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Motivation and Research Objectives

”Half the money I spend on advertising is wasted; the trouble is

I don’t know which half” - John Wanamaker

Advertisers face a fundamental challenge: the efficient allocation of their advertising budget. Media Mix Mod-

els are used in marketing tomeasure the effectiveness of advertising and support marketers in making future

budget allocation decisions. Key results in Media Mix Modeling (MMM) are metrics for marketing attribution

such as Return on Advertising Spend (ROAS). These attribution metrics measure how advertising investments

contribute to business-relevant Key Performance Indicators (KPIs) such as sales or brand awareness, and pro-

vide information for re-allocatingmedia budgets. Nonetheless, modeling an advertising response is a challenge

since advertising has lagged effects and diminishing returns [3, 1].

The aim of this thesis is a comparative analysis of parametric, semi- and non-parametric regression methods,

which take the unique characteristics of advertising into account, and their evaluation regarding their applica-

bility in Media Mix Modeling. The assessment of the examined methods is based on their prediction accuracy

and their precision in determining attribution metrics. The regression methods are applied on both simulated

data and a real-world data set.

Patterns of an Advertising Response

Carryover Effects

Advertising can have lagged effects and carry over through time. For example, one sees ads today and still

remembers the next week. This can be modeled by applying a geometricAdstock transformation to the media

spend [2]:

Adstock(xt−(L−1),m, . . . , xt,m; αm, L) =
∑L−1

l=0 αl
m · xt−l,m∑L−1

l=0 αl
m

, 0 < αm < 1,

where xt,m is the media spend of the m-th media channel, αm the retention rate of the ad effect from one

time unit to the next and L specifies the duration of the carryover effect.

Shape Effects

Additionally, advertising investments can have diminishing returns. A flexible parameterization for modeling

concave and S-shaped response curves is given by the Hill function

Hill(xt,m; Km, Sm) = 1
1 + (xt,m/Km)−Sm

, xt,m ≥ 0,

where Sm > 0 is the slope and Km > 0 the half saturation point of the m-th media channel [2]. Fixing Sm = 1
yield concave Hill functions.

A Parametric Media Mix Model

Combining carryover and shape effects, an advertising response yt can be modeled by

yt = β0 +
M∑

m=1
βm · Hill ◦ Adstock(xt−L+1,m, . . . , xt,m; Φ) +

C∑
c=1

γczt,c + εt. (1)

The media spend xt,m of them-th media channel acts via anAdstock and Hill transformation on the response

variable, while the c-th control variable zt,c contributes linearly. βm denotes the media-specific regression

coefficient and γc the regression coefficient of the c-th control variable. Φ denotes the vector of transfor-

mation parameters (e.g. retention rates αm) in the model.

Data

Simulated Data

The role of the simulated data is to evaluate the examined methods against artificial generated data where

the true underlying data structure is known. This enables the comparison of estimated attribution metrics and

model parameters with their respective true values.

Data generation of a single simulated data set:

One data set contains a response variable yt, 3 media spend variables xt,m, m ∈ {1, 2, 3}, and 1 control

variable zt.

The response variable is generated based on an additive media mix model, which is from the same model

class as in Eq. (1). A geometric Adstock transformation with L = 13 and a concave Hill transformation

(Sm = 1, ∀m) is used.

The media spend variables xt,m are generated using a MMM data generator (R package dammmdatagen)

and the control variable is generated as an (1, 0)-ARMA time series.

The media-specific parameters in the model (regression coefficient βm, retention rate αm and half

saturation point Km) are different for each media. For example, the parameters used in the model for

Media 2 are β2 = 1.5, α2 = 0.3, K2 = 0.4.

In total, 500 simulated data sets are generated following the same model, but with a different random seed

for generating the media spend variables and control variable. The estimation procedures of the examined

methods are repeated across these 500 simulated data sets to eliminate randomness in a single simulated data

set. Statements concerning the uncertainty and potential biases in the attribution metrics thus become more

reliable. To study the impact of sample size on the method’s outcomes, 500 data sets with normal sample size

(4-year weekly history) and 500 data sets with large sample size (50-year weekly history) are generated.

Data (cont.)

Real-world Data

The role of the real-world data is to assess the methods on data with real-world complexities. The data set

contains 3 years of weekly data. Ad Awareness, quantifying whether consumers can recall a brand’s advertise-

ment, serves as the response variable. Weekly media budgets of 3 media channels (TV, Print and Online Video)

and 2 control variables, quantifying the COVID-19 impact and summer vacation impact on the response, are

used for modeling.

Methods

Parametric regression methods

OLS regression with time-series cross-validation (”OLSReg”): This method estimates a linear model using

the transformed media spend variables and the control variables as predictors. It employs time-series

cross-validation (TSCV) to estimate the media transformation parameters αm and Km.

Constrained regularized regression with time-series cross-validation (”ConstrRegulReg”): This method

works similar as the OLSReg method, but additionally applies L2-regularization and constraints the media

regression coefficients βm in the model to be positive.

Bayesian regression (”BayesianReg”): The Bayesian approach is employed to estimate the model in Eq. (1)

using Markov Chain Monte Carlo (MCMC) algorithms. This approach enables the integration of prior

knowledge via the choice of informative prior distributions.

Semi- and non-parametric regression methods

Generalized Additive Models with shape constraints (”MonGAM”): This method utilizes the adstocked

media variables and control variables as predictors, estimating the non-linear relationship (shape effect)

between the adstocked media spend and the response via monotonically increasing regression splines.

TSCV is employed to estimate the retention rate parameters αm.

XGBoost: Similar to MonGAM, this method uses the adstocked media variables and control variables as

predictors. TSCV is employed to optimize XGBoost’s hyperparameters and the retention rates αm.

Attribution metrics

The Contribution Share (CS) and Return on Ad Spend (ROAS) are attribution metrics that can be computed

for each medium. CS measures the effect share of a medium on the response variable (e.g. sales) and ROAS

quantifies the change in the response variable per Euro spent on the medium. In the additive model in Eq.

(1), the ROAS of the m-th media channel can be computed by comparing the contribution of the m-th media

channel to the response variable against the media spend xt,m. This approach does not work for non-additive

models (XGBoost). In this case, the concept of partial dependence is used to compute attribution metrics.

Results

Results across 500 simulated data sets

Bayesian regression achieves the best prediction

accuracy (see Table 1) and shows the lowest uncertainty

in ROAS estimates (see Figure 1). ”BayesianRegInf”,

which employs informative priors for the media-specific

model parameters (β, α and K), demonstrates enhanced

prediction accuracy on normal-sized data sets compared

to ”BayesianRegNonInf”, which utilizes non-informative

priors. This shows that informative priors have an impact

on prediction accuracy and model outcomes, especially

on small data sets which are typically in MMM. The

influence of informative priors diminishes when the

sample size is large. On normal-sized data sets,

informative priors additionally mitigate uncertainty in

attribution metrics. ”OLSReg” shows high uncertainty in

attribution metrics and ”ConstrRegulReg” additionally

exhibits underestimated ROAS estimates. ”MonGAM”

shows low levels of uncertainty, but biased ROAS

estimates. XGBoost exhibits poor prediction

performance on normal-sized data sets and high

variability in determining ROAS.

Method Sample Size

Normal Large

OLSReg 2.612 2.512
ConstrRegulReg 2.665 2.608
BayesianRegInf 2.547 2.504
BayesianRegNonInf 2.557 2.503
MonGAM 2.655 2.513
XGBoost 3.014 2.583

Table 1. Average prediction RMSE (·10−1) across 500 simulated data

sets with normal and large sample size.

Figure 1. Distribution of the deviation between the

true and estimated ROAS across 500 normal-sized

data sets.

Results (cont.)

These findings are reflected in the estimated response curves for Media 1 in Figure 2. For all methods that

apply regularization techniques (”ConstrRegulReg”, ”MonGAM” and XGBoost), the majority of response curves

lie below the true curve. The media impact is consequently underestimated, which results in a biased ROAS.

The estimated response curves of ”BayesianRegInf” most closely resemble the true response curve.

Figure 2. Response curves for Media 1 estimated by ConstRegulReg, BayesianRegInf, MonGAM and XGBoost. Each grey line

depicts a response curve of one simulated data set.

Results of the real-world data set

On the real-world data set, the parametric methods yield better prediction accuracy compared to MonGAM

and XGBoost (see Table 2). The poor prediction accuracy of the semi- and non-parametric methods can

be attributed to their limited extrapolation capabilities: given that the test set encompassed spending levels

absent in the training set, the methods were forced to extrapolate beyond the training set. Thus, the more

complex response curves estimated by MonGAM (e.g. a S-shaped response curve for Online Video) and the

interactions revealed by XGBoost (e.g. a positive interactive influence between Print and Online Video) can

neither be confirmed nor rejected.

The ”ConstrRegulReg”method achieves the best prediction accuracy. The results from ”ConstrRegulReg” show

that TV has the highest impact on Ad Awareness among the media variables. Print follows with the second

highest impact on Ad Awareness.

Bayesian regression best mitigates the uncertainty of the attribution metrics, but also stands out for differing

results compared to other methods (e.g. the Contribution Share (CS) for Print in Figure 3). This difference

primarily arises from the informative prior distributions chosen for the model parameters. In-depth analysis

revealed that the data has not enough information content to alter the prior belief of the half saturation

parameter K . Thus, the results rely on the prior knowledge incorporated into the model.

Method RMSE (·10−1)

OLSReg 7.543
ConstrRegulReg 7.452
BayesianReg 7.648
MonGam 9.233
XGBoost 8.151

Table 2. Prediction RMSE of the real-world data set.

Figure 3. Exemplary uncertainty measurements of the

Contribution Share (CS) for TV and Print. The CS values are

normalized for data protection reasons.

Conclusion & Outlook

Bayesian regression methods emerged in this comparative study as the most promising approach in MMM for

reducing uncertainty in the model, achieved through the integration of informative priors. On small data sets

with less information content, the priors exert a significant influence on the model outcomes. It is therefore

important to collect powerful MMM data sets and choose the prior distributions carefully.

Applying regularization appeared as a possibility to enhance prediction accuracy on real data, but in turn it can

lead to biased attribution metrics due to an underestimated media effect.

Semi- and non-parametric methods emerged as an opportunity in MMM (e.g. for estimating more complex

response curves). However, the media effect on the response can also be underestimated due to regulariza-

tion. The suggested derivation of attribution metrics from XGBoost using partial dependence curves showed

high uncertainty, which might be linked to overfitting issues and the instability of tree algorithms on small data

sets. It needs further research if a more regularized ML model yields more precise results.

The extrapolation behavior of the examined semi- and non-parametric methods is a problem inMMM, suggest-

ing the need for caution in making predictions. The potential of these methods warrants further exploration

on real-world data, particularly in scenarios where extrapolation is not required.
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