
 



 1 

 
Hochschule Darmstadt 

 

Fachbereich Mathematik  
und Naturwissenschaften  

& Informatik 
 

 

Machine learning applied to right-censored survival data 

 

Abschlussarbeit zur Erlangung des akademischen Grades  
Master of Science (M. Sc.) 

im Studiengang Data Science 
 
 
 

vorgelegt von 
Lukas Klein 

 
 
 

Referentin: Prof. Dr. Antje Jahn-Eimermacher 
Korreferent: Prof. Dr. Gunter Grieser 

 
 

Ausgabedatum: 08.06.2022 
Abgabedatum: 04.12.2022 



 2 

 
Erklärung 
Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen 
als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich 
oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen entnommen 
sind, sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen in dieser Arbeit 
sind von mir selbst erstellt worden oder mit einem entsprechenden Quellennachweis verse-
hen. Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde 
eingereicht worden. 
 
 
Chemnitz, den 3.12.2022  Lukas Klein 
  



 3 

Abstract (deutsch) 

Seit 2021 ist die deutsche Registerstelle für Organtransplantationen nach dem Transplantati-

onsgesetz im regulären Betrieb (Nagel, 2022). Sie stellt Daten über potenzielle Empfänger, 

Spender, Organe, durchgeführte Transplantationen und Nachuntersuchungsergebnisse für 

die Qualitätssicherung und die Forschung bereit. Die erfassten Daten dieser Register eignen 

sich für Analysen mit Methoden der Ereigniszeitanalyse für Ereignisse wie Organversagen oder 

den Tod des Patienten. Trainierte Ereigniszeitanalyse-Modelle erlauben Vorhersagen und die 

Identifikation von relevanten Einflussgrößen auf den Erfolg von Transplantationen. Das erste 

Ziel dieser Arbeit war die Vorverarbeitung der Daten des deutschen Registerexports. Aus die-

sen wurden Zielvariablen für eine Ereigniszeitanalyse basierend auf Nierentransplantationen 

erstellt. Auf diesen Daten wurde dann maschinelles Lernen für die Ereigniszeitanalyse ange-

wendet und die daraus resultierenden Modelle evaluiert als ein „Proof-of-Concept“. Für Nie-

rentransplantationen konnte ein Datensatz erstellt werden, der 20325 erste Nierentransplan-

tationen mit 261 Prädiktoren beschreibt. Ungefähr 15000 dieser konnten für die Ereigniszeit 

Modellierung benutzt werden. Die besten Ergebnisse wurden von Gradient Boosting Model-

len und Survival Random Forest Modellen erreicht. Für die Vorhersage von Organversagen 

oder dem Patiententod nach 10 Jahren erreichte das beste Gradient Boosting Modell einen C-

Index von 0.74 und das beste Random Forest Survival Modell 0.73.  
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Abstract (english) 

Since 2021, the national German registry for organ transplantation in accordance with the 

German transplantation law has been fully operational (Nagel, 2022). It provides data on po-

tential recipients, donors, organs, performed transplantations and follow-up results for qual-

ity assurance and research. The data-exports can be used for survival time analysis with events 

like graft failure or patient death. Trained models can be used to predict graft and patient 

survival and to identify factors for treatment success. The first goal of this thesis is the prepro-

cessing of the exported data from the German registry. For kidney transplantation, survival 

analysis targets are created. Survival Analysis machine learning is being applied to these tar-

gets and resulting models evaluated as a proof of concept to use the data for research. For 

the kidney transplantations, a dataset with 20325 first-time transplantations with 261 fea-

tures was created. Approximately 15000 of these could be used for survival analysis modelling. 

The best results were achieved by gradient boosting models and survival random forests 

across all targets. For the prediction of graft failure or patient death over a time span of 10 

years, the best gradient boosting model achieved a C-index of 0.74 and the best survival ran-

dom forest 0.73.  
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In dieser Arbeit wurden die an das nationale Transplantationsregister übermittelten trans-
plantationsmedizinischen Daten der Jahre 2006 bis 2016 (sogenannte Altdaten) und Daten der 
Jahre 2017 bis zu dem Exportzeitpunkt 11.02.2022 ausgewertet. Die Daten wurden in anony-
misierter Form von der Transplantationsregisterstelle zu Forschungszwecken gemäß § 15g Ab-
satz 1 TPG zur Verfügung gestellt. 
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1 Introduction 
According to the “Bundeszentrale für gesundheitliche Aufklärung” (BZGA) in the year 2021, 

1992 kidney transplantations were performed in Germany. Over the same time period, 2653 

new patients were registered on the waiting list for a donor organ, which had a length of 6593 

entries at the end of that year (Vieth, 2022). With such an imbalance between supply and 

demand, it is easy to see how important optimal matching between donor and recipient is. 

Factors for a successful transplantation can be identified with systematic data analysis. There 

is an increasing push to make data available in the healthcare sector. On the first of November 

2016, the TxRegG law was passed in Germany (Nagel, 2022) with the goal of establishing a 

central registry for transplantation data. Data from all important institutions that are part of 

the organ transplant processes in Germany are combined (IQTIG, Eurotransplant and DSO1). 

The United States and the United Kingdom provide similar national services for researchers.  

The increasing prevalence of digital data registries in the healthcare sectors gives rise to a 

need for computer aided analysis of the patient data and machine learning methods might be 

able to leverage increasing data dimension and recognize patterns on which physicians will be 

able to make decisions in the future. Potential applications are waitlist prioritization, organ 

allocation, identification of potential donors, prediction of overall survival, potential compli-

cations, and pharmacokinetic analysis (Gotlieb et al., 2022). This thesis focuses on the appli-

cation for the prediction of overall survival and prediction of graft failure complications. Most 

clinical registries have similar data patterns: Information from patients is collected only at reg-

ular follow-up visits, patients are only observed up to a limited time and some patients are 

lost to follow-up. This also applies to the German central registry for transplantation data. 

These data patterns are complicating the analysis of patients’ risks, such as the risk of graft 

failure, organ rejection, or death of a patient over time after the transplantation.   

Graft failure and patient death are events for which monitoring starts after the transplanta-

tion. The goal of modelling is to predict either the time until such an event may occur based 

on a set of predicting covariates or the risk patients are at for an event compared to other 

patients. Data used for this modeling task are called time-to-event data or survival data. 

 
1 IQTIG: https://iqtig.org/  DSO: https://dso.de/ Eurotransplant: https://www.eurotransplant.org/ 
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1.1 Survival Data 

The data collection only ends when either the outcome of interest - like graft failure - is ob-

served, the patient is lost to follow-up, or the study has ended. This means that for some 

patients only the information that an event has not occurred for a certain amount of time is 

available. The remaining time to the event is censored in the data, leading to the term “right 

censoring”. The field of survival analysis provides methods and models for censored time-to-

event data. 

1.2 Censoring types 

Other possible types of censoring besides right censoring are left censoring and interval cen-

soring. Left censoring can be observed if an event occurred before the subjects’ events were 

monitored. The start time of monitoring is sometimes referred to as enter time. When both 

right and left censoring occurs, it is called double censoring (Turkson et al., 2021). Interval 

censoring is the most prevalent type of censoring when looking at follow-up data. Subjects are 

observed only at certain time points during visits. When an event for a subject is registered in 

this case, the actual event time is only known to be between the current follow-up visit and 

the last. 

Censoring can be further classified based on the study design. Studies where each subject is 

monitored for a predetermined time are considered to have type I censoring. Type II happens 

when subjects are observed until a certain fraction of the subjects experiences events. These 

types of systematic censoring are different from random censoring, where censoring happens 

as a random event. It can also occur in Type I and II studies. Depending on the type of censor-

ing, different quantities are fixed and others are random variables. The number of subjects is 

always assumed to be fixed (Moore, 2016; Turkson et al., 2021). 

The following table gives a short overview of observable types of censoring and their affected 

random and fixed variables (Moore, 2016; Turkson et al., 2021). 

Table 1 Censoring Source Types 

Type of 
censoring 

Random Variables Fixed Variables 

Type I Number of uncensored events Maximum observation time 
Type II Maximum observation time Number of uncensored events 
Random Subjects enter and exit times Total observation time 
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In addition to censoring, survival data can also suffer from truncation. Left truncation happens 

when there is a delay between a subject being at risk of a loss to follow-up and the start of 

monitoring. If a subject experiences an event before they can be monitored, they will not ap-

pear in the data. In contrast, with censoring a subject is known to have been at risk, but it has 

been too early to register, while with truncation the truncated subjects do not even appear in 

the data (Moore, 2016). Truncation needs to be detected in the study design, as its effect on 

the data might not be visible. It is important to note that sometimes censoring is also called 

truncation in some publications. 

Most models only support right censoring, as it is the most common case and even interval 

censored data is often treated as right censored data. Therefore, correction methods might 

be needed to avoid bias. 

1.3 Modeling 

The time to an event can be described as a random variable 𝑇∗ and, in the case of right cen-

soring, the time to the censoring as the random variable 𝐶. Observable values are only the 

time until whichever event comes first 𝑇 = min(𝑇∗, 𝑈	), and a boolean indicator whether an 

event was observed 𝛿 = 𝐼(𝑇∗ ≤ 𝑈). A right censored observed sample consists of ordered 

values from the time ordered pairs (𝑇" , 𝛿") with 𝑖 ∈ {1, … , 𝑛} and 𝑛 being the number of sub-

jects observed. 𝑇"  and 𝛿"  are respectively assumed to be independent and identically distrib-

uted (i.i.d).  The observed subjects are ordered by their registered time 𝑡# ≤ 𝑡$ ≤ ⋯ ≤ 𝑡%. If 

there are predictors 𝑋 = :𝑋#, 𝑋$, … , 𝑋&;
' 	 available for the time to event 𝑇∗, most models 

assume the time to censoring 𝑈 and time to event to be independent conditionally on predic-

tors and the influence of the predictors on 𝑇∗ to be constant over time.  

Commonly, two functions are used to describe the time to event distribution. These are the 

survival function and the hazard function.  The survival function reports the probability that a 

subject has not experienced an event up to a given time point 𝑡 𝑆(𝑡) = 𝑃(𝑇∗ > 𝑡) with 0 <

𝑡 < ∞. It is the complement to the cumulative distribution function of 𝑇∗: 𝐹(𝑡) =

𝑃(𝑇∗ ≤ 𝑡) = 1 − 𝑆(𝑡). The corresponding density distribution describes the probability of an 

event occurring at an infinitesimal small time window after 𝑡: 

𝑓(𝑡) =
𝑑
𝑑𝑡 𝐹

(𝑡) = −
𝑑
𝑑𝑡 𝑆

(𝑡) = lim
()→+

𝑃(𝑡 ≤ 𝑇∗ < 𝑡 + Δ𝑡)
Δ𝑡 . 

While the density can be used to describe the rate of events overall, often it is desired for 

applications to describe the rate of events for subjects which have not yet experienced an 
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event up to a certain point. This is called the hazard function and it can be derived from the 

survival function (Moore, 2016): 

ℎ(𝑡) = lim
()→+

𝑃(𝑡 ≤ 𝑇∗ < 𝑡 + Δ𝑡|	𝑇∗ > 𝑡)
Δ𝑡 = lim

()→+

𝑃(𝑡 ≤ 𝑇∗ < 𝑡 + Δ𝑡	, 𝑇∗ > 𝑡)
Δ𝑡 ⋅ 𝑃(𝑇∗ > 𝑡)

= lim
()→+

𝑃(𝑡 ≤ 𝑇∗ < 𝑡 + Δ𝑡	)
Δ𝑡 ⋅

1
𝑆(𝑡) =

𝑓(𝑡)
𝑆(𝑡) =

−𝑆,(𝑡)
𝑆(𝑡) . 

Commonly reported is the cumulative hazard function 𝐻(𝑡) = ∫ ℎ(𝑥)𝑑𝑥-
+ . The cumulative haz-

ard can be transformed into the survival function and vice versa, provided they are assumed 

to be continuous:  

𝐻(𝑡) = O ℎ(𝑥)𝑑𝑥
-

+
= O

−𝑆,(𝑥)
𝑆(𝑥) 𝑑𝑥

-

+
= −O

𝑆,(𝑥)
𝑆(𝑥) 𝑑𝑥

-

+
= − ln 𝑆(𝑡) + ln 𝑆(0)

= − ln 𝑆(𝑡) + ln 1 = − ln 𝑆(𝑡). 
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2 Methods 

To correctly assess model performance, inspect for potential problems and extract insights 

from the data, it is important to consider the structure of a model and its training algorithm. 

2.1 Statistical Models 

The following model types are very common in survival analysis and have stronger connec-

tions to parametric and non-parametric methods present in the statistical learning field. 

2.1.1 Parametric Models 

When the hazard is constant ℎ./&(𝑡) ≡ 𝜆, the exponential distribution can be used to describe 

the time to event 𝑇∗ ∼ 𝐸𝑥𝑝(𝜆) (Moore, 2016; 	Sestelo, 2017):  

𝐻./&(𝑡) = 𝜆𝑡						𝑆./&(𝑡) = 𝑒01-						𝐸(𝑇∗) =
1
𝜆 						𝑉𝑎𝑟

(𝑇∗) =
1
𝜆$ 

Other parametric distributions used are for example the Gamma and Weibull distributions, of 

which the exponential distribution is a special case, and the logarithmic versions of the normal 

and logistic distributions (Kartsonaki, 2016).  

To estimate the parameter set 𝛾 for a distribution, ignoring censoring in the data, the maxi-

mum likelihood estimator based on the density can be used: 

𝐿(𝛾; 𝑡#∗, … , 𝑡%∗) =g𝑓(𝑡"∗, 𝛾)
%

"2#

. 

When right censoring occurs, it is only known that the subject experienced no event up until 

the given time point. Therefore, for these subjects, the survival function is used instead of the 

density function (Moore, 2016): 

𝐿(𝛾; 𝑡#, … , 𝑡%; 𝛿#, … , 𝛿%) =g𝑓(𝑡" , 𝛾)3! ⋅ 𝑆(𝑡" , 𝛾)#03!
%

"2#

=g(ℎ(𝑡" , 𝛾) ⋅ 𝑆(𝑡" , 𝛾))3! ⋅ 𝑆(𝑡" , 𝛾)#03!
%

"2#

=gℎ(𝑡" , 𝛾)3! ⋅ 𝑆(𝑡" , 𝛾)
%

"2#

. 

To incorporate multivariate predictors, a common model is the linear accelerated failure time 

model (AFT): 

ln 𝑇"∗ = 𝑥"𝛽 + 𝜖" . 

In this model 𝑥"  is the vector of predictors, 𝛽 is a vector of coefficients and 𝜖 is an i.i.d. residual 

random variable. As can be seen, this results in a linear model. The influence on the time to 

event from the residual term and the linear predictor is multiplicative on the original time 

scale; this gives the model its name. When the expected value of the residual term is assumed 
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to be 𝐸(𝜖|𝑋) = 0, the least squares estimator can be used, minimizing the following residual 

sum of squares (RSS) (Orbe et al., 2002): 

𝑅𝑆𝑆∗ =k(ln 𝑡"∗ − 𝑥"𝛽)$
%

"2#

 

To adjust the estimator for censoring, weights as determined by the Kaplan-Meier estimator 

(see next chapter for 𝑊45") are used: 

𝑅𝑆𝑆 =k𝑊45"(ln 𝑡" − 𝑥"𝛽)
$

%

"2#

 

With those weights, the least squares estimator can be written in a matrix-based notation 

with 𝑇 being the observed times as a vector, 𝑋 being the predictor matrix and 𝑊 being a 

diagonal matrix with the Kaplan-Meier weights (Orbe et al., 2002): 

𝛽m = (𝑋,𝑊,𝑋)0#𝑋,𝑊 ln𝑇. 

With 𝜖" ∼""6 𝑁(0, 𝜎$), the time to event 𝑇"∗ follows a lognormal distribution (Orbe et al., 

2002). If it is not possible to construct the least squares estimator due to the assumption 

𝐸(𝜖|𝑋) ≠ 0, the maximum likelihood with iterative fitting algorithms using the survival and 

density functions described before can be used.  

In some linear AFT models, the residual term is modeled by 𝜖" = 𝜎𝑊", with 𝑊"  also being an 

i.i.d. random variable, a scaling factor 𝜎 > 1, and a constant offset 𝜇:  

ln 𝑇"∗ = 𝜇 + 𝑥"𝛽 + 𝜎𝑊" . 

Common distributions for 𝑊"  are members of the gamma distribution family. An AFT model 

models the survival function based on the distribution of the underlying random variable (Fa-

ruk, 2018): 

𝑆"(𝑡) = 𝑃(𝑇∗ > 𝑡) = 𝑃(ln 𝑇"∗ > ln 𝑡) = 𝑃(𝜇 + 𝑥"𝛽 + 𝜎𝑊" > ln 𝑡)

= 𝑃 r𝑊" >
ln 𝑡 − 𝜇 − 𝑥"𝛽

𝜎 s. 

This calculation of the prediction of the survival function is therefore based on the quantile 

function of the random variable 𝑊", producing survival functions at fixed survival rates but 

variable times. 

2.1.2 Non-Parametric Models 

Without censoring, a simple naive survival function non-parametric estimator can be con-

structed as follows: 
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𝑆7%8t(𝑡) =
1
𝑛k𝐼(𝑡"∗ > 𝑡)

%

"2#

	. 

Because survival times of the subjects are assumed to be independent from each other and 

because the resulting survival function has discrete steps it is possible to also use the previous 

survival rate and the discrete hazard 𝜆m(𝑡") to construct the value at the next survival time 

observed with 𝑡+ = 0 and 𝑆(0) = 1 (Clark et al., 2003; Sestelo, 2017): 

𝑆7%8t(𝑡") = 𝑆7%8t(𝑡"0#∗ ) ⋅ u1 − 𝜆7%8t(𝑡"∗)v 

𝜆7%8t(𝑡) =
∑ 𝐼(𝑡"∗ = 𝑡)%
"2#

∑ 𝐼(𝑡"∗ ≥ 𝑡)%
"2#

. 

𝑆7%8t(𝑡) = g u1 − 𝜆7%8t(𝑡"∗)v
":-!:-

 

The discrete hazard is the number of subjects which experienced an event at the specified 

time divided by the number of subjects who have not experienced one yet. For the discrete 

version, the equality is included for the survival rate. Censoring can be accounted for by cor-

recting the number of subjects at risk, which is the divisor for the discrete hazard by only 

counting subjects which have not been censored or have not registered with an event (Clark 

et al., 2003; Sestelo, 2017): 

𝜆m(𝑡) =
∑ 𝐼(𝑡" = 𝑡, 𝛿" = 1)%
"2#
∑ 𝐼(𝑡" ≥ 𝑡)%
"2#

. 

This is the Kaplan-Meier estimator, also called the product-limit. The Kaplan-Meier estimator 

can be also formulated as weights for the naive survival estimator ignoring censoring (Orbe et 

al., 2002; Sestelo, 2017): 

𝑆m(𝑡) = 1 −k𝑊45"𝐼(𝑡" ≤ 𝑡)
%

"2#

	 

𝑊45" = 𝐹7%8y :ln𝑇(")	 ; − 𝐹7%8y :ln𝑇("0#)
	 ; =

𝛿(")
𝑛 − 𝑖 + 1gr

𝑛 − 𝑗
𝑛 − 𝑗 + 1s

3(#)
"0#

>2#

. 

Another important non-parametric estimator is the Nelson-Aalen estimator (Moore, 2016) for 

the cumulative hazard function: 

𝐻{(𝑡) = k 𝜆m(𝑡")
":-!:-

= k
∑ 𝐼(𝑡" = 𝑡, 𝛿" = 1)%
"2#
∑ 𝐼(𝑡" ≥ 𝑡)%
"2#":-!:-

. 

Both the Kaplan-Meier and the Nelson-Aalen estimator can also be employed for the cumula-

tive hazard and the survival function using the previous established negative natural 
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exponential relationship between them. The survival function estimator based on the Nelson-

Aalen estimator is called the Breslow estimator (SAS Institute Inc, 2019). Fleming and Harring-

ton noted that while the Kaplan Meier estimator results in the same estimator with tied times 

and those ties resolved by moving them infinitesimally to the left, the Breslow estimator gives 

different results (Fleming & Harrington, 1984; SAS Institute Inc, 2019). Their proposed estima-

tor correcting this behavior is used by many software packages instead of the Nelson-Aalen 

estimator: 

𝐻{(𝑡) = k k
1

(∑ 𝐼(𝑡" ≥ 𝑡)%
"2# ) − 𝑗

6!0#

>2+":-!:-

																					𝑑" =k𝐼(𝑡? = 𝑡" , 𝛿? = 1)
%

?2#

 

Different methods are used to estimate standard errors and therefore confidence intervals for 

these estimators. Most are based on the Greenwood formula which uses the delta method 

for variance estimation with different transformations. The delta method is based on the Tay-

lor series approximation and uses the assumption, that a transformed random variable with a 

constant 𝑐 close to the mean of the random variable, expected value and variance can be 

approximated (Hosmer et al., 2008): 

𝐸:𝑓(𝑋); ≈ 𝑓(𝑐) + 𝑓,(𝑐) ⋅ (𝐸(𝑋) − 𝑐)           𝑉𝑎𝑟:𝑓(𝑋); ≈ :𝑓,(𝑐);$ 	 ⋅ 𝑉𝑎𝑟(𝑋) 

Usually, the logarithmic or double logarithmic transformation of the estimator with the ran-

dom binomial variable being 𝑑"~𝐵(∑ 𝐼(𝑡" ≥ 𝑡)%
"2# , 𝜆m(𝑡")).  With the log-log transformation, 

the confidence intervals will stay between 0 and 1. The variance of the Kaplan-Meier estimator 

with an assumed normal distribution would be (Moore, 2016): 

𝑉𝑎𝑟 uln u− ln 𝑆m (𝑡)vv ≈ :log 𝑆m(𝑡);0$ k
𝑑"

(∑ 𝐼(𝑡" ≥ 𝑡)%
"2# ) ⋅ u(∑ 𝐼(𝑡" ≥ 𝑡)%

"2# ) ⋅ 𝑑"v":-!:-

 

These non-parametric estimators can be used for discrete predictors, with each possible co-

variate combination having its own survival estimator.  

2.1.3 Semi-Parametric Models 

One of the core assumptions for survival analysis estimators is based on a Lehmann alternative 

hypothesis (Davies, 1971) for the cumulative density functions 𝐹, 𝐺 of two random variables: 

𝐻+: 𝐹 = 𝐺								𝐻#: 𝐺 = 1 − (1 − 𝐹)
#
@ 							𝜂 > 1. 

Adopted to two survival functions with an inverted 𝜓 = #
@
,  it is the proportional hazard as-

sumption (Moore, 2016): 

𝑆(𝑡) = :𝑆+(𝑡);
A ⇔ ℎ#(𝑡) = 𝜓 ⋅ ℎ+(𝑡). 
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The hazard function ℎ+(𝑡) is called the baseline hazard. With 𝜓(𝑥) = 𝑒/B, 𝑥 being a vector of 

predictors and 𝛽 being a vector of coefficients, it becomes possible to use covariates for the 

estimation of survival functions. The proportional hazard based model assumes a linear rela-

tionship for the logarithmic ratio of the hazard and the baseline hazard, as shown by the fol-

lowing equation:  

ln
ℎ#(𝑡)
ℎ+(𝑡)

= 𝑥𝛽. 

Some AFT models, for example the ones based on the Weibull and exponential distribution, 

also have a proportional hazard interpretation (Orbe et al., 2002). In 1972 Cox introduced the 

partial likelihood to estimate the coefficients in 𝛽 even without knowing the baseline hazard 

function. Assuming the indices of subjects are sorted by their failure time, ignoring ties for 

now and assigning each event experiencing subject their own hazard function, the probability 

that the subject was the one observed in the data is (Cox, 1972; Moore, 2016): 

𝑝? =
𝑃(𝑇?∗ = 𝑡?)

∑ 𝑃(𝑇"∗ = 𝑡?)":-!C-% 	 =
ℎ?(𝑡?)

∑ ℎ"(𝑡?)":	-!C-%
					∀𝑘: 𝛿? = 1. 

The probabilities 𝑃(𝑇"∗ = 𝑡"∗) could not be known as they might be censored, but under the 

proportional hazard assumption, only the factors 𝜓 remain and the time points are no longer 

relevant: 

𝑝? =
ℎ?(𝑡?)

∑ ℎ"(𝑡?)":	-!C-%
=

ℎ+(𝑡?) ⋅ 𝜓(𝑥?)
∑ ℎ+(𝑡?) ⋅ 𝜓(𝑥")":	-!C-%

=
𝜓(𝑥?)

∑ ⋅ 𝜓(𝑥")":	-!C-%
					∀𝑘: 𝛿? = 1.	

From these probabilities the partial likelihood can be constructed and maximized to find the 

coefficients: 

𝐿(𝛽) = g
𝜓(𝑥?)

∑ 𝜓(𝑥")":	-!C-%?:3%2#

	 

After the coefficients have been determined, the baseline hazard function needs to be esti-

mated. A slightly modified version of the Nelson-Aalen estimator with the divisor not using 

the number of subjects at risk but the sum of the 𝜓, can be used to determine it. This calcula-

tion produces a baseline where all covariates would be zero: 

ℎ+(𝑡") =
∑ 𝐼:𝑡> = 𝑡" , 𝛿> = 1;%
>2#

∑ 𝜓(𝑥>)>:	-#C-!
 

In the likelihood function, ties are resolved by summing the likelihoods for all possible order-

ings of tied times. For large datasets with a lot of ties, the combinatoric evaluations can be-

come a challenge. Commonly, approximate methods for the partial likelihood are used, which 
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evaluate the likelihood at each time point an event was observed. They all share the sum of 

the 𝜓(𝑥) values for each subject with the event at a time point in the numerator, but have 

different divisors (Hertz-Picciotto & Rockhill, 1997): 

𝐿DE.FGHI(𝛽) = g
∑ 𝜓(𝑥>)>:-#2-%∧3#2# 	

:∑ 𝜓(𝑥")":	-!C-% ;6% 	-%∈{-!:3!2#}

											𝑑? = k 1
>:-#2-%∧3#2#

 

𝐿NOEH%(𝛽) = g
∑ 𝜓(𝑥>)>:-#2-%∧3#2# 	

∏ u∑ 𝜓(𝑥")":	-!C-% − 𝑔 − 1𝑑?
∑ 𝜓:𝑥>;>:-#2-%∧3#2# v6%

P2# 	-%∈{-!:3!2#}

	 

𝐿4QGROG."F8S,UE.%-"8.(𝛽) = g
∑ 𝜓(𝑥>)>:-#2-%∧3#2# 	
∑ 𝜓(𝑠V)V∈W% 		

-%∈{-!:3!2#}

										𝑠V =k𝑥>
>∈V

.		 

The Kalbfleisch-Prentice approximation uses all possible subsets 𝑄?, each with a size 𝑑?, which 

where the number of patiens at risk for an event. Cox himself also proposed an estimation 

based on the similarity of his method to a logistic model. It has been shown that the Efron 

method has lower bias, especially for smaller samples compared to the Breslow method 

(Hertz-Picciotto & Rockhill, 1997). In the R package survival (Therneau, 2022), the Efron ver-

sion is used by default, while the scikit-survival Python package (Pölsterl, 2020) uses the Bres-

low estimator. 

2.1.4 Machine Learning Models 

It is difficult to draw the line between methods of regression and classification employed in 

applied statistics and those used in machine learning. In some circles statistical and machine 

learning are considered synonyms. All statistical learning algorithms like the ones previously 

described with either extensions or non-linear estimators are considered machine learning 

algorithms for this thesis.  

2.1.4.1 AFT with Shrinkage 

Regression methods like ridge, regression trees or least absolute shrinkage and selection op-

erator (LASSO) regression can be adapted using assumptions of an AFT model with a residual 

distribution based on the assumption that the residual term has the expected value of zero:  

ln 𝑇"∗ = 𝑥"𝛽 + 𝜖" 					𝐸(𝜖") = 0 

Censoring is considered by using the inverse probability of censoring weighting (IPCW). A 

Kaplan-Meier type estimator is used to estimate the probability of the subject being censored 

at the time it experienced the event time or later. It is important to note that usually the esti-

mator is used to estimate the probability of an event, not censoring. This can be done by treat-

ing the number of censored subjects as the number of events and treating each event as a 
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dropout due to censoring. The inverse of the censoring probability is used to give weights to 

the subjects. Censored subjects receive a weight of zero. The class “IPCRidge” in scikit-survival 

inherits from the “Ridge” class in scikit-learn (Pedregosa et al., 2011) and adds the weights 

and the logarithmic transformation while using an intercept for the model. These are minimal 

changes easily adaptable to other regression algorithms with sample weighting available (Vock 

et al., 2016). 

For this ridge model, the loss function with 𝑝 being the number of predictors is: 

𝑅𝑆𝑆X"6P. =k𝑊YUZ["(ln 𝑡" − 𝛽+ + 𝑥"𝛽)
$

%

"2#

+ 𝛼k𝛽>$
&

>2#

 

In addition to the loss by errors in the prediction, large coefficients lead to an increase in the 

loss. Ridge uses the L2 norm of the coefficients. Because the coefficients are summed after 

squaring it is important that the predictors are standardized so that the coefficients are of 

similar magnitude if they have a similar influence on the prediction. With the increasing 𝛼, the 

effective number of degrees of freedom of the model decreases. This can help avoid overfit-

ting and multicollinearity. LASSO regression is a similar shrinkage technique. It uses the abso-

lute values of the coefficients and is therefore able to set coefficients to zero (Hastie et al., 

2009), hence eliminating them from the model. This is the L1 norm of the coefficients and has 

a computational advantage over ridge. The tuning parameter 𝛼 needs to be set for the model 

in advance either with hyperparameter optimization or by using an algorithm to determine 

possible 𝛼 values and selecting from them (Hastie et al., 2009). 

2.1.4.2 Cox Regression with Shrinkage  

Commonly used is the combination of the ridge and LASSO regression to the elastic net, which 

uses a weighted average of the L1 and L2 norm as an additional loss: 

𝑅𝑆𝑆NGQF-"8\.-,]"%.QE =k(𝑦" − 𝛽+ + 𝑥"𝛽)$
%

"2#

+ 𝜆#k�𝛽>�
&

>2#

+ 𝜆$k𝛽>$
&

>2#

 

The tuning parameters are often combined to a mixing parameter 𝛼 = 1&
1'^1&

  (Zou & Hastie, 

2005). The elastic net penalty can also be used on a Cox regression model. This is done by 

adding the elastic net to the partial (log)likelihood as a constraint 𝛼∑ �𝛽>�
&
>2# +

(1 − 𝛼)∑ 𝛽>$
&
>2# ≤ 𝑐 (Simon et al., 2011): 

𝐿𝐿(𝛽) = ln� g
𝜓(𝑥?)

∑ 𝜓(𝑥")":	-!C-%?:3%2#

	� = k 𝑥?𝛽 − ln� k 𝜓(𝑥")
":	-!C-%

�
?:3%2#
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The constraint can be added using the Lagrange multiplier 𝜆: 

𝛽m = argmax
2
𝑛� k 𝑥?𝛽 − ln� k 𝜓(𝑥")

":	-!C-%

�
?:3%2#

� − 𝜆�𝛼k�𝛽>�
&

>2#

+
1
2
(1 − 𝛼)k𝛽>$

&

>2#

� 

Different algorithms can be used to solve this problem. The scikit-survival package (Pölsterl, 

2020) in the class “CoxnetSurvival” uses a coordinate descent algorithm2 (Simon et al., 2011). 

This algorithm is an iterative approach which repeatedly reweights a penalized least squares 

problem. It is performed at a path of values for 𝜆. The method estimates a maximum 𝜆 which 

would, at a fixed 𝛼, completely shrink the coefficients 𝛽 and minimum 𝜆, which in turn is set 

to 5% of the maximum if 𝑛 < 𝑝 or else 0.01%. By default, 100  𝜆 are tested between the min-

imum and maximum in scikit-survival. In the original paper, the best 𝜆 is chosen by an adopted 

leave-one-out cross validation estimation incorporating the loglikelihood difference with and 

without a subject 𝑖 based on coefficients estimated without it (Simon et al., 2011): 

𝐶𝑉_y(𝜆) = 𝐿:𝛽0"(𝜆); − 𝐿0"(𝛽0"(𝜆)) 

2.1.4.3 Survival Trees 

A decision tree-based algorithm partitions the feature space during the training phase. The 

produced model consists of hierarchical connected nodes, with each containing a univariate 

splitting rule until a final node is reached. In each of these final nodes, which are also called 

leaves, a set of training instances are grouped. If a prediction is requested, a path along the 

tree is followed until a leaf is reached. For classification trees, the frequencies of the target 

classes in this leaf are returned. Regression trees, on the other hand, return the mean and 

variance of the target variable in the leaf. 

One way to implement decision trees for survival analysis would be to use IPCW with regres-

sion trees on the logarithmic time to event (Hothorn et al., 2005; Vock et al., 2016). For spe-

cialized survival trees, the Nelson-Aalen and/or Kaplan-Meier estimators are returned for the 

leaf that is reached during prediction (Ishwaran et al., 2008). The construction of decision trees 

is done in accordance with a recursive greedy algorithm which considers each possible split at 

a node and then is rerun on each resulting child until a terminating condition is met. These 

conditions are used for pre-pruning of a tree to reduce overfitting. Commonly, a maximum 

number of nodes or a minimum of the decrease in the impurity measurement are used. 

 
2 The model hyperparameter “alpha” is noted as 𝜆 in the paper and the mixing parameter as “l1_ratio” in the 

library. 
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Impurity measures are used to score possible splits. The split which achieves the highest 

weighted impurity decrease is selected. For a classification problem with 𝑘 classes, commonly 

used measures are the entropy or Gini index (Pedregosa et al., 2011): 

𝐻N%-EH&` = −k𝑝? log(𝑝?)
?

 

𝐻a"%" =k𝑝?(1 − 𝑝?)
?

. 

Regression trees, on the other hand, often use the mean squared error or the mean absolute 

error for a median prediction. With a current partition D being split into g partitions, the in-

formation gain is calculated using the following equation: 

𝐼𝐺(𝐷) = 𝐻(𝐷) −k
|𝐷"|
|𝐷| ⋅ 𝐻(𝐷")

P

"

. 

Usually, the information gain ratio is used instead because the information gain prefers splits 

with more child nodes (Quinlan, 1986). It weights the information gain with the inverse en-

tropy regarding the possible splits k of feature d: 

𝐺𝑅(𝐷) =
𝐼𝐺(𝐷)

−∑ :𝑃(𝑑 = 𝑙) ⋅ log:𝑃(𝑑 = 𝑙);;G∈? 	
. 

Assuming a binary tree with each inner node having two children, the absolute value of the 

log-rank test statistic can be used as the target to be maximized at each step. The log-rank 

statistic is derived by a comparison for a two-by-two contingency table. The comparison is 

between the number of subjects who experience an event 𝑑 at a time 𝑡 and those who are at 

risk and do not experience an event 𝑛 − 𝑑 (Hothorn et al., 2005; Ishwaran et al., 2008; Ish-

waran & Kogalur, 2007). 

The following table visualizes the contingency table used for the log-rank statistic between two 

nodes together with the marginal counts.  
Table 2 Contingency table for the log rank test 

 Node 1 Node 2 Both 

Subjects with event at t 𝑑#(𝑡) 𝑑$(𝑡) 𝑑(𝑡) 

Subjects without event at t, but at risk 𝑛#(𝑡) − 𝑑#(𝑡) 𝑛$(𝑡) − 𝑑$(𝑡) 𝑛(𝑡) − 𝑑(𝑡) 

Subjects at risk 𝑛#(𝑡) 𝑛$(𝑡) 𝑛(𝑡) 
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A hypergeometric distribution can be assumed with 𝑑#(𝑡) being the number of successes ob-

served 𝑛#(𝑡) being the number of potential successes and 𝑑(𝑡) being the number of draws. 

The total population size is 𝑛(𝑡) (Moore, 2016). 

𝐸:𝐷#(𝑡); = 𝑑(𝑡)
𝑛#(𝑡)
𝑛(𝑡) 				𝑉𝑎𝑟:𝐷#

(𝑡); = 𝑑(𝑡)
𝑛#(𝑡)
𝑛(𝑡) ⋅

𝑛(𝑡) − 𝑛#(𝑡)
𝑛(𝑡) ⋅

𝑛#(𝑡) − 𝑑(𝑡)
𝑛(𝑡) − 1  

For each time point, the distributions are assumed to be independent. Therefore, both ex-

pected value and variance can be summed while assuming their covariance to be 0. The test 

statistic is the centered and standardized value of the observed count	(Ishwaran & Kogalur, 

2007; Moore, 2016): 

𝐿 =
∑ 𝑑#(𝑡)- − ∑ 𝐸:𝐷#(𝑡);-

�∑ 𝑉𝑎𝑟:𝐷#(𝑡);-

~large	sample𝑁(0,1). 

The log-rank statistic can also be written with estimators for the cumulative hazard like the 

Nelson-Aalen estimator (Fleming & Harrington, 2011). With an additional constant and 

weighting possibility, they are of the statistic class K (Fleming & Harrington, 2011), which is a 

class of statistics often used in survival analysis. The log-rank statistic uses weights of 1 as a 

special case. The numerator becomes: 

𝐺 = O 𝑤(𝑡)
𝑛#(𝑡)𝑛$(𝑡)

𝑛(𝑡) �𝑑𝐻{#(𝑡) − 𝑑𝐻{$(𝑡)�.		
j

+
 

A split on a continuous feature j requires splits to be estimated at each value 𝑠 present in the 

training data. The log-rank statistic can also be updated based on a linear function from one 

split point to the next (Ishwaran et al., 2008; Ishwaran & Kogalur, 2007). This is based on the 

calculation of the score numerator with the help of the cumulative hazard estimate for the 

parent partition and the split (Ishwaran & Kogalur, 2007): 

𝐿 ∗ �k𝑉𝑎𝑟:𝐷#(𝑡);
-

=k𝑑#(𝑡)
-

−k𝐸:𝐷#(𝑡);
-

=k𝑑#(𝑡)
-

−k𝐼:𝑥> ≤ 𝑐;𝐻{(𝑡)
-

. 

An important lemma for many survival analysis models is the “conversation of events”. The 

sum of the cumulative hazard estimates at all time points is equal to the number of observed 

events: 

k𝐻{(𝑇")
%

"2#

=k𝛿"

%

"2#

. 

This is the case for the Nelson-Aalen estimator and therefore also for the leaves of the built 

trees. It also is applicable to an entire survival tree summed over the leaves. This is only the 
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case if considering all ordered samples. If only using the subjects up to a subject 𝑗, the lemma 

does not hold true anymore. By summing the differences and weighting by the number of 

subjects at risk 𝑛(𝑡), another impurity measure can be constructed. The value of the measure 

becomes closer to zero if the groups have very separate distributions of the event times but 

still show the conservation of events. Let the total number of subjects in a candidate split be 

𝑛k for an impurity measure C (Ishwaran et al., 2008; Ishwaran & Kogalur, 2007): 

𝐶 =
1
𝑛(𝑡)kk�k𝐻{(𝑇")

?

"2#

−k𝛿"

?

"2#

�
%(

?2#

$

k2#

 

To achieve a maximization goal, the inverse of this statistic plus one can be used. The log-rank 

statistic has been criticized to favor continuous features splits and splitting on the extreme 

ends of those (Ishwaran et al., 2008; Ishwaran & Kogalur, 2007). This conversation of events 

splitting approach avoids this bias. Still, the survival trees in the scikit-survival and ranger 

(Wright & Ziegler, 2017) library both use the log rank scoring method. 

An alternative to pre-pruning of the tree is post-pruning. The classification and regression tree 

(CART) algorithm established minimal cost-complexity pruning. For a classification tree T, the 

classification error R for the whole tree is a weighted sum of the classification errors for a 

validation dataset at each leaf and a constant factor punishing the number of leaves in the 

tree 𝑇�  (Breiman et al., 1984): 

𝑅l(𝑇) = k𝑅(ℎ) + 𝛼�𝑇��
S∈'m

	 

It is possible to prove that each node 𝑡 has a higher classification error than the errors of the 

leaves 𝑇-�  summed for a subtree starting at node 𝑡 (Breiman et al., 1984).  An alpha can be 

found where the two errors are equal: 

𝑅(𝑡) ⋅ 𝛼 = 𝑅l(𝑇-)									 

Such an alpha can be found for each node. The nodes with the smallest alpha are pruned by 

having their subtree collapsed into a leaf. The same procedure is repeated subsequently on 

this new tree. This results in a strictly increasing path of alphas. Pruned trees for corresponding 

alphas can therefore be constructed by starting at the root tree and collapsing all nodes with 

an alpha below the given threshold. A smaller tree tends to show bias, which results in under-

fitting, while a larger tree can overfit training data due to its high variance. The best alpha is 

usually selected by scoring each alpha along the path on a validation set (Breiman et al., 1984; 

Pölsterl, 2020). 
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Survival trees do not use the number of leaves �𝑇�� in the loss. Instead the number of non-leaf 

nodes is used. As there is no classification error, the sum of the log-rank statistics for each 

node can be considered, but its behavior regarding interactions, signal noise and non-linearity 

make it unfit for the task. Usage of a test sample for a score, bootstrap sampling or permuta-

tion-based calculation may mitigate the effects. This pruning is not implemented in scikit-sur-

vival (LeBlanc & Crowley, 1993). 

2.1.4.4 Survival Forest 

A common meta model type in machine learning is the ensemble. For an ensemble, the output 

from different trained models is combined for a prediction. One possible ensemble model is 

stacking, where the outputs from several models are fit to a new model which is then trained 

to use these new inputs for the desired output. Another important group are bootstrapped 

aggregating models, also called bagging models. A bootstrap sample is generated by sampling 

with replacement from the obtained sample of the data. Usually, this sample has the same 

size n as the original sample. In this case, each bootstrap B is expected to use around 63.2% 

of the data (Hastie et al., 2009): 

𝑃(𝑖 ∈ 𝐵) = 1 − lim
%→j

r1 −
1
𝑛s

%

≈ 1 − 𝑒0# ≈ 0.632 

This simulates the generation process of the sample and can be used to estimate variance of 

parameters of the data source through repeated estimations on the bootstraps (James, G., 

Witten, D., Hastie, T., Tibshirani, 2013).   

On each generated bootstrap sample, a model can also be trained. This is what is called bag-

ging and for regression, for example, the mean of all trained models is taken for a prediction. 

In a classification setting, the majority vote is used. The random forest model applies bagging 

with one additional step to decorrelate the trees. During training of the trees, each time a 

node is to be split, a random set of features to be tested is sampled. The features are redrawn 

at each split (James, G., Witten, D., Hastie, T., Tibshirani, 2013). 

For a survival random forest, the predictions of each ensemble member survival tree need to 

be combined. For the cumulative hazard, for example, there are two ways to combine the tree 

outputs. Each tree produces a function estimator from the leaf, on which an observation 

𝑖	lands. The simple way is to just average across the N estimators (Ishwaran et al., 2008): 

𝐻{Forest(𝑥" , 𝑡) =
∑ 𝐻{Tree	>(𝑥" , 𝑡)\
>2#

𝑁  
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A second way is to use the out-of-bag estimate (OOB). This can be constructed for the in-

stances which were passed to the algorithm during training. It only averages over the trees 

which do not have this sample present in their bootstrap sample. Scoring of such an estimator 

is an estimate of a threefold cross-validation score (Hastie et al., 2009; Ishwaran et al., 2008). 

By default, scikit-survival and ranger do not use this scoring method. 

𝐻{Forest,	OOB(𝑥" , 𝑡) =
∑ 𝐼(𝑖 ∉ 𝐵>)𝐻{Tree	>(𝑥" , 𝑡)\
>2#

∑ 𝐼(𝑖 ∉ 𝐵>)\
>2#

 

2.1.4.5 Gradient Boosted Models 

Another way to construct an ensemble is a boosting algorithm. Instead of being able to fit 

estimators in parallel, a sequence of estimators is constructed. In the case of the AdaBoost 

(Hastie et al., 2009) algorithm, before each training process weights for the subjects are cal-

culated based on the errors on the previously trained estimators. Each trained estimator also 

gets a weight assigned, which is used for the ensemble predictions. Many boosting algorithms 

use additive models. These do not use a weighted mean, but a weighted sum of base estima-

tors. 

Like other estimators, a boosting model aims to find an estimator which minimizes the ex-

pected loss. Instead of a single parameter set 𝐴, a set of 𝑀 parameter sets for a base estimator 

ℎ and 𝑀 weights, also called expansion coefficients, are approximated (Friedman, 2002; Has-

tie et al., 2009): 

𝐹¡(𝑥) = argmin
t(/)

𝐸 u𝐿:𝑦, 𝐹5(𝑥);v ⇒ argmin
{B'…,,B)}∪{w',…,w)}

𝐸 �𝐿 £𝑦, k 𝛽xℎ(𝑥; 𝐴x)
5

x2+

¤� 

The initial estimator 𝐹+(𝑥) = ℎ(𝑥; 𝐴+) is directly fitted on the dataset. For each iteration m, 

the optimization goal is (Friedman, 2002; Hastie et al., 2009): 

(𝛽x, 𝐴x) = argmin
B,w

k𝐿(𝑦" , 𝐹x0#(𝑥") + 𝛽ℎ(𝑥"; 𝐴))
%

"2#

. 

For the gradient boosting algorithm, the estimator is fit to pseudo-residuals based on the deri-

vate of the loss function with, for example, the least squares method (Friedman, 2002): 

𝑦¥",x = − ¦
𝜕𝐿:𝑦, 𝐹(𝑥");
𝜕𝐹(𝑥")

¨
t(/)2t*+'(/)

 

𝐴x = argmin
w

k:𝑦¥",x − ℎ(𝑥"; 𝐴);
$

%

"2#
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After the estimator for the iteration m has been determined, the estimator weight can be 

optimized (Friedman, 2002): 

𝛽x = argmin
B

k𝐿:𝑦" , 𝐹x0#(𝑥") + 𝛽ℎ(𝑥"; 𝐴x);
%

"2#

. 

This use of pseudo-residuals reduces the complexity of the optimization problem (Friedman, 

2002). 

Gradient boosted regression trees are constructed using a regression tree with a fixed number 

of leaves. Each leaf contains a set of training instances inside a partition 𝑅G,x. For each leaf 𝑙 

of the current tree, an offset from the current additive model up to this point is calculated, 

which minimizes the loss for these datapoints (Friedman, 2002): 

𝛾G,x = argmin
y

k 𝐿(𝑦" , 𝐹x0#(𝑥") + 𝛾)
/!∈X*,-

. 

If the loss is the mean squared error, this offset is the mean of the target variable values of 

the training instances inside the partition. The new estimator adds a fraction of these offsets 

to the output of the previous estimator. This is the learning rate 𝜈. Smaller learning rates lead 

to slower fitting to the training data and can prevent overfitting. At each step the prediction 

can be made with the following equation (Friedman, 2002): 

𝐹x(𝑥) = 𝐹x0#(𝑥) + 𝜈 ⋅k𝛾G,x ⋅ 𝐼(𝑥 ∈ 𝑅G.x)
|'m |

G2#

. 

There are two loss functions for the gradient boosted survival training available with scikit-

survival. One is based on the partial likelihood of the Cox regression (Ridgeway, 1999) and the 

other on AFT IPC weighted least-squared regression (Hothorn et al., 2005). The AFT IPCW gra-

dient boosted trees model uses the previously described AFT model with regression trees 

while weighting the squared error according to the IPC.  

The initial model for decision trees boosted with the Cox proportional hazard-based loss  

𝐹+(𝑥) = 0 estimates the proportional risk for all subjects as 0. The used loss function is the 

negative log partial likelihood, and the pseudo residuals are calculated with the first derivative 

of this likelihood (Ridgeway, 1999): 

𝐿:𝑡, 𝛿, 𝐹x(𝑥); = −� k 𝐹x(𝑥") − ln� k 𝑒t*|/#}

>:	-#C-!

�
":3!2#

� 
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𝑦¥",x = 𝛿" − k 𝛿"
𝑒t*(/!)

∑ 𝑒t*|/.}P:	-.C-!

	
>:	-#C-!

 

 

After a regression tree has been fitted on the 𝑦¥",x values, the original paper (Ridgeway, 1999) 

describes the fitting of a linear Cox regression to the target values 𝑡, 𝛿 and the decision tree 

output as an input. The regression coefficient from this model is then used to scale the output 

from the regression tree multiplied with the learning rate. Scikit-survival appears to skip this 

step and directly uses the output from the tree. The output from the Cox loss-based model 

can be used to predict survival functions with a proportional hazard assumption (Ridgeway, 

1999). 

2.1.4.6 Survival Support Vector Machines 

The proportional hazard simplifies the survival prediction problem from predicting exact sur-

vival probabilities over time to relative risks between subjects. It can be further simplified to 

the ranking of subjects in accordance with the relative risk. With censoring, two subjects are 

only comparable if both experienced an event, or one experienced an event before the other 

was censored. This limits the set of pairs which can be used for training with an upper bound 

𝑂(𝑛$) to (Pölsterl et al., 2015): 

𝒫 = {(𝑖, 𝑗)	|	𝑡" > 𝑡> ∧ 𝛿> = 1	} 

Support vector machines can be adapted for ranking problems (Lee & Lin, 2014). Classification 

support vector machines use hyperplanes within the feature space to separate between clas-

ses. It can be shown that for a perfectly separatable binary classification problem, the best 

performing hyperplane is estimable by the maximal margin estimator for the hyperplane (Has-

tie et al., 2009). It places the hyperplane in such a way that it maximizes the distance between 

the instances, while separating the classes, in the feature space to it. This hyperplane can then 

be defined by the points which are at this maximum shortest distance from the hyperplane. 

They become the support vectors for the classifier (Hastie et al., 2009). 

Non perfect separatable classes can be used with the soft margin classifier, which allows an 

error for the separation. Usually this allowed error is a hyperparameter which needs to be 

optimized. Instances within the margin on the wrong side of the hyperplane also become part 

of the support vectors. Kernel functions can be used to transform the feature space and result 

in nonlinear classifiers. Without external methods, support vector machines cannot be used 

to output probabilities for classification. Assuming 𝑓(𝑋) = 𝛽#𝑋# +⋯+ 𝛽6𝑋6  is the 
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hyperplane with no intercept for a binary classification with 𝑌" ∈ {−1,1}  as the target, a L2 

support vector machine can be written as the solution for the following optimization with 𝛾 

as a parameter influencing the softness of the margin (Hastie et al., 2009): 

argmin
B',...,B/

�
𝛾
2kmax:0,1 − 𝑦" ⋅ 𝑓(𝑥");

$
%

"2#

+
1
2k𝛽>$

6

>2#

�. 

All instances for which 1 − 𝑦" ⋅ 𝑓(𝑥") > 0 are support vectors. This can be transferred to eval-

uate ordering of pairs (Lee & Lin, 2014; Pölsterl et al., 2015) by assuming that for a pair (𝑖, 𝑗) 

in the correct order the function output for the first element in the pair is higher by at least 1, 

𝑓(𝑥") − 1 ≥ 𝑓(𝑥>). 

argmin
B',...,B/

�
𝛾
2 k max r0,1 − u𝑓(𝑥") − 𝑓:𝑥>;vs

$	

",>∈𝒫

+
1
2k𝛽>$

6

>2#

�. 

With this full pair evaluation, the scoring becomes a problem with 𝑂(𝑛	$) complexity. A pos-

sible optimization method is the Newton method. It requires the full Hessian matrix, which 

has a calculation iteration limit of 𝑂(|𝒫|𝑑$ + |𝒫|𝑑 + 𝑑) (Pölsterl et al., 2015). Instead, the so-

called truncated Newton algorithm can be applied, which uses an iterative process to achieve 

an approximation of the gradient direction with a conjugate gradient. This calculation only has 

a complexity of 𝑂(𝑛𝑑 + |𝒫| + 𝑑) (Pölsterl et al., 2015). When calculating the partial deriva-

tives during a Newton iteration, the complexity 𝑂(𝑛$) is the result of the calculation of the 

matrix product. It can be simplified while limiting it to the support vectors, but still needs to 

be recalculated at every iteration: 

𝐴'𝐷I𝐴 = 𝐴I' 𝐴I 					𝐴 ∈ ℝ&×%					𝐷I ∈ ℝ&×&	 

The matrix A is sparse and represents the pairs which are valid for training (Pölsterl et al., 

2015): 

𝐴?" = 1			𝐴?> = −1				if	(𝑖, 𝑗) ∈ 𝒫			else			0 

On the other hand, the matrix	𝐷I indicates whether instances are support vectors. The pairs 

(𝑖, 𝑗) in 𝑃 are assumed have a fixed order and for each position 𝑘 in this order: 

(𝐷I)?,? = °1			𝑖𝑓	1 − u𝑓(𝑥") − 𝑓:𝑥>;v > 0
0,				𝑒𝑙𝑠𝑒	

 

The simplified representation matrix 𝐴I represents 𝐴, but has been limited to support vector 

pairs 𝐴I ∈ {−1,0,1}&0,%, with 𝑝I being the number of support vectors. The values 1 and -1 

are due to three conditions: that survival time is shorter or longer than some other subjects, 
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the subject itself or the other is uncensored, and the pair is a support vector. For the two 

possible values, subsets of P can be constructed fulfilling these criteria for 1 and -1 and used 

to construct 𝐴I. For the conjugate gradient, the required information from these sets are their 

size and the dot product sum of the vector from both the conjugate gradient and the feature 

vectors for their members. If these values are known, the complexity for an iteration would 

decrease to  𝑂(𝑛𝑑 + 𝑑). They can be constructed iteratively with an order statistic tree, which 

is a balanced binary search tree which keeps track of a size and sum for each subtree of each 

node (Pölsterl et al., 2015). 

A similar approach with truncated Newton optimization can be used to adopt support vector 

regression models with the following loss function. Support Vector machines for regression 

assume that the target variable is another dimension to the feature space, and it tries to place 

a hyperplane which minimizes the prediction error (Pölsterl et al., 2015): 

argmin
B1,B',…	 ,B/

�
𝛾
2k:ξ(β, t�, x�, δ�);

$
n

"2#

+
1
2k𝛽>$

6

>2#

� 

ξ(β, t�, x�, δ�) = °
max:0, 𝑡" −	e(O(/!)0B1); 𝑖𝑓	𝛿" = 0

𝑡" −	e(O(/!)0B1) 𝑖𝑓	𝛿" = 1
 

The two described loss functions can also be combined. This leads to a hybrid model with a 

mixing parameter 𝛼 moving the target between AFT regression and ranking (Pölsterl et al., 

2015): 

argmin
B1,B',…	 ,B/

�
𝛾
2�𝛼 k max r0,1 − u𝑓(𝑥") − 𝑓:𝑥>;vs

$	

",>∈𝒫

+ (1 − 𝛼)k:ξ(β, t�, x�, δ�);
$

n

"2#

�

+
1
2k𝛽>$

6

>2#

�		 

2.2 Prediction Scoring 

The hierarchy in the goals of survival predictions allows scoring at different levels of predic-

tion. Ranking within group of subjects based on their risk is available for all models. Models 

using the AFT assumption can predict the expected survival time which can be negated in or-

der to use it as a risk score. Models with the proportional hazard assumption can use the factor 

𝜓. Survival trees predict either cumulative hazard functions and/or survival functions. Order-

ing scores can be constructed from these functions with the previously mentioned conserva-

tion of events lemma. A higher number of expected events equals a higher risk. Ordering is 
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therefore based on the cumulative sum of the predicted cumulative hazard function. If only 

the survival function is available, then the exponential transformation could be used. If the 

gradient boosting model uses the IPCW squared error, then it also predicts on the time scale, 

while a boosting model with the Cox based loss predicts on the risk scale. For ranking survival 

support vector machines one can directly use their prediction values for ordering, while re-

gression and mixed target survival support vector machines predict on the time scale and their 

prediction needs to be negated (Pölsterl, 2020). 

To compare the predicted order based on the scores  𝑦_́ against the real order of the subjects, 

the concordance index (C-index) can be used. It is the fraction of pairs from the observed data 

usable for order determination 𝒫, which are predicted by the model to be in the right order 

(Harrell et al., 1996b). Subjects which are predicted to have the same risk score only get at-

tributed by half to the count of concordant pairs:  

𝐶 =
∑ 	I:𝑦¶" ≥ 𝑦¶>; − u0.5 ⋅ I:𝑦¶" = 𝑦¶>;v(",>)∈𝒫

|𝒫| . 

The range of the statistic is 0 to 1. With random predictions or the same score for all instances, 

the score is expected to be 0.5. A problem with this C-index is that it depends on the censoring 

distribution for the observation. By applying the IPCW based on the estimated censoring dis-

tribution (Uno et al., 2011), this dependency bias for comparing studies is corrected. This score 

needs an estimator of the censoring distribution over the entire range of times from the sub-

jects being used as a scoring set. Because the passed subjects may have survival times higher 

than the maximal event time in the training set for the estimated censoring distribution 𝐶m , 

scoring on the test set is limited up to a maximal time 𝜏, ignoring subjects where 𝑡" > 𝜏.	 

𝐶YUZ[ =
∑ 𝑤" r	I:𝑦" ≥ 𝑦>; − u0.5 ⋅ I:𝑦" = 𝑦>;vs(",>)∈𝒫2

∑ 𝑤"(",>)∈𝒫2
 

𝒫� = {(𝑖, 𝑗) ∈ 𝒫 ∧ 𝑡" < 𝜏 ∧ 𝑡> < 𝜏} 

𝑤" = ¹
1

𝐶m(𝑡")$
𝑖𝑓	𝛿" = 1

0, 𝑒𝑙𝑠𝑒
 

For binary classification problems, the receiver operating characteristic (ROC) curve is a tool 

to visualize the influence of a decision function when varying the threshold or different pa-

rameter configurations for a classifier. Assuming the target being 𝑌" ∈ {−1,1}, the decision 

function output being 𝐶 and the decision boundary value as c, it plots the true-positive rate 

(TPR, sensitivity) against the false-positive rate (FPR, 1-specifity) (Pepe et al., 2009). 
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𝑇𝑃𝑅(𝑐) = 𝑃(𝐶 > 𝑐|𝑌 = 1)									𝐹𝑃𝑅(𝑐) = 𝑃(𝐶 > 𝑐|𝑌 = −1) 

A good model should have a ROC curve close to the upper left corner. A model predicting 

random classes will follow the bisector line. To report the results from the ROC curve, the area 

under the curve (AUC) of the ROC curve is often reported. It has a similar interpretation to the 

C-index with the range is between 0 and 1, but a model with an AUC under 0.5 is considered 

to have been incorrectly trained or scored and negating its prediction will result in a better 

model. 

For survival prediction models, a time dependent ROC can be developed. One approach is the 

cumulative/dynamic ROC, which uses a cumulative TPR and a dynamic FPR. The decision func-

tion output is the previously described risk score and the target variable translated to have an 

event seen before or after the current time point (Lambert & Chevret, 2016). 

𝑇𝑃𝑅Z(𝑐, 𝑡) = 𝑃(𝐶 > 𝑐|𝑇 ≤ 𝑡)									𝐹𝑃𝑅�(𝑐, 𝑡) = 𝑃(𝐶 > 𝑐|𝑇 > 𝑡) 

A ROC curve for this definition describes the distinguishing power between subjects who fail 

at a point in time 𝑡 and before that. By evaluating the AUC for each point 𝑡, a time dependent 

plot or a mean AUC can be used as a scoring metric. Another possible implementation is the 

incident/dynamic ROC, where the incident TPR is the probability of the score being higher than 

a threshold for subjects failing at time t and the dynamic ROC (Lambert & Chevret, 2016). 

𝑇𝑃𝑅Y(𝑐, 𝑡) = 𝑃(𝐶 > 𝑐|𝑇 = 𝑡)									𝐹𝑃𝑅�(𝑐, 𝑡) = 𝑃(𝐶 > 𝑐|𝑇 > 𝑡) 

The cumulative/dynamic ROC has a higher value for clinical applications. A cumulative/dy-

namic AUC can be defined as (Lambert & Chevret, 2016): 

𝐴𝑈𝐶Z,�(𝑡) = 𝑃(𝐶" > 𝐶>|𝑇" ≤ 𝑡, 𝑇> > 𝑡) 

To incorporate censoring correctly, IPCW weighting is used (Pölsterl, 2020): 

𝐴𝑈𝐶tZ,�(𝑡) =
∑ ∑ 𝐼:𝑡> > 𝑡;𝐼(𝑡" ≤ 𝑡)𝑤"𝐼(𝑐" ≥ 𝑐>)%

>2#
%
"2#

:∑ 𝐼:𝑡> > 𝑡;%
>2# ;(∑ 𝐼(𝑡" ≤ 𝑡)%

"2# 𝑤")
 

Like with the weighted C-index, a training dataset for the estimation of the censoring distribu-

tion is necessary. Over the time range between 𝜏# and 𝜏$ a weighted integral of the AUC con-

siders the change of survival probability estimated with Kaplan-Meier from the test data along 

the time range (Lambert & Chevret, 2016): 

𝐴𝑈𝐶Z,�(𝜏#, 𝜏$) =
1

𝑆m(𝜏#) − 𝑆m(𝜏$)
O 𝐴𝑈𝐶tZ,�(𝑡)𝑑𝑆m(𝑡)
�&

�'
 

For models which can provide a cumulative hazard function as a prediction instead of a single 

score 𝑐, it can be used as a time dependent score in the AUC calculation. 
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A third metric type is the Brier score. This is another time dependent score, but it uses survival 

functions as the prediction output (Kantidakis et al., 2020a; Pölsterl, 2020): 

𝐵(𝑡) =
1
𝑛	k𝐼(𝑡" ≤ 𝑡 ∧ 𝛿" = 1)

u0 − 𝑆_{(𝑡)v
$

𝐶m(𝑡")
+ 𝐼(𝑡" > 𝑡)

u1 − 𝑆_{(𝑡)v
$

𝐶m(𝑡)

%

"2#

 

To account for censoring, IPC weighting is used. The Brier score behaves more like a loss. It is 

scaleless and a lower value close to 0 is better. A single score can be constructed using the 

integral over the time range while weighting later time points higher (Kantidakis et al., 2020a): 

𝐼𝐵𝑆(𝜏#, 𝜏$) = O 𝐵(𝑡)𝑑
𝑡

𝜏$ − 𝜏#
		

�&

�'
 

2.3 Data Preparation 

The data was extracted from the transplantation registry (Nagel, 2022) export tool on the 11th 

of February 2022. The focus of the analysis were the kidney transplantations. Files specific to 

other organs were ignored. Three institutions contribute data to the registry (TXReg). They are 

the Deutsche Stiftung Organtransplantation (DSO), Eurotransplant (ET), and Institut für Qual-

itätssicherung und Transparenz im Gesundheitswesen, (IQTIG). Th main identifiers are the en-

crypted versions from the ET system for the recipient, donor and performed transplant. Only 

the ET sourced data uses the transplantation identifier, while the others use the combination 

of recipient and donor or only one of the two when identifying transplants. All values except 

the identifiers have been lower cased and certain terms have been translated into English or 

more consistent versions. Clipping and replacement of invalid values for numeric columns 

were applied. Columns with different units were converted to the most frequent one, if pos-

sible, while text-based ordinals were converted to numbers. Data preparation was imple-

mented in Python with the Pandas library (McKinney, 2010; McKinney & Team, 2015). Please 

refer to the notebooks in the digital attachments for more details on the process and to the 

environment specification files for exact software versions. All calculations were performed 

on an AMD EPYC 7402P processor with 256 GB memory and two disk based hard drives using 

ZFS mirroring with enabled memory caching on Debian 11. 

The following figure shows the process of a kidney transplantation excluding living donors and 

data files receiving values during this process. There are some cases where columns in a file 

receive updated values later in the lifecycle. Waiting list states denote whether a patient is 
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ready to receive a transplant, received one, or was rejected from the list. For the deceased 

donors, the crossmatch result file was excluded for the visualization. 

 
Figure 1 Files processed from the registry export and used identifiers after processing 

2.3.1 Recipient data 

The ET sourced file “empfaenger_dringlichkeit” contains the waiting state changes for every 

past and potential future recipient for all tracked organs. In total 47436 potential kidney re-

cipients (1645 reappearances) could be identified by a column specifying the requested organ, 

while 27618 (645 reappearances) received a transplant. This file was also used to find patients 

who received multiple kidney transplants and an approximate date of these transplantations. 

The number of state changes in the waiting history and the duration of the recipient stay on 

the waiting list were extracted as additional features from this file.  

More information relevant to the kidney recipient waiting list and matching process is availa-

ble in the file “warteliste_niere”. Some columns in this file are sourced from the ET, others 

from the IQTIG. The IQTIG columns were dropped because they appeared to contain redun-

dant information to the ET columns. This file contained 245 duplicates. These are caused by 

additional entries for patients which were removed from the waiting list, either due to unfit-

ness for transplantation or incomplete registration. The ET data also has a date column and 
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waiting state, which were used to associate a number to patients who received multiple trans-

plants over time. All recipients’ data were kept, even if their newest state was not set to 

“transplanted”. This was done to consider potential missing state changes to “transplanted”. 

The newest values for every column for each recipient and repeat transplant number pair was 

kept removing the mentioned repeats. In the resulting table, 47439 (1596 reappearances) po-

tential recipients are listed of which 27621 (645 reappearances) received an organ. These 

number slightly differ from the ones for the “empfaenger_dringlichkeit”, suggesting potential 

inconsistencies between files. 

Base data like age, height, biological sex is presented with the “empfaenger” file. This file also 

contains columns from IQTIG and ET, but the rows have already been joined by the registry. If 

the same data appeared in ET and IQTIG columns, their mean was calculated for numeric col-

umns. For other column data types, the result was the missing value specifier in the case of a 

disagreement between the columns. The “empfaenger” file also reports an exact death date 

for the recipient, which was used for the survival data later in the processing pipeline. The 

data on 81390 potential recipients for any organ was retained. 

Immunologic testing data can be found in the “empfaenger_immunologie” file. Each row is a 

test result communicated to the registry by the ET. There are different types of tests which 

reuse the columns between them. The transplantation dates from the kidney waiting history 

were used to associate the tests with the correct transplant by keeping all tests with dates 

equal or earlier to the transplantation date. The tests were then separated based on column 

values and presence of non-missing values in columns. The results were stored in new columns 

for each test. Again, only the newest test results were kept for each of the 47150 potential 

kidney recipients and repeat transplant number pairs in this file.  

In the following table the presence of the test types is presented relative to all subjects present 

in the processed recipient immunology data file.  

Table 3 Presence of immunologic tests in the processed “empfaenger_immunologie” file 

Test Availability of test results in the processed file 
PRA percent 99.4% 
HLA Phenotyping 66.0% 
DTT Crossmatch 35.3% 
Auto Antibodies 34.8% 
Unacceptable Antigens 20.4% 
vPRA percent 12.2% 
Not Cytotoxic Antibody Presence 7.2% 
Donor Frequency HET 2.7% 
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Donor Frequency ETKAS 2.7% 
Acceptable Antigens 2.1% 

 The same procedure is used on the virology testing data in ‘empfaenger_virologie’ from the 

ET. While different tests are represented by different rows, each test result already has its 

own column in this file. Common pathogens, antigens, and antibodies test results are commu-

nicated for 44356 potential kidney recipients and repeat transplant number pairs. 

2.3.2 Transplantation data 

Information on the actual transplantation of the organ is provided by IQTIG and ET in “trans-

plantation”. While the ET provides one row per transplant together with a transplantation 

identifier, IQTIG provides data using multiple rows, sometimes only specifying recipient or do-

nor. The ET rows have an organ column specifying which organ was transplanted. This is not 

the case for the IQTIG rows. Instead, the rows with the ICD10 prefix N0 to N39 and OPS codes 

beginning with 5-55 which are all kidney related, were kept. Some IQTIG columns are also 

contained kidney specific values. If any of those rows were used, the row was also kept.  

The following figure illustrates the splitting and joining steps for the transplantation data file. 

It is important to note that every set was reduced by removing reoccurring dates by collapsing 

the columns together while only the newest values according to the file order were kept. 

 
Figure 2 Transplantation Data Split and Join Process 



 37 

In the IQTIG set, rows either have a discharge date, an operation date, or neither. The 6304 

rows with neither were ignored. If operation date rows only contained recipient information, 

they appeared to be mostly describing liver transplants. Those 57 rows with an operation date 

were ignored as well. The 1148 rows with an operation date and only donor information were 

also removed, as the recipients are the subjects of the analysis and correctly joining them is 

difficult. For both operation and discharge date rows, only the newest values for each column 

were kept, discarding repeating rows.  

The 284573 ET rows were used for a left join against the 7860 IQTIG discharge date containing 

rows with both a donor and recipient identifier, but also against the 13623 rows with only the 

recipient identifier. This results in a reoccurrence of transplants. To find the correct associa-

tions between rows, the difference between the discharge date from IQTIG and the operation 

date from the ET data has been used to drop lines where the discharge would be before the 

operation date and more than 127 after it. The 127-day limit was chosen by testing different 

offsets on whether they correctly filter matching IQTIG and ET rows. This was done by manu-

ally inspecting the results through the joining process. Then, for every ET line joined, only the 

result joins with the smallest date difference are kept.  

The 28454-row result was right joined with the IQTIG operation date rows on the recipient 

identifier. The difference between the IQTIG operation date and the discharge date was then 

used for the same procedure to keep only one ET line and its join partner.  

The repeat transplant number was joined based on the smallest difference from the operation 

date communicated by ET to the state change date in the waiting state file. This resulted in 

one row being removed from the processed transplantation data. This transplantation file also 

reports exact failure dates, again also used later for the survival analysis. Furthermore, it also 

reports the last time the ET has had any follow-up with the transplant patient and whether 

the ET considers the patient lost to follow-up, but this lost-to follow-up column is sparsely 

populated. 

Shortly after the transplantation, there is one direct follow-up examination. Measurements 

from this checkup are stored by ET in “transplantation_postop_untersuchung”. It contains 

multiple rows associated with one of the 52603 transplant identifiers. The values from these 

 
3 2 additional ET lines had graft failure dates before the operation date. They were considered incorrectly 

joined or incorrectly registered and deleted. 
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measurements were added to the general follow-up described later. When the organ is ex-

tracted from the donor, parameters are recorded by ET, IQTIG and DSO in “organ_ent-

nahme_niere”. While the DSO and ET data are already joined in this file, IQTIG data lines are 

separate. There are sometimes multiple rows for a single donor, therefore the joining process 

was another N:M join on the donor identifier. After consolidating the same measurement var-

iables from different institutes, the information was added to the donor id in the index, which 

of the two kidneys had been extracted as reported from DSO and ET. After this addition, only 

21 rows were not distinct. Those rows seem to be the results of repeated operations. The 

31659 lines with the highest sum of all date columns for each donor id and kidney side were 

kept in order to only keep the newest results. 

2.3.3 Follow-Up Data 

Long-term health development of the recipients is observed with follow-up visits. Data from 

these visits are communicated by ET and IQTIG in “followup_niere”. Identification is done with 

the recipient identifier and the transplant identifier from the ET. To associate the follow-up 

visits with the pair of recipient identifier and repeat transplant number, the state change date 

was moved seven days back to accommodate for a date registration lag, which seems to ap-

pear sometimes. From this N:M join, only those rows were kept where the date of measure-

ment was after the date of transplantation but before the next one if there was another kidney 

transplantation for this recipient. 27048 transplants remained with follow-up data after this 

process. 

Values which appeared only once for all patients were used as scalar features. For repeating 

measurements only, the first value was used as a feature to prevent values, which are only 

measured long after the date of transplantation, to leak survival times to the models. These 

first values are measured shortly after the transplantation. During follow-up, immunosuppres-

sants are administered to the patients, which is recorded by the ET for only 4133 transplant 

identifiers in “followup_niere_medikation”. IQTIG also records data from follow-up visits with 

living donors, but in this project, there was a focus on deceased donor transplants, as there is 

more data is available. 

2.3.4 Deceased donor data 

Many files record data on deceased donors. Base data is communicated by all institution in 

“postmortem” and are already joined on 15327 donors. When a donor dies, the lead-up and 

exact cause of death are recorded by ET and DSO in “spender_postmortem_diagnosen”. These 
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rows are not joined for each donor and use the columns in this file differently. However, lead-

up and death diagnosis features were created and joined to one row for 13937 donors.  

Data on blood gases (“spender_postmortem_labor_blutgase”, 11950 donors), blood typing 

(“spender_postmortem_labor_blutgruppe”, 14334 donors), microbiological testing 

(“spender_postmortem_labor_mikrobiologie”, 4423 donors), toxicologic testing 

(“spender_postmortem_labor_toxikologie”, 1633 donors), urine lab tests (“spender_post-

mortem_labor_urin”, 11638 donors) and virologic tests (“spender_postmortem_labor_virol-

ogie”, 13920 donors) were sourced from the ET and the DSO. Only the latest results were kept 

and the same measurement variables between institutes were consolidated with the arithme-

tic mean after unit conversions. Prior to a transplant, crossmatch testing is performed be-

tween the donors and potential recipients by the DSO. The results from these tests are in 

“spender_postmortem_labor_crossmatch”, with lines for all evaluated pairs of recipient and 

donor, sometimes with repeated evaluations. Only the latest comparison for all 162446 pairs 

was kept.  

Human leukocyte antigen (HLA) test results for deceased donors are stored by the DSO and 

ET in “spender_postmortem_labor_hla”. The DSO provides the results by HLA groups and 

whether the test was performed with DNA sequencing or serological testing, while the ET 

communicates all antigens present in a single column. The latest results in this column were 

kept, resulting in data for 13718 donors. Other lab tests results are submitted by the ET, DSO 

and IQTIG in “spender_postmortem_labor_klinische_chemie”. ET and DSO results are already 

joined sometimes. After taking only the newest results for each column based on the sampling 

date, the mean was used for already joined rows and redundant columns were collapsed to a 

table with data on 15224 donors.  

For deceased donor organs, pathologic analysis of different organs is performed. DSO com-

municates the results as separate rows with a quality parameter and text comment in 

“spender_postmortem_labor_pathologie”. The latest quality observation for each organ is ex-

tracted as a feature. However, that was only available for 4932 donors. For examinations prior 

the death of the patient by DSO, which are reported in “spender_postmortem_unter-

suchungen”, the same procedure was applied. Diagnosis data is available for 12209 donors.  If 

the donor received antibiotics or any other medications before their death, that is also noted 

by the ET and DSO in ‘spender_postmortem_medikation’. The start dates were consolidated, 

and features were created for each of the 13871 donors. For the 13947 deceased donors who 
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were under medical monitoring before their death, data by ET and DSO in ‘spender_postmor-

tem_monitoring’ was also joined and consolidated. 

2.3.5 Dataset Joins and Survival Target 

All the recipient data including the scalar follow-up data were joined on the recipient identifier 

and the repeated transplant number if available. Only recipients who appeared on the waiting 

list files were kept. This resulted in a file with data on 48726 potential kidney recipients re-

specting repeats. All deceased donor files except for the crossmatch results were outer joined 

on the donor identifier. Data for 15822 deceased donors were available. The crossmatch re-

sults were instead right joined with the transplant data and then left joined with the organ 

removal data. This transplant table then contained 27972 rows. 

After these file groups were connected, the transplant and recipient data were right joined 

based on the recipient identifier and the repeated transplant number. To these results the 

donor data was inner joined on the donor identifier. Only rows with an operation date by ET 

were kept and it was used to center all date columns. Overall, this resulted in 20870 transplant 

rows of which only the 20325 first time transplants were kept for the raw dataset.  

The following figure shows the count of rows which contain information from a specific file in 

the raw dataset. As the availability of data in files was used to filter rows, all rows contain 

information from “empfaenger”, “empfaenger_dringlichkeit”, “transplantation” and “wartel-

iste_niere”. “followup_niere” refers to the single time data points. 
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Figure 3 Presence of the raw dataset rows in the input data files. 

After the join, HLA mismatch features were calculated based on the procedure outlined by the 

ET guidelines (Tieken, de Boer, & Hagenaars, 2022; Tieken, de Boer, Heidt, et al., 2022). First, 

all antigens from both serological and DNA sequencing results were mapped to broad and 

splits antigens4. The mismatches for the broad and split categories for the A, B, CW, DQ and 

 
4 As some antigens were missing from the ET manual, a mapping file was created manually. It can be found in 

the digital attachments.  
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DR classes were calculated. In accordance with the ET procedures for A, B and CW, the broad 

mismatches were used instead of the split mismatches if available, while for DQ and DR the 

split results were used, if available, over the broad results. 

Patient death and graft failure were identified as the targets for the survival analysis. All target 

variants are listed in Table 4. Whether a patient died, or their graft experienced a failure event, 

is tracked for follow-up visits in the “followup_niere” file. However, as can be seen in Figure 

1, an exact death date is also reported in “empfaenger” and exact failure date in “transplan-

tation” as well. The follow-up information reports the dates of the follow-up visits and an in-

dicator, whether an event was registered. From this follow-up data, a target of the last follow-

up visits and an indicator variable was created for the patient death (DF) and the graft failure 

(FF). 

 The exact death dates and failure dates were also used to create targets. To incorporate cen-

soring information, patients who were present in the corresponding follow-up target (DF, FF), 

but did not have an exact date registered, were considered censored at their last follow-up 

visit. This combination resulted in exact date event targets for patient death (DE) and for graft 

failure (FE). 

A final fifth survival target (EE) is based on the last-seen column from the ET data in “trans-

plantation”. This was used as the censoring date. Event times were based on the exact event 

dates as either the graft failure date from “transplantation” or the patient death date from 

“empfaenger”, whichever came earlier (Nagel, 2020). When the last contact date was unreal-

istically large (sometimes hundreds of years) only patients with observed times up to 10 years 

were retained, which dropped 5% of patients. This truncation was performed instead of cen-

soring, as those were considered invalid data points. To allow AFT models to take the loga-

rithm of the time points, the time for all targets was incremented by one day. 
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The following table shows the creation method for each of the survival targets in context of 

the previously defined random variables for right censored data.  
Table 4 Construction methodology for the five different targets 

Target Event 𝑻∗ 𝑪 𝑻 𝜹 

FF Graft fail-

ure 

- - Date of the last 

follow-up visit 

when a value was 

reported 

Value reported in 

the latest follow-

up visit 

FE Graft fail-

ure 

Exact failure 

date reported in 

“transplanta-

tion”  

Date of the lat-

est follow-up 

visit (𝑇tt) 

𝑇tN∗  if it was set, 	

𝐶tN 	otherwise 

Was 𝑇 = 𝑇tN∗ ? 

DF Patient 

death 

- - Date of the last 

follow-up visit 

when a value was 

reported 

Value reported in 

the latest follow-

up visit 

DE Patient 

death 

Exact death date 

reported in 

“empfaenger”  

Date of the lat-

est follow-up 

visit (𝑇�t) 

𝑇�N∗  if it was set, 	

𝐶�N 	otherwise 

Was 𝑇 = 𝑇�N∗ ? 

EE Patient 

death 

and graft 

failure 

min(𝑇�N∗ ,

𝑇tN∗ ) 

Latest contact 

date reported in 

“transplanta-

tion” 

𝑇NN∗  if it was set, 	

𝐶NN 	otherwise 

Was 𝑇 = 𝑇NN∗ ? 
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The following figure shows the number of patients in the five survival targets. The variants of 

the graft failure and death target patient sets were combined for easier visualization.  

 
Figure 4 Transplant counts for each survival analysis target 

2.4 Feature preprocessing 

The raw dataset was further processed prior the training and test split. This transformed the 

raw dataset into the prepared feature dataset. The feature preprocessing was implemented 

with scikit-learn pipelines (Pedregosa et al., 2011) and custom written data transformers. Only 

features with at most 49.9% missing values and more than one value besides the missing-

value indicator were kept. Categorical features defined, as text containing features with at 

most nine distinct values, were one-hot-encoded, while categories with less than 1% occur-

rence were collapsed. Missing values were treated as their own category. To avoid a singular 

feature matrix, the first category of every encoded feature was removed. 

Other textual features were dropped. Columns with a variance of zero were also dropped. 

Afterwards, absolute Pearson correlation between the feature was calculated. When the ab-

solute correlation was higher than 0.9 in a pair of features, then alphabetically first feature 

was removed. 
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The following figure shows the number of features present in the dataset after each of the 

described steps between the raw dataset and the preprocessed feature dataset. 

 
Figure 5  Number of remaining features through the preprocessing pipeline 

2.5 Model Candidates 

If any of the models used a random number generator, a seed value was set. For the Cox 

regression, the implementation in scikit-survival “CoxPHSurvivalAnalysis” (Pölsterl, 2020) with 

the allowed iterations increased to 1024 was fitted. In addition, the adoption of elastic net 

penalties to the Cox regression in “CoxnetSurvivalAnalysis”, also in scikit-survival, was used. 

The possible alpha values were determined by the automatic algorithm. For the elastic net 

mixing parameter, the values tested were 0, 0.25, 0.5, 0.7, and 1.  A baseline model using only 

a non-parametric estimate with the Kaplan-Meier estimator was implemented with the “sur-

vfit” function from the R survival package (Terry M. Therneau & Patricia M. Grambsch, 2000; 

Therneau, 2022), ignoring features in the class “RCoxphNull”. 

Survival trees in “RangerTreeSurvival” from the Python ranger package (Wright & Ziegler, 

2017) were fitted. They use the log-rank impurity measure. Tree depths limited to 3, 26 and 

50 were compared. The minimum leaf size was set to 3. Otherwise default parameters were 

used.  The random forest from ranger in “RangerForestSurvival” had the maximum number of 

features considered at a split set to the square root of the total number of feature inputs. For 

all ensemble models, like the random forest, 10, 25 and 50 were set as the number of ensem-

ble members. 
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With the function “survreg” from the R survival package parametric models with either a 

Weibull, exponential or log-normal distribution were tested with the class “RSurvreg”, with 

the number of maximum iterations increased to 1024. Their survival function was calculated 

using the quantile function with 1024 points between the 0.01 and 0.99 quantile of the sur-

vival distribution. Cumulative hazard functions were constructed using the negative exponen-

tial relationship.  

A linear survival support vector machine (SVM) from scikit-survival “FastSurvivalSVM” with 

the alpha being with four values along a natural logarithmic scale between exponent -6 to -

0.5 was also trained. More complex SVMs were not considered due to excessively long run 

times. The same alpha values were also used for a ridge regression accelerated failure model 

implemented by scikit-survival in ‘IPCRidge’. 

A gradient boosting model implemented by the scikit-survival package in the class ‘Gradi-

entBoostingSurvivalAnalysis’ was the final model. Both losses based on the Cox proportional 

hazard and IPCW weighted least squared accelerated failure model were used. For the regres-

sion tree parameters, the maximum number of features and the number of estimators, the 

same configuration as for the survival random forest were used. The maximum tree depth was 

increased from the default three to six, the same value used by another boosting algorithm, 

XGBoost (Chen & Guestrin, 2016). For the learning rate, three values from ten to the power of 

zero to minus five were searched. 

2.6 Model Scoring 

For scoring methods, the implementations of the metrics in scikit-survival (Pölsterl, 2020) 

were used. When calculating the metrics, the passed test data was truncated to the time range 

of the training data to prevent problems with metrics using the training data to estimate the 

censoring distribution. For the cross-validation, all patients in the training partition were used 

to clip the test data and estimate the censoring distribution. This was done, as the scoring 

function during the grid-search has no access to the training data passed to the model.  

With the risk scores returned by the model, the concordance index (Harrell et al., 1996a) along 

the truncated times from the test partition is calculated. Weighing based on IPCW of the con-

cordance index (Uno et al., 2011) was done with 𝜏 set to the last time an observation was 

censored in the training data. If the survival function was available from the model, the inte-

grated Brier score (Schumacher et al., 2003) along 1024 linearly spaced points between the 

start and end point of the training data was calculated. Not all models provide predictions for 
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the entire training time range. Parametric models for example use the quantile function of the 

survival distribution for time estimation. Their survival times were clipped to the minimum 

and the maximum of their predicted survival functions and cumulative hazard, which results 

in expanding the first and last values for them to the left and right, respectively.   

Based on the single risk score, the mean of the cumulative dynamic AUC (Lambert & Chevret, 

2016) was calculated along the same 1024 time points. Plots of the Brier score and the risk 

score based dynamic AUC were also constructed for the best models with the test partition as 

test data. If the cumulative hazard function was available for a model, it was also used for 

another dynamic AUC plot using the same times and potential truncation. 

2.7 Model Selection 

The following steps were performed on all five targets.  Predictor data was selected by keeping 

all patients, with a value for the follow-up column of the corresponding target or the exact 

date column. For the model prediction on the FE, FF, DE and DF targets the data was limited 

to a three-year and 30 days horizon after the transplantation, as this was the longest follow-

up period for most patients observed. Patients with a date after this horizon were considered 

censored at this maximum date.  For evaluation, the data was split based on a shuffled 70/30 

split into a training and test partition.  

The following training pipeline was used by all models and was refitted whenever the model 

was trained. First all features were clipped to the 0.01 and 99.99 percentile to remove outliers. 

Missing values were filled with the mean of the column. Subsequently, the features were 

standardized and centered around the mean.  For the potentially following dimension reduc-

tion, either a PCA or recursive feature agglomeration with the Ward linkage and Euclidean 

distance was applied. The number of components or number of clusters being tested were 64, 

128 and 256.  

All combinations of model hyperparameters and dimension reductions options were exam-

ined with a threefold cross validation grid-search on the training data. For each model the best 

configuration with the lowest average C-index on the test partitions was selected and re-

trained on the entire training partition. This model was then scored against the test partition. 

With permutation feature importance testing, the feature importance on the test partition 

with five shuffles was calculated for those best performing candidates. 

Because collinearity in the data without dimension reduction caused problems for these mod-

els, “IPCRidge”, “RSurvreg” and “CoxPHSurvivalAnalysis” were always trained with dimension 
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reduction. Because features are irrelevant to it, “RCoxphNull” was also added to this group to 

reduce the number of unnecessary evaluations. Models using the IPCW method from scikit-

survival crashed with a division-by-zero exception5. When subjects at the last time point show 

events and censorings. This is caused by the probability of these events to be censored being 

zero. During runtime, a patched method is used to overwrite the function in scikit-survival 

which censors all events at the last timestep if there are also tied censorings. 

 

 

  

 
5 This is an issue tracked here: https://github.com/sebp/scikit-survival/issues/322  
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3 Results 

3.1 Feature Data 

A first preprocessing pipeline was run on the raw data. This raw data was the result of joining 

the processed registry export files. This pipeline included automatic feature selection, one-

hot-encoding and correlation filtering. Remaining features at each step are shown in Figure 5. 

This pipeline produced a prepared feature dataset. 

In the prepared feature dataset 20325 subjects with 261 features are present. Features were 

allowed to have up to 50% missing values during processing. Of these 261 features 33% have 

no missing values. There are no features with no missing values, but as can be seen in the 

empirical distribution of the missing value fractions (Figure 6a), 69% of rows have 10% or less 

values missing. Overall, only 12% of values in this preprocessed feature dataset are missing. 

Most features are binary features with 127 features having two distinct values, excluding miss-

ing values (Figure 6b). Some also only contain only a few possible values, because only textual 

features were one-hot-encoded. As many binary features contained missing values, most are 

encoded as floating numbers to represent these missing values (Figure 6c). Most features 

came from the “spender_postmortem” file, which produced 51 features. The second highest 

number of features was 28, extracted from “spender_postmortem_labor_klinische_chemie”.  
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The following figure contains three plots describing the prepared feature dataset. The first one 

(a) has been calculated by taking the empirical cumulative density of the fraction of missing 

values across the features and rows respectively. The second plot (b) shows the empirical cu-

mulative density of the number of distinct values across features ignoring missing values. Fi-

nally, the third plot (c) lists data types present in the data after an automated assignment. It 

is important to note that missing values can only be presented with a floating number 

datatype. 

To illustrate the preprocessing steps within model candidate pipelines, the percentile clipping 

has been applied, missing values filled with the mean and the features standardized on the 

entire prepared feature dataset. This is the same procedure as applied for the models, but 

there it is fitted on a training partition. For the figures this dataset will be called the interme-

diate model dataset.  

Feature clustering, which is also performed in feature agglomeration, was also applied to this 

intermediate model dataset. The distances of the features with the Euclidean metric have 

been calculated and the Ward linkage between clusters used.  

Figure 6 Missing value distribution (a), number of distinct values (b) in features, and feature data types (c) in the prepared 

feature dataset 
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For the first plot in the following figure (a), the dendrogram of the features in the intermediate 

model dataset after feature clustering shown and cut to produce 32 clusters. Coloring was 

based on 70% of the maximum height. The correlation between features before clustering was 

calculated and is shown in the second plot (b) as a heatmap. In the third plot (c), the empirical 

cumulative distribution of the absolute correlations ignoring self-correlation is shown. 

Percentile-based clipping affected 101 of the features. 99% of the absolute correlations ignor-

ing self-correlation are equal or below 0.230 (Figure 7b). The highest absolute correlation be-

tween columns was 0.89, which matches the filtering during preprocessing. Within the 32 

clusters, the largest cluster contains 41 features. In size below that is a cluster with 10 features 

(Figure 7a).  

While many correlated features are clustered close together, visible in the upper left-hand 

corner of the correlation heatmap (Figure 7b) and the right side of the dendrogram (Figure 

7a), these features also appear to correlate with many other features in the dataset. They 

appear to be one-hot-encoded missing values for transformed textual, categorical features 

mainly from deceased donor data.  

Figure 7 Feature Agglomeration example (a), Correlation Heatmap (b) and distribution of absolute correlation (c) in the in-

termediate model dataset. 
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A PCA ran on the scaled and filled features lead to the three first components being able to 

explain 7.3% of the variance (Figure 8a, b). The Minka’s maximum likelihood estimator (Minka, 

2001) estimates the best number of components to be all components. The scatter plot of the 

three first components suggests a separation into two clusters of subjects (Figure 8a).  The 

feature with the highest positive weights for the first component were also the columns which 

can be found in the clusters previously described on the left side of the dendrogram. For the 

second component, the features with the highest contribution were those specifying whether 

different organs of the donor were legally allowed to be transplanted and the age of the donor 

and the recipient. This suggests that the separation of the two clouds might be based on 

whether certain values were available. 

For the following figure a PCA was run on the intermediate model dataset. The first plot (a) 

shows a scatter plot of the first three components and the second plot (b) the cumulative ex-

plained variance of all components. 

 

 
Figure 8 The PCA results. The first plot (a) is a scatter plot of the first three components and the second (b) the cumulative 

explained variance of the components 
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3.2  Survival Targets 

As shown in Table 4 five survival targets were created. The targets which only used data 

sourced from the “followup” file (DF and EF) report events at the time of planned follow-up 

visits. This is different from the targets using dates reported by the other files, those are exact 

dates for the events. 

The exact dates reported for patient death and graft failure by the “empfaenger” and “trans-

plantation” respectively only represent the random variable 𝑇∗, as they are only assigned val-

ues, if an event was registered. This means that they are not providing censoring information 

on their own. The respective censoring dates were taken from the corresponding follow-up 

target and their last recorded follow-up date.  

The following table contains a constructed example based on the data observed, which was 

used to build the survival targets. 
Table 5 Constructed example of target construction inputs 

 

The constructed exempt above highlights challenges during the construction of the survival 

targets. For example, for the last patient in the table above an exact death date has been 

registered. In the DE target they would appear with (𝑇�N , 𝛿�N) = (1105, 1), while in DF it 

would appear with (𝑇�t , 𝛿�t) = (1097, 0). 

From the shown excerpt data, the following survival targets would be constructed. 

Table 6 Constructed targets from the input example 

ET Follow-Up Patient Death 
  

Graft Failure 
  

Last Follow-
Up Date 

Exact Death 
Date 

Last Follow- 
Up Date 

Event In-
dicator 

Exact Failure 
Date 

Last Follow-
Up Date 

Event In-
dicator 

3290.0 [NA] 1103.0 0.0 [NA] 1103.0 0.0 
[NA] [NA] [NA] [NA] 999.0 [NA] [NA] 
3187.0 [NA] [NA] [NA] [NA] [NA] [NA] 
1334.0 [NA] 1096.0 0.0 [NA] 1096.0 0.0 
[NA] 1105.0 1097.0 0.0 [NA] 1097.0 0.0 

ET Follow- 
Up 

(EE) Patient 
Death Exact 

(DE) Patient Death 
Follow-Up 

(DF) Graft Failure 
Exact 

(FE) Graft 
Failure 
Follow- 
Up 

(FF) 

𝑇NN  𝛿NN  𝑇�N  𝛿�N  𝑇�N  𝛿�t  𝑇�t  𝛿�t  𝑇tt  𝛿tt  
3290.0 0 1103.0 0 1103.0 0 1103.0 0 1103.0 0 
999.0 1 ----- ----- ----- ----- 999.0 1 ----- ---- 
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This way of constructing the exact date targets results in the follow-up and exact date targets 

sharing their censoring information. The exact events however are overwriting the follow up 

date and latest value, if available. As was shown in Figure 4 9758 subjects are present in all 

three targets, not separating by exact and follow-up sources. 

In the following figure two plots are shown. For the first plot (a) 500 subjects were sampled 

which had at least one of C��, T�� or T�� available and those dates then were plotted. The 

second plot (b) had another 500 subjects sampled, but only from those who had both δ�� and   

δ�� set to any value. Coloring was based on these values and the dates T��∗ , T��, T�� and T��∗  

drawn. 

 
Figure 9 Parallel coordinate plot of follow-up dates relationships overall (a) and when a final state is set (b) 

The latest follow-up times between the patient death T�� and graft failure T�� are mostly 

equal with the most common values being one, two and three years (Figure 9a). This pattern 

is not visible for the latest follow-up date reported by the ET in “transplantation” 𝐶NN, where 

a wider range of dates is visible. In the second part of the figure (Figure 9b) only subjects, who 

had both targets failure 𝛿tt  and death 𝛿�t  set to either zero or one are shown. The latest 

3187.0 0 ----- ----- ----- ----- ----- ----- ----- ---- 
1334.0 0 1096.0 0 1096.0 0 1096.0 0 1096.0 0 
1105.0 1 1105.0 1 1097.0 0 1097.0 0 1097.0 0 
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follow-up dates (T��, T��) for the sample appear to be bounded to a maximum of three years. 

There are only very few patients who both registered with a graft failure and a death event 

(𝛿tt = 𝛿�t = 1). Exact event dates (𝑇�N∗ , 𝑇tN∗ ) after three years have their corresponding lat-

est follow-up date (𝑇�t , 𝑇tt). If there was an exact event date (𝑇�N∗ , 𝑇tN∗ ) after three years, it 

did not register as an event in the follow-up data (𝛿�t , 𝛿tt). 

The following table shows the cross counts between the event indicators in the FE and DE tar-

gets to the FF and DF target. Only subjects who had both event indicators not missing in the 

FF and DF target were counted. 

Table 7 Contingency table of exact dates and last follow-up states excluding missing follow-up states 

Almost 11000 patients are censored in targets DF and FF and censored when looking at the 

exact date targets DE and FE (Table 7). The accuracy of the last follow-up value compared to 

the exact dates is 79.8%.  

3.2.1 Patient Death 

Inspecting the dates of previous follow-up visits, in contrast to only the latest date 𝑇�t, shows 

that values were recorded only about once a year, with some exceptions (Figure 10a). These 

exceptions mainly appear when looking at the list of all follow-up dates and not only the last 

one. While some patients have more than three years of follow-up time and more than three 

visits, 99.3% of patients have three or less visits registered and 59.0% of them exactly three. 

Only 7.7% of patients were not censored. On the DF (𝑇�t , 𝛿�t) and DE (𝑇�N , 𝛿�N) targets sur-

vival functions based on the Kaplan-Meier estimator with a 0.95 confidence interval with the 

Greenwood formula and a single log transformation were constructed (Figure 10c).  

The Kaplan-Meier estimator based on the follow-up dates (𝑇�t , 𝛿�t) stays almost constant at 

almost 100% until it reaches the one-year mark, then it drops almost instantaneously by 2-

5%. This behavior of an almost constant level with drops of the same height at multiples of a 

year is repeated until the three-year mark. After the drop of the three years mark, the survival 

estimate constantly sinks to 70%, where it remains constant with a high confidence interval 

Patient Death Event Indicator 𝜹𝑫𝑭 
 

0 0 1 1 
Graft Failure Event Indicator 𝜹𝑭𝑭 

 
0 1 0 1 

Patient Death Exact Death Date 𝑇�N	∗  
set 

Graft Failure Exact Fail-
ure Date 𝑻𝑭𝑬	∗ set 

    

False False 10918 153 84 10 
False True 789 755 2 8 
True False 1242 51 403 27 
True True 376 209 115 50 
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until nine years after the transplant. Based on the exact date data for patient death (𝑇�N , 𝛿�N), 

the red Kaplan-Meier (Figure 10a) estimator starts with a strong exponential decline which 

becomes slower over time, until the decrease remains constant after one year. After three 

years, simultaneously with the follow-up date-based estimator, it shows another strong expo-

nential decline which continues for 14 years when the survival drops to zero. This suggests 

that only events happened after a certain time and no censoring. The follow-up sourced event 

indicators in the death follow-up set (𝛿�t) show missing values as last values (Figure 10b). 

They indicate cases, where there is a missing value at the last visit reported. Those were re-

moved from DF. 

The event (∑𝛿�t, ∑𝛿�N) and censor indicator (∑ 𝐼(𝛿�t = 0), ∑ 𝐼(𝛿�N = 0)) counts over time 

are relevant for the survival function estimate. They are shown as cumulative counts in Figure 

10d).  Events 𝑇�t∗  and censorings 𝐶�t  in the follow-up only DF target almost exclusively are 

registered at the one-, two- or three-year mark. A huge number of almost 10000 censorings 

occur at the three-year mark. Because for the exact targets DE (and FE), their censorings 𝐶�N  

are taken from the corresponding follow-up information 𝑇�t, they share almost the same cu-

mulative count plot. The visible decrease between in the counts of censorings is caused by 

subjects who have an exact death date 𝛿�N = 1 but are censored in the follow up table 𝛿�t =

0. Exact dates for deaths also occur after the three-year mark, but the event rate seems to be 

highest shortly after the transplant. 

For the first plot (a) in the following figure the dates for which a patient death indicator was 

reported (δ�t  at previous visits) are plotted with a density estimate and jittering points for the 

date of each patient visit (T�t  at previous visits). The second plot (b) indicates the number of 

follow-up visits where a death indicator was registered separated by the final value of δ�t. In 

the third plot (c) the Kaplan-Meier estimates for the DF and DE targets with a 95% confidence 

interval based on a logarithmic transformation are shown. The final plot (d) shows the cumu-

lated counts of events and censorings across both targets. 
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Figure 10 Time of follow-up visits where death event indicators were registered for DF (a), at which visit the final indicator 

value was registered for DF (b), the Kaplan-Meier estimates with a 95% confidence interval (c) for the DE and DF and cumula-

tive events and censorings (d) in DE and DF 

Almost no censoring information was available beyond the three-year boundary. Therefore, 

the data for survival prediction was limited to a three year and 30-day horizon. Patients with 

censorings or events after this horizon were considered censored at three years and thirty 

days.  

𝑇QE-.8.%F = min(𝑇, 365.25 ⋅ 3 + 30) 

𝛿QE-.8.%F = À𝛿, 𝑇 < 365.25 ⋅ 3 + 30
0, 𝑇 ≥ 365.25 ⋅ 3 + 30 

Keeping all patients is important as just removing them changes the survival estimate and 

would equate to left truncation in the dataset. With artificial censoring, the survival estimate 

is just a time limited view of the full estimate (Figure 11a, c). A visible difference is in the 

cumulative censoring counts at the last time point (Figure 11b, d). The count has an instant 

jump, so that the absolute number of subjects is maintained. The final artificially censored 

follow-up death date target (𝑇QE-.8.%F,�t, 𝛿QE-.8.%F,�t) was available for 15712 subjects with 

7.0% experiencing events and the artificially censored exact death date target (𝑇QE-.8.%F,�N, 

𝛿QE-.8.%F,�N) was available for 16865 subjects with 11.9% experiencing an event. 
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The artificially censored patient death targets DE and DF are plotted in the following figure. 

The Kaplan-Meier estimates and cumulative counts were constructed in the same way as the 

full estimate (Figure 10c, d). 

 
Figure 11 Kaplan-Meier estimates for the artificially censored DF and DE targets to three years and 30 days (a) and the corre-

sponding cumulative counts (b) 

3.2.2 Graft Failure 

The graft failure targets share observed patterns with the patient death events. For the follow-

up-based graft failure (FF) the first three years show the same curve as the death event esti-

mate (DF). One notable difference is in the larger drop-off after these three years. For exact 

failure dates (FE) the main difference is at the time of the transplant. There is an immediate 

drop by almost 10% of the survival estimate. This is caused by unsuccessful transplants which 

might have been rejected or were never functional in the first place. These may be missing 

from the follow-up data and be a case of truncation in the follow-up datasets. Otherwise, the 

estimator behaves like the exact death date estimator, only offset by the drop-off at the start. 

There are no cases where there is no failure state set at a follow-up visit. This is different from 

the death observations. 

The same plots as produced for Figure 10 are shown in Figure 12, but instead applied to the 

graft failure targets FF and FE. Please refer to the other figure for the construction method. 
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Figure 12 Time of follow-up visits where death event indicators were registered for FF (a), at which visit the final indicator 

value was registered for FF (b), the Kaplan-Meier estimates with a 95% confidence interval (c) for the FE and FF and cumulative 

events and censorings (d) in FE and FF 

The same artificial censoring as applied to the death targets was applied to the graft failure. 

Due to the same pattern showing almost no censorings 𝛿tt = 0 after three years being ob-

served here. For the FF target (𝑇QE-.8.%F,tt, 𝛿QE-.8.%F,tt)  15413 patients were available with 

7.2% showing events. On the other hand, for the FE target (𝑇QE-.8.%F,tN, 𝛿QE-.8.%F,tN) 16532 

patients were available with 13.9% having an event. 

To illustrate the effect of the artificial censoring, the next figure was constructed in the same 

way as Figure 11, but showing the Kaplan-Meier estimator and cumulative event and censor-

ing counts for the graft failure targets FF and FE. 
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Figure 13 Kaplan-Meier estimates for the artificially censored FF and FE targets to three years and 30 days (a) and the corre-

sponding cumulative counts (b). 

3.2.3 ET reported follow-up 

The combination of the exact failure dates 𝑇tN∗ , the death dates 𝑇�N∗  and the last contact date 

𝐶NN∗  reported in the “transplantation” file (EE) shows a different pattern from the other tar-

gets. It has the immediate drop at the start caused by the failure dates. No yearly periodicity 

is visible in the survival estimate, but a less strong pattern compared to the other targets of 

the censorings is visible in the cumulative counts. After the immediate drop of the survival 

estimate at the start, the decline of the survival rate almost becomes linear after a short ex-

ponential decline over four years. However, after five years the hazard for a patient appears 

to increase and after eight years clearly decreases exponentially.  

No artificial censoring was necessary, as both events and censorings occur over the entire time 

range. The pairs (𝑇NN , 𝛿NN) were available for 12017 patients. It was the smallest target, but 

it had the highest maximum survival times 𝑇NN. The overall naïve risk was also the highest in 

this target with 29.4% experiencing an event. 

For the constructed target from the direct ET follow-up dates and either death or failure dates 

(𝑇NN , 𝛿NN)  the following figure shows the 95% confidence interval Kaplan-Meier estimator (a) 

and the cumulative counts (b).  
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Figure 14 Kaplan-Meier estimates with 95% CI (a) for the EE target and the corresponding cumulative counts (b) 

3.3 Comparing Model performance 

An important factor for models is the run time. Caching for the preprocessing steps was ena-

bled and the first model tested was the survival forest (“RangerForestSurvival”). This means 

its longest run time could be caused by needing to run the precomputing steps and the other 

configurations reusing its results. Timing results from the DE target are shown in Figure 15. 

The fastest models were the Kaplan-Meier model (“RCoxphNull”) and the AFT model with 

ridge regression (“IPCRidge”). Even though it is a Cox regression model with an additional elas-

tic net penalty and has a higher maximum number of iterations (10000) by default, the 

“CoxnetSurvivalAnalysis” model is faster than the unmodified Cox Regression (“CoxPHSurviv-

alAnalysis”). The linear survival support vector machine (“FastSurvivalSVM”) shows a large 

range of training times. Due to the number of tested hyperparameters, the most configura-

tions were evaluated for gradient boosting models (“GradientBoostingSurvivalAnalysis”). 

As an example, the average training times for the model pipelines with the slowest, best per-

forming, and fastest hyperparameter configuration across the folds for the DE is shown in the 

following figure. The vertical lines show the standard deviation across the three folds. The 
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training time data from the exact patient death target is plotted (a) as well as the number of 

configurations (b), which was shared among all targets. 

 
Figure 15 Average fold training times for the DE target (a) and the number of hyperparameter combinations tested for each 

model (b) 

These results seen on the exact death date target translate to the other targets from the fol-

low-up category as well. Comparing the slowest parameter configuration across all five tar-

gets, the ranking of the models stays similar. The “CoxPHSurvivalAnalysis” and “RangerFor-

estSurvival” models are significantly slower on the exact date targets DE and FE. Because the 

EE target has less (𝑇, 𝛿) pairs available compared to the other targets, models are mostly 

faster or need similar time. Yet, Cox regression and the random forest are significantly slower 

on this dataset.  

The training times for the slowest pipeline configuration of each model across all targets are 

shown in the following figure. Mean training time of the configuration refers to the mean 

across all folds. Ordering of the labels was based on the position on the FE target. 
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Figure 16 Average slowest configuration training times across all targets during grid search 

Some hyperparameter configurations were unable to be trained or scored, because the train-

ing or scoring failed on one or more of the folds. This was the case for all five targets for the 

Cox regression using the feature agglomeration with 256 clusters. The AFT ridge regression 

model failed three times in overall with the alpha parameter set to 0.002479. The highest 

number of hyperparameter combinations failing was 39 for the survival regression AFT model 

“RSurvreg”. If a certain dimension reduction and target combination had a failing model, in 

most cases, all three time-distributions Weibull, exponential and lognormal failed. Overall, 47 

configurations of 1600 failed. 

The most prevalent preprocessing options among the selected best for each model class, ig-

noring the selections for the Kaplan-Meier model, were no dimension reduction (9 times), 

feature agglomeration with 256 clusters (9 times), PCA with 256 components (8 times) and 

PCA with 128 components (7 times). 

3.3.1 Prediction Scores 

The risk scores usable for ordering subjects in accordance with their relative risk of failure is 

available for all models. It can be used to calculate a C-index score, IPCW C-index score, and 

an average cumulative, dynamic AUC over the subjects based on the relative risks. All models 

except the IPCW AFT ridge regression and survival support vector machines provide survival 
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functions as predictions. If available, it was used to calculate an integrated Brier error as a loss. 

This integrated Brier loss was scaled to be comparable to the other scores. 

3.3.1.1 Patient Death 

Model performance on the exact death date (DE) target is better compared to the perfor-

mance on the death follow-up target (DF). The ranking of the best models for the patient death 

targets seems to stay the same across all scores. An exception from this rule appears with the 

follow-up-based target (DF), where for the integrated Brier score the best model becomes the 

AFT survival regression (“RSurvreg”).  

For the following figure the prediction scores on the test partition (Test Scores) of the retrained 

best performing model configuration are plotted for the targets DE (a) and DF (b). The scores 

for the same model are connected. Ordering of the labels was based on the C-index. 

Especially for the follow-up target (DF), the Cox regression, Cox regression with shrinkage, AFT 

survival regression, and the linear survival support vector machine have almost the same scor-

ing results between 0.73 and 0.75 on the C-index. IPCW weighing of the test score has almost 

no impact for the exact dates, but slightly reduces the score on the follow-up target. The con-

nection between the C-index and the cumulative, dynamic AUC is visible, as the scores are 

almost identical. Best scores are achieved by the gradient boosted model with a C-index of 

Figure 17 Test scores for the best models on the patient death targets DE (a) and DF (b) 
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0.73 and 0.81 on the follow-up and exact date target respectively. Shortly behind is the sur-

vival random forest with 0.71 and 0.78, respectively. For most models, the C-index score is 

between 0.73 to 0.81 on the exact date target. The performance of the Kaplan-Meier model 

with a C-index of 0.5 is to be expected, as it predicts the same relative risk for all tested sub-

jects. The IPCW AFT ridge regression model and the survival tree are failing to fit the data. The 

best survival tree appears to almost make the same predictions as the Kaplan-Meier model. 

The IPCW AFT ridge regression model performs even worse than the baseline Kaplan-Meier 

model. It has a C-index below 0.5, which suggests that inverting its risk ordering would lead to 

better results, compared to the model output itself. 

The cumulative, dynamic AUC on the test partition can be calculated with the risk scores and 

the cumulative hazard function scores if they are available. These variants over time are shown 

both for the best models on the exact date target (DE, a) and follow-up target (DF, b) in the 

following figure. 

 
Figure 18 Cumulative, dynamic AUCs based on the risk scores and cumulative hazard functions of the best performing models 

on the DE (a) and DF (b) targets 

Most scores start at a height close to the mean of the scores and then show a peak and drop 

back to a similar level. This might be caused by the small number of subjects with events 



 66 

occurring directly at the beginning. Scoring based on the cumulative hazard functions deviates 

only slightly from the risk scores for the survival random forest but overlaps the single risk 

score curve after one year again. After three years it starts to deviate again. The curve for the 

IPCW AFT ridge regression model stays below 0.5 again. This confirms that its risk scores are 

reversed. More deviation between cumulative hazard and single risk scores AUCs is visible for 

the follow-up target (DF). This is especially the case for the AFT regression models before the 

first-year mark and a little bit again for the random forest survival model. Before the first year 

mark the ordering of the scores is quite different from the average model performance. It is 

important to note that the average is weighted based on the change of survival function and 

therefore this part, where the survival function stays almost constant, is almost irrelevant for 

the average AUC. For this first year, models previously close to the Cox regression perform 

better compared to the other models. All models show a high variance of the AUC at the end 

and the beginning. 

3.3.1.2 Graft Failure 

The survival target for patient death and graft failure are overall very similar. Test scores for 

the exact failure date target (FE) are slightly below the corresponding model scores for the 

exact death date target (DE). However, two notable differences are the slightly better per-

forming survival tree and that the survival random forest drops in the ranking of the integrated 

Brier loss to a similar error as the survival tree on the exact target (FE) of 0.11. Prediction 

performance on the follow-up dates is higher for the graft failure compared to the follow-up 

target for the death date. The “IPCRidge” model also fails to fit to the data with C-index scores 

of 0.47 and 0.46 on FE and FF, respectively. The gradient boosting model is the best model for 

this target as well with C-index scores of 0.78 and 0.77. 

For the following figure the scores on the test partition of the best model configurations re-

trained on the entire training partition are shown just like in Figure 17, but on the graft failure 

targets FE (a) and FF (b).  
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Figure 19 Test scores for the best models on the graft failure targets FE (a) and FF (b) 

The most stable over time AUC score is produced by the exact failure date target (FE, Figure 

20). All models appear to struggle modeling the strong decline immediately at the beginning. 

The targets show a higher score at exactly three years, where most events near the end are 

registered, shortly followed by many censorings at the end. For the FF target, there is a high 

variance of the scores after one year. It is important to note that almost no events are present 

in this target until the first year. This seems to lead to the estimation of the score before the 

first event to stay at the level of the first achieved score, which like the other targets shows a 

high variance. 

In the following figure the same time-dependent AUC data based on the risk scores and cumu-

lative hazard function predictions plotted in Figure 18 are shown for the FE and FF targets. 
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Figure 20 Cumulative, dynamic AUCs based on the risk scores and cumulative hazard functions of the best performing models 

on the FE (a) and FF (b) targets 

3.3.1.3 ET reported follow-up 

The ET “transplantation” constructed survival target EE has a much longer time range com-

pared to the other targets, yet similar patterns in the model test scores are visible. The Cox 

regression models, the survival support vector machine, and “RSurvreg” achieve similar 

scores, like was already observed in the other targets. This target has the worst scores of all 

targets. On the integrated Brier error, the Kaplan-Meier model and the survival tree achieve 

almost the same score. The best model is again the gradient boosted model with a C-index of 

0.74.  

For the target EE, the test scores are shown in the following figure, constructed in the same 

way as Figure 17 and Figure 19. 
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Figure 21 Test scores for the best models on the ET reported follow-up target EE 

 

AUC scores are mostly stable through time, but the models with behavior close to the Cox 

regression stay almost identical and drop after four years. The linear survival support vector 

machine and AFT survival regression model stay close together while dropping slightly below 

the Cox Regression models. 

In the following figure the time-dependent AUC for the test partition based on the risk scores 

and cumulative hazard function predictions is shown for the ten-year ET sourced follow-up 

target (EE). 
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Figure 22 Cumulative, dynamic AUCs based on the risk scores and cumulative hazard functions of the best performing models 

on the EE target 
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4 Discussion 

Results of this research project include the processing of the registry data, the targets, and the 

fitted model pipelines. These results can be further inspected and future potential to resolve 

challenges encountered identified.  

4.1 Data and Preprocessing 

Most of the work hours for this research project was spent on preparing the registry data. 

While there already is an export for scientific research, the necessary joins of the datasets, 

especially within files, with unclear matches made the development of the data preprocessing 

pipeline difficult. For this dataset, a pipeline with self-checks, continuous integration and re-

porting should be implemented to reduce the potential for data integrity problems. Because 

the transplantation registry does not provide a clear guide on how to cite it for research pro-

jects, it is difficult to find publications using its data. The challenges encountered by the author 

are general difficulties in using the data and might be fixed with updates to the export tool. 

Pseudonymization of some date columns also sometimes leaks the offsets for the pseudony-

mization of the date columns. 

While some studies use slightly larger sample sizes of 30.000 with 50 features (Ayers et al., 

2021), 50.000 with 40 features (Naqvi et al., 2021) or 60.000 with 100 features (Kantidakis et 

al., 2020b) for machine learning applications on transplantation data, they usually source their 

data from the UNOS registry, which is larger compared to the German registry. With a differing 

data base and a different region modeled, the German registry should however also be con-

sidered for further research. The cited research papers all also performed manual feature se-

lection for clinical importance. This step was skipped in this work to test performance across 

all features, but that might have introduced useless features, increased variance, and features 

leaking target information leading to an overestimation of performance.  

Among machine learning for transplantation studies, the use of survival machine learning is 

not entirely common. It appears the use of regression models and solely looking at the imme-

diate failure probability or the survival probability after a fixed time still are very prevalent, 

but a thorough literature review might be necessary to establish measures of usage. 

The goal of the scikit-survival library to adopt survival methods for the scikit-learn ecosystem 

is admirable, as it enables the support of feature preprocessing methods and integration of 

models into existing systems, but the instability of the library lead to problems during this 

project. In addition to new models, more preprocessing options specific to survival analysis 
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might be introduced in the future, integrating the scikit-learn application programming inter-

face (Buitinck et al., 2013).   

4.2 Survival Targets  

The follow-up-based targets behave more like interval censored data, and it is easy to see how 

their predictions are biased, especially for the time before the first follow-up. A future re-

search project might look at methods to correct the bias caused by such a data pattern and 

how correction methods might be employed. For models like survival random forests and sur-

vival trees, which internally construct Kaplan-Meier estimators, smoothing methods might im-

prove performance. Smoothing methods for the Kaplan-Meier estimator are well researched. 

An example is smoothing with Bèzier curves (Kim et al., 2003). They could be employed for 

survival trees, in which only a few instances are present in a leaf. 

For the graft failure targets, the inclusion of immediately failing transplants might be incorrect, 

as this drop is not seen in quality reports for example of the DSO for 2019 and the estimate is 

lower compared to the report (Rahmel & Wadewitz, 2020). The EE target on the other hand 

seems to match expectations when comparing it to general predictions made for kidney trans-

plant survival. A potential source of bias present in this target is caused by the last contact 

dates for censoring being used together with event detection which happens outside these 

tracked contacts. When comparing the last contact dates and the event dates, events are reg-

istered on average 154 days after the last follow-up date. Death dates are registered on aver-

age 501 days after the last contact and graft failures 37 days before the last contact.  

Lesko et al. argue that captured events, which are registered even without follow-up contacts, 

and measured events should be treated differently for censoring. The exact date targets DE 

and FE have captured events, while the follow-up target DF and FF use measured events. For 

the ET sourced follow-up information in the target EE a mix of both seems to be present. They 

showed that for captured events, not the last contact date, but rather use a lost-to-follow-up 

(LTFU) definition should be used to avoid estimate bias. A LTFU application extends the cen-

soring dates by the time window used to define when patients are LTFU and censors events 

at the time the LTFU time is reached if the event occurs after this window (Lesko et al., 2018). 

This correction might be extended for mixed targets like the EE and implemented like previ-

ously mentioned as a transformer class for scikit-survival and easily integrated in model pipe-

lines. 
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4.3 Scoring  

The C-index is the most commonly used score for survival analysis and closely connected to 

the other metrics. In this research project, the differences between the scoring methods were 

small, but the additional challenge of estimating the censoring distribution can be problem-

atic, as the censoring distribution estimation needs to be applicable to the data used to calcu-

late the scoring. This is not a problem for most applications, where the study is over a fixed 

time with events and censors evenly distributed through time. However, the application of 

cross-fold evaluation, where subsamples are taken, can lead to the mismatches between the 

time ranges. In the scoring method used for the test scores and cross-fold evaluation the test 

subjects were limited to the time range of the training data. This might be considered invalid, 

as the goal of the evaluation of test data is an estimate of the model performance on previous 

unseen data. For test scoring, this ignored around 1000 of approximately 5000 subjects in the 

test partition. This additional work however may be worth doing, as the weighted scores are 

comparable between studies (Uno et al., 2011). 

While the time dependent AUC of the cumulative hazard and the Brier scores are not available 

for all models, they can provide insight into the model performance over longer time periods 

and how it may deteriorate. AUC scoring sometimes failed for the cross-fold evaluation, re-

sulting from an exception within scikit-survival probably caused by edge cases where the true 

positive counts are zero, as their corresponding calculation throws the exception. Future re-

search questions might include how censoring patterns and dependent censorings impact the 

scoring methods. 

4.4 Model Inspection 

Depending on the model architecture, different levels of inspection are possible for each 

model. Due to time constraints, the evaluated parameter spaces can be considered limited 

overall. In the field of deep learning, successive halving grid searches have shown potential 

for a faster optimization while sampling from parameter distributions (Li et al., 2018). They 

incrementally assign resources to promising model candidates while at the same time using 

resources to explore the parameter space further. Over time, less resources are spent on ex-

ploration and more resources on the best candidates. For models using a gradient descent 

optimization, the resources are iterations. For other model types, instances, or number of 

contained estimators can be used as resources. Halving grid searches with instances could be 

applied to survival models. However, a minimum number of subjects across the time range 
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needs to be provided. The estimation of a minimum sample size might also be used for other 

model hyperparameters like subsampling and minimum number of subjects in tree leaves.  

During follow-up visits, time varying features are measured. There are further adaptions of 

models to incorporate these (Zhang et al., 2018) and they could improve prediction power, 

especially over longer time ranges.  

Only a simple missing value imputation was used. With caching of intermediate results during 

optimization, more advanced methods like the MissForest (Stekhoven & Buhlmann, 2012) 

method might improve results at a low computational cost.  

4.4.1 AFT Modelling with IPCW and Ridge Regression 

The models based on the class “IPCRidge” showed worse performance than the Kaplan-Meier 

model “RCoxphNull” with C-index scores below 0.5. This is caused by the scikit-survival model 

not correctly communicating the property that some models return prediction scores on the 

time and not the risk scale when they are part of a pipeline6. The same bug affected the gra-

dient boosting model with the ‘IPCWLS’ error. It would also have affected survival support 

vector machines, where the rank target ratio would not have been set to 1, but these config-

urations were not tested in this project. The “IPCRidge” model and hyperparameter optimiza-

tion was retrained on the EE target with a workaround against the library bug. 

The best model with this workaround achieves an average C-index score across the test-folds 

of 0.55 and dimension reduction using feature agglomeration with 128 features and the small-

est alpha tested of 0.002479. An explanation of the low performance compared to the AFT 

survival regression might be the use of the IPCW, as it discards censored subjects and their 

feature values entirely. For further research, IPCW might be evaluated for different censoring 

patterns. 

4.4.2 AFT Survival Regression 

The survival regression with different residual distributions was implemented in “RSurvreg”. 

All selected models for the targets except the EE target used the PCA dimension reduction 

with 128 components. The EE target AFT survival regression model used the feature agglom-

eration with 256 clusters. The feature agglomeration with 256 clusters behaves like no feature 

reduction, as most clusters will contain 1 feature.  For the exact date targets (FE, DE) and 

follow-up target for patient death (DF) the best performing distribution family was the 

 
6 This issue is tracked here: https://github.com/sebp/scikit-survival/issues/324  
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lognormal distribution. The best model from this class on the EE target used an exponential 

distribution and for the FF target a Weibull distribution was chosen. 

Predicted survival functions for the “RSurvreg” class of models are made by using the quantile 

function of the logarithmic residual distribution together with the linear predictor. The sur-

vival function therefore is not directly defined for time points, but for a survival fraction where 

a time can be defined, when this fraction would be reached.  

As can be seen in Figure 23, for the exact date graft failure target FE, an immediate drop off 

to an almost constant level is predicted. The targets DE and EE share a similar starting behavior 

but deviate after the first year. For the entire three years the DF and FF target prediction fol-

low the same line. Even though targets behaved similar, they did not necessarily share the 

distribution family. The distributions are scaled to match the data and different distributions 

may show similar behavior when scaled correctly. 

In the following figure the predicted survival functions for each subject constructed by taking 

the mean across the entire set of subjects used for each target are shown. This plot has been 

limited to 25 years of predictions.  The gray line shows the three-year-mark. 

 
Figure 23 Prediction from the selected linear AFT models with different residual distributions 
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4.4.3 Cox Regression 

On all targets except the graft failure follow-up target, the best performing preprocessing was 

the PCA with 256 components, the highest number of components tested. The models prof-

ited from the higher availability of data and as suggested by the explained variance plot, with 

less components too much variance is lost. The Cox regression appears to need the PCA trans-

formation as compared to the feature agglomeration with 256 clusters, which mainly uses all 

features directly.  For the FF target, the best performing model was the PCA with 128 compo-

nents. On the folds, mean AUC scoring failed internally in scikit-learn for this configuration, 

but over the test data the mean AUC could be calculated. This could have been caused by the 

late occurrence of the first failures and the time ranges being estimated from the entire train-

ing partition, as the training folds are not available during scoring and the entire training par-

tition giving a time range, for which scoring with the AUC is not possible. The Cox Regression 

uses the 𝑥"𝛽 results as the risk scores, which as previously mentioned are the logarithmic ratio 

between the hazard of the subject 𝑖 and the baseline. Because each cumulative hazard func-

tion and survival function are scaled by this risk score, there is almost no difference between 

the AUC scores from the risk score and the cumulative hazard function. The exception from 

this is the constant start of the FF target. This could again be caused by differences in the 

training and testing partition on where the first events occur. The baseline hazard and survival 

function on the other hand can be defined at points before the first subject in the test parti-

tion. 

When looking at the baseline survival functions for the Cox regression model, it appears that 

the baseline model for the DF target is not following the follow-up structure. Its coefficients 

however are larger compared to the other models, leading to stronger scaling of the survival 

baseline function. This is caused by it being the only model which only uses 128 components 

for the PCA instead of 256. The baseline in the Cox regression by scikit-learn in “CoxPHSurviv-

alAnalysis” is estimated for the features being the mean. 

For the following figure the baseline survival functions for the best performing Cox regression 

models are shown on all targets (a) and the predicted survival function for a random subject 

from the dataset (b). 
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Figure 24 Baseline survival functions and random selected prediction for the best Cox regression models 

The Cox Regression with elastic net penalties shows performance very close to the unmodified 

Cox regression. Shrinkage has the goal to reduce overfitting when applied with the right in-

tensity, while too much shrinkage leads to a worse fitting mean model equivalent to the 

Kaplan-Meier null model. Too little shrinkage would lead to a Cox regression model behaving 

in the same way as a Cox regression model with no shrinkage. The results suggest this might 

be the case. 

For the “CoxnetSurvivalAnalysis” models, 256 component PCA was selected for both patient 

death targets with a L1 ratio parameter of 0.1 and 0.4 for DE and DF, respectively. No dimen-

sion reduction was selected for the ET sourced follow-up data and a L1 ratio of one. The graft 

failure target with exact dates FE used feature agglomeration with 256 clusters and a L1 ratio 

of 0.7, while the graft failure target with follow-up dates FF again used a PCA with 128 com-

ponents and a L1 ratio of 0.1. With L1 ratio of zero a L2 shrinkage is used and with the L1 ratio 

set to one, a L1 ratio is used. The testing of the values 0, 0.4, 0.7, and 1 is reasonable as they 

test enough different combinations of the different shrinkage methods.  
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Automatic selection of the alpha value as described is not implemented in the scikit-survival 

implementation. It uses the latest alpha in the solution path which results in the selection of 

the smallest alpha determined by the algorithm. This leads to the same behavior as having 

almost no shrinkage. The selected L1 ratios therefore also do not influence performance as 

almost no shrinkage is applied. This model should have a hyperparameter which refers to the 

alpha position, so that each possible value can be tested at a hyperparameter optimization or 

the described leave-one-out estimate for scoring. An alternative would be to determine the 

regularization path before hyperparameter optimization and evaluate each option, like post-

pruning trees. While the following selection of the parameters in Table 7 would be invalid, as 

it is information leakage, the best alpha values selected on the test partition are only slightly 

better compared to the last value, which was used.  

In the following table, the results from the new selected alphas are shown for the Cox regres-

sion models with elastic net penalties. It is important to note, while this selection of a hyperpa-

rameter overestimates its performance, but it was done to illustrate the effect of the chosen 

alpha. 
Table 8 Performance of the Cox Regression models with Elastic Net penalties when choosing a new alpha 

Target Prepro-

cessing 

Compo-

nents / 

Clusters 

L1 Ratio Alpha 

Used 

C-Index Best performing 

Alpha on test par-

tition 

New C-index 

FE Feature 

Agg. 

256 0.7 0.0002 0.73 0.006 0.75 

FF PCA 128 0.1 0.001 0.72 0.010 0.72 

DE PCA 256 0.1 0.0007 0.75 0.011 0.76 

DF PCA 256 0.4 0.0001 0.69 0.007 0.70 

EE None  1.0 0.0002 0.69 0.004 0.69 

 

While the effect of the alpha appears low, the chosen hyperparameter might have been dif-

ferent if the best alphas would have been used for each configuration.   

4.4.4 Survival Trees 

The survival trees showed performance only slightly better than the Kaplan-Meier estimator. 

This suggests that small trees with few nodes were selected whose estimates are close to the 

Kaplan-Meier estimator with all training instances. For the graft failure targets (FF, FE), the 
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decision tree used no dimension reduction, while all other targets used feature agglomeration 

with 128 clusters. The suspicion that small trees were used is confirmed as all ranger survival 

tree models were selected to use a maximum depth of 3. They provided the best performance 

during the grid search. 

The average C-index with one standard error in each direction on the test folds for the selected 

dimension reduction as previously listed is shown for each tested maximum tree depth is plot-

ted for the next figure. 

 
Figure 25 Average test fold performance for each tested depth with the selected dimension reduction 

Trees with higher depth tend to overfit, while shallower trees tend to underfit. For survival 

trees an additional constraint to consider is that the training instances placed in the leaves are 

used to construct a Kaplan-Meier estimator which requires a certain number of subjects. In-

stead of using the tree depths, the minimum number of instances in the leaves might be a 

better parameter to optimize for survival trees. For further optimization of survival trees, the 

performance of trees with depths between 3 and 26 might be interesting. 

Because the trees for graft failure targets used no dimension reduction, the used features can 

be directly extracted from the tree structure. For the FE target, the recipient age, donor age, 

warm ischemia time, relative discharge date, quality assignment of the kidney, the donor 
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partial pressure in their blood, and an internal ordinal identifier used for joining ET and IQTIG 

data was used. The relative discharge date and the identifier, which was not deleted from the 

dataset, could be information leakage, as a long stay shortly after transplantation suggests 

immediate failure and the ordinal identifier may indicate order in the data files and therefore 

failure times. For the FF target, the kidney quality, presence of HIV antigens in the recipient, 

the missing value indicator for the heart state of the donor, alkaline phosphatase activity for 

the donor, the positive end-expiratory pressure (PEEP), general quality assignment of donor 

health and donor blood hemoglobin was used. Here the missing value indicator for the heart 

state of the donor could be an information leaking feature. While present through different 

features, the oxygen supply of the donor’s body and the kidney health appear as useful fea-

tures. 

4.4.5 Survival Random Forest 

For survival random forests, only the patient death targets were selected to use a dimension 

reduction with a feature agglomeration with 256 clusters. Like the previously discussed mod-

els, AUC scoring on the folds of FF failed again. The feature agglomeration with 256 clusters 

mostly produces clusters with a single feature, therefore it is close to having no reduction. All 

forests used the highest number tested of 50 estimators. This is a small number of estimators; 

the default is 100 and usually random forests are trained with more estimators. Just like the 

single trees, for the graft failure FF targets and the exact death DE target a tree depth of three 

was selected. The death follow-up target DF used a maximum depth of 26 and the target EE a 

maximum depth of 50. It is important to note, that each node considered only a subsample of 

features. This may lead to bigger trees being selected in order to use certain features to 

achieve better performance. When counting the used features across the trees all forests with 

a tree depth of three used slightly more than 100 features, while the death exact date target 

and ET sourced follow-up target use slightly above 250 features. While they show no prob-

lematic overestimated performance on the test partition and tests folds, they are the only 

configurations where the model trained on the entire training partitions shows an almost per-

fect score on the training partition. 

The best configurations retrained on the train partition are shown in the following table for 

the survival forest. 
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Table 9 Perfomance of the survival random forest models 

Target C-Index 
Test 

C-Index 
Train 

Used Fea-
tures 

Dimension 
Reduction 

Clusters Max 
Depth 

Trees 

Graft Failure Exact Date (FE) 0.75 0.76 103 None 
 

3 50 
Graft Failure Follow-Up (FF) 0.73 0.79 106 None 

 
3 50 

Patient Death Exact Date (DE) 0.78 0.98 252 Feature Ag-
glomeration 

256 26 50 

Patient Death Follow-Up (DF) 0.71 0.77 116 Feature Ag-
glomeration 

256 3 50 

ET sourced Follow-Up (EE) 0.73 0.95 253 None 
 

50 50 

4.4.6 Gradient Boosting 

As previously mentioned, due to a bug in scikit-survival the “IPCWLS” loss was incorrectly 

scored for the gradient boosted models. This leads to the selected configurations always using 

the Cox regression loss, where the prediction is on the risk scale. All selected pipeline candi-

dates either used no dimension reduction or Feature Agglomeration with 256 clusters, which 

again can be considered equivalent to no reduction. Like the random forests, they also used 

50 estimators. Overall, the internally trained regression trees used 210 to 225 features. For all 

gradient boosted models, the estimated training error suggests that it is almost perfectly fit-

ting to the training data. All candidates used the learning rate 1. Such a high learning rate 

would lead other model applications to heavily overfit the data.  

The best configurations retrained on the train partition are shown in the following table for 

the gradient boosting model. 

Table 10 Perfomance of the survival gradient boosting models 

Target C-Index 
Test 

C-Index 
Train 

Used Fea-
tures 

Dimension 
Reduction 

Clusters Learning 
rate 

Trees 

Graft Failure Exact Date (FE) 0.78 0.93 223 Feature 
Agglome-

ration 

256 1.0 50 

Graft Failure Follow-Up (FF) 0.77 0.94 224 None 
 

1.0 50 
Patient Death Exact Date (DE) 0.81 0.93 215 Feature 

Agglome-
ration 

256 1.0 50 

Patient Death Follow-Up (DF) 0.73 0.94 216 None 
 

1.0 50 
ET sourced Follow-Up (EE) 0.74 0.91 210 Feature 

Agglome-
ration 

256 1.0 50 

After applying the fix for the correct scoring of the IPCWLS loss to a new grid search on the EE 

target, the Cox regression-based loss again achieves better results with the same mean test 

fold score. With the fair scoring however, the best configuration for the IPCWLS loss achieves 
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a 0.67 C-index on average across the test folds with the 256-cluster feature agglomeration 

compared to the old results of 0.48 with a PCA with 128 components.   

4.4.7 Support Vector Machine 

The support vector machines used no dimension reduction for the ET sourced follow-up target 

EE. Feature agglomeration with 256 clusters was used for the exact date graft failure target FE 

and the patient death follow-up target DF. A PCA with 64 components was selected for the 

graft failure follow-up target and 256 components for the exact patient death date target DE. 

Two of the three tested alpha values were observed. The smallest tested value of 0.002479 

was chosen for the targets FF, DE and DF, while the largest value 0.606531 was used for the 

FE and EE target. More values should have been tested, as possible alpha values sometimes 

can also be larger than 1 or much smaller. The survival support vector machine showed similar 

performance to the Cox regression models and AFT regression models. With no kernel applied, 

a survival support vector machine has almost an identical model definition as a linear AFT 

model.  

4.5 Feature Importance 

To consider the results from a linear model and a non-linear model, the feature importance 

on the C-index for the Cox regression model and the gradient boosting model will be used to 

identify the most important features for the targets on the test partitions. An important fea-

ture will be defined as decreasing the C-index by at least 0.01 on average when the feature is 

shuffled. 

For the Cox regression on the FE target, important features were the number of any organ 

transplants the patient ever had, the discharge date from the hospital and the age of the do-

nor. The number of transplants could be higher for patients who received a transplant, and 

the discharge date may indicate whether there were early problems with the transplantations. 

These two features should be removed for future analysis. The corresponding gradient boost-

ing model had 7 important features. They included the allowed maximum donor age allowed 

for a recipient, the urine production volume of the transplant, the cold ischemia time, and 

whether the recipient has German citizenship. This model also used the discharge date and 

the total number of transplants in addition to the previously mentioned ordinal identifier. 

These features may leak information to the model.  The other features appear to be clinically 

important. For the FF target, no very important features could be identified for the Cox 
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regression and for the corresponding gradient boosting model, the discharge date was identi-

fied. 

On the DE target the Cox regression model used the donor age, the discharge date, the num-

ber of previous transplantations, whether the left kidney of the donor was legally allowed to 

be transplanted, the numeric representation of the hospital discharge code, and the age of 

the recipient.  The gradient boosting model on the other hand used the warm and cold ische-

mia times, the ordinal id, the discharge date, the number of any transplants, the recipient age, 

and the discharge reason code as its most important features. For the Cox regression on the 

DF target 255 features were identified as important. This might be connected to the follow-

up pattern not being visible in the baseline survival functions. It is also using larger linear pre-

dictor values compared to the other models.  The gradient boosting model identified the age, 

the cold ischemia time, the discharge date, and the recipient age as important features. 

For the EE target the Cox regression identified 262 important features. The reason might be 

similar to the DF target, where large linear predictors are present. For this target, the gradient 

boosting model identified the urine production during transplantation, the discharge date, the 

cold ischemia time, and the warm ischemia time as the most important features. 

5 Conclusion 

The goal of the research project was overall reached. Different models were trained and eval-

uated on the constructed targets and data from the transplantation registry. With more time 

invested in data preprocessing, model engineering, and model optimization better results 

might be possible. Some information leaking features were passed to the models. Leading to 

overestimated model performance. For future projects the features should be manually in-

spected more closely for more reliable results. 

Promising future research areas are the improvement of the data preprocessing pipeline as 

well as the reduction of bias in the estimates due to the censoring patterns in the different 

targets. 
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6 Appendix 

The following table lists the tested hyperparameters. 

Table 11 Tested hyperparameters 

Parameter Values 

Dimension Reduction Feature agglomeration, PCA, None 

Clusters/Components for 

Dimension Reduction 

64, 128, 256 

Residual Distribution for 

Linear AFT Model 

Weibull, exponential, lognormal 

Alpha Value for IPCW Ridge 

Model and Survival SVM 

0.00247875, 0.01550385, 0.09697197, 0.60653066 

Ensemble Members for 

Random Forest and Gradi-

ent Boosting 

10, 25, 50 

Tree Depth for Random For-

est and Survival Tree 

3, 26, 50 

Loss Functions for Gradient 

Boosting 

Partial Likelihood, IPCW weighted squared error 

Learning Rate for Gradient 

Boosting 

1.0e-05, 3.16227766e-03, 1 

L1 Ratios for Cox Regression 

with elastic net penalty 

0.1, 0.4, 0.7, 1 
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In the following table the prediction performance of the best configuration for each model and target on the test partition is listed. 
 
Table 12 Prediction performance on the test partitions 

Target Model Class C-In-
dex 

IPCW C-In-
dex 

Integrated 
Brier Error 

Mean C,D 
AUC 

Min. Test 
Time 

Max. 
Test 
Time 

Test 
Rows 

Test 
Rows 
Used 

EE GradientBoostingSurvivalAnalysis 0,74 0,72 0,155 0,77 1 3653,5 3966 3943 
EE RangerForestSurvival 0,73 0,70 0,159 0,74 1 3653,5 3966 3943 
EE RSurvreg 0,69 0,65 0,174 0,68 1 3653,5 3966 3943 
EE FastSurvivalSVM 0,69 0,64 

 
0,68 1 3653,5 3966 3943 

EE CoxnetSurvivalAnalysis 0,69 0,65 0,167 0,69 1 3653,5 3966 3943 
EE CoxPHSurvivalAnalysis 0,69 0,65 0,167 0,69 1 3653,5 3966 3943 
EE RangerTreeSurvival 0,56 0,56 0,182 0,56 1 3653,5 3966 3943 
EE RCoxphNull 0,50 0,50 0,181 0,50 1 3653,5 3966 3943 
EE IPCRidge 0,47 0,49 

 
0,42 1 3653,5 3966 3943 

FE GradientBoostingSurvivalAnalysis 0,78 0,78 0,094 0,80 1 1126,75 5456 4147 
FE RangerForestSurvival 0,75 0,75 0,110 0,77 1 1126,75 5456 4147 
FE CoxnetSurvivalAnalysis 0,73 0,73 0,102 0,75 1 1126,75 5456 4147 
FE FastSurvivalSVM 0,73 0,73 

 
0,75 1 1126,75 5456 4147 

FE CoxPHSurvivalAnalysis 0,73 0,72 0,102 0,75 1 1126,75 5456 4147 
FE RSurvreg 0,71 0,71 0,105 0,73 1 1126,75 5456 4147 
FE RangerTreeSurvival 0,61 0,61 0,112 0,61 1 1126,75 5456 4147 
FE RCoxphNull 0,50 0,50 0,118 0,50 1 1126,75 5456 4147 
FE IPCRidge 0,47 0,48 

 
0,46 1 1126,75 5456 4147 

FF GradientBoostingSurvivalAnalysis 0,77 0,78 0,032 0,79 41 1126,75 5087 4010 
FF RangerForestSurvival 0,73 0,75 0,032 0,78 41 1126,75 5087 4010 
FF CoxnetSurvivalAnalysis 0,72 0,73 0,032 0,75 41 1126,75 5087 4010 
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FF RSurvreg 0,71 0,72 0,032 0,74 41 1126,75 5087 4010 
FF CoxPHSurvivalAnalysis 0,70 0,71 0,032 0,73 41 1126,75 5087 4010 
FF FastSurvivalSVM 0,69 0,70 

 
0,72 41 1126,75 5087 4010 

FF RangerTreeSurvival 0,58 0,59 0,032 0,60 41 1126,75 5087 4010 
FF RCoxphNull 0,50 0,50 0,034 0,50 41 1126,75 5087 4010 
FF IPCRidge 0,46 0,47 

 
0,45 41 1126,75 5087 4010 

DE GradientBoostingSurvivalAnalysis 0,81 0,80 0,074 0,84 1 1126,75 5566 3946 
DE RangerForestSurvival 0,78 0,77 0,076 0,82 1 1126,75 5566 3946 
DE FastSurvivalSVM 0,76 0,75 

 
0,78 1 1126,75 5566 3946 

DE CoxnetSurvivalAnalysis 0,75 0,75 0,083 0,77 1 1126,75 5566 3946 
DE CoxPHSurvivalAnalysis 0,75 0,75 0,083 0,77 1 1126,75 5566 3946 
DE RSurvreg 0,73 0,73 0,085 0,76 1 1126,75 5566 3946 
DE RangerTreeSurvival 0,51 0,51 0,095 0,52 1 1126,75 5566 3946 
DE RCoxphNull 0,50 0,50 0,094 0,50 1 1126,75 5566 3946 
DE IPCRidge 0,48 0,49 

 
0,45 1 1126,75 5566 3946 

DF GradientBoostingSurvivalAnalysis 0,73 0,73 0,038 0,74 19 1126,75 5185 4086 
DF RangerForestSurvival 0,71 0,71 0,038 0,73 19 1126,75 5185 4086 
DF CoxnetSurvivalAnalysis 0,69 0,68 0,038 0,71 19 1126,75 5185 4086 
DF CoxPHSurvivalAnalysis 0,69 0,68 0,038 0,71 19 1126,75 5185 4086 
DF RSurvreg 0,68 0,67 0,037 0,71 19 1126,75 5185 4086 
DF FastSurvivalSVM 0,68 0,67 

 
0,70 19 1126,75 5185 4086 

DF RangerTreeSurvival 0,50 0,50 0,039 0,50 19 1126,75 5185 4086 
DF RCoxphNull 0,50 0,50 0,039 0,50 19 1126,75 5185 4086 
DF IPCRidge 0,50 0,50 

 
0,47 19 1126,75 5185 4086 

 
  



 87 

The following table shows the best results for each target and model during the grid search. 
Table 13 Best grid search results 

Target Model Class Dimension 
Reduction 
Class 

Clusters 
/ Com-
ponents 

Used Hyperparameters Average 
Training 
Tim in s 

Std. of 
Training 
Times in 
s 

Average 
Test Fold 
C-Index 

Std. 
Test 
Fold C-
Index 

DE GradientBoostingSurvivalAnalysis Feature Ag-
glomeration 

256 n_estimators=50.0, learn-
ing_rate=1.0, loss=coxph 

34,1 0,1 0,79 0,00 

DE RangerForestSurvival Feature Ag-
glomeration 

256 max_depth=26.0, n_estima-
tors=50.0 

4,4 0,2 0,76 0,01 

DE FastSurvivalSVM PCA 256 alpha=0.0024787521766663 51,0 18,1 0,74 0,00 
DE CoxnetSurvivalAnalysis PCA 256 l1_ratio=0.1 1,3 0,0 0,73 0,01 
DE CoxPHSurvivalAnalysis PCA 256 

 
52,4 20,3 0,73 0,01 

DE RSurvreg PCA 128 dist=lognormal 0,9 0,0 0,72 0,01 
DE RangerTreeSurvival Feature Ag-

glomeration 
128 max_depth=3.0 0,8 0,1 0,61 0,01 

DE IPCRidge PCA 64 alpha=0.6065306597126334 0,2 0,0 0,46 0,02 
DF GradientBoostingSurvivalAnalysis 

  
n_estimators=50.0, learn-
ing_rate=1.0, loss=coxph 

28,7 0,1 0,73 0,02 

DF CoxnetSurvivalAnalysis PCA 256 l1_ratio=0.4 1,3 0,1 0,71 0,02 
DF RangerForestSurvival Feature Ag-

glomeration 
256 max_depth=3.0, n_estima-

tors=50.0 
0,8 0,0 0,71 0,02 

DF CoxPHSurvivalAnalysis PCA 256 
 

12,9 1,0 0,71 0,02 
DF FastSurvivalSVM Feature Ag-

glomeration 
256 alpha=0.0024787521766663 22,8 4,3 0,70 0,01 

DF RSurvreg PCA 128 dist=lognormal 0,9 0,0 0,70 0,03 
DF RangerTreeSurvival Feature Ag-

glomeration 
128 max_depth=3.0 0,8 0,1 0,59 0,03 
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DF IPCRidge PCA 128 alpha=0.0155038535990093 0,2 0,0 0,49 0,02 
EE GradientBoostingSurvivalAnalysis Feature Ag-

glomeration 
256 n_estimators=50.0, learn-

ing_rate=1.0, loss=coxph 
19,5 0,1 0,71 0,01 

EE RangerForestSurvival 
  

max_depth=50.0, n_estima-
tors=50.0 

12,3 0,7 0,70 0,01 

EE RSurvreg Feature Ag-
glomeration 

256 dist=exponential 4,6 0,0 0,68 0,01 

EE CoxnetSurvivalAnalysis 
  

l1_ratio=1.0 1,4 0,1 0,67 0,01 
EE FastSurvivalSVM 

  
alpha=0.6065306597126334 22,5 10,3 0,67 0,01 

EE CoxPHSurvivalAnalysis PCA 256 
 

32,7 28,0 0,67 0,01 
EE RangerTreeSurvival Feature Ag-

glomeration 
128 max_depth=3.0 0,8 0,1 0,61 0,04 

EE IPCRidge Feature Ag-
glomeration 

64 alpha=0.6065306597126334 0,1 0,0 0,47 0,02 

FE GradientBoostingSurvivalAnalysis Feature Ag-
glomeration 

256 n_estimators=50.0, learn-
ing_rate=1.0, loss=coxph 

32,4 0,1 0,76 0,01 

FE RangerForestSurvival 
  

max_depth=3.0, n_estima-
tors=50.0 

1,2 0,1 0,75 0,02 

FE CoxnetSurvivalAnalysis Feature Ag-
glomeration 

256 l1_ratio=0.7 1,4 0,1 0,72 0,01 

FE FastSurvivalSVM Feature Ag-
glomeration 

256 alpha=0.6065306597126334 43,4 2,9 0,72 0,01 

FE CoxPHSurvivalAnalysis PCA 256 
 

32,9 24,5 0,71 0,01 
FE RSurvreg PCA 128 dist=lognormal 0,9 0,1 0,70 0,01 
FE RangerTreeSurvival 

  
max_depth=3.0 0,3 0,0 0,62 0,03 

FE IPCRidge PCA 64 alpha=0.6065306597126334 0,2 0,0 0,50 0,02 
FF GradientBoostingSurvivalAnalysis 

  
n_estimators=50.0, learn-
ing_rate=1.0, loss=coxph 

27,7 0,1 0,74 0,01 
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FF RangerForestSurvival 
  

max_depth=3.0, n_estima-
tors=50.0 

0,8 0,1 0,73 0,01 

FF RSurvreg PCA 128 dist=weibull 1,4 0,2 0,70 0,01 
FF CoxnetSurvivalAnalysis PCA 128 l1_ratio=0.1 1,5 0,8 0,70 0,01 
FF CoxPHSurvivalAnalysis PCA 128 

 
2,2 0,3 0,70 0,01 

FF FastSurvivalSVM PCA 64 alpha=0.0024787521766663 3,5 0,7 0,70 0,01 
FF RangerTreeSurvival 

  
max_depth=3.0 0,3 0,0 0,65 0,04 

FF IPCRidge PCA 256 alpha=0.096971967864405 0,2 0,0 0,48 0,02 
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