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A B S T R A C T

The application of deep learning in medical imaging has shown great po-
tential but remains constrained by the scarcity and imbalance of available
datasets. Challenges such as data privacy concerns, variability in medical
pathologies, and limited access to comprehensive datasets limit the develop-
ment of robust and generalizable models. Synthetic data generation offers a
promising solution to these limitations by enabling the creation of diverse
and realistic medical datasets that address data scarcity and imbalance.

This thesis investigates the potential of Flow Matching (FM) models for
generating three-dimensional (3D) synthetic medical images, with a focus
on brain MRI scans. Although FM models have demonstrated great perfor-
mance and efficiency in non-medical contexts, their application in medical
imaging, particularly for 3D data, remains largely unexplored. To address
this gap, a novel architecture is proposed that combines FM with a Vari-
ational Autoencoder-based Generative Adversarial Network (Vector Quan-
tized Generative Adversarial Network (VQ-GAN)). The (VQ-GAN) encodes
high-dimensional data into a compact latent space, where the FM model
operates to generate synthetic data efficiently.

The proposed framework is evaluated using publicly available brain MRI
datasets (The Alzheimer’s Disease Neuroimaging Initiative (ADNI)) through
a series of quantitative and qualitative experiments. The results highlight
both the strengths and limitations of Flow Matching (FM) models in generat-
ing high-quality medical images, emphasizing the importance of preprocess-
ing, dataset characteristics, and model design. In comparison to a denoising
diffusion model, the FM model demonstrated significant advantages, achiev-
ing good quality results while reducing training time from 10 days to just
13 hours. However, challenges such as the loss of fine anatomical details due
to computational constraints were observed. Despite these limitations, the
framework demonstrates significant potential for advancing synthetic data
generation in medical imaging. To the best of our knowledge, this work
represents the first systematic exploration of FM models for generating 3D
medical images.

This study offers a foundation for future research aimed at optimizing
Flow Matching models further and explore their application to other medical
imaging modalities, such as CT or PET scans. By reducing training times and
enabling the generation of diverse datasets, the proposed framework could
significantly impact real-world healthcare applications, including diagnostic
tools, training datasets, and privacy-compliant synthetic data augmentation.



Z U S A M M E N FA S S U N G

Die Anwendung von Deep Learning in der medizinischen Bildgebung birgt
ein enormes Potenzial, wird jedoch durch den Mangel an Daten und die
Ungleichheit verfügbarer Datensätze erheblich eingeschränkt. Herausforde-
rungen wie Datenschutzbedenken, die Variabilität medizinischer Patholo-
gien und der begrenzte Zugang zu umfassenden Datensätzen erschweren
die Entwicklung robuster und generalisierbarer Modelle. Die Generierung
synthetischer Daten bietet eine vielversprechende Lösung für diese Heraus-
forderungen, da sie die Erstellung diverser und realistischer medizinischer
Datensätze ermöglicht, die sowohl den Datenmangel als auch die Ungleich-
heit in der Datensammlung berücksichtigt.

Die vorliegende Arbeit untersucht das Potenzial von Flow Matching (FM)-
Modellen zur Generierung dreidimensionaler (3D) synthetischer medizini-
scher Bilder, mit einem besonderen Fokus auf MRT-Aufnahmen des Gehirns.
Während FM-Modelle in nicht-medizinischen Anwendungsbereichen durch
ihre überlegene Leistung und Effizienz überzeugen konnten, ist ihre Nut-
zung in der medizinischen Bildgebung, insbesondere im Zusammenhang
mit 3D-Daten, bislang kaum erforscht. Zur Schließung dieser Forschungs-
lücke wird in dieser Arbeit eine neuartige Architektur vorgestellt, die FM
mit einem Variational Autoencoder-basierten Generative Adversarial Net-
work (VQ-GAN) kombiniert. (VQ-GAN) dient dazu, hochdimensionale Daten
in einen kompakten latenten Raum zu kodieren, in dem das FM-Modell effi-
zient synthetische medizinische Daten generieren kann.

Das vorgeschlagene Framework wird anhand öffentlich verfügbarer MRT-
Datensätze (ADNI) in einer Reihe von quantitativen und qualitativen Expe-
rimenten evaluiert. Die Ergebnisse zeigen sowohl die Stärken als auch die
Schwächen von FM-Modellen bei der Generierung hochqualitativer medizini-
scher Bilder und heben die zentrale Bedeutung von Vorverarbeitung, Daten-
satzcharakteristika und Modelldesign hervor. Im Vergleich zu einem Denoi-
sing Diffusion Model erzielte das FM-Modell signifikante Vorteile: Es erreich-
te eine gute Bildqualität, während die Trainingszeit drastisch von 10 Tagen
auf lediglich 13 Stunden reduziert werden konnte. Allerdings wurden Her-
ausforderungen wie der Verlust feiner anatomischer Details, bedingt durch
Einschränkungen in der Rechenkapazität, beobachtet. Trotz dieser Limita-
tionen demonstriert das Framework ein erhebliches Potenzial für die Wei-
terentwicklung der Generierung synthetischer Daten in der medizinischen
Bildgebung. Nach unserem Kenntnisstand handelt es sich hierbei um die
erste systematische Untersuchung von FM-Modellen zur Generierung drei-
dimensionaler medizinischer Bilder.

Die gewonnenen Erkenntnisse bilden eine solide Grundlage für zukünfti-
ge Forschungen zur Weiterentwicklung und Optimierung von FM-Modellen
sowie deren Anwendung auf andere medizinische Bildgebungsmodalitäten,



wie beispielsweise CT- oder PET-Scans. Insbesondere die Reduzierung der
Trainingszeiten und die Möglichkeit, diversifizierte und strukturierte Daten-
sätze zu erstellen, unterstreichen das Potenzial des vorgeschlagenen Frame-
works. Dieses könnte erhebliche Auswirkungen auf praktische Anwendun-
gen im Gesundheitswesen haben, einschließlich der Entwicklung diagnosti-
scher Werkzeuge, der Erstellung von Trainingsdatensätzen sowie der daten-
schutzkonformen synthetischen Datenaugmentation.
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T H E S I S



1
I N T R O D U C T I O N

1.1 motivation

Following the considerable success of deep learning in many applications, its
potential for medical applications has also started to be investigated. How-
ever, the application of deep learning in medical contexts faces a significant
challenge: the scarcity of data.

Unlike other fields where large datasets can be easily accessed, medi-
cal data collection is inherently challenging. Data is often collected inter-
mittently across different clinical settings and typically only during neces-
sary procedures. Consequently, there is a limited pool of data available for
training deep learning models. Moreover, the inherent variability of medical
pathologies necessitates large and diverse datasets for effective model train-
ing. For instance, tumors can manifest in numerous shapes, appearances,
and locations, and some of them might be rarer than others.Furthermore, the
protection of data privacy increases the difficulty of obtaining sufficient data
for medical applications. This is particularly challenging when the data orig-
inates from different institutions. The generation of realistic artificial data
can help to a certain extent to overcome these limitations.

The accurate generation of artificial data has numerous advantages. It al-
lows the application of deep learning techniques in rare diseases for which
not enough data is available. Furthermore, the generation of realistic artifi-
cial data can help to reduce the effects of data imbalance. This is particularly
relevant when the data collected shows only one aspect of a certain pathol-
ogy, or when considering the different acquisition protocols of different insti-
tutions. So there is always need to develop a methodology for the generation
of synthetic medical data [11, 30].

The methodology will be designed to address the data scarcity problem
prevalent in medical deep learning applications. It will provide a means of
creating synthetic datasets that closely mimic real world medical data.

1.2 aim of this thesis

The release of the Flow Matching (FM) framework [29] marked a major mile-
stone in generative modeling, offering new possibilities for training models
that address the limitations of diffusion and continuous normalizing flow
(Continuous Normalizing Flows (CNFs)) methods. Since its introduction, the
FM framework has inspired numerous adaptations and extensions over the
past two years, demonstrating its potential to tackle diverse modeling chal-
lenges.
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Flow matching models have achieved notable success in non-medical do-
mains due to their ability to generate a wide range of high-quality images.
Recent studies indicate that flow matching approaches outperform diffusion
models in terms of faster sampling and superior generation quality [29]. No-
tably, the well known approach Stable Diffusion 3 (Stable Diffusion 3 (SD3))
[9] an advanced text-to-image generation model developed by Stability AI,
integrates also flow matching with a diffusion transformer design, further
highlighting the framework’s advancements.

Despite their significant performance improvements, flow matching mod-
els have yet to be systematically applied to three-dimensional image gener-
ation in medical contexts. This gap is particularly evident in medical fields,
where generating realistic 3D medical images, such as MRI scans, is of critical
importance.

To address this research gap, this thesis investigates the potential of flow
matching models for the generation of 3D medical images. Specifically, it in-
troduces a novel architecture for a flow matching model that operates in the
latent space and evaluates its performance on brain MRI data sourced from
publicly available datasets. This work aims to demonstrate the applicability
of flow matching models to medical imaging and contribute to advance-
ments in synthetic data generation for healthcare applications.

Research Questions

This work is guided by the following research questions:

1. How effective is the flow matching framework for generating realistic
and high-quality 3D medical images, specifically brain MRI scans?

2. What are the benefits and challenges of combining VQ-GAN and flow
matching models for latent-space representation and synthetic image
generation?

3. Can a flow matching model operating in the latent space improve com-
putational efficiency without compromising on generation quality?

4. What are the challenges and limitations of applying flow matching
models to medical imaging, and how can they be addressed?

Objectives

To answer these research questions, the following objectives are defined:

1. To develop a novel framework by combining VQ-GAN and Flow Match-
ing models for generating realistic and high-quality 3D medical im-
ages.

2. To evaluate the performance of the proposed model on brain MRI data
in terms of quantitative and qualitative metrics.
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3. To analyze the impact of preprocessing techniques, architectural in-
tegration, and computational constraints on the effectiveness of the
framework.

4. To identify key limitations and propose future directions for improving
the combination of VQ-GAN and Flow Matching in medical imaging
applications.

1.3 structure

This thesis is organized into following chapters, each addressing a specific
aspect of the research and its outcomes:

• Chapter 2: Theoretical Background This chapter provides an overview
of the foundational concepts necessary for understanding the research.
It introduces the principles of MRI imaging, brain anatomy, and gener-
ative modeling. Specific attention is given to Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), Diffusion Models, and
Flow Matching frameworks.

• Chapter 3: Framework Selection for Synthetic Medical Image Gen-
eration This chapter outlines the process of selecting suitable genera-
tive models for this research. It includes a comparison of various ap-
proaches, such as GANs, VAEs, diffusion models, continuous normaliz-
ing flows, and flow matching. Based on this comparison, the chapter
justifies the choice of the Flow Matching model in combination with
the VQ-GAN.

• Chapter 4: Data and Developed framework This chapter details the
architecture and implementation of the proposed framework. It dis-
cusses the preprocessing of the dataset, the structure of the VQ-GAN,
and the design of the flow matching model. The implementation and
training strategies are also presented, highlighting the steps involved
in integrating these components.

• Chapter 5: Experiment and Results This chapter presents the exper-
iments conducted to evaluate the proposed model. It begins with an
explanation of the experiment setup, followed by the results of the first
and second experiments. Both quantitative and qualitative evaluations
are included to assess the model’s performance.

• Chapter 6: Discussion This chapter provides a critical analysis of the
results and their implications. It examines the strengths and limitations
of the proposed approach and discusses the impact of dataset charac-
teristics and preprocessing strategies. Suggestions for improving the
framework are also presented.

• Chapter 7: Conclusion The thesis concludes with a summary of the
findings and their contributions to the field of generative modeling for
3D medical imaging.



2
T H E O R E T I C A L B A C K G R O U N D

This chapter covers the fundamental theoretical background of generative
models, with a focus on their application in generating synthetic images. It
begins with an introduction to MRI technology, including a basic overview
of brain anatomy, followed by a detailed explanation of various generative
models, such as GANs, VAEs, Diffusion Models, and Flow-based Generative
Models.

2.1 magnetic resonance imaging background

Magnetic resonance imaging (MRI) is a medical imaging technique that takes
advantage of the use of magnetic fields and radio waves to generate highly
detailed images of the body’s internal organs.

MRI has been shown to be an effective method for examining the brain
and detecting injuries, as it is capable of visualizing soft tissues such as
brain structures with high resolution.

Each MRI image is displayed in three distinct planes, namely the sagittal,
axial, and coronal planes, providing a three-dimensional understanding of
the structures being examined.

The sagittal plane is a section that divides the body into two parts, the left
and right. The image is presented as if the brain were being observed from
a lateral perspective.

The axial plane represents a horizontal slice through the body, with the up-
per and lower parts divided by a plane of symmetry. The image is presented
as if observed from an axial angle, either from above or below.

The coronal plane represents a vertical section that divides the body into
front and back parts, presenting the image as if viewed from the front. The
combination of these three planes provides a three-dimensional represen-
tation of the brain, which enables a radiologist to interpret the image and
identify diseases, injuries, or changes in the brain [4], see Figure 2.1.
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Figure 2.1: Visualization of the three MRI imaging planes. The axial plane (top-
left) divides the brain horizontally, capturing cross-sectional images. The
coronal plane (top-center) divides the brain vertically into anterior (front)
and posterior (back) sections. The sagittal plane (top-right) divides the
brain into left and right sections. Below each plane illustration, corre-
sponding MRI images demonstrate the detailed structures observed in
these views [49].

2.2 brain anatomy background

The human nervous system is divided into two major components: (i) the
brain and (ii) the spinal cord. The brain serves as the control center for the
nervous system and is subdivided into several regions: the cerebrum, cere-
bellum, and brain stem, each responsible for different functions.

the cerebrum

The cerebrum is the largest part of the brain and is crucial for functions
such as thought processing, language, memory, and voluntary movement.
The cerebrum is split into two hemispheres, each controlling functions on
the opposite side of the body. It is further divided into distinct lobes, each
responsible for specific tasks:

• Frontal Lobe: Located at the front of the cerebrum, it is involved in
personality, decision-making, and voluntary motor control.
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• Temporal Lobe: Found on the sides of the cerebrum, it handles func-
tions like hearing and language comprehension.

• Parietal Lobe: Situated at the top of the cerebrum, it is involved in sen-
sory processing and tasks such as mathematical abilities and problem-
solving.

• Occipital Lobe: Located at the rear of the cerebrum, it is primarily
responsible for visual processing.

The surface of the cerebrum is marked by pronounced folds, known as
cerebral convolutions, separated by grooves filled with cerebral vessels.

the cerebellum

Positioned below the cerebrum, the cerebellum is responsible for motor co-
ordination and maintaining balance and equilibrium.

the brain stem

Acting as the bridge between the brain and the spinal cord, the brain stem
controls vital life functions such as respiration, heart rate, and blood pres-
sure.

protection and support

The brain is shielded by the cranium, a bony structure, and three protective
layers of meninges. Additionally, the brain is surrounded by cerebrospinal
fluid (Cerebrospinal Fluid (CSF)), which provides cushioning, transports
nutrients, and removes waste products. CSF is produced in the brain’s ven-
tricles and circulates throughout, performing vital roles in protecting and
nourishing the brain [35].
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Figure 2.2: Some of the brain anatomy visible in this sagittal MRI image, including
the brainstem, cerebrum, and other surrounding structures

2.3 generative models

In the field of artificial intelligence, generative models represent a collection
of methods and models developed to learn the underlying structure of a
dataset and to extract its key features. The main goal is to generate new
instances that share similar characteristics with the original dataset.

Assuming that the training data are sampled from an unknown distribu-
tion x ∼ pdata(x). The generative model pθ(x) which represents a parametrized
family of probability distributions, is trained to estimate pdata, this training
process involves optimizing the model’s parameters θ so that pθ(x) comes
as close as possible to the true underlying distribution pdata(x) [27]. The Es-
timation of the probability distribution of the training data is provided by
the principle of maximum likelihood by direct and undirekt way. The rea-
son of the estimation because in practice there is no access to the pdata itself
only to a training set consisting of a certain number of samples from data
distribution. By using them to define p̂data, an empirical distribution that
places mass only on exactly those amount of the training data points and
aproximating pdata [14]. As shown in Figure 2.4, the generative model aims
to approximate the unknown data distribution. The deep generative mod-
els that work by maximizing the likelihood can be divided into two groups:
(i) the group that calculates either the likelihood and its gradients (Explicit
Density Models). (ii) the group that approximates these quantities (implicit
density models). The construction of the taxonomy of generative models is
shown in Figure 2.3. Explicit density models define a probability distribu-
tion pmodel(x; θ), and maximizing the likelihood involves plugging the den-
sity function into the likelihood expression and computing the gradient. The
main challenge is to design a model that captures the complexity of the data
while remaining computationally tractable. This is addressed by two strate-
gies: (1) constructing models with inherent tractability, such as change of
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Figure 2.3: Taxonomy of deep generative models based on their approach to model-
ing probability densities, divided into explicit density models (tractable
or approximate) and implicit density models (direct or Markov chain-
based) [53].

variable models, and (2) relying on approximate variational methods, such
as variational autoencoders (VAEs). In contrast, implicit density models, such
as GANs, directly generate samples without explicitly modeling the density,
while Markov chain-based models like GSNs rely on iterative refinement
[14].

There are many benefits to trained generative models. One of the main ad-
vantages these models offer is their ability to create new data that extends be-
yond the original training data, incorporating additional computations and
different details. This capability makes it possible to produce an unlimited
number of data points simply by sampling from the model’s distribution.
The ability to synthesize data has become a valuable tool in medical imag-
ing, providing a practical solution to the challenge of data sharing while
maintaining patient privacy. Although medical image synthesis presents sig-
nificant challenges, especially considering the complexity of medical con-
ditions observed in three-dimensional images such as magnetic resonance
imaging (MRI) and computed tomography (CT) scans, several powerful deep
learning models are currently available. These models are capable of learn-
ing complex data distributions, including diffusion models, autoregressive
transformers, generative adversarial networks (GANs), and variational au-
toencoders (VAEs)[39]. The following subsections offer a closer look at spe-
cific types of generative models, such as GANs and autoencoders. These will
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cover how these models are built, their operational principles, and the po-
tential applications they provide.

Figure 2.4: The generative model aims to approximate the unknown data distribu-
tion Pdata by learning from samples. The objective is to estimate Pmodel
such that it closely matches Pdata, enabling the generation of synthetic
samples that resemble real data [12].

2.3.1 Generative Adversarial Networks (GANs)

Generative adversarial Networks are a class of generative machine learn-
ing techniques. The concept of GANs was introduced at first time in 2014

by Ian Goodfellow [13]. This technology has led to major movement in ar-
tificial intelligence, particularly in fields requiring data synthesis, like data
augmentation, image generation and style transfer. The framework of GANs

(as shown in Figure 2.5) consists of two neural networks, a generator G and
a discriminator D which have adversarial relationship. The generator as its
name indicates generates new fake data which simulates input training data.
The discriminator tries to distinguish between the real training data and the
fake images that have been generated from the generator . In their competi-
tion, each of them have distinct and opposing goals. The GAN framework
is formulated as a zero-sum minimax game, creating a dynamic where the
loss function of each network is balanced by that of the other. This leads in a
system in which the networks iteratively adapt to reach a Nash equilibrium
where none can improve its performance without compromising the other,
ideally leading to a balance where the discriminator can no longer easily
distinguish between real and generated data.[40]

GANs have gained significant attention in image generation, due to their
powerful ability to not only generate clear and plausible fake images that
simulate the real data, but also create various details that are not present
in the input data. For example, they can simulate variations in lighting, tex-
ture, or even specific visual attributes, making it easier to study different
conditions or create different styles. The flexibility of GANs to manipulate
and create new visual elements opens up many possibilities in research and
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industry, specially in healthcare, where realistic synthetic data can accelerate
model training and help in studying scenarios where real world data may
be limited or difficult to obtain [52].

Despite the significant success of GANs, they have notable limitations. One
major issue is mode collapse, where the fully trained model generates a
limited range of synthetic data rather than a diverse array of outputs. This
problem prevents GANs from capturing the full diversity of the training data.

Additionally, GANs suffer from gradient vanishing and training instability
due to the adversarial nature of the training process. This instability can lead
to oscillations or divergence during training, hindering model convergence.
To overcome these problems, several GAN modifications have been intro-
duced that adopt better training techniques, regularization strategies, or loss
modifications. Among them are Wasserstein GAN (Wasserstein Generative
Adversarial Network (WGAN)) [2], WGAN with Gradient Penalty (WGAN
with Gradient Penalty (WGAN-GP)) [17], Spectral Normalization GAN (SNGAN)
[36], or Least Squares GAN (Least Squares GAN (LSGAN))[34]. These adjust-
ments have successfully reduced GAN-related problems, but do not com-
pletely eliminate them.

Another key limitation is the difficulty of evaluating the quality of gen-
erated data. Traditional metrics, such as accuracy or error rates, often fail
to effectively capture the differences between original and synthesized data
distributions. Furthermore, no single evaluation metric can universally ap-
ply across all GAN applications.

To address these challenges, researchers have developed specialized met-
rics like the Inception Score (IS), which measures image diversity and clarity,
and the Fréchet Inception Distance (FID), which compares the distribution of
generated and real images. New methods and techniques are also being ex-
plored to overcome these limitations, including combining GANs with other
generative models to enhance performance and robustness. [20, 28]
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Figure 2.5: GAN Architecture for Synthetic Image Generation: A random noise vec-
tor z ∼ N (0, I) is fed into the generator G, which produces a synthetic
image G(z). The discriminator D evaluates both real training images x
and generated images G(z), predicting the probability that each is real
or fake. Based on the discriminators feedback, a loss is computed to up-
date both G and D, improving the generators ability to create realistic
images [12].

2.3.2 Variational Autoencoders

Variational Autoencoders (VAEs) are generative models that learn a prob-
abilistic representation of input data in a lower-dimensional latent space,
enabling both reconstruction of the input and generation of new, similar
samples. A VAEs consists of two primary components:

• Encoder: Maps the input data to a latent space by generating a distri-
bution parameterized by a mean µ and variance σ2.

• Decoder: Reconstructs the data from the latent representation back into
the output space.

The general architecture of a VAEs framework is shown in Figure 2.6.
The term "latent space" refers to a simplified representation of complex

data (e.g., high-resolution images, audio, or text). By compressing the data
into this latent space, VAEs make it easier to manipulate and analyze the data.
This representation is particularly useful for applications requiring interpo-
lation, sampling, or controlled data generation.
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Figure 2.6: VAEs Architecture: The encoder E(x) maps the input x to a latent dis-
tribution characterized by µ and σ2. Using the reparameterization trick,
latent variables are sampled as z = µ + σ ⊙ ϵ, where ϵ ∼ N (0, I). The
decoder D(z) reconstructs the input as x′ [12].

To learn this latent representation, VAEs optimize the Evidence Lower
Bound (Evidence Lower Bound (ELBO)), which maximizes the log-likelihood
of the observed data while ensuring the latent space approximates a stan-
dard Gaussian distribution. The ELBO objective function is expressed as:

LELBO = −DKL(qϕ(z|x) ∥ p(z)) + Eqϕ(z|x) [log pθ(x|z)]

Here:

• qϕ(z|x): Approximate posterior distribution generated by the encoder.

• p(z): Prior distribution (typically Gaussian N (0, I)).

• pθ(x|z): Likelihood function parameterized by the decoder.

The ELBO comprises two components:

1. KL Divergence: A regularization term that encourages the approxi-
mate posterior distribution qϕ(z|x) to align with the prior p(z), ensur-
ing a smooth and structured latent space.

2. Reconstruction Loss: Measures the accuracy of the decoder in recon-
structing the input data x from the latent variable z, encouraging faith-
ful reconstructions [24, 28].

By maximizing the ELBO, VAEs achieve a balance between learning a com-
pact latent representation and generating new data samples. This dual capa-
bility makes VAEs valuable for tasks requiring controlled variability in data
generation, such as anomaly detection and semi-supervised learning.

However, VAEs face notable challenges:

• Blurry Outputs: The use of an L2-norm-based reconstruction loss tends
to average out fine details, leading to blurry images in the generated
output [24].

• Posterior Collapse: Over-regularization by the KL term can cause the
latent space to carry minimal information about the input, a phenomenon
known as posterior collapse.



2.3 generative models 14

To mitigate these issues, researchers have explored strategies such as:

• Dynamically adjusting the weight of the KL divergence term during
training.

• Introducing advanced loss functions that balance reconstruction qual-
ity and latent space regularization.

• Employing hierarchical VAEs or incorporating skip connections in the
decoder to improve detail preservation.

These enhancements aim to combine the advantages of VAEs (variability
in generated samples) with improved detail and image quality, making VAEs

more suitable for high-fidelity generative tasks [1].

2.3.3 Diffusion Models

Diffusion models are a powerful class of generative models that have gained
significant attention in recent years, particularly for generating high-quality
images and other complex data distributions. The main idea behind these
models is presented in [45], where the authors describe it as follows:

"The essential idea, inspired by non-equilibrium statistical physics,
is to systematically and slowly destroy structure in a data distri-
bution through an iterative forward diffusion process. We then
learn a reverse diffusion process that restores structure in data,
yielding a highly flexible and tractable generative model of the
data."

It can be understood that diffusion models are based on the concept of two-
step processes (as shown in Figure 2.7), a forward diffusion process and a
reverse diffusion process. In the forward process the input data distribution,
which is complex and unknown is gradually converted using Markov chain
to a known simple distribution usually Gaussian. The reverse diffusion pro-
cess then applies the reverse conversion from the Gaussian distribution to a
an approximate distribution of the generated data, with the aim of estimat-
ing the true underlying distribution of the input data [45].

Mathematical Explanation of Diffusion Processes

The forward diffusion process begins with data drawn from the initial dis-
tribution q(x0) and progressively adds noise at each step until the data ap-
proximates a standard Gaussian distribution. Each state at time t can be
represented as:

q(x1:T|x0) :=
T

∏
t=1

q(xt|xt−1) (2.1)
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Figure 2.7: Diffusion model process, consisting of a fixed forward process and a
learned reverse process. In the forward process (top), the original sample
x0 is progressively corrupted with Gaussian noise, resulting in a noise
dominated sample xT . In the reverse process (bottom), a neural network
models each denoising step pθ(xt−1 | xt) to reconstruct the original data,
enabling new sample generation by reversing the diffusion [12].

where each transition in the forward diffusion process is defined by:

q(xt|xt−1) := N (xt;
√

1− βt xt−1, βt I), (2.2)

where βt represents the variance introduced at each step, and I is the identity
matrix.

The distribution of xt conditioned on the original data x0 can further be
expressed as:

q(xt|x0) = N (xt;
√

ᾱt x0, (1− ᾱt)I), (2.3)

where ᾱt is the cumulative product of all previous α values, regulating the
level of noise across multiple time steps.

The reverse diffusion process then reconstructs the data by transforming
this Gaussian distribution back toward the original data distribution. This
can be expressed as:

pθ(x0:T) := p(xT)
T

∏
t=1

pθ(xt−1|xt), (2.4)

where each reverse step is defined by:

pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)), (2.5)

where µθ(xt, t) and Σθ(xt, t) are learned parameters that guide the denois-
ing process. By iteratively applying this reverse process, starting from xT
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and working back to x0, the model generates samples that approximate the
original data distribution.[19]

The diffusion model has been shown to be a highly effective tool in the
field of generative modeling. Its popularity can be attested by the numerous
variations and diverse structures of models that have emerged in this area.
The famous diffusion framework is the Denoising Diffusion Probabilistic
Models (Denoising Diffusion Probabilistic Model (DDPMs)) which have got
attention specially after the openAI group adopted its framework to their
application and became one of the most well-known diffusion models. This
model has gained popularity for its impressive ability to create high-quality
and diverse images based on the prompts it receives [51]

2.3.4 Flow based Generative models

Suppose x = {x1, x2, . . . , xn} is an image, which consists of pixels that fol-
low a distribution p(x). This distribution is typically complex and unknown.
The idea behind flow-based models is to apply a sequence of mathematical
operations (transformations) z = f (x), which maps the data from its com-
plex distribution p(x) to a simple latent distribution pz(z) (often a Gaussian).
Sampling from this simple latent distribution can then be reversed using f−1

to approximate the original data distribution (probability estimating). This
reversal allows for the reconstruction of the noise, yielding generated data
that resembles the underlying real data (see Figure 2.8).

For accurate probability estimate and density calculation at any point,
each transformation needs to be both differentiable and invertible. This prop-
erty is important in applications where precise probability estimates are im-
portant. Because of this ability to estimate densities exactly, flow-based mod-
els are sometimes referred to as “normalizing flows” [41].

Figure 2.8: Illustration of Normalizing Flows: The process of transforming a com-
plex data distribution ρx(x) (left) into a simpler latent distribution pz(z)
(right) using an invertible function f . This function f maps data x to a
latent variable z and can be reversed using f−1.
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Mathematical Explanation of Flow-Based Generative Models

As explained above the normalizing flow use a series of invertible trans-
formations to map data between a simple and complex distribution. These
models allow for exact density estimation and likelihood computation, a
property that makes them useful for many applications in generative model-
ing.

Suppose Z ∈ RD is a random variable sampled from a simple, known
probability density function pZ : RD → R, and X = f (Z) is the trans-
formed variable obtained through an invertible function f . The transforma-
tion X = f (Z) maps the simple distribution pZ to the complex distribution
pX. The probability density pX(x) of X can be computed using the change
of variables formula:

pX(x) = pZ( f−1(x))
∣∣∣∣det

∂ f−1(x)
∂x

∣∣∣∣ (2.6)

f−1 is the inverse of the transformation f . And ∂ f (x)
∂x is the Jacobian matrix

of f−1 at x, which describes the partial derivatives of each component of
f−1 with respect to each component of x. The new density function pX(x) is
called pushforward.

The concept of a pushforward density is central to flow-based genera-
tive models. The function f−1 "pushes forward" the simple base density pZ

to a more complex target density pX. This transition is called "the gener-
ative direction". The inverse direction which uses the inverse f−1 to map x
back to z, represents the " normalizing direction". This reverse direction "nor-
malizes" complex data back to the simple base distribution, enabling exact
likelihood estimation. This bidirectional capability is what gives normaliz-
ing flows their name, as they allow data to "flow" back and forth between
distributions.

Since flow-based models require exact density estimation, there are three
main condition, need to be filled. The flow functions must be (i) invertible
(ii) differentiable and (iii)The Jacobian determinant must be well-defined,
non-zero, and computationally efficient to evaluate (This will be optimized
during training and if the calculation is slow, then the training will be slow
too). These properties allow for exact likelihood evaluation during model
training.

In practice, by using a single transformation f is often difficult to construct
complex mappings capable of representing high-dimensional data distribu-
tions, and still hold this conditions. Therefore, flow-based models obtain this
by composing a series of simpler invertible (bijective) functions, such as:

f = f1 ◦ f2 ◦ · · · ◦ fN
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This composition is also invertible, with the inverse given by:

f−1 = f−1
N ◦ f−1

N−1 ◦ · · · ◦ f−1
1

A simple example to make it clear is illustrate in Figure 2.9. This property al-
lows the construction of complex transformations over time, while ensuring
the entire model remains tractable and invertible [26]. The training process
involves minimizing the negative log-likelihood loss, as following:

L(x) = − log pX(x) = − log pZ( f−1(x))− log
∣∣∣∣det

∂ f−1(x)
∂x

∣∣∣∣ . (2.7)

This loss function has two components. The first term − log pZ( f (x)) repre-
sents the likelihood of the transformed data f (x) = z under the simple base
distribution pZ, often assumed to be a standard Gaussian distribution. The
second term − log

∣∣∣det ∂ f−1(x)
∂x

∣∣∣ indicates to the transformation of space vol-
ume resulting from f , which ensuring that the model adapts for any scaling
or stretching effects of f .

By minimizing this loss function, the model learns the parameters of f
that best map the complex data distribution to the simple base distribution
and vise verse [41].

To meet the conditions of the normalizing flow, many normalizing flow
model are developed, each suited for specific data structures or designed to
balance computational efficiency with model flexibility. The famous models
are NICE, Real NVP, Glow, and Flow++ are examples of traditional normal-
izing flow models that work well with discrete data. However, they have
certain architectural limitations, like using rank-one weight matrices or par-
titioning dimensions, to get around the computational difficulties involved
in calculating large determinant costs. Another model which is called Con-
tinuous Normalizing Flows, have introduced a continuous time framework
for normalizing flows. It used Ordinary differential equations to define the
mapping from latent variables to data, providing more expressiveness and
flexibility without the same degree of architectural restrictions [15].

2.3.4.1 Continuous Normalizing Flow

As explained in the last section, normalizing flows traditionally use a dis-
crete sequence of invertible transformations to map complex data distribu-
tions to simpler latent distributions (e.g., a Gaussian). However, Continu-
ous Normalizing Flows (CNFs) take this concept further by replacing these
discrete transformations with a continuous transformation, modeled as the
solution to an Ordinary Differential Equation (ODE). Instead of "jumping"
between fixed transformation layers, CNFs allow data to "flow" smoothly and
continuously over time.

There are several advantages to use Ordinary Differential Equation (ODE)solvers,
namely [5]:
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Figure 2.9: Simple example of Normalizing Flows. The figure shows the transfor-
mation process in normalizing flows. The top arrow shows the forward
transformations f = f4 ◦ f3 ◦ f2 ◦ f1, which map the complex data dis-
tribution ρx(x) to a simpler latent distribution pz(z). The bottom arrow
shows the reverse transformations f−1 = f−1

1 ◦ f−1
2 ◦ f−1

3 ◦ f−1
4 , which re-

construct the data from the latent space. Each transformation step must
be invertible and diiferentable to make the process possible

• ODE solvers use memory more efficiently than discrete normalizing
flows and do not require the storage of intermediate states (e.g. out-
puts) of each layer fi in a stack.

• Another benefit of ODE solvers is its adaptive computation. ODE solvers
modify the number of steps they take dependent on the complexity of
the transformation. For simpler transformations (when the data dis-
tribution is already close to the target) fewer steps are needed, sav-
ing computational resources. For complex transformations (when the
data is far from the target distribution) the solver takes more steps to
achieve the desired accuracy. This ensures that computation is used
effectively where needed.

• CNFs handle irregular time-series data naturally by defining transfor-
mations continuously with ODEs, unlike RNNs that require discretized
intervals. This flexibility makes CNFs suitable for modeling data with
arbitrary sampling times

• Finally,in traditional normalizing flows, the change of variables for-
mula for transforming probability densities involves computing the de-
terminant of the Jacobian matrix (equation 2.7). For high-dimensional
data, this can be computationally expensive and challenging. Instead
CNFs use the instantaneous change of variables formula, which sim-
plify this process by replacing the determinant with a continuous in-
tegration over time (equation 2.10). This makes the computation of
density transformations more scalable and efficient.
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Mathematical Explanation of CNF! (CNF!) Processes

The mathematical basis of continuous normalizing flows is based on mod-
eling the transformations as continuous processes through ordinary differ-
ential equations (ODEs). The transformation of data points is given by the
following equation:

f (z(t), t; θ) =
dz(t)

dt
, (2.8)

with initial condition z(0) ∼ p(z(0)), a sample from a known simple
distribution ( Gaussian). f (z(t), t; θ) is a vector field parameterized by θ that
regulates the transformation. This function is often implemented as a neural
network, which enables the model to learn complex mappings from a simple
distribution to a complex one. The ODE solver computes the solution for z(T),
yielding the transformed data at time T:

z(T) = ODE_solver
(

dz(t)
dt

, z(0), t = 0, T
)

. (2.9)

To train the model, the log-likelihood of the transformed data z(T) need
to computed. The log-density evolution along the transformation is given by
the instantaneous change of variables formula [5]:

d log p(z(t))
dt

= −Tr
(

∂ f (z(t), t; θ)

∂z(t)

)
, (2.10)

This term Tr
(

∂ f
∂z(t)

)
represents the trace of the Jacobian matrix of f with

respect to z(t). This trace term calculates the divergence of the transforma-
tion function f , which quantifies how the probability density changes over
time.

To compute the log-density at the end time T, this expression is integrated
from t = 0 to t = T:

log p(z(T)) = log p(z(0))−
∫ T

0
Tr

(
∂ f (z(t), t; θ)

∂z(t)

)
dt. (2.11)

In this equation, log p(z(0)) is the log density of the initial data sample.
To efficiently compute gradients in the backward Pass , CNFs use the ad-

joint sensitivity method. By solving an additional ODE backward in time, the
gradients of the loss function are calculated with respect to parameters θ.

The adjoint state a(t) is defined, which captures the gradient of the loss L
with respect to z(t).
The backward ODE for a(T) = ∂L

∂z(T) is:

da(t)
dt

= −a(t)T∇z(t) f (z(t), t; θ), (2.12)
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and the loss function is calculated by maximizing the log-likelihood of the
data, minimize L = − log p(z(T)) . Which is the negative of the log-density
computed in the forward pass [15].

2.3.5 Flow Matching for Generative Modeling

Recently, a novel generative modeling approach called Flow Matching (FM)
was introduced [29]. As a specialized extension of Continuous Normalizing
Flows (CNFs), FM addresses the limitations of both traditional CNFs and Dif-
fusion Models (discussed in Sections 3.2.4 and 3.2.3). The core idea of Flow
Matching is to train CNFs by leveraging probability paths—smooth, param-
eterized transitions between distributions over time—to guide the transfor-
mation from a base distribution to a target distribution. These paths, which
can be designed or selected based on computational efficiency or model re-
quirements, serve as supervision for defining a clear trajectory that aligns
the two distributions.

Flow Matching innovates on traditional CNFs by introducing probability
paths as guidance, allowing transformations to focus on direct probability
alignment without the iterative and noisy steps inherent in diffusion-based
processes. This refinement retains the strengths of CNFs, such as invertibility
and smooth transformations, while improving their scalability and compu-
tational efficiency.

As an advanced framework within the family of CNFs, Flow Matching
significantly extends their applicability. It offers new opportunities for gen-
erative modeling by enabling the training of CNFs on larger scales with im-
proved flexibility and performance. By combining the foundational princi-
ples of CNFs with these enhancements, FM represents a meaningful advance-
ment in the field of generative modeling.

Mathematical Explanation of Flow Matching

Let x0 be drawn from a simple distribution p0(x), such as the standard nor-
mal distribution N (0, I). The goal is to approximate a target distribution
q(x1) by constructing a probability path pt(x) from p0(x) to q(x1). Define
the path pt(x) such that:

pt(x)→ q(x1) as t→ 1.

This path is guided by a vector field ut(x)that directs the flow from p0(x)
to q(x1). At time t ∈ [0, 1], a velocity function v : Rd × [0, 1] → Rd is set to
drive the flow from p0 to p1,to control the rate of change of the distribution
over time.

The Flow Matching objective minimizes the difference between the learned
velocity field vt(x; θ), parameterized by a neural network with parameters θ,
and the true vector field ut(x) is approximated by vt(x; θ) . This objective is
defined as:
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LFM(θ) = Et,pt(x)
[
∥vt(x; θ)− ut(x)∥2] , (2.13)

where the loss is minimized by sampling t from U[0, 1] and x from pt(x).
When zero loss is reached, the learned CNF! model will generate samples
matching the target distribution q(x) through this transformation.

The evolution of the probability density is given by the continuity equa-
tion:

∂pt(x)
∂t

= −div · (v(x, t)pt(x)), (2.14)

where div is the divergence operator. This relationship describes how the
probability mass flows as it transforms over time.

Since there are no prior knowledges of pt and ut, direct computation of
the marginal paths is often impossible. Conditional paths pt(x|x1) and vector
fields ut(x|x1) provide a practical solution. These paths simplify sampling
by enabling the calculation of probabilities and vector fields per data sample
x1 ∼ q(x1) rather than over the entire distribution. This approach allows the
model to operate on individual data samples, making the computation more
efficient.

The conditional paths are defined such that p0(x|x1) = p(x) at t = 0 and
p1(x|x1) is a Gaussian distribution centered around x1:

pt(x|x1) = N (x|µt(x1), σt(x1)
2 I), (2.15)

where the mean µt(x1) and standard deviation σt(x1) are time-dependent
functions that transition from p0 to p1. To ensures that the flow matches the
distributional dynamics necessary to approximate q(x).The vector field that
determines these transitions is given by:

ut(x|x1) =
σ′t(x1)

σt(x1)
(x− µt(x1)) + µ′t(x1). (2.16)

Consequently, ut(x|x1) generates the Gaussian path pt(x|x1).
To approximate the full marginal path pt(x), we aggregate the conditional

paths over the distribution q(x1):

pt(x) =
∫

pt(x|x1)q(x1) dx1. (2.17)

This integration shows that marginal paths can be derived from condi-
tional paths, highlighting why conditional paths are both practical and suf-
ficient for generating the marginal distribution.
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To simplify the training process, a Conditional Flow Matching (CFM) ob-
jective is defined that utilizes conditional paths:

LCFM(θ) = Et,x1∼q(x1),x∼pt(x|x1)

[
∥vt(x; θ)− ut(x|x1)∥2] (2.18)

This objective allows the generation of unbiased gradient estimates and
the efficient training of the model, without the need for the full marginal
paths or vector fields [29].



3
F R A M E W O R K S E L E C T I O N F O R S Y N T H E T I C M E D I C A L
I M A G E G E N E R AT I O N

The main objective of this work is to develop a machine learning model that
can generate synthetic 3D medical images, in particular magnetic resonance
imaging (MRI). The synthetic images generated by this model are meant to
be used in other machine learning tasks like classification and segmenta-
tion, which require high-quality, anatomically accurate data. Generating a
rich dataset of synthetic images can address the constraints of limited real-
world medical data, allowing for more research while protecting patient
privacy. To be sure that the generated images meet the necessary require-
ments, the model must provide high quality and diverse images that are
consistent across 3D slices while keeping structural continuity. To identify
the optimal generative model for this purpose, this thesis considers sev-
eral well-known architectures, including Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), denoising diffusion models, nor-
malizing flows (NF), and the recently proposed Flow Matching (FM) model.
Each of these models has many strengths and limitations for generating real-
istic and diverse images, and their comparative advantages will be examined
in the context of synthetic image generation spacially for medical images.
Therefore, a detailed comparison of these methods will form the basis for se-
lecting the most suitable model to achieve reliable and high quality synthetic
medical imaging.

3.1 the challenges of synthetic medical imaging

Synthetic medical imaging has the potential to address the issue of data
scarcity in medical research and deep learning. However, it is not without
its own challenges. The quality of the input data is of the highest importance;
nevertheless, factors such as patient movement, organ motion and scanner
limitations can result in images of poor quality, which prevent the observa-
tion of essential details. Insufficient resolution or coverage also compromises
the reliability of synthetic models, due to the resulting data incompleteness.
The introduction of noise and artefacts, whether due to imaging equipment
or patient-specific factors, serves to further complicate matters by preventing
the accurate observation of true anatomical features. Moreover, inconsisten-
cies in resolution and contrast between imaging slices or modalities create
additional challenges for accurate reconstruction.

The computational demands of high-resolution 3D generation represent
a further barrier, particularly for hospitals and other medical facilities with
limited resources. The introduction of errors in the process of segmentation,
which is the key for the definition of anatomical structures, can result in
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the propagation of uncertainties throughout the synthetic model. Software
limitations, including an absence tools for managing large datasets or mod-
ern modalities, further restrict generation quality. Finally, operator expertise
is critical, as inexperience can result in suboptimal parameter settings and
interpretations.

Overcoming these challenges requires advancements in imaging technol-
ogy, robust computational algorithms, and effective operator training. By
addressing these barriers, synthetic medical imaging can fulfill its potential
to support diagnostic tools, data augmentation, and clinical decision-making
[18, 47, 50]

3.2 comparison of selected generative models

This section reviews several well-established generative models, comparing
their strengths and weaknesses in the context of image synthesis to iden-
tify the most suitable approach. Table 3.1 provides a detailed comparison of
the selected models, including GANs, VAEs, diffusion models, CNFs, and flow
matching

3.2.1 GANs

GANs are well known for their ability to generate realistic, sharp and high
quality images thanks to their adversarial training between a generator and
a discriminator. In medical imaging applications, GANs offer the advantage
of producing images with fine details, an essential quality in tasks like MRI

reconstruction [21]. However, GANs suffer from many issues such as train-
ing instability and mode collapse, where the generator may limit itself to a
reduced range of data features, which effects the output diversity. These is-
sues make GANs challenging to optimize and may cause high computational
costs. In addition, GANs are sensitive to hyperparameter settings, which has a
slight impact on training stability and image quality [32]. One study investi-
gated the effect of hyperparameter sensitivity on GANs. They analysed 1,500

hyperparameter searches on three medical imaging datasets using different
GAN structures to demonstrate sensitivity. The results showed that only a
few models produced meaningful images and even fewer models achieved
reasonable metric scores [33].

3.2.2 VAEs

Variational Autoencoders (VAEs) are probabilistic generative models that map
input data to a lower dimensional latent space and then decode from this
space to reconstruct or generate new samples. These VAEs compress and cre-
ate a latent representation that is ideal for learning tasks such as medical
image synthesis, anomaly detection, and disease diagnosis, where it is im-
portant to allow for some variability in the produced data. Dimensionality
reduction in the latent space allows for more efficient data manipulation
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and analysis, which can simplify tasks such as interpolation, sampling and
augmentation.

In medical imaging, where data is often high-dimensional and complex,
the lower-dimensional latent space facilitates simpler computations, enhances
interpretability, and improves computational efficiency. VAEs optimize the
ELBO to approximate the data’s log-likelihood, ensuring the model learns
the real image distribution. The ELBO is composed of a reconstruction loss,
which measures how accurately the input is recreated, and a KL divergence
term, which structures the latent space with a Gaussian prior. Balancing
these terms allows VAEs to learn a detailed latent space and produce a vari-
ety of realistic samples.

However, VAEs face significant challenges, particularly in medical imag-
ing. The reliance on L2 norm-based reconstruction loss can result in blurred
images, as the averaging process during reconstruction often reduces the
fidelity of fine details. This limitation affects applications requiring high-
resolution or highly detailed images, such as diagnostic imaging. While syn-
thetic data is generally not used directly in diagnostics due to strict accuracy
and reliability requirements, it serves as a crucial auxiliary tool. Synthetic
data is widely employed for tasks like data augmentation, model validation,
testing edge cases, and training deep learning models, particularly in sce-
narios where real-world data is scarce or imbalanced. Improving the quality
of synthetic images generated by VAEs can enhance these supporting roles,
indirectly contributing to advancements in diagnostic tools.

Furthermore, the Gaussian assumption on the latent space might fail to
sufficiently represent the complexity of real-world data, limiting their ability
to effectively simulate complicated medical image structures. Balancing the
reconstruction and KL divergence terms also presents practical challenges.
If the KL divergence term is overly weighted, the model may experience
posterior collapse, in which the latent space fails to capture meaningful in-
formation about the input, reducing the quality and specificity of generated
samples[24, 28, 44].

3.2.3 Denoising Diffusion models

Diffusion models are among the most well-known generative models, char-
acterized by several advantages. These include the ability to generate high-
quality, realistic, and diverse images, as well as their effectiveness in han-
dling fine details within the generated images.

These strengths arise from their iterative mechanism. During the training
process, diffusion models gradually add noise to an image, transforming it
into a fully noisy representation with a Gaussian-distributed density. The
models then iteratively refine this noisy image during the generation pro-
cess until a realistic output is produced. This iterative approach enhances
the performance of diffusion models, often resulting in more accurate and
stable outputs compared to GANs, while also reducing the risk of mode col-
lapse. These capabilities make diffusion models particularly well-suited for
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generating detailed images, which are crucial for accurate analysis and diag-
nosis in medical imaging [8].

Diffusion models have limitations such as high computational complexity
and long training times due to their iterative structure. The inference process
is also sometimes slower compared to GANs and VAEs for generating images
because it involves many backward steps to generate an image. One of the
most important things that diffusion models require to train effectively is
large datasets, which can be challenging in areas such as high-resolution im-
ages with limited data. Although they tend to avoid mode collapse better
than GANs, producing different outputs can still be challenging. In addition,
training diffusion models can be complex and requires substantial compu-
tational power and memory, which might be challenging for some medical
institutions without specialized resources[8, 19, 48, 51]

3.2.4 Continuous Normalizing Flows

Continuous Normalizing Flows (CNFs) focus on exact likelihood-based den-
sity estimation. They model a target distribution by continuously transform-
ing a simple base distribution ( like Gaussian) using a time-dependent dif-
ferential equation. By optimizing the exact log-likelihood, CNFs aim to learn
smooth, invertible mappings, leveraging the change of variables formula and
differential equation solvers [5].

To minimize the negative log-likelihood, CNFs rely on computing the trace
of the Jacobian, a process that is both computationally demanding and sen-
sitive to numerical solvers. For example, maximum likelihood training in
frameworks such as FFJORD requires the solution of costly numerical ODE

simulations. These simulations become increasingly prohibitive for high-
dimensional data, such as images, due to the computational cost and the
need for numerical stability during continuous transformations [16].

Attempts to avoid these expensive computations include simulation-free
approaches. However, these alternatives introduce new issues. Rozen et al.
[43] identified challenges with intractable integrals in some methods, while
Ben-Hamu et al.[3] demonstrated that other techniques result in biased gra-
dient estimates.

In addition to computational intensity, CNFs are highly sensitive to the
choice of differential equation solvers, further complicating training. No-
tably, no scalable training algorithms for CNFs are currently known, posing
a significant barrier to their adoption for high-dimensional datasets [29]

3.2.5 Flow Matching

Flow Matching is introduced as a new method for training CNFs without
depending on costly simulations typically used in traditional CNF training
(such as in FFJORD or similar methods). The key idea of FM is to regress
the vector fields of fixed conditional probability paths instead of solving
the usual differential equations over time, leading to more efficient train-
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ing processes. This simulation-free nature allows CNF training to be scaled
to larger datasets and models. Furthermore, FM is compatible with a vari-
ety of Gaussian probability paths, including those used in diffusion models,
but also opens the door to using alternative paths, such as Optimal Trans-
port (OT), which leads to even faster training and improved generalization.
These advances make Flow Matching particularly useful in tasks that require
both high computational efficiency and high-quality generative performance,
such as large-scale image generation. With FM, CNFs training is more accessi-
ble, faster, and provides higher-quality results, surpassing the performance
of traditional diffusion-based models on datasets like ImageNet.

One of the main limitations of flow matching models is their relative new-
ness in the field of generative modeling. While they have shown promise
in generating 2D images, their application to higher-dimensional settings,
such as 3D natural images, remains largely unexplored. Furthermore, no
studies have yet applied flow matching to 2D medical images. This lack of
dedicated research on medical image generation means that the potential
and challenges of applying flow matching in these domains are not fully un-
derstood. This lack of specific research on medical image generation means
the potential and challenges of using flow matching in these domains are
not fully understood, highlighting the need for further studies to explore its
suitability for this application.

3.3 choosing the desired model

The generation of high-quality, realistic three-dimensional medical images,
such as magnetic resonance imaging (MRI), remains a challenging task due
to the need for high-resolution details and slice consistency. Developing a
framework that leverages the strengths of established generative models
while minimizing their limitations is essential. To address this, this thesis
proposes a hybrid approach that integrates VQ-GAN and flow matching in
the latent space.

VQ-GAN, or Vector Quantized Generative Adversarial Network (briefly ex-
plained in section 3.4), is a generative model that combines the strengths
of GANs and VAEs. It uses adversarial training to ensure high-quality and
realistic image generation while leveraging a vector-quantized latent space,
similar to VAEs, for efficient data representation and manipulation. This la-
tent space facilitates structured image generation and controlled modifica-
tions, making VQ-GAN particularly suitable for tasks like generating detailed
medical images.

The decision to use VQ-GAN stems from its ability to combine the bene-
fits of adversarial training and latent space representation. The adversarial
component of VQ-GAN ensures that the generator produces realistic, high-
resolution images, refined by the feedback from the discriminator. Addi-
tionally, the vector-quantized latent space makes it easier to represent and
manipulate data efficiently, a critical feature for generating medical image
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variations with specific properties. These capabilities make VQ-GAN an ideal
choice for high-quality image synthesis [10, 23].

While VQ-GAN ensures efficient latent space representation and high-quality
image generation, flow matching complements it by providing a powerful
method for learning complex data distributions within this latent space [23].
Flow matching builds on the principles of continuous normalizing flows
(CNFs) but avoids the computational overhead associated with calculating
exact likelihoods. Instead, it approximates the data distribution, bypassing
the need for the exact likelihood computations required by traditional CNF
models.

Recent studies have demonstrated that flow matching outperforms tradi-
tional diffusion models in generating high-quality two-dimensional images
and video predictions. Its ability to model complex distributions without re-
lying on exact likelihoods makes it a promising choice for generative tasks.
By combining the strengths of VQ-GAN and flow matching, the proposed
framework aims to tackle the challenges associated with generating high-
quality 3D medical images, offering a novel and efficient solution to this
complex problem [29].

3.4 vector quantized generative adversarial network (vq-gan)

The Vector Quantized Generative Adversarial Network (VQ-GAN) proposed
by Esser et al. [10] is a generative model that combines ideas from both
Vector Quantized Variational Autoencoder (VQ-VAE) (Vector Quantized Vari-
ational Autoencoder) [37] and GANs (Generative Adversarial Networks). The
VQ-GAN model is an extension of the VQ-VAE [37] framework, improving it
with a transformer architecture and simply integrating an adversarial (GAN)
loss from a discriminator to further improve the quality of the reconstructed
images.

Its main goal is to produce high-quality, detailed images while reducing
computational cost and improving memory efficiency by operating in a la-
tent space, which is typically useful in scenarios requiring high-resolution
images with a high degree of detail, such as medical imaging. It consists
of four sub-models: an encoder, a decoder, the codebook with transformer
architecture and the discriminator.

• Encoder: the encoder E is a convolutional network, which consists of
convolutional layers that downsample the input image while capturing
essential image features. It produces a feature map with lower spatial
resolution, which is then mapped to the codebook during quantization.

• Codebook: The codebook Z is similar to a dictionary that contains a
collection of learned vector representations (or "codes") that represent
a unique feature or pattern learned directly from the data, acting as
discrete latent variables. In simple terms, the codebook represents a
compressed and quantized version of an image, where each image (or
part of an image) is represented by one of these codebook entries. After
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the image has been encoded into a latent space, each feature vector in
the latent representation is quantized. This means that it is replaced by
the nearest vector in the codebook, forming a discretized latent repre-
sentation.

The VQ-GAN uses a transformer architecture to generate images based
on the quantized latent codes. The core idea is to handle the quantized
latent codes as a sequence to model the dependencies between differ-
ent parts of the image, and to learn the distribution of these indices in
the form of a sequence. The transformer then predicts the next index in
the sequence based on the previous indices, learning an autoregressive
model for image generation.

• Decoder: The decoder G is a convolutional network, using upsampling
layers to reconstruct the image from the quantized feature map. The
architecture is designed to match the feature scale of the encoder so
that the high-level features can be effectively decoded back into a high-
resolution image.

• Discriminator: By adding a discriminator to the architecture, VQ-GAN

uses adversarial training to improve the perceptual quality of the re-
sulting images. This is another neural network trained to discriminate
between real and generated images. The discriminator operates on
patches of the image rather than the whole image, using a convolu-
tional "PatchGAN" classifier from [22] that only penalizes structures at
the scale of image patches. This helps the model to focus on local im-
age details (texture, edges, etc.), resulting in finer, more realistic image
generation.
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Figure 3.1: VQ-GAN architecture: The model uses an encoder E to generate latent
representations, which are quantized via a codebook Z. A transformer
learns dependencies between quantized codes for autoregressive image
generation. The decoder G reconstructs the image, and a discriminator
D enhances image quality via adversarial training. The model is opti-
mized with a combined vector quantization, adversarial, and autoregres-
sive loss [10].

3.4.1 Structure of the VQ-GAN

The VQ-GAN structure follows an encoding, quantization, and decoding pipeline
with a focus on reconstructing input images x in latent space. The encoder
E maps the input x into a latent representation ẑ = E(x), which has spatial
dimensions h× w and depth nz: ẑ = E(x) ∈ Rh×w×nz

Quantization Process

Each spatial position ẑij in the encoder output ẑ is quantized by mapping it
to the nearest vector zk in a discrete codebook Z. The quantized output zq is
obtained as follows:

zq = q(ẑ) := arg min
zk∈Z
∥ẑij − zk∥ (3.1)

where Z = {zk}K
k=1 is the set of learned codebook vectors, and K denotes

the number of entries in this codebook. This quantization step provides a
discrete representation of the latent image structure, preserving essential
features at reduced computational complexity.
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Decoding and Image Reconstruction

To reconstruct the image from the quantized latent representation zq, the
decoder G is applied:

x̂ = G(zq) = G(q(E(x))) (3.2)

where x̂ denotes the reconstructed image. This process approximates the
original image x as closely as possible within the constraints of the learned
latent space.

Backpropagation through Non-differentiable Quantization

The quantization operation q(·) is non-differentiable. To facilitate gradient
backpropagation, a straight-through estimator is used, allowing gradients
from the decoder G to flow through q(·) to the encoder E. This enables
end-to-end training of the VQ-GAN model, including updates to the encoder,
decoder, and codebook entries.

Objective Function

The training of VQ-GAN is driven by a mixed objective function that includes
the following loss terms:

• Reconstruction Loss Lrec: This measures the difference between the
original image x and its reconstruction x̂ using an L2-norm loss:

Lrec = ∥x− x̂∥2
2 (3.3)

• Codebook Commitment Loss: This term encourages the encoder out-
put E(x) to stay close to the selected codebook entries zq, ensuring
stability in representation and promoting an efficient, compact encod-
ing. It is composed of two sub-terms:

– Codebook Loss: Prevents the codebook vectors from deviating too
far from the latent representations, defined as:

∥sg[E(x)]− zq∥2
2 (3.4)

– Commitment Loss: Keeps the encoder outputs close to the quan-
tized vectors, defined as:

∥sg[zq]− E(x)∥2
2 (3.5)
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Here, sg[·] represents the stop-gradient operation, which prevents
gradients from updating the variables inside it. This separation
ensures both the encoder and codebook are optimized effectively.

The Reconstruction Loss Lrec with Codebook Commitment Loss to-
gether give the Vector Quantization loss LVQ(E, G, Z) as follows:

LVQ(E, G, Z) = Lrec + ∥sg[E(x)]− zq∥2
2 + ∥sg[zq]− E(x)∥2

2 (3.6)

• Adversarial Loss LGAN: Improves the perceptual quality of the images
by using a discriminator D:

LGAN = log D(x) + log(1− D(x̂)) (3.7)

• Total Objective Function: Combining the reconstruction, commitment,
and adversarial terms, the full objective function for VQ-GAN can be
expressed as:

Q∗ = arg min
E,G,Z

max
D

Ex∼p(x) [LVQ(E, G, Z) + λLGAN({E, G, Z}, D)] (3.8)

where λ is an adaptive weight controlling the influence of the adver-
sarial component on the model’s learning process. This weight is com-
puted to balance the gradients between the reconstruction and GAN
terms:

λ =
∥∇G[Lrec]∥

∥∇G[LGAN]∥+ δ
(3.9)

where δ = 10−6 is added for numerical stability.

Transformer-based Sequence Modeling

With E and G in place, images can be represented as sequences of codebook
indices s ∈ {0, . . . , |Z| − 1}h×w, where each sij specifies a codebook entry for
a given spatial position (i, j) in the quantized latent space zq. An ordering is
chosen for these indices, and a transformer is trained to predict each subse-
quent index in the sequence, optimizing for the log-likelihood of the entire
sequence:

LTransformer = Ex∼p(x) [− log p(s)] (3.10)

This enables autoregressive generation of images, with each index pre-
diction conditioned on prior ones, thereby modeling spatial dependencies
effectively.
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3.5 flow matching model

The flow matching framework aims to model the continuous transformation
between an initial data distribution p0 and a target noise distribution p1 (of-
ten Gaussian). Given empirical observations x0 ∼ p0 and x1 ∼ p1, the objec-
tive is to estimate a coupling π(p0, p1) that describes the evolution between
these two distributions. This process is formulated as solving an ordinary
differential equation (ODE):

dxt

dt
= v(xt, t), (3.11)

where t ∈ [0, 1] and v : Rd × [0, 1] → Rd is a velocity function guiding the
flow from p0 to p1.

To train the flow matching network on a latent space, this work draws
inspiration from prior frameworks such as the one presented in [6]. In this
framework, flow matching was trained on a pretrained latent space gener-
ated using a Variational Autoencoder (VAEs)[25] from Stable Diffusion [42]
to produce 2D synthetic images. Furthermore, methodologies explored in
[7] demonstrated the effectiveness of pairing VQ-GAN with flow matching to
train latent flow models for video prediction tasks, generating temporally
coherent sequences. This approach serves as a foundation for developing
methods suited to 3D image generation in the medical domain (more details
come in the next chapter).

For this specific application, MRI images are encoded into a latent space
using VQ-GAN, followed by training a flow matching model to generate syn-
thetic 3D images.

3.5.1 Flow Dynamics and Loss Optimization

The velocity is parameterized by vθ(xt, t), and the parameters θ are opti-
mized through a least-squares regression problem:

θ̂ = arg min
θ

Et,xt

[
∥v(xt, t)− vθ(xt, t)∥2

2
]

, (3.12)

where the expectation is taken over the empirical path. This approach en-
ables flexible and efficient learning of the flow dynamics, and backward
sampling is achieved by integrating from x1 to x0 using numerical integra-
tion methods.

x0 = x1 −
∫ 1

0
v(xt, t) dt. (3.13)

The ODE in 3.11, known as the Lagrangian flow, describes the continuous
transformation of point clouds. An alternative perspective is provided by
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the Eulerian form, where a continuity equation characterizes the change in
distribution over time [6]:

∂pt

∂t
= −∇ · (v(x, t)pt). (3.14)

Two main variations of v(x, t) are commonly employed in the flow match-
ing framework [46] and the constant velocity ODE [31]. As it is shown in
[31] the nonlinear interpolation in the Variance Preserving (Variance Pre-
serving (VP)) path, which is common choice to define the pathxt between x1

and x0 in the probability flow ODE method, may introduce unnecessary cur-
vature in the generative trajectories, negatively impacting training efficiency.
The constant velocity ODE mitigates this by using a linear interpolation path
between x1 and x0 such that:

xt = (1− t)x0 + tx1. (3.15)

The velocity is then given by vt = x1 − x0, and the flow matching loss is
formulated by:

θ̂ = arg min
θ

Et,xt

[
∥x1 − x0 − vθ(xt, t)∥2

2
]

. (3.16)

For this application, the constant velocity ODE is employed as it ensures a
smooth linear transformation and enhances sampling efficiency, making it
particularly suitable for training on 3D MRI. However, the choice between
the probability flow ODE and constant velocity ODE is not fixed; it depends
on the specific requirements of the task. If capturing more complex data
structures is necessary, the probability flow ODE may still be used, provided
its trade-offs are acceptable.
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4
D ATA A N D D E V E L O P E D F R A M E W O R K

This chapter provides an overview of the data used for training the pro-
posed framework and outlines the structure of the model architecture, as
well as the implementation and training procedures. The focus is on leverag-
ing a two-stage model for generating 3D medical images, specifically for the
generation of synthetic MRI scans from Alzheimer’s patients. The first stage
utilizes a Variational Autoencoder-based Generative Adversarial Network
(VQ-GAN) to learn a compact latent representation of the medical images.
The second stage integrates a flow matching model, which operates in the
continuous latent space and generates new images by learning continuous
transformations.

4.1 model architecture

The framework consists of a two-stage model as shown in Figure 4.1:

• First Stage: The first stage involves training the VQ-GAN. This stage fo-
cuses on learning to encode input images into a discrete latent space
using a convolutional encoder and to reconstruct images from this la-
tent space using a convolutional decoder. The architecture of the convo-
lutional encoder and decoder models used in the VQ-GAN experiments
is detailed in Table 4.1 and 4.2 .

• Second Stage: Latent Flow Matching Model In the second stage, the
pre-trained VQ-GAN encoder is utilized to encode input images into
the latent space, and its decoder reconstructs outputs from this space.
Within this latent space, a flow matching model operates to generate
new data by learning continuous transformations. A 3D UNet architec-
ture is employed for the flow matching model due to its widespread
success in medical imaging tasks and diffusion models.

To adapt to the volumetric nature of 3D medical images, the UNet ar-
chitecture replaces 2D operations with 3D convolutions, ensuring vol-
umetric consistency. The architecture includes three main stages, de-
tailed as follows:

1. Downsampling: The model begins with a series of 3D convolu-
tional layers that reduce the spatial dimensions of the input image
while extracting relevant features. Attention blocks are integrated
at certain levels to help the model focus on key areas of the image.
Residual connections and time embeddings are also employed to
enhance feature learning and represent temporal dynamics effec-
tively. Dropout (0.5) is applied to prevent overfitting.
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2. Bottleneck: The bottleneck stage processes the downsampled fea-
tures using a combination of residual blocks and attention lay-
ers. This stage captures complex patterns and relationships in the
latent space, enabling the model to better understand the input
image.

3. Upsampling: Transposed convolutions are used to progressively
restore the resolution of the image. Skip connections are incorpo-
rated from the downsampling path to combine fine-grained de-
tails with the upscaled features, ensuring high-resolution and ac-
curate reconstructions. The final output is produced by applying
normalization and a non-linear activation function to the upscaled
features.

Figure 4.1: Two-Stage Model Architecture for 3D Medical Image Generation. The
framework consists of two stages. In the first stage, a VQ-GAN model is
trained to encode input images into a discrete latent space (ẑ) using a
CNN encoder (E) and a codebook (Z), then reconstruct the images via
a CNN decoder (G), then an adversarial training procedure and a patch-
based discriminator (D) applied to differentiate between real and recon-
structed images. The trained VQ-GAN model is then used in the second
stage. In the second stage, a Latent Flow Matching framework is applied,
where the input data x is encoded with the pre-trained encoder of the
first stage model to produce the latent representation z0. The latent flow
network predicts the velocity of the transformation from a standard nor-
mal distribution p(z1) = N (0, I) to the target latent distribution p(z0).
During sampling, random noise z1 is drawn from p(z1), and the network
predicts the velocity towards p(z0) via numerical integration. Finally, z0
is decoded with the VQ-GAN decoder from the first stage to generate the
image.
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Layer Output Shape

Input x RH×W×C

Conv3D Layer (conv_first) RH×W×n_hiddens

Downsample Block + Residual Block
RH/s×W/s×2i×n_hiddens

(i steps, repeated based on the downsampling)

Residual Block RH/s×W/s×2i+1×n_hiddens

Final Block (Normalize + SiLU) RH/s×W/s×2max_ds×n_hiddens

Output RH/s×W/s×2max_ds×n_hiddens

Table 4.1: Encoder Architecture

Layer Output Shape

Input x RH/s×W/s×2max_us×n_hiddens

Final Block (Normalize + SiLU) RH/s×W/s×2max_us×n_hiddens

UpSample Block + Residual Block
RH/s×W/s×2max_us−i×n_hiddens

(Repeated for i steps)

ConvTranspose3D (Upsampling) RH/s×W/s×2max_us−i+1×n_hiddens

Residual Block 1 (ResBlock) RH/s×W/s×2max_us−i+1×n_hiddens

Residual Block 2 (ResBlock) RH/s×W/s×2max_us−i+1×n_hiddens

Conv3D (conv_last) RH×W×C

Table 4.2: Decoder Architecture

4.2 implementation and training

This section outlines the implementation details for adapting the pre-existing
VQ-GAN framework for 3D medical images (as demonstrated in [23]) to work
with the provided dataset and computational constraints, and its integra-
tion with the flow matching model (performed in this work) for generating
synthetic 3D MRI images.

4.2.1 Data Preparation

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [38] dataset con-
tains brain MRI scans from n=2733 patients (used just 320 randomly images
for training the model) . The ADNI was launched in 2003 as a publicprivate
partnership, led by Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early Alzheimer’s
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disease (AD).

MRI images of Alzheimer’s patients exhibit significant variability depend-
ing on the progression of the disease. As Alzheimer’s progresses, observable
changes in the brain through MRI scans include "atrophy," or the shrinkage
of brain regions such as the hippocampus and cortical areas, which are crit-
ical for memory and cognitive function. In early stages, these changes may
be subtle, while advanced stages show more pronounced atrophy.

The decision to use this dataset was driven by its variability, offering a dis-
tinct advantage for training models. The diversity of brain structures across
different stages of Alzheimer’s provides the model with a wide range of
cases, enabling it to generate distinct brain images that reflect various stages
of the disease. The dataset was carefully examined and labeled by a medical
expert to ensure accurate categorization and to enhance understanding of
brain visualization across the disease’s stages (Figure 4.2).

To ensure all 3D MRI images are compatible for model training, a pre-
processing pipeline is employed. Images are resampled to a target voxel
spacing of (1.0, 1.0, 1.0) using SimpleITK to maintain spatial consistency.
Voxel intensity values are normalized to the range [0, 1], and non-brain areas
are cropped to focus on relevant anatomical structures, with images stan-
dardized to cubic dimensions using (TorchIO’s CropOrPad) function. Ran-
dom augmentations, including intensity scaling and flipping, are applied to
improve model generalization. Finally, images are resized to (64, 64, 64) to
match the model input size, and the dataset is split into 80% for training
and 20% for validation.

Figure 4.2: MRI Brain Scans Demonstrating Stages of Alzheimer’s Disease Progres-
sion. (A) Normal brain structure; (B) Early-stage Alzheimer’s with mild
atrophy; (C) Moderate-stage Alzheimer’s showing significant atrophy
and enlargement of ventricles; (D) Advanced-stage Alzheimer’s with
pronounced brain shrinkage and severe ventricular enlargement.
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4.2.2 VQ-GAN Implementation

In this work, the VQ-GAN framework proposed by [10], which was already
adapted to support 3D MRI data by [23], was fine-tuned for the specific task
of generating synthetic 3D MRI images. The model architecture, as modified
by [23], includes significant enhancements to handle volumetric data effec-
tively. These modifications, utilized in this work, include:

• 3D Convolutions: Replacing all 2D convolutions with 3D convolutions
to enable effective processing of volumetric data.

• Discriminators: Incorporating a slice-wise discriminator and a 3D dis-
criminator. The slice-wise discriminator evaluates individual slices of
the image volume, while the 3D discriminator assesses the reconstructed
volumes as a whole, thereby improving reconstruction quality.

• Feature Matching Losses: Adding feature matching losses to stabilize
adversarial training by aligning the feature representations between
the generator and the discriminator.

The pre-adapted VQ-GAN model from [23] was fine-tuned to ensure com-
patibility with the Alzheimer’s dataset and address specific computational
constraints, such as GPU memory limitations.

Training Setup

The training setup for the VQ-GAN included the following hyperparameters:

• Latent Embedding Dimension: Set to 8 to align with the requirements
of the flow matching model.

• Compression Factor: Carefully selected to balance dimensionality re-
duction with reconstruction quality.

• Losses:

– Perceptual Loss: Used as the primary reconstruction loss to enhance
perceptual quality.

– Codebook and Commitment Losses: Enforced quantization quality by
penalizing deviations of the encoded latent vectors from the clos-
est codebook entries.

• Learning Rate: Set to 3× 10−4, optimized based on initial experimen-
tation.

The straight-through estimator approach was used to address the non-
differentiability of the quantization step.
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Fine-Tuning Configurations

The VQ-GAN model was fine-tuned using the following configurations:

• Codebook Size: Configured to contain 12,288 learnable vectors, pro-
viding sufficient expressivity for latent representations.

• Number of Hidden Units: Set to 16, balancing model capacity and
computational efficiency.

• Downsampling Rates: Initially experimented with [2, 2, 2] and [4, 4, 4]
to evaluate their impact on model performance. Due to GPU memory
limitations, the final training was conducted using [4, 4, 4].

• Gradient Clipping: Applied with a value of 1.0 to prevent exploding
gradients.

• GPU Utilization and Gradient Accumulation: Training was performed
on a multi-GPU setup with 4 GPUs. Given the high memory require-
ments of 3D medical images, the batch size was set to 2 per GPU.
Gradient accumulation was set to 2, meaning the model updated the
weights after accumulating gradients over two mini-batches. With a
batch size of 2 per GPU and gradient accumulation set to 2, the effec-
tive batch size across all GPUs was 16. This setup allowed for more
efficient memory usage while maintaining the same update frequency
as if using a batch size of 8.

The detailed training procedure for the VQ-GAN model, including the com-
putation of various loss terms and optimization steps, is outlined in Algo-
rithm 1.

4.2.3 Flow Matching Model Implementation

Once the VQ-GAN model was trained, the pretrained VQ-GAN encoder was
used to encode the MRI input images x into continuous latent vectors z0.
Since the flow matching model operates in continuous latent space, the vec-
tor quantization step was deactivated during the encoding process to ensure
the latent vectors remained continuous. This adjustment enables smooth dy-
namics during the training of the flow matching model in latent space, en-
suring compatibility between the VQ-GAN encoder and the flow matching
framework.

The flow matching model was trained to predict the velocity field that
controls the transformation between latent variables z0 (produced by the
VQ-GAN encoder) and z1 (sampled as random noise).

The training setup for the flow matching included the following hyperpa-
rameters:

• Batch Size and GPUs: to address memory constraints during the train-
ing of the flow matching model, a batch size of 2 per GPU was used.



4.2 implementation and training 43

This configuration ensured that individual GPUs could handle the
memory requirements for processing 3D medical image data. When
multiple GPUs were available, parallelization was enabled using the
PyTorch DistributedDataParallel framework. The batch size per GPU
was calculated dynamically as follows:

batch_size_per_gpu =
batch_size
total-gpu

where total-gpu determines the number of GPUs available. Each GPU
was configured to handle two patches of the input data, optimizing
both memory usage and computational efficiency.

• Exponential Moving Average (Exponential Moving Average (EMA)):
An EMA, as used in [6] was employed to stabilize training by averaging
the parameters of the flow matching model over time. This approach
reduces noise from parameter updates and ensures smoother conver-
gence. The EMA was implemented with a decay rate of α = 0.995, as
follows:

θEMA ← α · θEMA + (1− α) · θcurrent,

where θEMA are the EMA parameters, and θcurrent are the current model
parameters. The EMA parameters were periodically used for evaluation
and saved as part of the checkpointing process. This ensured that the
models performance was evaluated using stabilized parameters, mini-
mizing fluctuations due to rapid updates.

• Learning Rate: Set to 2× 10−5.

• ODE Solver: An ordinary differential equation (ODE) solver was used
to integrate the predicted velocities over time, evolving latent variables
zt from z0 to z1.

• Gradient Clipping: Applied with a threshold of 1.0 to stabilize train-
ing.

• Velocity Prediction Loss: The loss penalizes deviations between the
predicted velocity v(t, zt) and the true velocity u = z1 − z0

Lv = ∥v(t, zt)− u∥2

The step-by-step procedure for training the flow matching model in the la-
tent space is detailed in Algorithm 2.
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Algorithmus 1 : Training the VQ-GAN

Input : Dataset D, encoder Eθ , decoder Dϕ, codebook C, 2D
discriminator D2D, 3D discriminator D3D, learning rate ηVQ,
hyperparameters λrecon, λcommit, λperc, λgan.

repeat
Sample mini-batch {xi}B

i=1 ∼ D;
Encode latent features: z0 ← Eθ(x);
Quantize latent features: zquant ← Quantize(z0, C);
Reconstruct images: xrecon ← Dϕ(zquant);
Compute losses:

Lrecon = λrecon∥x− xrecon∥1

Lcommit = λcommit ·CommitLoss(z0, zquant)

Select random slice xslice and x̂slice for perceptual and
adversarial loss:

Lperc = λperc · LPIPS(xslice, x̂slice)

Lgan = λgan
(

Ladv-2D(xslice, x̂slice) + Ladv-3D(x, x̂)
)

Combine total loss:

L = Lrecon + Lcommit + Lperc + Lgan

Update encoder Eθ , decoder Dϕ, codebook C, and discriminators
D2D, D3D using optimizer with learning rate ηVQ;

until convergence;
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Algorithmus 2 : Training Flow Matching in Latent Space
Input : Normalized latent data Znormalized, trained VQ-GAN

Encoder E, velocity estimator vθ , learning rate ηFM

repeat
Sample an MRI image x from the dataset D

Encode it with pre-trained VQ-GAN encoder E to obtain latent
representation: z0 = Encoder(x0);

Sample noise z1 ∼ N (0, I)
Sample time t ∼ Uniform(0, 1)
Interpolate zt ← (1− t)z0 + tz1

Compute target velocity u(zt)← z1 − z0

Compute loss:

ℓ← ∥vθ(zt, t)− u(zt)∥2

Update θ ← θ − η∇θℓ
until convergence;

Algorithmus 3 : Sampling with Flow Matching
Input : Trained velocity estimator vθ , pre-trained VQ-GAN decoder

D, number of time steps N, initial noise z1 ∼ N (0, I)

for n = N − 1 to 0 do
Compute tn ← n

N ;
Compute tn+1 ← n+1

N ;
Update ztn ← ztn+1 + (tn − tn+1) · vθ(ztn+1 , tn+1);

Reconstruct with pre-trained VQ-GAN decoder D (x0 ← D(z0));
return Generated MRI sample x0
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E X P E R I M E N T A N D R E S U LT

To the best of our knowledge, no prior research has systematically explored
the effectiveness of flow matching for generating 3D medical images. Fur-
thermore, there is limited guidance on how to adapt, evaluate, and optimize
model architectures for this purpose.

This chapter presents a series of experiments designed to investigate var-
ious configurations of the proposed model, assess their performance, and
analyze the results. The primary objective is to provide insights into the
practical application of flow matching for 3D medical image generation.

5.1 experiment setup

All models were trained and tested on an NVIDIA RTX 2080 Ti with 11GB
GPU RAM. Additional system specifications included. The VQ-GAN model
parameter breakdown is presented in Table 5.1, with a total estimated model
size of 119.686 MB. The flow matching model consists of 151.604 MB of
parameters, representing a more streamlined architecture tailored for latent
space operations.

Table 5.1: Model Parameter Breakdown

Name Type Parameters

Encoder Encoder 441K

Decoder Decoder 948K

Pre-VQ Conv SamePadConv3D 520

Post-VQ Conv SamePadConv3D 576

Codebook Codebook 0

2D Image Discriminator NLayerDiscriminator 2.8M

MRI Discriminator NLayerDiscriminator3D 11.0M

Perceptual Model LPIPS 14.7M

Total Trainable Params 15.2M

Total Non-Trainable Params 14.7M

Total Params 29.9M

Estimated Model Size 119.686 MB
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5.2 testing process

The testing process involves generating new synthetic 3D MRI images by
transforming a random latent vector z1 (sampled from a standard Gaussian
distribution N (0, I)) to the target latent representation z0 using the trained
flow matching model and reconstructing the final output image using the
pre-trained VQ-GAN decoder. The process is mathematically governed by the
learned velocity field vθ(t, zt) and utilizes an Ordinary Differential Equation
(ODE) solver for efficient transformation.

Steps for Testing

1. Latent Sampling: A latent vector z1 ∼ N (0, I) is sampled from a Gaus-
sian distribution, serving as the starting point for the generative pro-
cess.

2. ODE Solver Integration: The transformation from z1 to z0 is achieved
by solving the following ODE backward in time:

dzt

dt
= vθ(t, zt),

where zt is the latent representation at time t. The final latent represen-
tation z0 is computed as:

z0 = z1 +
∫ 0

1
vθ(t, zt) dt

The ODE solver numerically integrates this equation over the time in-
terval [1, 0], guided by the trained velocity field vθ(t, zt).

3. Image Reconstruction: Once the latent vector z0 is obtained, it is passed
through the pre-trained VQ-GAN decoder to reconstruct the correspond-
ing 3D MRI image:

xrecon = D(z0),

where D is the VQ-GAN decoder.

The sampling process for generating synthetic 3D MRI images using the flow
matching model is outlined in Algorithm 3.

5.3 first experiment

The first experiment involved training the VQ-GAN model to learn lower-
dimensional representations of medical images, followed by training a de-
noising diffusion model. The objectives of this experiment were:

1. To evaluate the performance and representational ability of the VQ-GAN

model.
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2. To assess the generative capabilities of the diffusion model and com-
pare its results with those of the flow matching model.

The primary purpose of training the diffusion model was to evaluate the
VQ-GAN’s ability to encode the input data into a latent space and reconstruct
meaningful images from this representation. The diffusion model served as
a test mechanism to verify whether the VQ-GAN’s latent space encoding re-
tained sufficient structural and anatomical information to produce plausi-
ble outputs. An example of the output generated by the diffusion model is
shown in Figure 5.1.

Figure 5.1: Example output from the diffusion model.

As shown in Figure 5.1, the diffusion model produced results that quali-
tatively resembled real medical images. Based on these outcomes, the focus
shifted to implementing the flow matching model within the latent space of
the VQ-GAN to evaluate its generative potential.

5.3.1 Flow Matching Model

The flow matching model was initially trained using a standard configura-
tion. However, the results were unsatisfactory, as illustrated in Figure 5.2.
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Figure 5.2: Initial results from the flow matching model, showing poor perfor-
mance.

To address the issues observed, multiple attempts were made to optimize
hyperparameters and explore alternative model architectures, but these at-
tempts were unsuccessful. Eventually, an alternative loss function (L1 loss)
was introduced to replace the standard L2 loss. The L1 loss, defined as the
mean absolute error between the predicted and target values, penalizes large
deviations less harshly than L2 loss, which calculates the mean squared error.
This adjustment resulted in significantly improved performance, as shown
in Figure 5.3.

Figure 5.3: Results from the flow matching model using L1 loss.

To further enhance the results, a combination of L1 and L2 loss functions
was employed with weighted contributions, balancing their strengths. This
approach improved the model’s ability to preserve structural consistency
while maintaining robustness to outliers. One of the results from this con-
figuration is presented in Figure 5.4, and a comparison of loss trends for
different configurations is shown in Figure 5.5.
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Figure 5.4: Results from the flow matching model using a combination of L1 and L2

loss functions.

Figure 5.5: Loss function trends: gray represents L2 (0.035), yellow represents L1

(0.042), and green represents a combination of 0.9L1 + 0.1L2 (0.052).

5.3.2 Conclusion of First Experiment

The first experiment demonstrated that the VQ-GAN and diffusion models
were sufficient for generating moderate-quality 3D medical images. How-
ever, the flow matching model initially produced unsatisfactory results, and
its performance significantly improved only after adjustments to the loss
function, including the introduction of L1 loss and a weighted combination
of L1 and L2 losses. These findings informed subsequent experiments and
highlighted the importance of loss function selection for optimizing model
performance.

Before concluding that the flow matching model lacked the capability to
generate meaningful outputs, the decision was made to revisit data pre-
processing. Initially, preprocessing followed the procedures described in [8].
To evaluate how the VQ-GAN interpreted the input data, an additional step
was introduced during training: reconstructing and visualizing multiple 2D
slices extracted from the 3D medical images. This step allowed for a direct as-
sessment of the quality of the preprocessed input data and the reconstructed
outputs. Examples of the input images as seen by the VQ-GAN (prior to be-



5.3 first experiment 51

ing fed into the networks) are shown in Figure 5.6, and the corresponding
reconstruction results are presented in Figure 5.7.

Figure 5.6: Examples of input data after preprocessing, prior to being fed into the
networks.

Figure 5.7: Examples of reconstructed data from the VQ-GAN output.

This additional analysis highlighted shortcomings in the initial preprocess-
ing pipeline, which influenced the model’s ability to generate high-quality
outputs. These findings emphasized the importance of preprocessing in en-
suring that the VQ-GAN effectively captures critical structural information
from the input data. This insight became a a focus for further refinement in
subsequent experiments.
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5.4 second experiment

The first experiment highlighted a critical issue: the preprocessing pipeline
for the VQ-GAN input data needed improvement. In response, the input data
was normalized between 0 and 1 to handle extreme values effectively. Due to
a CUDA out-of-memory issue, the models were trained with downsampling
factors of [4, 4, 4].

Figure 5.8 demonstrates how the revised preprocessing allowed the VQ-GAN

to interpret the input data more effectively, as opposed to Experiment 1,
where the input data was primarily noise. This adjustment resulted in sig-
nificantly better reconstruction performance, as seen in Figure 5.9.

The improved preprocessing also had a positive impact on the flow match-
ing model. The results, shown in Figure 5.10, exhibit a significant improve-
ment over Experiment 1. The flow matching model now generates images
with well-defined brain structures and noticeably better overall quality.

Figure 5.8: Input data after updated preprocessing and normalization. This adjust-
ment allowed the VQ-GAN to process the data more effectively.
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Figure 5.9: Reconstructed output of the VQ-GAN model after improved preprocess-
ing. The reconstruction quality is significantly enhanced compared to
Experiment 1.

Figure 5.10: Results of the flow matching model. Improved preprocessing and recon-
struction have led to clearer brain structures and better overall image
quality.
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5.5 evaluation

In order to provide a comprehensive and detailed assessment of the pro-
posed model’s performance, both quantitative and qualitative evaluations
were implemented. The quantitative metrics offer objective, measurable in-
sights into the model’s ability to reproduce high-quality MRI images at both
pixel and structural levels. In contrast, the qualitative assessment provides a
deeper understanding of the model’s strengths and limitations from a per-
ceptual perspective.

However, due to constrained resources (time and GPU availability), the
evaluation was limited to a single test example, which restricts the scope
and generalizability of the findings.

5.5.1 Quantitative Results

The VQ-GAN and diffusion models, used for comparison with the flow match-
ing model, required approximately 10 days of training. In contrast, the flow
matching model training completed in approximately 13 hours, reflecting
differences in architectural complexity and training processes.

The performance of the proposed model was evaluated using several quan-
titative metrics, including the Mean Squared Error (Mean Squared Error
(MSE)), Normalized Mean Squared Error (Normalized Mean Squared Er-
ror (NMSE)), Peak Signal-to-Noise Ratio (Peak Signal-to-Noise Ratio (PSNR)),
Structural Similarity Index Measure (Structural Similarity Index Measure
(SSIM)), and Multi-Scale Structural Similarity Index Measure (Multi-Scale
Structural Similarity Index Measure (MS-SSIM)). These metrics were selected
to assess both pixel-level accuracy and perceptual quality. The results are
summarized in Table 5.2.

Table 5.2: Quantitative Evaluation Metrics

Metric Value

MSE 3.1761× 10−2

NMSE 1.8250

PSNR (dB) 21.00

SSIM 0.7364

MS-SSIM 0.6505
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Metric Descriptions and Interpretation

• Mean Squared Error (MSE): MSE measures the average squared differ-
ence between corresponding pixel values in the generated and ground
truth images:

MSE =
1
N

N

∑
i=1

(xi − x̂i)
2 ,

where xi is the pixel value in the ground truth image, x̂i is the corre-
sponding pixel in the generated image, and N is the total number of
pixels. A lower MSE value indicates a higher degree of pixel-wise sim-
ilarity. However, MSE is sensitive to large errors and does not capture
structural or perceptual differences, which can limit its usefulness in
evaluating fine structural details.

• Normalized Mean Squared Error (NMSE): NMSE normalizes the MSE

by dividing it by the norm of the ground truth image, making it more
robust across datasets with varying intensity distributions:

NMSE =
∑N

i=1 (xi − x̂i)
2

∑N
i=1 x2

i

.

A value close to zero indicates strong similarity between the generated
and ground truth images. The observed NMSE of 1.8250 reflects devi-
ations in finer details, emphasizing the need for improved structural
fidelity in the generated images.

• Peak Signal-to-Noise Ratio (PSNR): PSNR measures the ratio between
the maximum possible pixel intensity (Imax) and the noise present in
the image, expressed in decibels (dB):

PSNR = 10 · log10

(
I2
max

MSE

)
.

Higher PSNR values indicate better image fidelity. A PSNR of 21.00 dB
suggests moderate quality, with visible noise and artifacts impacting
the clarity and sharpness of the images.

• Structural Similarity Index Measure (SSIM): SSIM assesses the per-
ceived similarity of structural patterns between the generated and ground
truth images by considering luminance (l), contrast (c), and structure
(s):

SSIM(x, x̂) =
(2µxµx̂ + C1) (2σxx̂ + C2)(

µ2
x + µ2

x̂ + C1
) (

σ2
x + σ2

x̂ + C2
) ,

where µx and µx̂ are the mean intensities, σ2
x and σ2

x̂ are variances, σxx̂

is the covariance, and C1 and C2 are small constants to stabilize the
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division. The SSIM score of 0.7364 indicates moderate preservation of
structural features but suggests room for improvement in fine struc-
tural fidelity.

• Multi-Scale Structural Similarity Index Measure (MS-SSIM): MS-SSIM

extends SSIM to multiple spatial scales, capturing structural similarity
across both local and global patterns. It is computed as:

MS-SSIM =
M

∏
j=1

[
SSIMj(x, x̂)

]αj ,

where M is the number of scales, and αj are weighting factors for each
scale. The MS-SSIM value of 0.6505 highlights challenges in reproducing
fine-grained textures and subtle anatomical features, which are critical
for medical imaging tasks.

The combination of these metrics provides clear evidence of the flow
matching model’s capacity to generate images that are, to a reasonable ex-
tent, an accurate representation of the target data. Nevertheless, further en-
hancements are required, particularly with regard to the enhancement of
finer details and the reduction of artifacts [12].

5.5.2 Qualitative results

The qualitative evaluation of the generated images offers valuable insights
into the performance and limitations of the proposed model. Three main as-
pects are examined: the quality and similarity of the generated images to the
ground truth, and the challenges in achieving precise anatomical accuracy.

Quality and Similarity of Generated Images

A qualitative assessment, as demonstrated in Figure 5.11, involves compar-
ing the ground truth images (right) and the generated ones (left). This com-
parison can be conducted even by individuals lacking expertise in MRI or
radiology This comparison highlights both the strengths and limitations of
the generative model.

Overall, the generated images effectively capture the macro-level anatom-
ical structures, such as the general shape and layout of brain regions. How-
ever, the models are unable to reproduce the fine structural details evident
in the ground truth images. This limitation is particularly noticeable in areas
requiring intricate textures and sharp boundaries, which are fundamental
for anatomical accuracy.

Additionally, the generated images appear slightly blurry, further reduc-
ing their quality in comparison to the ground truth. This blurriness suggests
that the model struggles with high-frequency details, potentially due to lim-
itations in resolution or training methodology. Despite these challenges, the
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generated images exhibit a reasonable degree of structural similarity, indi-
cating the model’s potential for improvement with further refinements

Figure 5.11: Comparison of generated MRI images (left) with ground truth images
(right). While the overall structure is well-represented in the generated
images, the fine details are not fully captured, and the generated images
exhibit slight blurriness.

Challenges in Anatomical Accuracy

While examining the generated MRI images, artifacts were observed par-
ticularly in the parietal and occipital lobes of the brain as shown in Fig-
ure 5.12. These artifacts manifest as grid-like or structured noise patterns,
which do not correspond to anatomically accurate structures. Such inconsis-
tencies have a significant impact on the quality and usability of the gener-
ated images for medical applications, where precise anatomical accuracy is
important for tasks such as diagnosis or segmentation.

The presence of these artifacts reduces the reliability of the model for real-
world medical applications. Although the model generates well-structured
and realistic images in other regions, it appears to struggle with capturing
the finer details and complex spatial patterns in the parietal and occipital
regions. This failure likely leads to inaccurate representations in the output,
reducing the overall usefulness of the images for tasks that demand high
anatomical fidelity.
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Figure 5.12: Artifacts observed in the parietal and occipital lobes of generated MRI
images. These grid-like noise patterns, highlighted in red, do not corre-
spond to anatomically accurate structures and indicate inconsistencies
in the model’s output
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D I S C U S S I O N

This chapter analyzes the experimental results within the framework pro-
posed for generating three-dimensional medical images. The discussion high-
lights the effectiveness of the flow matching model, exploring its key strengths,
limitations, and implications. While the analysis is based on the evaluations
presented in Chapter ??, it must be noted that the evaluation is based on a
single test example, which limits the scope of the findings. This limitation
underscores the need for a more thorough evaluation to validate the initial
promising results and confirm the model’s potential.

6.1 analysis of quantitative and qualitative results

Quantitative Performance

The quantitative metrics (MSE, NMSE, PSNR, SSIM, and MS-SSIM ) provide ob-
jective insights into the performance of the flow matching model, which
presented in table 5.2. Although the model shows promising results in gen-
erating medical images with structural consistency and visual plausibility,
its performance metrics indicate areas for improvement:

1. Pixel-level Accuracy: The MSE and NMSE values indicate that the gener-
ated images present moderate pixel-wise similarity to the ground truth.
However, the NMSE indicates that deviations are more pronounced for
finer structural details. The relatively low PSNR value (21.00 dB) reflects
the presence of residual noise and the lack of high signal fidelity.

2. Structural Consistency: The SSIM and MS-SSIM metrics indicate that
the model captures macro-level anatomical structures reasonably well.
However, lower MS-SSIM values highlight challenges in preserving finer
multi-scale features, such as intricate brain textures and boundaries.

While the model demonstrates an ability to reconstruct and generate images
with moderate fidelity, the results suggest that the proposed method is still
potentially impacted by challenges such as noisy reconstructions and loss
of fine details. Further experiments could investigate the impact of further
pre-processing of the input data or optimization strategies to address these
issues.

Qualitative Performance

The qualitative evaluation of the generated images aligns with the quantita-
tive results, demonstrating the model’s ability to capture realistic anatomical
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variability while highlighting challenges with fine detail reproduction and
artifact reduction.

The variability in the outputs generated by the flow matching model, il-
lustrated in Figure 6.1, underscores its capacity to produce a diverse range
of realistic images. Such diversity is critical in medical imaging applications,
where accurate representation of anatomical and pathological variations is
essential.

The three examples in Figure 6.1 reveal differences in anatomical details,
including tissue contrast and boundary sharpness. For instance:

• The first image exhibits sharper boundaries of the brain’s outer struc-
tures, with more defined edges.

• The second image shows more uniform contrast but smoother bound-
aries, suggesting a different traversal pathway in latent space.

• The third image demonstrates variations in contrast and texture, re-
flecting subtle differences in fine-grained feature representation.

These variations highlight the model’s capacity to generate a range of
plausible outputs while maintaining overall anatomical fidelity. However,
they also reveal challenges in achieving consistent quality across samples,
potentially linked to how the flow matching process interacts with the latent
space.

Figure 6.1: Examples of 3D slices generated by the flow matching model. The im-
ages illustrate variability in contrast and fine details, showcasing the
model’s ability to produce diverse representations while maintaining
overall anatomical structure.

Strengths:

• The generated images successfully represent macro-level anatomical
structures and maintain continuity across slices.

• The diversity in the generated images demonstrates the model’s ability
to explore and capture variations in anatomical details, which is vital
for medical imaging applications.

Limitations:
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• Fine structural details and textures, crucial for medical imaging, are
often poorly represented or missing.

• The generated images appear slightly blurred, which could be attributed
to limitations in preprocessing techniques or the resolution of the latent
space.

6.2 impact of dataset characteristics

The dataset used for training played a major role in influencing the perfor-
mance of the proposed framework. While it demonstrated the potential of
latent flow matching models with limited data, several inherent characteris-
tics influenced the results:

Size and Design:

The dataset contained approximately 320 MRI images, a relatively small size
for training deep generative models. This limitation was partly by design, to
demonstrate the ability to generate synthetic images with limited resources,
and partly due to the availability of computational resources. Despite the
small size, the model successfully converged and generated realistic syn-
thetic images without fine-tuning hyperparameters for flow matching model
or encountering mode collapse during training.

Resolution Constraints:

Reduced image resolution due to preprocessing negatively impacted the
quality of reconstructed images, limiting the model’s ability to capture in-
tricate anatomical details.

Data Imbalance:

An expert examination of the dataset revealed a significant imbalance, with
70% of the images representing late-stage Alzheimer’s disease, 1% repre-
senting early-stage, and the remainder depicting moderate stages (see Fig-
ure 4.2 for an illustration of the differences). This imbalance introduced a
bias into the generative model, leading to outputs predominantly simulating
late-stage atrophy. While the model successfully captured the characteristics
of late-stage Alzheimer’s disease, the lack of diverse representations limited
its ability to generate images depicting other stages of the disease or healthy
brains.

Challenges Due to Brain Anatomy:

The complexity and fine-grained structure of the human brain present ad-
ditional challenges for generative modeling. The brain’s intricate textures,
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subtle boundaries, and fine anatomical details, particularly in regions af-
fected by Alzheimer’s disease, require extremely high-resolution latent rep-
resentations to be faithfully reproduced. In contrast, if the region of interest
were an area with less intricate structures, such as the abdomen, the model
might achieve better results. Organs in the abdominal region generally have
smoother and less complex anatomical features, which may be easier for
the model to capture and reproduce accurately, even with limited data or
resolution constraints.

6.3 significance of preprocessing

The improved performance observed in the second experiment highlights
the important role of preprocessing in medical image generation. Normaliz-
ing input voxel intensities to a range between 0 and 1 enhanced data con-
sistency by ensuring uniformity across input images, allowing the model to
focus on structural features rather than intensity variations. This step also
contributed to more stable and efficient convergence during training by mit-
igating gradient-related issues. Furthermore, downsampling factors played
a significant role in improving the model’s ability to encode and reconstruct
images effectively. However, a major factor contributing to the suboptimal
qualitative and quantitative results was the choice of downsampling factor
during the VQ-GAN training phase. Due to GPU memory constraints, the
model was trained with a downsampling factor of [4,4,4] instead of [2,2,2].
While this decision was necessary to address computational limitations, it
had a significant negative impact on the quality of the latent space represen-
tations. The higher downsampling factor reduced the overall resolution of
the input data, resulting in the loss of both high-frequency anatomical de-
tails and important structural information, rather than specifically address-
ing noise. As a result, the latent space primarily captured macro-level fea-
tures, while ignoring fine anatomical details, that are critical for high-quality
image generation.

These limitations were evident in the model’s failure to produce outputs
with sharp boundaries and fine-grained textures, particularly in regions
requiring high anatomical fidelity. These findings emphasize that prepro-
cessing decisions, in particular the choice of downsampling factor, are not
just technical adjustments but critical determinants of model performance.
Future work should prioritize training with finer downsampling factors,
such as [2,2,2], to better preserve the structural integrity of the latent space,
and should explore advanced preprocessing techniques, such that dynamic
downsampling and data augmentation, to optimize both computational effi-
ciency and anatomical accuracy.

6.4 possible areas for improvement

Several areas can be explored to enhance the performance and applicability
of the proposed framework:
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1. Training with Finer Downsampling Factors: Using a finer downsam-
pling factor, such as [2,2,2], during the VQ-GAN training stage could
help preserve more intricate anatomical details in the latent space.
While this requires higher computational resources, it would signifi-
cantly improve the quality and fidelity of the generated images, partic-
ularly for regions requiring diagnostic precision.

2. Balancing and Expanding the Dataset: Addressing dataset imbalance
is crucial to improving the diversity and generalization ability of the
model. Including more examples of early- and moderate-stage Alzheimer’s
disease, as well as healthy brains, would help the model generate out-
puts that better represent the full spectrum of conditions. Additionally,
data augmentation techniques, such as rotation, flipping, scaling, and
elastic deformations, could enhance the dataset without requiring ad-
ditional MRI scans.

3. Using Higher-Resolution Data: Training with state-of-the-art resolu-
tion MRI datasets would allow the model to learn and generate images
with greater structural fidelity. Higher-resolution input data would
enhance the model’s ability to capture fine-grained textures, subtle
anatomical features, and sharp boundaries, particularly in critical re-
gions affected by Alzheimer’s disease.

4. Adopting Region-Specific Models: Regions of the body with less com-
plex structures, such as the abdomen, could serve as a benchmark for
testing and refining the framework. These areas often lack the high
complexity of brain anatomy, making them more suitable for gener-
ative modeling. Success in simpler anatomical regions could inform
strategies for tackling more complex areas like the brain.

5. Using Diffusion Transformer (DIT) and Fine-Tuning: Replacing the
U-net architecture with a diffusion transformer (DIT) based architec-
ture for the flow matching model could improve the performance of
the framework. DIT offers the capability to better capture long-range
dependencies and complex structural details. Fine-tuning the model
after replacing the architecture would optimize its parameters for high
quality image generation [6].

6. Using a Refinement Network: To enhance the quality and temporal
consistency of the generated images, a refinement network, which is
suggested in [7] could be utilized. This network would take two im-
ages as input, refining the second image based on the first. Such an ap-
proach could reduce artifacts, enhance smooth transitions across slices,
and improve the overall coherence of the generated 3D medical vol-
umes.

7. Exploring Further Preprocessing Techniques: Advanced preprocess-
ing strategies could enhance the framework’s ability to interpret and
process medical images. For instance, dynamic normalization methods,
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histogram equalization, or advanced noise reduction algorithms could
improve the input data quality. Additionally, better handling of voxel
intensity distributions and employing cropping techniques tailored to
specific anatomical regions could ensure greater consistency and rele-
vance of the input data.

8. Using a More Powerful GPU: Training and testing on better GPUs
would mitigate issues such as CUDA out-of-memory errors, allowing
for smoother execution of models with higher resolution data and finer
downsampling factors. Access to advanced hardware would also en-
able the use of larger batch sizes, leading to improved model stability
and convergence.
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C O N C L U S I O N S

This thesis explores the integration of VQ-GAN and flow matching models
for the generation of synthetic 3D medical images, focusing on MRI scans
of Alzheimer’s patients. The results demonstrate the potential of this novel
approach in addressing challenges related to data scarcity, patient privacy,
and the need for high-quality, diverse medical imaging datasets.

The proposed framework successfully captured macro-level anatomical
structures and generated plausible 3D images, reducing training time dra-
matically from 10 days, as required by diffusion models, to just 13 hours.
This indicates that the framework is a promising candidate for use in medi-
cal applications. Nevertheless, the presence of limitations, including the loss
of fine details, the appearance of artefacts in specific regions, and the po-
tential for dataset bias, indicates the necessity for further improvement. The
importance of preprocessing, dataset diversity, and loss function selection
was emphasized throughout the evaluation, as these factors significantly in-
fluenced model performance.

Despite these challenges, the combination of VQ-GAN’s latent space encod-
ing and flow matching’s continuous transformations represent a promising
direction in medical image synthesis. With further refinements, such as train-
ing on higher-resolution data, addressing dataset imbalances, and exploring
advanced model architectures, the framework could be extended to generate
high-quality, reliable images for medical imaging.

This research provides a foundation for future work in generative mod-
eling for medical imaging, with potential applications in disease diagnosis,
treatment planning, and the development of AI-driven healthcare tools. It
also underscores the need for continued exploration of resource-efficient,
high-quality generative models to advance the field of medical image syn-
thesis.
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