction from the leopard’s walking 

path, those detections from the individual sides are incomparable. But this limitation 

counts for manual matching by experts, too. A natural fact that cannot be overcome and 

heavily depends on the given data. 

During the development of the concept I considered other techniques besides the ones 

mentioned above. The first method that usually comes to mind for reidentification tasks 

are convolutional neural networks (CNN). To train a neural network a large labeled 

training dataset is required, meaning that some kind of manual labeling is required, 

which infringes the demand of minimal manual interaction of the research issue. 

Furthermore, this network would be trained on the specific individuals from the 

underlying data. For the utilization in another wildlife reservoir or even cross-species 

additional training would be necessary. Through transfer-learning this might be 

limitable, but no out of the box solution for other application areas is possible. One of 

the initial thoughts on an approach to still be able to use neural networks and to 

generate the training data automatically was based on the same core assumption. For 

solitary species the single frames of a video could be extracted and all labeled with the 

same name, assuming only one individual is seen in a motion-triggered video. Those 

frames could have been used to train a convolutional neural network and later on 

predict the matching individual for animals in single frames. But due to the setup of the 

cameras on fixed locations this method seems to be prone for overfitting. 
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8 IMPLEMENTATION 

This chapter delineates the implementation of the concept with its individual 

components in detail and presents the used hardware. The concept outlines a pipeline 

in which the data can be entered without previous labeling or other manual interaction. 

The core piece for the matching is the IBEIS feature detector. Additional components 

are added to the pipeline to substitute the otherwise needed interaction of a user. The 

results are stored and further processed in a SQL database. 

All code can be viewed in the github repository [154].  

8.1 Hardware Setup 

This chapter lists the hardware that is used to process the data through the pipeline as 

a reference. The computer consists of a AMD Ryzen 5 1600 processor with a clock rate 

of 3.2 GHz, 32 GB RAM and a NVIDIA GeForce GTX 1660 SUPER graphic card. The main 

operating system is Windows 10 Pro. Additionally a virtual Linux environment was used, 

because not all of the pipeline’s components are Windows compatible. The virtual Linux 

environment is Ubuntu 18.04.5. 

The pivotal component is the graphic card. Some of the components are optimized for 

calculations on GPU, for example the MegaDetector and DeepLabCut. The availability of 

a GPU is not an exclusion criteria, but the calculation on CPU can take up to 10-100 times 

longer for the concerning components. To prepare the system for a GPU included 

calculation tensorflow-gpu for Python is required. Python has an interface for GPU 

calculations exclusively for graphic cards from NVIDIA. Additional software 

requirements have to be installed, for installation support please see 

https://www.tensorflow.org/install/gpu.  

During the initial planning options like Google Colab or Azure were considered as a 

backup solution, if the needed computing power exceeds the one of a normal desktop 

computer in an acceptable runtime. With those solutions the calculations are done on 

cloud servers from Google or Microsoft, including GPUs and even TPUs (Tensor 

Processing Units). This approach requires a stable internet connection. For the leopard 

application case the data was entirely computed on the computer with the components 

listed above. For larger datasets cloud solutions should be considered. 

8.2 Pipeline 

The aim of the program is to identify and reidentify the leopards in the dataset from the 

PanAfrican Programme to estimate their population and get more insights on the 

behavior and territories of individuals. The pipeline consists of the following 

components which are explained more detailed in the following subchapters. As stated 

in the concepts chapter the data flows with only little formatting preparation into a pose 

estimator. In parallel, the images of the videos are processed by a detector which 

https://www.tensorflow.org/install/gpu
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returns the region of interest. An additional step, in which the detector verifies the post 

estimator’s result, is inserted to filter some errors early. The remaining frames run 

through the side predictor and continue with the new won side information to the 

identification component. This chapter goes through the algorithms and programs used 

in the pipeline and the amendments made to the concept that must have been done 

due to technical and performance issues. 

The pipeline includes algorithms that already have proven themselves in application 

cases for the use on wildlife data as well as newly trained ones to substitute the 

otherwise needed manual interaction. 

8.2.1 Data preparation 

The video clips in the leopard dataset from the PanAfrican Programme have a duration 

of one minute. Every time a camera is triggered a video of one minute is stored. The 

data contains only videos with leopards. I received the raw data and a textfile with the 

tags for each video. They are sorted in a folder structure as shown below and explained 

in detail in chapter 3: 

Loango\Loa_d12\d12_Loa_cam38_012345_012345_20170912\09180056 .mp4 

Sitename\grid cell\camera in that cell_ geodata in UTM_maintenance date of 
camera\videoname.mp4 

Before starting the analysis every video was automatically renamed by a Python script 

to a string including all information on sitename, cell, camera spot, geodata and the time 

the data was collected from the storage.  

Videonaming convention: d12_Loa_cam38_012345_012345_20170912__09180056 .mp4 

This guarantees that all the information from metadata is carried along the whole 

pipeline as well as for saved files in interim steps. The uniform naming convention makes 

the program more robust against error when opening files. 

From now until the import to the database every step is repeated for each video. The 

video is split into frames that are separately saved as jpeg files in a folder named 

accordingly, for the upcoming components of the pipeline. A frame rate k can be chosen 

and accordingly every k-th frame of the video is saved and further used. In the work of 

this thesis I chose a frame rate of 𝑘 = 20 in favor of computing time. In the randomly 

spot watched videos the leopards moved slowly and did not run, therefore the animal’s 

movement and change in position between the frames are rather small and a larger 

frame rate seems reasonable. A less random selection might be possible in conjunction 

with the detector and the pose estimator, selecting those frames with a certain change 

in position. But this approach does either not reduce the computing time, because the 

detector needs all the single frames beforehand or forfeits in accuracy, because the 

security rooting from the frame selection as a combination of the pose estimator and 

detector gets lost. 
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8.2.2 DeepLabCut 

The task of the pose estimator component is to deliver information from which the 

orientation of the seen animal can be derived.  For the pose estimator I decided to use 

the DeepLabCut program, because the code is publicly accessible and very well 

documented. The main reason that I chose DeepLabCut is the pre-trained network on 

the AcinoSet in its Model Zoo. The AcinoSet is a dataset on cheetahs in the wild from 

different viewpoints [52], [53], [59], [65], [155]. Although cheetahs belong to the 

subfamily of small cats (Felinae) and leopards to the big cats (Pantherinae) they share 

similar body proportions, independent from their also similar, but distinctive coat 

pattern. Figure 8.1 shows a cheetah (left) and a leopard (right). 

 

Figure 8.1 Cheetah and leopard 
Cheetahs and leopards have similar body proportions and have both patterned coats. Cheetahs have 
mostly spots and leopard rosettes. For both species individual are uniquely identifiable by their coat 
pattern [12], [97]. 

 

The network of weights I use was trained on labeled cheetah frames with the keypoints 

as labeled in Figure 8.2. 

 
Figure 8.2 DeepLabCut keypoints for the cheetah model 
DeepLabCut’s cheetah model from the model was trained on 20 prior defined body part keypoints [65]. 

 

The developer of the DeepLabCut program developed a GUI with the intention that a 

user can label and train an own project from the bottom up. Having said that the aim of 

this thesis is to reduce manual interaction as much as possible, I will import the weights 

from DeepLabCut’s readily trained cheetah model from the ModelZoo in the leopard 

memory pipeline. The labeling and training process can therefore be skipped and I solely 
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embedded the prediction function in the leopard memory pipeline. The function gets 

the raw videos as an input and returns a prediction for each frame and body part with a 

location in (x,y)-coordinates and the likelihood of the presence of the body part in that 

point. An example output from the pose estimator is shown in the Appendix 0. 

DeepLabCut offers a function to plot the predicted keypoints on the original video, 

which is a beneficial tool for manual checking. In favor of runtime this function is not 

implemented in the pipeline, but can be individually called for single videos. The results 

are exported as csv files maintaining the naming convention from chapter 8.2.1. 

In the DeepLabCut workshop it is mentioned that different basic networks for the 

transfer learning can lead to different results. A higher robustness is reached with 

ResNet50 or ResNet101, while MobileNetsV2 is faster. More accuracy and runtime 

affecting settings can be chosen to train the CNN in terms of hyperparameters like: 

Batchsize, number of epochs among others listed in chapter 4.3. As I use the pretrained 

cheetah network the architecture of the convolutional neural network and the training 

parameters were already set and the training completed. [60] 

8.2.3 MegaDetector 

In the next step an object detector localizes the leopard in each frame. For this 

component I chose Microsoft’s MegaDetector, because it has proven itself for many 

applications and is said to adapt well to new environments. Figure 8.3 pictures the 

results of the MegaDetector when applied to images from the leopard dataset. It can be 

examined that the MegaDetector works well on images with noisy backgrounds and bad 

lighting conditions suitable for automatically captured records in the rain forest. The 

pictures show two frames from the same video of a leopard moving away from the 

camera. For the human eye the leopard in the later frame is hard to catch at first glance. 

 

Figure 8.3 MegaDetector detection 
The images are frames from the same video. On the left the animal is clearly visible on the right it is hard 
to detect at first sight for a human. Both detections were correctly found by the MegaDetector [12]. 

 

Similar as for DeepLabCut, the MegaDetector’s detection function, that returns the 

coordinates for the bounding boxes around the predicted region of interest, is 

embedded into the pipeline. The coordinates of the bounding boxes and its height and 

width are exported as csv files maintaining the naming convention from chapter 8.2.1. 
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8.2.4 Frame Selection 

The intermediary frame selection filters obvious major errors before the data is 

transferred to the next component of the pipeline. The results from the pose estimation 

and the detection are handled with basic dataframe functions from the Python module 

pandas. 

Only the predicted body parts that are within the detection area of the detector are 

kept. Every body part with x or y coordinates outside of the interval given by the 

minimum and maximum values of the x and y coordinates from the bounding box are 

marked as outliers. For the further process the likelihood from the pose estimator is set 

to zero for that body part. 

8.2.5 Side Predictor 

With regard to the viewpoint problem on coat patterned animals and their independent 

flanks it is necessary to define which side of the individual is visible to prevent the 

comparison of opposite flanks. Therefore, one component of this pipeline is a side 

predictor. 

The side predictor is basically a classifier sorting the images into viewpoint classes, i.e. 

‘right’ and ‘left’ which will be explained more in detail later in this chapter. To train a 

side predictor labeled data is necessary. The aim is that the side predictor will be trained 

on another dataset and subsequently can be used for prediction on the leopard dataset. 

In this way the side predictor and therewith the pipeline stays generic and not 

specialized on the leopard dataset.  

 

Figure 8.4 Camera Setup for the AcinoSet data collection 
6 cameras from different viewpoints on the cheetah capture footage. The cheetah is lured with a mock 
prey through the middle [65] 

As a labeled data fundamental I used the AcinoSet to train on additional labels to the 

existing labels. The existing labels are used as an input. The set consists of videos of 

Cheetahs in a wild-like setup. The setup included 6 cameras marked as 𝐶1, … , 𝐶6 in Figure 

8.4. The cheetahs were lured with a mock prey to run a certain route. In the dataset the 

cheetahs run either in a straight line through the middle or are encouraged to make 
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sudden turns by changing the track of the mock prey. During the sudden turns the 

cheetahs are seen in more various poses than when running a straight line (see Figure 

8.5), which generates more diverse input data, which generally makes deep learning 

systems more robust. 

 

Figure 8.5 Poses of cheetahs in action 
Cheetahs are lured with a mock prey to make sudden turns to make the dataset more versatile. 

 

The Acino dataset was initially labeled with 20 body part keypoints by a research team 

exploring DeepLabCut for 3D pose estimation (see chapter 5.2). The thought of taking 

the already labeled Acino dataset was to keep all options open for the later research. It 

will be possible to use the side labels and images to train a convolutional neural network 

or use the the body keypoints and viewpoint labels to train a classic neural network 

without image data. 

8.2.5.1 Labeling of training data with GUI 

In the work of this thesis 2824 frames of the AcinoSet with 6 different cheetahs were 

sorted leading to 8 classes. To speed up the labeling process 

To speed up and make the monotonous labeling process more pleasant I developed a 

simple graphical user interface as shown in Figure 8.6. For each frame the user has to 

make 2 choices on the viewpoint. One concerning the sides and the other the front and 

back. Due to the fact that living beings do not appear as rigid objects instead they have 

an extremely complex locomotor systems, no clear line for the definition on the right 

and left viewpoint can be drawn. In this process the viewpoint is considered as ‘right’, 

even if the front or back of the leopard is seen, but right flank as well or at least partly, 

analogue for left. Excluding choices are back and front and analogue left and right. 

Meaning the user makes the choice for the side on ‘right, ‘left’ or ‘none’ and the second 

choice between ‘front’, ‘back’ and ‘none’. In this way combined classes like ‘left’ and 

‘front’ are possible, if the leopard’s chest or face and part of the left flank are visible. 

Combinations like ‘front’ and ‘back’ are not possible. The completion of the possible 

combinations lead to the following 8 classes in Table 8.1. The labels are exported as a 

csv file. 
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Figure 8.6 GUI interface for side labeling 
The user can label the shown cheetah. A combination of the tags is possible, but opposite flanks cannot 
be chosen and front and back are excluding choices. 

 

The cheetahs shown in Figure 8.5 would be classified as ‘front-left’ for the left image and 

‘front-right’ for the image on the right. 

8.2.5.2 Training the Side Predictor 

Models of different architectures were trained for the side predictor on the side-labeled 

AcinoSet. The first attempt was a classic neural network without convolutional layers. 

The network got the ground truth data for the body part keypoints of the cheetahs as 

variables for the training. As target variable the side predictor is fed with the manually 

labeled viewpoints on the cheetahs. The 8 classes as described in the preceding chapter 

are encoded as stated in Table 8.1. 

The second implemented architecture is a CNN trained with the frames from the 

AcinoSet. To aim for a better performance a transfer learning approach was applied 

using ResNet50 as a basis, as well as a MobileNetV2. In different attempts exclusively 

the last flattened layer was retrained or the last few layers were retrained freezing the 

remaining weights of the net. Assuming that 8 classes could be too many the 8 classes 

were combined to only 3 classes, in which only left and right are excluding factors (Table 

8.1 right column). 
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Viewpoint Encoding 
Type 1 

Encoding 
Type 2 

Front 0 0 

Front left 1 1 

Front right 2 2 

Back 3 0 

Back left 4 1 

Back right 5 2 

Left 6 1 

Right 7 2 

Unknown 0 0 
Table 8.1 Encoding of viewpoint classes for side predictor 
The previous labeling process results in 8 combinations encoded from 0 to 7. Type 2 encodes the 
viewpoints in 3 classes based on the visibility of the flanks. 

 

The images of the raw frames of the AcinoSet have the cheetah in a small area with a 

lot of background around.  For comparison the MegaDetector was used on the AcinoSet 

and solely the cut out bounding boxes with the cheetah inside were fed to the CNN. 

A few videos of the leopard dataset were labeled on Zooniverse based on the viewpoint 

with the tags ‘frontside’, ‘backside’, leftside’,and  ‘rightside’. The tags are based on the 

video data and often do not apply for all frames, if the leopard moves. Nevertheless, a 

ResNet50 CNN architecture was trained. After training the networks are used to make 

predictions on the remaining frames after the frame selection. The prediction is 

appended to the database for each frame. 

8.2.6 IBEIS and HotSpotter 

For the conventional use of the HotSpotter software the programme expects to get the 
frames as input and thereafter a manual human interaction is required. The user must 
draw a bounding box, the region of interest, on each image with always the same 
orientation. Meaning always drawing the box from the head to the tail of the animal. 
The target of this thesis is to eliminate the manual interaction. Therefore, the drawing 
of the bounding box, needed by the HotSpotter, is automatized by harnessing the 
information won from the DeepLabCut algorithm and the side predictor.  

The out of the box version from the HotSpotter software recommended by an ecologist 

and mentioned in chapter 5.3 with a Windows installer turned out to be difficult to use 

other than manually with its GUI, due to inaccessible code the system workes as a 

blackbox. Therefore it was replaced by the IBEIS program (Image Based Ecological 

Information System), the successor of HotSpotter, but still based on the main HotSpotter 

algorithm. The new improved version comes as a Python package and can be installed 

via pip. Unfortunately a major drawback is the fact that the Python package as a whole  

is exclusively available for Linux environments (for installation instructions see: [71]).  

Having the agony of choice it was decided to proceed with the Linux variant with the 

freely available code [71]. The software explained in this chapter is applied on a virtual 

Linux machine with Ubuntu 18.04.5. Technically the whole pipeline can be run entirely 
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on the Linux virtual environment. Due to slower performance in the virtual environment 

compared to the host operating system the components of the pipeline are split. All that 

is required in both environments for the pipeline is the folder with the extracted frames 

and the database from IBEIS that I automatically fill. 

I did not use the IBEIS GUI, because it requires manual interaction of a human. I only 

used the relevant functions from the module that trigger the query requests. I amended 

the code at several points to make it suitable for a use without the GUI. 

The IBEIS software offers the option to group images into occurrences. In this way the 

order in which the images are queried against each other can be prioritized. An 

occurrence originally describes records taken in a small time frame and in a near 

location. I will use the occurrence grouping in the database to group all data from one 

study site, for example the site Loango, independently of the time the image was 

captured. 

8.2.6.1 Database 

For an easier handling of the data, I decided to have all necessary data in an SQL 

database to avoid working with several csv files for every video. I did not build the 

database from scratch, instead I use the database that is automatically generated when 

starting a project in IBEIS. In any case an interaction with this IBEIS database is necessary 

to import my own data into the IBEIS program. To have all data united in one database 

I continue to use the IBEIS database for the subsequent steps as well. 

The information won in the previous steps of the pipeline are automatically written into 

the database. Information that is otherwise entered manually by the user. Import 

information include the initial names, the bounding boxes, the viewpoint, locations and 

of course the IDs and paths for the import of the images. The relevant tables are 

‘annotations’, ‘images’, ‘names’, ‘imagesets’ and ‘imageset_image_relationship’. I 

added the tables ‘queries’, ’clusters’ and ‘cluster_edges’.  The tables that are newly 

created will be later explained at the relevant point in the pipeline.  

The ‘images’ table lists all frames with an image ID, the path of the image, the file type, 

the height and the width and optional GPS data. For the course of this thesis the GPS 

data is not used due to the secrecy of sensitive data on the location of an endangered 

species. The ‘imageset’ and ‘imageset_image_relationship’ table are filled with the 

information on the study site. Each study site gets an imageset ID in the ‘imageset’ table 

and its name as a text column. The ‘imageset_image_relationship’ links each image ID 

to an imageset. The ‘names’ table is originally foreseen to hold the manually entered 

names of an individual found in the matching process. In my implementation the 

‘names’ table holds the names of the videos. Initially all frames from one video get the 

same name ID from the ‘names’ table. In such manner already several images of one 

individual are grouped together, based on the assumption made in chapter 2.3. The 

most vital table for the import is the ‘annotations’ table. An annotation is the region of 

interest in which the animal is located in the image. The table comprises information on 
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the location of the animal, the viewpoint and the linked name ID to name the most 

important columns. The location of the annotation in the image is derived from the 

bounding box prediction from the MegaDetector. The viewpoint is forwarded from the 

side predictor and the name ID is initially set as stated above. I discarded the originally 

plan from the concept (see chapter 7.5) of splitting the data into different databases 

based on the view point. Instead a column for the viewpoint is added to the annotations 

table and filled. Furthermore I chose to conduct the matching process purely based on 

the scores and other information written in the database and not use the implemented 

functions from the IBEIS software. To simply rely on filter conditions and sorting of 

scores makes the process and decisions more transparent. The restriction on comparing 

opposite flanks can be handled with simple filtering as well. The process and conditions 

for matching will be elucidated in a later chapter 8.2.7. 

8.2.6.2 Queries 

The target is to label each annotation with a name that uniquely identifies the individual, 
if possible. In other words, annotations of the same individual are grouped under one 
name ID. A query runs one annotation against several other annotations and compares 
the feature vectors calculating a score for each annotation pairing. The score is a 
measurement for the similarity between annotations aggregated from their feature 
correspondences. 
The algorithm pairs the queried annotation with several annotations from the same 

name ID. From those pairings the highest score is chosen representing the name ID, with 

a single name score. The underlying annotation from the name ID leading to that score 

is the best matching annotation to the queried annotation compared to the other 

annotations of that name ID. This is done between the queried annotation and all the 

name IDs with its corresponding annotations in the database. 

For a faultless triggering of the queries it must be differentiated between the following 

IDs: qaid, qnid, daid, dnid. The IDs containing q are the objects that will be queried 

against the database IDs, which begin with a d. The n implies that the ID refers to a name 

ID, while an ID with a q refers to an annotation. One qnid groups several qaids, but a 

qaid belongs to only one qnid. Analog for dnid and daid. Hence an annotation score 

measures the similarity between a qaid and daid, while a name score measures the 

similarity between the qaid and the most similar daid within the dnid or further 

aggregated the similarity between a qnid and a dnid. In a nutshell, a frame (qaid) of a 

video (qnid) is compared to the frames (daids) of another video (dnid). The decision on 

whether it is a match is made on name ID level and effects all annotations belonging to 

the name ID. For simplicity already merged videos under a nid were not considered in 

the explanation above. 
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Figure 8.7 Structure of IDs in database 
All annotation stemming from one video have the same nid (name ID), but each has its individual aid 
(annotation ID). The images starting with a q are the ones that are queried against the images in the 
database. 

 

The next step is to decide in which order to query the annotations against each other. 

The queries are generally run in a way that one frame or several frames of one individual 

are run against the whole database. In the leopard use case the dataset has additional 

information on the locations of the camera spots. The locations are spread across 

Central Africa with large distances. Therefore, camera locations that are close to each 

other are run against each other first. Although leopards have large territories and can 

travel long paths and cross country borders it is not expect to see the same leopard 

several thousands of kilometers away. Making use of the grouping in occurrences as 

stated in chapter 8.2.6 the queries are run in chunks for each occurrence. An occurrence 

includes all frames from videos from the same research site. First of all the frames 

(qaids) from the videos (qnids) from one site are queried against each other. Within one 

occurrence it is more likely to find matches, but the leopards are seen across different 

sites as well. Therefore as a second step the annotations of one occurrence are queried 

against all other occurrences. The results are written to the queries table in the database 

including information on qnid, qaid, dnid, daid, the annotation score and boolean flags 

for matches that are automatically considered true, because they were extracted from 

the same video, as well as flags on whether it is an intra-occurrence query or inter-

occurrence query. So far only the scores are calculated and the information collected in 

the database. No matching process and related amendments in the database are made 

yet. 

The IBEIS software automatically selects a subset of exemplar annotations for each 

name ID in the database to represent that individual based on the number and 

distinctiveness of the detected features. Those annotations are indexed in a search data 

structure based in nearest neighbors to improve the runtime [68]. The mathematical 

background of the indexing can be looked up in the dissertation of J. Crall. Compared to 

the query order described above and the automatic selection and indexing of 
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representative annotations of the software, when systematically running each 

annotation ID against every annotation ID the computing time grew by almost a factor 

of 100.  

8.2.7 Clustering 

After the data has successfully passed through the pipeline the database facilitates the 

analysis of the results based on conditions and sorting via SQL queries. 

The goal of the clustering step is to group the annotations that are believed to be of the 

same individual. No merging in the names table as primary planned will be done, 

because if mismatches are made and names are merged they cannot be tracked back. 

Instead a cluster approach that can be visualized as graphs is implemented. The nodes 

represent the video IDs from the names table in the database. Two nodes are connected 

with an edge if they were matched. In the illustration in Figure 8.8 each cluster 

represents one individual. The red sub graph states that the animal seen in the videos 

with the IDs 3, 4, 6 and 7 is probably the same in those videos. The same accounts for 

the blue subgraph. For Video ID number 9, printed in green, no match has been found. 

The clusters can be given real names in the clusters table. The width of the edges are 

derived from the score of the matching. A broad edge implies a high similarity between 

the animal shown in the frames of the videos. The distance of the edges or the distance 

in between the nodes and clusters do not give information on their similarity, the length 

is chosen to serve for a clear visual illustration. 

 

Figure 8.8 Clustering scheme 
The video IDs are grouped in clusters representing individuals. Edges indicate a match. The width of the 
edge relates to the matching score value. 
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The clustering step begins with the extraction of the queries from the database. From 

the queries table all qnid and dnid pairings and their name score, the highest score over 

all annotation scores, is selected. Queries that do not exceed the pre-defined threshold 

for the score are dropped from the selection. Based on a Boolean column true matches 

are filtered out. Annotations that are from the same video are marked as true matches, 

because the same individual is expected to be seen based on the assumption made in 

chapter 2.3. From here on all qnids and for each qnid the dnids that meet the threshold 

requirement are looped. For each pairing of the name IDs three cases are possible: 

1. Both name IDs do not belong to a cluster yet. 

2. One name ID is already part of a cluster, but the other one is not. 

3. Both name IDs belong to a cluster, but to different clusters, causing a conflict. 

Hereinafter I will explain how the different cases are handled. For case one a new cluster 

record is added to the clusters table and the both name IDs are allocated to the new 

cluster in the cluster_edges table and an edge between them with their matching score 

is added. A record of the cluster_edges table includes information on the name IDs in 

the pairing, the score, the cluster affiliation and a validity flag, which will become 

relevant in the third case. In the second case the name ID that does not belong to a 

cluster and therefore does not have a link to any other nodes gets attached via an edge 

to the other name ID and its cluster. The third case is the most complex case due to 

conflicts. A conflict occurs, if both name IDs are already assigned to a cluster, but 

different cluster. Now the scores are decisive for the matching. If the score of the new 

pairing is lower than the scores that cause the link of each name ID to another node and 

therefor to a cluster, nothing happens. Both previously made matches are based on a 

higher score and hence more similar than the similarity of the inspected pairing. If the 

new binding score between the name IDs of the pairing is higher than both scores that 

attach the name IDs to other nodes, the name ID of the pairing with the lower binding 

score to its cluster gets detached from that node and therewith from the cluster. If the 

name ID has multiple edges in that cluster the highest one is used for the comparison. 

In case of a detachment all edges to the old clusters are terminated and a new edge to 

the node belonging to the other cluster is added to the database and the cluster ID is 

updated for the name ID. The last option for case three is that the new binding score of 

the pairing is higher than the connection score of one of the name IDs to other edges in 

its cluster, but lower than the connecting score of the other name ID. The same 

procedure as just mentioned is applied. The name ID with the weaker binding to its 

cluster and edges switches to the cluster of the other name ID. The newly added edge 

to the name ID and the cluster is higher than for the previous match. The individual in 

the frames of the video (name ID = video ID) is more similar to the frames included in 

the new cluster.  

 

With this approach errors can be detected, if a better match is found during the process. 

Also the addition of new data to the database can be handled by running the new videos, 
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also meaning new name IDs, against the existing ones in the clusters. For a more intuitive 

use the clusters can be visualized in an interactive html graph. 

 

Figure 8.9 Interactive html visualization of the clusters 
The nodes represent videos. An edge indicates a match grouping all videos assumed to belong to the same 
individual into a cluster. 

8.3 Problems during the implementation 

During the development of the leopard memory pipeline some technical issues occurred 

and components had to be implemented differently than planned in the concept. The 

problems and amendments are presented below. 

8.3.1 Technical issues and modifications 

The pipeline can only be executed efficiently on a conventional computer, if a GPU is 

present. Otherwise the calculations cannot be performed in an acceptable runtime. The 

used Python modules support the outsourcing of the calculations from the CPU to the 

GPU, but in general Python’s tensorflow is exclusively compatible with GPUs from the 

NVIDIA brand [156]. Users with other graphic cards than NVIDIA must have this in mind.  

It took some effort to align the components and the Python packages they rely on, 

because the different components are limited to different versions of the underlying 

modules, especially because of the use of the GPU. A functional combination is listed in 

Appendix 12.1. Other combinations may work as well, but were not tested. 

Another technical issue was the operating system. As stated in chapter 8.2.6 the feature 

detection and matching of the IBEIS Python module were embedded in the pipeline, 

instead of the HotSpotter software. The developer recommends a virtual machine for 
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Linux due to the fact that the Windows issue could not be solved in the past years. I tried 

to independently install the required packages, but due to errors with the binary 

dependencies the attempt failed. An easier to use approach would have been to conduct 

the entire pipeline on the virtual machine in Linux, but the execution of the code in the 

virtual machine is much slower. Therefore only the feature detection and matching part 

takes place on the virtual machine. A further obstacle and reason against having the 

whole program on a virtual machine was the storage that is needed for the videos and 

the extracted frames. The whole project with video data and extracted frames, Python 

modules, models, additional data other than the leopard dataset for the training of the 

CNNs blocked around 160 GB, not including any backup copies and caching. 

8.3.2 Adjustments to the concept 

Over the course of implementation I had to make adjustments to the originally planned 

concept. The main amendments concern the side prediction and the related databases 

and the merging process. 

As already mentioned in the implementation chapter 8.2.6.1 I deviated from the idea of 

splitting the data into different databases and instead combine all data in one database 

and append a column with the viewpoint to the annotations, which can be filtered by 

conditional SQL queries to prevent that opposite flanks are being compared. The 

annotation IDs that are fed into the IBEIS feature detector can be filtered on the 

viewpoint column. During the training of the side predictor it became clear that due to 

low accuracies of less than 50% that are reached, the separation of the viewpoints will 

do more harm than good to the overall results. The results of the side predictor and the 

associated consequences are presented more in detail in chapter 9.1. As an alternate 

solution to avoid the effect of the inaccurate side prediction on the overall result the 

side predictor component will be omitted from the pipeline. The body part and pose 

estimator that produced the input for the side predictor is correspondingly no longer 

needed. The effect of the loss of the two components is analyzed in the next chapter. A 

small consolation caused by the loss is the improved runtime, because the pose 

estimator is computationally expensive.  

Another amendment was made to how matches from the feature matching are treated. 

The original idea was to merge the name IDs of a match. In early analysis it became 

apparent that the merging process is not fault-tolerant. If an error occurs it is not 

revertible. For the application case this means that if two individuals are mistakenly 

merged and a third annotation is found that matches one of the two all three are merged 

under the same name ID. It is not taken into consideration, which of the matches is more 

similar. To overcome this issue I constructed the clustering system from chapter 8.2.7. 

Each cluster represents an individual grouping all the annotations that are believed to 

belong to the individual. The name IDs that originate from the name of the video from 

which again the frames and there of the annotations were extracted, remains 

unchanged, enabling a backpropagation if a mismatch was made. 
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Besides the external developed components that have proven themselves for the use 

on wildlife data in other projects the functionality of the pipeline to process data without 

manual interaction relies on my core assumptions from chapter 2.3. Rounded up by the 

self-designed and self-developed clustering mechanism. 

8.3.3 Other issues 

Less complex, but time consuming issues were deviations from the standard naming 

convention in the input data. As for almost every Data Science project the data must be 

inspected and brought to the correct format to meet the input requirements of the 

program. Even though the same pipeline can be used for other datasets from other 

conservation projects or camera trap analysis in general, provided that the required 

assumptions can be made, it will always require time to prepare the data and metadata 

in a way and format that the program can process it properly. 

A minor issue was the format in which the different components, namely DeepLabCut, 

MegaDetector and IBEIS, process and save location information on bounding boxes, 

annotations and body part estimations.  
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9 EXPERIMENT AND RESULTS 

The pipeline described in the last chapter was applied to the leopard dataset at hand. 

The ground truth data for the evaluation are the individual tags for the leopards given 

by experts from the PanAfrican Programme. The system will be evaluated on the final 

output of the entire pipeline, the amount of correctly reidentified and matched 

leopards. The interim components can hardly be evaluated based on ground truth data, 

because no ground truth data for the special application is available, like body parts or 

bounding boxes. 

9.1 Evaluation of single components 

The following chapters assess the performance of individual components of the pipeline. 

A sound data-based evaluation cannot be conducted for all individual components due 

to missing ground truth data. The overall performance of the pipeline will be evaluated 

instead. 

9.1.1 Evaluation of the MegaDetector 

Due to the missing labels on bounding boxes no automated evaluation based on ground 

truth data can be conducted. The results from the MegaDetector were visually examined 

on the annotations in the IBEIS GUI. Within 192 videos with 3183 images and 

annotations the MegaDetector conducted wrong detections in 15 videos. But, in all but 

one video, the misdetections concern only a few frames of the video. In the consecutive 

frames, in which the leopard was visible, it was detected correctly. For two of the 15 

videos it was not clearly discernible for the human eye, if it truly is a mismatch. The 

mismatches originated from images with bad lighting conditions or the leopard being 

far in the background. An incorrectly made detection in an empty image is considered 

to be less harmful than a missed detection, when an animal is truly present. In 14 of the 

15 videos no leopard was present. Only in one case the MegaDetector chose an incorrect 

region of interest over the leopard that is actually seen in the image (Figure 9.1 left). The 

detection was correct in adjacent frames with nearly the same background scenery 

(Figure 9.1right) 

 

Figure 9.1 Misdetection MegaDetector 
Left: A detection at the bottom left is found instead of the animal on the animal in the image pointed out 
by the red error. Right: In a consecutive frame with nearly the same scenery the animal is detected 
correctly. 
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None of the annotations 

with incorrect detections 

met the threshold for a 

match in the IBEIS 

program. If the quality of 

the image is too low or the 

animal is too far in the 

background for the 

MegaDetector to detect 

the animal, then the SIFT 

algorithm from IBEIS is 

probably also not able to 

find features. 

 

A collection of the incorrectly detected images can be viewed in the Github repository 

[154] for this project, as well as some impressive good examples, in which the 

MegaDetector detected extremely well hidden animals in images of low quality or bad 

lighting conditions similar to the example in chapter 8.2.3. 

For the rare situations where two individuals are captured on tape the MegaDetector 

recognized both and returned two bounding boxes (see Figure 9.2). It can be filtered on 

those videos, which are of high interest for ecologists. 

9.1.2 Evaluation of the Side Predictor 

The side predictor turned out to be the component with the poorest performance in the 

pipeline. Table 9.1 summarizes the different architectures with the number of classes 

and the type of the input data with the resulting accuracy on the testset. The AcinoSet 

was split into trainingset and testset. The accuracies are measured on the AcinoSet 

testset.  

Dataset Input Architecture type Accuracy 

AcinoSet DeepLabCut body part 

estimations* 

Neural network 0.4811 

AcinoSet Entire image CNN – ResNet50 0.4226 

AcinoSet Bounding box cutted out CNN – ResNet50 0.5207 

AcinoSet Bounding box cutted out CNN – MobileNetV2 0.5293 

Leopard Set Entire image CNN – ResNet50 0.3912 

Table 9.1 Accuracies on cheetah testset for side predictor models 
Different side predictor models trained on multiple architectures and different datasets. 
*After the frame selection based on the MegaDetector results. 

 

Figure 9.2 Detection of 2 animals by the MegaDetector 
Footage of images with multiple individuals are of high interest 
for ecologists. 



71 
 

Each architecture was tried out with different hyperparameters and loss functions with 

up to 300 epochs. The performance on the foreign leopard dataset with a different 

ecosystem background is even lower. Based on the little promising results, no further 

research was done on the side predictor for the pipeline. Due to the low accuracies the 

side predictor component was not included in the pipeline for the application on the 

leopard dataset.  

Chapter 9.2 will outline the few cases on which the viewpoint was an issue and led to a 

mismatch. By filtering the annotations on their viewpoint prior to the HotSpotter more 

information is lost, because annotations will not be queried against each other even 

though the same flank is visible, but incorrectly classified by the side predictor. 

9.2 Results for the leopard application case 

The pipeline presented in the previous chapter has its crucial test on the leopard dataset 

from the PanAfrican Programme. For the evaluation of the system a subsets was 

generated for which reliable tags are available. The subset contains all videos for which 

finally approved tags on the individuals are available and additionally videos for which 

temporary tags exist. The experts add temporary tags on leopard videos that are 

assumed to show the same individual, but are not yet verified and cannot be matched 

to any of the known individuals. Temporary IDs that were merged with a name are all 

merged under this ID for the evaluation, stating that it is the same individual. Matches 

within temporary IDs are considered a correct match, if it is matched to the same 

temporary ID. The tags labeled by the experts are treated as ground truth data.  

The subset consists of 210 videos with 3183 annotations remaining after the filtering of 

empty frames by the MegaDetector. The videos were captured at 8 different sites in 59 

cells with a total of 68 different camera spots. The cameras were triggered by 16 

different known and verified leopards and supplementary 40 temporary IDs that are 

partly assumed to belong to one of the 16 individuals. 

For the clustering process different thresholds for the score were defined to compare 

the results. In total 151051 annotation pairings were queried, whereof 3534 reached a 

score above 1.5 and 2156 pairings exceeded a score of 2. The computing time of the 

matching process for the subset took 2 hours and 56 minutes, not including the 

computing time of the preceding components. The preparation of the data of the entire 

unfiltered leopard dataset processing through all components until the feature 

matching process took around 3 days with the hardware listed in chapter 8.1. 

For each name pairing the score with the best matching annotations is considered. 

Meaning two videos are compared by the best matching frame pair. 

With a threshold of 1.5 for the matching score 128 pairings were matched and grouped 

into 19 clusters. 97 of the 128 pairings are correct matches according to the ground truth 

data. This equates to a share of 75.78%. Table 9.2 lists the % of correct matches and 

number of clusters for different thresholds for the score. The highest reached matching 
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score was 116.49 followed by the second highest with 68. 23 matches were in the score 

interval between 20 and 68. 

Threshold for 

score 

% of 

correct 

matches 

Number of 

clusters 

1.5 75.78 % 19 

2 75.68 % 18 

2.5 78.00 % 18 

3 77.89 % 18 

5 84.29 % 13 

10 81.81 % 10 

20 83.33 % 5 

Table 9.2 Application results for the application on the leopard dataset 
Summary on the percentage of correct matches out of the made matches, based on the selected 
threshold, and the resulting number of clusters.  

 

Interestingly one camera spot sticks out. For 55 out of the 128 matches the location for 

at least one of the pairings annotation was the camera spot 38 with at Twin Oaks (fake 

site name). 45 of the matches are correct, resulting in a percentage of 81.81 correct 

matches at this location. This incident could be caused by different factors, like the 

number of triggered videos, the number of tags, the location itself, the leopard density 

and the position of the camera. The spot is shown in Figure 9.3. The camera at this 

location is placed with a good view on the scene and the habitat within the scene is not 

too dense, limiting the noise and is brightly illuminated. Furthermore, the mound at the 

spot seems to be a popular favorite spot for some leopards. 3 named individuals and 2 

with a temporary ID tags were verified at that camera spot. For this spot a high number 

of 37 videos were tagged by the expert, which also drives up the number of matches. All 

of the above are an indication that the spot is often visited by leopards and footage of 

high quality is captured, leading to multiple tags from the experts. 

 

Figure 9.3 Popular cameraspot 
The spot seems to be popular for leopards. The camera trap at this location is often triggered by leopards 
and provides a well illuminated scenery resulting in a high number of tagged videos from that location. 
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9.2.1 Mismatches 

The following chapter highlights some of the mismatches that were made and points 

out possible reasons. For the visualization of the matches the IBEIS GUI was used. 

For all mismatches having a matching score higher than 10, the location of the 

annotations is the same. For the wrong matches with a score between 2 and 4 only a 

single mismatch stems from annotations captured at the same location. Table 9.3 shows 

the percentage of the mismatches that were made for pairings where the underlying 

footage was taken at the same location. For lower scores the percentage of mismatches 

from the same location decreases. For scores lower than 2 no mismatches due to the 

annotations being from the same camera spot are made. The large number of 

mismatches with a high score imply that strong non-moving features are present in the 

background with a higher distinctiveness than the features of the leopard. 

For scores: 

% of the 

mismatches for 

annotations at 

same location 

g>10 100% 

>5 90.91% 

>4 78.57% 

>3 52.38% 

2 - 4 15.38% 

1.5 - 2 0% 

Table 9.3 Mismatches for images captured at the same location 
The percentage of mismatches that can be traced back to matching of the scenery in the background for 
different thresholds for the matching score. 

 

Figure 9.5 illustrates an example of a mismatch 

caused by matched features in the background. 

The red and yellow circles mark the features.  

Further analysis of the mismatches revealed a 

general issue. Some of the footage has subtitles 

automatically added by the camera trap device. 

9 out of the 31 mismatches made in total were 

matches on digits and letters as depicted in 

Fehler! Verweisquelle konnte nicht gefunden 

werden. 9.4. This problem can easily be solved by 

cutting of a thin strip at the bottom of each 

image. 

 

Figure 9.4 Mismatches caused by 
automatic subtitles 
Features are marked in yellow and red. 
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Figure 9.5 Mismatches caused by features in the background 
Features in the background are matched for images taken at the same location.  
 

The mismatches of two leopards stood out. The two leopards, namely Jelani and Tau 

shared three matches. The matched video of Jelani is always the same, but the 

counterpart of Tau stemmed from three different videos. The matches had scores of 

4.31, 3.50 and 1.50. In the ground truth data they are labeled as different individuals. A 

closer look at the rosettes on the right hind limb reveal a chance of Jelani and Tau being 

the same individual. Figure 9.6 is zoomed in to the right hind limb. The circles of different 

color show potential visual feature matches analyzed by myself. The match must of 

course be evaluated by experts from the PanAfrican Programme. 

Further mismatches included a match between a rock and a leopard and mismatches 

due to features matched in the background. In one single case a right flank is matched 

with a left flank of another leopard with a score of 3.6. 

 

Figure 9.6 Matching of Jelani and Tau 
In the ground truth data they are labeled as two different leopards. Top: Features from the IBEIS program. 
Bottom left: Visual feature detection by a human on zoomed in picture. Bottom right: original image 
zoomed in. 
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9.2.2 Results after trouble shooting 

After cleaning the mismatches from the avoidable mismatches for which the subtitles 

are matched and assuming that Jelani and Tau are the same individual the updated 

values from chapter 9.2 are shown in Table 9.4. 116 total matches remain with 97 

correct matches leading to a share of 83.62% of correct matches. 

Threshold for 

score 

% of correct matches 

1.5 83.62 % 

2 83.17 % 

2.5 84.78 % 

3 85.06 % 

5 85.51 % 

10 81.81 % 

20 83.33 % 

Table 9.4 Updated table after troubleshooting 
Results after filtering of the avoidable mismatches described in chapter 9.2.1. 

 

Table 9.4 also points out that the choice of the threshold value does not necessarily lead 

to higher or lower performance of the program measured on the percentage of correct 

matches. A lower threshold allows more potential matches, giving the chance to match 

more individuals, even if the underlying footage is challenging. A higher threshold for a 

match leads to less total value of incorrectly matched individuals, but bears the risk to 

miss more matches. The percentage of correct matches out of all matches remains the 

same. Depending on the use case it must be individually decided what is of a higher 

importance. 

The potential matches found in the process of this thesis will be handed to the experts 

for verification. 
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9.2.3 Good and interesting matches 

In the following some of the good matches are presented that stand out by special 

characteristics or visualize the matching well. 

The top images shows a leopard that 

was entirely matched by the features 

on its head. In the images its opposite 

flanks are visible. The only shared 

section for the matching is the head 

and the right side of his neck.  

In the second image pair nice match for 

which many features across the entire 

body were considered can be seen. 

The third image pair proves that the 

algorithm can deal with occlusions. A 

leave covers part of the leopard’s body. 

Nevertheless, features were detected 

and correctly matched by the 

algorithm. 

Zooming into the last image reveals a 

cub next to the mother. Even though 

two animals are captured in the image 

a correct match of two annotations of 

the mother was correctly made.  

 

 
 
 
 

 

 

 

 
Figure 9.7 IBEIS matches 
Matches were visualized with the IBEI GUI 



77 
 

10 CONCLUSION 

In this thesis the problem of animal reidentification based on camera trap data was 

addressed. The aim was to eliminate manual interaction for labeling or decision making 

on matches. 

The core idea in this thesis to take advantage of video data and its consecutive frames 

showing the same animal enabled the automatic feeding of the database for the 

matching algorithm. Footage of one individual from different viewpoints was collected, 

if the data allowed. 

With components in the pipeline that have proven its functionality on wildlife data in 

the past videos can be consumed without any preparation and are grouped to clusters 

representing an individual. 

The initial concept with the side predictor to prevent the matching of opposite flanks 

did not perform well enough to be implemented in the pipeline and would even lower 

the overall performance. In the experiment on the leopard dataset it became clear that 

the viewpoint is not a big factor for mismatches. The biggest concern for mismatches 

turned out to be the background for images taken at the same location, due to the fact 

that camera traps are fixed to a scenery. 

10.1 Future work 

To improve the performance of the leopard-memory pipeline research on how to 

overcome the background issue must be done. Approaches might be to cut out the 

annotation from the images more accurately. Instead of rectangular boxes the actual 

shape of the animal could be extracted. In noisy sceneries like the jungle this will be 

challenging. Similar to the pose estimator a shape detector could be embedded. By 

taking advantage of the video data instead of image data additional information on the 

shape and movement could be extracted with optical flows. Furthermore optical flows 

could help resolve the necessity on the inspected animals to be solitary. The information 

on the movement of one individual could ease to identify different individuals within 

one image. 

A simple way to solve the problem of opposite flanks and to get footage from multiple 

viewpoints would be to setup the camera traps differently in future projects. If two 

cameras are placed facing each other the animal will most likely be seen from both sides. 

For other use cases in which the dataset contains footage of multiple species a 

classification algorithm can be added to the pipeline prior to the feature detector. 

The GPS data that is available could be used to build further conditions for the queries 

based on the distance of the locations. From a biological point of view it would be 

interesting to map the clusters on a map of the region to have a visual overview of the 

leopards’ habitats. 
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The developed pipeline will be used in the near future to help the PanAfrican 

Programme to identify further individuals. Potential matches were already found, but 

could not be included in the experiment, because no sound evaluation could have been 

done. They need to be verified by the experts first. 

Another experiment for the future is to apply the pipeline to other species, to validate, 
if it suitable for cross-species applications.  
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12 APPENDICES 

12.1 Python environment 

Functional setup in Python 3.7.11: 

Package Version 

cudatoolkit 11.3.1 

cudnn 8.2.1 

tensorflow 2.3.0 

tensorflow-gpu 2.3.0 

keras 2.4.3 

keras-applications 1.0.8 

h5py 2.10.0 

deeplabcut 2.2.0.3 

megadetector 4.1 (downloaded from the git repository and manually added to the 

system path) [47] 

 

When facing issues with the cudnn libraries the intructions under the following links 

could help to solve the problem: 

 https://medium.com/analytics-vidhya/cuda-toolkit-on-windows-10-20244437e036 

 https://www.joe0.com/2019/10/19/how-resolve-tensorflow-2-0-error-could-not-load-
dynamic-library-cudart64_100-dll-dlerror-cudart64_100-dll-not-found/ 

 

12.2 DeepLabCut export 

Example of a csv export file from a DeepLabCut body part prediction. For each body part 

a location as (x,y)-coordinates is returned and the likelihood of the estimation for that 

body part. 
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frame 1 403.86 396.07 0.08 420.18 403.86 0.04 347.92 523.99 0.34 324.13 547.90 0.74 … 412.24 403.85 0.02

frame 2 403.9 396.1 0.078 420.2 403.9 0.043 347.9 524 0.358 324.1 547.9 0.75 … 412.2 403.8 0.019

… … … … … … … … … … … … … … … … …  
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12.3 Decoding of temporary leopard IDs 

The following table shows which temporary ID is matched to which leopard by the time 

this thesis was written. 

Temporary ID Leopard 

LeoMaleTO06b Murr 

LeoMaleTO08 Murr 

LeoMaleTO06 Murr 

LeoMaleTO02b Braveheart 

LeoMaleTO02 Braveheart 

LeoMaleTO02c Braveheart 

LeoMaleTO01 Hermann 

LeoMaleTO03 Hermann 

LeoMaleTO01b Hermann 

LeoFemTO01b Dafne 

LeoFemTO01 Dafne 

LeoFemXB01 Sadie 

LeoFemXB01b Sadie 

LeoMaleXB01 Aran 

LeoMaleXB03 Aran 

LeoMaleTO06c Murr 

 

12.4 Image material 

Further image material can be viewed in the github repository:  

https://github.com/stvasues/Leopard-Memory 

https://github.com/stvasues/Leopard-Memory

