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A B S T R A C T

In Germany, there are demands to host large language models (LLMs) on in-
ternal servers by banks to satisfy the related data protection requirements on
confidential information. For deploying an LLM on an internal server, mon-
itoring the system and recognizing if a high rate of request failures occurs
are important to ensure the system can answer every request before reach-
ing its timeout, which can be done by forecasting with a machine learning
model. Before bringing the system into production, it is important to test
whether the time series features generated from the LLM server are relevant
for training the model for forecasting and find some insights from it.

This study used a simulation that reflects a real-world situation to test
whether the features extracted from an LLM deployment server are relevant
for LLM server performance forecasting and afterward find the key features
for the forecasting process. First, the simulation dataset was generated based
on BurstGPT and then run on the server. After that, the request and server
performance metrics data were extracted and used to forecast the server per-
formance, i.e., the server’s failure rate of processing requests at specific time
intervals. An XGBoost model was compared for the forecasting process with
ARMA, VAR, and univariate XGBoost model and then interpreted using
Shapley additive explanations (SHAP) to find useful features for forecasting
the server’s failure rate.

Based on an example use case of a chatbot project, the XGBoost model
had the best performance for forecasting the server’s failure rate, beating
other comparison models. The performance was determined based on MAE
and RMSE metrics on the test data with rolling origin evaluation setups. The
interpretation of the XGBoost model with SHAP revealed that request dura-
tion was the most important feature of the forecasting process. This result
was consistent with the XGBoost feature importance method with weight,
gain, and coverage.

The prompt sampling method from BurstGPT with Zipf distribution was
also compared with a sampling method based on the empirical prompt
length distribution of the prompt dataset. Both prompt sampling methods
were compared based on the duration of the simulation run, the number of
failed requests, and the feature distributions. It was determined that differ-
ences existed regarding those aspects. This outcome indicated that consid-
ering the prompt length distribution before choosing the prompt sampling
method for the simulation is crucial, as it might offer a different result on the
simulation, forecasting, interpretation, and resulting parameters to be used



in production.

Keywords: LLM, simulation, time series analysis, BurstGPT, XGBoost, rolling
origin evaluation setups, SHAP, Zipf distribution.



Z U S A M M E N FA S S U N G

In Deutschland gibt es Nachfragen im Bankwesen, Large-Language-Models
(LLMs) auf internen Servern zu hosten, um Datenschutzanforderungen für
vertrauliche Informationen zu erfüllen. Für die Überwachung eines LLMs
auf einem internen Server ist es wichtig zu erkennen, ob und wann eine hohe
Rate von Anfrageausfällen auftritt. So kann sichergestellt werden, dass das
System jede Anfrage beantworten kann, bevor es zu Zeitüberschreitungen
kommt. Um das zu erreichen, erfolgt eine Vorhersage mit einem maschinel-
len Lernmodell. Dazu werden vom LLM-Server ermittelten Zeitreihenmerk-
male für das Training des Analyse-Modells benutzt. Es wird dann getestet,
inwieweit diese Merkmale relevant für die Vorhersage sind und welche die
Schlüsselmerkmale sind.

In dieser Studie wurde eine Simulation verwendet, die eine reale Situati-
on widerspiegelt, um zu testen, ob die von einem LLM-Server extrahierten
Merkmale für die Leistungsprognose des LLM-Servers relevant sind, und
um die Schlüsselmerkmale für den Prognoseprozess zu finden. Zunächst
wurde der Simulationsdatensatz auf der Grundlage von BurstGPT erstellt
und dann auf dem Server verarbeitet. Danach wurden die Anfragedaten und
die Leistungsmetriken des Servers extrahiert und zur Vorhersage der Ser-
verleistung verwendet, d. h. der Ausfallrate des Servers bei der Bearbeitung
von Anfragen in bestimmten Zeitintervallen. Ein XGBoost-Modell wurde für
den Vorhersageprozess mit ARMA-, VAR- und univariaten XGBoost-Modell
verglichen und dann mit Hilfe von Shapley-Additive-Explanations (SHAP)
interpretiert, um nützliche Merkmale für die Vorhersage der Ausfallrate des
Servers zu finden.

Basierend auf einem Anwendungsfall eines Chatbot-Projekts zeigte das
XGBoost-Modell die beste Leistung bei der Vorhersage der Ausfallrate des
Servers und übertraf die anderen Modelle. Die Vorhersagegüte wurde auf
der Grundlage der MAE- und RMSE-Metriken für die Testdaten mit Rolling-
Origin-Evaluierungs-Setups ermittelt. Die Ergebnisse des XGBoost-Modells
mit SHAP ergaben, dass die Anfragedauer das wichtigste Merkmal des Vor-
hersageprozesses war. Dieses Ergebnis stand im Einklang mit der XGBoost-
Feature-Importance-Methode mit Weight, Gain, und Coverage.

Die Prompt-Sampling-Methode von BurstGPT mit Zipfscher Verteilung
wurde auch mit einer Sampling-Methode verglichen, die auf der empiri-
schen Prompt-Längenverteilung des Prompt-Datensatzes basiert. Beide Prompt-
Sampling-Methoden wurden anhand der Dauer des Simulationslaufs, der
Anzahl der fehlgeschlagenen Anfragen und der Merkmalsverteilungen ver-
glichen. Es wurde festgestellt, dass hinsichtlich dieser Aspekte Unterschiede



bestehen. Dieses Ergebnis deutet darauf hin, dass die Berücksichtigung der
Prompt-Längenverteilung vor der Wahl der Prompt-Sampling-Methode für
die Simulation von entscheidender Bedeutung ist, da sie zu unterschiedli-
chen Ergebnissen bei der Simulation, Vorhersage, Interpretation und den
daraus resultierenden Parametern, die in der Produktion verwendet werden
sollen, führen kann.

Schlüsselwörter: LLM, Simulation, Zeitreihenanalyse, BurstGPT, XGBoost,
Rolling-Origin-Evaluierungs-Setups, SHAP, Zipfsche Verteilung.
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Part I

T H E S I S





1
I N T R O D U C T I O N

This introduction chapter discusses the motivation behind the master thesis,
its objectives, research questions, and how the thesis is structured.

1.1 motivation

AI models are recently extensively used in Natural Language Processing
(NLP). The transformer architecture, proposed by Vaswani et al. [Vas+17],
has grown into more complex and robust models, e.g., Large Language
Model (LLM). The applications of LLM for solving NLP problems are also
impacting the banking and finance sector. For example, Liu et al. [Liu+23]
developed FinGPT, an open-source framework to train an LLM using finan-
cial texts. Loukas et al. [Lou+23a; Lou+23b] explored the possibility of using
LLM for intent classification on a banking dataset. The possibility of using
LLM for credit scoring was researched by Feng et al. [Fen+24], including its
potential bias risk.

There are many developments in large language models on the market.
US companies, such as OpenAI, Microsoft, and Google, are some of the
dominant players in offering their closed-source LLMs as a service. In par-
ticular, OpenAI offers its Generative Pre-trained Transformer (GPT) models1,
and Microsoft Azure offers its cloud infrastructure for enterprises to run
OpenAI GPT models2. Nevertheless, banks provide a lot of confidential infor-
mation, particularly regarding their customer data. The General Data Pro-
tection Regulation (GDPR) also restricts banks in Germany to ensure that
customer data is handled safely. Regarding the use case of LLM in banking,
using closed-source LLMs requires possibly sending confidential information
to third parties, which makes it complicated for banks to comply with GDPR.
Therefore, there are demands to host the LLM by themselves to uphold these
data protection requirements. Bank employees send requests to the server
within their infrastructure, which may contain sensitive information about
their clients to be processed. The internal LLM server should be able to han-
dle the requests, regardless of how many requests are sent to the server.

There are some possibilities of obtaining LLM for internal use, e.g., fully
training the LLM internally, using pre-trained LLM as is, or further fine-tuning
them. In the end, the obtained LLM must be deployed and run on a server us-
ing serving frameworks, such as vLLM [Kwo+23]. During deployment, some

1 https://platform.openai.com/docs/models, Last accessed: 17 October 2024

2 https://azure.microsoft.com/en-us/products/ai-services/openai-service, Last accessed: 17

October 2024



4 introduction

of the important factors are monitoring the system and recognizing if a high
rate of request failures occurs at a certain point to guarantee the model can
answer every request before reaching its timeout, which otherwise triggers
the request failure. One way to achieve this is by using time series analysis to
forecast the model performance. For example, time series features extracted
from the system are used to train a machine learning model to forecast the
failure rate of the requests.

Before bringing the system into production, it is important to test whether
the features used are relevant for training the model for forecasting. The test
can be done using a simulation that reflects a real-world situation on how the
requests are sent to the server. The simulation result is then analyzed and
used for modeling to test the server’s features, whether they are capable
of accurately forecasting the server performance. The result may also give
some insights into what features are truly useful for perceiving high request
failure rates during production.

1.2 objectives and research questions

In cooperation with PPI AG, the purpose of this study was the usage of
simulation for testing an LLM deployment server, analyzing the simulation
result for server performance forecasting, and finding crucial features for
forecasting. First, the server system was tested using LLM simulation based
on BurstGPT [Wan+24]. Mathematical distributions were used to create mul-
tiple requests that were sent to the deployment server. The LLM server be-
havior during the simulation was then recorded as time series data based
on the server’s response (e.g., the response length and duration) and the
internal server metrics generated by the serving framework (e.g., number of
tokens generated per second and number of requests currently processed).
These data served as the basis for forecasting the server performance. The
data was used in the next step to analyze the system and forecast the server
performance. The time series data was aggregated, explored, and selected to
train an XGBoost model [CG16] to forecast the server’s failure rate of process-
ing incoming requests at specific points in time. The trained XGBoost model
was then interpreted to find useful features for forecasting the server’s fail-
ure rate, mainly using SHAP values [LL17]. The abovementioned approach
was implemented based on an example use case of a chatbot project.

The research questions to be answered in this study were:

1. Can the time series data generated from the LLM simulation be used to
create a meaningful forecast of the LLM server performance by training
a machine learning model?

2. Can comprehensible key features/factors that are essential for forecast-
ing the LLM server performance be found based on the trained machine
learning model and the generated time series data?
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The result of this study would benefit the company, both for internal
use (e.g., deploying an LLM server in the company) and as a knowledge
in projects with PPI AG customers.

1.3 structure

This thesis is divided into several chapters. Chapter 2 details the crucial con-
cepts used in this work. Other research and papers related to this thesis are
explained and discussed in Chapter 3. Chapter 4 and Chapter 5 explain the
steps and implementation details of the experiment’s simulation and analy-
sis. The simulation and analysis results are shown in Chapter 6, followed by
their discussion in Chapter 7. Finally, Chapter 8 concludes the work with a
summary and some possible works in the future.





2
B A C K G R O U N D

This chapter provides some background information regarding this work.
The concepts are divided into two parts. The first part details the concepts
used for the simulation part of this study. The second part explains the meth-
ods for analysis, modeling, and interpreting the trained machine learning
model.

2.1 simulation

This section explains the benchmarking with BurstGPT and Zipf distribution
used in the simulation process.

2.1.1 BurstGPT

BurstGPT is a dataset collected by Wang et al. [Wan+24], which reflects the
real-world workload of an LLM serving system. This dataset was collected
by Wang et al. for two months within a campus-sized region, consisting of
around 1.5 million traces of timestamps, request length, and response length
from ChatGPT and GPT-4 models [Wan+24]. It was found that the request
patterns of the models are bursty, which means there are sudden increases
in requests sent to the server [AE+14]. More details on the characteristics of
this dataset can be found in their paper [Wan+24]. Based on the bursty char-
acteristic of the BurstGPT dataset, Wang et al. created a benchmark method
that can test LLM serving systems with bursty workload.

Figure 2.1: Diagram of benchmarking with BurstGPT [Wan+24].

Figure 2.1 shows how the benchmark method functions. There are several
components, which are divided into the client and server sides. The server
runs the LLM serving system, where the LLM reads the prompt tokens from
the received requests and generates the output tokens as the response. The
client or workload generator creates multiple concurrent requests, reflecting
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bursty workload, using concurrency generator, prompt pool, and prompt
sampler.

The concurrency generator determines when each request will be sent to
the server. The result of the concurrency generator is the time a request
has to wait before it is sent via Hypertext Transfer Protocol (HTTP) to the
server. The randomness of the concurrency generator is controlled by using
Gamma distribution, which is represented by shape parameter α and scale
parameter β [Wan+24]. The Gamma distribution parameters do not always
stay constant but change over time to simulate different patterns of bursti-
ness. The shape parameter α is changed by quadratic function, and the scale
parameter β is changed using linear function [Wan+24].

The prompt pool and prompt sampler work together to decide which
prompt texts should be sent to the server for each request. The prompt pool
contains a list of possible prompts that can be sampled for each request. The
list of prompts could be gathered from existing prompt datasets. The prompt
sampler samples the prompt from the prompt pool by specifying a random
request length based on Zipf distribution [Wan+24], which fits the distribu-
tion of the request length in the BurstGPT trace. The θ parameter of Zipf
distribution controls how often the shorter requests are selected [Wan+24].
The prompt pool finds a prompt with the specified request length and re-
turns it to the prompt sampler. The result of this interaction between both
components is a prompt for each request, which adheres to Zipf distribution,
to be sent after the request’s waiting time ends.

The basic workflow of the benchmark starts with generating multiple wait-
ing times by the concurrency generator based on Gamma distribution with
shape parameter α and scale parameter β. After that, a prompt is sampled for
each generated request by the prompt sampler from the prompt pool, which
adheres to Zipf distribution with a specific parameter θ. Every request waits
until its waiting time ends, and the prompts are sent via HTTP. These pro-
cesses happen within the workload generator. The LLM server accepts and
handles the HTTP requests from the workload generator. The generated re-
quests from the workload generator create a concurrency pattern, which can
be considered as time series data.

2.1.2 Zipf Distribution

Zipf distribution was named after a Harvard University professor, Dr. George
Kingsley Zipf [Qiu+17]. For a certain corpus of texts, the frequency of words
(Fr) that appear in the corpus can be counted, sorted in descending order,
and given ranks (r) for each word, with rank 1 representing the most fre-
quent word (r ∈ [1, L], r ∈ N) [Qiu+17]. Zipf’s law states that Fr and r have
the following relation:
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Fr · r = C, (2.1)

where C is a non-absolute constant that varies around a certain value
[Qiu+17]. The formula suggests that word frequency and its rank are in-
versely proportional. This relation can be shown graphically in Figure 2.2
as an example. The most frequent word (w1) has a frequency of 1,000. The
second most frequent word has half of the frequency of w1. The third most
frequent word has a third of the frequency of w1, and so forth.

Figure 2.2: Example of relationship between word frequency and rank in Zipf’s law.

The Zipf distribution of the words can also be determined for each rank.
Given the number of unique words appearing in the corpus (L), the proba-
bility of a word with rank r appearing in the corpus (Pr) can be calculated
using the following formula:

Pr = C · r−1, C =
1

∑L
r=1 r−1

, (2.2)

where C represents the probability of the most frequent word [Qiu+17].
Based on Equation 2.2, the sum of all probabilities equals 1 [Qiu+17].

L

∑
r=1

Pr =
L

∑
r=1

C · r−1 = C ·
L

∑
r=1

r−1 =
1

∑L
r=1 r−1

·
L

∑
r=1

r−1 = 1 (2.3)

After findings from Zipf, M. Joos proposed a correction to Zipf’s formula
by adding parameter θ in the formula:

Pr = C · r−θ , (2.4)
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where θ > 0 [Qiu+17]. To make sure that the sum of all probabilities
equals 1, C is then defined as follows:

C =
1

∑L
r=1 r−θ

(2.5)

Figure 2.3: Different effects of the θ parameter on the Zipf distribution with L = 100.

Figure 2.3 shows the effect of parameter θ on the Zipf distribution in a
corpus with 100 unique words. The new formula is equivalent to the for-
mula proposed by Zipf for θ = 1 [Qiu+17]. A smaller value of 0 < θ < 1
contributes to a smaller proportion of the most frequent words in the corpus.
On the other hand, most frequent words appear more often in comparison
to least frequent words for higher values of θ > 1.

Zipf distribution has been found in multiple fields, such as word fre-
quency, publication number of scientific literature, and urban population
[Qiu+17]. In the context of simulation with BurstGPT, the Zipf distribution
can be used to model the distribution of request length sent to the server.
The number of requests with less tokens in the BurstGPT dataset dominates
the dataset, which adheres to the Zipf distribution [Wan+24].

2.2 analysis , modeling & interpretation

This section contains the main idea of time series analysis methods for data
preparation and forecasting, the XGBoost algorithm for forecasting, and



2.2 analysis , modeling & interpretation 11

Shapley Additive Explanation (SHAP) for interpreting the prediction results
of machine learning models.

2.2.1 Time Series Analysis

This section contains some short explanations of the time series concepts that
are used in this work. A time series consists of data observations xt, where
t is the specific time when the data is recorded [BD16]. The main goal of
time series analysis is to create a mathematical model to describe time series
data [SS17c]. There are multiple ways to explain univariate time series data
observation, such as using autoregressive and moving average models.

The main idea of autoregressive models is explaining the current obser-
vation xt from a time series using previous observations [SS17a]. Given p
previous observation used for describing the current observation, the au-
toregressive model AR(p) can be defined as follows:

xt = α + ϕ1xt−1 + ϕ2xt−2 + . . . + ϕpxt−p + wt, (2.6)

where α, ϕ1, ϕ2, . . . , ϕp are constants, and all ϕp ̸= 0 [SS17a]. The values of
xt−1, xt−2, . . . , xt−p can also be called lagged values, with xt−p representing
lag p of the time series data. The value of wt corresponds to white noise with
the mean 0 and variance σ2

w, where wt ∼ wn(0, σ2
w) [SS17a]. The autoregres-

sive model can also describe current observations by combining multiple
features, i.e., multivariate. This model is called Vector Autoregression (VAR)
model, which uses matrices and vectors to represent the current observation
xt instead of a simple equation.

The moving average model is another way to describe current observation
xt using the linear combination of white noises [SS17a]. Given q previous
white noises used for describing the current observation, the moving average
model MA(q) can be defined as follows:

xt = wt + θ1wt−1 + θ2wt−2 + . . . + θqwt−q, (2.7)

where θ1, θ2, . . . , θq are model parameters and all θq ̸= 0 [SS17a]. The value
of wt corresponds to white noise with wt ∼ wn(0, σ2

w) [SS17a].

Both of the two previous models can be combined into a single model,
which is called the Autoregressive Moving Average (ARMA) model. This new
ARMA(p, q) model can be described with the following formula [SS17a]:

xt = α + ϕ1xt−1 + . . . + ϕpxt−p + wt + θ1wt−1 + . . . + θqwt−q (2.8)
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Equation 2.8 shows the current observation xt as the combination of Equa-
tion 2.6 and Equation 2.7, with wt ∼ wn(0, σ2

w) [SS17a]. The ARMA model
is also a generalization of both autoregressive and moving average models
since p = 0 or q = 0 resulted in the moving average and autoregressive
model, respectively. [SS17a]

The important assumption of all models mentioned above is the station-
arity of the data. Stationarity is a time series data property, which sim-
ply means that the time aspect do not influence the statistical properties
[WKP98]. A time series is considered stationary when the following condi-
tions are met [SS17c]:

1. The mean value of the time series is constant, i.e., for a given observa-
tion xt at time t, the mean value µxt is equal to:

µxt = µt = E(xt), (2.9)

with E(xt) defined as the expected value of xt [SS17c].

2. Given two observations xt at time t and xs at time s, the autocovari-
ance value of the time series relies only on the absolute difference of s
and t (|s − t|). The autocovariance function between xt and xs can be
described as:

γx(s, t) = γ(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)], (2.10)

with γx(s, t) = γx(t, s), to measure the linear dependence of two obser-
vations at different times [SS17c].

A time series can be defined further as strictly stationary when the prob-
abilistic behavior of a set of data observations {xt1 , xt2 , . . . , xtk} and a set of
shifted data observations {xt1+h , xt2+h , . . . , xtk+h} for all time points t1, t2, . . . , tk
and all time shifts h = 0,±1,±2, . . . is similar [SS17c]. However, this prop-
erty is more complicated to evaluate [SS17c].

An example of a stationary time series is white noise [SS17c]. µt of white
noise is 0 and its γw(s, t) for s = t + h, which can be written as γw(h), equals
to σ2

w and 0 for h = 0 and h ̸= 0, respectively [SS17c]. Both values do not de-
pend on the time component. Another example is the autoregressive model.
Given an AR(1) model based on Equation 2.6 with xt = ϕxt−1 + wt, the
model is only stationary when |ϕ| < 1 [SS17a].

The Dickey-Fuller test is a method used to test if a time series has |ϕ| < 1
[SS17b]. Given an AR(1) model with xt = ϕxt−1 + wt and wt ∼ independent
and identically distributed (iid) N(0, σ2

w) [SS17c; SS17b], the Dickey-Fuller
test is done with a null hypothesis H0 : ϕ = 1 and an alternative hypothesis
H1 : |ϕ| < 1. The test does not use the equation of xt directly to calculate the
test statistic. Instead, it uses the following equation [SS17b]:
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∇xt = xt − xt−1 = ϕxt−1 + wt − xt−1 = (ϕ − 1)xt−1 + wt

= γxt−1 + wt
(2.11)

The Wald statistic tγ is then calculated based on regression to find γ,
where:

tγ =
γ̂

se(γ̂)
, (2.12)

[SS17b], γ̂ as the estimated value of γ, and se(γ̂) defined as the standard
error of γ̂. Finally, the value of tγ is compared to the Dickey-Fuller distri-
bution to test if the null hypothesis should be rejected. The test can also be
extended to an AR(p) model with multiple lags, which is called the aug-
mented Dickey-Fuller test [SS17b].

2.2.2 XGBoost

XGBoost is a machine learning algorithm proposed by Chen and Guestrin
[CG16], which uses the gradient boosting algorithm to create a tree ensemble
for prediction. This algorithm can achieve state-of-the-art results, is highly
scalable, and performs fast even with a large amount of data due to its im-
plemented optimizations [CG16]. The following explanations are the basic
mathematical concepts of the XGBoost algorithm with regression trees by
Chen and Guestrin [CG16].

Given a dataset D = {(xi, yi)|i ∈ 1, 2, . . . , n}, with xi ∈ Rm and yi ∈ R, the
prediction output of XGBoost can be defined as:

ŷi = ϕ(xi) =
K

∑
k=1

fk(xi), (2.13)

where the output ŷi is based on the sum of the output from K tree models
( fk(xi)).

The XGBoost algorithm uses an objective function to train every model fk
for the prediction. The objective function consisted of 2 parts: a differentiable
convex loss function l and a regularization term Ω.

L(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (2.14)

The loss function is used to calculate the residual between the predicted
value ŷi and the true value yi. At the same time, the regularization term tries
to reduce the complexity of every tree to make the model generalizable. This
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objective function makes the models simple and able to create robust predic-
tions.

The XGBoost algorithm creates a new tree ft based on the output of the
previous trees ŷi

(t−1) to create a new prediction ŷi
(t). This process is done by

optimizing the objective function based on Equation 2.14 with the second-
order Taylor approximation for the current tree ft.

L(t) =
n

∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω( ft)

≃
n

∑
i=1

[l(yi, ŷi
(t−1)) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft)

≈
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) = L̃(t),

(2.15)

where gi = ∂ŷi
(t−1) l(yi, ŷi

(t−1)) and hi = ∂2
ŷi

(t−1) l(yi, ŷi
(t−1)). Since l(yi, ŷi

(t−1))

is constant, the term can be omitted from the last line in Equation 2.15 to sim-
plify the objective function into L̃(t).

Given that the function ft is a tree model, the structure of the model and
the data points that belong to a leaf j can be represented by the symbol q
and Ij = {i|q(xi) = j}, respectively. The formula from Equation 2.15 can
be transformed further to be more suitable for the tree structure of ft. The
sigma sign can be rewritten to iterate all sets of data points Ij in all T terminal
nodes or leaves in the tree, with wj as the weight of each leaf. The term Ω
can also be expanded.

L̃(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + γT +

1
2

λ
T

∑
j=1

w2
j

=
T

∑
j=1

[(∑
i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j ] + γT

(2.16)

The Equation 2.16 introduces two regularization parameters. The parame-
ter γ controls how extensive the tree grows by pruning the tree leaves. The
parameter λ controls the weight of the tree leaves.

To find the minimum of the loss function, the optimal weight w∗
j is defined

by calculating the derivative of L̃(t) with respect to wj and setting it equal to
0.

w∗
j = −

∑i∈Ij
gi

∑i∈Ij
hi + λ

(2.17)
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By substituting the optimal weight w∗
j to Equation 2.16, the optimal value

of the loss function for a fixed tree structure q can be defined as:

L̃(t)(q) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (2.18)

This function serves as the scoring function to evaluate the tree. Notice
that the parameter λ controls the value of w∗

j in Equation 2.17 and both pa-

rameters γ and λ control L̃(t)(q) in Equation 2.18.

The XGBoost algorithm uses a greedy algorithm to build the tree from
the root node down to the leaf nodes by adding new branches to the tree
iteratively. The algorithm iterates every feature to find the best split value
from a given terminal node I that creates two disjunctive left node IL and
right node IR and reduces the loss function based on the following equation:

Lsplit =
1
2

[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ, (2.19)

The algorithm finds the split that reduces the loss most significantly. No-
tice that both parameters γ and λ control the loss reduction in Equation 2.19.

Like gradient boosting, the XGBoost algorithm uses shrinkage or learning
rate parameter to reduce the gradient descent step of each tree [BCMM21].
After training the current tree ft, the prediction output can be summarized
by adding the prediction from all previous trees with the output from ft

multiplied by the learning rate η.

Chen and Guestrin [CG16] focus not only on the gradient boosting and
the tree training side of the algorithm, but also on parallelization and com-
putation methods to enhance the performance of XGBoost. For example,
XGBoost uses the approximate algorithm, weighted quantile sketch, and
sparsity-aware method to efficiently find splits for efficient split finding,
parallel training, and handling missing data. The author also optimizes the
system by using cache-aware access, column block, and out-of-core compu-
tation to use the computer system for training efficiently.

2.2.3 Shapley Additive Explanation (SHAP)

For a simple model, such as linear regression, the model itself can be used
directly for prediction and explaining how the model works or comes to
the prediction it calculates. The explainability factor is more complicated for
complex models. For example, an ensemble model consists of a group of
models, which makes interpreting the whole model difficult, even when it
consists of multiple simple models. SHAP is a method that can explain the
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importance of features for a machine learning prediction with tabular data,
even for complex models. This method was proposed by Lundberg and Lee
[LL17], which is based on Shapley values. The following SHAP explanations
are based on the information from [LL17].

The importance calculated by SHAP satisfies the properties of local accu-
racy, missingness, and consistency [LL17]. Given an original model f and
a single input x for local explanation method, a simplified input x′ can be
created. This input can be mapped to the original input x using a certain
function x = hx(x′). The function hx creates a mapping for the values 0 and
1 to the original feature space. 0 means the input feature is excluded in the
model, and vice versa for 1. For local accuracy properties to be fulfilled, the
simpler explainable model should be able to at least match the output from
the original model, hence:

f (x) = g(x′) = ϕ0 +
M

∑
i=1

ϕix′i , (2.20)

with M defined as the number of the simplified input features and ϕi as
the influence of each feature on the prediction. ϕ0 refers to the predicted
value without any known features. The explanation model g was created
using additive feature attribution methods. Missingness property implies
that a feature does not have any influence if the feature is not included:

x′i = 0 =⇒ ϕi = 0 (2.21)

Consistency property simply means that if the contribution of a simpli-
fied input increases or stays the same despite other features, the value of ϕi
should at least remain the same or increase.

Figure 2.4: An example of SHAP values [LL17].

Figure 2.4 shows an example of how the SHAP values can be interpreted
for one instance, with the assumption that the predicted value f (x) is a
probability between 0 and 1. It starts with ϕ0, which represents the base
value without known features. After that, the values of influence/SHAP val-
ues from the features are added, and it lands at the predicted value of the
original model f (x). The values of ϕ1, ϕ2, and ϕ3 are positive, which means
the values of x1, x2, and x3 have a positive influence by increasing predic-
tion probability. Meanwhile, adding the value of ϕ4 reduces the probability,
which means the value of x4 has a negative effect. The absolute SHAP value
shows the intensity of the influence. x2 and x4 have more influence on the
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prediction compared to x1 and x3, which makes them important features for
the prediction.

The example above shows the important benefit of using SHAP, which is
the ability to transparently explain the influence of each feature for each
data entry (local explanation) [Dwi+23]. SHAP also offers the possibility to
explain the influence of each feature across all data entries (global expla-
nation) [Dwi+23]. Nevertheless, SHAP is not a perfect solution. SHAP value
does not quantify the uncertainty of the explanation, which emerges from
the uncertainty in the data [MCB20]. SHAP also does not guarantee a causal
interpretation of the prediction [MCB20]. Feature dependence can also ex-
trapolate the result, which might be misleading the interpretation [MCB20].
The calculation of SHAP values is also time-consuming [Dwi+23]. In the case
of tree-based models (e.g., XGBoost), the SHAP values can be calculated with
the TreeSHAP algorithm [Lun+20].





3
R E L AT E D W O R K S

This chapter contains an in-depth review of works relevant to this study, fol-
lowed by some comparisons between the chosen related works. It is divided
into two sections. The first part dives into related works for simulation and
benchmarking LLM models and systems. The second part focuses more on
methods for forecasting time series data. Both parts also include discussions
about the differences between the related works with tables.

3.1 llm benchmark

The works selected for this section were based on their contribution for
benchmarking LLM models and systems with performance evaluations. Three
works were picked and discussed based on this criterion. One selected work
is BurstGPT, whose detailed explanations are presented in Section 2.1.1.

Sun et al. proposed a method to benchmark the performance and cost-
effectiveness of a locally deployed LLM pipeline called CEBench [Sun+24].
Their proposed benchmarking method focuses on the benchmarking of
Retrieval-Augmented Generation (RAG) pipelines on multiple benchmark-
ing scenarios, e.g., the LLM effectiveness benchmarking by testing different
hyperparameters, end-to-end benchmarking for RAG pipelines from docu-
ment retrieval to the generated output, prompt engineering benchmarking
with different prompting strategies, and multi-objective evaluation for qual-
ity, time, and cost assessment with recommendations.

Figure 3.1 illustrates the components and the workflow of CEBench. The
configuration files manage the benchmark settings. The dataloader prepares
the data by merging prompt templates and queries and preparing chunks
for the document retrieval process. The query execution engine then uses
the prompts to benchmark the system, whose performance is monitored
and logged. CEBench tracks several metrics for evaluation, such as memory
usage, query latency, output quality (e.g., Mean Absolute Error (MAE) and
F1-score), and estimated cost per prompt. The plan recommender suggests
optimal plans based on the benchmarking result for cost and effectiveness.
The paper also provided two use cases, mental health LLM assistant and
contract reviewing, to demonstrate the application of CEBench. This bench-
marking method could help test locally deployed RAG systems with limited
budgets to find the best cost-effective solution.

Tuggener et al. explored the possibility of benchmarking LLM with quanti-
zation and low-ranking approximation methods [Tug+24]. The benchmark-



20 related works

Figure 3.1: CEBench workflow [Sun+24]. The components consist of configuration,
dataloader, query execution, metric monitoring & logging, and plan rec-
ommender.

ing method focuses on LLM inference and fine-tuning with limited resources
using quantization and Low-Rank Adaptation (LoRA). The benchmark mea-
sures the resources used for the computation during inference or fine-tuning
and the generated output quality. The metrics used to measure the resources
are Video Random-Access Memory (VRAM) usage, generated tokens per sec-
ond, processed batches per second, and power consumption in watt-hour.
The output quality is measured using quantitative and qualitative evalua-
tion based on questions by MT-bench [Zhe+24]. The quantitative evaluation
is based on the average score generated from the OpenAI GPT-4 model to
assess the output quality on a scale from 1 to 10. It also compares the out-
put of a tuned model with its base model by showing them to the GPT-4
model. Then, the GPT-4 model selects which model performs better or a tie.
Human evaluation is also proposed to qualitatively evaluate the output and
support the quantitative evaluation. Five questions with different topics se-
lected from MT-bench were used for evaluation by averaging scores ranging
from 1 to 5 from eight humans. This benchmarking method has the poten-
tial for real-world application to measure the quality of LLM that applied
efficiency methods for low resource application.

3.1.1 Discussion

Table 3.1 shows the summary and comparison between the three benchmark-
ing methods selected in this study.

The focuses and possible real-world applications of the selected works
cover a broad spectrum, ranging from high performance application in burst
situations in [Wan+24] to low resource application in [Tug+24]. The bench-
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Aspect
Wang et al.
(BurstGPT)
[Wan+24]

Sun et al.
(CEBench)
[Sun+24]

Tuggener et al.
[Tug+24]

Focus

LLM
deployment in

burst
situations

Cost-effective
LLM

deployment

LLM
deployment
with limited

resource

Performance
Evaluation

Request failure
rate, token

latency, system
throughput

Memory
usage, query

latency,
estimated cost

per prompt

VRAM usage,
generated
tokens per

second,
processed

batches per
second, power
consumption
(watt-hour)

Output
Quality

Evaluation
- MAE, F1-score

Quantitative
(using GPT-4

model
evaluation),
qualitative

(using human
evaluation)

Real-world
application

LLM test for
high

performance

LLM test for
cost-effective

solution

LLM test for
low resource
application

Table 3.1: Summary of the benchmarking approaches used in Section 3.1.

marking method in [Sun+24] shows more focus in between.

All selected papers had metrics to measure the performance for bench-
marking. [Wan+24] purely focused on the performance metrics, such as re-
quest failure rate, system throughput, and token latency. [Sun+24] and
[Tug+24] also considered the performance factor, e.g., by measuring latency
and throughput. However, they also considered the resource consumption
aspects, such as memory usage, power consumption, and estimated cost per
prompt. Only [Sun+24] and [Tug+24] considered the generated output qual-
ity in their benchmark, either by using only scoring metrics or with a combi-
nation of human evaluation. [Wan+24] needs a separate process to evaluate
the output quality.

Based on the descriptions of the benchmarking methods, [Tug+24] has a
more straightforward benchmarking setup. [Wan+24] and [Sun+24] methods
consisted of multiple components for the benchmarking process. Meanwhile,
[Tug+24] only used the model performance and questions from MT-bench
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for evaluation. Overall, the methods from [Wan+24] and [Tug+24] are more
general in comparison to [Sun+24]. [Wan+24] implementation can theoreti-
cally be used to benchmark the performance of different use cases. On the
other hand, [Sun+24] focuses more on RAG implementation based on its ar-
chitecture and use case examples. [Tug+24] could also be used for general
purposes. Its scoring method to evaluate the output quality can be used
for various use cases, while the metrics from [Sun+24] are only specific for
certain problems. However, the scalability problem of the test needs to be
addressed since it uses human evaluation.

3.2 forecasting time series data

This section focuses on related works selected based on using machine learn-
ing models to forecast time series data, specifically the methods used in the
selected works for handling time series data for forecasting with XGBoost.
Four works were selected and discussed based on this criterion. This section
shows the versatility of the XGBoost algorithm in forecasting time series data
for different use cases, such as in sales, financial, and healthcare domains.

Niu built a sales forecast model for Walmart sales dataset based on XG-
Boost model to forecast the sales data of the next 28 days [Niu20]. The train-
ing data consisted of 1,941 days, with 3,049 products in 10 Walmart stores.
Due to the vast amount of data, the time series data were preprocessed
to simplify the data further. The first step was compressing the data into
a smaller representation with less memory. To ensure that XGBoost could
handle the time series data, temporal characteristics from the timestamps,
e.g., month, day of week, weekend, etc., and statistical properties from a
certain period of time, such as lag feature, minimum, maximum, etc., were
extracted. It also recursively eliminated features using cross validation to
remove unimportant features during training. Niu also compared the XG-
Boost with logistic and ridge regression based on the Root Mean Squared
Scaled Error (RMSSE) metric. XGBoost achieved the lowest RMSSE value of
0.652, followed by ridge (0.765) and logistic regression (0.793). This result
made XGBoost the best performing model in the experiment. The feature
importance of the top 20 features extracted from the XGBoost model was
also shown for interpreting the forecasting result and possibly using the im-
portant features for forecasting in the future.

Jabeur, Mefteh-Wali, and Viviani forecasted gold price in US dollars us-
ing XGBoost and interpreted the forecast using SHAP [JMWV24]. The gold
price data ranged from January 1986 to December 2019, with a total of 408

monthly observations. The other seven features used to forecast the gold
price were collected from different freely available sources, also in a monthly
period. These features included silver price, oil price, inflation rate in the
USA, and S&P 500 index. The data was divided into 80% training and 20%
test data for training and model evaluation. Then, six machine learning algo-
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rithms were trained to forecast the gold price data: linear regression, neural
networks, random forest, LightGBM, CatBoost, and XGBoost. These mod-
els were compared using Root Mean Squared Error (RMSE), Mean Squared
Error (MSE) , MAE, and R2 evaluation metrics. XGBoost was identified as
the best model based on these metrics, with the lowest RMSE (34.921), MSE

(1219.500), and MAE (21.968) score, and the highest R2 (0.994) score. After
training and evaluation, some visualization plots based on SHAP values were
generated and analyzed to understand the forecasting result from the XG-
boost model, such as summary and dependence scatter plots.

Zhang et al. applied the XGBoost algorithm to forecast the sales volume
of two milk-tea stores in Beijing based on sales and weather data [Zha+21].
Two sales data sets were used to train the model and test the forecast. The
first data contained almost 1.2 million orders from January 2019 to January
2020. The second data had fewer data, with 89,109 entries from July 2019 to
January 2020. The weather data consisted of weather information every day
from January 2019 to January 2020. Since the trained model was expected to
forecast the sales volume every 15 minutes, the previously mentioned data
entries were aggregated to create the sales volume (based on order value)
and order volume (based on the number of orders). The temporal informa-
tion, such as month, day of month, up to the minute of the entries, and histor-
ical transaction from the 7-day period, were used for training. Holiday infor-
mation, air quality, temperature, rain, and haze information were also added
to the sales data. An XGBoost model was then trained based on 75% of the
data. The model performance was evaluated on the two sales data using
MAE and RMSE metrics. The trained XGBoost model was also compared with
other models, such as Autoregressive Integrated Moving Average (ARIMA),
Long Short-Term Memory (LSTM), Prophet, and Gradient-Boosted Decision
Trees (GBDT). The XGBoost and GBDT models outperformed all other mod-
els by achieving the lowest MAE and RMSE on both sales data. However, the
XGBoost model still outperformed the GBDT model with a slight margin on
both sales data and only a third of the iterations needed for GBDT to achieve
almost the same result.

Fang et al. forecasted the occurrence of COVID-19 cases and compared the
performance of the seasonal ARIMA algorithm with the XGBoost algorithm
in their work [Fan+22]. The data used for training was based on the COVID-
19 cases and vaccination data in the USA from December 13, 2020 to June 16,
2021. The goal was to forecast the number of COVID-19 cases for the next
14 days until 30 June 2021. Fang et al. added seven lag features to capture
the seasonal trend in the data for XGboost training. Weekday information
was also included to handle the temporal information during training. The
XGBoost model used one-step ahead prediction as the forecasting method
in the experiment. This method used all data before and at time t to forecast
the number of cases at time t + 1. Mean Absolute Percentage Error (MAPE),
MAE, and RMSE were the chosen metrics for model evaluation. The XGBoost
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model performed better on the test data, with more than half of the seasonal
ARIMA model’s MAPE, MAE, and RMSE values. The work also tried to find the
important features using information from the XGBoost model.

3.2.1 Discussion

Table 3.2 shows the summary and comparison between the four forecasting
methods selected in this study.

Aspect [Niu20] [JMWV24] [Zha+21] [Fan+22]

Predicted
value

Walmart
sales data

Gold price
Milk-tea

stores sales
volume

COVID-19

cases

Data
Walmart

sales
dataset

Silver
price, oil

price,
exchange

rates,
inflation,
S&P 500,
iron ore

price

Sales data,
weather

data

US
COVID-19

cases and
vaccination

data

Temporal
features

Temporal
informa-

tion,
lagged

features

Monthly
informa-

tion

Temporal
informa-

tion,
lagged

features

Temporal
informa-

tion,
lagged

features
Evaluation

metrics
RMSSE

RMSE, MSE,
MAE, R2 MAE, RMSE

MAPE, MAE,
RMSE

Comparison
models

Logistic
regression,

ridge
regression

Linear
regression,

neural
networks,
random
forest,

LightGBM,
CatBoost

ARIMA,
LSTM,

Prophet,
GBDT

Seasonal
ARIMA

Explanation
method

Information
from

XGBoost
model

SHAP -

Information
from

XGBoost
model

Table 3.2: Summary of the forecasting approaches used in Section 3.2.
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Most of the selected works combined several time series data from differ-
ent sources to support the forecasting process, with [JMWV24] combining
the most time series data from different sources for the forecasting. Differ-
ent data sources make the data preprocessing more tedious since they may
have different representations of the time series data, which requires more
effort to standardize the data before combining them. The type of data and
the main preprocessing step from [Zha+21] are the most similar to what this
work had done, which is aggregating the time series data with irregular in-
tervals into regular intervals before combining it with another time series
data.

Most of the reviewed works also created new temporal features during
feature engineering processes since the XGBoost algorithm does not con-
sider time components in the data by default. Compared to the related
works, this work only used the lagged information derived from existing
features. [Niu20], [Zha+21], and [Fan+22] created temporal information as
features, ranging from year information down to minute information, as
well as lagged features. [JMWV24] only used the monthly information of
each feature for the forecasting.

The selected evaluation metrics used for model comparison were also var-
ied. Most of the works used RMSE and MAE for their model evaluation, which
is also mainly used in this work. [Niu20] chose the RMSSE metric for the com-
parison and evaluation. [JMWV24] used MSE and R2 as additional metrics to
evaluate the model performance. However, using both MSE and RMSE might
be redundant since RMSE is only the root of MSE. [Fan+22] chose MAPE as
an additional metric. None of the selected papers mentioned explicitly any
information regarding the objective function used during the training of the
XGBoost model. There is also no concrete information about the forecasting
method used for the XGBoost model, except [Fan+22], which used one-step
prediction. This forecasting method was also used in this work.

The related works compared the XGBoost model with different types of
machine learning models. Only [Zha+21] and [Fan+22] provided a compari-
son with machine learning models that specifically handle time series data,
ranging from simple linear models (ARIMA) to complex deep learning mod-
els (LSTM). [Niu20], [JMWV24], and [Zha+21] used traditional linear models
as comparison models, with [JMWV24] and [Zha+21] also offering compar-
isons with other complex models. In comparison, this work used time se-
ries models, such as ARMA and VAR, and an XGBoost model that was only
trained with time series data of the predicted value as comparison models.
The related works, except for [Fan+22], should also give enough attention to
the comparison models since they lack comprehensive information on their
training.
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Three of the four selected works explored ways to find the essential pre-
dictors for forecasting. [JMWV24] used SHAP to find the important features
and explain the correlation between the features and prediction values. This
method was also similar to this work. [Niu20] and [Fan+22] tried to find the
important predictors by extracting information from the trained XGBoost
model. The XGBoost model offers three ways to show the important fea-
tures, which are explained in Section 4.2.4. Nevertheless, no clear informa-
tion about which method was chosen in [Niu20] and [Fan+22].



4
A P P R O A C H

This chapter explains the details of the general steps that were carried out to
conduct the experiment. The experiment was divided into two main parts:
simulation and forecasting.

4.1 simulation

This section mainly used the BurstGPT benchmarking method to simulate
the requests. The details of BurstGPT can be found in Section 2.1.1. This sec-
tion can be divided further into two steps: generating the simulation dataset
and simulation run.

4.1.1 Generating the Simulation Dataset

This step aimed to create and save the simulation dataset into Comma-
Separated Values (CSV) files. The first thing to do was finding an existing
prompt dataset for the prompt sampling. The chosen prompt dataset should
be suitable for the use case on which it is tested. If the project had a suitable
prompt dataset for its use case from its own system or database, the search-
ing step for another dataset could be skipped.

After finding the suitable dataset, the prompts in the dataset were tok-
enized to fill the prompt pool. It is crucial to ensure that the tokenizer used
for the tokenization process corresponds to the LLM model used in the server.
For each request, the number of tokens created from this tokenization pro-
cess was counted and defined as the request length. The prompt pool was
implemented using a dictionary data structure, with the request length as
keys and the list of texts with the corresponding length as values. This struc-
ture indicates that multiple prompts might have the same request length.
Based on the request length information from the prompt pool, the proba-
bility for each request length can be defined following the Zipf distribution
with parameter θ. Given L different prompt lengths in the prompt pool, the
shortest prompt length was labeled with rank 1, the second shortest prompt
was labeled with rank 2, and so on, with the longest prompt length labeled
with rank L. More detail on how the probability was determined can be
found in Section 2.1.2. This probability served as the basis for the prompt
sampler to sample the prompt.

The next step was to create a simulation dataset based on the mathematical
concepts mentioned in BurstGPT. The simulation dataset in this experiment
was directly divided into training, validation, and test data. This approach
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can be done since BurstGPT can create arbitrary amounts of requests based
on given mathematical distribution parameters.

To create the training data, the number of the simulated burst situation
was determined. After that, lists of shape parameters α and scale parame-
ters β of the Gamma distribution were specified for the burst situations. The
number of elements in each list is equivalent to the determined number of
burst situations. The values of shape parameters α were modeled based on
a quadratic function, and the values of scale parameters β were modeled
based on a linear function, similar to BurstGPT. The list values for both pa-
rameters were ordered, either in ascending or descending order, to simulate
gradual changes in the Gamma distribution. A pair of shape and scale pa-
rameters were then selected from both ordered lists for each burst situation.
The first elements from both lists were selected for the first burst situation,
the second elements for the second burst situation, and so on, up to the last
elements. Each burst situation could create multiple requests based on these
Gamma distribution parameters.

The first step in creating requests for each burst situation was to determine
the number of requests to be sent based on discrete uniform distribution.
Each request consisted of a request prompt and a waiting time before it was
sent to the server. The waiting times for the requests were generated based
on Gamma distribution. The generated waiting times were then normalized
into a longer given time range in seconds, as using the waiting time directly
generated from the Gamma distribution was too short. The time range was
also randomly selected based on discrete uniform distribution. After gener-
ating the waiting time, the request prompt was sampled for each request
using the prompt sampler and prompt pool. The prompt sampler selected
a random request length based on the calculated probability following the
Zipf distribution. If the selected request length had only one prompt, this
prompt was automatically selected for the request. Otherwise, the prompt
was sampled from the list of prompts based on uniform distribution.

When the waiting time was specified and the request prompt was selected
for each request, the requests for each burst situation were saved in CSV files.
Each CSV file only contained information on one burst situation. Each CSV

file consisted of three rows with information regarding the request’s waiting
time, prompt, and prompt length, along with three rows with information
regarding which burst situation it belongs to, the shape parameter α, and
the scale parameter β.

Even though the previous paragraphs explain the steps for generating the
training data, they also apply to the validation and test data, with two key
differences. First, the requests in training data had the information on which
burst situation they belong to, e.g., Burst 1, Burst 2, etc., where the validation
and test data did not. Second, the order of the shape parameter α and scale
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parameter β were randomized in validation and test data. This randomized
process was done to simulate uncertainty during the simulation.

4.1.2 Simulation Run

Feature name Description

request_start
Point in time the request started

based on t = 0s.

request_end
Point in time the request ended based

on t = 0s.

request_duration
The difference between ’request_start’

and ’request_end’.

waiting_time
The waiting time before the request

was sent.

request_type
Which burst situation the request

belongs to, e.g., ’Burst n’ (for training
data), ’Validation’, or ’Test’.

request
Request prompt string sampled from

prompt pool.

request_length
The number of tokens of the request

prompt.

response
Response string generated from the

LLM inference server.

response_length
The number of tokens of the

response.

is_ok
Only true, if there was no problem

during sending the request and
receiving the response string.

exception_type
Type of the exception, when ’is_ok’ is

false.

shape_gamma
Shape parameter α of the Gamma

distribution to generate the
corresponding waiting time.

scale_gamma
Scale parameter β of the Gamma

distribution to generate the
corresponding waiting time.

Table 4.1: Description of the data collected from the simulation run for each request.

This step aimed to test the LLM server based on the simulation dataset
generated in the previous section. First, all requests from all burst situations,
namely training, validation, and test data, were loaded from the CSV files for
the simulation run. The simulation began from a start point in time t = 0
seconds and was run by sending requests from each burst situation one at a



30 approach

time. The following burst situation was only executed if all requests in the
current burst situation had finished waiting or receiving the response from
the server.

For each burst situation, the requests were sent via HTTP asynchronously
and concurrently to the server. Each request waited for the time to send
the prompt based on their respective waiting time. After the waiting time
was up, the prompt was sent to the LLM inference server using the server’s
Application Programming Interface (API). The request then waited until it
got the response from the LLM server or the request timed out. Each request
had only a limited time to wait for the response from the server before it
was deemed a failed request. During the simulation run, the metrics gener-
ated from the LLM inference server were also recorded at regular intervals
of under one minute to capture the server performance information as time
series data.

After the simulation with all burst situations was finished, the important
response data from the LLM inference server were extracted for each re-
quest and saved in tabular format. Table 4.1 shows the description of the
extracted information for each request. The collected data from the requests
and the server performance metrics were saved in two separate CSV files,
which served as the result of the overall simulation process and the raw data
for the forecasting process.

4.2 forecasting

This section mainly focuses on data preparation and forecasting processes,
followed by interpretation of the trained model. This section can be divided
further into several steps.

4.2.1 Data Preparation

The raw data used for the experiment was based on the two CSV files created
from the previous section, namely the requests and LLM server performance
metrics data. The data from these files was used for further data preparation
processes for the forecasting. Please note that the explanation in this section
focuses on the preparation step of the request data with only a general ex-
planation for the server performance metrics since the server performance
metrics are relevant specifically to what technology or serving framework is
used in the use case. The details of the performance metrics and the data
preparation process in this experiment will be described later in Section 5.1
and Section 5.5, respectively.

After loading the request data, the ‘request’ and ‘response’ columns were
removed since they are not helpful for the forecasting process, and analyz-
ing the generated result quality is outside the scope of this experiment. The



4.2 forecasting 31

request data is overall a time series data, but not in irregular intervals due to
randomness in waiting time. When a request did not receive any response
from the server, the value of ‘response_length’ was null. Therefore, these
null values were filled with zeroes.

After filling in the null values, the data was sorted based on the point in
time when the requests finished waiting or receiving the response from the
server, i.e., the column ’request_end’. Then, a time index was created based
on this feature. A new feature was also created by inverting the value from
column ‘is_ok’ and naming it ‘fail’.

The next step was to create time series data with regular intervals. The
features of the sorted data were aggregated into regular intervals of one
minute. For example, requests under 1 minute from t = 0s were aggregated
together, requests between 1 and 2 minutes from t = 0s were aggregated
together, and so on. The selected features for the aggregation process with
the corresponding aggregation function can be found in Table 4.2.

Feature name Aggregation function

request_duration Mean
request_type Maximum

request_length Mean
response_length Mean

fail Mean

Table 4.2: Request data features selected for aggregation with their corresponding
aggregation function.

Notice that after the aggregation process, the column ‘fail’ contained the
failure rate of the requests in every interval with values between 0 and 1. The
value 0 indicated that no request failure occurred in the time interval, and
the value 1 suggested that all requests failed in the time interval. This fea-
ture served as the target variable of this experiment. Other than the request
data, the data points of the LLM server performance metrics were also aggre-
gated in one-minute intervals. Information regarding the features selected
for the aggregation with their corresponding aggregation functions specific
to this experiment can be found in Table 5.2 and will be discussed later in
Section 5.5.

The next step of the data preparation process was to check the stationar-
ity of the features in the time series data, as some trained models assume
that the time series are stationary. The stationarity property was checked on
all features using the augmented Dickey-Fuller test with significance level
α = 0.05. Information about the Dickey-Fuller test can be found in Sec-
tion 2.2.1.
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Figure 4.1: Row shifting of the ’fail’ column (y column) for forecasting.

As both request and metrics data had the same intervals after aggregation,
the data were combined row-wise. For forecasting the failure rate of the next
interval, the rows of the ‘fail’ feature were shifted, which is displayed in
Figure 4.1. The idea of row-shifting was to ensure that the machine learn-
ing model that does not consider time series components by default can still
forecast the future value of the target variable using only known values from
the past. All predictors at time t (Xt) were used to forecast the failure rate
of requests at time t + 1 (yt+1). The shifting made the predictors Xt the lag 1

features for the forecasting. The first and the last rows of the shifted data in
Figure 4.1 were removed, as they were either missing the predictors or the
target variable.

The result of the data processing step was combined time series data with
multiple features from request and LLM server performance metrics to fore-
cast the failure rate of requests that did not receive a response from the
server.

4.2.2 Evaluation Metrics

There were two metrics used to evaluate the trained models in this study,
MAE and RMSE. The formulas of the evaluation metrics are:

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (4.1)
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (4.2)

with n representing the number of observations, yi representing the true
value, and ŷi representing the predicted or forecasted value. Both metrics
have values ≥ 0, with 0 representing the best possible value.

Both metrics could be used simultaneously for evaluating the model per-
formance with test data. However, only one evaluation metric could be used
for hyperparameter tuning with training and validation data. The chosen
metric must be dependent on the characteristics of the target variable. Hewa-
malage, Ackermann, and Bergmeir explored this topic further in their work
[HAB23].

According to Hewamalage, Ackermann, and Bergmeir, MAE is a measure
that optimizes for the median, while RMSE is a measure that optimizes for the
mean [HAB23]. It was suggested that MAE and RMSE could be used equally
for different types of time series characteristics, except for intermittence and
outliers [HAB23]. In intermittent time series where most of the data contain
zeroes, RMSE is more suitable than MAE to be chosen as the evaluation metric,
as MAE might constantly view zeros, i.e., the median, as the best prediction
[HAB23]. On the other hand, MAE is more robust in handling outliers in the
time series data in comparison to RMSE since MAE optimizes for the median,
which is more robust against outliers [HAB23].

Therefore, the target variable should be examined before deciding the eval-
uation metric for hyperparameter tuning. If outliers appear in the data, MAE

should be chosen. If the data are dominated with zero values, RMSE should
be used for evaluation. Otherwise, either evaluation metric can be chosen.

4.2.3 Modeling

This step aimed to train machine learning models with the time series data
from the data preparation step to find a model with the best forecast. Before
starting the training process, the time series data was split into training, vali-
dation, and test data. The split was implemented by filtering the rows based
on the ‘request_type’ column. Rows with column values ‘Validation’ and
‘Test’ served as the validation and test data, respectively. Otherwise, they
were selected as the training data. The column ‘request_type’ was only used
for splitting the dataset and not for forecasting. Therefore, the column was
removed after the split.

The main approach for the modeling is to find the best hyperparameter
for the model from a set list of possible hyperparameters based on the evalu-



34 approach

ation with validation data and use the result from hyperparameter tuning to
evaluate the test data. First, the possible hyperparameters were determined
for the test. Next, the model used one of the hyperparameter combinations
to train the model and forecast all values on the evaluation data simulta-
neously. A suitable evaluation metric was used to measure how good the
forecast was on the evaluation data. The training was repeated with all pos-
sible hyperparameter combinations, and the hyperparameter combination
with the best evaluation metric value was chosen for the test data.

The model was then trained with the training and validation data with
the selected hyperparameter combination and evaluated on the test data.
The evaluation of the test data was different from that of the validation data.
The evaluation of the test data used the rolling origin evaluation [HAB23].
Figure 4.2 and Figure 4.3 illustrate the two different rolling origin evaluation
setups: the rolling window and the expanding window.

Figure 4.2: Rolling window evaluation
setup [HAB23].

Figure 4.3: Expanding window evalua-
tion setup [HAB23].

The main idea of both evaluation setups was to forecast the next value one
step at a time using previous data. The machine learning model used multi-
ple observations until time t, which are marked with blue boxes, to forecast
the value at time t+ 1, which are marked with orange boxes. The main differ-
ence was the data volume used for the model training. Rolling window used
only a fixed amount of data to train the model by adding the newest data
and removing the oldest data from the rolling window for every forecasting
step while expanding window concatenated the data for every step, which
made the number of data used for retraining grow over time. In comparison,
the evaluation for hyperparameter tuning used the fixed origin setup, using
the same data for every forecasting step [HAB23]. The rolling origin evalua-
tion setup ensures that the forecast errors are not influenced by only specific
patterns observable in a particular period [HAB23]. Therefore, the rolling
origin evaluation is useful in this experiment, as the result from the model
training will be used in production for a longer period of time, which makes
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capturing the dynamic in the system over time better than only capturing
certain patterns in a certain time period, and the model was retrained for
every forecasting step with fresh data.

The primary model used in this experiment was XGBoost, which used
multiple features as predictors. More details on the XGBoost algorithm can
be found in Section 2.2.2. XGBoost was chosen as the primary model since
it is versatile for different use cases and performs well, as shown by the re-
lated works in Section 3.2. It is also scalable and fast [CG16], which may
be helpful for monitoring the server in production in real time. Temporal
features were created to train the XGBoost model since it does not consider
time components in the data by default. The XGBoost model could be di-
rectly trained using the data from the steps in Section 4.2.1. Nevertheless,
the data only contained lag 1 predictors for the forecasting. It also did not
contain lagged features from the target variable itself. Therefore, one of the
hyperparameters to be tuned for the XGBoost model was the number of lags
of the predictors and target variable (p).

Hyperparameter Description

Learning rate Shrinkage factor of the leaf weights.
Maximum depth Maximum depth of an estimator tree.

α (Regularization) L1 regularization term.
λ (Regularization) L2 regularization term.

Number of estimator
The number of tree estimators of the

XGBoost model.

Table 4.3: Hyperparemeter of the XGBoost model.

Table 4.3 shows the hyperparameters of the XGBoost model used in this
experiment. For every possible value of p, all possible XGBoost hyperparam-
eter combinations were iterated to find the best XGBoost model. The XG-
Boost model in this study used tree models for the estimators. It also used
logistic regression for the regression learning objective, as the target variable
ranged from 0 to 1. The model also used L1 and L2 regularization mutually
exclusively. The suitable maximum tree depth parameter, α regularization
parameter, and λ regularization parameter were tuned to control the tree
growth for each estimator. The number of estimators was found with early
stopping. The early stopping method was chosen, as using a fixed number of
estimators during training may accidentally raise the error value on the eval-
uation data due to overfitting. After the XGBoost algorithm trained a new
estimator, it evaluated the model with the evaluation data (in this case, the
validation data) and calculated the prediction quality using an evaluation
metric. In this experiment, if the model did not improve with a difference of
at least 10−5 on the evaluation metric after 50 training steps, the model train-
ing would end, and the best number of estimators trained was given. This
process was done to find the ideal amount of trees based on the evaluation
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data.

Three models were also trained as comparisons with the XGBoost model,
two linear time series models, and one univariate XGBoost model.

1. ARMA. This model used only the target variable for forecasting. The
hyperparameters used for the ARMA model were p and q. More in-
formation about this model and its hyperparameters can be found in
Section 2.2.1.

2. VAR. This model could use multiple features to forecast the target vari-
able. This model used the same columns as the XGBoost model for
training. However, this model did not use a shifted target variable at
the end of the data preparation step for the forecasting. The hyperpa-
rameter used for the VAR model was p, which indicates the number of
lags.

3. Univariate XGBoost model. The training process of this model is similar
to the XGBoost model explained above but with one key difference.
This model used only the target variable for the forecasting process.

Since the target variable value ranged from 0 to 1 and the output of the
linear time series models are real numbers, the target variable was first trans-
formed with a logit function for the training process. The transformed values
of 0 and 1 with the logit function were set to -30 and 30, respectively. Those
values were chosen since their logistic function outputs are close to 0 and 1,
without using an extremely large or small value that may affect the regres-
sion process. The model output for the forecasting was transformed again
into a probability with a logistic function.

4.2.4 Interpretation

After training and finding the best XGBoost model, the last step was to in-
terpret the model and find the important features for the forecasting. Two
different approaches were used to find the important features.

The first approach was to use the XGBoost model itself. The XGBoost
model offers three ways to define the feature importance using weight, gain,
and coverage [Shi22]. Weight measures how often a feature appears in the
tree estimators, gain measures the average training loss decrease using a
feature, and coverage measures the number of observations impacted by a
feature [Shi22]. The feature importances were visualized with a bar graph.
This approach considered the training and validation data for interpreting
the model in this experiment.

The second approach was to use SHAP values to explain the forecasting
result on the test data. More details on how SHAP works can be found in
Section 2.2.3. SHAP offers multiple ways to visualize the feature importance,
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either for local or global explanation. In this experiment, this approach con-
sidered the training, validation, and test data to interpret the forecast of the
test data.

Both approaches can be used to find the important features, as there is no
concrete definition of interpretability and no standard way to quantify the
correctness of an explanation [MCB20]. Nevertheless, this work preferred
the SHAP method for finding the important features. The feature importance
from XGBoost can be defined in three different ways, which makes it confus-
ing to choose the definitive method, as they may give different results. Also,
the feature importance with XGBoost only considered the trained model
with training and validation data. SHAP used all the data for the explana-
tion since it interpreted the result of the test data using the model trained
with training and validation data. This approach also made SHAP similar
to the evaluation with evaluation metrics. Nonetheless, the results of both
approaches were still shown in this experiment.





5
I M P L E M E N TAT I O N

This chapter covers the implementation details of this study, including the ex-
ample use case for the experiment, the dataset chosen based on the example
use case, technical specifications, simulation and forecasting details specific
to this experiment, and the hypotheses related to the research questions.

5.1 use case : chatbot project

It was assumed in this experiment that there was a new chatbot project
for English conversations to be tested. The project had no available dataset
to test the LLM server and no concrete idea about the pattern of how the
requests were sent to the server. This project used the open-source Mistral-
7B-Instruct-v0.2 model1 as the LLM for generating the chatbot responses.

The project also used the vLLM serving framework, which was developed
by Kwon et al. [Kwo+23], to run its LLM on an internal server. The vLLM
framework is open-source and provides the production metrics2 generated
from the framework for monitoring. The production metrics were pulled
every 5 seconds as time series data using Prometheus3, an open-source mon-
itoring toolkit. Table 5.1 shows the pulled metrics from the vLLM framework
in the project.

Each request from a user was given a maximum timeout of 200 seconds. It
was also given a limit of 2,048 tokens for the sum of prompt and generated
tokens. Therefore, the number of generated tokens was determined by sub-
tracting 2,048 with the number of tokens in the prompt. For prompts with
more than 2,048 tokens, the generated output was limited to 10 tokens.

The project members wanted to know if it is possible to forecast the re-
quest failure rate based on the available time series data for server moni-
toring or if more data should be collected. The project members were also
interested to know which features are crucial to forecast the failure rate. This
study worked based on this example use case for the details of the experi-
ment.

1 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2, Last accessed: 27 November 2024

2 https://docs.vllm.ai/en/v0.5.3.post1/serving/metrics.html, Last accessed: 27 November
2024

3 https://prometheus.io/, Last accessed: 27 November 2024
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Feature name Description

vllm:avg_generation_throughput_toks_per_s
Average throughput of

generated tokens in
tokens/second.

vllm:avg_prompt_throughput_toks_per_s
Average throughput of tokens

processed for prefill in
tokens/second.

vllm:generation_tokens_total
Number of generated tokens

in total.

vllm:prompt_tokens_total
Number of tokens processed

for prefill in total.

vllm:cpu_cache_usage_perc
Key-Value (KV) cache usage

on the CPU.
vllm:gpu_cache_usage_perc KV cache usage on the GPU.

vllm:num_requests_waiting

Number of requests waiting
to be processed until the
resource on the GPU is

available.

vllm:num_requests_swapped
Number of requests swapped

to the CPU.

vllm:num_requests_running
Number of requests processed

at the moment on the GPU.

Table 5.1: Description of the metrics pulled from the vLLM framework from the
vLLM documentation.

5.2 dataset

Based on the assumption mentioned above, a conversation dataset was ex-
plicitly looked for since the use case was based on chatbot implementation
for prompt sampling. Other appropriate datasets should be used for other
use cases instead.

The chosen dataset for this experiment was the OASST2 dataset4, an open-
source conversational dataset. The experiment used only the English conver-
sation on the dataset from the training and validation splits. Even though
the dataset contains message trees with multiple replies, this experiment
only used the prompt from the prompter on the root node of the conversa-
tion, i.e., the first prompt in the message tree from the prompter, to simplify
the experiment. The list of possible prompts was reduced further by remov-
ing prompts with token lengths smaller than ten since they are too short
and lack important context. The length of a given prompt was calculated by
counting the number of tokens generated by the LLM tokenizer minus one,

4 https://huggingface.co/datasets/OpenAssistant/oasst2, Last accessed: 27 November 2024
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as the tokenized text always starts with the token <s> by the chosen LLM.

The result was a list with 4,607 different prompts. Figure 5.1 and Figure 5.2
show the histogram and Empirical Cumulative Distribution Function (ECDF)
of the prompt lengths. The prompt length ranged from 10 to 3,085 tokens.
Based on both figures, the distribution of the prompt lengths concentrated
on prompts with a smaller number of tokens. More than 80% of the prompts
had less than 64 tokens, with very few prompts having more than 1,000 to-
kens.

Figure 5.1: Histogram of the prompt lengths with logarithmic scale on prompt
length.

Figure 5.2: ECDF of the prompt lengths with logarithmic scale on prompt length.
The dashed line clarifies the proportion on prompt length equals 64.

This prompt list was then used to create the prompt pool and prompt
sampler. The list had 247 different prompt lengths, corresponding to 247

keys in the prompt pool. The top five prompt lengths with the most amount
of prompts were 11 (212 prompts), 15 (206 prompts), 10 (204 prompts), 13

(195 prompts), and 12 (193 prompts). Many prompt lengths had only one
corresponding prompt, mainly prompts with more tokens.

As there were 247 different prompt lengths, the prompt sampler created
a Zipf distribution with 247 ranks, with rank 1 corresponding to prompt
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length 10, and rank 247 corresponding to prompt length 3,085. The param-
eter θ for the Zipf distribution can be arbitrarily chosen. Nevertheless, the
parameter θ was chosen in this experiment by finding the suitable fit for the
prompt length distribution based on Q-Q plot. The chosen value for parame-
ter θ in this experiment was θ = 1.38. The Q-Q plot and the CDF comparison
between the theoretical and empirical distribution can be found in Figure 5.3
and Figure 5.4. Based on the figures, the Zipf distribution matched the dis-
tribution of prompt lengths with ranks larger than 100. However, the Zipf
distribution had a higher probability for shorter prompts compared to the
empirical distribution. The differences between both distributions will be
discussed further in Section 7.1.

Figure 5.3: Q-Q plot of Zipf distribution with θ = 1.38.

Figure 5.4: CDF comparison between the empirical prompt length data ranks and
theoretical Zipf distribution with θ = 1.38.

5.3 computer specification and python modules

This experiment used docker infrastructure to simulate the use case. The
docker infrastructure consisted of one vLLM and one Prometheus container.
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The vLLM container was an OpenAI-compatible server with version 0.5.3.post1,
which provided the implementation for OpenAI completion and chat API.
During the experiment, the requests were sent using the chat API to the
vLLM server. The vLLM container was run on an internal server within PPI
AG with default settings. The internal server was equipped with an AMD
EPYC 7343 16-core Processor CPU with 129 GB of RAM and an NVIDIA
RTX A6000 GPU with 48 GB of VRAM. The Prometheus container with ver-
sion 2.55.0 pulled the server performance metrics from the vLLM container
every 5 seconds during the experiment.

For the technical implementation of this experiment, Python version 3.11.2
was used. The Python modules used in this experiment, along with their
versions, were:

• aiohttp version 3.9.3

• datasets version 2.18.0

• jupyter version 1.0.0

• matplotlib version 3.8.4

• notebook version 7.1.2

• numpy version 1.26.4

• pandas version 2.2.1

• scikit-learn version 1.5.0

• scipy version 1.14.0

• seaborn version 0.13.2

• shap version 0.45.1

• statsmodels version 0.14.2

• transformers version 4.39.3

• xgboost version 2.0.3

5.4 simulation

The settings of the parameter can be arbitrarily chosen for the simulation
run. Nevertheless, the chosen settings for the implementation of this experi-
ment were determined to ensure that the simulation could run smoothly on
the internal server and did not exceed the server connectivity time limit in
the system infrastructure. Based on explanations in Section 4.1.1, the shape
parameters α and scale parameters β of the Gamma distribution were mod-
eled with quadratic and linear function, respectively. The quadratic function
for modeling the shape parameter was defined as follows:
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α = 0.07375 · (xα − 10)2 + 0.125 (5.1)

With xα ∈ [0, 10], the shape parameter α ranged from 0.125 to 7.5. The
scale parameter β was defined by a linear function β = xβ, with xβ ∈ [1, 10].

For the training data, the domain of xα was divided into 22 evenly spaced
intervals and used as the input for the given quadratic formula. The output
of the quadratic function was copied into a new list. Its elements were re-
versed and concatenated with the original output list. The domain of xβ was
also divided into 22 evenly spaced intervals. The list of xβ was also concate-
nated with its copy without any reversing. The validation and test data were
also created in a similar fashion, but with only 11 evenly spaced segments
instead of 22 and shuffling the list elements randomly after the concatena-
tion. In total, there were 88 burst situations in the experiment, with 44 burst
situations for training data, 22 burst situations for validation data, and 22

burst situations for test data. The number of requests in each burst situation
was randomly selected with a discrete uniform distribution ranging from 10

to 2,000 requests. Also, the time range for the normalization was randomly
selected with a discrete uniform distribution ranging from 50 to 400 seconds.

During the simulation run, the experiment used aiohttp Python library
for the HTTP client and the sleep function from asyncio to simulate the wait-
ing time. The parameters for the OpenAI chat API were also set to default
with temperature 0 for reproducibility. The response from the server was a
JavaScript Object Notation (JSON) object with information about the gener-
ated response for the request prompt, which was extracted after the simu-
lation into tabular data. The time series data collected by the Prometheus
container was also requested at the end of the simulation and saved into a
CSV file.

5.5 data preparation for server performance metrics

The server performance metrics data contained information from the vLLM
server pulled by the Prometheus container. The time interval between the
data entries was regular (5 seconds interval) compared to the request data.
The data entries were already sorted based on the column ‘Timestamp’,
which was also the time index.

Two new features were created for the server performance metrics since
the metrics ‘vllm:avg_generation_throughput_toks_per_s’ and
‘vllm:avg_prompt_throughput_toks_per_s’ were deprecated based on the vLLM
documentation page5. The new features were created by calculating the dif-

5 https://docs.vllm.ai/en/v0.5.3.post1/serving/metrics.html, Last accessed: 27 November
2024
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ference between the current row and the previous row value for the fea-
tures ‘vllm:generation_tokens_total’ and ‘vllm:prompt_tokens_total’. These
new features were called ’vllm:generation_tokens_num’ and
’vllm:prompt_tokens_num’, and both features represented the number of to-
kens generated and processed for prefill every 5 seconds, respectively.

The server performance metric data was aggregated further into regular
intervals of one minute, similar to the request data. The selected features for
the aggregation process with the corresponding aggregation function can be
found in Table 5.2.

Feature name Aggregation function

vllm:gpu_cache_usage_perc Mean
vllm:num_requests_waiting Mean
vllm:num_requests_running Mean
vllm:generation_tokens_num Sum

vllm:prompt_tokens_num Sum

Table 5.2: Server performance metric features selected for aggregation with their
corresponding aggregation function.

5.6 modeling

The possible hyperparameters for the XGBoost model can be found in Ta-
ble 5.3. The list applied to both the multivariate and univariate XGBoost
models. The number of estimators was set to a large number deemed suffi-
cient to find the suitable amount of trees with early stopping.

Hyperparameter Values

Number of lags (p) 1 − 20
Learning rate 0.001, 0.005, 0.01, 0.05, 0.1

Maximum depth 4, 5, 6, 7, No limit
α (Regularization) 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0, 1, 5, 10
λ (Regularization) 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0, 1, 5, 10

Number of estimator 100,000

Table 5.3: Values for hyperparameter tuning of the XGBoost models.

For the ARMA model, the possible values for p and q were ranged from
1 to 20. This range was also applied to the possible values of p in the VAR

model. This value range was similar to the parameter p in XGBoost training
and was chosen to provide an equal opportunity for the comparison with
the XGBoost model.
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5.7 hypotheses

There are two hypotheses associated with the research questions.

1. The time series data generated from the LLM simulation might be use-
ful in creating a meaningful forecast of the LLM server performance
with the XGBoost model. The XGBoost model might also outperform
the comparison models based on the evaluation metrics on the test
data.

2. The model interpretation methods might be able to find the compre-
hensible key features essential for forecasting the LLM server perfor-
mance. The result from the SHAP method might differ from the result
based on the XGBoost feature importance method.



6
R E S U LT S

This chapter presents the experiment’s results, including the simulation and
forecasting results.

6.1 simulation results

Figure 6.1: Histogram of the prompt lengths of the simulation with logarithmic
scale on prompt length.

Figure 6.2: CDF comparison between the empirical prompt length data ranks of the
sampled prompts and theoretical Zipf distribution with θ = 1.38.

There were 90,322 requests created for all 88 burst situations in the sim-
ulation. There were 4,605 unique prompts in all requests, two prompts less
than the number of unique prompts in the prompt pool. All different prompt
lengths were represented in the simulation. Figure 6.1 shows the prompt
length distribution of the simulation, which followed the Zipf distribution
with θ = 1.38. This similarity was proven in Figure 6.2, where the ECDF over-
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lapped with the theoretical Zipf distribution. Some prompts were used only
once in the simulation, and a unique prompt was used at most 181 times.
The simulation run lasted 8 hours and 5 minutes.

Figure 6.3: Time series of the Gamma distribution parameters.

Figure 6.3 visualizes the progression of Gamma distribution parameters
during the simulation. Notice that the parameters were ordered in a certain
way in the first half of the simulation and randomized afterward. The train-
ing data simulation ran for around 4 hours and 7 minutes, the validation
data simulation ran for around 1 hour and 56 minutes, and the test data
simulation ran for around 2 hours and 2 minutes.

Figure 6.4: ECDF of the request and response lengths with logarithmic scale on
prompt length.

Figure 6.4 and Figure 6.5 show the comparison between the request and
response length distribution with ECDF and histogram. Notice that on the
ECDF plot, the proportion of the response lengths did not start at zero. This
jump indicates that around 35.11% of the data was filled with zeros, which
indicates the number of failed requests in the simulation. Most of the er-
rors happened due to ‘TimeoutError’, with only two requests experiencing
‘ServerDisconnectedError’. Based on the ECDF and histogram, the distribu-
tion of the response lengths was concentrated on longer number of tokens
compared to the request lengths.
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Figure 6.5: Histogram of the request and response lengths with logarithmic scale on
prompt length.

Figure 6.6: Scatter plot of the request and response lengths of successful requests.

Figure 6.7: Histogram of the total length (request and response length) of successful
requests.



50 results

Figure 6.6 visualizes the interaction between request and response length
of successful requests. The Pearson correlation of both features was 0.02981,
which shows almost no linear correlation between both features. However,
the maximum limit of tokens generated from the server was influenced by
the number of tokens in the prompt. This case can be seen on the top left
side of the scatter plot, which shows a downward trend on the maximum
amount of tokens generated. Nevertheless, Figure 6.7 shows that this case is
only limited. The plot shows the histogram of the total length of successful
requests, which is the sum of request and response length. The plot proves
that most requests had a total length smaller than the limit of 2,048 tokens,
with some requests achieving this limit or more, as shown by the area at and
after the peak at the right side of the plot. After the peak are total prompts
where the prompt lengths are longer than 2,048 tokens. Both plots show al-
most no correlation between request and response length, which means the
responses were possibly generated based on the prompt context.

Figure 6.8: Histogram and box plot of the ’fail’ time series.

Figure 6.8 and Table 6.1 show the distribution and statistical properties
of the target variable ’fail’ time series. Based on the information, the target
variable is an intermittent time series, as almost 65% of the data were zeroes.
This property can be seen on the histogram and box plot of the ’fail’ time se-
ries. The histogram shows a high frequency around the value 0.0, where the
box plot shows that 0.0 is the median of the data. Both plots also illustrate
a quite high frequency of values around 1.0, indicating high failure rates of
processing the requests. This property makes RMSE the better option for the
evaluation during hyperparameter tuning based on criteria in Section 4.2.2.
Figure 6.9 shows the bar plot of the top 20 request lengths with the highest
and lowest failure rates. Based on the bar plot, there was no indication if
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Statistic Value

Mean 0.20497
Standard deviation 0.36891

Min 0.00000
25%-Quantile 0.00000

Median 0.00000
75%-Quantile 0.14706

Max 1.00000

Table 6.1: Statistical properties of the ’fail’ time series.

shorter or longer request prompts caused a higher or lower failure rate.

Figure 6.9: Bar plot of the top 20 request lengths with the highest and lowest failure
rates, respectively.

Table 6.2 shows the p-value of the augmented Dickey-Fuller test of all fea-
tures. Based on the p-values, the null hypothesis was rejected in all features,
including the transformed target variable ‘fail’ with logit function. The result
means that all features were stationary.

Appendix A contains the time series visualizations of each possible predic-
tor with the target variable ’fail’. Based on Figure A.6 and Figure A.7, more
tokens were generated than tokens processed for prefill. Since the values
of both ‘vllm:generation_tokens_total’ and ‘vllm:prompt_tokens_total’ rose
over time, both features were not used for forecasting directly but by creat-
ing derived features from them. Figure A.8 and Figure A.11 show that the
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Feature name p-Value

request_duration 6.30224 · 10−16

request_length 0.00000
response_length 2.47135 · 10−13

fail 7.43469 · 10−15

fail (logit) 1.03110 · 10−11

vllm:gpu_cache_usage_perc 5.72207 · 10−16

vllm:num_requests_waiting 1.59305 · 10−20

vllm:num_requests_running 4.21031 · 10−20

vllm:generation_tokens_num 1.17537 · 10−15

vllm:prompt_tokens_num 1.60299 · 10−20

Table 6.2: p-Value of the augmented Dickey-Fuller test of all features (α = 0.05).

CPU was not utilized during the experiment. Therefore, the features
‘vllm:cpu_cache_usage_perc’ and ‘vllm:num_requests_swapped’ were not
used as predictors.

6.2 forecasting results

Hyperparameter Multivariate Univariate

Number of lags (p) 2 3
Learning rate 0.05 0.1

Maximum depth 5 4
λ (Regularization) 0 0.05

Number of estimator 101 80

Table 6.3: The chosen hyperparameter of the XGBoost models.

Table 6.3 shows the chosen hyperparameters for the multivariate and uni-
variate XGBoost model. The hyperparameter tuning result determined that
the L2 regularization was chosen for the objective. The chosen hyperparam-
eters for the ARMA model were p = 19 and q = 15. Meanwhile, the hyperpa-
rameter for the VAR model was set to p = 10.

Table 6.4 shows the forecasting quality of each model using the rolling
origin evaluation setup. The bolded numbers indicate the lowest value of
the evaluation metric in each column, which implies the best performance
of all models. The XGBoost model outperformed all the comparison models
on rolling and expanding window evaluation based on the MAE and RMSE

metrics. The rolling window evaluation was especially more suitable for the
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XGBoost evaluation than the expanding window, as it had the best MAE and
RMSE value between the two evaluation methods.

Model
Rolling Expanding

MAE RMSE MAE RMSE

XGBoost (multivariate) 0.07900 0.17835 0.08792 0.18668
ARMA 0.17644 0.37356 0.17004 0.36475

VAR 0.11336 0.28558 0.11261 0.28718
XGBoost (univariate) 0.17223 0.29040 0.16625 0.28541

Table 6.4: The performance of the models on the test data.

The multivariate models (XGBoost and VAR) also performed better in gen-
eral than the univariate models (ARMA and univariate XGBoost). The differ-
ence between the best MAE value of the multivariate XGBoost and VAR model
was small, with a difference of 0.03361. However, the difference between the
best RMSE values was 0.10723, which is bigger than the difference in MAE.
This result suggested that the forecasts from the XGBoost model were more
similar to the true value, as RMSE penalizes larger differences harder with
the quadratic equation than MAE. This case also happened for the univariate
model, as the difference of MAE and RMSE between the ARMA and univariate
XGBoost model was 0.00379 and 0.07934, respectively. The table implies that
the univariate XGBoost model was the best univariate model in this experi-
ment.

However, based on the visualization of the forecasted and the true value,
the univariate XGBoost performed worse than other models. Based on Fig-
ure B.4 and Figure B.8, the model constantly created forecasts of more than
zero when the true values were zero. This prediction may cause false alarms
when forecasting the LLM server performance. Other models did not have
this problem. The forecast visualization of all models can be found in Ap-
pendix B.

A new XGBoost model was trained as the representative model to inter-
pret the result since the rolling origin evaluation setup created multiple mod-
els for the forecasts, which makes it hard to choose one model as the rep-
resentative for the interpretation. The new model was trained with fixed
origin, which means training the model on the training and validation data
with the chosen hyperparameter to forecast all test data simultaneously. This
new model had an MAE value of 0.09163 and an RMSE value of 0.20099, al-
most similar to the best multivariate XGBoost forecast, with a difference of
0.01263 and 0.02264 for MAE and RMSE, respectively.
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Figure 6.10: SHAP bar plot.

Figure 6.10 shows the SHAP bar plot from the representative model for
interpretation, sorted in descending order based on the mean of the abso-
lute SHAP value. The mean of the absolute SHAP value indicates the aver-
age influence of a feature for forecasting the data points in test data. There
were features that did not include the lag information and features that
included this information with suffixes “_lag1” and “_lag2”. The features
without this information were lag 1 features by default due to the row shift-
ing shown in Figure 4.1. Based on the plot, the feature ‘request_duration’
outperformed all features with a considerable margin based on the mean
of the absolute SHAP value, followed by ‘vllm:num_requests_waiting’ and
‘vllm:generation_tokens_num’. This result implies that the feature
‘request_duration’ was by far the most important feature for the forecast
based on SHAP value, with a mean value of 2.88. The mean value of this
feature was 2.57 larger than the second most important feature,
‘vllm:num_requests_waiting’. The top 10 most important features based on
the plot were dominated by features with lag 1 (7 features), followed by fea-
tures with lag 2 (3 features), which indicates that information from the last
minute is more important for forecasting.



6.2 forecasting results 55

Figure 6.11: SHAP beeswarm plot.

The interaction between the SHAP values and the feature values can be
seen with SHAP beeswarm plot in Figure 6.11. For each feature, each point
represents an observation of the test data. Each point is plotted based on
their SHAP value for the given feature and colored based on the value of
the given feature. The color red means a high feature value, and the color
blue represents a low feature value. The feature ‘request_duration’ had the
largest dispersion of the observations’ SHAP values. The relationship between
the SHAP value of ‘request_duration’ and its feature value was directly pro-
portional, where a high ‘request_duration’ value means a high SHAP value
and vice versa. This relationship may imply that the higher the average re-
quest duration for a given time interval of one minute, the higher the failure
rate for the given requests of the next time interval. Since this feature was
by far the most important based on SHAP values, this information can be
solely used to give an alert by the system if the value of this feature exceeds
a particular value. This alert system can be implemented if the system infras-
tructure is not capable of running a machine learning pipeline for real-time
forecasting and, therefore, using a simple alerting system as a solution. The
threshold value for alerting can be determined using the scatter plot by SHAP,
which is shown in Figure 6.12.

Similar to the beeswarm plot, each dot represents an instance in the test
data. Each point was plotted based on the SHAP value and the feature value
of ‘request_duration’ on the scatter plot. The red dots indicate instances with
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Figure 6.12: Scatter plot between the SHAP value and feature value of ’re-
quest_duration’. The red dots indicate instances with a failure rate (true
value) of more than 0.0, and the blue dots indicate instances with a fail-
ure rate (true value) equal to 0.0.

a failure rate (true value) of more than 0.0, and the blue dots indicate in-
stances with a failure rate (true value) equal to 0.0. Based on this plot, in-
stances with an average request duration of more than 125 seconds had a
higher SHAP value and failure rate. This result indicates that when the re-
quest duration of a particular one-minute interval exceeds 125 seconds, the
LLM system should give an alert to notify a possible chance of a higher fail-
ure rate in the next minute in production.

Other features only made minor contributions to the forecast and, there-
fore, are not used for alerting to avoid confusion. Based on Figure 6.11, fea-
tures such as ‘vllm:num_requests_waiting’, ‘vllm:generation_tokens_num’,
‘vllm:prompt_tokens_num’, ‘response_length_lag2’, and ‘request_length’
were similar to ‘request_duration’, where the relationship between the SHAP

value and its feature value was directly proportional. On the other hand, this
relationship in ‘request_duration_lag2’ and ‘vllm:prompt_tokens_num_lag2’
was inversely proportional, where a high ‘request_duration’ value means
a low SHAP value and vice versa. This relationship may imply that after a
high feature value occurs, the LLM server may regain control to normally
process the incoming requests after two minutes. Other features after ‘re-
quest_length’ either did not have a considerable dispersion or a high mean
of the absolute SHAP value.

The SHAP value interaction between the features for each instance can be
shown using heatmap in Figure 6.13. The color in the plot represents the
SHAP value of each feature, with the color red meaning a high SHAP value
and the color blue representing a low SHAP value. The darker the color, the
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Figure 6.13: SHAP heatmap plot.

higher the absolute SHAP value of that particular feature. The term f (x) at
the top of the heatmap represents the corresponding model output of a par-
ticular instance. Based on the plot, the feature ‘request_duration’ heavily
influenced the forecast of the failure rate for each time interval, whereas
other features only made minor contributions to the forecast.

Similar to the SHAP values, the XGBoost feature importance method also
determined that ‘request_duration’ was the most important feature for fore-
casting. This result was consistent on weight, gain, and coverage methods.
The three feature importance plots from XGBoost with weight, average gain,
and average coverage methods can be found in Appendix C. However, the
ranks of the important features other than ‘request_duration’ were incon-
sistent on all plots. For example, features that were used more often to
create a split did not mean that they had a high average gain value, e.g.,
‘vllm:gpu_cache_usage_perc’ and ‘vllm:generation_tokens_num_lag2’, and
vice versa, e.g., ‘vllm:prompt_tokens_num’. Also, features that were used
more often to create a split and had a high average gain value did not imply
that they had a high average coverage value, e.g.,
‘vllm:gpu_cache_usage_perc_lag2’, and vice versa, e.g.,
‘vllm:generation_tokens_num’. These inconsistencies between the feature
ranks made it difficult to choose which method should be used to interpret
the model. The complete ranking order of the SHAP and XGBoost feature
importance method can be found in Table 6.5.

When considering the top 10 most important features based on the XG-
Boost feature importance with weight method, seven of those features were
also in the top 10 most important features based on the mean of the absolute
SHAP value. With the same comparison, the number of those features rose to
eight and nine with gain and coverage method, respectively. Based on these
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comparisons, the coverage method was the most similar to the SHAP value
method.

Feature SHAP
XGBoost
(weight)

XGBoost
(gain)

XGBoost
(cover-

age)

request_duration 1 1 1 1

vllm:num_requests_waiting 2 3 6 7

vllm:generation_tokens_num 3 12 14 6

vllm:prompt_tokens_num 4 10 2 2

response_length_lag2 5 8 5 9

request_duration_lag2 6 11 7 12

vllm:prompt_tokens_num_lag2 7 9 8 3

request_length 8 2 3 5

fail_lag1 9 15 10 8

vllm:gpu_cache_usage_perc 10 5 13 10

vllm:gpu_cache_usage_perc_lag2 11 6 4 15

vllm:num_requests_running 12 13 11 14

request_length_lag2 13 14 9 17

vllm:generation_tokens_num_lag2 14 4 16 16

vllm:num_requests_waiting_lag2 15 16 15 11

fail_lag2 16 18 12 13

response_length 17 7 17 4

vllm:num_requests_running_lag2 18 17 18 18

Table 6.5: Feature importance rankings for each interpretation method.
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D I S C U S S I O N

Based on the results from the previous chapter, the research questions of
this study can be answered and the hypotheses can be confirmed. The result
from Table 6.4 can be used to answer the first research question: the time
series data generated from the LLM simulation can be used to create a mean-
ingful forecast of the LLM server performance using an XGBoost model. The
XGBoost model achieved the lowest MAE and RMSE metrics values compared
to all the comparison models on rolling and expanding window evaluation.
Since the LLM simulation was based on BurstGPT [Wan+24], which reflects
a real-world workload of an LLM serving system, the result means that the
data collected from the server and the requests can be used for the use case
in production to forecast the LLM server performance, i.e., failure rate of the
request for a given time interval. The chosen XGBoost model with rolling
window evaluation setup outperformed all other comparison models with
an MAE value of 0.07900 and an RMSE value of 0.17835, which confirmed the
first hypothesis. The VAR model was the closest model to challenge the XG-
Boost model, with a close score on MAE but a more significant difference on
RMSE. The chosen XGBoost hyperparameter from the result should be used
according to the findings for the use case in production as a starting point
to forecast the failure rate of the next time interval by retraining a new XG-
Boost model with new data in a fixed time window.

The second research question can be answered based on the model inter-
pretation explained in Section 6.2 using SHAP values: the key feature essen-
tial for forecasting the LLM server performance can be found based on the
representative XGBoost model and the generated time series data with SHAP

values. This representative model was chosen with an almost similar per-
formance to the rolling window evaluation setup based on MAE and RMSE

metrics. The most important feature based on the SHAP values from the XG-
Boost model and the generated data was ‘request_duration’. This result was
also consistent with the XGBoost feature importance method. This similar-
ity makes sense, as the feature was used the most for creating a split and
had the highest average gain and coverage value in the trained XGBoost
model. Therefore, this feature was crucial for the forecast of the test data.
Even though the result was consistent for the feature ‘request_duration’ that
it was ranked first for the importance of both methods, both methods had
different ranking order for other features, which confirmed the second hy-
pothesis. The ranking order of both methods can be found in Table 6.5. With
visualizations based on the SHAP method, the relationship between the SHAP

and the feature values can be examined, which in turn may be helpful in
understanding the LLM server performance behavior based on the feature
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values. For example, the SHAP scatter plot was used to determine the thresh-
old for ‘request_duration’ to send an alert about high failure rate. This value
may be used for the use case in production to allocate more resources and
prevent request failure, if the request duration during a certain time interval
exceeds the threshold. Nevertheless, using this feature alone for the forecast-
ing process may be insufficient. A new XGBoost model was trained using
only ‘request_duration’ as the predictor from the same data as the trained
XGBoost model in Section 6.2. By applying the same evaluation setup and
metrics on the test data, the best result for the forecasting was 0.16752 for
MAE and 0.27274 for RMSE, using the expanding window evaluation setup.
The differences with the best XGBoost forecast from Table 6.4 were 0.08852
and 0.09439 for MAE and RMSE, respectively, a notable performance degra-
dation. This result indicates that even though ‘request_duration’ is the most
important feature for the forecasting process, this feature is just a part of
all the predictors, whereas other features also contribute to the forecasting.
Furthermore, these interpretation results must also be monitored carefully
in production since the correlation obtained from the SHAP values does not
guarantee causal interpretation [MCB20].

Since the simulation setup in this experiment was similar to BurstGPT
[Wan+24], the differences with other benchmarking setups from Section 3.1
also apply to the setup in this work. This work did not use the evaluation
processes from the three benchmarking methods because the main focus of
this work was the simulation, not the scoring method. More information
about the differences between the benchmarking methods of the selected re-
lated works can be found in Section 3.1.1. Even though this work mainly
used BurstGPT to simulate the requests, this study had two differences with
BurstGPT regarding the simulation implementation. The first difference was
the separation between creating the simulation dataset generation and the
simulation run. BurstGPT does not separate both processes, while this study
first saved the generated requests in a CSV file and then ran the simulation.
The first reason for this separation in this work was to ensure that the sim-
ulation may run smoothly without any intervention of additional workload,
for example, giving the CPU control back and forth between sending the re-
quests after waiting and selecting prompts for new requests with the prompt
sampler. Instead, the simulation run only focused on sending requests and
receiving responses. The second reason was to give the possibility to check
the distribution of the sampled prompts before running the simulation in-
stead of waiting for the simulation to be over first. The second difference
between this simulation and BurstGPT was additional randomness in the
number of requests and duration per burst situation. This randomness was
added during the simulation dataset generation to test the LLM server with
additional uncertainty.

The result from this experiment also coincides with the result of all related
works in Section 3.2 for forecasting time series data. Like all of the selected re-
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lated works, the XGBoost model outperformed all comparison models based
on the chosen evaluation metrics. Unlike all related works regarding fore-
casting time series data, this work used row shifting in the data preparation
process. The row shifting was done to forecast the target variable based on
lagged features, similar to linear time series models. The related works did
not mention this method specifically. Nevertheless, it was assumed that by
creating lagged features, three of the four related works already considered
using them to forecast future values. The usage of the row shifting method
in this study was also possible due to the type of temporal features used for
the forecasting. Three out of four related works created both the lagged fea-
tures and temporal information, e.g., month, day of week, up to the minute
of the entries. This work used no temporal information, as the simulation
run was not long enough due to the server connectivity limitation in the
system infrastructure. Therefore, the temporal information features would
have insufficient attributes if created. For example, Zhang et al. created a
feature containing the day of week information [Zha+21]. This feature was
possible to use, as the data has a long period of several months, where day
of week information can be crucial to forecast the sales. However, the exper-
iment only ran for around eight hours in this study. Adding the similar day
of week information as a feature may result in a feature with one attribute
value. Adding the hour information as a feature, for example, only creates
eight out of the 24 possible attributes in the feature. Hence, shifting the row
of the target variable when temporal information columns are available may
result in errors in the forecasting due to the mismatch between them. Since
this study only used lagged features, shifting the row of the target variable
was the simple solution to ensure that the lagged values were used to fore-
cast the future value.

The modeling in this study separated validation and test data for evalu-
ation. The other related works used only two sets for training and evalua-
tion. These three splits were created in this experiment to ensure that the
trained model does not overfit and performs better when encountering un-
known data. Similar to the majority of the related works, the evaluation also
used MAE and RMSE for the test data. Furthermore, this work considered
the intermittent time series characteristic of the target variable to choose
RMSE as the suitable metric for hyperparameter tuning, compared to the
other related works, which only mentioned the metrics for test data evalua-
tion. This work also showed the forecast visualizations to check the forecast
quality. With these visualizations, it was determined that the univariate XG-
Boost model performed the worst. This result proved that using the lagged
values from the failure rate alone as predictors was insufficient. However,
forecast visualizations should be used carefully since they might be mis-
leading and thus should be accompanied by error measures for evaluation
[HAB23]. [JMWV24] and [Fan+22] also showed the forecast visualization
in their works. In the related works, the model used as comparison mod-
els also included linear models. These models were either traditional linear
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models (linear regression, logistic regression, ridge regression) or univariate
linear time series models (ARIMA, seasonal ARIMA). This work also used the
ARMA model as the univariate linear time series model. Compared to those
works, this study included the VAR model to compare the performance of
the XGBoost model with a linear time series model that considered multiple
features for the prediction. This work also used both SHAP and XGBoost fea-
ture importance methods to interpret the forecasting result, compared to the
other related works that used either only one of the methods or none. The
results from both methods were also compared in this study, and the plots
based on the SHAP values were also used to find important information that
might be useful in production.

7.1 empirical distribution for prompt sampling

As mentioned in Section 4.1.1, the sampled prompts were determined based
on Zipf distribution of the request length, according to Wang et al. in their
paper [Wan+24] for their benchmarking setup. If the number of requests cre-
ated for the simulation is larger than the number of unique prompts for the
sampling, there is a chance that double occurrences happen on at least one
prompt. This scenario happened in this experiment. Instead of using a more
complex approach for prompt sampling, it is possible and more straightfor-
ward to sample the prompts directly from a list of possible prompts multi-
ple times, i.e., using the empirical prompt length distribution of the prompt
list. This other method raised the question of how different distributions for
prompt sampling may impact the simulation outcome. Thus, the simulation
was run once more with the empirical distribution, and the simulation result
was compared with the one from Zipf distribution.

The CSV files of the generated simulation dataset with Zipf distribution
were used as the input for testing the empirical distribution. The information
in all CSV files was modified by changing the prompt in each request with a
new prompt, which also included changing the prompt length information.
Other information in each request remained the same, such as the request’s
waiting time, type, and Gamma distribution parameter. This step was possi-
ble due to the separation between the simulation dataset generation and the
simulation run. Given a list of all possible prompts where each prompt had
the same probability to be sampled, a new prompt was selected randomly
for each request without returning them to the list. This process was done
one at a time until the list was empty. If the list was empty and there were
still available requests for sampling, the list was filled again with the same
possible prompts, and the sampling process was resumed. The sampling
was done until all requests in all burst situations obtained a newly sam-
pled prompt. The prompt length distribution of the newly sampled prompt
should be similar to the prompt length distribution in the dataset. Given
the scenario mentioned in the previous paragraph with n unique prompts
in the dataset and N requests in all burst situations for the simulation, each
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unique prompt was sampled at least
⌊N

n

⌋
times. Some unique prompts were

sampled
⌊N

n

⌋
+ 1 times if N is not the multiple of n.

The modified requests were then saved into multiple CSV files, similar to
the process in Section 4.1.1. Following that, the simulation run and data
preparation were performed as explained Section 4.1.2 and Section 4.2.1, re-
spectively. The resulting features from the data preparation of both distri-
butions were then compared. The features included the predictors and the
target variable. For each feature from the predictors and target variable of
the simulation result based on Zipf distribution, the identical counterpart
from the simulation result based on the empirical distribution was chosen
for the comparison using the Kolmogorov-Smirnov test with significance
level α = 0.05. This test was used to examine if the distributions of both
features were different, which meant the null hypothesis was rejected. Addi-
tionally, each feature of both distributions was also compared visually with
Kernel Density Estimation (KDE) and ECDF plots.

Figure 7.1: Histogram of the prompt lengths of the simulation of the empirical dis-
tribution with logarithmic scale on prompt length.

Figure 7.1 shows the sampled prompt length distribution of the new sim-
ulation, which follows the prompt length distribution of the prompt dataset.
Due to the new sampling implementation, all unique prompts were used in
all requests. Given 90,322 requests and 4,607 unique prompts in the simula-
tion dataset, each unique prompt was sampled at least 19 times, with some
of them sampled 20 times. Compared to the simulation with Zipf distribu-
tion, the new simulation ran 8 hours and 28 minutes, 23 minutes longer than
the simulation with Zipf distribution.

The comparison between the request and response length distribution of
the empirical prompt length distribution was visualized with ECDF plot and
histogram in Figure 7.2 and Figure 7.3, respectively. Based on the ECDF plot,
the ECDF of the sampled request prompts was similar to the ECDF of the
prompt length list they were sampled from in Figure 5.2. The ECDF of the
response lengths indicated that the number of failed requests of the simula-
tion with empirical distribution was higher than with Zipf distribution. This
number was close to 42.95%, an almost 8.00% difference with the Zipf distri-
bution. The longer simulation duration of the empirical distribution might
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Figure 7.2: ECDF of the request and response lengths of the empirical distribution
with logarithmic scale on prompt length.

be due to the higher failure rate. A request was deemed a failure if it did not
receive a response from the LLM server, mainly due to timeout. The timeout
was set at 200 seconds, which meant more requests waited longer for the
server response, making the simulation run longer.

Figure 7.3: Histogram of the request and response lengths of the empirical distribu-
tion with logarithmic scale on prompt length.

The p-value of the Kolmogorov-Smirnov test and the visualizations of all
features can be found in Table 7.1 and Appendix D, respectively. The distri-
butions in five out of nine features were considered different based on the
Kolmogorov-Smirnov test, where the null hypothesis was rejected. The dif-
ference makes sense for the features ’request_length’ and
’vllm:prompt_tokens_num’ since the distribution of the sampled prompts
differed. The KDE comparison of both features (Figure D.3 and Figure D.17)
shows that the feature values from Zipf distribution tended to be smaller
than the empirical distribution. The sampling method using Zipf distribu-
tion favored shorter prompts to be sampled than longer prompts, compared
to using the empirical distribution. This tendency can be seen in Figure 5.4,
as the theoretical Zipf distribution has a higher proportion on shorter prompts
than the empirical prompt length data ranks.
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Feature name p-Value

request_duration 0.07044
request_length 0.00000

response_length 0.00000
fail 0.15649

vllm:gpu_cache_usage_perc 0.00000
vllm:num_requests_waiting 0.31214
vllm:num_requests_running 0.00114
vllm:generation_tokens_num 0.15156

vllm:prompt_tokens_num 0.00000

Table 7.1: p-Value of the Kolmogorov-Smirnov test of all features (α = 0.05). The
bolded numbers indicated p-values lower than the significance level α.

The empirical and Zipf distributions also differed in feature
’vllm:gpu_cache_usage_perc’. This difference might be due to the difference
in the number of tokens processed for prefill, i.e., ’vllm:prompt_tokens_num’,
where the distribution of the number of generated tokens
(’vllm:generation_tokens_num’) remained the same on the empirical and
Zipf distributions. The KV cache usage on the GPU in the simulation with
the empirical distribution tended to be higher than with Zipf distribution
based on Figure D.9. The distributions in ‘response_length’ were also varied,
with more shorter and less longer responses on the empirical distribution
(see Figure D.5). This might be due to more failed requests happening dur-
ing the simulation with the empirical distribution, which had a response
length of zero. The simulation result for the feature ‘fail’ with the empirical
distribution was identified as similar to the one from the Zipf distribution.
This result indicated that the distribution of failure rates in each time inter-
val was similar in both prompt sampling distributions.

Based on the distribution comparison results, there were some similari-
ties and differences between the empirical and Zipf distribution for prompt
sampling. Nevertheless, these differences might impact forecasting, interpre-
tation, and resulting parameters that can be used in production. Both distri-
butions can be helpful for prompt sampling depending on the assumption
of the simulation. Zipf distribution was chosen by Wang et al. based on
their analysis of the BurstGPT dataset [Wan+24]. The experiment steps for
the simulation in Section 4.1 used Zipf distribution based on this observable
assumption for the prompt sampling. However, it was also mentioned in
Section 4.1.1 that using a suitable prompt dataset for the specific use case of
the project from its own system or database is possible. This specific dataset
may have a distinct prompt length distribution from Zipf distribution, which
may be unique and more relevant to the use case. Instead of using the ob-
servation from Wang et al. [Wan+24], using the empirical prompt length
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distribution for prompt sampling may give more valuable insights for fore-
casting and interpretation. Since the example use case in Section 5.1 had no
available dataset for the simulation, the Zipf distribution assumption was
applied. Thus, assessing the assumption before running the simulation was
crucial for gaining a proper understanding of the LLM server performance.
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C O N C L U S I O N

This study aimed to test whether the request and server performance met-
ric features extracted from an LLM deployment server are relevant for LLM

server performance forecasting using a simulation that reflects a real-world
situation. The trained machine learning model was also interpreted after-
ward to find the important features essential for forecasting. The experiment
in this study was done with a chatbot project as an example use case and
divided into simulation and forecasting steps. The goals of the simulation
steps were to create a simulation dataset that reflects a real-world situation
and use it for testing the LLM server. The simulation dataset was generated
based on the method from BurstGPT. In the forecasting steps, the simulation
result was used to model the machine learning model for forecasting the
server’s failure rate of processing requests and interpretation. The machine
learning model XGBoost was chosen for the modeling due to its versatility,
scalability and fast performance. It was also compared with several other
comparison models, such as ARMA, VAR, and univariate XGBoost. The mod-
els applied the rolling origin evaluation setup to evaluate with the test data
using MAE and RMSE metrics. The XGBoost model was used for analysis and
interpretation to find the key features useful for forecasting using SHAP val-
ues and XGBoost feature importance methods.

The experiment result can be outlined into three main findings:

1. The time series data generated from the LLM simulation was appropri-
ate for the use case to create a meaningful forecast of the LLM server
performance with the XGBoost model. With the rolling and expanding
window evaluation setup, the XGBoost model outperformed all com-
parison models on the test data, achieving the lowest value on MAE

and RMSE metrics.

2. The model interpretation method with SHAP values was able to iden-
tify the comprehensible key features essential for forecasting the LLM

server performance based on the use case. The most important fea-
ture by far was ‘request_duration’, supported by the SHAP values and
XGBoost feature importance methods. The threshold value of 125 sec-
onds may be useful for sending an alert about high failure rates in
production based on SHAP values if the system infrastructure cannot
run a machine learning pipeline for real-time forecasting. The impor-
tance rankings of other features differed in both interpretation meth-
ods. However, the XGBoost feature importance method with coverage
was the most similar to the SHAP value method based on the top 10

most important features.
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3. Using of empirical prompt length distribution for prompt sampling re-
sulted in a different outcome of the simulation run compared to the
sampling with Zipf distribution. These differences included the dura-
tion of the simulation run, the number of failed requests, and the fea-
ture distributions after data preparation. Evaluating the prompt length
distribution assumption before choosing the prompt sampling distribu-
tion is important, as it might offer a different result on the simulation,
forecasting, interpretation, and resulting parameters to be used in pro-
duction.

In the future, other use cases with different LLM serving frameworks should
be tested to test the generality of the approach. The simulation should also
be run longer enough to test the influence of temporal information, e.g., day
of week, hour, and minute of the entries. The possibility of testing the result
from this experiment in a production environment should be explored to
check if the result and understanding from the simulation can be translated
into production. An infrastructure to monitor the server in production in
real time will be needed to test this possibility. This infrastructure should
be able to provide fresh data in real time using a data pipeline for training
the machine learning model. The forecasting result will then be used to dy-
namically allocate the server resources to handle and prevent higher failure
rates.



Part II

A P P E N D I X





A
T I M E S E R I E S V I S U A L I Z AT I O N

The following plots visualize the time series of each predictor with the target
variable ’fail’. The red line illustrates the time series data of the predictor, and
the blue line shows the time series data of the target variable ’fail’.

Figure A.1: Time series of ’request_duration’ with the target variable ’fail’.

Figure A.2: Time series of ’request_length’ with the target variable ’fail’.

Figure A.3: Time series of ’response_length’ with the target variable ’fail’.
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Figure A.4: Time series of ’vllm:avg_generation_throughput_toks_per_s’ with the
target variable ’fail’.

Figure A.5: Time series of ’vllm:avg_prompt_throughput_toks_per_s’ with the tar-
get variable ’fail’.

Figure A.6: Time series of ’vllm:generation_tokens_total’ with the target variable
’fail’.

Figure A.7: Time series of ’vllm:prompt_tokens_total’ with the target variable ’fail’.
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Figure A.8: Time series of ’vllm:cpu_cache_usage_perc’ with the target variable
’fail’.

Figure A.9: Time series of ’vllm:gpu_cache_usage_perc’ with the target variable
’fail’.

Figure A.10: Time series of ’vllm:num_requests_waiting’ with the target variable
’fail’.

Figure A.11: Time series of ’vllm:num_requests_swapped’ with the target variable
’fail’.
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Figure A.12: Time series of ’vllm:num_requests_running’ with the target variable
’fail’.

Figure A.13: Time series of ’vllm:generation_tokens_num’ with the target variable
’fail’.

Figure A.14: Time series of ’vllm:prompt_tokens_num’ with the target variable ’fail’.



B
F O R E C A S T V I S U A L I Z AT I O N

The following plots visualize the prediction and true value of the test data
using the rolling and expanding window evaluation setup.

b.1 rolling window

Figure B.1: Forecast of the multivariate XGBoost model with rolling window evalu-
ation.

Figure B.2: Forecast of the ARMA model with rolling window evaluation.

Figure B.3: Forecast of the VAR model with rolling window evaluation.
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Figure B.4: Forecast of the univariate XGBoost model with rolling window evalua-
tion.

b.2 expanding window

Figure B.5: Forecast of the multivariate XGBoost model with expanding window
evaluation.

Figure B.6: Forecast of the ARMA model with expanding window evaluation.
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Figure B.7: Forecast of the VAR model with expanding window evaluation.

Figure B.8: Forecast of the univariate XGBoost model with expanding window eval-
uation.





C
I N T E R P R E TAT I O N V I S U A L I Z AT I O N

Figure C.1: XGBoost feature importance plot based on weight.
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Figure C.2: XGBoost feature importance plot based on average gain.
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Figure C.3: XGBoost feature importance plot based on average coverage.





D
D I S T R I B U T I O N C O M PA R I S O N V I S U A L I Z AT I O N O F
P R O M P T S A M P L I N G

The following plots compare the Zipf and empirical distribution for prompt
sampling using KDE and ECDF. These plots visualize the distribution of the
values after data preprocessing using steps in Section 4.2.1. The dashed lines
on the KDE plot indicate the mean values of the Zipf and empirical dis-
tribution. Meanwhile, the dashed line on the ECDF plot indicates the loca-
tion on the ECDFs where the maximum difference was calculated for the
Kolmogorov-Smirnov test.

Figure D.1: KDE comparison of ’re-
quest_duration’.

Figure D.2: ECDF comparison of ’re-
quest_duration’.

Figure D.3: KDE comparison of ’re-
quest_length’.

Figure D.4: ECDF comparison of ’re-
quest_length’.
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Figure D.5: KDE comparison of ’re-
sponse_length’.

Figure D.6: ECDF comparison of ’re-
sponse_length’.

Figure D.7: KDE comparison of ’fail’. Figure D.8: ECDF comparison of ’fail’.

Figure D.9: KDE comparison of
’vllm:gpu_cache_usage_perc’.

Figure D.10: ECDF comparison of
’vllm:gpu_cache_usage_perc’.
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Figure D.11: KDE comparison of
’vllm:num_requests_waiting’.

Figure D.12: ECDF comparison of
’vllm:num_requests_waiting’.

Figure D.13: KDE comparison of
’vllm:num_requests_running’.

Figure D.14: ECDF comparison of
’vllm:num_requests_running’.

Figure D.15: KDE comparison of
’vllm:generation_tokens_num’.

Figure D.16: ECDF comparison of
’vllm:generation_tokens_num’.
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Figure D.17: KDE comparison of
’vllm:prompt_tokens_num’.

Figure D.18: ECDF comparison of
’vllm:prompt_tokens_num’.
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“A comparative analysis of gradient boosting algorithms.” In:
Artificial Intelligence Review 54.3 (2021), pp. 1937–1967. issn:
1573-7462. doi: 10.1007/s10462-020-09896-5. url: https:
//doi.org/10.1007/s10462-020-09896-5.

[BD16] Peter J. Brockwell and Richard A. Davis. “Introduction.” In:
Introduction to Time Series and Forecasting. Cham: Springer In-
ternational Publishing, 2016, pp. 1–37. isbn: 978-3-319-29854-2.
doi: 10.1007/978-3-319-29854-2_1. url: https://doi.org/
10.1007/978-3-319-29854-2_1.

[CG16] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System.” In: Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining.
KDD ’16. San Francisco, California, USA: Association for Com-
puting Machinery, 2016, 785–794. isbn: 9781450342322. doi:
10.1145/2939672.2939785. url: https://doi.org/10.1145/
2939672.2939785.

[Dwi+23] Rudresh Dwivedi et al. “Explainable AI (XAI): Core Ideas,
Techniques, and Solutions.” In: ACM Comput. Surv. 55.9 (Jan.
2023). issn: 0360-0300. doi: 10.1145/3561048. url: https:
//doi.org/10.1145/3561048.

[Fan+22] Zheng-gang Fang, Shu-qin Yang, Cai-xia Lv, Shu-yi An, and
Wei Wu. “Application of a data-driven XGBoost model for the
prediction of COVID-19 in the USA: a time-series study.” In:
BMJ Open 12.7 (2022). issn: 2044-6055. doi: 10.1136/bmjopen-
2021- 056685. eprint: https://bmjopen.bmj.com/content/
12/7/e056685.full.pdf. url: https://bmjopen.bmj.com/
content/12/7/e056685.

[Fen+24] Duanyu Feng, Yongfu Dai, Jimin Huang, Yifang Zhang, Qian-
qian Xie, Weiguang Han, Zhengyu Chen, Alejandro Lopez-Lira,
and Hao Wang. Empowering Many, Biasing a Few: Generalist
Credit Scoring through Large Language Models. Preprint. 2024.
arXiv: 2310.00566 [cs.LG]. url: https://arxiv.org/abs/
2310.00566.

https://doi.org/10.1109/UCC.2014.87
https://doi.org/10.1109/UCC.2014.87
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/978-3-319-29854-2_1
https://doi.org/10.1007/978-3-319-29854-2_1
https://doi.org/10.1007/978-3-319-29854-2_1
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://doi.org/10.1136/bmjopen-2021-056685
https://doi.org/10.1136/bmjopen-2021-056685
https://bmjopen.bmj.com/content/12/7/e056685.full.pdf
https://bmjopen.bmj.com/content/12/7/e056685.full.pdf
https://bmjopen.bmj.com/content/12/7/e056685
https://bmjopen.bmj.com/content/12/7/e056685
https://arxiv.org/abs/2310.00566
https://arxiv.org/abs/2310.00566
https://arxiv.org/abs/2310.00566


88 bibliography

[HAB23] Hansika Hewamalage, Klaus Ackermann, and Christoph Bergmeir.
“Forecast evaluation for data scientists: common pitfalls and
best practices.” In: Data Mining and Knowledge Discovery 37.2
(2023), pp. 788–832. issn: 1573-756X. doi: 10.1007/s10618-
022-00894-5. url: https://doi.org/10.1007/s10618-022-
00894-5.

[JMWV24] Sami Ben Jabeur, Salma Mefteh-Wali, and Jean-Laurent Viviani.
“Forecasting gold price with the XGBoost algorithm and SHAP
interaction values.” In: Annals of Operations Research 334.1 (2024),
pp. 679–699. issn: 1572-9338. doi: 10.1007/s10479-021-04187-
w. url: https://doi.org/10.1007/s10479-021-04187-w.

[Kwo+23] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lian-
min Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and
Ion Stoica. “Efficient Memory Management for Large Lan-
guage Model Serving with PagedAttention.” In: Proceedings
of the 29th Symposium on Operating Systems Principles. SOSP
’23. Koblenz, Germany: Association for Computing Machinery,
2023, 611–626. isbn: 9798400702297. doi: 10.1145/3600006.
3613165. url: https://doi.org/10.1145/3600006.3613165.

[Liu+23] Xiao-Yang Liu, Guoxuan Wang, Hongyang Yang, and Daochen
Zha. “Data-centric FinGPT: Democratizing Internet-scale Data
for Financial Large Language Models.” In: NeurIPS 2023 Work-
shop on Instruction Tuning and Instruction Following. 2023. url:
https://openreview.net/forum?id=5BqWC1Fz8F.

[Lou+23a] Lefteris Loukas, Ilias Stogiannidis, Odysseas Diamantopoulos,
Prodromos Malakasiotis, and Stavros Vassos. “Making LLMs
Worth Every Penny: Resource-Limited Text Classification in
Banking.” In: Proceedings of the Fourth ACM International Con-
ference on AI in Finance. ICAIF ’23. Brooklyn, NY, USA: Associa-
tion for Computing Machinery, 2023, 392–400. isbn: 9798400702402.
doi: 10.1145/3604237.3626891. url: https://doi.org/10.
1145/3604237.3626891.

[Lou+23b] Lefteris Loukas, Ilias Stogiannidis, Prodromos Malakasiotis, and
Stavros Vassos. “Breaking the Bank with ChatGPT: Few-Shot
Text Classification for Finance.” In: Proceedings of the Fifth Work-
shop on Financial Technology and Natural Language Processing and
the Second Multimodal AI For Financial Forecasting. Ed. by Chung-
Chi Chen, Hiroya Takamura, Puneet Mathur, Remit Sawhney,
Hen-Hsen Huang, and Hsin-Hsi Chen. Macao: -, 2023, pp. 74–
80. url: https://aclanthology.org/2023.finnlp-1.7.

[Lun+20] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave,
Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan Himmel-
farb, Nisha Bansal, and Su-In Lee. “From local explanations to
global understanding with explainable AI for trees.” In: Nature
Machine Intelligence 2.1 (2020), pp. 56–67. issn: 2522-5839. doi:

https://doi.org/10.1007/s10618-022-00894-5
https://doi.org/10.1007/s10618-022-00894-5
https://doi.org/10.1007/s10618-022-00894-5
https://doi.org/10.1007/s10618-022-00894-5
https://doi.org/10.1007/s10479-021-04187-w
https://doi.org/10.1007/s10479-021-04187-w
https://doi.org/10.1007/s10479-021-04187-w
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=5BqWC1Fz8F
https://doi.org/10.1145/3604237.3626891
https://doi.org/10.1145/3604237.3626891
https://doi.org/10.1145/3604237.3626891
https://aclanthology.org/2023.finnlp-1.7


bibliography 89

10.1038/s42256-019-0138-9. url: https://doi.org/10.1038/
s42256-019-0138-9.

[LL17] Scott M Lundberg and Su-In Lee. “A Unified Approach to
Interpreting Model Predictions.” In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett. Vol. 30. Curran Associates, Inc., 2017. url: https://
proceedings.neurips.cc/paper_files/paper/2017/file/

8a20a8621978632d76c43dfd28b67767-Paper.pdf.

[MCB20] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. “In-
terpretable Machine Learning – A Brief History, State-of-the-
Art and Challenges.” In: ECML PKDD 2020 Workshops. Ed. by
Irena Koprinska et al. Cham: Springer International Publishing,
2020, pp. 417–431. isbn: 978-3-030-65965-3.

[Niu20] Yiyang Niu. “Walmart Sales Forecasting using XGBoost al-
gorithm and Feature engineering.” In: 2020 International Con-
ference on Big Data Artificial Intelligence Software Engineering
(ICBASE). 2020, pp. 458–461. doi: 10.1109/ICBASE51474.2020.
00103.

[Qiu+17] Junping Qiu, Rongying Zhao, Siluo Yang, and Ke Dong. “Word
Frequency Distribution of Literature Information: Zipf’s Law.”
In: Informetrics: Theory, Methods and Applications. Singapore:
Springer Singapore, 2017, pp. 121–143. isbn: 978-981-10-4032-0.
doi: 10.1007/978-981-10-4032-0_5. url: https://doi.org/
10.1007/978-981-10-4032-0_5.

[Shi22] Hangsik Shin. “XGBoost Regression of the Most Significant
Photoplethysmogram Features for Assessing Vascular Aging.”
In: IEEE Journal of Biomedical and Health Informatics 26.7 (2022),
pp. 3354–3361. doi: 10.1109/JBHI.2022.3151091.

[SS17a] Robert H. Shumway and David S. Stoffer. “ARIMA Models.” In:
Time Series Analysis and Its Applications: With R Examples. Cham:
Springer International Publishing, 2017, pp. 75–163. isbn: 978-
3-319-52452-8. doi: 10.1007/978- 3- 319- 52452- 8_3. url:
https://doi.org/10.1007/978-3-319-52452-8_3.

[SS17b] Robert H. Shumway and David S. Stoffer. “Additional Time Do-
main Topics.” In: Time Series Analysis and Its Applications: With
R Examples. Cham: Springer International Publishing, 2017,
pp. 241–287. isbn: 978-3-319-52452-8. doi: 10.1007/978- 3-
319-52452-8_5. url: https://doi.org/10.1007/978-3-319-
52452-8_5.

[SS17c] Robert H. Shumway and David S. Stoffer. “Characteristics of
Time Series.” In: Time Series Analysis and Its Applications: With R
Examples. Cham: Springer International Publishing, 2017, pp. 1–

https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1109/ICBASE51474.2020.00103
https://doi.org/10.1109/ICBASE51474.2020.00103
https://doi.org/10.1007/978-981-10-4032-0_5
https://doi.org/10.1007/978-981-10-4032-0_5
https://doi.org/10.1007/978-981-10-4032-0_5
https://doi.org/10.1109/JBHI.2022.3151091
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1007/978-3-319-52452-8_5
https://doi.org/10.1007/978-3-319-52452-8_5
https://doi.org/10.1007/978-3-319-52452-8_5
https://doi.org/10.1007/978-3-319-52452-8_5


90 bibliography

44. isbn: 978-3-319-52452-8. doi: 10.1007/978-3-319-52452-
8_1. url: https://doi.org/10.1007/978-3-319-52452-8_1.

[Sun+24] Wenbo Sun, Jiaqi Wang, Qiming Guo, Ziyu Li, Wenlu Wang,
and Rihan Hai. CEBench: A Benchmarking Toolkit for the Cost-
Effectiveness of LLM Pipelines. Preprint. 2024. arXiv: 2407.12797
[cs.PF]. url: https://arxiv.org/abs/2407.12797.

[Tug+24] Lukas Tuggener, Pascal Sager, Yassine Taoudi-Benchekroun, Ben-
jamin F. Grewe, and Thilo Stadelmann. “So you want your pri-
vate LLM at home? A survey and benchmark of methods for ef-
ficient GPTs.” In: 2024 11th IEEE Swiss Conference on Data Science
(SDS). 2024, pp. 205–212. doi: 10.1109/SDS60720.2024.00036.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polo-
sukhin. “Attention is All you Need.” In: Advances in Neural In-
formation Processing Systems. Ed. by I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett. Vol. 30. Curran Associates, Inc., 2017. url: https://
proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[Wan+24] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, Rui Guo,
Xin Wang, Qiang Wang, Amelie Chi Zhou, and Xiaowen Chu.
Towards Efficient and Reliable LLM Serving: A Real-World Workload
Study. Preprint. 2024. arXiv: 2401.17644v2 [cs.DC]. url:
https://arxiv.org/abs/2401.17644v2.

[WKP98] A. Witt, J. Kurths, and A. Pikovsky. “Testing stationarity in
time series.” In: Phys. Rev. E 58 (2 1998), pp. 1800–1810. doi:
10.1103/PhysRevE.58.1800. url: https://link.aps.org/doi/
10.1103/PhysRevE.58.1800.

[Zha+21] Lingyu Zhang, Wenjie Bian, Wenyi Qu, Liheng Tuo, and Yun-
hai Wang. “Time series forecast of sales volume based on XG-
Boost.” In: Journal of Physics: Conference Series 1873.1 (2021),
p. 012067. doi: 10.1088/1742- 6596/1873/1/012067. url:
https://dx.doi.org/10.1088/1742-6596/1873/1/012067.

[Zhe+24] Lianmin Zheng et al. “Judging LLM-as-a-judge with MT-bench
and Chatbot Arena.” In: Proceedings of the 37th International
Conference on Neural Information Processing Systems. NIPS ’23.
New Orleans, LA, USA: Curran Associates Inc., 2024.

https://doi.org/10.1007/978-3-319-52452-8_1
https://doi.org/10.1007/978-3-319-52452-8_1
https://doi.org/10.1007/978-3-319-52452-8_1
https://arxiv.org/abs/2407.12797
https://arxiv.org/abs/2407.12797
https://arxiv.org/abs/2407.12797
https://doi.org/10.1109/SDS60720.2024.00036
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2401.17644v2
https://arxiv.org/abs/2401.17644v2
https://doi.org/10.1103/PhysRevE.58.1800
https://link.aps.org/doi/10.1103/PhysRevE.58.1800
https://link.aps.org/doi/10.1103/PhysRevE.58.1800
https://doi.org/10.1088/1742-6596/1873/1/012067
https://dx.doi.org/10.1088/1742-6596/1873/1/012067

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Abkürzungsverzeichnis

	 Thesis
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Research Questions
	1.3 Structure

	2 Background
	2.1 Simulation
	2.1.1 BurstGPT
	2.1.2 Zipf Distribution

	2.2 Analysis, Modeling & Interpretation
	2.2.1 Time Series Analysis
	2.2.2 XGBoost
	2.2.3 Shapley Additive Explanation (SHAP)


	3 Related Works
	3.1 LLM Benchmark
	3.1.1 Discussion

	3.2 Forecasting Time Series Data
	3.2.1 Discussion


	4 Approach
	4.1 Simulation
	4.1.1 Generating the Simulation Dataset
	4.1.2 Simulation Run

	4.2 Forecasting
	4.2.1 Data Preparation
	4.2.2 Evaluation Metrics
	4.2.3 Modeling
	4.2.4 Interpretation


	5 Implementation
	5.1 Use Case: Chatbot Project
	5.2 Dataset
	5.3 Computer Specification and Python Modules
	5.4 Simulation
	5.5 Data Preparation for Server Performance Metrics
	5.6 Modeling
	5.7 Hypotheses

	6 Results
	6.1 Simulation Results
	6.2 Forecasting Results

	7 Discussion
	7.1 Empirical Distribution for Prompt Sampling

	8 Conclusion

	 Appendix
	A Time Series Visualization
	B Forecast Visualization
	B.1 Rolling Window
	B.2 Expanding Window

	C Interpretation Visualization
	D Distribution Comparison Visualization of Prompt Sampling
	 Bibliography


