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Motivation

Fluorescence microscopy is an established tool in life sciences, used to visualize biological struc-

tures and processes. This imaging technique works by illuminating the specimen and thus exciting

fluorophores located within the specimen with light of specific wavelengths, causing them to emit

light that can be detected and used to generate detailed images. However, it requires balancing

key imaging parameters, including speed, spatial resolution, light exposure, and imaging depth.

Major challenges in fluorescence microscopy are photobleaching and phototoxicity, which neces-

sitate minimizing photon exposure by reducing the duration or intensity of light. This, in turn,

degrades image quality, highlighting the importance of computational methods for improving im-

age reconstruction.

Typical distortions in fluorescence microscopy images are related to the imaging process itself.

The following origins of degradation can be identified:

Blur: described by the Point Spread Function (PSF) - a function mapping any light-emitting

point in the specimen to a larger volume in the image. PSF depends on the emission wave-

length and the properties of the objective lens [1].

Noise of two primary types:
Photon noise, caused by the quantum nature of light. It follows a Poisson distribution and is signal-dependent,

i.e. its standard deviation increases with higher signal levels.

Read noise, also known as electronic noise, which depends on the precision of the detector in a microscopic

system. It is signal-independent and typically follows a Gaussian distribution with a mean of zero and a

constant standard deviation [1].

Recent advances in machine learning have introduced CNN-based methods, showing promise

in reconstruction of fluorescence microscopy images [4]. However, training these models from

scratch can be impractical due to limited microscopy datasets and high computational costs. A so-

lution is to leverage pre-trained networks, initially trained on large datasets of generic images with

synthetic Gaussian noise. These models can then be fine-tuned with fluorescence microscopy

data, enabling more effective image reconstruction while reducing the need for extensive training

data.

The pre-training step utilizes large datasets consisting of regular photographs, which are signifi-

cantly easier to obtain compared to the relatively scarce microscopy images. This approach lever-

ages the benefits of prior training, since the computational load for model pre-training has already

been incurred in a different study and is therefore amortized.

The focus is restricted to a specific class of models: Gaussian denoising networks. These models

are well-studied and their fine-tuning has demonstrated competitive performance in reconstruct-

ing computed tomography (CT) image data [3]. Additionally, Gaussian denoisers provide a strong

foundation for further improvements, as they constitute an active field of research.

Research Questions

To investigate the potential of pre-trained Gaussian denoiser networks for fluorescence mi-

croscopy image reconstruction, the following research questions are formulated:

Can the use of pre-trained Gaussian denoisers be beneficial for fluorescence microscopy

image reconstruction?

How do different Gaussian denoising network architectures perform when fine-tuned for

fluorescence microscopy image reconstruction?

Which optimization techniques have the most significant impact during the fine-tuning

process of Gaussian denoisers?

Fluorescence Microscopy Datasets

Several publicly available fluorescence microscopy datasets were considered for model training,

with the dataset published by Hagen et al. [2] being selected. This choice is based on its high-

quality 32-bit images, the inclusion of data from both widefield (eight datasets) and confocal

(two datasets) microscopes, and the representation of diverse biological structures such as actin,

mitochondria, nucleus, and membrane. Additionally, the datasets are pre-organized into training

and test images and provide test image outputs processed with three different reconstruction

methods, which can serve as a direct baseline for comparison.

Each of the ten datasets encompasses 76 to 104 image pairs. The datasets consist of paired

images. In each pair, a raw image is obtained eitherwith shorter light exposure (in case ofwidefield

microscopy) or with reduced laser power (in case of confocal microscopy). The size of the images

varies from 512x512 to 2048x2048 pixels. Fig. 1 gives an example of an image pair drawn from

one of the datasets.

Figure 1. Example of an image pair from the dataset representing actin, obtained with light exposure of 1000

ms (ground truth) and 15 ms (raw image).

Gaussian Denoising Networks

Three pre-trained Gaussian denoising networkswere selected based on several key criteria. These

models feature recently introduced architectures and have demonstrated state-of-the-art perfor-

mance in image denoising. Additionally, a pre-trained variant capable of processing one-channel

gray-scale images was available. The selected networks represent diverse architectural designs,

ensuring a broad evaluation. The following three networks have been chosen based on these

considerations:

1. DRUNet [6] (2021): a UNet-based architecture with additional residual connections.

2. Restormer [5] (2021), employing a modified multi-head attention module that in contrast to

the conventional self-attention mechanism has linear complexity.

3. KBNet [7] (2023) with kernel bases attention module as its essential ingredient. The module

encompasses a series of learnable kernel bases which are fused linearly.

Experimental Setups

Three pre-trained denoising models are trained on ten datasets, and image reconstruction output

is evaluated with the metrics Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index

(SSIM). Hyperparameter tuning is applied in some cases. To compare with pre-trained models,

additional experiments are conducted with denoiser models trained from scratch. Furthermore,

data augmentation with rotation is applied in select cases to assess its impact on performance.

Evaluation of Results

For the given datasets, the pre-trained denoiser networks show slightly better performance in

comparison to the Content Aware Restoration (CARE) method [4] across many metrics, while

achieving comparable performance on the remaining ones. For the datasets containing the large

images, the performance of the transformer-based networks is less impressive, which may be due

to the inability to conduct a proper hyperparameter optimization, since their training requires high

computational resources. Table 1 resumes the performance of the pre-trained denoiser networks,

trained on one of the datasets.

Model PSNR SSIM Training Duration

CARE 36.94 0.950 -

DRUNet 37.06 0.925 ∼ 1.6 hours

Restormer 37.56 0.926 ∼ 13 hours

KBNet 37.73 0.926 ∼ 4.3 hours

Table 1. Performance of the pre-trained denoiser networks, trained on the dataset representing nucleus, compared

to the results of CARE method [4].

Considering the comparison with networks trained from scratch, the results show a significant

performance gap at the early stages of training, with pre-trained networks demonstrating much

higher initial performance. While networks trained from scratch tend to catch up over time, this

process requires more epochs to achieve comparable results. The results reveal no substantial

improvement in performance achieved through data augmentation with rotation.

Conclusion

1. Pre-trained Gaussian denoisers can enhance fluorescence microscopy image reconstruction.

These models, originally developed for general denoising tasks, are straightforward to adapt

for this specialized domain and capable of achieving state-of-the-art performance. In some

cases, they even exceed the performance of methods specifically designed for microscopy

image reconstruction.

2. UNet- and transformer-based architectures are both effective for fluorescence microscopy

image reconstruction. While transformers may offer slightly better results, their high com-

putational cost limit the possibility of hyperparameter tuning. In contrast, the investigated

UNet-based model offered a less resource-intensive alternative while still achieving com-

petitive performance, making this architecture preferable when computational resources or

training speed are constraints.

3. Hyperparameter selection plays a crucial role in fine-tuning Gaussian denoisers. Mean Ab-

solute Error (MAE) proved to be a simple yet effective loss function for this task, while SSIM-

based loss offers some improvements but adds complexity. The learning rate also emerged

as a key hyperparameter. Careful tuning of these parameters is essential to maximize the

performance of fine-tuned models.
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