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ABSTRACT

This study provides a comprehensive analysis of machine learning based
survival models in kidney transplantation, identifying methodological chal-
lenges. Although significant research efforts continue to introduce new mod-
els with enhanced flexibility in modeling complex survival patterns, their
applicability to different datasets and research contexts remains a challenge.
Leveraging insights from the existing literature to address similar problems
significantly fosters broader knowledge transfer.

A critical finding of this study is that, despite the increasing number of
survival models being developed, research remains primarily focused on
evaluating predictive performance using standard survival metrics, while
predictive uncertainty quantification receives little attention. This is particu-
larly concerning in a medical domain where treatment decisions directly im-
pact human lives. Without a clear understanding of predictive uncertainty,
clinical decision making risks becoming overly dependent on potentially mis-
leading point estimates.

Furthermore, there is a notable gap in user-centered tools that translate re-
search findings into practical clinical applications. Although survival mod-
eling techniques continue to advance, their integration into clinical work-
flows remains limited, hindering their potential impact in kidney transplant
medicine. Developing accessible and interpretable decision support tools
could bridge the gap between machine learning research and real world
medical applications.

By evaluating the feasibility of existing prognostic models, assessing their
transferability to the German Transplant Registry (TxReg), and applying un-
certainty quantification methods such as Monte Carlo Dropout and Boot-
strap, this study examines the applicability of ML-based survival analysis
methods and assesses their strengths and limitations in the context of kid-
ney transplantation.
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INTRODUCTION

This chapter provides the background, relevance, and objectives of the study.

1.1 BACKGROUND AND RELEVANCE OF THE RESEARCH

In modern medical practice, accurately forecasting transplant outcomes is vi-
tal [14, 47], especially for kidney transplants, where the gap between organ
demand and supply remains a pressing challenge [38]. Integrating machine
learning (ML) promises new possibilities by incorporating a variety of vari-
ables and their complex interactions, enabling the discovery of insights that
lead to more accurate and personalized predictions [52]. Precise predictions
are vital in the field of transplantation, where maximizing the success of
each operation is essential to optimize the use of limited organ resources.
However, despite its potential, the integration of ML into clinical practice
presents significant challenges, particularly in terms of interpretation of the
results and quantification of the predictive uncertainties underlying the mod-
els while effectively communicating the findings to users [5].

A key element in transplant research is event-time data, which record the
time until events such as graft rejection or patient death. This data is often
right-censored, meaning that for some patients, the event has not occurred
at the time of data collection. This requires specialized statistical approaches
capable of handling censored data. In addition, the growing number and
complexity of prognostic models raise important questions about their ben-
efit and applicability to different patient populations, such as those repre-
sented in national registry such as the German Transplant Registry (TxReg).
This leads to the question: can we leverage the knowledge gained from the
literature to solve our specific research challenges, which share the same
objectives but involve different data?

1.2 OBJECTIVES OF THE STUDY

To address this question, this thesis examines three key aspects.

First, it evaluates the feasibility of applying existing prognostic models to
the TxReg data. This includes examining whether these models can theoret-
ically be adapted or transferred to other settings by assessing how well data
pre-processing, model architectures, and hyperparameters are reported in
the literature. Focus on identifying models, which are completely described
and therefore capable of generating individualized predictions. In order to
assess the usefulness of the published model when modified for a new but
comparable context, this thesis applies and compares a chosen A1 model



on TxReg data. This provides information about the model’s relevance and
transferability to TxReg data.

Second, this study explores the application of uncertainty quantification,
which is especially important when using machine learning models to make
predictions in domains where prediction could save lives.

Third, the literature is used to take a closer look at the visualization tech-
niques used to communicate results, predictions and associated uncertain-
ties. Are there dashboards or calculators that could be both useful and easily
understood by clinicians and even patients?

1. Evaluating Prognostic Models for TxReg Data:

a)

b)

Objective 1: Identify and evaluate prognostic models A, which are
capable of generating individualized predictions for new patients.
This involves evaluating their applicability by verifying the avail-
ability of essential information, including variables, data prepro-
cessing steps, model architecture, and hyperparameters. Models
that satisfy these criteria and have all required covariates avail-
able within the TxReg dataset will be categorized as Prognostic
Models A1.

Objective 2: Investigate the existence and functionality of prognos-
tic calculators (Prognostic Models B). In addition, examine how
predictions are reported and evaluates whether prognostic uncer-
tainties are appropriately addressed in these tools.

2. Applying and Benchmarking a Selected A1 Model on TxReg Data:

a)

b)

Objective 3: Select a prognostic model from the literature that
meets the A1 criteria and apply it to the TxReg dataset. Bench-
mark the performance of the model on the TxReg data by compar-
ing its predictive accuracy with the original article for the model
development.

Objective 4: Quantify the uncertainties associated with the predic-
tions made by the selected model A1 on TxReg data, optimally
using the methods identified in the literature.

Objective 5: Visualize the results and predictions motivated by
best practices identified in the literature, ensuring that the visual-
izations are user-friendly.

The results of this study help clarify how the existing literature presents
a comprehensive report on methodology and investigates the utility of
propagated models.

1.3

STRUCTURE OF THE THESIS

¢ Chapter 1: Introduction

This chapter provides the background and relevance of the study,
outlines its objectives, and presents the structures of the thesis.



Chapter 2: Theoretical Background

This chapter sets the foundational concepts and theories, it ex-
plores key topics including survival analysis principles, machine
learning in transplant medicine, and uncertainty quantification
methods.

Chapter 3: Research Design and Literature Review

This chapter outlines the methodological approach to conduct the
literature review, focusing on how existing studies report their
methodologies to address research questions. It describes the pro-
cess of identifying relevant articles and categorizing them into
groups (A, A1, and B) according to the objectives of the study.
In addition, it presents the findings of the literature review, in-
cluding the reporting of uncertainty quantification methods, vi-
sualizations, and approaches such as dashboards and calculators.
This chapter provides the groundwork for selecting a suitable A1
model for implementation to TxReg data.

Chapter 4: Implementation and Evaluation of Prognostic Model
A1 with TxReg data This chapter focuses on the practical imple-
mentation of the study, detailing the process of applying the se-
lected A1 model to TxReg data. It includes a description of the
data, variable matching, preprocessing, model training, evalua-
tion, uncertainties, and visualizations.

Chapter 5: Results This chapter presents the results. The findings
of the evaluation of the performance of the model, the outcomes
of uncertainty quantification and the visualization used. Compar-
isons are made between the original A1 model and trained on the
TxReg data, highlighting differences in predictive accuracy and
communication of the results

Chapter 6: Discussion An interpretation of the results in the con-
text of existing literature, discussing the limitations of the study

Chapter 7: Conclusions A summary of key findings, highlight-
ing contributions to existing research, and suggesting potential
directions for future studies.



THEORETICAL BACKGROUND

This chapter lays the foundational concepts and theories of this re-
search. It presents the mathematical foundation of survival analysis
and explores key topics including the principles of event-time data
analysis, more profound techniques using deep learning, and the rea-
son for the importance of considering uncertainty when making pre-
dictions and the theoretical principles of uncertainty and its quantifica-
tion.

2.1 INTRODUCTION TO SURVIVAL ANALYSIS

Survival analysis, often referred to as time-to-event analysis, is a set
of statistical methods used to model the time until a specific event
occurs [29]. This involves analyzing the prognostic factors influencing
the timing of this event, these events can vary widely across different
fields, this study focuses on the survival time of patients after kidney
transplantation.

In the context of this thesis, survival analysis is the foundational frame-
work for modeling and predicting outcomes in data from kidney trans-
plantation event time data. The primary objective is to predict the sur-
vival probabilities of patients with transplanted organs over time, pro-
viding important information for patient survival.

A unique aspect of survival analysis is its ability to handle censored
data, where the exact event time is not observed within the study pe-
riod. This occurs when the observation time ends before the event oc-
curs or the event is not recorded for other reasons such as patients
leaving the study, which leads to incomplete information about the
time to the event. Survival analysis enables, by incorporating these in-
complete observations, meaningful insights while avoiding the loss of
information rooted in the data [31].

The foundational concepts of survival analysis, such as survival func-
tion, risk rates, and censorship, will be discussed in detail in Sec-
tion 2.1.1 to establish a mathematical understanding for survival anal-
ysis and the subsequent chapters of the study:.

2.1.1  Censoring and the Fundamental of Survival Analysis

Time-to-event data form the foundation of survival analysis. It consists
of two key elements: the time until the event of interest, denoted as:



T* = time between start time and event time (2.1)

and an indicator variable, , which specifies whether the event was
observed (6 = 1) or censored (0 = 0) [24]. Censoring occurs when
the exact event time T* is not observed, it can take multiple forms,
including right censoring, left censoring, and interval censoring [29].
Since the data analyzed in this work exclusively involves cases of right-
censoring, where the event time T* is greater than the censoring time
C the terms censoring and right-censoring will be used synonymously.
For example, in clinical studies, censoring occurs when the observa-
tion period ends before the event is observed. In survival analysis, we
assume that censoring is non informative, which means that the cen-
soring time C is independent of the event time T*, conditional on the
covariates [24].

The endpoint in the survival data consists of the two components T
and §, where:

1 if T <C,
0 ifT*>C.

T =min(T*,C), =

where C is the censoring time and T* is the event time. Taking into
account the covariate vector X, observations can be represented as
triplets (X, T, ¢). To develop predictive models, classical statistical meth-
ods or machine learning approaches must be adapted to handle this
specific type of data.

2.1.2  Important Functions in Survival Analysis

A central concept in survival analysis is the survival function, which
describes the time-to-event distribution. The survival function S(t) is
mathematically defined as:

S(t) =P(T* > t) (2.2)

It represents the probability that the time until the event of interest T*
has not occurred by time t. The survival function is a non increasing
function, satisfying S(0) = 1, since all individuals are event-free at
the beginning, and lim; ,« S(f) = 0, as the event will occur for all
individuals at some infinite time point. The survival function is closely
related to the cumulative distribution function, which is also called the
failure function of T* through the complementarity relationship:



F(t) =P(T" <t) =1-5(t), (2.3)

where the failure function F(t) represents the probability that the event
has occurred in time ¢.

From this relationship we further derive the probability density func-
tion of failure times, f(t), describes the probability density of the event
occurring at t, which represents the likelihood per unit time that the
event occurs at exactly time t: The density function is defined as:

d d P(t<T* <t+At)

f) = gF0) = —55(0) = fim, At

. (2.4)

While the density function f(t) describes the rate of events in general,
it is often more practical to consider the rate of events for individuals
who have not yet experienced the event up to time t. This leads to the
concept of the hazard function k(t), which quantifies the instantaneous
risk of experiencing the event at a given time ¢, conditional on having
survived up to t [29]. It is mathematically defined as :.

Pt<T <t+At|[T">t)

M= A At -

Using the definition of conditional probability,

P(t < T* < t+ At)
P(T* > t) ’

Pt<T <t+At|T">t)=

The hazard function can be rewritten as:

L P<T <t+AN) () S
M) = i = PS8 st - S0 (2.5)

Since the term P(t < T* < t+ At) represents the probability that an
event occurs in the interval [t, f + At), which is approximated by f(f) -
At and the density function can be expressed as a negative derivative
of the survival function f(t) = —%. This highlights that the hazard
function is the ratio of the instantaneous probability density of events
to the probability of survival at time ¢, describing the dynamics of risk
over time [29].

Often it is useful to consider the total accumulated risk over a time
interval, since the hazard function describes the instantaneous risk of



an event occurring at time f the cumulative hazard function, H(t), ag-
gregates the hazard over time and is defined as:

H(t) = /Oth(u)du - /Ot —SS/((;‘)) du = —In(S(t)) (2.6)

By substituting and simplifying the cumulative Hazard function using
the properties of logarithms, the survival function can be expressed in
terms of the cumulative hazard function as:

S(t) = e HO (2.7)

This section established the mathematical foundation for survival anal-
ysis, which also includes the explanation of key functions h(t), H(t),
and their relationships with the survival function S(f) and with each
other. These concepts are important for understanding survival analy-
sis and concepts built upon this, such as the Kaplan-Meier estimator,
Cox proportional hazards model, as well as deep learning approaches,
which estimate survival probabilities differently.

2.1.3 Key Survival Models

Non-parametric and semi-parametric approaches are the two primary
types of traditional survival models that are examined in the sub-
sequent sections. This work does not specifically address parametric
models such as the Weibull regression [53] and non parametric meth-
ods such as the Nelson-Aalen estimator [39].

2.1.3.1 Non-parametric Methods: Kaplan-Meier Estimator

The Kaplan-Meier estimator, introduced by Kaplan and Meier [26], is
a non parametric method used to estimate the survival function S(t)
from observed survival times. It does not assume a specific distribution
for the event times, which makes it particularly suitable for data sets
with censored observations.

The survival function is estimated as:
. d;
SH=]J](1—=), (2.8)
<t n;

where t represents the time of the distinct events sorted, d; is the num-
ber of events at time t;, and #; is the number of individuals at risk just



prior to t;. At risk is a set of data points where wether an event or
censoring does not occur by a specific time point. The Kaplan-Meier
function provides a step function that represents the probability of sur-
vival over time, remaining constant between successive event times.

The Kaplan-Meier estimator is derived from the concept of the hazard
function equation 2.5). At discrete time points ¢;, the hazard function is
estimated using observed event data. Here, d; denotes the number of
events that occur at time ¢;, while 1; represents the number of individ-
uals at risk immediately before ¢;. Since the hazard function expresses
the instantaneous failure rate, it is defined as the ratio [26]:

h(t;) =-L (2.9)

provides a natural empirical estimate of the hazard, capturing the pro-
portion of failures relative to those still at risk at ¢;. This formulation
follows directly from the definition of /(t), where we replace the theo-
retical probability terms with their empirical counterparts in the data
set.

The Kaplan-Meier estimator provides the possibility to evaluate the un-
certainty of estimates with the estimated survival function’s variance
to calculate the confidence intervals, which reveal the range of the sur-
vival probability. The variance can be estimated using the Greenwood
formula [26]:

ar S = A 2 L 2.10
Var(5(t)) = (5(1)) tqunj(nj_dj)- (2.10)

There are no assumptions regarding the distribution of survival times
when using the nonparametric Kaplan-Meier method. The Kaplan-Meier
estimator’s use for individual-level predictions is limited because it is
unable to account for covariates, despite its great use for population-
level analysis. Semi-parametric models, such as the Cox proportional
hazards model, address this limitation. [11]

2.1.3.2 Semi-parametric Models: Cox Proportional Hazards Model
Developed by Cox [11], the Cox proportional hazards model (CoxPH)

is a popular semi parametric technique that models the hazard func-
tion h(t) as follows:

h(t | x) = ho(t) exp(B'x), (2.11)



where h(t) is the baseline hazard, which describes the underlying risk
of the event occurring at time t while representing the hazard function
for an individual in the absence of covariate effects, which means with
all covariates set to zero. The covariate are represented by the vector x
and B represents the regression coefficients. The proportional hazards
assumption states that the hazard functions for two individuals differ
only by a constant proportional factor, independent of time [11]:

b

h(t]x) _ .
TaBe exp (B' (x —%)).

This property allows the effects of covariates on event times to be es-
timated without making assumptions about the baseline hazard ho(t).
The estimated regression coefficients B are interpretable through the
hazard ratio, which quantifies the multiplicative change in hazard due
to a change of one unit in a covariate.

Although the Cox model is highly flexible, it assumes proportional
hazards over time and does not estimate h(t) directly. Methods such
as the Breslow estimator [8] can approximate hg(t).

2.1.3.3 Parameter Estimation: The Partial Likelihood in the Cox Model

The Cox model estimates the parameter vector  using a partial likeli-
hood approach, without explicitly estimating the baseline hazard func-
tion ho(t) first introduced by Cox [11] and later further elaborated by
Klein and Moeschberger [29] and Moeschberger. At each event time
t;, the risk set R(t;) consists of all individuals still under observation
just before t;. When an individual i experiences an event in ¢;, their
contribution to the partial likelihood represents the relative likelihood
that this specific individual, rather than any other in the risk set, expe-
riences the event in t;. Mathematically, the partial likelihood function
is given by:

exp(B' X;)
i€Events ZjGR(ti) eXp(‘BTX]-) ‘

Lpar’rial (,B) = (2.12)

Here, ﬁTXi represents the linear predictor for individual i, while the
denominator accounts for the summed contribution of all individuals
in the risk sett;. This fraction expresses the conditional probability that
the individual i experiences the event at t;, given that an event occurs
within the risk set R(#;) [31]. The partial likelihood simplifies the com-
putation by canceling (), which is common across all individuals in
R(t;). This simplifies the estimation.

Taking the logarithm for numerical optimization:

10



(g = ¥ (BTX-In( ¥ exp(pTX))):

i€Events JER(H)

Numerical methods are used to maximize ¢(B), resulting in estimates
of B. The partial likelihood effectively incorporates censored observa-
tions by considering the risk set R(#;) at each event time #;, the model
ensures that the censored data contribute meaningfully to the estima-
tion process.

2.1.3.4 Advantages and Limitations of the Cox Model

Interpretability is a strength of the Cox model. By estimating hazard
ratios exp(B;), the model allows a straightforward calculation of the
effects of each covariate on the hazard [11]. The Cox model is easy to
interpret and useful for its applications, since these hazard ratios ex-
plain how the event'’s risk varies directly with the change in the covari-
ates. The Cox model, does not need to explicitly specify the baseline
hazard, which makes it applicable even though the underlying hazard
is unknown or difficult to estimate directly. [11].

However, the Cox model is not without limitations. The proportional
hazards assumption is a key assumption underlying the model, which
requires that the ratio of hazards between individuals remains con-
stant over time. This can limit the applicability of the Cox model in
real world application, particularly in cases where hazard ratios vary
over time or the underlying relationships are non-linear [19, 29].

2.2 DEEP SURVIVAL ANALYSIS: DEEPHIT

Although traditional survival analysis methods, such as the Kaplan-
Meier estimator and the Cox proportional hazards model, rely on cer-
tain statistical assumptions, machine learning approaches have emerged
as more flexible alternatives. Models such as Random Survival Forests

[23] and deep learning frameworks, including DeepSurv [27] and Deep-
Hit [32], are capable of capturing complex non linear interactions.

DeepHit is a deep learning-based model, which further extends the
capabilities of survival analysis by directly estimating survival proba-
bilities over discrete time intervals extending neural networks to model
complex, non linear relationships in survival data[54].

11



2.2.1  DeepHit: A Deep Learning Approach for Survival Analysis

DeepHit, developed by Lee et al. [32], is a deep learning model for
survival analysis that estimates the probability mass function (PMF)
of event times, conditioned on covariates, denoted as P(T = t | X).
Unlike traditional models such as Cox Proportional Hazards, which
assume proportional hazards, or Kaplan-Meier, which does not use
covariates, DeepHit directly predicts event probabilities over discrete
time intervals without restrictive assumptions about the underlying
hazard function. DeepHit discretize the time horizon into intervals
{1,...,K}, where K is the total number of time intervals. [32] This
work focuses on the single risk setting, where only one type of event is
considered.

2.2.2  Model Architecture of DeepHit

The DeepHit architecture consists of three main components: an input
layer, a shared feature extraction network, and an output layer that
produces time-specific event probabilities. The input layer processes
covariates X and feeds them into a fully connected deep neural net-
work. This shared sub network, denoted as f;(X), captures complex
and nonlinear dependencies across all time points using multiple hid-
den layers, ReLU activation functions, and dropout regularization [32].
The output of the Softmax activation function is a vector of size K,
where each element represents the probability that an event will occur
at a specific time k. For single risk settings, the probabilities that the
event occurs at time point t for covariates X are calculated as:

P(T=k|X) = ;Xp(fk(X;G)) , (2.13)

Liv—1exp(fr(X;6))
where f(X;0) is the output of the neural network for time k, parame-
terized by the weights of the network 0. Softmax normalization ensures
that the output probabilities form a valid distribution Yk ; P(T = k |
X) =1

Although DeepHit directly estimates the probability distribution of
event times, it does not explicitly model the hazard rate h(k | X) or
the cumulative hazard function H(k | X).

To approximate the hazard rates proposed by DeepHit Lee et al. [32],
first derive the survival function S(k | X), which is calculated as the
cumulative sum of the probabilities of the predicted event for all future
time points kK > k:

12



K
Skk|X)= Y P(T=K]|X). (2.14)
K=k+1

and then compute:

(T=k|X)

k1Y) = S 1%

(2.15)

However, this estimation can be numerically unstable, especially for
small event probabilities P(T = k | X). Unlike CoxPH, where hazard
ratios provide an interpretable measure of relative risk, DeepHit pro-
duces the absolute probability of events [32].

2.2.3 Loss Function of DeepHit

To effectively train DeepHit, an appropriate loss function is required.
The model optimizes a combination of two key loss components: the
log-likelihood loss, which maximizes the probability of observed events,
and the ranking loss, which ensures the correct temporal ordering of
survival probabilities.

2.2.3.1 Log-Likelihood Loss

The concept of partial likelihood was first introduced by Cox [11] and is
fully explained by Lawless [31] in the context of semiparametric hazard
models. Lawless [31] justifies the partial likelihood approach by decom-
position of the full likelihood into baseline and regression components,
highlighting that the baseline hazard cancels out. Specifically, he em-
phasizes that the partial likelihood represents the probability that the
observed event belongs to a specific individual within the risk set R(#;).

Lawless [31] further demonstrates how the full likelihood for survival
models is decomposed into components for censored and observed
events. For an uncensored observation i (6; = 1), DeepHit maximizes
the probability of the event occurring at time T; = k:

A Xi;G
ﬁObS,i = log P(Tl =k | Xl) = log EKEXIZE(J;I{((fk (}())9)) . (2.16)
k=1 T\ iy

For censored data (J; = 0), we do not observe the exact time of the
event. Instead, we only know that the event occurred after the cen-

13



soring time k the loss encourages the survival probability beyond the
censoring time:

K
Leensi = log S(k; | Xi) = log Z P(T=K|X). (2.17)
k,:KiJrl

To simultaneously handle both uncensored (6; = 1) and censored (J; =
0) data, the total log-likelihood loss is defined as:

n
Likelihood = Y, [0ilog P(ki | X;) + (1 —6;) log S(k; | Xi)] . (2.18)
i1

For uncensored cases, the model maximizes the likelihood of the ob-
served event time k;. For censored cases, it maximizes the probability
that the event has not yet occurred by time k;, i.e., S(k; | X;).

Log-likelihood loss maximizes the probability of observed events and
appropriately handles incomplete observations while modeling sur-
vival probabilities directly [32].

2.2.3.2 Ranking Loss

To maintain the correct temporal ordering, DeepHit penalizes viola-
tions where an individual experiencing an earlier event (k; < k;) has
a higher predicted cumulative incidence function value compared to
another individual experiencing a later event, as proposed by Lee et al.
[32]. The ranking loss is inspired by the idea of Harrell’s concordance
index (2.3.1) and is defined as:

'Cranking = Z (193 Z Ak,i,j exp -

K £ (1obs | y (1)) _ £ (jobs ()
(_a(kl | x) — Bk | x >>'(2'19)
k=1 iZf

where:

o Agij=1if ks < k;?bs, and Ay;; = 0 otherwise, marking accept-
able event pairs for event k.

o F(k° | x) is the predicted cumulative incidence function for
event k at the observed event time k.

* «j is the weighting factor for event k.
* 0 is a scaling parameter.

* exp (—’%y) is a convex loss function that penalizes incorrect or-
derings.
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Incorporating this ranking loss into the total loss function encourages
the model to predict a correct temporal ordering of pairs. This ensures
that individuals with shorter observed survival times are assigned
higher predicted risk with lower CIF values compared to those with
longer observed survival times.

2.2.3.3 Combined Loss Function

The final loss function in DeepHit combines the log-likelihood loss and
the ranking loss, balancing them using a hyperparameter A [32]:

ﬁDeepHit = _/:'likelihood + Aﬁranking'

where Ljjelihood Mmaximizes the likelihood of observed event times and
survival probabilities for censored data and Ly anking €nsures the proper
pairwise ordering of survival probabilities between individuals based
on their observed event times. The hyperparameter A controls the rela-
tive importance of the ranking loss. A higher A emphasizes the consis-
tency of the pairwise ranking, while a lower A prioritizes the probabil-
ity of observed events and survival probabilities [32].

This combined loss formulation enables DeepHit to model survival
data effectively while maintaining both individual-level likelihood and
population-level ordering consistency.

2.2.3.4 Advantages and Limitations of the DeepHit Model

DeepHit provides a highly flexible framework for survival analysis
by directly estimating event-time probabilities, rather than relying on
hazard ratios or restrictive parametric assumptions [32]. This allows
DeepHit to capture complex, time-dependent relationships between
covariates and survival probabilities, without assuming proportional
hazards, which is a key limitation of traditional models like the Cox
model. Unlike the Cox model, which assumes a fixed relationship be-
tween covariates and survival risk over time, DeepHit models survival
probabilities across discrete time intervals.

Another key advantage of DeepHit is its ability to incorporate censored
and uncensored data. By optimizing a log-likelihood loss for observed
events and a ranking loss for survival probability ordering, DeepHit
ensures that predictions remain temporally consistent and reliable [32].

However, this flexibility comes at a cost: unlike CoxPH, DeepHit does
not produce interpretable hazard ratios, making direct comparisons be-
tween risk factors more difficult. Additionally, since DeepHit discretize
time, its predictions depend on the chosen time resolution, which may
introduce biases depending on the discretization.
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2.3 EVALUATION METRICS

The evaluation of survival analysis models is a critical step in evalu-
ating their predictive performance and reliability. Various metrics and
techniques are used to validate models and their output, while special
methods are required for survival analysis to address the challenges
inherent in time-to-event data, such as censoring and time-dependent
results [19, 21, 50]. For example, these evaluation methods provide in-
sight into the model’s ability to discriminate between survival times
and predict risks, while handling censored observations effectively.

2.3.1  Concordance Index (C-Index)

The Concordance Index (C-Index), introduced by Harrell et al. [20], is
a widely used metric in survival analysis to assess the discriminative
ability of the model. Measures the model’s ability to correctly rank pre-
dicted risk scores or survival probabilities relative to the actual event
times.

The C-Index is formally defined as:
C=P@H >0 |T7 <T/),

where 7; and 7j; are the predicted risk scores for individuals i and j,
and T}, Tj* are their true event times.

To compute the C-Index empirically, we compare all possible pairs of
individuals. The model predictions are considered concordant if the
predicted risk scores correctly reflect the order of their event times:

i >#; < S(t) <S(tj), Vt>0,

Higher risk scores correspond to lower survival probabilities.

The C-Index, as defined by Harrell, is calculated as:

o N N 10 > 91 < t)é
Harrell — Z?:l 2?21 i ( t < t]> 51’ ’

(2.20)

To account for censoring, Harrell’s C index excludes pairs where the
order of the events cannot be determined:

* If neither individual is censored, the pair is concordant if 7; > 7;
and t; < t]'.

e If both individuals are censored, the pair is excluded.



¢ If one individual is censored at t; and the other experiences an
event at ¢;:

— The pair is excluded if t; < t;.

— The pair is concordant if ¢; > t; and #j; > 7;, and discordant
otherwise.

Only concordant and discordant pairs are considered in the calcula-
tion:

B |concordant pairs|
~ |concordant pairs| + |discordant pairs|’

Although Harrell’s C-Index is widely used, it introduces bias by sys-
tematically excluding censored pairs [50]. This exclusion affects the
metric, as censored pairs may not be randomly distributed across the
data set [19, 50]. In datasets with heavy censoring, the C-Index may
overestimate or underestimate the model’s discriminative ability.

To address these limitations, different modified versions, such as An-
tolini’s C index, have been developed. These approaches adjust for cen-
soring and incorporate time-dependent predictive accuracy, which is
particularly relevant for DeepHit as the model explicitly estimates sur-
vival probabilities at different time intervals.

2.3.2  Antolini’s Time-Dependent C-Index

Antolini’s C index extends the standard Concordance Index by incorpo-
rating a time-dependent predictive accuracy [2]. It evaluates a model’s
ability to correctly rank survival probabilities at specific time points,
focusing on the temporal ordering of events. The C-Index is defined
as:

o Yo [Ty < T)&I(5(Ti) > 54(T;))
Antolini — Zi,j I (Ti < T] ) 51’ ’

(2.21)

where S$;(T;) and gj(ﬂ) denote the predicted survival probabilities at
time T;, where $;(T;) corresponds to the individual experiencing the
event and $ j(T;) represents the survival probability of the paired indi-
vidual at the same time.

Antolini’s C index evaluates pairs of individuals (7, j) where:
* T; < T; (individual i experiences the event first),
e §; =1 (the event for i is observed),

e 5i(T;) > Si(T;), meaning individual i has a higher predicted risk
than j, consistent with the earlier observed event.
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The numerator counts the number of concordant pairs, where the model
correctly assigns a lower survival probability to the individual who ex-
periences the event first (i), ensuring consistency with the order of the

observed event. The denominator represents the total number of per-
missible pairs, where i has an observed event before ;.

Antolini’s C index accounts for censored data by excluding pairs where
the event for i is not observed (J; = 0). This exclusion prevents ambigu-
ous comparisons where the true event time of i is unknown, ensuring
a robust evaluation of time-dependent discriminative performance [2].

Algorithm 1 Computation of Antolini’s Time-Dependent C-Index

Require: Predicted survival probabilities $;(T;), event times T;, event indica-
tors ¢; for n individuals
Ensure: Antolini’s C-Index Caniolini
1: Initialize concordant pairs count C < 0
2: Initialize comparable pairs count P <— 0
3: fori=1ton do
4 forj=i+1tondo

5: if T; < Tj and 6; = 1 then > Check if i has an observed event
before j

6: P+~ P+1 > Increment comparable pairs count

7 Find time index t; in predicted survival times:

tj < arg mtin |T; — times|t]|

8: Retrieve survival probabilities at T;:

9 if 5;(T;) > S;(T;) then > Check if model correctly ranks
survival probabilities
10: C+C+1 > Increment concordant pairs count
11: end if
12: end if
13: end for
14: end for

_cC
return Cangolini = P

2.3.3 Brier Score

Although the Concordance Index measures the ability of a model to
discriminate between individuals at risk, it does not evaluate the ac-
curacy of predicted survival probabilities [50]. A model can achieve a
high C-Index by correctly ranking risks while still producing poorly
predicted survival probabilities. The Brier score addresses this limita-



tion by directly measuring the accuracy of survival probability predic-
tions at a given time t. It is defined as:

1
N :

1

N
BS(t) = (S:(t) = I(T; > 1))?, (2.22)
=1

The Brier score can take values between o and 1, where smaller values
indicate better predictive performance. A score of 0.25 corresponds to
predictions that are as good as random guessing, where all individuals
are assigned a survival probability of 0.5 at time . For a good model,
the Brier Score should fall below this threshold.

However, in survival analysis, censoring introduces a challenge, as sur-
vival status I(T; > t) can be unknown to censored individuals. To
account for censoring, Graf et al. introduced an inverse probability of
censoring weighting (IPCW) approach [18]. This method weights each
observation based on the probability of remaining uncensored, ensur-
ing that censored individuals contribute meaningfully to the estima-
tion. The IPCW-adjusted Brier score is defined as

wi(t) - (I(T; > £) = $(1))*. (2.23)

=

1
BSipew (t) =
N =
where w;(t) represents the inverse probability of remaining uncen-
sored, typically estimated using the Kaplan-Meier estimator of the cen-
soring distribution G(t).

2.3.4 Integrated Brier Score

To evaluate the overall accuracy of the prediction throughout the ob-
servation period, the Integrated Brier Score (IBS) is used. The IBS is
defined as the integral of the Brier score over time:

BS = ! / " BS(t) dt,

max J0
where fpax is the maximum observed follow-up time in the data set.
The IBS provides a single summary measure of the model’s predictive
accuracy over the full time horizon. The IBS is particularly useful for
assessing model performance throughout the follow-up period, as it
accounts for both calibration and discrimination.
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2.4 MACHINE LEARNING IN TRANSPLANT MEDICINE

Machine learning has the potential to transform the field of transplant
medicine by providing advanced tools for predictive analytics for de-
cision support. With the ability to process high-dimensional data and
model complex relationships, ML enables new ways to predict critical
outcomes such as graft failure, patient mortality, and post-transplant
complications [18, 30]. Techniques such as Random Forests, Support
Vector Machines and neural networks have been applied to identify
patterns in large transplant datasets, outperforming traditional statisti-
cal methods in both accuracy and robustness. [23, 27, 32]

The main advantage of ML is the ability to process and capture non
linear relationships between clinical, demographic, and other variables
that impact transplant outcomes [52]. Models like Random Forests not
only predict outcomes, but also provide insight into the relative im-
portance of features [23]. Neural networks, including deep learning ar-
chitectures, can further leverage large unstructured data sets to obtain
meaningful information [27, 32]. These tools can significantly improve
transplant decision making processes, allowing for the early identifica-
tion of high-risk patients and advancing the organ matching process
[30].

Despite these advances, integrating ML into clinical workflows in trans-
plant medicine is not without challenges. First, the interpretability of
ML models remains a key concern. Many algorithms, especially deep
neural networks, function as "black boxes," making it difficult to under-
stand the reasoning behind predictions [44] This lack of interpretability
can weaken trust and clinical adoption, particularly in important deci-
sions such as organ transplantation [5]. Second, censoring in survival
analysis is an additional difficulty. Survival data sets often contain cen-
sored observations, which can bias predictions if not handled appro-
priately [10].

Another critical challenge is the communication of uncertainty in criti-
cal real-world setting ML predictions [42]. In clinical practice, decisions
based on predictive models must account for inherent uncertainties.
As Kompa, Snoek, and Beam [30] state: "four of the most widely cited
medical ML models published since 2016 do not have a mechanism for
abstention when uncertain" [30]. The authors argue that the integra-
tion of uncertainty quantification techniques to confront the user with
uncertainties in predictions fosters the natural human reflex of seeking
a second opinion from colleagues when confronted with an unusual
clinical case [30]. It is essential to guide clinicians in determining when
model output can be trusted or when additional human expertise is
needed. Furthermore, Kompa, Snoek, and Beam [30] state: "Medical
ML models will be increasingly integrated into clinical practice, and
incorporation of predictive uncertainty estimates should become a re-
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quired part of this integration. With the ability to say: I don’t know,
based on predictive uncertainty estimates, that models will be able to
alert physicians for a second opinion" [30].

2.5 UNCERTAINTY QUANTIFICATION IN PROGNOSTIC MODELS

One of the main focus of machine learning is the extraction of models
from data for the purpose of prediction. The learning task is to build a
model that generalizes beyond the data with which it was trained. Ma-
chine learning models are approximations of the real-world data dis-
tribution, which means that their predictions are inherently uncertain.
Gal summarizes this in his work: “In analyzing data or making deci-
sions, it is often necessary to be able to tell whether a model is certain
about its output, being able to ask “maybe I need to use more diverse
data? or change the model? or perhaps be careful when making a deci-
sion?” [16]. Uncertainty quantification (UQ) is a critical component of
machine learning, enabling robust predictions and informed decision-
making. At its core, UQ addresses the variability in model predictions
due to inherent data noise and model limitations. From the steps of the
raw information to the prediction, Gawlikowski identify five factors
contributing to uncertainty in their work:

a) Variability in Real-World Situations: This refers to the inher-
ent complexity and variability in the environment from which
the data are obtained [17]. In survival analysis, factors such as
patient populations are heterogeneous and disease progression
varies due to unknown factors. [22].

b) Error and Noise in Measurement Systems: Measurement sys-
tems may introduce noise or errors, such as imprecise sensor
readings. These uncertainties are intrinsic to the data collection
process and cannot be reduced by additional training [17]. Medi-
cal data often suffer from missing values and imprecise diagnos-
tic tests, which introduces uncertainty in the data [29].

c) Errors in the Model Structure: The architecture and design of the
models and the parameters used for training can lead to errors.
Poorly chosen model structures might fail to capture essential fea-
tures of the data, contributing to uncertainty [17]. Some survival
models, such as the Cox model, have assumptions about the data.
If these assumptions are violated, the model can produce biased
estimates, introducing the uncertainty of the model [32].

d) Errors in the Training Procedure: Training-induced uncertainties
arise from factors like initialization randomness, small sample

sizes, or insufficient coverage of the training data, high-dimensional

covariates, and poor hyperparameter choices. This can lead to
models with instability in survival predictions and poor general-
ization to unseen data [17].
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e) Errors Caused by Unknown Data: When survival models are
applied to new data that are significantly different from their
training data (out-of-distribution samples), they might struggle
to provide reliable predictions [17].

Although these five factors contribute to uncertainty, they can be cate-
gorized into two main types: aleatoric and epistemic uncertainty [37].

2.5.1  Aleatoric and Epistemic Uncertainty

Aleatoric uncertainty represents random variability in observations that
cannot be eliminated, even with infinite training data. This type of un-
certainty is often modeled by incorporating a noise term € [28]:

y=f(X)+e, €e~N(0,0%(x)), (2.24)

where 0 (x) represents the input-dependent noise variance. This uncer-
tainty captures variability in the observations themselves and remains
even if the true function f(x) is perfectly known.

Although aleatoric uncertainty is important in modeling data noise,
this study focuses on epistemic uncertainty, as it captures model un-
certainty and plays a crucial role in decision-making.

2.5.1.1 Epistemic Uncertainty

Epistemic uncertainty arises from limited knowledge about the model
or its parameters and is often referred to as model uncertainty. Un-
like aleatoric uncertainty, epistemic uncertainty is reducible as more
data become available. This type of uncertainty quantifies how much
individual predictions deviate between different possible model con-
figurations [16].

Let fo(X) be the predictions of the model, where 6 represents the
learned parameters. The variance in predictions across different mod-
els defines epistemic uncertainty.

a

Var[fo(X)] = Eg-p(ajp) [(fo(X) — E[fo(X)])?]. (2.25)

where the expectation is over the posterior distribution of the model
parameters p(0|D), which captures the uncertainty in the estimated
parameters.
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2.5.1.2 Bayesian Inference for Epistemic Uncertainty

A fundamental approach to addressing model uncertainty is Bayesian
inference, which provides a probabilistic framework to learn from data
by treating model parameters as random variables with an associated
probability distribution. Unlike frequentest approaches, which assume
that the parameters have fixed but unknown values, Bayesian inference
represents these parameters using probability distributions that encode
the uncertainty about their true values [7].

Let f(x,6) be a neural network with parameters 6. Bayesian inference
seeks to estimate the posterior distribution over model parameters:

p(D10)p(6)
0|D) = —=——, (2.26)
ploi) = P
where D = {(x;,y;) }Y 1 is the training dataset. The predictive distribu-
tion for a new input x* is obtained by marginalizing over 6 [7]:

p(y*[x*, D) = /P(y*!x*IG)P(GID)dG- (2.27)

However, for deep neural networks, computing this posterior p(6 |
D)is analytically intractable. Therefore, approximate methods are nec-
essary. One such approach is Monte Carlo Dropout, which leverages
stochastic forward passes during inference to approximate the poste-
rior distribution [16].

2.5.2  Monte Carlo Dropout

According to Gal and Ghahramani [16], MC Dropout can be inter-
preted as a variational approximation to Bayesian inference. Gal showed
that applying dropout during inference approximates the posterior

over neural network weights, making it a practical and scalable method

for estimating model uncertainty without explicitly computing the full

posterior distribution.

Using the Monte Carlo approximation, the predictive distribution be-
comes an average over multiple stochastic forward passes with differ-
ent model configurations obtained through dropout:

T
p° 12, D) & 2 Y py | F,6)),

t=1
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where 6; represents different sampled model parameters from dropout
masks during T stochastic forward passes.

When the model outputs direct predictions such as regression values
or class probabilities, the predictive distribution simplifies. Instead of
integrating over probabilities, we average the outputs from multiple
stochastic forward passes [16]:

e
1=

Ely*] = f(x7,61),

t

1

Epistemic uncertainty arises from variability across different parameter
samples. Since each forward pass corresponds to a sample from the
approximate posterior, the predictive variance measures how spread
out the predictions are across these sampled models [16]:

The predictive variance can be estimated as:

1 & 1 I 2
Vy*] = T Y f(x",6) - (T ;f(ﬁ@)) -

t=1

The variance V[y*] reflects epistemic uncertainty, which can be re-
duced by collecting more data. Unlike aleatoric uncertainty, which
arises from data noise, epistemic uncertainty stems from limited knowl-
edge of model parameters [16].

2.6 BOOTSTRAPPING FOR UNCERTAINTY QUANTIFICATION

Bootstrapping is a nonparametric resampling technique introduced by
Efron [12] and is a fundamental method for quantification of uncer-
tainty in machine learning models. It enables the estimation of the dis-
tribution of a parameter or model prediction by repeatedly drawing
samples that are replaced with the observed data. The key advantage
of bootstrapping is its ability to derive confidence intervals and stan-
dard errors without requiring strong assumptions about the underly-
ing data distribution [13].

2.6.1 Theoretical Foundation of the Bootstrap

Bootstrapping is a resampling method that is used to estimate the un-
certainty of a statistic, model prediction, or performance metric. In-
stead of deriving confidence intervals analytically, bootstrapping gen-
erates multiple datasets from the observed data and computes the vari-
ation in the estimated quantities.
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Given an observed dataset x = (x1,xp,...,x,), where each x; is an
individual observation, According to Efron [12] the bootstrapping pro-
ceeds as follows:

*

a) Resampling: Construct a bootstrap sample x* = (xj,x3,...,x;,)
by randomly drawing n values with replacement from x, preserv-
ing the sample size.

Since sampling is done with replacement, some observations may
appear multiple times, while others may not be selected.

b) Recomputing the Statistic: Apply an estimation function s(x) to
compute the desired statistic, such as the mean, median, survival
function, or a performance metric:

s(x*) =s(x],x3,...,%,).

c) Repeating the Process: Generate B bootstrap samples x7, x3,..., x5

and compute the corresponding bootstrap replications:

s(x7),s(x3),...,s(xp)-

d) Estimating Uncertainty: The bootstrap estimate of the standard
error of s(x) is given by:

1 & N2

SEboot(s) = 2 (S(x;;) - S*) ’
B-1/4
where the bootstrap mean is:

§F =

|~

B
> s(xp)-
b=1

As Efron demonstrated, this estimate closely approximates the
standard error obtained through classical statistical techniques
in many practical cases [12].

Efron [12] emphasize that bootstrap is particularly useful for estimat-
ing the variability of statistics such as median, hazard ratio, or con-
cordance index, especially when theoretical standard error formulas
are difficult to derive. However, they also highlight that bootstrap es-
timates can be biased when applied to highly skewed data or small
samples.

Recent research further distinguishes the role of bootstrapping in un-
certainty quantification. When bootstrapping is used to train multiple
models on different bootstrapped datasets, it captures epistemic un-
certainty, as the variability across models reflects uncertainty in the
learned function due to limited data. In contrast, when bootstrapping
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is applied within a fixed model to estimate confidence intervals or stan-
dard errors, it primarily quantifies aleatoric uncertainty, as it captures
the statistical variability inherent in the data [48]. This dual perspec-
tive highlights the flexibility of bootstrapping as a tool for robust un-
certainty quantification in machine learning.



RESEARCH DESIGN AND LITERATURE REVIEW

This chapter outlines the research questions and describes the method-
ological approach of the literature review, identifying type A models,
focusing on the feasibility assessment of the A1 models, their methods
of uncertainty quantification, and the investigation of Model B calcula-
tors, including dashboards and user interfaces. By evaluating the cur-
rent literature, this chapter establishes the foundation for addressing
the research questions and the objectives of the study.

3.1 RESEARCH QUESTIONS

This study is guided by objectives, as outlined in Section 1.2, the fol-
lowing research questions aim to explore the practical application of
a feasible A1 model and assess the results of prognostic models for
kidney transplantation reported in the literature when applied to data
from the German Transplant Registry:

* RQ1: To what extent can a selected prognostic model (Type A1)
accurately predict individual outcomes for new patients based on
all relevant covariates when applied to TxReg data? How does
the predictive accuracy of the selected model compare with its
performance on the original datasets used for its development?

* RQ2: How are predictions and uncertainties reported and com-
municated in a selected prognostic model (Type A1 or B), and
can the reporting and communication approaches of this model
be meaningfully abstracted and implemented for TxReg?

* RQ3: How can methods and concepts from the literature, partic-
ularly those related to uncertainty quantification and result vi-
sualization through dashboards or user interfaces, be effectively
adapted and applied to enhance communication and interpreta-
tion of the output of the selected model used on TxReg data?

Research questions arise from the core challenge of assessing whether
existing prognostic models can be applied practically to the TxReg reg-
istry and whether their predictive performance aligns with the expec-
tation of achieving similar results as the original source when trans-
ferred to these new registry data. Furthermore, the study investigates
whether uncertainty quantification methods from the literature can be
effectively implemented when applied to TxReg data. In addition, it
evaluates whether visualization methods, such as dashboards or user



interfaces, can efficiently communicate the results of the applied mod-
els and enhance the usability of the literature. The literature review
is motivated by these questions, while they address the study’s aim
of exploring the feasibility and utility of the reported approaches to
demonstrate their practical application to TxReg data.

3.2 METHODOLOGY: SYSTEMATIC REVIEW IN SURVIVAL ANALYSIS

This chapter outlines the systematic approach used to review 50 arti-
cles on machine learning for survival analysis with time-to-event data,
with a primary focus on kidney transplant medicine. To ensure a com-
prehensive and structured review, a detailed criteria table was con-
structed which can be found in the Appendix 6.1. This table represents
the defined criteria to extract the information from the articles, includ-
ing details about the variables, data preprocessing methods, informa-
tion about the model including the architecture and hyperparameters
and evaluation procedures, as well as aspects of uncertainty quantifi-
cation and visual representation of the predictions or the presence of
dashboards or user-interfaces.

The review process used a hybrid methodology that combined manual
review and the assistance of a large language model (LLM), specifically
the gpt-4-turbo model [41]. The methodology was divided into three
distinct steps, as outlined below.

3.2.1  Text Processing and Hybrid Review

The first step involved analyzing the pre-selected articles through pre-
processing with GROBID (GeneRation Of Bibliographic Data) [15] to
extract structured textual data from the PDFs and reducing the words
in the text. This processed text was then analyzed using the criteria
table to extract information according to the defined criteria, leveraging
a large language model combined with human-based research.

a) PDF Processing with GROBID: PDF’s were processed through
the GROBID API. The full text of each paper was extracted and
parsed to isolate the body text, removing irrelevant sections like
headers and footers.

b) LLM-Based Text Analysis: The preprocessed text was analyzed
using the gpt-4-turbo model. The model was configured and the
message 6.4 was set with detailed search criteria for data sources,
variables, preprocessing methods, models, uncertainty quantifi-
cation, and visualizations 6.1, additional instructions to ensure
consistency 6.2, and a JSON response format 6.3 for structured
responses.
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c) Hybrid Review Process: While the large language model gener-
ated responses for numerous criteria, all results were manually
cross-checked against the articles to ensure accuracy. The revised
review served as the basis for subsequent steps.

3.2.2  Aligning Variables with TxReg Data

A critical challenge in the review process was mapping the variables
used in the reviewed articles to those of the TxReg. Inconsistencies in
variable naming across articles and the TxReg database as well as data
context variability, leading to missing variables, such as the presence of
"race" in international studies but its absence in German datasets and
the divergent meanings and categories for similarly named variables,
contributed to a challenging process. The matching process involved
the following steps:

a) LLM-Assisted Matching: A list of TxReg variables was provided
to the LLM to streamline the matching. The matching process
employed the following methodology:

* Each paper’s variables were compared against the TxReg
variables using gpt-4-turbo initialized with the message in
the Appendix 6.5.

¢ The function incorporated rules for direct matching and ad-
justed matches such as BMI calculations from weight and
height.

b) Hybrid Matching Process: While the LLM provided an initial
matching of the variables, the results need to be manually re-
viewed to minimize errors caused by semantic differences, knowl-
edge gaps and lack of context.

The following figure 3.1 illustrates the systematic review process used
in the study:. It outlines the sequence of tasks involved in processing the
pre-selected articles through a workflow that integrates tools such as
GROBID and LLM-based text analysis, followed by manual interven-
tions to ensure accuracy and consistency, ultimately resulting in the
final data set of reviewed articles.
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Figure 3.1: Systematic Literature Review process

3.3 FINDINGS FROM THE LITERATURE REVIEW

The systematic literature review initially assessed a total of 50 articles.
Among these articles, only three included a dashboard or a graphi-
cal user interface as part of their findings. In addition, 6 articles fea-
tured dashboard that could be used to visualize predictions for indi-
vidual patients. In particular, 17 papers mentioned uncertainty-related
keywords, indicating some level of consideration for uncertainty quan-
tification within their methodologies. Only 10 papers could be classi-
fied as potentially applicable for model reconstruction. Reproducible
articles mean that they were characterized by a detailed description
of their data, model architecture, hyperparameters, and preprocessing
methods. This level of detail is critical for ensuring reproducibility and
practical applicability.
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Figure 3.2 highlights the systematic filtering process, categorizing the
initial 50 articles based on uncertainty, calculators, dashboards and re-
producibility.

[ 50 Articles ]

N

[ Uncertainty { Calculator [ Dashboard { Reproducible

J

[ 17 Articles [ 3 Articles [ 6 Articles [ 10 Articles

J J

Figure 3.2: Filtering Process of the Literature Review

Based on this, Figure 3.3 provides a detailed visualization of the evalua-
tion results for various criteria in the reviewed articles. This stacked bar
chart highlights the distribution of reported criteria, providing insight
into how frequently specific aspects were addressed in the literature.

Categories such as variables, data cleaning, metrics, and detailed de-
scription of data or visual representation of results have a significantly
high proportion of the information provided. This indicates that these
aspects are frequently addressed in the reviewed articles. Several cate-
gories, such as imputation, scaling, data transformation, and variable
selection, which describe data preprocessing steps, show a more bal-
anced distribution of available details. This implies that the reporting
of these aspects is inconsistently addressed in the reviewed articles.
Categories such as detailed descriptions of model architecture and hy-
perparameter settings contain only limited information in the articles,
demonstrating that model architecture is rarely addressed in the litera-
ture. This lack of detail implies significant challenges for implementing
most of the models discussed in the reviewed articles. Categories such
as dashboard implementations and calculator links have very few re-
ported entries, suggesting that these elements are underrepresented in
the literature.
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3.3.1 Feasibility of Prognostic Models for TxReg

In this section, the findings of the literature review are presented re-
garding the feasibility of applying A1 models to the TxReg data set.
The analysis identifies models (referred to as Prognostic Models A) that
are capable of generating individualized predictions for new patients
based on all relevant covariates available in the TxReg data set. The re-
view evaluates whether the articles provide a clearly stated methodol-
ogy, including comprehensive details on the variables used, preprocess-
ing methods, model architecture, and hyperparameters. Furthermore,
the review examines which of these models have matching variables
with the TxReg dataset, allowing us to identify potential A1 models.

Furthermore, the findings highlight the existence and functionality of
prognostic calculators (Prognostic Models B), with an analysis of how
these tools report predictions and uncertainties. Particular attention is
paid to whether these models incorporate dashboards or user inter-
faces to communicate results effectively.

The process involves:

¢ Identifying Prognostic Models A: Reviewing existing models to
determine which are capable of producing personalized predic-
tions.

* Assessing Prognostic Calculators Models B: Investigating the
availability of prognostic calculators and evaluating how predic-
tions are reported and whether uncertainties are adequately ad-
dressed.
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¢ Feasibility Analysis of potential A1 models: Determining which
Prognostic Models A contain all the necessary covariates cap-
tured in the TxReg data and evaluating their applicability (prog-
nostic models A1).

IDENTIFYING PROGNOSTIC MODELS A  Analyzing objective 1 in
Section 1.2, the systematic literature review identified several prognos-
tic models classified as type A, which are capable of generating person-
alized predictions based on covariates. To assess their applicability, we
analyzed the methodological aspects reported in each study, focusing
on key factors such as preprocessing techniques, model architecture,
and hyperparameters. The table 3.1 presents an overview of type A
models. The following criteria were evaluated to determine whether a
model is reproducible and qualifies as Type A:

* Variables: Indicates whether all relevant covariates required for
individualized predictions are specified and adequately docu-
mented.

¢ Data Cleaning: Assesses whether data cleaning procedures were
applied and clearly reported in the study.

* Imputing: Evaluates whether missing data imputation methods
were applied and adequately described.

* Scaling: Determines whether data scaling or normalization tech-
niques were used and explicitly documented.

¢ Transformation: Indicates whether any transformations were ap-
plied to the data and reported properly.

¢ Train-Test Split: Verifies whether the data set was appropriately

split into training and test subsets for model evaluation and whether

this was clearly reported.

* Model Architecture: Evaluates whether the study provides a com-
prehensive description of the model’s structure

* Hyperparameter: Assesses whether all hyperparameters used in
the model are specified.

FEASIBILITY ANALYSIS MODELS A1 While various models were
identified in the literature, not all of them can be directly applied to
the TxReg dataset. The feasibility analysis assesses whether the iden-
tified Type A models meet the criteria for variable compatibility. Fur-
thermore, these articles were analyzed for their incorporation of uncer-
tainty quantification and the availability of dashboards or user inter-
faces.

Table 3.1 summarizes the reproducible models and the number of miss-
ing variables in each study.
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Paper ID | Reference Missing Variables | Reproducible | Uncertainty | Dashboard
34414609 | Ayers et al. [3] 22 Yes Yes No
32419922 | Senanayake et al. [47] not available Yes Yes No
34448704 | Naqvi et al. [38] 7 Yes Yes No
35700006 | Paquette et al. [43] 3 Yes Yes No
34822363 | Thongprayoon et al. [49] 3 Yes No No
30625130 | Mark et al. [35] 5 Yes Yes No
36938431 | Linse et al. [33] 55 Yes Yes No
31926745 | Ershoff et al. [14] 8o Yes Yes No
36388342 | Roller et al. [46] 5 Yes Yes Yes
33198650 | Kantidakis et al. [25] 6 Yes Yes No

Table 3.1: Potential A1 Models in the Literature Review

Table 3.1 demonstrates that the majority of the reviewed articles exhibit
a considerable number of missing variables. Notably, there is no single
article in which all variables align perfectly with the TxReg data.

However, four articles with the ID 34448704 by Naqvi et al. [38], 34822363
by Thongprayoon et al. [49], 30625130 by Mark et al. [35], and 35700006
by Paquette et al. [43] stand out as particularly noteworthy. Although
none of these articles achieve a perfect match with the registry, they
present significant potential for further investigation. These studies
could serve as a valuable foundation for adapting and applying their
methodologies to the TxReg.

The paper 34448704 provides a detailed description of the variables
used in the UNOS registry, including a table detailing the data types
and descriptions for transparency. In summary, the paper offers a ro-
bust methodology with a clear description of variables, preprocess-
ing, and hyperparameters, making it suitable for reproducibility and
application on similar datasets. Logistic Regression, Random Forest,
Support Vector Machines, Artificial Neural Networks, and AdaBoost
were evaluated for binary classification across temporal cohorts (o-1,
1-5, and 5-17 years). Feature importance and AUC score plots were
included, but uncertainty quantification was not discussed or applied.
Although the paper is generally well constructed, it lacks the use of
specialized metrics such as the C-index or Brier score and the authors
do not specify how censored patients were handled, suggesting that
censoring may have been ignored [38].

The paper 34822363 focuses specifically on black kidney transplant re-
cipients with data from the UNOS registry. Furthermore, there is no
focus on predictions or uncertainty quantification; instead the authors’
research focus is variable importance for black kidney recipients [49].

The paper 30625130 presents a strong methodology and comprehensi-
ble results. The data source is the UNOS registry, all variables are de-
tailed in the appendix, including type, description, and categories. The
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preprocessing steps are described. The most relevant model parame-
ters and hyperparameters are described, though some are excluded.
The model used is a combination of Random Survival Forests for co-
hort 1 (age under 50) and a Cox Proportional Hazard model for cohort
2 (age over 50). The metrics used include the C index and the Brier
score. Permutation importance plots and survival plots with compar-
isons to Kaplan-Meier estimates were provided. However, there is no
focus on uncertainty quantification or alternative visualizations of the
results [35].

The paper 35700006 investigates five models for predicting survival af-
ter kidney transplantation, namely Cox proportional hazards, random
survival forests, DeepSurv, DeepHit, and a Recurrent Neural Network.
Among these, DeepHit was identified as the best-performing model.
The probability of graft survival was predicted at fixed time points
ranging from o to 15 years post transplantation, with 3-month inter-
vals between each time point [43].

The study is distinguished by its well-documented methodology, par-
ticularly data sources, preprocessing, and feature selection. The data
set used in this study originates from the Scientific Registry of Trans-
plant Recipients, with the variables detailed in the Appendix of the
articles. Data preparation is described in detail, and feature selection
was based on a combination of expert knowledge, data completeness,
and findings from previously published studies. The model evaluation
was conducted using the concordance index, the Brier score, and cali-
bration metrics, including the Integrated Calibration Index score and
calibration plots. Furthermore, the paper is notable for the develop-
ment of a dashboard, designed to facilitate the practical application of
the model and enhance clinical decision-making through an interactive
user interface.

ASSESSING PROGNOSTIC CALCULATORS MODELS B Examining ob-
jective 2 1.2 in the literature review reveals that beyond standard prog-
nostic models, few studies have also introduced prognostic calculators
aimed at providing individualized risk predictions through formulas,
dashboards, or interfaces. These calculators vary in their accessibility;
some are available as online tools, others are not available. Table 3.2
presents an overview of the prognostic calculators identified in the re-
viewed literature with a link and a short description. The accessible
user interfaces or dashboards are provided in the Appendix 6.1 6.2 6.4
6.3.
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Paper ID

Reference Details Remarks

29543895

Andres et al. [1] http://webdocs.cs.ualberta.ca/~uhlich/Liver_2002/html/pssp_2002.html Online tool available

29483521

Medved et al. [36] | http://ihtsa.cs.lth.se Offline

28921876

Ayllon et al. [4] Formula-based Derived results based on mathematical formulas

Mentioned interface (DISPO) Interface discussed, but not included in the paper

35389371

Zafar et al. [55] https://lungscore. research.cchmc.org/96b53228- 7b6-4cb0- bbdf-59b733d7056 | Online calculator available

35700006

Paquette et al. [43] | On request, no answer Authors requested for tool but no response yet

33858815

Nitski et al. [40] Working on calculator Example Dashboard Plot

36388342

Roller et al. [46] No Online tool Example Dashboard Plot

Table 3.2: Prognostic Calculators in the Literature Review

The Patient-Specific Survival Prediction Tool for Liver Transplant Sur-
vival 29543895 [1] describes a tool that uses a machine learning al-
gorithm to generate individualized survival curves based on recipient
data. The model demonstrated excellent calibration, outperforming tra-
ditional Cox models, particularly in long-term predictions. The online
calculator provides survival predictions through a user-friendly inter-
face and is accessible.

The International Heart Transplantation Survival Algorithm calculator
in article 29483521 [36] describes deep learning based techniques to
predict survival after heart transplantation. This tool integrates recip-
ient and donor variables, using artificial neural networks for survival
estimates for one, five, and ten years. The web based calculator is no
longer available online and could not be evaluated as part of this re-
view.

Article 28921876 [4] provides a formula derived from an artificial neu-
ral network model. This model predicts 3-month and 1-year graft sur-
vival probabilities based on multiple variables with assigned weights.
Variables include pretransplant status, MELD score at transplantation,
days on waiting list, liver disease etiology, donor’s cause of death, and
cold ischemia time, among others. The formula offers personalized risk
predictions by combining these variables into logistic regression-based
probability functions.

The Lung Transplantation Advanced Prediction Tool in article 35389371
[55] presents a machine learning approach, specifically Cox-Lasso re-
gression, to predict survival outcomes for lung transplant recipients.
This web based calculator estimates 1-, 5-, and 10-year survival prob-
abilities and assigns risk scores based on recipient, donor, and trans-
plant factors. The interactive tool is designed for clinical use, provid-
ing survival times and risk classification to assist in recipient-donor
matching.

The prognostic calculator of paper 35700006 [43] is described as a pro-
totype tool to predict the survival of kidney transplants. It is based
on a recurrent neural network model trained on the data of the Scien-
tific Registry of Transplant recipients. The tool estimates graft survival
probabilities for 1 to 15 years post transplant and provides compara-
tive survival rates using different donor and recipient variables. The
authors mention that the code and model can be made available upon
request, but no response was received when requested for this review.
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Article 33858815 [40] is a liver transplant survival prediction tool that
applies deep learning algorithms to patient data. The tool is currently
in development, with the authors working on a web-based interface
for clinical use.

The Clinical Decision Support System for kidney transplantation de-
scribed in article 36388342 [46] is designed to detect patients at risk of
rejection and death-censored graft failure within go days. This system
is not a fully operational prognostic calculator yet, but rather a ma-
chine learning model integrated into a dashboard for clinical decision-
making.

3.3.2  Uncertainty Quantification Methods in Literature

The reviewed studies reveal various approaches to uncertainty quan-
tification, with differences in the methods used and their reporting as
summarized in 3.3. Primarily through confidence interval estimation.

Bootstrap confidence intervals were the most frequently employed method

across multiple studies, particularly for survival function estimates and
model validation. In several cases, bootstrapping was performed with-
out further methodological details or visual representation of the un-
certainty.

Another commonly used approach was the calculation of confidence
intervals for hazard ratios, which in some studies was based on the
standard error (SE) of regression parameters. However, not all papers
specified whether this approximation was used or provided further
details on the computation method.

Kaplan-Meier confidence intervals, cross-validation-based confidence
intervals were also reported in some studies, though their derivation
was not always described. Additionally, cross-validation techniques,
such as 5-fold or 10-fold cross-validation, were employed in several
studies to estimate variability in performance metrics like the concor-
dance index (C-Index) or AUROC but were not always explicitly linked
to uncertainty quantification in model predictions.

Overall, the analysis of the literature indicates that while confidence in-
terval estimation primarily via bootstrapping was widely used, explicit
discussions of uncertainty quantification in prognostic predictions re-
mained limited. The methodologies applied for uncertainty estimation
were often not the primary focus of the studies but were rather used as
standard statistical techniques for performance evaluation, often with-
out a specific focus on uncertainty quantification itself.
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Paper ID Uncertainty/CI Method Additional Features
MLinTrans34271025 | Bootstrap CI for survival function estimates (1-year mortality prediction) SHAP, Feature Importance (RF)
MLinTrans29543895 | Confidence Interval of Standard Error of regression parameters for Hazard Ratios None

MLinTrans29483521 | CI (No Method Specified) None

MLinTrans32221367 | 10-Fold-Cross Validation C-Index and AUROC Random Forest Feature Importance
MLinTrans36572246 | Bootstrap CI for survival function estimates Permutation Importance
MLinTrans33113221 | Standard Error of regression parameters for Hazard Ratios, Kaplan-Meier CI SHAP

MLinTrans34756569 | Bootstrap CI for AUROC None

MLinTrans35389371 | Kaplan Meier CI None

MLinTrans30738152 | Bootstrap Calibration None

MLinTrans32996170 | Confidence Interval (CI) for predictions (method not specified)(No Method Specified) | None

MLinTrans36315983 | Bootstrap CI (no plot provided) for survival function estimates SHAP

MLinTrans36938431 | Bootstrap CI (no plot provided) for survival function estimates None

MLinTrans32922997 | Confidence Interval (CI) (method not specified) None

MLinTrans32383068 | DeLong Method 95% CI (AUROC) None

MLinTrans33198650 | SE of regression parameters for Hazard Ratios None

MLinTrans29590219 | 5-fold Cross Validation for Auroc (Mean + SD) None

MLinTrans33858815

Bootstrap CI for survival function estimates using deep learning models

None

Table 3.3: Uncertainty and Feature Importance in the Literature Review

Furthermore, a feature importance analysis was incorporated, as it is a
highly relevant aspect that enhances the interpretability of the model
and provides valuable insights to users. Understanding which vari-
ables influence the model predictions helps to assess the reliability of
the results, with some articles explicitly integrating advanced feature
importance techniques such as SHAP values or other model-agnostic
methods.

3.3.3 Visualization of Model Predictions and Uncertainty

Most of the reviewed articles, as summarized in Table 3.3, primarily
rely on standalone visualizations to present their results, incorporat-
ing various types of visualizations, including survival curves, calibra-
tion plots, and performance metrics. However, the primary focus is
on the visualization of model predictions, particularly the representa-
tion of uncertainties in these predictions, as well as the identification
of suitable user-facing visualizations, online tools, or dashboards for
effectively communicating these uncertainties.

A subset of studies explicitly visualizes model predictions, primarily
through survival function plots with confidence intervals, often dis-
played as shaded regions or error bars. In contrast, other studies report
survival probabilities numerically without a corresponding graphical
representation. Calibration plots, which assess the alignment of pre-
dicted and observed survival probabilities, are also present in some
articles, but they rarely include uncertainty measures.

Feature importance plots, while useful for model interpretability, do
not directly contribute to the visualization of individual predictions.
Performance metrics such as the concordance index and the Brier score
are frequently reported in tables, but these typically lack confidence
intervals or any representation of predictive uncertainty.
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While visual representations of results are common, dedicated tools for
interactive exploration of individual predictions remain rare. Two stud-
ies (29543895 35389371; see Table 3.2) provide online tools for model
outputs, whereas two additional dashboards (33858815 36388342) were
identified, though without interactive features. In particular, none of
these dashboards integrates uncertainty quantification in their predic-
tion visualizations. Table 3.4 provides an overview of articles incorpo-
rating dashboards for presenting model predictions.

A closer examination of the reviewed literature reveals that only a mi-
nority of four articles are incorporating some sort of dashboard or user
interface for displaying predictions in their study. Although visualiza-
tions of results are frequently presented across the literature, explicit
development of user-facing dashboards remains uncommon. Among
the reviewed articles, only the work of Andres et al. [1] (29543895)
and Zafar et al. [55] (35389371) as shown in Table 3.2) present an on-
line tool designed for end-users. Nitski et al. [40] and Roller et al.
[46] study included dashboards that featured a design without inter-
active elements 3.2). In particular, none of the dashboards incorporate
uncertainty quantification in their prediction visualizations. Table 3.4
presents an overview of articles that incorporate some form of a dash-
board described in the literature.
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Paper ID

Dashboard Description

Visualizations and Plots Used

33858815

Dashboard 6.3 to predict 1-year
and 5-year survival outcomes for
transplant patients, integrating dy-
namic risk factors over time and
providing information for causes
like survival, cardiovascular events,
graft failure, cancer, and infection.

Pie charts visualize survival probabili-
ties and competing risks ( cardiovascu-
lar events, graft failure) at different time
points before death. However, the dash-
board does not explicitly quantify uncer-
tainty in predictions

36388342

Clinical Decision Support Dash-
board 6.4 displaying dynamic risk
scores over time using a traffic light
system (green, yellow, red zones)
and detailed feature explanations
for both individual and overall de-
cisions.

A line plot tracks risk scores over time,
overlaid with traffic light zones to indi-
cate high, medium, and low risk thresh-
olds. Additionally, the top 5 feature im-
portance values are displayed. However,
uncertainty in predictions is not explic-
itly visualized .

35389371

The Lung Transplantation Ad-
vanced Prediction Tool (LAPT) 6.2
allows users to input a wide range
of patient, donor, and transplant
variables to generate individual-
ized post-transplant survival prob-
ability predictions using a scoring
model

The tool predicts post-lung transplant
survival probabilities at 1, 5, and 10
years, calculates a risk score, classifies
recipients into Low, Medium, or High
risk, and provides the posterior probabil-
ity for each risk category. However, no
graphical survival curve visualization or
explicit uncertainty representation is in-
cluded.

29543895

The Liver Transplant Survival Pre-
diction Dashboard 6.1 allows users
to input patient-specific variables
(e.g., age, albumin levels, hospi-
talization status, diabetes) to gen-
erate individualized survival pre-
dictions. It also enables a com-
parison between personal survival
estimates and population-based
Kaplan-Meier survival curves.

Kaplan-Meier survival curves are used to
display patient-specific survival probabil-
ities for 1, 2, 3, 5, and 10 years, but no con-
fidence intervals (CI) or other uncertainty
measures are included. The model pre-
dictions are shown as deterministic sur-
vival curves without explicit uncertainty
quantification.

Table 3.4: Dashboards in the Literature Review
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RESULTS

This chapter presents the findings of the systematic review of the lit-
erature, model evaluation, uncertainty quantification, and the develop-
ment of an interactive dashboard.

4.1 RESULTS FROM THE SYSTEMATIC LITERATURE REVIEW

The systematic review of the literature initially examined 50 studies
on machine learning for survival analysis, focusing mainly on kidney
transplantation. These studies were evaluated with the criteria table 6.1
based on the process detailed in Chapter 3 Section 3.2 to identify re-
producible models, assess the availability of tools such as dashboards
or calculators, and determine how the literature addresses uncertainty
quantification. The Results are briefly described in section 3.3 and sum-
marized in the figure 3.2

Figure 3.3 provides a structured visualization of the frequency with
which different methodological aspects were reported. Specific cate-
gories, such as variable documentation, data cleaning, performance
metrics, and visual representation of results, were covered extensively
in most studies, indicating that these aspects were well documented by
researchers.

In contrast, several preprocessing steps were inconsistently reported,
including imputation, scaling, data transformation, and variable selec-
tion. Although these techniques were frequently applied, their docu-
mentation was often incomplete, limiting reproducibility and compa-
rability between studies.

A major gap was observed in the reporting model architecture and hy-
perparameter settings, which were rarely described completely in de-
tail. The lack of this information presents challenges for replicating or
adapting existing models, as key methodological components remain
unclear.

4.1.1  Feasibility of Prognostic Models for TxReg Implementation

A core objective of the review objective 1 described in Chapter Section
1.2) was to assess the feasibility of applying prognostic models (Type
A) to the TxReg data described in Chapter 3 Section 3.3.1. The litera-
ture review identified 10 articles with models that meet the criteria for
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type A models. However, their direct applicability to the TxReg dataset
is limited due to missing variables, measurement equivalence issues,
or categorization discrepancies. Many type A models exhibited miss-
ing variables, as summarized in Table 3.1. Among the reviewed Type
A models, four articles with minor missing variables could be consid-
ered potential Type A1 models, Paquette et al. [43] article 35700006 was
identified as relevant for further analysis and potential adaptation to
TxReg data. The study provided comprehensive methodological doc-
umentation detailing the variables used, preprocessing steps, feature
selection methodology, model architecture and hyperparameters mak-
ing it reproducible with the constraint that not all variables could be
matched.

4.1.2  Awailability of Prognostic Calculators and Dashboards

Objective 2 described in Section (1.2) focused on assessing the avail-
ability of prognostic calculators, which was addressed in the Chapter 3
section 3.3.1. As summarized in Table 3.2, only eight studies presented
some sort of calculator or dashboard for survival prediction. Andres
et al. [1] and Zafar et al. [55] featured fully accessible online tools,
enabling real-time survival predictions. Four studies included dash-
boards, but none incorporated uncertainty quantification. The identi-
fied calculators varied in accessibility, with some tools freely available
online, while others were not accessible.

4.1.3 Uncertainty Reporting in Reviewed Studies

In chapter 3 section 3.3.2 17 studies mentioned uncertainty quantifica-
tion as shown in table 3.3 were evaluated. The most commonly used
approach was bootstrap confidence intervals, reported in several stud-
ies. Other methods included: Kaplan-Meier confidence intervals, cross-
validation-based confidence intervals and feature importance-based meth-
ods such as SHAP values and permutation importance. The methodol-
ogy for computing confidence intervals in many study’s was not spec-
ified. Additionally, no study explicitly focused on uncertainty quan-
tification modeling techniques beyond calculating confidence intervals
without further reference and evaluation of uncertainties.

4.2 COMPARISON OF MODEL EVALUATION ON TXREG VS. ORIGI-
NAL STUDY

To address objective 3 (1.2), Chapter applied the in chapter 3 identified
A1 model to the TxReg dataset. The selected model, DeepHit, from Pa-
quette et al. [43] with article ID 35700006, was reconstructed following



the methodology of the original study, including data preprocessing,
model architecture and evaluation metrics.

The evaluation of DeepHit on TxReg data was compared with the orig-
inal performance reported by Paquette et al. [43]. Additionally, a Cox
proportional hazards model trained on the TxReg dataset was included
as a benchmark model. Table 4.1 summarizes the results of the perfor-

mance.
Evaluation Metric (Test Data) | 35700006 DeepHit | 35700006 CoxPH | TxReg DeepHit | TxReg Cox
Harrel’s C-Index 0.661 0.646 0.6433 0.6757
Antolini C-Index - - 0.6429 0.6813
Integrated Brier Score (IBS) 0.1528 0.1543 0.1811 0.1791

Table 4.1: Comparison of Evaluation Metrics: 35700006 vs. TxReg Results

The C-Index values reported in Table 4.1 were calculated using the
method of Harrell et al. [20], which evaluates discrimination among
1,311,976 comparable pairs in the test data set. Assesses whether the
model correctly ranks individuals by risk based on all event times.

The Antolini C-index, on the contrary, was calculated as a time-dependent
concordance index, evaluating 650,050 comparable pairs by assessing
ranking correctness at the exact failure time of each individual. Un-
like Harrell’s C-Index, which considers all event times, this approach
focuses on ranking performance only at observed event times.

The evaluation of model performance based on Harrell’s C-index, An-
tolini’s C-index, and the Integrated Brier Score (IBS) reveals differences
between the original DeepHit and CoxPH implementations from arti-
cle 35700006 and their application to the TxReg dataset.

The Harrell’s C-index for DeepHit on TxReg (0.6433) is slightly lower
than in the original study (0.661), suggesting a small reduction in dis-
criminative ability. Similarly, the CoxPH model in 35700006 (0.646) per-
formed slightly worse than DeepHit in the original data set but out-
performed DeepHit when applied to TxReg data. The TxReg CoxPH
model (0.6757) achieved the highest C-index, indicating better ranking
performance in this data set.

A similar trend is observed for the Antolini C-index, where DeepHit on
TxReg (0.6429) performed worse than the TxReg Cox model (0.6813),
reinforcing the observation that the Cox model demonstrates better
discrimination ability in this dataset.

Regarding calibration, the Integrated Brier Score (IBS) indicates that
DeepHit on TxReg (0.1811) had a higher error rate compared to its
original version (0.1528), reflecting a decline in predictive accuracy. The
CoxPH model in 35700006 (0.1543) performed similarly to the original
DeepHit model, while the TxReg Cox model (0.1791) had a slightly
lower IBS than DeepHit on TxReg but still performed worse than the
original CoxPH implementation.
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4.3 UNCERTAINTY QUANTIFICATION RESULTS

To address objective 4 (1.2), uncertainty quantification was implemented
using Monte Carlo dropout ?? and bootstrap resampling ??. The orig-
inal study did not incorporate uncertainty quantification, which pre-
vented a direct comparison with its results.

Monte Carlo dropout was performed using 1000 forward passes, result-
ing in very narrow confidence intervals, indicating minimal estimated
predictive uncertainty. Bootstrapping was applied with 100 resampled
datasets, producing wider confidence intervals, capturing a greater de-
gree of uncertainty in the model predictions. Figures 4.1 and 4.2 il-
lustrate the survival function of the DeepHit model whose implemen-
tation is described in section ?? with parameters specified in ??2. The
visualizations present survival estimates with uncertainty confidence
intervals for both methods, following the methodologies outlined in
this study.

Mean Survival Function

—— Mean Survival Curve
[ Monte Carlo Dropout

Time (Years)

Figure 4.1: Survival Function with Monte Carlo Dropout
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Figure 4.2: Survival Function with Bootstrapping

The results in Figures 4.1 and 4.2 demonstrate clear differences in the
uncertainty estimates obtained through Monte Carlo dropout and boot-

strapping.
4.3.1  Dashboard Visualization Outcomes

To address objective 5 (1.2), an interactive dashboard was developed to
provide a comprehensive visualization of individual patient outcomes.
The dashboard incorporates individualized survival curves, following
the approach proposed by Andres et al. [1] (article 29543895, see 6.1),
allowing for patient-specific survival probability estimations over time.
To account for predictive uncertainty, Monte Carlo dropout based con-
fidence intervals were integrated, as recommended by Kompa, Snoek,
and Beam [30], allowing a more robust interpretation of survival pre-
dictions. However, bootstrapping is not applicable in this case, as it
requires multiple resampled datasets from an existing data set, while
for a new patient, only a single observation is available, making resam-
pling infeasible. Furthermore, a visualization of the importance of the
characteristics was implemented based on the article’s in the literature
review Roller et al. [46], highlighting the most influential predictors
in survival estimation. To improve the interpretability of the model,
SHAP-based feature analysis proposed by Lundberg and Lee [34], was
integrated into the dashboard, allowing for an individualized assess-
ment of the factors contributing to survival predictions. Although per-
mutation importance is commonly used for feature relevance analysis,
it could not be applied in this case as it requires repeated permuta-
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tions of input features over multiple data points. Given that only a
single patient dataset is available for prediction, the necessary resam-
pling process for permutation importance was not feasible.

IDEN Patient Kidney Transplantation Dashbaord

Patient Survival-Curve SHAP Feature Importance
) Mean Monte Carlo Dropout DeepHit Survival Function vs. CoxPH Survival Function Top 10 Feature Importance
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Figure 4.3: Survival Dashboard



DISCUSSION AND CONCLUSION

5.1 DISCUSSION OF LITERATURE REVIEW
5.1.1 Review Methodology and Evaluation Framework

The hybrid approach detailed in 3.2.1 provided a efficient mechanism
for systematically reviewing a large number of articles while ensuring
accuracy. The use of a large language model significantly reduced the
time required for initial data extraction and matching, while manual
verification and refinement ensured the validity of the results.

To further systematize the literature review and ensure methodological
transparency, a structured evaluation framework was implemented, as
outlined in Table 6.1. This framework enabled a rigorous and repro-
ducible assessment of each study by categorizing key aspects such as
the variables used (Criterion 1), model reproducibility, which means
a clear description of preprocessing methods, model architectures, hy-
perparameters (Criterion 4-8) and uncertainty evaluation and methods
(Criteria 12—14). By applying these predefined criteria, the review pro-
cess ensured a standardized and unbiased evaluation of the method-
ological and practical feasibility of each prognostic model.

Furthermore, the integration of visualization strategies (Criteria 15-16)
and applicability considerations (Criterion 17) including tools such as
prediction calculators and dashboards offered valuable insights into
the interpretability and practical usability of each model. These aspects
were particularly relevant for assessing the usability of implementing
the models in real-world clinical settings.

The hybrid automated manual review process streamlined the evalua-
tion of relevant literature in combination with the criteria table to en-
sure a systematic, reproducible, and objective evaluation of each study.
This structured methodology strengthened the validity of the literature
review.

5.1.2 Core Findings and Missing Variables

The findings of this review of the literature highlight the strengths
and limitations of the methodology and communication of current ma-
chine learning approaches in survival analysis. Although certain as-
pects such as variable documentation and performance evaluation are



well covered, the lack of transparency in model architecture, hyper-
parameters, and preprocessing methods presents major obstacles to
reproducibility, therefore the review identified just 10 studies with pro-
posed prognostic models, which could be identified as type A. How-
ever, their direct applicability to the TxReg was limited due to missing
variables, measurement equivalence issues, or discrepancies in variable
categorization. The lack of variable compatibility raises concerns about
the feasibility of existing survival models to different patient cohorts
such as the TxReg.

Paper ID | Reference Missing Variables
34414609 | Ayers et al. [3] 22
32419922 | Senanayake et al. [47] not available
34448704 | Naqvi et al. [38] 7
35700006 | Paquette et al. [43] 3
34822363 | Thongprayoon et al. [49] 3
30625130 | Mark et al. [35] 5
36938431 | Linse et al. [33] 55
31926745 | Ershoff et al. [14] 8o
36388342 | Roller et al. [46] 5
33198650 | Kantidakis et al. [25] 6

Table 5.1: Missing Variables in Selected Papers

Among the reviewed models, four studies were identified as potential
Type A1 with only minor missing variables. The study 35700006 by Pa-
quette et al. [43] was selected for further analysis due to its methodolog-
ical transparency, including detailed documentation of data sources,
preprocessing steps, feature selection, model architecture and hyper-
parameters. However, this model required adaptations before it could
be implemented and applied to the TxReg dataset, as some variables
were not available. This highlights the broader challenge of transfer-
ring ML models across different registry datasets, where differences
in data collection practices and clinical standards limit direct model
applicability.

A key finding from the literature review is that many studies do not
provide sufficient methodological details on model architectures and
hyperparameter configurations, as summarized in table 3.3. This lack
of transparency makes it difficult to reproduce the model. Future re-
search should not only emphasize standardized reporting of variables,
data preprocessing and evaluation metrics but also focus on appropri-
ate description of the models architecture and hyperparameters to en-
hance the comparability and reproducibility of ML models in survival
analysis.
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A secondary finding of the review was to assess the availability of
interactive prognostic calculators and dashboards for survival predic-
tion. Only eight studies provided some form of predictive tool or dash-
board, and only two of them Andres et al. [1] and Zafar et al. [55]
offered fully accessible online calculators. The limited number of pub-
licly available tools suggests that, although survival models are widely
studied, their practical implementation in clinical settings remains in-
sufficient researched.

One major limitation observed in all identified calculators and dash-
boards was the absence of uncertainty quantification. None of the re-
viewed tools provided uncertainty quantification methods. This is a
significant shortcoming, as uncertainty estimation is crucial in clinical
decision making [45]. Physicians need to understand not only the pre-
dicted survival probabilities but also the degree of confidence in those
predictions. Previous studies [30] have emphasized that models with-
out uncertainty estimates may lead to overconfident and potentially
misleading predictions, reducing their clinical utility.

5.1.3 Uncertainty Quantification in Reviewed Studies

The literature review (3.3.2) reveals that uncertainty quantification for
prediction remains under explored or inconsistently addressed in many
of the reviewed studies. Although confidence intervals are frequently
reported, their methodological derivation is often unclear. Some stud-
ies state the presence of confidence intervals without specifying the
computational approach, making it difficult to assess their reliability.
This lack of transparency in uncertainty reporting raises concerns about
the trust and robustness of model predictions and their real world ap-
plicability [JAtickel:2023 , 9].

These findings directly relate to RQ2 3.1, as they highlight significant
gaps in how uncertainty is communicated in prognostic models. While
bootstrapping is commonly employed for confidence interval estima-
tion, its implementation and visualization are often inadequately doc-
umented. Several studies that utilize bootstrap-based uncertainty esti-
mation fail to provide explicit methodological details, making it chal-
lenging to compare or reproduce their results. Furthermore, the major-
ity of reviewed articles do not mention uncertainty quantification at all,
indicating that this aspect is is often not prioritized in survival model
evaluation in the literature.

This implies a broader trend in the researched literature, where model
predictions are assessed primarily through performance metrics such
as discrimination and calibration while their associated uncertainties
remain largely unexplored. As uncertainty quantification plays a cru-
cial role in model trustworthiness and interpretability, it represents a
fundamental limitation in the existing literature.
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5.2 DISCUSSION OF THE IMPLEMENTATION

The findings indicate that DeepHit performs worse on TxReg than in
its original dataset, while the Cox model serves as a strong benchmark.
The lack of uncertainty quantification in the original study was ad-
dressed through Monte Carlo dropout and bootstrapping, with notable
differences in uncertainty estimation. The dashboard visualization fol-
lows best practices from prior research while ensuring improved trans-
parency and interpretability.

5.2.1  Model Integration and Performance on TxReg

The evaluation results highlight a substantial discrepancy between the
predictive performance of DeepHit on TxReg and its original dataset,
as reported by Paquette et al. [43]. The following metrics are summa-
rized in table 4.1. While DeepHit previously demonstrated competitive
results, its performance on TxReg is notably lower, with a Harrell’s C-
index of 0.6433 compared to 0.661 in the original study. In contrast,
the Cox proportional hazards model serves as a strong benchmark,
achieving a C-index of 0.6757 on TxReg, outperforming DeepHit across
all metrics. Additionally, the Integrated Brier Score (IBS) suggests that
DeepHit exhibits lower calibration on TxReg than in its initial applica-
tion, with an IBS of 0.1811 compared to 0.1528 in the original dataset.

These findings directly address RQ1 3.1, as they indicate that while
DeepHit was designed to model complex survival distributions, its
generalization to new datasets, such as TxReg, is suboptimal. The drop
in predictive accuracy suggests that model performance is highly de-
pendent on the underlying data distribution and feature representation
[6]. This raises concerns regarding the model’s robustness and applica-
bility to independent survival registry data, particularly when domain
or regional specific characteristics differ .

Several factors may contribute to this observed performance gap. First,
differences in feature distributions, censoring patterns, and patient de-
mographics between TxReg and the original dataset may have led to
a deterioration in DeepHit’s discriminative ability. Machine learning
models, particularly deep neural networks, are known to be sensitive
to shifts in input distributions, which could explain the observed dis-
crepancy. Additionally, missing variables in the TxReg dataset may
have weakened DeepHit’s ability to capture relevant temporal depen-
dencies, thereby limiting its predictive power.

Another critical factor is hyperparameter tuning. The hyperparameters
used in the original study were optimized for a different dataset and
may not be well-suited for TxReg. While re-optimizing hyperparame-
ters could potentially improve performance, the observed results em-
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phasize the importance of validating survival models on independent
datasets before clinical application.

5.2.2  Uncertainty Quantification and Its Implications

Uncertainty quantification was introduced using Monte Carlo dropout
?? and bootstrapping ??, revealing differences in confidence interval
estimates. Monte Carlo dropout resulted in narrower confidence inter-
vals, indicating lower estimated uncertainty, while Bootstrapping pro-
duced wider intervals, capturing a broader range of variability in the
model’s predictions.

Another critical observation is the absence of uncertainty quantifica-
tion in existing prognostic calculators and survival dashboards. De-
spite the increasing adoption of machine learning in clinical decision
support, none of the reviewed tools incorporated measures of predic-
tive uncertainty. This represents a problematic gap, as reliable uncer-
tainty estimates could improve trust in model predictions and enable
more informed decision-making. The survival function plots presented
in Figures 4.1 and 4.2 demonstrate how uncertainty can be visualized,
yet further improvements are needed. User-centered dashboards with
appropriate visualizations and the integration of uncertainty measures
could enhance the interpretability and usability of predictive models.

5.2.3 Dashboard Development and Visual Communication

The proposed dashboard is inspired by the work of Andres et al. [1]
(article 29543895, see 6.1) to present individual patient survival curves
to enhance interpretability. Following the principles outlined by Barda
et al. [5], the visualization seeks to minimize cognitive overload and
support clinical decision-making by integrating model-agnostic expla-
nations. Representing survival functions in this way provides an effec-
tive means of visualizing survival rates across different time points.

These design considerations directly address RQ3(3.1), as it explores
how established methods from the literature, particularly in uncer-
tainty quantification and dashboard based result visualization, can be
adapted to improve communication and interpretation of model out-
puts on TxReg data. To ensure interpretability, the proposed dashboard
incorporates uncertainty quantification through Monte Carlo dropout
confidence intervals, as recommended by Kompa, Snoek, and Beam
[30].

Furthermore, the dashboard incorporates information on the impor-
tance of the variables similar to the dashboard of Roller et al. [46],
allowing users to understand which factors contribute most to the sur-
vival predictions. This follows recommendations from Barda et al. [5],
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emphasizing the necessity of transparent feature attributions to miti-
gate bias and supports the understanding behind the model decisions.
The dashboard proposed by Zafar et al. [55] includes a scoring metric,
which, according to Barda et al. [5], can lead to cognitive biases rely-
ing on incomplete information. Additionally, the lack of interpretabil-
ity poses a significant challenge user could interpret scores without
a deeper understanding of the underlying models. This can result in
misconceptions or unjustified confidence in the model’s predictions [5,
30].

To mitigate these risks, our dashboard deliberately excludes a scor-
ing metric. Instead, it prioritizes transparency through direct survival
curve visualization with uncertainty quantification. By adapting best
practices from the literature, the proposed dashboard ensures that pre-
dictive outputs are presented in a way that is both interpretable and
clinically meaningful. This approach aligns with prior research while
addressing gaps in uncertainty reporting and result visualization, ulti-
mately contributing to more informed decision-making.

5.3 LIMITATIONS AND FUTURE DIRECTIONS

While this study provides valuable insights into survival modeling and
uncertainty quantification, several limitations must be acknowledged.
These limitations primarily relate to the methodological constraints in
the literature review.

5.3.1 Challenges in Model Reproducibility and Transferability

One of the primary limitations of this study concerns the reproducibil-
ity of the DeepHit model. The original implementation was recon-
structed as faithfully as possible based on the details provided in Pa-
quette et al. [43] article, yet minor differences in preprocessing, fea-
ture encoding, and hyperparameter settings may have influenced the
observed performance. This issue reflects a broader challenge in the
reviewed literature: the lack of standardized reporting practices for
model architectures and training procedures.

Additionally, this study underscores the inherent challenges of gener-
alizing survival models across different datasets, since generalizability
itself constitutes a substantial research challenge. Although DeepHit
demonstrated strong performance in the original study;, its predictive
accuracy declined when applied to the TxReg dataset, underscoring
the limitations of direct model transfer. The presence of missing vari-
ables, differences in data distributions, and dataset-specific biases all
contribute to this challenge.
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5.3.2  Gaps in Uncertainty Quantification Methodologies

Another key limitation of this study is its focus on only two uncer-
tainty quantification methods: Monte Carlo Dropout and Bootstrap-
ping. While these approaches provide valuable insights, they represent
only a subset of the available techniques. Alternative methods, such as
Bayesian neural networks, conformal prediction, and ensemble-based
uncertainty estimation, could be explored to further enhance confi-
dence estimation in survival models.

Moreover, while the study demonstrated that bootstrapping captures
greater predictive uncertainty than Monte Carlo dropout, it remains
unclear which method provides the most reliable uncertainty estimates
for clinical decision making. Future research should conduct system-
atic comparisons of different uncertainty quantification techniques and
assess their impact on real-world transplant predictions. This study has
barely scratched the surface of uncertainty quantification, underscor-
ing the need for deeper investigations to obtain more reliable results
and foster interpretable uncertainty assessment.

5.3.3 Dashboard and Clinical Applicability

The practical integration of ML-based survival models into clinical
workflows remains a major challenge. Although this study developed
an interactive dashboard for individualized survival predictions, it is
important to recognize that clinical decision support systems require
extensive validation before they can be deployed in practice. The lack
of uncertainty quantification in existing prognostic calculators further
highlights a gap in current predictive tools, as confidence estimates
are essential for informed medical decision making. To enhance the
practical utility of survival models, future research should prioritize
the development of user-centric dashboards tailored to clinical needs
Barda:2020, Wang et al. [51]. The proposed dashboard was developed
without direct user feedback, and therefore it lacks empirical valida-
tion regarding its usability and effectiveness.

Future work should focus on improving the interpretability and us-
ability of survival models, incorporating interactive components, re-
fined uncertainty visualizations, and adaptive features that support
clinical decision making. Refinement of visual representations of un-
certainty and incorporating explanations of the importance of charac-
teristics could significantly enhance the clinical relevance of predictive
models. Furthermore, interdisciplinary collaboration between machine
learning researchers and users will be essential to ensure that survival
models are interpretable in real-world medical settings. Incorporating
insights from medical professionals will be crucial in optimizing dash-
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board functionality, improving transparency, and facilitating seamless
integration into clinical workflows.

5.4 CONTRIBUTIONS TO SURVIVAL ANALYSIS RESEARCH

This study contributes to the field of survival analysis in several key
areas:

* Methodological Transparency: The literature review highlights
the lack of standardized documentation in the current literature
on kidney transplant survival analysis, emphasizing the need
for improved reporting practices to enhance reproducibility and
comparability across studies.

¢ Enhanced Understanding of Model Transferability: By apply-
ing an A1 model to the TxReg dataset and benchmarking it against
the Cox model, this study demonstrates the challenges of trans-
ferring survival models to new registries with similar settings.

¢ Uncertainty Quantification in Survival Models: This study eval-
uates uncertainty quantification methods used in the literature
and existing online tools, such as calculators and dashboards,
identifying significant gaps in their availability, methodologies
used, and usability for end users.

* Bridging the Gap Between Research and Clinical Application:
The developed dashboard enhances the interpretability of sur-
vival predictions by visualizing survival probabilities and uncer-
tainty, providing a more practical, transparent, and user-friendly
tool.

5.5 CONCLUDING REFLECTIONS AND IMPLICATIONS FOR PRAC-
TICE

This study provides a comprehensive analysis of machine learning-
based survival models in kidney transplantation, identifying key chal-
lenges, and proposing methodological advances. While significant re-
search efforts continue to introduce new models with enhanced flexibil-
ity in modeling complex survival patterns, their applicability to similar
research contexts with different datasets remains a challenge. Leverag-
ing insights from the existing literature to address similar problems
significantly fosters broader knowledge transfer.

A critical finding of this study is that, despite the increasing number of
survival models being developed, the focus remains on evaluating pre-
dictive performance using standard survival metrics, while uncertainty
quantification in model predictions receives little attention. This is par-
ticularly concerning in a medical domain where treatment decisions
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directly impact human lives. Without a clear understanding of predic-
tive uncertainty, clinical decision-making risks becoming too reliant or
biased on potentially misleading point estimates.

Furthermore, there is a notable gap in user-centered tools that translate
research findings into practical clinical applications. Although survival
modeling techniques continue to advance, their integration into clini-
cal workflows remains limited, hindering their potential to make a real
impact in kidney transplant medicine. Developing accessible, interac-
tive, and interpretable decision support tools is essential to bridge this
gap between machine learning research and real-world medical appli-
cations.
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APPENDIX

Table 6.1: Search Criteria and Details

Criterion

Details

1. Variables

List all variables; separate lists for different mod-
els if applicable.

2. Data Source

National register, international register, local data
source, not mentioned.

. Data Availability

W

Categories: publicly accessible, available on re-
quest, not accessible.

5. Data Preparation

Includes: cleaning, imputing, scaling, transforma-
tions, train-test split, variable selection, dimen-
sion reduction.

=)

. Model Type

Kaplan-Meier, CoxPH, AFT, Random Survival
Forests, Neural Networks, Bayesian Models, Deep
Learning, DeepSurv, DeepHit, Other.

7. Model Architecture

Details include layer types, dimensions, activa-
tions, number of layers, and other.

8. Hyperparameters Examples: optimizer, learning rate, batch size,
epochs, regularization.
9. Metrics Examples: confusion matrix, accuracy, Fi-score,

ROC-AUC, C-index, Brier score, calibration plots,
AIC, BIC.

10. Reproducibility

Based on criteria 1,5,7,8 is the model reproducible
(Yes/No)

11. Prediction or Esti-
mation

Focus of the model: prediction or estimation.

12. Mention of Uncer-
tainty

Keywords like uncertainty estimation, confidence
interval, Monte Carlo, prediction interval.

13. Types of Uncer-
tainty

Aleatoric or epistemic uncertainty.

14. Uncertainty Quan-
tification

Summary of techniques or metrics used for uncer-
tainty quantification.

15. Visual Representa-
tion

Types include plots, diagrams, charts, graphs,
and tables.

16. Visualization Con-
cept

Strategies like dashboards, GUIs, or tools for in-
terpretation.

17. Applicability

Tools such as prediction calculators, formulas, or
online tools.

18. Individual Predic-
tions

Support for patient-specific or individual predic-
tions.
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LUKAS SEARCH CRITERIA AND DETAILS

Table 6.2: Search Criteria and Details

SEARCH CRITERIA FOR THE LLM

search_criteria = """
1. Variables:
- List all variables that are used to train the model as a
python list
- If necessary make another list if other models used different
variables.
2. Data Source:
- National Register, International Register, Local Data Source,
Not mentioned.
3. Availability of Data:
- Indicate the accessibility category of the data. Possible
categories are:
publicly accessible, available on request, not accessible.
5. Data Preparation:
- Are the steps for data preparation and cleaning described in
detail? If yes,
list the methods briefly:
- Data Cleaning, Imputing, Scaling, Data Transformation,
Train-Test Split,
Variable Selection, Dimensionality Reduction, Other.
6. Model Type:
- Which models are used in the paper? List standard models, e.g
., Cox Proportional
Hazards Model, Random Survival Forests, Neural Network-based
Models (DeepSurv,
DeepHit, etc.), Bayesian Survival Models, or others.
7. Model Architecture:
- Details of the model architecture, including the type, layers
, size, and connections.
8. Hyperparameters:
- Are the hyperparameters described? Include details such as
learning rate, batch
size, number of epochs, optimizer, regularization.
9. Metrics:
- Are evaluation metrics described? Examples: Confusion Matrix,
Accuracy,
C-index, Brier Score, Calibration Plots, etc.
10. Reproducibility:
- Based on criteria (4-8), assess whether the model is
reproducible. Provide
a clear conclusion: Yes/No with reasons.
11. Prediction or Estimation:
- Does the model focus on prediction or estimation?
12. Mention of Uncertainty:
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- Search for mentions of uncertainty in the paper: Keywords
include "Uncertainty
Estimation", "Confidence Interval", "Prediction Interval",
etc.
13. Types of Uncertainty:
- Are types of uncertainty discussed (Aleatoric, Epistemic)?
14. Uncertainty Quantification:
- Techniques or metrics used to quantify uncertainty in the
model.
15. Visual Representation of Results:
- List the types of visualizations used, such as Kaplan-Meier
Plots, ROC Curves,
Dashboards, etc.
16. Visualization Concept:
- Is there a discussion about visualization strategies (e.g.,
dashboards)?
17. Applicability and Prediction Calculator:
- Does the paper mention the use of a prediction calculator or
formula?
18. Individual Predictions:
- Can the model provide individual predictions for new data?

Listing 6.1: Search Criteria for Academic Paper Analysis

ADDITIONAL INSTRUCTIONS FOR THE LLM

additional_instructions =
1. Ensure Consistency and Order: Follow the order of the search
criteria exactly
as given. Each response should match the sequence of the search

criteria.
2. Brief and Precise Answers: Provide concise and precise answers.
3. Use Delimiter ";": When a Yes/No or category question is
followed by an explanation,
use ";" to separate them.

Python Lists: Output Python lists in one line.
5. Answer "None" or "not mentioned": If a question does not fit the
context of
the paper or if the information is not available, answer with "
None" or
"not mentioned" respectively.
6. JSON Format: Structure the output in JSON format for easy
parsing and iteration.
7. Maintain Consistency: The response should be parsable and
consistent in structure.
8. Adaptation to Model Types: Use the given model list for
consistent naming
conventions, and ensure explanations match model-specific
requirements.



9. Each model type has a different architecture. Adapt accordingly
but maintain
consistency in sentence structure.

10. Each model type has different hyperparameters. Adapt
accordingly but maintain
consistency in sentence structure.

Listing 6.2: Additional Instructions for Responses

ANSWER FORMAT FOR THE LLM

{
"variables": {

"Cox Regression": ["age", "sex", "weight", "height", "
ethnicity", "donation type", "creatinine level", "
history of diabetes", "hypertension diagnosis", "
hepatitis C diagnosis", "smoking habit", "diagnosis", "
years on dialysis", "angina", "BMI"],

"Random Survival Forest": ["Donor age", "DR locus 1", "A
locus 2", "Height", "Donor diabetes", "Donor
hypertension", "Cause of death", "Creatinine
terminal", "Oliguria, Race", "Age at transplant", "HLA-
DR mismatch", "Pre-emptive transplant", "Duration of
peritoneal dialysis", "Duration of haemodialysis", "
Primary renal disease", "Smoking", "Peripheral vascular

disease", "Age at starting renal replacement therapy",
"number of previous rejections"]
+
"data_source": "National Register",
"availability of_data": "available on request",
"data_preparation": {
"data_cleaning": "removed outliers and missing values;
threshold >20% missing",
"imputing": "used mean imputation for missing values",
"scaling": "standardization",
"data_transformation": "Calculated BMI",
"train_test_split": "80-20 split",
"variable_selection": "PCA"
+
"model_type": ["Cox Proportional Hazards Model", "Random
Survival Forest"],
"model_architecture": {

"details": [
{
"model": "Cox Proportional Hazards Model",
"layers": []
o
{

"model": "Random Survival Forest",
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"layers": [
{"type": "Tree", "count": 100, "max_depth": 25,
"min_samples_split": 400, "min_samples_
leaf": 200, "max_features": 13}

}I

"metrics": ["C-index", "Brier Score", "Calibration plots"]

Listing 6.3: Example Output Format for Responses

MESSAGE LITERATURE REVIEW

messages = [

{

"role": "system",

"content": f"""You are a capable assistant skilled in
extracting and analyzing information from academic
papers based on given criteria. Answering the following

Search Criteria:\n {search_criteria}.

\n Use the following instructions for
your response: {
additional_instructions}\n

\n Use this example format for the
structure of your answer: {
answer_format}\n

},
{

"role": "user",

"content": f"Please analyze the provided text and extract
information according to the given criteria. Text:{text
}"

}

Listing 6.4: Messages for Contextual Instructions

MESSAGE VARIABLE MATCHING

messages = [
{
"role": "system",
"content": "You are a capable assistant skilled in
comparing variable names and finding matches based on
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their name or meaning, even if the names are different.

"

"role": "system",

"content": "Consider that some variables may require
adjustments or calculations to match. Or other
variables are sub or top categories where you have to
find the belonging sub or top category."

"role": "system",

"content": """

Please also consider the following rules:

1. For each input variable, find the best matching TxReg
variable based on their name and meaning.

2. If a direct match is found, use it.

3. If no direct match is found, look for variables that
could be adjusted or calculated to match. Example:

data["Donor body mass index"] = data.apply(
lambda row: row[’'spender_postmortem::weight_kg’'] /
((row[’spender_postmortem::height_cm’] / 100) =x
2)
if row[’spender_postmortem::height_cm’'] != 0 else
None,
axis=1

)

4. Second example for calculations:
data["Donor Female"] = data["empfaenger::sex"].apply/(

lambda x: "1" if x == "female" else 0)

5. When there is a need to adjust and calculate the
variable, structure your answer like the example in 3.
and directly provide the calculation for the new
variable.

6. Only if there is no direct match and the variable is a
subcategory, match the appropriate top category (and
vice versa). For example, types of death like heart
attack could belong to the top category "death reasons"

or "death circumstances."

7. Format the result as a Python dictionary (JSON format),
where the input variable is the key, and the matching
TxReg variable or calculation is the value. Example:
"Donor age": data["spender_postmortem::age"]

8. When doing calculations, show the calculation directly
in the dictionary value. For example:

"Donor body mass index": data.apply(lambda row: row[’
spender_postmortem: :weight_kg’'] / ((row[’
spender_postmortem: :height_cm’] / 100) *x* 2) if row
["spender_postmortem::height_cm’] != 0 else None,
axis=1)

9. If no match is found, set the value to None.

10. Example output:
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"role":

"Donor age": data["spender_postmortem::age"l,

"Donor history of hypertension": data["
spender_postmortem: :hypertension"],

"Donor history of diabetes": datal["
spender_postmortem: :diabetes_dso"],

"Donor body mass index": data.apply(lambda row: row
['spender_postmortem: :weight_kg'] / ((row[’
spender_postmortem: :height_cm’] / 100) *x 2) if

row[ 'spender_postmortem: :height_cm’] != 0 else
None, axis=1),

"Donor creatinine level (mg/dL)": datal"
spender_postmortem_labor_klinische_chemie::
creatin_umol_per_1"].apply(lambda x: x * 0.0113

if pd.notnull(x) else None),

"Donor creatinine is > 1.5 mg/dL": data["Donor
creatinine level (mg/dL)"] > 1.5

"system",

"content": "Here are the variables included in the TxReg

Database as a Python list: \n{txreg_variables_list}

"

"role": "user",
"content": "Here is the input list of variables as a Python

list: \n{input_variables}

"

Listing 6.5: Messages for Contextual Instructions



Liver Transplant Survival Prediction Tool
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Figure 6.1: Dashbaord 29543895

Lung Transplantation Advanced Prediction Tool (LAPT)
Recipient Donor
Predictor Score Predictor Score
Age 50-60 ~ -10 Age 50+ ~ 8
Race Black ~ 1 Race Black ~ 4
BMI 18.5-30 ~ -9 Tobacco Yes ~ 3
Grouping B~ 1 Diabetes Yes ~ 1
Initial LAS 50-75 ~ 3 TX
End LAS 50-75 + 2 Predictor Score
KPS 60+ ~ , CMV Mismatch Yes ~ 3
oGFR 50+ « o Ischemic <6~ 0
Albumin 3.4+ ~ 3
Tobacco Yes ~ 3
Steroid Yes ~ 1
ECMO Yes ~ 1
Ventilator Yes ~ 7
Total Score: 9
Adjusted Score: 59
Risk Level: High Survival / Half-Life
Posterior Probability of Risk G TD(ITOR 5.2(5.0,5.6)
15 O 1 Year: 84.7% (83.9%, 85.5%)
el T 5 Year: 51.7% (50.1%, 53.4%)
High e 10 Year: 26.2% (24.3%, 28.2%)

Figure 6.2: Dashboard 35389371
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Figure 6.3: Dashboard 33858815

RISK SCORE = 81.17

ity, that
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1.52010.
1.62010.

Most influencial features for this decision:

Feature 1 with value (relevance: 22.49)
Feature 2 with value (relevance: 9.09)
Feature 3 with value (Relevanz: 7.88)
Feature 4 with value (relevance: 4.66)
Feature 5 with value (relevance: 4.63)
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1.9.2010.

1102010

1112010
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Most influencial features for overall model:

Feature A (relevance:35.12)
Feature B (relevance:23.76)
Feature C (relevance:8.99)
Feature D (relevance:3.04)
Feature E (relevance:2.26)

Figure 6.4: Dashboard 36388342
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