
Time Series Analysis of Server Performance Simulation for Large
Language Model Deployment

Master Thesis of Kevin Bernardo
Supervisors: Prof. Dr. Markus Döhring1, Prof. Dr. Sebastian Döhler2

Introduction

In Germany, there are demands to host large language models (LLMs) on internal servers by

banks to satisfy the related data protection requirements on confidential information.

For deploying an LLM on an internal server, monitoring the system and recognizing if a

high rate of request failures occurs are important to prevent high server failure rates, which

can be done by forecasting with a machine learning model.

Before bringing the system into production, it is important to test whether the time series

features generated from the LLM server are relevant for training the model for forecasting

and find some insights from it.

This study used the BurstGPT [1] simulation that reflects a real-world situation to test

whether the features extracted from an LLM deployment server are relevant for LLM server

performance forecasting using XGBoost [2] and find the key features for the forecasting

process using SHAP [3].

Methodology

The experimentwas based on an example use case of a chatbot project for English conversations,

withOASST2 [4] as the chosen prompt dataset. The project used the vLLM [5] serving framework

to run the Mistral-7B-Instruct-v0.2 [6] model and Prometheus [7] for server monitoring. The

experiment was divided into two main parts: simulation and forecasting.

Simulation: First, the training, validation, and test dataset was created using BurstGPT [1]

method to simulate burst situations of requests sent to the server, as shown by the workload

generator component in Figure 1. Next, the generated requests were used for the simulation

run. Finally, the time series data regarding the requests and server performance metrics were

extracted from the LLM inference server after the simulation run was finished.

Figure 1. Diagram of simulation with BurstGPT [1]. The concurrency generator created random times to send the

request to the LLM server based on Gamma distribution. The prompt pool contained all possible prompts for

prompt sampling. The prompt sampler sampled the prompts from the prompt pool based on Zipf distribution of

the prompt’s token length. The generated requests were sent to the LLM inference server for testing.

Forecasting: Both time series data from the simulation were aggregated into regular intervals

of one minute and combined. The target variable for the forecasting was the server’s failure

rate of processing requests at specific time intervals. The stationarity of the time series data

was tested with the augmented Dickey-Fuller test. An XGBoost [2] model with early stopping

was compared with ARMA, VAR, and univariate XGBoost model for forecasting. The

performance was determined based onMAE and RMSE metrics on the test data with rolling

and expanding evaluation setups [8]. RMSE was specifically used for choosing the lag values

and the hyperparameter tuning. The trained XGBoost model was interpreted using SHAP [3]

to find the important features of the forecasting process.

Result

The simulationwas run for 8 hours and 5minutes, sending 90,322 requests, with around 35.11%
being failed requestsmainly due to timeout. Table 1 shows the forecasting quality of the server’s

failure rate for each model using the rolling and expanding window evaluation setups. The bolded

numbers indicate the lowest value of the evaluation metric in each column, which implies the

best performance of all models. XGBoost achieved the lowest MAE and RMSE metrics value,

especially when using the rolling window evaluation setup. Figure 2 shows the SHAP bar plot

from the XGBoost model for interpretation, sorted in descending order based on themean of the

absolute SHAP values, which indicate the average influence of a feature for forecasting the data

points in test data. Notice that the XGBoost model was trained with lag 1 and lag 2 features of

each predictor. The feature ’request_duration’ had by far the highest value of the mean of the

absolute SHAP value.

Model
Rolling Expanding

MAE RMSE MAE RMSE

XGBoost (multivariate) 0.07900 0.17835 0.08792 0.18668
ARMA 0.17644 0.37356 0.17004 0.36475
VAR 0.11336 0.28558 0.11261 0.28718

XGBoost (univariate) 0.17223 0.29040 0.16625 0.28541

Table 1. The performance of the models on the test data.

Figure 2. SHAP bar plot.

Discussion

The experiment result can be outlined into three main findings.

Meaningful forecast with LLM simulation using XGBoost and BurstGPT

The time series data generated from the LLM simulation using BurstGPTwas useful for the use

case to create a meaningful forecast of the LLM server performance, i.e., the server’s failure

rate of processing requests at specific time intervals, with the XGBoostmodel. With the rolling

and expanding window evaluation setup, the XGBoost model outperformed the ARMA, VAR,

and univariate XGBoost model. The multivariate models (XGBoost & VAR) also performed

better in general than the univariate models (ARMA & univariate XGBoost).

Successful essential key features search for forecasting using SHAP

The model interpretation method with SHAP values was able to find the comprehensible key

features essential for forecasting the LLM server performance based on the use case. The

interpretation of the XGBoost model with SHAP revealed that request duration was the most

important feature of the forecasting process. This result was consistent with the XGBoost

feature importance method with weight, gain, and coverage.

Empirical prompt length distribution vs. Zipf distribution for prompt sampling

Evaluating the prompt length distribution assumption before choosing the prompt sampling

distribution is important, as it might offer a different result on the simulation, forecasting, and

interpretation. By substituting the Zipf distribution with the empirical prompt length distri-

bution of the chosen dataset for prompt sampling, this change made the simulation run 23

minutes longer, withmore failed requests of around 42.95% and some differences in terms of

the feature distributions after data preparation based on the Kolmogorov-Smirnov test.

FutureWorks

In the future, other use cases with different LLM serving frameworks should be tested to test

the generality of the approach. The possibility of testing the result from this experiment in a

production environment should also be explored to check if the result and understanding from

the simulation can be translated into production.

References

[1] Y. Wang, Y. Chen, Z. Li, Z. Tang, R. Guo, X. Wang, Q. Wang, A. C. Zhou, and X. Chu, “Towards efficient and reliable llm serving: A

real-world workload study,” 2024.

Preprint.

[2] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’16, (New York, NY, USA), p. 785–794, Association for Computing Machinery, 2016.

[3] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems

(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[4] OpenAssistant, “OASST2 Huggingface model card,” [Online; accessed 27 November 2024].

[5] vLLM, “vLLM documentation v0.5.3.post1,” [Online; accessed 27 November 2024].

[6] Mistral, “Mistral-7B-Instruct-v0.2 Huggingface model card,” [Online; accessed 27 November 2024].

[7] Prometheus, “Prometheus documentation,” [Online; accessed 27 November 2024].

[8] H. Hewamalage, K. Ackermann, and C. Bergmeir, “Forecast evaluation for data scientists: common pitfalls and best practices,” Data

Mining and Knowledge Discovery, vol. 37, pp. 788–832, Mar 2023.

Darmstadt, 04 January 2025


