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A B S T R A C T

objective : Recent advancements in the few-shot prompting field have
shown considerable progress in scenarios with limited labeled data. How-
ever, the effectiveness of few-shot prompting methods significantly depends
on the choice of in-context demonstrations. Various techniques, such as Auto-
CoT, Active-CoT, and Retrieval-CoT have demonstrated their effectiveness,
emphasizing diversity (Auto-CoT), uncertainty (Active-CoT), and similarity
with the test example (Retrieval-CoT). Notably, while some methods, like
Random-CoT and Auto-CoT, utilize labels generated by a large language
model, Active-CoT relies on human-generated labels. This thesis aims to
evaluate and compare several prompting methods using closed-source and
open-source models in arithmetic reasoning tasks under both labeling sce-
narios: labels generated by GPT-3.5-turbo and human-generated labels. It
also aims to develop new prompting methods by combining diversity, un-
certainty, or similarity with the test example.

results : In experiments on GSM8K using GPT-3.5-turbo, Diverse-CoT,
Retrieval-CoT, and Active-CoT outperform Random-CoT by margins of 1.1%,
1.7%, and 3.5%, respectively. Similarly, in evaluations on AQUA, Diverse-
CoT and Active-CoT surpass the Random approach by margins of 3.9% and
2.7%, respectively. These results are consistent when GPT-3.5-turbo labels the
questions. However, when human-generated labels are used, these methods
achieve performance comparable to or even lower than Random baseline.

Additionally, I propose new methods: Diverse-Active-KMeansPlusPlus-
CoT, which combines diversity and uncertainty, and Diverse-Active-KMeans
PlusPlus-Retrieval-CoT, integrating similarity with the test question in the
Diverse-Active-KMeansPlusPlus-CoT method. These new methods outper-
form the Random baseline by 1.9% and 2.5%, respectively, on GSM8K when
using GPT-3.5-turbo-generated labels. On AQUA, Diverse-Active-KMeans
PlusPlus-Retrieval-CoT surpasses Random by 3.3%.

Moreover, Falcon-40B-Instruct achieves 37.3% accuracy on GSM8K and
18.5% on AQUA, while Falcon-7B-Instruct achieves 5.4% on GSM8K and
11.4% on AQUA. This emphasizes that larger models perform better in a few-
shot setting but exhibit inferior performance compared to GPT-3.5-turbo,
with margins exceeding 30%. The code is available at https://github.com/
Lori10/Master-Thesis-Few-Shot-CoT-Prompting-LLM.

https://github.com/Lori10/Master-Thesis-Few-Shot-CoT-Prompting-LLM
https://github.com/Lori10/Master-Thesis-Few-Shot-CoT-Prompting-LLM


Z U S A M M E N FA S S U N G

ziel : Aktuelle Entwicklungen im Bereich des Few-Shot Prompting haben
deutliche Fortschritte in Szenarien mit begrenzten gelabelten Daten gezeigt.
Die Effektivität von Few-Shot Prompting-Methoden hängt jedoch wesent-
lich von der Wahl der kontextbezogenen Beispiele ab. Verschiedene Tech-
niken wie Auto-CoT, Active-CoT und Retrieval-CoT haben ihre Wirksam-
keit unter Beweis gestellt, indem sie die Diversität (Auto-CoT), die Unsicher-
heit (Active-CoT) und die Ähnlichkeit mit dem Testbeispiel (Retrieval-CoT)
hervorheben. Während einige Methoden, wie z.B. Random-CoT und Auto-
CoT, von einem großen Sprachmodell generierte Labels verwenden, basiert
Active-CoT auf von Menschen erstellten Labels. Ziel dieser Arbeit ist es,
verschiedene Prompting-Methoden zu evaluieren und zu vergleichen, die
Closed-Source- und Open-Source-Modelle in arithmetischen Denkaufgaben
verwenden, und zwar unter beiden Labeling-Szenarien: Labels, die von GPT-
3.5-turbo generiert werden, und von Menschen erzeugte Labels. Außerdem
sollen neue Prompting-Methoden entwickelt werden, die Diversität, Unsi-
cherheit oder Ähnlichkeit mit dem Testbeispiel kombinieren.

ergebnisse : In Experimenten auf GSM8K mit GPT-3.5-Turbo übertref-
fen Diverse-CoT, Retrieval-CoT und Active-CoT den Random-CoT-Ansatz
mit einer Differenz von 1,1%, 1,7% bzw. 3,5%. In ähnlicher Weise übertreffen
Diverse-CoT und Active-CoT bei den AQUA-Evaluierungen den Random-
Ansatz mit einer Differenz von 3,9% bzw. 2,7%. Diese Ergebnisse sind kon-
sistent, wenn GPT-3.5-turbo die Fragen labelt. Werden jedoch von Menschen
erstellte Labels verwendet, erreichen diese Methoden eine Performance, die
mit der des Random-Ansatzes vergleichbar oder sogar niedriger ist.

Zusätzlich schlage ich neue Methoden vor: Diverse-Active-KMeansPlusPlus-
CoT, das Diversität und Unsicherheit kombiniert, und Diverse-Active-KMeans
PlusPlus-Retrieval-CoT, das die Ähnlichkeit mit der Testfrage in die Diverse-
Active-KMeansPlusPlus-CoT-Methode integriert. Diese neuen Methoden über-
treffen die Random-Baseline auf GSM8K um 1,9% bzw. 2,5%, wenn sie mit
GPT-3.5-Turbo-generierten Labels eingesetzt werden. Auf AQUA übertrifft
Diverse-Active-KMeansPlusPlus-Retrieval-CoT die Random-Methode um 3,3%.

Außerdem erreicht Falcon-40B-Instruct eine Genauigkeit von 37,3% bei
GSM8K und 18,5% bei AQUA, während Falcon-7B-Instruct 5,4% bei GSM8K
und 11,4% bei AQUA erreicht. Dies betont, dass größere Modelle in einer
Few-Shot Situation besser abschneiden, aber im Vergleich zu GPT-3.5-turbo
eine schlechtere Performance zeigen, mit Abweichungen von über 30%. Der
Code ist verfügbar unter https://github.com/Lori10/Master-Thesis-Few-
Shot-CoT-Prompting-LLM.

https://github.com/Lori10/Master-Thesis-Few-
Shot-CoT-Prompting-LLM
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1
I N T R O D U C T I O N

1.1 motivation

Large Language Models (LLMs) are deep learning models designed to un-
derstand and manipulate human language. They have achieved advanced
performance in Natural Langugage Processing (NLP) tasks and significantly
impacted artificial intelligence. LLMs are trained through a two-step process:
pre-training and fine-tuning. Pre-training allows models to learn general lan-
guage understanding capabilities and then adapt to specific tasks during
fine-tuning. The LLM is fine-tuned on a smaller, task-specific labeled dataset,
using supervised learning techniques to update the model’s weights. This
process is used for tasks like sentiment analysis, question-answering, and
named entity recognition [49].

In NLP, the standard fine-tuning approach requires a large dataset and
computational resources. To overcome these drawbacks, there are several op-
tions like Parameter-Efficient-Fine Tuning (PEFT) or few-shot prompting (also
referred to as ICL). PEFT, which includes Low-Rank Adaptation of Large Lan-
guage Models (LoRA), Quantized LoRA (QLoRA), is a long-standing paradigm
in deep learning that aims to adapt large-scale pre-trained models to vari-
ous downstream tasks by modifying as few parameters as possible. However,
with PEFT we must optimize the model’s parameter and need computational
resources [27].

However, to avoid the entire process of optimizing and updating the model’s
weights few-shot prompting techniques were introduced. Few-shot prompt-
ing techniques have gained popularity due to their effectiveness in scenar-
ios where labeled data is limited and annotation is time-consuming. These
methods process a small number of labeled training examples and adapt
pre-trained language models for specific tasks. Some LLMs, like Generative
Pre-trained Transformer (GPT)-3, have demonstrated the ability to perform
few-shot learning, enabling more efficient transfer learning and reducing the
need for extensive fine-tuning [6].

1.2 objective

Few-shot prompting is a technique that leverages the capabilities of LLMs

to perform specific tasks by providing a few examples and instructions re-
lated to a specific task. This approach has demonstrated promising results
in improving LLM performance on complex tasks that require reasoning and
step-by-step thinking. Given a dataset, there are several techniques for select-
ing in-context demonstrations like Random-CoT [63], Auto-CoT [66], Active-
CoT [14], Retrieval-CoT [66]. Random-CoT is straightforward approach for
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randomly selecting demonstrations to prompt a LLM for unseen data. On
the other hand, Retrieval-CoT involves the selection of semantically simi-
lar in-context examples for a given test example based on cosine similarity.
[32] demonstrated that this retrieval-based prompt selection consistently out-
performs the random baseline. However, when an LLM is used to generate
answers, there is a risk of obtaining incorrect demonstrations (i.e., demon-
strations with incorrect answers), which, in turn, in case of Retrieval-CoT,
may lead the LLM to replicate similar mistakes when reasoning for the test
question. This is known as "misleading by similarity" [66]. [66] demonstrated
that "misleading by similarity" is a contributing factor to the inferior per-
formance of Retrieval-CoT, and diversity can help mitigate this issue by
increasing the likelihood of selecting correct demonstrations by clustering
the questions and sampling them from each cluster. Active-CoT is a recent
method that samples examples about which the LLM is most uncertain. As
both diversity and uncertainty are proven to be useful and complementary
for selecting the most informative questions, [14] consider the combination
of them as an important future direction. Additionally, it’s important to note
that Auto-CoT and Active-CoT were evaluated differently in previous stud-
ies, with Auto-CoT using labels generated by LLM and Active-CoT utilizing
human-generated labels. Moreover, open-source models typically require
fine-tuning for achieving optimal performance on a downstream task [36].
However, they can also be utilized in a few-shot setting. In the landscape of
advanced LLMs, GPT-4 stands out as one of the most capable models, show-
casing superior performance compared to GPT-3.5-turbo in a wide variety
of tasks. With this context in mind, these key research questions arise:

1. How can we effectively combine diversity and uncertainty to identify
and select the most informative examples from a dataset?

2. How do various few-shot prompting methods perform on reasoning
tasks compared to Random-CoT under different labeling scenarios,
and how does the choice of labeling affect their few-shot performance?

3. Can few-shot prompting with GPT-3.5-turbo outperform GPT-4 in zero-
shot settings for reasoning tasks?

4. How do open-source models such as Falcon perform on reasoning
tasks when employed in few-shot prompting scenarios and how does
the model size influence the performance?

1.3 structure

This thesis is structured into five chapters, each serving a specific purpose in
exploring LLMs and few-shot prompting. Below is a comprehensive overview
of the content and objectives covered in each chapter. The first chapter pro-
vides motivation, objectives and structure of the thesis.

In the second chapter, the methodology section provides a historical con-
text on the evolution of LLMs in NLP, incuding the pre-transformer and
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transformer area. Moreover, it provides a more detailled overview of how
GPT-based LLMs are evaluated and improved over time, examining Trans-
former architecture and various LLMs, including Base and Instruction-Tuned
LLMs, and highlighting their distinctions. Additionally, this section provides
a brief overview of several transformer-based task-adaption methods, the ad-
vantages and limitations of ICL. Furthermore, it explores several prompting
methods, covering Random-CoT, Auto-CoT, Active-CoT, Retrieval-CoT.

In the third chapter, the proposed prompting methods are introduced and
thoroughly explained, providing detailed insights into their mechanisms.

The fourth chapter presents the experimental setup, covering aspects such
as data, metrics, model choices, baselines, results, and comparisons with
prior work. It offers comprehensive comparisons of model performance, in-
cluding detailed evaluations of prompting methods under various scenarios,
comparisons among different models, and additional analyses addressing
the influence of uncertainty on few-shot performance.

The fifth chapter outlines potential improvements for future research and
the key findings and contributions of the thesis are summarized, providing
a concise overview of the research outcomes.



2
M E T H O D O L O G Y

2.1 history and evolution of language models

Language models have developed over time due to advancements in NLP,
machine learning, and computing resources. This section offers an overview
of key milestones and breakthroughs in the evolution of LLMs.

2.1.1 Pre-Transformer Era

• Eliza: One of the earliest NLP programs, Eliza was a simple chatbot
designed by Joseph Weizenbaum to mimic a psychotherapist. It used
patterns to generate responses, laying the foundation for future conver-
sational AI systems [64].

• Statistical Language Models: Statistical language models, like n-grams,
predicted word probability based on preceding words. While used in
speech recognition and translation, they struggled with understanding
long-range dependencies in text [67].

• Neural Language Models: Neural language models, including feed-
forward and Recurrent Neural Networks (RNN), emerged as an alter-
native to statistical model [67]. [5] introduced a feedforward neural
network for language modeling, while [34] popularized RNN-based
models.

• LSTM Models: Long Short-Term Memory (LSTM), introduced by [58],
solved RNN’s vanishing gradient problem. They were used in tasks
like machine translation and served as the foundation for several LLMs.

2.1.2 Transformer Era

The transformer model is a revolutionary architecture in the field of deep
learning. It differs from traditional models by completely forgoing recurrent
and convolutional layers. Instead, it harnesses the power of attention mecha-
nisms to compute contextualized embeddings, effectively addressing issues
associated with RNN. These issues include sequential computation, which
hinders parallelization and slows down training. In contrast, the transformer
is highly parallelizable, making it significantly faster to train [61].

• Transformer: [61] introduced the transformer architecture, replacing
recurrent layers with self-attention mechanisms. This innovation en-
abled more efficient and powerful LLMs, laying the foundation for mod-
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els like GPT, Bidirectional Encoder Representations from Transform-
ers (BERT), and T5.

• GPT: OpenAI released GPT, a unidirectional transformer model pre-
trained on a vast text corpus. GPT displayed impressive language gen-
eration capabilities, marking the start of a new LLM era [49].

• BERT: Google introduced BERT, using a masked language model to
enable bidirectional context representation. BERT achieved state-of-the-
art performance, revolutionizing NLP [13].

• BERT Variants: NLP saw significant advancements with the introduc-
tion of ALBERT, RoBERTa, DistilBERT, XLNet, XLM-RoBERTa, and
BART. These models introduced innovative techniques, such as lite
versions of BERT, optimizing hyperparameters and data size, and en-
hancing bidirectional dependencies. ALBERT introduced a lite version
of BERT with contextualized language representations, while RoBERTa
improved BERT by optimizing hyperparameters and data size. Distil-
BERT made large models more efficient for edge devices, while XLNet
achieved bidirectional dependencies by maximizing anticipated likeli-
hood over permutations. BART is a generalization of BERT and GPT,
using bidirectional encoding and left-to-right decoding [61].

• GPT-2: OpenAI released GPT-2, a more powerful version of GPT. GPT-
2 excelled in text generation, producing coherent content with minimal
prompting [50].

• GPT-3: GPT-3, a LLM with 175 billion parameters, was trained and
tested for few-shot prompting without gradient updates or fine-tuning.
It displayed strong performance in various NLP tasks but faced chal-
lenges in specific datasets [6].

• Instruction-Tuned LLMs: Instruction-Tuned LLMs are versatile and de-
signed to execute various tasks based on instructions [46]. Some promi-
nent Instruction-Tuned LLMs introduced in recent years include GPT-4,
ChatGPT, Claude, Anthropic’s next-generation AI assistant, ChatGLM
etc. These models are designed for different use cases and constraints
[67]. For instance, GPT-4, developed by OpenAI, delivers exceptional
performance across a wide array of tasks [44], while ChatGPT focuses
on text-based natural language conversations [3].

2.2 transformer architecture

2.2.1 Introduction

RNN, particularly LSTM and gated RNN, are widely used in sequence model-
ing and translation problems like language modeling and machine transla-
tion. However, their sequential nature prevents parallelization within train-
ing examples, which is critical at longer sequence lengths. Recent work has
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improved computational efficiency through factorization tricks and condi-
tional computation, but the fundamental constraint of sequential computa-
tion remains [61].

In contrast to RNNs, the Transformer is a model architecture that relies
entirely on an attention mechanism to draw global dependencies between in-
put and output, enabling parallelization. [61] reached state-of-the-art perfor-
mance in translation task after training a Transformer for as little as twelve
hours on eight P100 GPUs. Transformers are designed to process sequential
input data like natural language, perform tasks like text summarization and
translation, but process the entire input at once. The attention mechanism
allows the model to focus on the most relevant parts of the input for each
output, reducing training time and leading to the development of large pre-
trained systems such as BERT and GPT. Introduced by the Google Brain team
in 2017, Transformer architecture is increasingly becoming a model of choice
for NLP problems, replacing RNN models such as LSTM [61].

2.2.2 Model Architecture

Transformer has an encoder-decoder structure, with Nx identical encoder
layers and Nx identical decoder layers. The encoder’s role, on the left side
of the Transformer architecture, is to map an input sequence of symbol rep-
resentations to a sequence of continuous representations. These representa-
tions are subsequently passed on to the decoder, which generates an output
sequence of symbols one element at a time. The model is auto-regressive,
consuming previously generated symbols as additional input. The Trans-
former architecture uses stacked self-attention and point-wise, fully con-
nected layers for both the encoder and decoder components, avoiding re-
currence and convolutions for output generation. It has an extra layer of
positional encoding between the encoder and decoder stacks to take advan-
tage of the order of the sequence. In Figure 2.1, the architecture of this model
is depicted [61].

Encoder The Transformer encoder is a deep learning architecture consisting
of Nx identical layers where each word in the input sequence is trans-
lated one after the other by the Nx layers of the encoder, each using
its own weight and bias parameters. Each layer c with two sub-layers.
The first sublayer generates self-attention through a multi-head mech-
anism, while the second sublayer has a position-wise fully connected
feed-forward network. There is also a residual connection around each
sublayer and a normalization layer, which normalizes the sum calcu-
lated between the sublayer input and output [61].

Decoder The decoder is also constructed with a set of Nx identical layers.
While the encoder layers have two sublayers, each decoder layer incor-
porates one more sublayer, which takes the previous encoder output
and conducts multi-head attention. Like the encoder, the three sub-
components on the decoder side are equipped with residual connec-
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Figure 2.1: Transformer Architecture. Reprinted from [61]

tions that encircle them, and these are followed by a normalization
layer. Multi-head attention is facilitated by introducing a masking tech-
nique which ensures that the predictions for a word at a given position
depend only on known outputs from earlier words in the sequence
[61].

Attention Mechanism The attention mechanism aimed to solve the issue
of a bottleneck caused by using a fixed-length encoding vector. This
bottleneck problem limits the decoder’s access to the information in
the input, which becomes especially problematic when working with
long or complex sequences. In such cases, the dimensionality of the
representation is constrained to be the same for short as well as for
long sequences. Transformers use an attention mechanism to focus on
relevant parts of the input sequence when processing each word. This
mechanism assigns higher weight or importance to a certain element
of the input for each element of the output. It is part of a network’s
architecture and manages and quantifies the interdependence between
input and output elements. The self-attention mechanism helps iden-
tify relevant parts of the sequence by comparing positions using query,
key, and value matrices where keys and values represent the input
sequence and queries are vectors that represent the current element
of the output sequence. It computes the similarity between the query
and each key using a dot product or other similarity function. The re-
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sulting scores are normalized using a softmax function to produce the
attention weights. The attention weights are then used to weight the
values, which are summed to produce the context vector. The context
vector is then used to generate the output. An example of scaled dot-
product attention is shown in 2.2. This enables transformer models to
consider context and generate more accurate outputs than traditional
neural networks [61].

Embeddings The embedding layer in the architecture of a transformer is
responsible for converting the input tokens into a continuous vector
space representation. This layer is the first layer in the transformer
model and is used to create word embeddings that capture the seman-
tic meaning of words in a sentence. The embeddings layer maps input
tokens to a sequence of vectors (word embeddings) via an embedding
matrix which is learned during training [61].

Positional Encoding Transformer architecture doesn’t capture information
about the positions of words in a sequence. To address this, it makes
use of positional encodings, which are vectors that match the dimen-
sion of the input embeddings and are created using sine and cosine
functions with different frequencies. Afterward, they are simply com-
bined with the input embeddings to generate information about the
positions of words in the sequence [61].

Figure 2.2: Scaled Dot-Product Attention. Reprinted from [61]

Let’s explore a simple example of a forward pass in the Transformer archi-
tecture to better understand how information flows and how its components
are connected. In this example, as depicted in Figure 2.3, I focus on a trans-
lation task, which was one of the main goals of designing the Transformer.
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A French phrase will be translated into English. Initially, the input words
will be tokenized using the same tokenizer utilized during training. The to-
kens will be fed into the encoder, pass through the embedding layer before
it enters the encoder part. Then, after adding a positional encoding vector to
embeddings, the resulting output goes through a multi-head self-attention
layer. The outputs of the multi-headed attention layers are fed through a
feed-forward network to the output of the encoder, which results in a deep
representation of the input sequence. This representation is then integrated
into the decoder to influence its self-attention mechanisms. Next, an "start-
of-sequence" token is added to the decoder’s input, initiating the prediction
of the next token. This prediction relies on the contextual understanding pro-
vided by the encoder. The output from the decoder’s self-attention layers is
conveyed through the decoder’s feed-forward network and concludes with
a final softmax output layer, yielding the first token. This process repeats,
as the output token is looped back into the input to prompt the generation
of the next token, until the model produces the "end-of-sequence" token.
Consequently, the final sequence of tokens can be transformed into words,
resulting in the output. In this example, the output is, "I love machine learn-
ing." It’s important to know that there are various methods for utilizing the
output from the softmax layer to predict the next token, each affecting the
creativity of the generated text [19].

Figure 2.3: An illustration of the forward pass during a translation task within the
Transformer architecture. Retrieved from [10]
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2.3 evolution of gpt-based llms

Before investigating the evolution GPT-based LLMs, it’s imporant to gain an
understanding of the different types of LLMs built upon the Transformer ar-
chitecture. These LLMs can be broadly classified into three categories: encoder-
only models, encoder-decoder models, and decoder-only models, as illus-
trated in Figure 2.4 [10, 29]. GPT, which will be explored in detail since mod-
els used on these work are gpt-based, belongs to the category of decoder-
only models. Now, let’s highlight some key differences between these LLM

types to gain a better understanding of their distinct characteristics.

• Encoder-decoder Encoder-decoder models leverage both components
of the Transformer architecture, the encoder and decoder. These mod-
els frequently integrate pre-training objectives or structural adjustments
to improve their effectiveness across a range of NLP tasks. They per-
form well on sequence-to-sequence tasks such as translation, where
the input sequence and the output sequence can be different lengths.
They can also be scaled and trained to perform general text generation
tasks. Examples of encoder-decoder models include BART and T5 [10,
29].

• Encoder-only Encoder-only models can operate as sequence-to-sequence
models, but without further modifications, the input and output se-
quences are of equal length. Their usage is less common nowadays,
but by introducing additional layers to the architecture, we can train
encoder-only models to perform classification tasks, such as sentiment
analysis. BERT stands as an example of an encoder-only model, which
utilizes masked language and next-sentence pretraining objectives, to
learn bidirectional contextual representations of input texts. These rep-
resentations can then be used for fine-tuning for diverse downstream
tasks such as sentiment analysis, question-answering, and named en-
tity recognition [10, 29].

• Decoder-only Finally, decoder-only models utilize the decoder part
of the transformer architecture, often with certain architectural ad-
justments. These models are pre-trained using language modeling ob-
jective and are referred to as autoregressive models. This autoregres-
sive characteristic ensures that the model produces output tokens se-
quentially, utilizing previously generated tokens as context for gener-
ating the next token. In contrast to BERT, this leads to unidirectional
representations. However, decoder-only models are some of the most
commonly used today. Again, as they have scaled, their capabilities
have grown. These models can now generalize to most tasks. Popu-
lar decoder-only models include the GPT family of models, BLOOM,
Jurassic, LLaMA, and many more [10, 29].
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Figure 2.4: Illustration displaying three LLM architectures: Encoder-only, Decoder-
only, and Encoder-Decoder. Retrieved from [10]

2.3.1 Base LLMs

In this section, I explore the evolution of decoder-only models, with a spe-
cific focus on GPT-based models. It begins with the introduction of GPT
in 2018, marking the start of a new era in LLMs [49]. The path then leads
us through following iterations, including GPT-2 [50] and GPT-3 [6], where
advancements were made by training larger models on extensive datasets.
GPT, GPT-2, and GPT-3 fall under the category of Base LLMs, as they are de-
signed to predict the next word in a sequence. Additionally, I examine var-
ious other LLMs that have emerged, such as Falcon-40B-Instruct, Falcon-7B-
Instruct, LLMs within the GPT-3.5 family, including models like code-davinci-
002, InstructGPT, text-davinci-002, text-davinci-003, GPT-3.5-turbo and con-
cluding with the release of GPT-4, the latest model from OpenAI. These
mentioned models belong to the category of Instruction-Tuned LLMs. The
primary focus lies on these types of models as some of them are used in my
thesis.

Let’s use a simple example to better understand the difference between of
Base LLMs and Instruction-Tuned LLMs when generating text.

• Base LLMs: Base LLMs are trained to predict the next word based
on text training data, often using a large amount of data from the in-
ternet and other sources to determine the most likely word to follow.
For instance, if prompted with "Once upon a time there was a uni-
corn," it might complete the sentence with, "that lives in a magical
forest with all unicorn friends." However, if asked, "What is the capital
of France?" a base LLM might respond with various related questions,
such as, "What is France’s largest city?" or "What is France’s popula-
tion?" as internet articles often include lists of quiz questions about
countries [38].
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• Instruction-Tuned LLMs: On the other hand, Instruction-Tuned LLMs,
where much of the recent momentum in LLMs research lies, are trained
to follow instructions. So, if asked about the capital of France, an
Instruction-Tuned LLM is more likely to provide a straightforward an-
swer, like "The capital of France is Paris." These models are typically
trained by starting with a base LLM trained on a large amount of text
data, fine-tuning it using inputs and outputs that consist of instructions
and corresponding attempts to follow those instructions. Further re-
finement is done through Reinforcement Learning from Human Feed-
back (RLHF) to enhance the system’s ability to be helpful and follow
instructions. Instruction-Tuned LLMs are designed to be helpful, truth-
ful, and non-harmful. They are less likely to generate problematic or
toxic text compared to base LLMs, which is why many practical usage
scenarios are shifting towards Instruction-Tuned LLMs [38].

Now, let’s explore deeper into Base LLMs.

2.3.1.1 GPT

NLP involves various tasks like textual entailment, question answering, se-
mantic similarity assessment, and document classification. However, in many
use-cases or domains, there is a lack of labeled data for training models for
these tasks. [49] propose that by pre-training a language model on unla-
beled text and fine-tuning it for each task, significant improvements can be
achieved. They named this model GPT, built on the transformer architecture
and leveraging the decoder component, as illustrated in Figure 2.5. Further-
more, task-aware input modifications are introduced during fine-tuning for
effective knowledge transfer with minimal changes to the model’s architec-
ture [49].

Training Procedure
Training procedure of GPT is divided into two stages. In the first stage, a

high-capacity language model is learned on a large corpus of text. This is fol-
lowed by a fine-tuning stage, where the model is adapted to a discriminative
task using labeled data [49].

Unsupervised pre-training: The goal is, with an unsupervised corpus rep-
resented as T = {t1, . . . , tn}, to utilize a standard language modeling
objective in order to maximize the following likelihood:

L1(U) = ∑
i

log P(ui|ui−k, . . . , ui−1; Θ) (2.1)

where k represents the size of the context window, and the condi-
tional probability P is estimated by a neural network with parameters
denoted as Θ. These parameters are iteratively trained through the
stochastic gradient descent method [52].
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Figure 2.5: GPT-style Transformer. Reprinted from [59]
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[49] used a multi-layer Transformer decoder for the language model,
which applies multi-headed self-attention across the input context to-
kens, followed by position-wise feedforward layers, generating an out-
put distribution over target tokens:

h0 = U ·We + Wp (2.2)

hl = trans f ormer_block(hl−1) ∀ i ∈ [1, n] (2.3)

P(u) = so f tmax(hn, WT
e ) (2.4)

where U represents the context vector of tokens, with U = (ui−k, . . . , ui−1).
Here, n stands for the number of layers, We denotes the token embed-
ding matrix, and Wp is the position embedding matrix [49].

The BooksCorpus dataset [69] is used for training the language model,
including more than 7,000 unique, unpublished books spanning di-
verse genres, such as Adventure, Fantasy, and Romance. An essen-
tial feature of this dataset is the presence of extended, long text seg-
ments. This characteristic allows the generative model to effectively
capture and utilize long-range contextual information. Exceptional per-
formance is demonstrated by the language model, with a remarkably
low token-level perplexity of 18.4 on this corpus [49].

Supervised fine-tuning: Following pre-training of the model, the model’s
parameters are adapted for the supervised target task. A labeled dataset,
denoted as C, is assumed, where each instance consists of a sequence
of input tokens, x1, . . . , xm, along with a label y. These input sequences
are then passed through the pre-trained model to obtain the final ac-
tivation of the transformer block, denoted as hm

l . Subsequently, hm
l is

fed into an additional linear output layer with parameters Wy to make
predictions for y [49].

P(y|x1, . . . , xm) = so f tmax(hm
l ·Wy) (2.5)

This leads to the following objective for maximization:

L2(U) = ∑
i

log P(ui|x1, . . . , xm) (2.6)

[49].

Task-specific input transformation and output layer adaptation

For some tasks, such as text classification, adding a linear and a soft-
max layer on top of the architecture is sufficient for fine-tuning. How-
ever, for certain others like question answering or textual entailment,
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which involve structured inputs, the pre-trained model requires adap-
tations. Rather than introducing task-specific architectures, [49] opt for
a traversal-style approach. This approach involves converting struc-
tured inputs into ordered sequences that the pre-trained model can
handle effectively [49]. In the case of textual entailment, the token se-
quences of the premise and hypothesis are concatenated with a de-
limiter token in between. For similarity tasks, where there is no inher-
ent sentence ordering, the input sequence is modified to encompass
both possible sentence orderings, and the results are processed inde-
pendently, combined, and then fed into the output layer. In question
answering and commonsense reasoning tasks are provided a context
document, a question and a set of potential answers. To address these
tasks, the context and question are concatenated with each possible an-
swer, separated by a delimiter token, creating distinct sequences. Each
sequence is independently processed by the model, and the outputs
are normalized using a softmax layer to generate a distribution of pos-
sible answers. Based on the task, we add one or more Linear + Softmax
layers, often referred to as output head, on top the architecture. These
input transformations ensure that the model can adapt to structured
inputs while minimizing significant architectural modifications across
various tasks and output heads allow a transformer-based model to be
used for different tasks [49].

Figure 2.6: Task-specific input transformations. Reprinted from [49]

Performance
GPT consistently outperforms models that are individually crafted for spe-

cific tasks, resulting in significant improvements in 9 out of the 12 tasks. For
instance, [49] achieved improvements, such as 8.9% in commonsense reason-
ing (Stories Cloze Test), 5.7% in question answering (RACE), and 1.5% in
textual entailment (MultiNLI).
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2.3.1.2 GPT-2

GPT-2 is a transformer-based LLM with 1.5 billion parameters. It was trained
on a diverse dataset of 8 million web pages, which was carefully curated
to ensure high document quality. The content for this dataset was sourced
from the Internet, specifically from outbound links on Reddit with at least
3 karma. This is an indicator of whether other users found the link to be
of interest, whether for educational or entertainment purposes, ensuring a
dataset of superior quality compared to others, such as Common Crawl. The
core objective of GPT-2’s training, like GPT, is to predict the next word in a
given text, utilizing all preceding words. The diverse nature of the dataset
naturally exposes the model to a wide array of tasks across various domains
[50].

GPT-2 represents a significant evolution from its predecessor, GPT, with
over ten times the number of parameters and training data volume. It is
based on the Transformer architecture as the foundation for many language
models. The model is closely aligned with the specifications of the GPT
model, introduced by [49], with a few adjustments. In GPT-2, layer normal-
ization, following the approach of [2], has been relocated to the input of each
sub-block. Additionally, an extra layer of normalization follows the final self-
attention block. The vocabulary size is increased to 50,257 tokens because of
the large dataset. Moreover, the context size is expanded from 512 to 1024

tokens, which improves GPT-2’s ability to grasp how words relate in longer
sentences, surpassing the capabilities of GPT [50].

GPT-2 showcases a broad spectrum of capabilities, excelling in generating
high-quality synthetic text samples. Furthermore, it demonstrates superior
performance compared to other language models designed for specific do-
mains like Wikipedia, news, or books. The proficiency of this model extends
to language tasks such as question answering, reading comprehension, sum-
marization, and translation, and it can learn these tasks directly from raw
text, without making any adjustments to the models and the need for task-
specific training data. While the performance in these downstream tasks
may not be at the state-of-the-art level, it emphasizes the potential of unsu-
pervised techniques when provided with abundant unlabeled data and com-
putational resources. GPT-2 is not trained using data specific to the down-
stream tasks; it is only tested on them in a final evaluation, a scenario called
"zero-shot." In this "zero-shot" setup, GPT-2 outperforms models trained on
domain-specific datasets like Wikipedia, news, or books when assessed on
those same datasets [50].

2.3.1.3 GPT-3

GPT-3 is an autoregressive language model with 175 billion parameters. This
model has ten times more parameters than any previously existing non-
sparse language model. The performance of this model is assessed in the
few-shot learning setting as it relies on tasks and few-shot demonstrations
conveyed through text interactions with the model without any gradient up-
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dates or fine-tuning. GPT-3 excels in a wide range of NLP tasks, including
translation, question-answering, and cloze exercises. Furthermore, it demon-
strates exceptional performance in tasks that require dynamic reasoning and
domain adaptation, such as word unscrambling, incorporating new words
into sentences, and performing complex arithmetic operations. Although it
has exhibited some initial potential, GPT-3 in few-shot setting still produces
outcomes significantly inferior to those achieved through fine-tuning [6].

Increasing model size enhances the utilization of in-context information,
resulting in better performance in few-shot settings, as demonstrated in [7].
Essentially, the larger the model, the better the LLM performs in these scenar-
ios [6].

For GPT-3, the same model and architectural framework as GPT-2 [50]
are used, incorporating the modified initialization, pre-normalization, and
reversible tokenization techniques. The distinction lies in the utilization of
alternating dense and locally banded sparse attention patterns within the
transformer layers, which is similar to the Sparse Transformer [7] [6].

2.3.2 Instruction-Tuned LLMs

Instruction-Tuned LLMs are a category of LLMs fine-tuned using input-output
pairs with clear instructions. They are designed to precisely follow instruc-
tions, making them suitable for practical purposes. These models start with
a base LLM and then receive further fine-tuning with input-output pairs con-
taining instructions and attempts to follow those instructions. To enhance
the model’s performance, they are often refined using RLHF, improving their
ability to provide helpful, honest, and safe responses. Instruction-Tuned
LLMs are less likely to generate problematic text and offer accurate and rele-
vant answers [46].

2.3.2.1 Falcon-40B-Instruct and Falcon-7B-Instruct

Falcon is an open-source pre-trained model based on the transformer archi-
tecture. It was developed by the Technology Innovation Institute and is avail-
able in four versions: Falcon-40B for general purposes, Falcon-40B-Instruct
tailored for chat applications, the smaller models including Falcon-7B, and
Falcon-7B-Instruct. Falcon was trained to predict the next token using 1 tril-
lion tokens of text. Out of these, 820 billion tokens were sourced from Re-
finedWeb [48], a carefully curated subset of CommonCrawl. The rest were
gathered from books, code, academic papers, technical documents, and con-
versations on sites like Reddit and StackOverflow. Before Falcon, base mod-
els were mainly trained on small, carefully selected datasets and internet
data that had been filtered for quality (either by considering link popu-
larity or using a classifier trained on selected datasets). However, the lack
of good training data often caused these models to generate incorrect re-
sponses, which is known as hallucination [1].

The architecture closely resembles GPT-3 [6] but incorporates distinctive
features such as the FlashAttention algorithm and multiquery attention, which



2.3 evolution of gpt-based llms 18

reduce memory requirements during inference. Falcon-40B-Instruct has sur-
passed Meta’s LLaMA [60] to claim one of the top spots on the HuggingFace
Open LLM Leaderboard [4], which is a leaderboard that aims to track, rank
and evaluate open-source LLMs and chatbots [1].

2.3.2.2 GPT-3.5

The analysis conducted on GPT-3.5 models and GPT-4 is based on the infor-
mation provided in the official website of OpenAI.

The OpenAI API is powered by a diverse set of models with different
capabilities including gpt-3.5 series as one of the latest and most capable
models, which consists of models trained on a mix of text and code data
from before Q4 2021. These models can understand and generate natural
language or code. GPT-3.5 series includes the following models [40]:

1. code-davinci-002: This serves as a base model and is well-suited for
code completion tasks.

2. text-davinci-002: An InstructGPT model based on code-davinci-002.

3. text-davinci-003: An improved version of text-davinci-002.

4. gpt-3.5-turbo-0301: A further enhancement over text-davinci-003, spe-
cially optimized for chat applications.

To better understand the differences between GPT-3.5 models, I will ex-
amine and compare them, focusing on their performance, model size, pre-
trained data size, cost-effectiveness, and processing speed.

gpt-3 .5 vs text-davinci-003/text-davinci-002

• The text-davinci-003 model is a powerful language model that excels in
content creation, translation, and other complex tasks due to its ability
to generate longer, coherent text. It has been trained on a large dataset,
making it better suited for a wide range of tasks and has been fur-
ther optimized with Reinforcement Learning from Human Feedback
to follow instructions. This model is known for its zero-shot learning
capability, enabling it to perform tasks without direct training. This is
due to its large model size and extensive pre-training method, allow-
ing the model to acquire knowledge and make extrapolations from a
vast corpus of linguistic data [40].

• GPT-3.5, on the other hand, is designed to follow instructions and op-
timized for chat. It has a smaller model size which makes it faster than
text-davinci-003 and it is more cost-effective [40].

• The text-davinci-002 model has similar capabilities to text-davinci-003

but it was trained with supervised fine-tuning instead of reinforcement
learning [40].

In the next section I provide a detailed examination of InstructGPT, as it is
the foundation model for Instruction-Tuned LLMs within the GPT-3.5 family.
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2.3.2.3 Instruct-GPT

The OpenAI API relies on GPT-3 language models that can be guided to per-
form language tasks with well-crafted text prompts. However, these models
can also produce outputs that contain false information, harmful content, or
offensive language. One of the reasons for this is that GPT-3 is trained to
predict the next word based on a large dataset of Internet text, rather than
specifically focusing on executing language tasks in a safe and user-aligned
manner. In simpler terms, these models may not always generate content
that aligns with the user’s intentions. To enhance the safety, usefulness, and
alignment of the models, RLHF is utilized. For prompts submitted by cus-
tomers to the OpenAI API, demonstrations of the desired model behavior
are provided by their labelers, who also rank various outputs generated by
the models. Then, this data is utilized for the fine-tuning of GPT-3. The re-
sulting InstructGPT models demonstrates clear improvements in following
instructions compared to GPT-3. Furthermore, they generate less false infor-
mation and harmful content [46].

Training Procedure
In the training of InstructGPT models, RLHF is primarily used. This tech-

nique relies on human preferences as a reward signal to refine the model.
Starting with a pre-trained GPT-3 [6], the model is guided by a set of prompts
to generate the desired outputs, and a team of well-trained human labelers.
Following this, a sequence of three steps is proceeded, as showcased in Fig-
ure 2.7 [46].

• Step 1: Demonstrations that illustrate the desired model behavior within
the input prompt distribution are provided by the labelers. Then, a pre-
trained GPT-3 model is fine-tuned using supervised learning with this
data [46].

• Step 2: A dataset is created containing comparisons between different
model-generated outputs, with labelers indicating their preference for
a given prompt, which is sampled from the prompt distribution. A re-
ward model is then trained to predict the output preferred by humans
[46].

• Step 3: Given a new sampled prompt from the dataset, the policy gen-
erates an output, based on which the reward model computes a scalar
reward. The supervised policy is further fine-tuned to optimize this
reward using the PPO algorithm [56]. Steps 2 and 3 can be repeated
continuously. Additional comparison data is gathered for the current
best policy, which is then employed to train a new reward model and
consequently, develop a new policy [46].

Performance
[46] assessed the ability of InstructGPT to follow user instructions by com-

paring its outputs to those of GPT-3. The results demonstrate a clear prefer-
ence for InstructGPT models when it comes to prompts submitted to both
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Figure 2.7: Reinforcement learning from Human Feedback. Reprinted from [46]

the InstructGPT and GPT-3 models via the API. This preference remains un-
changed, even when they added a few-shot prompt to the GPT-3 to make
it better at following instructions, and when compared to supervised fine-
tuning of GPT-3. To assess the model’s safety, [46] mainly relied on estab-
lished metrics using publicly accessible datasets. In comparison to GPT-3,
InstructGPT generates fewer false information (based on TruthfulQA17 [28])
and exhibits lower toxicity (based on RealToxicityPrompts18 [17]), when
prompted to be respectful. InstructGPT, however, doesn’t show a significant
improvement over GPT-3 in generating biased content, as observed in the
Winogender [54] and CrowSPairs [37] datasets.

The approach is designed to align models with the preferences of labelers,
researchers, and customers, but alignment with broader preferences is not
guaranteed. In experiments involving different labelers, it was found that
InstructGPT performed similarly. Additionally, it was observed that reward
models trained on one subset of labelers generalized well to another, suggest-
ing that the models are not overfitted. Further research is needed to assess
performance with a wider range of users and differing preferences [42].

Limitations
While InstructGPT models have made significant progress, they are not

entirely aligned or safe. Efforts to improve safety include application re-
views, content filters, and monitoring. Aligning models with user values,
particularly those of specific groups, requires ongoing work to address po-
tential biases and societal implications. Furthermore, InstructGPT can still
make mistakes such as failing to follow instructions, making up facts, giv-
ing long answers to simple questions, or failing to detect instructions with
false premises [42].
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2.3.2.4 ChatGPT

OpenAI’s most capable and cost effective model in the GPT-3.5 family is
GPT-3.5-turbo, also known as ChatGPT. It has been optimized for chat using
the Chat Completions API but works well for traditional completions tasks
as well. This model was developed through RLHF. This method shares sim-
ilarities with InstructGPT’s approach but involves some variations in data
collection. Initially, supervised fine-tuning were conducted where human AI
trainers engaged in conversations while taking on both user and AI assistant
roles. OpenAI provided these trainers with model-generated suggestions to
help them compose responses. Afterward, this new dialogue dataset is com-
bined with the InstructGPT dataset after adapting it into a dialogue format.
Another distinction lies in the foundation models used in step 1: ChatGPT
employs text-davinci-003, whereas InstructGPT starts with GPT-3 [41].

Limitations

• ChatGPT has the occasional issue of generating responses that sound
plausible but are incorrect or nonsensical. Addressing this challenge
proves difficult for several reasons. Firstly, during reinforcement learn-
ing training, there is no definitive source of truth to guide the model.
Secondly, training the model to be excessively cautious leads to it de-
clining questions it could answer correctly. Lastly, supervised training
is misleading because the ideal answer depends on the model’s knowl-
edge rather than the human demonstrator’s [41].

• The model’s sensitivity to input phrasing is evident. For example, it
might claim not to know the answer to a question presented one way
but respond correctly to a slight rephrase of the prompt [41].

• ChatGPT often tends to be verbose and frequently employs specific
phrases, like repeatedly stating that it’s a language model created by
OpenAI. These behaviors arise due to biases in the training data, where
trainers prefer longer answers that appear more comprehensive, and
are linked to known issues with over-optimization [41].

• Ideally, the model should seek clarifications when faced with ambigu-
ous user queries. However, current models usually make guesses about
the user’s intent [41].

2.3.2.5 GPT-4

GPT-4 is a multimodal model capable of processing text inputs and gener-
ating outputs, with the potential to handle image inputs in the future. Its
exceptional problem-solving capabilities surpass previous models due to ex-
panded general knowledge and enhanced reasoning abilities. GPT-4 is op-
timized for chat-based interactions but also performs well in conventional
completion tasks using the Chat completions API. GPT-4 includes several
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versions, like gpt-4, which has a context window length of 8192 tokens; gpt-
4-0613, which includes function calling data; and gpt-4-32k, which has a
context length of 32768 tokens.

Limitations
Although GPT-4 is among the most capable language models, it shares

similar limitations with earlier versions like GPT-3.5-turbo. It’s not entirely
reliable, occasionally getting facts wrong and making errors in reasoning.
However, GPT-4 has shown significant progress in reducing these hallucina-
tions, achieving a 40% improvement in accuracy over GPT-3.5-turbo based
on factuality tests conducted by OpenAI [45].

chatgpt vs gpt-4

• ChatGPT and GPT-4 are AI language models with varying model sizes
and training data. GPT-4 has a larger model size, allowing it to han-
dle complex tasks and generate more accurate responses. Its extensive
training dataset provides a broader knowledge base and improved con-
textual understanding, making it a powerful tool for natural language
understanding applications [45].

• However, GPT-4’s advancements come at the cost of increased com-
putational power requirements, making it less accessible to smaller
organizations or individual developers. Additionally, higher resource
demand leads to greater energy consumption during training, raising
environmental concerns [45].

• On the other hand, GPT-4 is smarter than ChatGPT, capable of writing
complex code, solving complex problems, and learning quickly. Both
ChatGPT and GPT-4 address the challenge of bias, but GPT-4 seems
less likely to give biased answers or provide factually inaccurate re-
sponses. GPT-4 is slower to respond and generate text at this early
stage due to its larger size and higher processing requirements and
costs [45].

2.4 in-context learning

LLMs based on transformer architecture, such as GPT, T5, and BERT, have
achieved advanced results in NLP tasks and are now being applied to other
domains like Computer Vision and Audio. The conventional approach in-
volves large-scale pretraining on generic web-scale data followed by fine-
tuning to downstream tasks. However, as models grow larger, regular fine-
tuning becomes infeasible to train on consumer hardware and storing and
deploying fine-tuned models independently becomes expensive. Several ap-
proaches adress these issues including LoRA, QLoRA and ICL. In the next
section I am going to mention some key aspects of several transformer-
based task-adaptation methods in NLP like ICL, QLoRA, LoRA and regular
fine-tuning.
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2.4.1 Transformer-based Task-Adaptation Methods

Transformer-based task-adaptation methods can be broadly categorized into
two main approaches: fine-tuning methods and training-free methods. Fine-
tuning adapts pre-trained LLMs for specific tasks by optimizing their weights
through training on task-specific data, enabling the generation of task-related
predictions. In contrast, training-free methods such as ICL use pre-trained
models without additional parameter updates, emphasizing computational
efficiency [15].

Fine-tuning approaches
Fine-tuning is a strategy that customizes pre-trained LLMs for specific

downstream tasks in NLP. It is the process of retraining pre-trained LLMs

for a particular task by adding a task-specific head on top of the LLM and
further optimizing the pre-trained weights with respect to the task or by
adding additional layer on top of the existing model with task-specific data.
The resulting fine-tuned model generates predictions given new data that
is related to the task. Beyond regular fine-tuning which involves training
the entire model, researcher have developed alternative like LoRA and QLoRA

methods to enhance the efficiency during training and reduce the memory
requirements especially for large models [11, 21].

Regular fine-tuning: This is one of the most common approachs for adapt-
ing LLMs to a specific task. In this approach, the LLM is first pre-trained
on a large corpus of text and then fine-tuned on a smaller dataset of
labeled examples for the specific task. The fine-tuning process involves
updating the weights of the LLM using backpropagation and gradient
descent. Regular fine-tuning requires a large amount of labeled data
for the specific task, which can be a limitation. However, it has been
shown to be effective in improving the performance of LLMs on a wide
range of tasks. Moreover, the need of huge computational resources
for training LLM which consists of millions or billions of parameters
makes it impractical for using the regular fine-tuning method [33].

LoRA: LoRA is a technique that enables efficient fine-tuning of LLMs while
consuming less memory. It introduces pairs of rank-decomposition
weight matrices, known as update matrices, to the existing weights of
the model. Instead of training all model’s weights for each task, LoRA

only trains these newly added weights while freezing the pre-trained
model, reducing the number of trainable parameters for downstream
tasks. This plays a crucial role in enabling the model to adjust to vari-
ous tasks by avoiding the optimization of all parameters for each task.
This method has been applied to fine-tune more than 1000 models,
demonstrating state-of-the-art results even with smaller models [21].

QLoRA: QLoRA, which is an extension of the LoRA technique, focuses on
enhancing efficiency of LoRA by quantizing the weight values of the
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original network and therefore reducing the memory requirements. It
backpropagates gradients throught a frozen, 4-bit quantized pretrained
LLM. This approach incorporates several strategies to reduce memory
including the utilization of a 4-bit data type called NormalFloat. 4-bit
quantization is a method that reduces the size of LLMs to make them
compatible with less powerful hardware by reducing their disk stor-
age requirements [12]. This technique achieves this by representing the
model’s weights and activations using fewer bits instead of using 16-bit
or 32-bit quantization, which is the default data type for representing
weights when training or doing inference with a LLM. Furthermore,
QLoRA applies double quantization, which quantizes the quantization
weights and activations to further enhance memory efficiency. Addi-
tionally, it implements paged optimizer, which transfer data between
the CPU and GPU to avoid out-of-memory issue on the GPU. The
most successful model produced through the QLoRA approach, named
Guanaco, surpasses all previous models in terms of performance on
the Vicuna benchmark. Guanaco achieves an impressive 99.3% of Chat-
GPT’s performance with only 24 hours of fine-tuning conducted on a
single GPU [11].

Training-free approaches
Unlike fine-tuning methods, training-free methods does not conduct pa-

rameter update or additional training and directly makes use of pre-trained
LLMs to make predictions. One quite popular training-free approach for ad-
justing LLMs for a downstream task is ICL [15].

ICL: In recent years, the field of NLP has witnessed a growing interest
in a novel approach known as ICL. ICL has emerged as a promising
paradigm for various NLP tasks, including sentiment analysis, para-
phrase detection, natural language inference, and open-domain ques-
tion answering. Within ICL, LLMs operate by making predictions solely
based on contexts enriched with a limited number of input-output
examples. A small set of examples is utilized to construct a context
that serves as task demonstration, and this context is combined with a
query or a question to create a prompt, as shown in Figure 2.8. Based
on the provided prompt, the LLM generates an answer by extracting
insights from the given examples [15].

2.4.2 Advantages and Limitations of ICL

2.4.2.1 Advantages of ICL

ICL offers several advantages over fine-tuning methods such as regular fine-
tuning, LoRA, and QLoRA. Here are some key advantages of ICL.
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Figure 2.8: Example of ICL with text classification. Reprinted from [15]

1. Data Efficiency: ICL leverages LLMs to make predictions based on aug-
mented contexts, requiring only a few examples. Some domains re-
quire a large amount of labeled data which can quite often be challeng-
ing. ICL is especially in these cases much more efficient than regular
fine-tuning or LoRA, which often requires a relatively large amount of
labeled data for training [6].

2. Training-Free: In contrast to fine-tuning methods, ICL does not per-
form any parameter optimization but instead it leverages pre-trained
LLMs with given context. This makes this approach much faster and
smoother [15].

3. Low Complexity: Unlike LoRA and QLoRA, which aim to reduce the
number of trainable parameters or memory footprint by adding new
layers to the pre-trained LLM, ICL does not require additional modifica-
tions to the model architecture. It can leverage existing LLMs without
introducing additional complexity [11, 15, 21].

2.4.2.2 Limitations of ICL

However, it’s important to acknowledge that ICL may not be effective in every
situation. Here are some drawbacks and limitations of this approach.

1. Limited performance: The main drawback of ICL is that results ob-
tained throught this approach have significantly underperformed state-
of-the-art fine-tuned models which are trained on extensive datasets
[6].

2. Prompt engineering: Prompt engineering is the process of designing
the prompt for a LLM which consists of some instructions and examples
related to the task. It is a time-consuming and often requires domain
knowledge. Furthermore, the performance of ICL depends on several
factors including the choice, the order, and number of examples in the
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demonstration set, which makes it challenging to find the optimal set
of demonstrations [15].

3. Performance increase with scale: Researchers have demonstrated that
LLMs become more performant and capable at maximizing the utiliza-
tion of contextual information as they increase in size, as illustrated in
Figure 2.9 [6]. As a result, it requires a significant amount of compute
hardware to use these models on inference. However, several innova-
tive methods have been developed to run distributed inference like
Text Generation Inference from HuggingFace [22] or vLLM [25].

Figure 2.9: As model size increases, its performance in few-shot scenarios improves.
Reprinted from [6]

2.4.3 Goal Formulation

The ICL situation in GPT-3 can be modeled as a problem of conditional text
generation. To clarify, the likelihood of producing a specific target y is de-
pendent on both the context C, which encompasses k in-context examples,
and the input x. As a result, the conditional probability can be formulated
as follows:

pLM(y|C, x) =
T

∏
t=1

p(yt|C, x, y<t) (2.7)

where LM refers to the language model’s parameters and C represents a
context string that combines k training instances using the special character
"\n". To mitigate the computational requirements of fine-tuning, LLMs are
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utilized in an ICL approach, as explained earlier. Unfortunately, it has been
demonstrated that GPT-3’s performance tends to vary significantly with dif-
ferent in-context examples [32].

The objective of this thesis is to address this issue by selecting the most
relevant and informative examples that enhace the few-shot performance. In
this study, given a set of questions, I investigate two primary scenarios:

1. Using human-generated labels as ground truth answers to the ques-
tions.

2. Using labels generated through instructing GPT-3.5-turbo to answer
questions using Zero-Shot-CoT. The motivation for including LLM-
generated labels is that, in many domains and use-cases, manually
labeling data demands high effort and expenses.

Given N labeled training data Dtrain = {(di = (xi, ri, yi))
N
i=1}, and M la-

beled test data Dtest = {(di = (xi, ri, yi))
M
i=1}, where xi, ri, and yi represent

the question, reasoning chain, and answer, respectively, and k denotes the
desired number of in-context examples, the objective is to select the most rel-
evant examples from the training data. The demonstration set is constructed
as follows: C = [dσ(1), . . . , dσ(k)], where σ(1), . . . , σ(k) are the indices of the
selected demonstrations. These chosen in-context examples, denoted as C,
along with the test question xtest and the task instructions I, which collec-
tively form the prompt, are fed to the LLM (LLMθ). The LLM (LLMθ) gener-
ates an answer in response as follows: ŷtest = LLMθ([I, C; xtest]). This process
is repeated for each xtest from Dtest, and the predicted answers ŷ are com-
pared with the ground truth labels y. The accuracy is then computed as the
evaluation metric.

2.4.4 Existing Prompting Methods

LLMs have revolutionized NLP by providing state-of-the-art performance on
various NLP tasks. Some of the most common NLP tasks include text classi-
fication, question answering, and text generation. However, LLMs can also
be leveraged for more complex tasks that require reasoning such as sym-
bolic, arithmetic and commonsense tasks. This work focuses on arithmetic
reasoning tasks which involves solving various mathematical problems such
as addition, subtraction, multiplication, division, algebraic word problems
etc. Few-shot prompting is a prompting technique used to interact with
LLMs in NLP by providing a prompt which consists of instructions and a
few examples related to a specific task, based on which a LLM generates a
response. Few-shot prompting can be categorized into two major paradigm:
CoT prompting and standard prompting [63].

2.4.4.1 Few-shot chain-of-thought prompting vs few-shot standard prompting

Standard prompting is the standard way of prompting a LLM which involves
manually designing a few example that demonstrate a specific task or select-
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ing them from a given labeled dataset. The demonstration set includes the
question and the final answer for each example. In contrast to this method,
chain-of-thought prompting is a few-shot prompting method in NLP that
involves generating a chain of thought, which is a series of intermediate rea-
soning steps which leads to the final answer. Every demonstration is made
up of a query along with a reasoning chain, in which the reasoning chain is
a rationale (a series of intermediate reasoning steps) and a final answer. The
goal of chain-of-thought prompting is to improve the ability of LLMs to per-
form better at complex reasoning tasks by breaking down the main question
into multi-step sub-questions. 2.10 illustrates the difference between these
two prompting methods. Recent developments have demonstrated that LLMs

are much more capable at solving reasoning tasks when the reasoning chain
is included in the prompt especially in complex cases with many reasoning
steps and with LLMs that have more than 100B parameters [63].

Figure 2.10: Example of standard and chain-of-thought prompting. Reprinted from
[63]

2.4.4.2 Few-shot chain-of-thought prompting strategies

Investigations by [31, 32] have revealed that the effectiveness of ICL can de-
pend significantly on the choice of in-context demonstrations. Furthermore,
the formatting of the prompt, such as wording or order of demonstrations
plays an import role [68]. A recent study [35] even questioned the neces-
sity of having precise input-output mappings, indicating that using incor-
rect labels in examples only marginally drops the performance. This work
focuses on the selection of the most relevant in-context examples by inves-
tigating several methods and evaluating their performance. There are sev-
eral few-shot chain-of-thought prompting methods including Random-CoT
[63], Auto-CoT [66], Active-CoT [14], Retrieval-CoT [66]. These methods have
shown promising results in improving LLM performance on complex reason-
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ing tasks. Next, I explore how these methods function and introduce newly
proposed approaches, providing detailed explanations through pseudocode.

2.4.4.3 Embedding Generation and Uncertainty Estimation

Various prompting methods involve the processes of generating question
embeddings and evaluating model uncertainty. Thus, I initially introduce
two simple essential algorithms: Embedding Generation responsible for cre-
ating question embeddings, and Uncertainty Estimation which computes
the model’s uncertainty concerning the questions. To prevent redundant
pseudocode, these algorithms are implemented just once, allowing their use
across various prompting methods.

Embedding Generation
The Embedding Generation algorithm, a foundational procedure used to

convert a set of questions into their respective embeddings. This process is
achieved through the utilization of a dedicated sentence encoder.

Algorithm 1 Embedding Generation

Require: Set of training questions Q = {xi ∈ Dtrain}, sentence encoder SEθ

Ensure: List of embeddings E
1: procedure Generate_Embedding(Q, SEθ)
2: Create an empty list E to store embeddings
3: for each question xi in Q do
4: Add ei = SEθ(xi) to E
5: end for
6: return E
7: end procedure

embedding generation algorithm

1. The process starts by initializing an empty list E for storing the embed-
dings.

2. Iteratively, the algorithm processes each question xi within the input
set Q. For each question encountered, the sentence encoder SEθ , which
in this thesis is the OpenAIEmbedding model from OpenAI, takes as
input the question and generates its embedding ei, which is added to
E. The Auto-CoT method from [66], instead, uses the Sentence-BERT
model introduced in [51].

3. The algorithm returns the question embeddings E which can be used
for further computations.

The pseudocode of this method can be found in Algorithm 1.

Uncertainty Estimation
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The Uncertainty Estimation algorithm involves assessing uncertainty of a
LLM associated with a given question.

Algorithm 2 Uncertainty Estimation

Require: Set of training questions Q = {xi ∈ Dtrain}, LLM LLMθ , number
of trails tr, temperature te, uncertainty metric function UM, in-context
demonstrations AC

Ensure: List of uncertainty values U
1: procedure Estimate_Uncertainty(Q, LLMθ , tr, te, UM, AC)
2: Create an empty list U to store uncertainty values
3: for each question xi in Q do
4: Create an empty list Ŷi to store predictions for xi
5: for j = 1 to tr do
6: Compute prediction ŷ(j)

i using LLMθ with [AC, xi; te] as input:

ŷ(j)
i = LLMθ(AC, xi; te)

7: Add ŷ(j)
i to Ŷi

8: end for
9: Compute uncertainty ui based on predictions in Ŷi: ui = UM(Ŷi).

10: Add ui to U
11: end for
12: return U
13: end procedure

uncertainty estimation algorithm

1. The process is initiated by initializing an empty list U dedicated to
storing the estimated uncertainty values.

2. The algorithm then proceeds to iterate through each question xi in the
provided set Q. For each question xi, the following steps are executed:

a) The LLM LLMθ is invoked to generate tr potential answers by using
temperature tr > 0 which ensures slightly randomness in the answer
generation. The answers are aggregated into a set of predictions Ŷi
representing the potential outcomes.

b) The uncertainty value ui for the question xi is calculated using the
uncertainty metric function UM, which takes as input the aggregated
potential answers Ŷi and assesses the level of uncertainty within the
predictions. The computed uncertainty value ui is added to the list of
uncertainty values U.

3. The outcome of the algorithm is the list of uncertainty values U, which
provides valuable insights into the uncertainty associated with the
questions.

The pseudocode of this method can be found in Algorithm 2.

Input parameters
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A comprehensive list of input parameters shared across all prompting
methods, which will be explained in the next sections, is presented below.

Dtrain Training set containing questions and answers.

k Number of in-context demonstrations to select.

SEθ Sentence encoder model for text-to-embedding conversion, specifically
applied to questions.

LLMθ LLM utilized for inference and uncertainty estimation.

seed random seed used to ensure reproducability when using random-
based approaches.

tr Count of queries made to "LLMθ" for estimating question uncertainty.

te Temperature of LLMθ , introducing slight randomness during multiple
queries to estimate question uncertainty (te > 0).

UM Uncertainty metric function, used for uncertainty computation (e.g.,
entropy, variance, disagreement, self-confidence).

AC In-context examples for querying a LLM for uncertainty estimation; can
also be empty for Zero-Shot scenarios.

β Weight for uncertainty in the F1-score metric.

top_p Percentage for selecting the top top_p% F1-scores.

greedy Flag for deterministic selection based on highest F1-score or weighted-
random sampling using probabilities.

p the number of demonstrations to select for the first phase, which
is used by Diverse-Active-KMeansPlusPlus-Retrieval-CoT prompting
method.

2.4.4.4 Zero-Shot-CoT

A LLM does not need examples to perform a certain task. By just providing
the task instruction and "Let’s think step by step", we can elicit LLMs to
generate the reasoning chain that leads to the final answer, as ilustrated in
2.11. This method is called Zero-Shot-CoT. [23] have demonstrated that LLMs

are decent zero-shot reasoners, as they perform well on several benchmarks.

2.4.4.5 Random-CoT

Random-CoT involves randomly selecting a few examples and their corre-
sponding chains of thought to create the prompt for the LLM.

2.4.4.6 Retrieval-CoT

[32] proposed kNN in-context selection method which involves the selection
of k semantically similar in-context examples of a test example based on
cosine similarity. Those selected examples and the test question constitute
the prompt which is fed to a LLM for generating an answer. Intuitively, the
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Figure 2.11: Zero-Shot-CoT. Reprinted from [63]

examples chosen using this strategy are likely to provide more valuable in-
put that can fully leverage LLM’s text generation capabilities. [32] assess the
proposed method’s performance on various tasks: sentiment classification,
table-to-text generation, and question answering. Across these benchmarks,
selecting prompts based on retrieval consistently outperforms the random
selection baseline in terms of performance. Notably, this approach wasn’t
evaluated on reasoning tasks. However, [66] did assess this method on rea-
soning tasks, referring to it as Retrieval-Q-CoT. I maintain a consistent nam-
ing template for various methods and use the term Retrieval-CoT.

Algorithm 3 Retrieval-CoT

1: Input: Training set Dtrain, LLM LLMθ , sentence encoder SEθ , number of
in-context demonstrations k, test question xtest

2: Output: Demonstration list C
3: procedure Retrieval_CoT(Dtrain, LLMθ , SEθ , k, xtest)
4: Q = {xi ∈ Dtrain}
5: etest = SEθ(xtest)
6: for each xi ∈ Q do
7: ei = SEθ(xi)
8: si =

etest·ei
∥etest∥2∥ei∥2

9: Add si to S
10: end for
11: Get largest k similarities from S in descending order
12: with indices {σ(1), . . . , σ(k)}
13: C = [(xσ(1), rσ(1), yσ(1)), . . . , (xσ(k), rσ(k), yσ(k))]
14: return C
15: end procedure
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retrieval-cot algorithm

1. Given test question xtest from test set Dtest, the sentence embedding is
generated using a sentence encoder model SEθ , which takes the test
question xtest as input and produces a vector representation as follows:
etest = SEθ(xtest).

2. For each question xi from training set Dtrain, the sentence embedding
ei = SEθ(xi) is generated, and the cosine similarity with the test ques-
tion’s embedding si =

xtest·ei
∥xtest∥2∥ei∥2

is computed.

3. The largest k similarities si’s are selected in descending order, with
indices {σ(1), . . . , σ(k)}.

4. Finally, the algorithm returns the demonstration list
C = [(xσ(1), rσ(1), yσ(1)), . . . , (xσ(k), rσ(k), yσ(k))], which is constructed by
the selected questions and their corresponding answers.

5. The selected in-context examples and the test question are passed to
the LLM LLMθ , which generates an answer ŷtest = LLMθ([C; xtest])

The pseudocode of this method can be found in Algorithm 3. Figure 2.12

illustrates a visual example.

Figure 2.12: White dots: unused training samples; grey dots: randomly sampled
training samples; red dots: training samples selected by the k-nearest
neighbors algorithm. Reprinted from [35]

Impact of distance-based selection on GPT-3 few-shot performance
[32] have investigated how the distance between the in-context examples

influences the performance of GPT-3, by conducting a comparison on the
Natural Questions [24] dataset, focusing on two distance-based selection
methods. For the evaluation, 100 test questions are randomly sampled and
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the average Exact Math scores is reported. Given a test example, the first ap-
proach select the ten farthest training instances as in-context examples, while
the second method utilizies the ten nearest neighbors. As shown in 2.13, it
is evident that using the nearest neighbors as in-context examples leads to
significanlty improved results compared to using farthest ones.

Figure 2.13: Exact Math score on the ten nearest and farthest neighbors within a sub-
set of 100 test samples from the Natural Questions dataset. Reprinted
from [32]

Retrieval-CoT May Fail due to Misleading by Similarity
In Retrieval-CoT, as [66] used Zero-Shot-CoT with a LLM for generating la-

bels, there is a risk of obtaining wrong demonstrations (i.e., demonstrations
with incorrect answers). Intuitively, after similar questions to a test question
are retrieved, wrong demonstrations caused by Zero-Shot-CoT may mislead
the same LLM to reason similarly with a wrong answer (e.g., replicating mis-
takes) for the test question This is known as "misleading by similarity". [66]
demonstrated that "misleading by similarity" is a factor contributing to the
inferior performance of Retrieval-CoT based on the results of the following
experiment.

[66] applied Zero-Shot-CoT to all 600 questions in the MultiArith dataset.
From these, 128 questions (denoted as Q) are identified where Zero-Shot-
CoT gives incorrect answers, accounting for an error rate of 21.3% (128 out
of 600). Among the Q questions where Zero-Shot-CoT fails, those where
Retrieval-CoT or Random-CoT also fail as unresolved questions are consid-
ered. To calculate the unresolved rate, the number of unresolved questions
is divided by 128 (the number of questions in Q). A higher unresolved rate
suggests a method is more likely to make mistakes like Zero-Shot-CoT. The
unresolved rate of Retrieval-CoT (46.9%) is considerably higher than that of
Random-CoT (25.8%), as depicted in Figure 2.14. This indicates that when
similar questions are used for test questions, Retrieval-CoT is negatively in-
fluenced by being misled by similarity [66].

Inspired by this finding, k-means is applied to a group 600 test questions
into 8 clusters with similar questions, employing Zero-Shot-CoT to gener-
ate reasoning chains. The goal is to identify clusters where Zero-Shot-CoT
frequently fails. Cluster 2 notably exhibits a high error rate of 52.3% in Fig-
ure 2.15, suggesting potential limitations in Zero-Shot-CoT when addressing
common problems and topics in the target tasks. Let’s call the cluster with
the highest error rate as the ’frequent-error cluster’ (e.g., Cluster 2 in Fig-
ure 2.15). Consequently, the imperfect nature of generated reasoning chains
using a zero-shot approach presents the risk of retrieving numerous similar
questions within a frequent-error cluster when employing similarity-based
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Figure 2.14: Unresolved rate. Reprinted from [66]

methods. In the case of the test question within the frequent-error cluster,
Retrieval-CoT tends to create demonstrations with multiple similar errors
more easily. Consequently, Retrieval-CoT often replicates similar mistakes
as those generated by Zero-Shot-CoT for the in-context demonstrations, as
demonstrated by the results in Figure 2.14 [66].

Figure 2.15: Error Rates Across Clusters. Reprinted from [66]

Retrieval-CoT May Select Redudant Examples
Retrieval-CoT retrieves in-context examples that are quite similar to the

test example, which also makes them similar to each other. This might lead
to the selection of redundant examples. However, the goal is to pick diverse
and informative examples from which the LLM can learn. This represents a
drawback of this prompting method.

2.4.4.7 Auto-CoT and Diverse-CoT

To mitigate the issue of "misleading by similarity" in Retrieval-CoT and re-
duce the impact of errors caused by Zero-Shot-CoT, [66] found that diver-
sity matters for constructing the demonstrations. To also eleminate manual
design of demonstrations, they proposed Auto-CoT, which is a prompting
method that automatically samples questions from representative question
sets to elicit chain-of-thought reasoning in LLMs. It utilizes Zero-Shot-CoT
with a LLM for generating the answers without needing manually-designed
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Algorithm 4 Phase 1: Clustering

1: Input: A set of questions Q = {xi ∈
Dtrain}, the number of demonstrations k,
sentence encoder SEθ

2: Output: Sorted questions x(i) =

[x(i)1 , x(i)2 , . . .] for each cluster i (i =
1, . . . , k)

3: procedure Diverse_CoT(Q, k, SEθ)
4: E = Generate_Embedding(Q, SEθ) ▷

Go to Generate_Embedding procedure
(Algorithm 1)

5: Run KMeans(E, k)
6: for each cluster i = 1, . . . , k do
7: Sort questions x(i) = [x(i)1 , x(i)2 , . . .]

in ascending order of the distance
to the cluster center

8: end for
9: return x(i) (i = 1, . . . , k)

10: end procedure

Algorithm 5 Phase 2: Selection

1: Input: Sorted questions x(i) = [x(i)1 , x(i)2 , . . .]
for each cluster i (i = 1, . . . , k) from Phase
1

2: Output: Demonstration list C
3: procedure CONSTRUCT(x(1), . . . , x(k))
4: C ← Empty list to store in-context demon-

strations
5: for i = 1, . . . , k do
6: for j = 1 to |x(i)| do
7: if x(i)j , r(i)j satisfy selection criteria then

8: Add ci = [Q : x(i)j , A : r(i)j ◦ y(i)j ] to C
9: break

10: end for
11: end for
12: return C
13: end procedure

demonstrations. Moreover, diversity helps to avoid the selection of redun-
dant examples, which might be an issue with Retrieval-CoT.

Auto-CoT consists of two main phases: 1) question clustering, which en-
tails grouping questions from a given training dataset into several clusters;
and 2) demonstration sampling, where a representative question is chosen
from each cluster, and its reasoning chain is generated using Zero-Shot-CoT.
Despite using a clustering-based sampling method, there remains a possi-
bility of selecting incorrect demonstrations. To tackle this, filtering criteria
that prioritize shorter questions and rationales are utilized, helping to miti-
gate the limitations of imperfect Zero-Shot-CoT capabilities. Further details
on this process are provided in a later section. It’s important to note that
while Retrieval-CoT chooses a different set of demonstrations for various
test questions, Auto-CoT selects demonstrations from the training set, main-
taining the same set of demonstrations for each test question [66].

In the study by [66], the assumption is that only a dataset of test questions
is provided. The Auto-CoT method is applied to the rest of the test dataset to
select in-context demonstrations, which are then evaluated using labels gen-
erated by Zero-Shot-CoT. In my adapted approach, designed for scenarios
where both training and test datasets are available, I use a slightly modified
version of this method. I refer to this adapted approach as Diverse-CoT. It
is evaluated using both labels generated by Zero-Shot-CoT and labels gener-
ated by humans. Diverse-CoT selects in-context examples from the training
dataset rather than the test dataset and uses both Zero-Shot-CoT-generated
and human-generated labels, providing a broader perspective and enhanc-
ing the understanding of the method’s performance in various conditions.
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diverse-cot algorithm

1. The first phase involves the generation of embeddings for each ques-
tion xi from the training set Dtrain by invoking the "Generate_Embedding"
procedure (Algorithm 1). This procedure computes the embedding list
E, which is a list containing vector representation for each question in
Q. The k-means clustering algorithm is applied to these question rep-
resentations, resulting in k clusters of questions, where k is the desired
number of in-context demonstrations [66]. Questions within each clus-
ter are sorted into a list x(i) = [x(i)1 , x(i)2 , . . .] in ascending order based
on their distance to the cluster’s centroid.

2. In the second phase, the objective is to a sample representative ques-
tion, that meets specific criteria, from each cluster. First, an empty list
C is utilized to store in-context demonstrations. This list will be popu-
lated with selected questions and corresponding reasoning chains. For
each cluster i in the range 1 to k, the algorithm iterates through the
sorted list x(i). For each question x(i)j in the sorted list of cluster i, the

algorithm determines whether the question x(i)j and its associated rea-

soning chain r(i)j satisfy the predefined selection criteria. The selection
criteria encompass two main constraints: number of tokens in the ques-
tion constraint P and number of reasoning steps constraint R. The to-
ken constraint ensures that the question x(i)j has no more than P tokens.
This constraint is applied to avoid complex examples. The reasoning
steps constraint ensures that the reasoning chain r(i)j does not contain
more than R reasoning steps. This constraint is used to filter out com-
plex reasoning chains. If the selection criteria are met for a question x(i)j

within cluster i, a demonstration ci = [Q : x(i)j , A : r(i)j ◦ y(i)j ] is added
to the demonstration list C. This demonstration encompasses the se-
lected question, the reasoning chain, and the final answer. Finally, the
algorithm returns the constructed demonstration list C, which contains
representative questions meeting the selection criteria from each clus-
ter.

The pseudocode of this method can be found in Algorithm 4. A visual
illustration is shown in Figure 2.16.

Performance
Across ten public benchmark reasoning datasets, the experimental find-

ings indicated that using GPT-3, Auto-CoT consistently either matches or
surpasses the performance of the CoT paradigm, which relies on human-
generated labels [66].

2.4.4.8 Active-CoT

[14] proposed a novel approach called Active-Prompt, designed to adapt
LLMs to various tasks using task-specific example prompts augmented with
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Figure 2.16: Example of Auto-CoT. Reprinted from [66]

human-designed CoT reasoning. To ensure consistency in naming across
all methods, it is referred to as Active-CoT. The method involves identifying
and selecting the most uncertain examples using a LLM, which are annotated
with human-designed CoT reasoning. Additionally, in this thesis, Active-
CoT is also used with LLM-generated labels. Drawing inspiration from the
domain of uncertainty-based active learning, [14] introduced several metrics
to quantify uncertainty including entropy, variance, disagreement etc. More-
over, they conducted in-depth analysis of different pool sizes, uncertainty
metrics and zero-shot learning to demonstrate the effectiveness of this ap-
proach. It’s important to note that while Retrieval-CoT chooses a different
set of demonstrations for various test questions, Active-CoT selects demon-
strations from the training set, maintaining the same set of demonstrations
for each test question [66].

Uncertainty-based active learning
Active-CoT is related to uncertainty-based active learning [9, 53, 57] which

aims to select the most informative data points for labeling in order to im-
prove the performance of a machine learning model. Instead of randomly
selecting data or following a fixed pattern, uncertainty-based active learning
focuses on identifying the instances in a dataset where a machine learn-
ing model is most uncertain about its predictions. Recent investigations (as
seen in [26, 55]) have highlighted the advantages of active learning-based
approaches for fine-tuning LLMs in classification tasks.

Approaches for assessing uncertainty can be categorized into four distinct
types, which are determined by the quantity (single or multiple) and the
characteristics (deterministic or stochastic) of the Deep Neural Networks
(DNN) [16].
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• Single deterministic methods involve generating predictions through
a single forward pass within a deterministic neural network. The as-
sessment of uncertainty is typically achieved by using external ap-
proaches or by directly predicting it through the network itself [16].

• Bayesian methods encompass a range of stochastic DNN, specifically
those in which two forward passes with the same input typically yield
different outcomes [16].

• Ensemble methods, on the other hand, combine predictions from sev-
eral distinct deterministic networks during the inference stage [16].

• Test-time augmentation techniques involve utilizing a single determin-
istic network to make predictions, but they enhance the input data dur-
ing testing to generate multiple predictions. These multiple predictions
are then used to assess the confidence level of the prediction [16].

Active-CoT utilizes the test-time augmentation technique for estimating
the uncertainty as it leverages a single deterministic LLM on inference to
generate several predictions, based on which the uncertainty is assessed.

Uncertainty Metrics
In order to choose a subset of questions from a given dataset, an unsu-

pervised method is required. Previous research, as indicated in the study
by [18], has demonstrated that reducing the uncertainty of the model con-
tributes to improving its overall performance. Therefore, [14] introduced the
uncertainty utilized by LLM as a metric for selecting the most informative
data by infering a test question tr times to obtain tr potential answers. Var-
ious methods can be applied to estimate the uncertainty associated with a
question. In the study by [14], four uncertainty metrics were considered: en-
tropy, variance, disagreement, and self-confidence. For a given question qi,
Ŷi = {ŷ(1)i , ŷ(2)i , . . . , ŷ(tr)i } are tr answers generated by the LLM and UM is
an uncertainy metric function which takes tr predictions as input and re-
turns the uncertainty: ui = UM(Ŷi). This notation will be used to explain
the various uncertainty metrics.

Entropy Entropy is used as one of the metrics to measure uncertainty in
Active-CoT. It is a measure of randomness or the level of disorder in a
given dataset or system. Assuming that there are hi unique answers in
tr total answers in Ŷi, in Active-CoT, entropy ui for a given question qi
is calculated as follows:

ui = UM(Ŷi) = −
hi

∑
j=1

ln(Pθ(ŷ
(j)
i |qi)) · Pθ(ŷ

(j)
i |qi) (2.8)

In this context, Pθ(ŷ
(j)
i |qi) stands for the frequency at which a particular

predicted answer appears among all the predictions. The higher the
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entropy, the more uncertain the answer is. The objective of Active-CoT
would be to find the question qi that maximizes the entropy:

arg max
i
−

hi

∑
j=1

ln(Pθ(ŷ
(j)
i |qi)) · Pθ(ŷ

(j)
i |qi) (2.9)

As a result, questions with largest entropy will be selected [14].

Disagreement Disagreement measures the diversity of tr several answers
generated by a language model Ŷi = {ŷ(1)i , ŷ(2)i , . . . , ŷ(tr)i } for a given
question qi. It is determined by identifying the distinct answers in
the predictions, resulting in a collection of hi unique answers Ĥi =

{ŷ(1)i , ŷ(2)i , . . . , ŷ(hi)
i }. Then the disagreement is calculated by ui = UM(Ŷi) =

hi
tr [14].

Variance proposed variance as uncertainty metrics which is a measure of
spread in the predictions from the average prediction.

ui = UM(Ŷi) =
1

tr− 1

tr

∑
j=1

(ŷ(j)
i − ¯̂y(j)

i )2 |q=qi (2.10)

where ¯̂y(i j) = 1
tr ∑tr

j=1
¯̂y(j)
i is the average prediction. As a result the ob-

jective of Active-CoT would be to find the question qi that maximizes
the variance:

arg max
i

1
tr− 1

tr

∑
j=1

(ŷ(j)
i − ¯̂y(j)

i )2 |q=qi (2.11)

As a result, questions with largest variance will be selected. This metric
has its limitations because when answers are of various magnitudes, it
can cause certain predictions to have a more significant impact on the
computed variance. To address the challenge posed by these widely
varying numerical values, [14] suggested a strategy to normalize the
predictions by considering all the numbers mentioned within the re-
spective questions. For example, given the question "Julie is reading a
x1-page book. Yesterday, she was able to read x2 pages and today, she
read twice as many pages as yesterday. If she wants to read half of the
remaining pages tomorrow, how many pages should she read?" and a
predicted answer ŷ, the normalized prediction would be ŷ

|x1|+|x2| [14].

Self-Confidence Determining uncertainty can also be accomplished us-
ing the LLM itself, which is often referred to as self-confidence. Self-
confidence measure can be acquired by interacting with the model
through a predefined template T. For instance, a template could be
created as follows: "For a given question q and its predicted answer a,
provide a confidence assessment for the answer, selecting from the op-
tions (a) very confident, (b) confident, (c) not confident, or (d) wrong



2.4 in-context learning 41

answer." Subsequently, the questions with the lowest confidence scores
are identified.

ui = max
j

Pθ(ŷ
(j)
i |qi) (2.12)

where Pθ(ŷ
(j)
i |qi) represents a categorical variable selected from a pre-

defined set containing options such as "very confident," "confident,"
"not confident," and "wrong answer". As a result, the objective of Active-
CoT would be to find the question qi that minimazes the self-confidence:

arg min
i

max
j

Pθ(ŷ
(j)
i |qi) (2.13)

[14]

Algorithm 6 Active-CoT

1: Input: Set of training questions Q = {xi ∈ Dtrain}, LLM LLMθ , num-
ber of trails tr, temperature te, number of in-context demonstrations k,
uncertainty metric function UM, in-context demonstrations AC

2: Output: Demonstration list C
3: procedure Active_CoT(Q, LLMθ , tr, te, k, UM, AC)
4: U = Estimate_Uncertainty(Q, LLMθ , tr, te, UM, AC)

▷ Go to Estimate_Uncertainty procedure (Algorithm 2)
5: Get the largest k uncertainties from U in descending order
6: with indices {σ(1), . . . , σ(k)}
7: C = [(xσ(1), rσ(1), yσ(1)), . . . , (xσ(k), rσ(k), yσ(k))]
8: return C
9: end procedure

active-cot algorithm

1. The first phase involves the uncertainty estimation for each question
xi from the training set Dtrain by invoking the "Estimate_Uncertainty"
procedure (Algorithm 2). This procedure computes the uncertainty list,
U, which contains the estimated uncertainties for each question in Q.

2. Next, the algorithm selects the k questions with the highest uncertain-
ties in descending order. The selected questions are represented by
their indices {σ(1), . . . , σ(k)}.

3. The final output C, is a list of demonstrations that includes the selected
questions (xσ(1), . . . , xσ(k)), along with their reasoning chains (rσ(1), . . . , rσ(k))
and final answers (yσ(1), . . . , yσ(k)).

The pseudocode of this method can be found in Algorithm 6.

Performance
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Active-CoT outperformed Auto-CoT as well as Random baseline by sig-
nificant margins in GSM8K, MultiArith, and AddSub, demonstrating high
performance across these datasets encompassing arithmetic, commonsense,
and symbolic reasoning [14].

2.4.5 Selection criteria of simple demonstrations

To annotate the data, one method involves utilizing GPT-3.5-turbo with the
Zero-Shot-CoT approach, similar to the method presented in [66], which was
used in Auto-CoT. However, it’s important to note that using a LLM to gen-
erate answers including reasoning chains may result in inaccuracies. As a
result, there is a risk of obtaining wrong demonstrations (i.e., demonstra-
tions with incorrect answers). For instance, in the retrieval-based approach
Retrieval-CoT, this may lead the LLM to reproduce similar mistakes when
reasoning for the test question [66]. Therefore, for this prompting method,
it becomes evident that the avoidance of wrong demonstrations may help
enhace few-shot performance. Even with other prompting methods, the aim
is to choose accurate demonstrations. This can be achieved through a selec-
tion criterion based on the number of token in the question and number of
reasoning steps of an example.

In all methods, except for Diverse-CoT and Diverse-Active-KMeans-CoT,
a selection criterion is applied before implementing the prompting strategy.
This criterion aims to reduce the training dataset to a smaller subset of data,
favoring simpler questions and rationales, as proposed by [66]. For Diverse-
CoT and Diverse-Active-KMeans-CoT, this selection criterion is applied to
each cluster due to computational efficiency.

I begin my analysis by examining how the number of tokens in questions
and the number of reasoning steps affect the accuracy of generated rationales
and why selecting simpler examples holds significance. Following this, I
explain how I determined the selection criteria for my specific case.

2.4.5.1 Effectiveness of Prioritizing Simplicity in Demonstrations

In this section, I analyze the relationship between the complexity of in-
context demonstrations and the accuracy of generated demonstrations, specif-
ically rationales. The focus is on understanding whether the simplicity or
complexity of the demonstrations plays a significant role in the accuracy
of the generated rationales, as we aim to select correct and high-quality in-
context demonstrations.

I first compare the distribution of the number of reasoning steps gener-
ated by GPT-3.5-turbo in the Zero-Shot-CoT setting with the ground truth
distribution. This comparison provides valuable insights into how well the
model aligns with the actual distribution of reasoning steps. In Figure 2.17,
which includes boxplots for both distributions, we observe that GPT-3.5-
turbo tends to generate a higher number of reasoning steps. The same pat-
tern is observed in both the GSM8K and AQUA datasets. This observation
emphasizes the need to limit the number of intermediate steps to ensure
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that we select demonstrations that adhere to the true distribution of reason-
ing steps.

Figure 2.17: Distribution comparison of number of reasoning steps between human-
generated labels (True) and LLM-generated labels with Zero-Shot-CoT.

To gain a deeper understanding about the relationship between the num-
ber of reasoning steps and the count of tokens in questions and their impact
on misclassification, I examine the distribution of the number of interme-
diate steps and the number of tokens in questions for two distinct subsets
within the GSM8K dataset: one comprised of correctly classified examples
and another consisting of incorrectly classified examples. Similar analyses
are conducted for the AQUA dataset. From the boxplots of the GSM8K
dataset in Figure 2.18, it becomes evident that, in this dataset, the greater
the number of intermediate steps generated by GPT-3.5, the higher the like-
lihood of an incorrect classification. Furthermore, this pattern remains con-
sistent when assessing the number of tokens in the questions. Specifically, a
greater number of tokens in the question is associated with a higher proba-
bility of misclassification. Similar insights are observed in the analysis of the
AQUA dataset, as depicted in the boxplots presented in Figure 2.19.

2.4.5.2 Selection Criteria Strategy: Finding the Optimal Values

[66] used a selection criteria similar to those outlined in the hand-crafted
demonstrations by [63]. The aim is to encourage the sampling of simpler
questions (with no more than 60 tokens) and rationales (with no more than
5 reasoning steps) for labeling. They utilized a different model, text-davinci-
002, for labeling, in contrast to my use of GPT-3.5-turbo.

Nevertheless, applying this criterion to the zero-shot-generated rationales
by GPT-3.5-turbo in my case leads to a very low number of selected demon-
strations. Out of 1000 training examples for GSM8K, only 191 examples were
selected. Similarly, for AQUA, only 172 examples were selected. This reduc-



2.4 in-context learning 44

Figure 2.18: Distribution of number of tokens in questions and number of reasoning
steps for GSM8K across two subsets: correctly classified and incorrectly
classified.

Figure 2.19: Distribution of number of tokens in questions and number of reasoning
steps for AQUA across two subsets: correctly classified and incorrectly
classified
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tion in the training dataset to a very small size may omit informative exam-
ples crucial for few-shot prompting.

When annotating with Zero-Shot-CoT, I maintain the assumption that we
do not have access to the ground truth labels. This assumption remains in
place even when selecting the optimal values based on the distribution of the
number of intermediate steps and the number of tokens in questions, with-
out reference to the distributions of the subset containing correctly classified
examples and incorrectly classified examples. For determining a reasonable
value for the maximum number of intermediate steps and the maximum
number of tokens in questions, I use a percentile-based approach. Specifi-
cally, I choose a value falling between the 75th percentile and the 75th per-
centile plus 1.5 times the Interquartile Range (IQR). This approach is particu-
larly suitable for non-normally distributed data. Any value beyond the 75th
percentile plus 1.5 times the IQR is regarded as an outlier and thus excluded
from the selection criteria. It’s important to note that this approach may not
be appropriate for all use cases, as it relies primarily on the data distribution
and doesn’t consider domain knowledge or external factors. For AQUA, I’ve
chosen a maximal number of tokens in question of 70 and a maximal num-
ber of intermediate steps of 15, while for GSM8K, I’ve chosen a maximal
number of tokens in question of 86 and a maximal number of intermediate
steps of 12.



3
P R O P O S E D P R O M P T I N G M E T H O D S

Diversity may help to mitigate the issue of "misleading by similarity" [66]
and [14] demonstrated that selecting demonstrations assosicated with high
model uncertainy improved the few-shot performance [14]. This emphasizes
the significance of both diversity and uncertainty in identifying the most in-
formative examples. [14] considered the combination of diversity and uncer-
tainty as an important future direction. Therefore, I propose new prompting
methods: Diverse-Active-KMeans-CoT and Diverse-Active-KMeansPlusPlus-
CoT. These methods aim to combine diversity and uncertainty, ensuring the
selection of examples that are diverse from each other, particularly in terms
of semantic representation of the questions, while also exhibiting high model
uncertainty.

3.0.1 Diverse-Active-KMeans-CoT

Diverse-Active-KMeans-CoT combines the strategies from Diverse-CoT and
Active-CoT. It follows a similar approach to Diverse-CoT with one key dif-
ference. While Diverse-CoT sorts questions within each cluster by their dis-
tance to the cluster center in ascending order, Diverse-Active-KMeans-CoT
arranges questions within each cluster in descending order based on their
uncertainty. This prompting method aims to prevent the issue of "mislead-
ing by similarity" by ensuring a diverse selection of questions. It achieves
this by sampling questions from each cluster, focusing on diversity, while
also addressing the challenge of model uncertainty. Specifically, it chooses
examples associated with the highest uncertainty within each cluster, if they
fulfill the specified selection criteria.

3.0.2 Diverse-Active-KMeansPlusPlus-CoT

This algorithm’s objective is to choose a set of k demonstrations from a
dataset of questions and answers, with a primary focus on diversity and
questions where the model is uncertain. To achieve this, it introduces a
weighted F1-score metric that considers both diversity and uncertainty. This
weighting allows for the prioritization of either diversity or uncertainty.

The Diverse-Active-KMeansPlusPlus-CoT approach uses a similar strat-
egy to KMeans++, which involves a smarter way to initialize the centroids
compared to random selection in the KMeans clustering method [39]. It
starts by selecting the in-context example with the highest uncertainty as
the first demonstration. It then iteratively determines the next example to se-
lect based on the computed F1-score, which takes into account the similarity
between the candidate questions and the questions already chosen in pre-
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vious iterations, as well as uncertainty. It does so either by sampling based
on the computed probability distribution, resulting from the F1-scores, or in
a deterministic manner by selecting the example with the highest F1-score.
This continues until k examples are selected. A high F1-score for a ques-
tion indicates its relatively high diversity compared to the already selected
questions and its relatively high uncertainty as well.

diverse-active-kmeansplusplus-cot algorithm

1. The first step involves the embedding generation and uncertainty es-
timation for each question xi from the training set Dtrain by invok-
ing respectively the "Generate_Embedding" procedure (Algorithm 1)
and the "Estimate_Uncertainty" procedure (Algorithm 2). The "Gener-
ate_Embedding" procedure computes the embedding list E, whereas
the "Estimate_Uncertainty" procedure computes the uncertainty list U.

2. Then, an empty list C is initialized to store in-context demonstrations.
The initial step of the selection process involves identifying the exam-
ple index σ(1) from Dtrain with the highest uncertainty based on U.
This selected example, denoted as Dtrain[σ(1)], is added to C, and it
is removed from the available question pool E as it has already been
selected.

3. For the remaining k − 1 demonstrations, the algorithm iteratively se-
lects examples by adding them to C based on their similarity to the
current C and their uncertainty. We iterate through the index z until we
reach the desired number of in-context demonstrations k. Within each
iteration, a demonstration with index σ(z) is selected. Within this loop,
we initialize empty arrays F to store the F1-scores and NU , NS which
are needed to perform the normalization of uncertainties and similar-
ities for each question xi from Dtrain. This normalization is essential
to prevent a disproportionate influence on the F1-score due to varying
scales between the similarity or uncertainty measures. Inside this loop,
we iterate over the training question embeddings that have not been se-
lected yet and create an empty list Si to store similarities for embedding
ei, which corresponds to the question xi, with the examples already se-
lected in C. Therefore, for each question embedding ei from E, we com-
pute the cosine similarity cos_sim between ei and the embeddings in C,
represented as ej, by iterating through the embeddings of C with cj. The
cosine similarity is calculated as cos_sim(ei, ej) =

ei ·ej
∥ei∥2∥ej∥2

for each pair

of embeddings, which is then transformed using exp(−cos_sim(ei, ej)).
This transformed value si,j is then stored in the list Si. The utilization of
an exponential transformation aims to minimize the cosine similarity
in order to maximize diversity and ensures a transformation resulting
in a positive value as well.

4. For each ei, we determine the maximum similarity from the array Si,
which is denoted as si, and add it to the list NS. Additionally, we
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Algorithm 7 Diverse-Active-KMeansPlusPlus-CoT

1: Input: Training set Dtrain, the number of demonstrations k, sentence en-
coder SEθ , LLM LLMθ , number of trails tr, temperature te, an uncertainty
metric function UM, in-context examples AC, weight for uncertainty β,
probability top_p, greedy flag greedy and args includes all these argu-
ments

2: Output: Demonstration list C
3: procedure Diverse_Active_KMeansPlusPlus_CoT(args)
4: Q = {xi ∈ Dtrain}
5: Create an empty list C to store in-context demonstrations.
6: U = Estimate_Uncertainty(Q, LLMθ , tr, te, UM, AC)

▷ Go to Estimate_Uncertainty procedure (Algorithm 2)
7: E = Generate_Embedding(Q, SEθ)

▷ Go to Generate_Embedding procedure (Algorithm 1)
8: σ(1) ← Get the index of the example d from Dtrain with the highest

uncertainty based on U.
9: Add Dtrainσ(1)

to C.
10: Remove Eσ(1) from E.
11: for z = 2 to k do
12: Create empty lists F, NU, NS to respectively store F1-scores, normal-

ized uncertainties and normalized similarities for {ei}
13: for each ei in E do
14: Create an empty list Si to store similarities for ei with current exam-

ples from C
15: for each cj in C do
16: cos_sim(ei, ej) =

ei ·ej
∥ei∥2∥ej∥2

17: Add si,j = exp(−cos_sim(ei, ej)) to Si
18: end for
19: si ← Get the maximum similarity from Si and Add to NS
20: ui ← Get uncertainty of ei from U and Add to NU
21: end for
22: for w = 1 to |E| do

23: nsw = nsw/
|NS|
∑

i=1
nsi

24: nuw = nsw/
|NU|
∑

i=1
nui

25: Add f 1w = (β2+1)·nsw·nuw
β2·nsw+nuw

to F
26: end for
27: if not greedy then
28: top_F1← Get the highest top_p% values from F
29: Compute probabilities P using softmax on top_F1
30: σ(z)← Sample an index randomly based on probability distribution

P
31: else
32: σ(z)← Get index with the highest F1-score in F
33: end if
34: Add ci = Dtrainσ(z) = [Q : xσ(z), A : rσ(z) ◦ yσ(z)] to C
35: Remove Eσ(z) from E.
36: end for
37: return C
38: end procedure
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retrieve the uncertainty ui for ei from the uncertainty array U and add
it to the list NU.

5. After computing and storing the similarities and uncertainties for the
questions in E, we proceed to normalize them to bring similarity and
uncertainty into the same scale, thus avoiding the influence of spe-
cific values of high uncertainty or similarity. To achieve this, we it-
erate through the uncertainties NU and similarities NS, using index
w from 1 to the length of E. Two operations are performed on each
element: dividing each uncertainty nuw by the sum of all uncertain-

ties nuw = nsw/
|NU|
∑

i=1
nui, and dividing each similarity nsw by the sum

of all similarities nsw = nsw/
|NS|
∑

i=1
nsi. This yields relative scores. The

normalized uncertainty nuw and similarity nsw are then used in the
computation of the F1-score, represented as f 1w = (β2+1)·nsw·nuw

β2·nsw+nuw
. These

F1-scores are added to the list F.

6. Following the computation of F1-scores for all ei in E, we proceed to
assess whether a greedy approach is specified (i.e., if greedy is true). If
the greedy approach is selected, we identify the index σ(z) with the
highest F1-score in F. Alternatively, if the greedy approach is not se-
lected (i.e., greedy is false), we select the top top_p% scores from F,
which are stored in top_F1. In this context, examples with relatively
low F1-scores are excluded from the sampling process. These top F1-
scores are transformed into probabilities P using softmax, which am-
plifies the differences between values, giving priority to high F1-scores.
Subsequently, we perform random-weighted sampling based on the
probability distribution P and obtain the selected index σ(z).

7. The corresponding example from the training set, denoted as ci =

Dtrainσ(z) = [Q : xσ(z), A : rσ(z) ◦ yσ(z)], is added to the demonstration list
C, and the corresponding question embedding Eσ(z) is removed from
E. This entire process is repeated until we have selected k in-context
demonstrations. The algorithm returns the list C containing k selected
demonstration examples.

The pseudocode of this method is shown in Algorithm 7.

3.0.3 Diverse-Active-KMeansPlusPlus-Retrieval-CoT

Even though diversity may help prevent the selection of incorrect demonstra-
tions and mitigate the issue of ’misleading by similarity,’ insights from [32]
have highlighted the influence of question similarity with the test question
on few-shot performance. Therefore, I integrated the retrieval component
into the algorithm Diverse-Active-KMeansPlusPlus-CoT and propose a new
method, Diverse-Active-KMeansPlusPlus-Retrieval-CoT. This method is de-
signed to address the challenge of selecting a diverse set of demonstrations
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that exhibit high model uncertainty, ensuring the selection of semantically
similar questions related to a test question. It operates in two main phases:
Diverse-Active-KMeansPlusPlus-CoT and Retrieval-CoT.

• Phase 1: Diverse-Active-KMeansPlusPlus-CoT In the first phase, the
algorithm leverages Diverse-Active-KMeansPlusPlus-CoT. This process
allows for the selection of p examples from the training set. The se-
lected examples are characterized by two essential criteria: high model
uncertainty and diversity. Diverse-Active-KMeansPlusPlus-CoT prior-
itizes diversity, minimizing the risk of "misleading by similarity" and
avoiding the selection of redundant examples. Simultaneously, it aims
to select examples characterized by high model uncertainty.

• Phase 2: Retrieval-CoT In the second phase, Retrieval-CoT further
enhances the selection process. This phase is executed for a specific
test question. It aims to identify and select the most similar questions
from a given set of questions, which includes the ones selected during
the first phase. This step ensures that the selected examples closely
aligns with the test question.

The pseudocode of this method is shown in Algorithm 8.

Algorithm 8 Diverse-Active-KMeansPlusPlus-Retrieval-CoT

1: Input: Training set Dtrain, the number of demonstrations for Diverse-
Active-KMeansPlusPlus-CoT p, sentence encoder SEθ , LLM LLMθ , num-
ber of trails tr, temperature te, uncertainty metric function UM, in-
context examples AC, weight for uncertainty β, probability top_p, greedy
flag greedy, argsphase1 includes all the previous arguments, number of
in-context demonstrations k, test question xtest

2: Output: Demonstration list C
3: procedure Diverse_Active_KMeansPlusPlus_Retrieval_CoT(Q, LLMθ , tr, te, p, UM, AC)
4: PC = Diverse_Active_KMeansPlusPlus_CoT(argsphase1)

▷ Go to Diverse_Active_KMeansPlusPlus_CoT procedure (Algo-
rithm 7)

5: PQ = {xi ∈ PC}
6: C = Retrieval_CoT(PQ, SEθ , k, xtest)

▷ Go to Retrieval_CoT procedure (Algorithm 3)
7: return C
8: end procedure

The main challenge of Diverse-Active-KMeansPlusPlus-Retrieval-CoT lies
in determining the optimal value for p. If prioritizing uncertainty and di-
versity over similarity with the test question is crucial, p should be set to a
lower value. Conversely, a higher value for p prioritizes the similarity with
the test question. This is because a greater number of examples available for
selection in the second phase increases the likelihood of choosing examples
that closely resemble the test question.



4
E X P E R I M E N T S

A part of the material presented in the Experiments section has been refor-
mulated based on outputs generated by ChatGPT [43].
Here is an example of a prompt:
I am going to present the evaluation results regarding my master thesis. You should
write a well-structured output and compare the performance of the few-shot prompt-
ing methods against the random approach on the GSM8K dataset with human-
generated labels. Ensure readability and clarity. Here are the results: The perfor-
mance of Random-CoT is 79.5%. The performance of few-shot prompting methods
is as follows: Active-CoT has 83.0% and Diverse-CoT has 78.1%. Do not make up
any information. Only provide a comparison between these methods..

This the response generated by ChatGPT:
Title: Comparative Analysis of Few-Shot Prompting Methods vs. Random Approach
on GSM8K Dataset with Human-Generated Labels
Introduction:
The evaluation results of various prompting methods on the GSM8K dataset with
human-generated labels provide valuable insights into the efficacy of these tech-
niques. In this study, we focus on comparing the performance of the Random-
CoT approach against two prominent few-shot prompting methods: Active-CoT and
Diverse-CoT.
Random-CoT Performance:
The Random-CoT method achieved a performance score of 79.5%. This approach ran-
domly selects prompts to generate responses, serving as a baseline for comparison
with more sophisticated prompting techniques.
Few-Shot Prompting Methods:
a. Active-CoT: The Active-CoT method demonstrated a notable performance improve-
ment, achieving an accuracy of 83.0%. This approach involves strategically selecting
informative prompts to enhance the model’s understanding and response generation.
b. Diverse-CoT: The Diverse-CoT method, while competitive, exhibited a perfor-
mance of 78.1%. This method aims to diversify prompts, providing the model with
a broader range of context for generating responses.
Comparison and Analysis:
Active-CoT vs. Random-CoT:
Active-CoT outperforms Random-CoT by 3.5 percentage points, indicating that ac-
tively selecting informative prompts contributes to enhanced model performance.
The strategic prompt selection in Active-CoT likely enables the model to focus on rel-
evant information, leading to more accurate and contextually appropriate responses.
Diverse-CoT vs. Random-CoT:
Diverse-CoT performs slightly below Random-CoT by 1.4 percentage points, sug-
gesting that diversifying prompts may not necessarily lead to a significant improve-
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ment in model performance on this dataset.
While diversity in prompts is beneficial, the specific context and characteristics of
the GSM8K dataset may not fully capitalize on the advantages offered by a diverse
set of prompts.
Conclusion:
In conclusion, the evaluation results on the GSM8K dataset with human-generated
labels highlight the effectiveness of few-shot prompting methods compared to the
Random-CoT baseline. Active-CoT, with its strategic prompt selection, stands out
as the most successful method, surpassing both Random-CoT and Diverse-CoT.
These findings underscore the importance of prompt selection strategies in optimiz-
ing model performance in natural language processing tasks.

ChatGPT often generates long responses and may include inaccurate in-
formation, even when explicitly instructed not to. As a result, I have been
careful in rephrasing its responses [41].

4.1 experimental setup

4.1.1 Datasets and Evaluation Metric

This work focuses on mathematical word problems, as illustrated in Figure
2.10. These problems serve as a measure of the arithmetic reasoning capabil-
ities of LLMs. While these problems may appear straightforward to humans,
they often pose challenges for LLMs, as observed in previous studies [20, 47].
In order to provide evidence for the efficiency of several few-shot prompting
methods, experiments are conducted on two arithmetic reasoning datasets:
GSM8K and AQUA.

gsm8k GSM8K includes 8,500 well-crafted grade school math problems,
created by people. It’s split into 7,500 problems for training and 1,000 for
testing. These math problems usually require 2 to 8 steps to solve, involving
basic math operations like addition, subtraction, division, and multiplication.
They are designed to be solvable by an average middle school student [8].
The GSM8K dataset is provided in a file format where each line corresponds
to a single grade school math problem, saved as a JSON dictionary. The
JSON dictionary includes:

1. Question: A natural language definition of the problem to be solved.

2. Answer: The answer to the problem, which is formatted with calcula-
tion annotations and the final numeric solution is marked as the last
line of the solution, preceded by "####."

aqua The AQUA dataset consists of approximately 100,000 algebraic word
problems, each structured as a JSON object comprising four key compo-
nents:

1. Question: A natural language definition of the problem to be solved.
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2. Options: Five possible choices (A, B, C, D, and E) are provided, with
one of them being the correct answer.

3. Rationale: A natural language description that explains the solution to
the problem.

4. Correct: This indicates which option among A, B, C, D, and E is the
correct answer.

The AQUA dataset has been entirely created through crowdsourcing, us-
ing the methods explained in [30].

The evaluation metric used is exact match accuracy. The generated final
answers by LLM are compared to the ground truth answers.

4.1.2 Prompting Methods and Baselines

4.1.2.1 Baselines

In my experiments, these three approaches are established as baselines:

• Zero-Shot-CoT using GPT-3.5-turbo: This prompting technique pro-
vides task instructions without any demonstrations. It is the baseline
for the other few-shot chain-of-thought prompting methods.

• Random-Standard: A few-shot prompting approach that includes ques-
tions and final answers but excludes the reasoning chains. It is the base-
line for both Random-CoT and the other few-shot standard methods.

• Random-CoT: A few-shot prompting method that, in contrast to Random-
Standard, encompasses questions, final answers, and their associated
reasoning chains. It is the baseline for the other few-shot chain-of-
thought prompting methods.

4.1.2.2 Prompting methods

In my experiments, the following prompting methods were tested:

• Diverse-CoT : A prompting method that prioritizes selecting ques-
tions with diverse semantic meanings.

• Active-CoT : A prompting method, which aims to select examples in
which LLM is most uncertain, focusing on reducing the model uncer-
tainty.

• Retrieval-CoT : A prompting method, which selects questions that are
most similar to the test question.

• Diverse-Active-KMeans-CoT : A prompting method, which partitions
questions into clusters using KMeans and selects examples with high
uncertainty within each cluster, combining diversity and uncertainty.



4.1 experimental setup 54

• Diverse-Active-KMeansPlusPlus-CoT : A prompting method, which
prioritizes diversity and uncertainty in example selection using a weighted
F1-score metric. It begins with the example having the highest uncer-
tainty and iteratively selects the next examples based on a weighted
F1-score considering the similarity between questions and previously
chosen examples.

• Diverse-Active-KMeansPlusPlus-Retrieval-CoT : A prompting method,
which is designed to choose a diverse set of demonstrations that exhibit
high model uncertainty, with a focus on selecting semantically similar
questions related to a test question.

Furthermore, Random-CoT, Diverse-CoT, Active-CoT, and Retrieval-CoT
are also tested with standard prompting (without including the reasoning
chains) and are referred to as respectively: Random-Standard, Diverse-Standard,
Active-Standard, Retrieval-Standard.

4.1.3 Infrastructure

4.1.3.1 Models and Infrastructure Setup

To thoroughly evaluate the effectiveness and robustness of various prompt-
ing methods, it is essential to assess their performance across diverse models,
including open-source LLMs. The following LLMs have been selected for this
evaluation:

• GPT-3.5-turbo: This model is accessible through the UPTIMIZE GPT
API, which is provided by Merck KGaA and serves as a proxy for the
Azure OpenAI API. It offers capabilities on par with the Azure API
but uses a distinct API key. Due to its exceptional reasoning abilities,
this model is the primary choice for my experiments. I use the model
version gpt-35-turbo-0613.

• GPT-4: GPT-4 is accessible via the OpenAI API and can be utilized
locally without the need for specialized infrastructure. Given its en-
hanced capabilities compared to GPT-3.5-turbo, it is specifically evalu-
ated in zero-shot scenarios (Zero-Shot-CoT).

• falcon-40b-instruct: Falcon-40B-Instruct is a causal decoder-only model
with 40 billion parameters. It is recognized as one of the leading open-
source models.

• falcon-7b-instruct: Falcon-7B-Instruct is a causal decoder-only model
with 7 billion parameters. It is based on Falcon-7B and further fine-
tuned using a combination of chat and instruct datasets. For assess-
ing the performance of open-source LLMs, including falcon-40b-instruct
and falcon-7b-instruct, I run them on an ec2-instance of type g5.12xlarge,
equipped with four NVIDIA A10G Tensor Core GPUs, each with 96GB
of memory and a total of 48 vCPUs.
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4.1.3.2 Distributed Inference

Running LLMs for inference can be challenging, often resulting in unexpect-
edly slow performance, even when using expensive hardware. To address
these challenges, I use vLLM, an open-source library designed for efficient
LLM inference and deployment. vLLM utilizes PagedAttention, an innova-
tive attention algorithm. It offers exceptional speed with:

• Cutting-edge serving throughput

• Effective management of attention key and value memory with Page-
dAttention

• Continuous batching of incoming requests

• Optimized CUDA kernels

Furthermore, vLLM seamlessly integrates with widely-used HuggingFace
models, supporting high-throughput serving with various decoding tech-
niques, including parallel sampling, beam search, and other options [25].

[25] demonstrated that vLLM achieves up to 24 times greater through-
put than HuggingFace Transformers [65] and up to 3.5x higher throughput
than Text Generation Inference [22] without requiring any modifications to
the model architecture, thereby setting a new standard for LLM deployment.
Importantly, vLLM is seamlessly integrated into the langchain, the primary
package used in this study. This integration streamlines the use of OpenAI
models as well as open-source models with prompt templates in langchain.

4.1.4 Hyperparameters

The results presented in this paper will be compared to those in [14]. How-
ever, a comparison with the work of [66] is not feasible, as the latter assumed
the absence of training data and utilized the test set both for selecting in-
context demonstrations and for evaluation. Notably, [14] used older models
from the GPT-3.5 family at that time. Consequently, I conduct a comparison
among the performance of different models. It’s important to note that com-
paring prompting methods evaluated on different models may not yield a
fair assessment.

I maintain consistency in hyperparameters with [14] for several aspects:

• In my experiments, the original training datasets were not used due
to their size. Instead, a random sample of 1000 data points was drawn
from the training set, following a similar approach as [14], to reduce
computational costs. It’s important to acknowledge that this approach
may impact the accuracy of uncertainty estimation. Generally, a larger
training dataset provides a more precise estimation of data distribution
and uncertainty. With additional financial support, an improvement in
the model’s performance is anticipated [14]. To ensure a fair compari-
son, I use the same test set as used by [14].
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• All few-shot prompting methods use the identical number of examples
as utilized in [14]: 8 for GSM8K and 4 for AQUA.

• I use the same temperature value of 0.7 for uncertainty estimation, as
used in [14].

• A limited number of manually crafted examples are utilized to enhance
answer prediction during the uncertainty estimation phase. These an-
notated examples are sourced directly from [14], which they refer to as
a "few-shot prompting trick", aimed at improving prediction reliability.

• In Active-CoT, as proposed by [14], human input is involved in an-
notating selected questions, with an expert annotator guiding logical
thought processes. The focus is primarily on selecting appropriate ex-
amples, with less emphasis on intensive manual annotation. Although
they explored the impacts of different annotators and the distinct ef-
fects of example selection and annotation, their results demonstrate
that the annotators A and B consistently outperform baseline models.
In addition to their primary annotator (annotator A), they also incor-
porate human-annotated explanations from the GSM8K dataset (anno-
tator B). My thesis makes use of the annotations provided from the
GSM8k dataset and therefore will be compared to the results of anno-
tator B by [14].

While my approach aligns with [14] on certain hyperparameters, there are
differences:

• While [14] uses a number of trails equal to 10, I use a number of trails
equal to 5 to avoid high computational costs. A larger number of trails
may lead to more precise estimation.

• Inference in [14] involves setting the temperature to 0.7 and making 40

attempts for each question to select the most consistent answer, known
as self-consistency [62]. Active-CoT is combined with self-consistency
in their approach. In contrast, my approach queries the LLM only once
with a temperature of 0.0 during inference, thus not applying the self-
consistency method. In all the few-shot prompting methods in my the-
sis, I do not use self-consistency during inference to ensure a fair com-
parison.

For methods with multiple hyperparameters, such as Diverse-Active-KMeansPlusPlus-
Retrieval-CoT, I conduct hyperparameter tuning by exploring 3-5 combina-
tions and report the best accuracy. In the case of Random-CoT, four different
seeds were used for random in-context example sampling, and the average
accuracy was reported.

It’s important to note the dataset sizes in the evaluation. The GSM8K test
set consists of 1,319 examples, while AQUA contains only 254. For instance,
a 2% performance improvement on GSM8K corresponds to roughly 26 more
examples correctly classified, whereas on AQUA, it amounts to just 5 exam-
ples.
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4.2 results

In the sections that follow, I provide a summary of all the results and accu-
racies. Table 4.1 showcases the performance of CoT and standard prompting
methods with human-generated labels, while Table 4.2 demonstrates the per-
formance of these methods using LLM-generated labels with Zero-Shot-CoT.

4.2.1 Comparison of Prompting Methods

4.2.1.1 Few-shot with GPT-3.5-turbo vs Zero-Shot-CoT with GPT-3.5-turbo

I conducted an extensive evaluation of model performance in a few-shot set-
ting across various scenarios and selection methods, comparing the perfor-
mance of few-shot approaches on two datasets: GSM8K and AQUA against
Zero-Shot-CoT with GPT-3.5-turbo. The scenarios I explored encompassed
both CoT and Standard approaches, incorporating human-generated labels
and labels generated by Zero-Shot-CoT using GPT-3.5-turbo.

1. CoT approaches with human-generated labels: In the first scenario,
where CoT methods incorporated human-generated data, the few-shot-
CoT methods demonstrated remarkable performance.

GSM8K: With an average accuracy of 80.8%, they significantly outper-
formed the Zero-Shot-CoT approach on the GSM8K dataset, surpass-
ing it by 11.4%.

AQUA: Similarly, on the AQUA dataset, the few-shot-CoT methods
achieved an average accuracy of 60%, outperforming the Zero-Shot-
CoT approach (54.7%) by 5.3%.
[43]

2. CoT approaches with LLM-generated labels: In the second scenario,
I examined CoT approaches that leveraged Zero-Shot-CoT generated
data with GPT-3.5-turbo.

GSM8K: Few-shot-CoT prompting methods excelled with an average
accuracy of 81% on the GSM8K dataset, surpassing the Zero-Shot-CoT
approach by 11.6%.

AQUA: On the AQUA dataset, few-shot-CoT approaches achieved an
average accuracy of 56.7%, demonstrating a 2% improvement over the
Zero-Shot-CoT approach (54.7%).
[43]

3. Standard approaches with human-generated labels: In this scenario,
I assessed standard approaches using human-generated labels.

GSM8K: In this case, few-shot standard methods yielded an average
accuracy of 71.1% on the GSM8K dataset, outperforming the Zero-Shot-
CoT approach by 1.7%.
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AQUA: Surprisingly, on AQUA Zero-Shot-CoT outperforms the few-
shot standard methods (average 52.5%) by 2.2%.
[43]

4. Standard approaches with LLM-generated labels: Finally, I examined
standard approaches using labels generated by Zero-Shot-CoT with
GPT-3.5-turbo.

GSM8K: The few-shot standard methods achieved an average accu-
racy of 70.6% on the GSM8K dataset. This performance slightly out-
performs the Zero-Shot-CoT approach by a small margin of 1.2%.

AQUA: However, when evaluated on the AQUA dataset, standard
approaches yielded an average accuracy of 51.5%. In this case, the
standard approaches were underperformed by the Zero-Shot-CoT ap-
proach, which achieved an accuracy of 54.7%, surpassing the standard
methods by 3.2%.
[43]

To conclude, few-shot methods have consistently demonstrated their ef-
fectiveness, outperforming Zero-Shot-CoT with GPT-3.5-turbo with a sig-
nificant margin in different scenarios. However, it’s important to note that
on these datasets, Zero-Shot-CoT with GPT-3.5-turbo performs comparably
with few-shot standard approaches only when labels are generated by Zero-
Shot-CoT. These results highlight the potential of few-shot methods to en-
hance model performance across a range of contexts.

4.2.1.2 Few-shot with GPT-3.5-turbo vs Zero-Shot-CoT with GPT-4

In a similar fashion, I evaluate the average performance of various few-shot
prompting methods across different scenarios when compared to Zero-Shot-
CoT, utilizing GPT-4.

1. CoT approaches with human-generated labels:

GSM8K: On the GSM8K dataset, Zero-Shot-CoT with GPT-4 achieved
an accuracy of 87.6%, surpassing few-shot chain-of-thought methods
with human-generated labels by 6.8%.

AQUA: On the AQUA dataset, Zero-Shot-CoT with GPT-4 demon-
strated an accuracy of 68.9%, outperforming few-shot methods by 8.9%.
[43]

2. CoT approaches with LLM-generated labels:

GSM8K: It outperformed few-shot chain-of-thought methods by 6.6%
on the GSM8K dataset.

AQUA: Impressively, on the AQUA dataset, it exhibited an even more
significant advantage, surpassing the performance of few-shot meth-
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ods by a remarkable 12.2%.
[43]

3. Standard approaches with human-generated labels:

GSM8K: Zero-Shot-CoT with GPT-4 exhibited significant advantages
over few-shot standard methods with human-generated labels, outper-
forming them by 16.5% on GSM8K.

AQUA: On the AQUA dataset, it displayed a similar exceptional per-
formance, surpassing other methods by 16.4%.
[43]

4. Standard approaches with LLM-generated labels:

GSM8K: For the GSM8K dataset, standard approaches with Zero-
Shot-CoT-generated labels achieved an average accuracy of 70.6, un-
derperforming Zero-Shot-CoT with GPT-4 by a signifcant margin of
17%.

AQUA: On the AQUA dataset, standard approaches achieved an aver-
age accuracy of 51.5, which was also outperformed by Zero-Shot-CoT
with GPT-4, by a significant margin of 17.4%.
[43]

Based on these experimental results, it is clear that the GPT-4 model,
when employed in a Zero-Shot-CoT setting, consistently outperforms few-
shot prompting methods across various scenarios. These results demonstrate
that GPT-4 exhibits superior capabilities in reasoning tasks compared to its
predecessor, GPT-3.5-turbo. One reason behind the exceptional performance
of GPT-4, particularly on the GSM8K dataset, could be attributed to the fact
that OpenAI included a portion of the training set in the GPT-4 pre-training
mix [44]. This approach might have contributed to the remarkable results
observed in the evaluation.

4.2.1.3 Few-Shot CoT vs Few-shot Standard

I conducted an evaluation to compare the performance of few-shot CoT
prompting methods with that of few-shot standard prompting methods across
various scenarios. These scenarios included labels generated by humans and
labels generated using Zero-Shot-CoT with GPT-3.5-turbo.

1. Human-generated labels:

GSM8K: On the GSM8K dataset, they achieved 80.8% accuracy, sur-
passing the 71.1% accuracy of standard methods by 9.7%.

AQUA: Similarly, on the AQUA dataset, few-shot CoT methods exhib-
ited a 7.5% accuracy improvement over few-shot standard methods.
[43]

2. LLM-generated labels:
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GSM8K: With LLM-generated labels, few-shot CoT methods achieved
an average accuracy of 81% on GSM8K, outperforming few-shot stan-
dard methods at 70.6% by 10.4%.

AQUA: Similarly, on the AQUA dataset, few-shot CoT methods exhib-
ited a 5.2% accuracy improvement over few-shot standard methods.
[43]

In conclusion, this evaluation strongly supports the use of few-shot chain-
of-thought methods for reasoning tasks. The consistent performance im-
provement across scenarios, including both human- and LLM-generated la-
bels, underscores the value of incorporating the reasoning chains in the in-
context demonstrations. It’s worth noting that even when utilizing GPT-3.5-
turbo for labeling, few-shot CoT methods still enhance performance.

4.2.1.4 Few-shot prompting methods vs Random

In this section, I present the evaluation results of several few-shot prompt-
ing methods designed to assess the performance of GPT-3.5-Turbo in a few-
shot setting. I employed various prompting techniques, including those in-
corporating reasoning chains (chain-of-thought approaches) and standard
approaches, to explore their effectiveness in reasoning tasks. Furthermore,
I conducted this evaluation under two distinct labeling scenarios: human-
generated data, considered the ground truth, and labeling with Zero-Shot-
CoT using GPT-3.5-turbo. This comprehensive approach provides a broader
and more robust evaluation under different conditions. The performance of
these few-shot methods is compared to Random approach.

Evaluation Results for Few-shot Chain-of-Thought Methods
I begin by presenting the evaluation results of few-shot Chain-of-Thought

methods.

Human-generated labels:

GSM8K: On the GSM8K dataset, I observe that none of the prompt-
ing methods manages to outperform the baseline, Random-CoT. The
accuracy achieved by the various methods is quite similar to that of
Random-CoT, with only a small margin of difference, typically around
1-1.5%. This suggests that, for the GSM8K dataset, the performance of
these prompting methods is on par with the Random-CoT baseline.

AQUA: However, on the AQUA dataset, we see a slightly different
trend. Active-CoT manages to outperform Random-CoT, but the mar-
gin of improvement is relatively small, approximately 1.6%. Similarly,
Diverse-CoT also outperforms Random-CoT with a smaller margin of
around 1.1%.

In summary, for the GSM8K dataset, the prompting methods exhibit
performance similar to Random-CoT, while on AQUA, we observe
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slight improvements with Active-CoT and Diverse-CoT. The overall ef-
fect, however, is minimal, and the performance across these methods
remains comparable to the Random-CoT baseline.
[43]

LLM-generated labels:

GSM8K: In the evaluation results on the GSM8K dataset, Diverse-CoT
outperforms Random-CoT by a small margin of 1.1%, and Retrieval-
CoT by 1.7%, and Diverse-Active-KMeansPlusPlus-CoT by 1.9%. Only
Diverse-Active-KMeans-CoT, with an accuracy of 79.2%, underperforms
Random-CoT by a slight margin of 0.3%. Meanwhile, methods like
Active-CoT, with an accuracy of 83.0%, outperform Random-CoT by
the largest margin of 3.5%, and Diverse-Active-KMeansPlusPlus-Retrieval-
CoT, with an accuracy of 82%, outperforms by 2.5%.

AQUA: In the evaluation results on the AQUA dataset, Diverse-CoT,
Active-CoT, and Diverse-Active-Retrieval-CoT outperformed Random-
CoT by margins of 3.9%, 2.7%, and 3.3%, respectively. Retrieval-CoT
demonstrated comparable performance with Random-CoT, with a slight
underperformance by 0.7%. However, Diverse-Active-KMeansPlusPlus-
CoT underperformed Random-CoT by a margin of 2.4%.
[43]

In conclusion, when utilizing labels generated by Zero-Shot-CoT with
GPT-3.5-turbo, methods such as Active-CoT, Diverse-CoT and Diverse-Active-
Retrieval-CoT exhibit a significantly performance advantage over Random-
CoT. On the other hand, when working with labels manually labeled by
humans, performance remains comparable to that of Random-CoT. Diverse-
Active-KMeans-CoT methods appear to consistently underperform Random-
CoT in both labeling scenarios and across both datasets. Additionally, Retrieval-
CoT demonstrates comparable or even superior performance when com-
pared to Random-CoT.

Evaluation Results for Few-shot Standard Methods
In the following, I assess the effectiveness of three few-shot standard

approaches: Diverse-Standard, Active-Standard, and Retrieval-Standard, in
comparison to Random-Standard.

Human-generated labels:

GSM8K: On the GSM8K dataset, Random-Standard demonstrates an
average accuracy that outperforms the other prompting methods by an
average margin of 1.6%.

AQUA: Meanwhile, on the AQUA dataset, Random-Standard again
leads, but with a smaller margin of 0.3%.
[43]

LLM-generated labels:
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GSM8K: In the evaluation with LLM-generated labels on the GSM8K
dataset, Random-Standard remains the top performer with a margin
of 0.7%.

AQUA: However, on the AQUA dataset, Random-Standard underper-
forms with a small margin of 0.4%.
[43]

Contrary to the results obtained with Few-shot Chain-of-Thought prompt-
ing methods, it is observed that Random-Standard achieves either compara-
ble or superior performance under both labeling scenarios compared to the
other prompting methods. These results suggests that prompting methods
excel over Random sampling only when incorporating reasoning chains in
the in-context demonstrations or using labels generated by GPT-3.5-turbo
with Zero-Shot-CoT.

4.2.1.5 Human-generated labels vs LLM-generated labels

I aim to compare the average performance of few-shot prompting methods
with human-generated labels against those with LLM-generated labels.

• GSM8K: On the GSM8K dataset, both approaches demonstrate com-
parable performance, with an average accuracy of approximately 81%.

• AQUA: However, on the AQUA dataset, few-shot prompting with
human-generated labels, boasting an average accuracy of 60%, outper-
forms few-shot prompting methods, that utilize Zero-Shot-CoT for la-
beling, by a margin of 3%.

In conclusion, it is evident that few-shot prompting methods, when using
labels generated by humans, exhibit performance comparable or superior
to the methods that use Zero-Shot-CoT with GPT-3.5-turbo for labeling, al-
though with a small margin.

4.2.2 Comparison with prior Work

In this analysis, I assess the performance of the GPT-3.5-Turbo model in a
few-shot context, comparing it to its predecessors within the GPT-3.5 family,
as highlighted by [14], including models like text-davinci-003, text-davinci-
002, and code-davinci-002, as GPT-3.5-turbo was not yet available. This eval-
uation covers various few-shot chain-of-thought prompting methods.

• GSM8K: When employing Active-CoT, GPT-3.5-Turbo achieves an ac-
curacy of 83%, clearly outperforming text-davinci-003, which attains an
accuracy of 65.6%, with a significant margin of 17.4%. This difference
in performance also holds true when comparing GPT-3.5-Turbo with
Random-CoT, where it surpasses text-davinci-003 by an even larger
margin of 20%. Moreover, GPT-3.5-Turbo outperforms text-davinci-002

by 17.8% when using Random-CoT, and by 11.9% with Active-CoT. It’s
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worth noting that, despite the utilization of inference self-consistency
to enhance few-shot performance for text-davinci-003 and text-davinci-
002 [62], GPT-3.5-Turbo consistently demonstrates superior performance
in a few-shot scenario.

• AQUA: For the AQUA dataset, GPT-3.5-turbo with Random-CoT demon-
strates an accuracy of 60.7%, clearly outperforming text-davinci-002

with an accuracy of 44.1% and code-davinci-002, which achieves an ac-
curacy of 53.1%, by significant margins of 16.6% and 7.6%, respectively.
Furthermore, GPT-3.5-turbo with Active-CoT achieves an accuracy of
62.3%, surpassing text-davinci-003 and text-davinci-002 by significant
margins of 14.3% and 12%.

In conclusion, it’s evident that GPT-3.5-Turbo, even without the use of the
self-consistency method, which has been demonstrated to further improve
the performance of LLM [62], excels over older models from the GPT-3.5
family in few-shot settings for reasoning tasks, despite being smaller in size.

4.2.2.1 Influence of uncertainty on accuracy

I conducted an analysis to examine the influence of uncertainty, as reflected
by disagreement values, on the accuracy of few-shot prompting. I initially
selected 8 in-context demonstrations with a disagreement value of 1, repre-
senting cases where the model’s predictions were relatively certain. These 8

demonstrations were used as context for running the GPT-3.5-turbo model,
and the accuracy is reported. I then repeated the process, but this time, I
selected in-context demonstrations with disagreement values of 3 and 5. Dis-
agreement values of 5 represent instances where the model’s predictions are
associated with the highest level of uncertainty. For the AQUA dataset, I
used 4 in-context demonstrations and followed a similar procedure.

• Human-generated labels:

GSM8K: In the GSM8K dataset, an increase of around 1% in accuracy
was observed when transitioning from a disagreement level of 1 to 3.

AQUA: However, for the AQUA dataset, a more significant impact
of uncertainty is observed. As the disagreement values increase, the
model’s performance improves, with the highest accuracy achieved for
examples with a disagreement value of 5. The improvement in accu-
racy from a disagreement level of 1 to 5 is significant, with a 6.7%
increase

• LLM-generated labels:

GSM8K: For GSM8K, beginning with a disagreement of 1, the ac-
curacy is 79.7. As we progress to a disagreement of 3, the accuracy
improves to 80.3, and further increasing the disagreement to 5 results
in an accuracy of 83.0.
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AQUA: The AQUA dataset demonstrates a similar trend. For disagree-
ment of 1, the accuracy is 55.1, and when we raise the disagreement
to 3, the accuracy increases to 59.4. However, for disagreement 5, the
accuracy slightly decreases, reaching 57.5.

These results are visualized in Figure 4.1. In some cases, transitioning
from a disagreement level of 3 to 5 results in a slight decrease in accuracy.
This phenomenon might be due to the relatively low number of trails con-
ducted in this thesis, which was set at 5. Increasing the number of trails for
uncertainty estimation may yield more accurate results in the future.

In summary, these findings suggest that choosing examples characterized
by high model uncertainty can lead to improvements in model accuracy, and
this effect is particularly evident under different labeling scenarios.

Figure 4.1: Disagreement vs Accuracy

4.2.3 Falcon Models in few-shot Scenario

I conducted an evaluation of the performance of open-source models, Falcon-
40B-Instruct and Falcon-7B-Instruct, in a few-shot setting. The choice of us-
ing Diverse-CoT for selecting in-context demonstrations was made to gain
insights into the general performance of these models in a few-shot scenario.

• GSM8K: On the GSM8K dataset, Falcon-40B-Instruct achieved an ac-
curacy of 37.3%, significantly outperforming Falcon-7B-Instruct, which
reached an accuracy of 5.4%. This difference of 31.9% underscores the
superiority of Falcon-40B-Instruct in this setting.

• AQUA: Similarly, on the AQUA dataset, Falcon-40B-Instruct demon-
strated better performance, surpassing Falcon-7B-Instruct by a smaller
margin of 7.1%.

The results corresponding to this analysis are depicted in Table 4.3. On
average, it was observed that employing the larger model version led to a
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Table 4.1: Results of CoT and standard prompting method with human-generated
labels

Method/Dataset GSM8K AQUA Average

Baselines

GPT-4 Zero-Shot-CoT 87.6 68.9 78.3

GPT-3.5-turbo Zero-Shot-CoT 69.4 54.7 62.1

CoT Methods

Random-CoT 81.7 60.7 71.2

Diverse-CoT 80.2 61.8 71.0

Active-CoT 81.2 62.3 71.8

Retrieval-CoT 80.7 57.5 69.1

Diverse-Active-KMeans-CoT 80.4 60.2 70.3

Diverse-Active-KMeansPlusPlus-CoT 81.1 60.6 69.5

Diverse-Active-KMeansPlusPlus-Retrieval-CoT 80.4 59.6 70.0

Average 80.8 60.0 70.4

Standard Methods

Random-Standard 72.7 52.8 62.8

Diverse-Standard 71.5 53.1 62.3

Active-Standard 70.4 50.4 60.4

Retrieval-Standard 69.8 53.8 61.8

Average 71.1 52.5 61.8

19.5% improvement in accuracy. This finding suggests that bigger models ex-
cel in few-shot prompting for reasoning tasks. This observation aligns with
the findings presented in the study conducted by [6], which also highlights
the superior performance of larger models in various few-shot settings.

In few-shot scenarios, Falcon-40B-Instruct and Falcon-7B-Instruct demon-
strate inferior performance compared to GPT-3.5-turbo, with margins ex-
ceeding 30%. However, it’s worth mentioning that, while I used the same in-
structions in the prompt as for GPT-3.5-Turbo, open-source models such as
Falcon-40B-Instruct and Falcon-7B-Instruct may require additional prompt
formatting before passing input to the LLM. The way the prompts were set
up might have affected the results.
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Table 4.2: Results of CoT and standard prompting method with LLM-generated la-
bels with Zero-Shot-CoT

Method/Dataset GSM8K AQUA Average

Baselines

GPT-4 Zero-Shot-CoT 87.6 68.9 78.3

GPT-3.5-turbo Zero-Shot-CoT 69.4 54.7 62.1

CoT Methods

Random-CoT 79.5 56.7 68.1

Diverse-CoT 80.6 60.6 70.6

Active-CoT 83.0 59.4 70.3

Retrieval-CoT 81.2 56.0 68.6

Diverse-Active-KMeans-CoT 79.2 52.0 65.6

Diverse-Active-KMeansPlusPlus-CoT 81.4 54.3 67.9

Diverse-Active-KMeansPlusPlus-Retrieval-CoT 82.0 60.0 71

Average 81.0 57.0 68.9

Standard Methods

Random-Standard 71.3 50.0 60.7

Diverse-Standard 70.1 51.6 60.9

Active-Standard 70.7 52.0 61.4

Retrieval-Standard 70.3 52.2 61.3

Average 70.6 51.5 61.1

Table 4.3: Falcon models with Diverse-CoT

Model/Dataset GSM8K AQUA Average

Falcon-40B-Instruct 37.3 18.5 27.9

Falcon-7B-Instruct 5.4 11.4 8.4



5
C O N C L U S I O N A N D F U T U R E W O R K

This thesis primarily focuses on assessing various prompting methods, such
as Random-CoT, Active-CoT, Retrieval-CoT, and Auto-CoT, using different
models and arithmetic reasoning datasets. I showcased the efficacy and su-
perior performance of few-shot chain-of-thought methods like Active-CoT,
Auto-CoT, and Retrieval-CoT over the Random baseline when employing
labels generated by GPT-3.5-turbo under Zero-Shot-CoT. However, when us-
ing human-generated labels, the performance levels are comparable.

Moreover, I’ve highlighted how GPT-4, under Zero-Shot-CoT, outperforms
GPT-3.5-turbo significantly in a few-shot setting across diverse datasets and
labeling scenarios. I’ve delved into the performance analysis of open-source
LLMs like Falcon-40B-Instruct and Falcon-7B-Instruct with Diverse-CoT, demon-
strating that larger models enhance few-shot performance.

Additionally, I proposed new methods like Diverse-Active-KMeans-CoT
and Diverse-Active-KMeansPlusPlus-CoT, combining diversity and uncer-
tainty, which yielded performance comparable to the Random baseline. Fur-
thermore, I proposed a prompting method Diverse-Active-KMeansPlusPlus-
Retrieval-CoT that combines diversity, uncertainty, and retrieval component.
The results demonstrate that the latter method surpasses the Random base-
line by a significant margin when utilizing LLM-generated labels.

This thesis has set the stage for additional research in the field of few-shot
prompting methods with LLMs, particularly for reasoning tasks. Here are
some key directions for future exploration:

• Fine-Tuning Open-Source LLMs : Future work could involve fine-
tuning open-source LLMs on datasets such as GSM8K and AQUA, es-
pecially smaller models. Innovative fine-tuning methods like LoRA and
QLoRA can be applied to adapt these models to reasoning tasks and
then compared to the performance of more advanced models like GPT-
3.5-Turbo and GPT-4.

• Scaling Up with More Training Data : Expanding the research by
using larger training datasets can offer a deeper understanding of few-
shot performance. With more training data, the effectiveness of certain
few-shot prompting methods may become more evident. For example,
Active-CoT may benefit from a dataset that has examples where the
model is less confident. Thus, experiments with larger training datasets
can uncover new insights into few-shot performance.

• Ensemble Methods : Future research could explore the use of ensem-
ble techniques, combining the strengths of multiple few-shot prompt-
ing methods to potentially enhance performance. This direction in-
volves investigating how different approaches can be merged to im-
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prove overall performance in reasoning tasks. Considering the insights
derived from this thesis, which emphasize the influence of diversity,
uncertainty, and retrieval-based methods on few-shot performance, there
is a need for developing a unified approach with fewer hyperparame-
ters. This stands in contrast to the proposed Diverse-Active-KMeansPlusPlus-
Retrieval-CoT, which, due to its optimization of the parameter p, presents
a drawback that impacts few-shot performance.
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