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A B S T R A C T

Electroencephalography (EEG) is a powerful neuroimaging technique widely
used across various applications. Despite its advantages of non-invasiveness,
portability, and high temporal resolution, EEG analysis remains challeng-
ing due to its complexity, high dimensionality, and low signal-to-noise ratio.
Deep Learning (DL) models have shown significant potential in addressing
these challenges by automatically extracting meaningful features from raw
EEG signals and achieving high classification accuracy. However, most ex-
isting DL models are task-specific, and their generalizability across diverse
EEG datasets and domains remains an open question.

This thesis investigates the feasibility of constructing a small yet represen-
tative subset of EEG datasets that encapsulates the diversity of a broader
dataset collection. Such a subset would support the development and eval-
uation of generalizable DL models that perform robustly across various EEG
classification tasks without requiring domain-specific adjustments, while also
significantly reducing computational costs. Additionally, the thesis explores
the generalizability and compatibility of state-of-the-art end-to-end DL mod-
els across multiple EEG datasets spanning different domains.

11 end-to-end DL models were trained and tested across 17 EEG datasets.
A principled approach to subset selection was proposed, combining Ridge
regression with correlation analysis to predict the median F1-score of models
based on the selected subset. The final subset should minimize prediction
error while ensuring diversity and avoiding redundancy.

The findings indicate that none of the selected DL models demonstrated
outstanding generalizability across all EEG datasets, reflecting limitations in
their ability to adapt to diverse domains. The representative subset, compris-
ing SEED, DREAMER-Valence, DREAMER-Arousal, EEGMAT, and CHB-
MIT datasets, demonstrated a low prediction error and weak pairwise corre-
lations, highlighting its diversity. This work provides a foundational frame-
work for advancing generalizable DL models for EEG classification tasks.

Keywords: Electroencephalography (EEG), Deep Learning (DL), general-
izability, EEG datasets, task-specific models, subset selection, representative-
ness, Ridge regression, correlation analysis, classification accuracy, diversity,
computational efficiency, end-to-end deep learning models, compatibility,
median F1-score.



Z U S A M M E N FA S S U N G

Elektroenzephalographie (EEG) ist eine leistungsstarke Neuroimaging-Technik,
die in vielen Anwendungen eingesetzt wird. Trotz ihrer Vorteile, wie Nichtin-
vasivität, Portabilität und hoher zeitlicher Auflösung, bleibt die Analyse
von EEG-Daten aufgrund ihrer Komplexität, hohen Dimensionalität und
des niedrigen Signal-Rausch-Verhältnisses herausfordernd. Deep-Learning-
Modelle (DL) haben großes Potenzial gezeigt, diese Herausforderungen zu
bewältigen, indem sie aussagekräftige Merkmale aus EEG-Daten extrahieren
und hohe Klassifikationsgenauigkeiten erzielen. Dennoch sind die meisten
DL-Modelle auf spezifische Aufgaben beschränkt, und ihre Generalisierbar-
keit über verschiedene EEG-Datensätze und Domänen bleibt fraglich.

Diese Masterarbeit untersucht die Konstruktion eines kleinen, repräsenta-
tiven Subsets von EEG-Datensätzen, das die Diversität einer größeren Samm-
lung abbildet. Dieses Subset soll die Entwicklung generalisierbarer DL-Modelle
fördern, die robust über verschiedene EEG-Klassifikationsaufgaben hinweg
performen, ohne domänenspezifische Anpassungen zu benötigen, und gleich-
zeitig Rechenkosten reduzieren. Zudem wird die Generalisierbarkeit und
Kompatibilität state-of-the-art End-to-End-DL-Modelle über verschiedene EEG-
Domänen hinweg analysiert.

11 End-to-End-DL-Modelle wurden auf 17 EEG-Datensätzen trainiert und
getestet. Ein systematischer Ansatz zur Auswahl eines Subsets wurde ent-
wickelt, der Ridge-Regression mit Korrelationsanalysen kombiniert, um den
Median-F1-Score der Modelle basierend auf dem Subset vorherzusagen. Das
finale Subset minimiert die Vorhersagefehler, gewährleistet Diversität und
vermeidet Redundanz.

Die Ergebnisse zeigen, dass kein DL-Modell herausragende Generalisier-
barkeit über alle EEG-Datensätze aufwies, was ihre begrenzte Anpassungsfä-
higkeit an verschiedene Domänen verdeutlicht. Das ausgewählte Subset, be-
stehend aus SEED, DREAMER-Valence, DREAMER-Arousal, EEGMAT und
CHBMIT, zeigte geringe Vorhersageabweichungen und schwache Korrelatio-
nen, was seine Diversität unterstreicht. Diese Arbeit bietet einen Rahmen für
die Entwicklung generalisierbarer DL-Modelle für EEG-Klassifikationsaufgaben.

Schlüsselwörter: Elektroenzephalographie (EEG), Deep Learning (DL), Ge-
neralisierbarkeit, EEG-Datensätze, aufgabenspezifische Modelle, Subset-Auswahl,
Repräsentativität, Ridge-Regression, Korrelationsanalyse, Klassifikationsge-
nauigkeit, Diversität, Recheneffizienz, Kompatibilität, End-to-End-Deep-Learning-
Modelle, Median-F1-Score.
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Part I

T H E S I S



1
I N T R O D U C T I O N

1.1 background and context

Electroencephalography (EEG) is a widely used neuroimaging technique that
captures the electrical activity of the brain with high temporal resolution.
Its non-invasive nature, portability, and cost-effectiveness make it a versa-
tile tool for a wide range of applications in fields such as healthcare, brain
science, and artificial intelligence. EEG is particularly prominent in Brain-
Computer Interface (BCI) technology, which has been experiencing signifi-
cant developments due to its potential to offer a direct communication chan-
nel that interconnects the human brain with the outside environment [129].
For instance, by using BCI, users can control the movement of a cursor on a
computer screen simply by imagining left or right hand movements, corre-
sponding to the desired direction [130].

Despite its wide applicability, certain inherent characteristics of EEG sig-
nals pose some challenges for effective analysis and classification [93]. EEG
signals are complex, high-dimensional, and non-stationary, and they have a
low Signal-to-Noise Ratio (SNR) in the temporal domain [96]. Therefore, var-
ious advanced Machine Learning (ML) and Deep Learning (DL) algorithms
have been proposed to effectively process and decode such complex brain
data. However, most existing DL models for EEG classification are designed
for specific domains and tasks. While excelling in task-specific scenarios,
they often struggle to generalize across diverse EEG datasets and tasks.

Inspired by the breakthroughs in the natural language processing (NLP)
field, where powerful large language models have successfully demonstrated
the exceptional ability to handle diverse tasks such as translation, chatbots,
text generation, and creative writing, one might wonder whether similar
generalization is possible for EEG data. Can DL models be developed that
classify EEG signals across all domains without requiring domain-specific
expertise or complex feature engineering?

This thesis investigates the generalizability of DL models for EEG classifica-
tion tasks. A key challenge lies in the vast number of datasets across various
domains, making it impractical to validate a model’s effectiveness by evalu-
ating it on every available dataset. To address this, an essential first step is to
identify a representative subset of EEG datasets that encapsulates the inher-
ent diversity of EEG signals across domains. Such a subset would serve as
a foundation for developing and evaluating novel models capable of robust
performance across a wide range of EEG tasks.
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1.2 motivation and problem statement

In recent years, significant research efforts have been put into the develop-
ment of ML and DL models for EEG data classification. DL, in particular, has
been extensively explored for a wide range of EEG classification problems,
including emotion recognition, motor imagery, mental workload, seizure de-
tection, sleep stage scoring, event related potential detection, and brain dis-
orders detection [26, 93]. These advancements highlight the potential of DL

for decoding complex EEG signals and enabling applications in neuroscience,
healthcare, and beyond.

Despite these successes, most existing studies have focused on develop-
ing domain-specific DL models, which were exclusively applied to datasets
within a particular domain. While these models have achieved impressive
performance within their respective domains, their ability to generalize to di-
verse EEG classification tasks beyond their specific domains remains largely
unproven. For example, a model excelling at emotion recognition might not
effectively transfer to seizure detection due to the unique characteristics of
each task.

This domain-specificity hinders the flexibility and generalization capabil-
ity of current EEG-based technologies [93]. Consequently, designing generalization-
oriented DL models for EEG analysis is highly desirable. Such models could
capture the underlying patterns in EEG signals across various contexts, re-
gardless of the specific task or domain. This would also enhance the scal-
ability and adaptability of EEG analysis, opening doors to applications in
various fields. To achieve this objective, a comprehensive understanding of
the generalizability of existing DL models is essential. This would pave the
way for the future development of generalization-oriented approaches.

However, when working with extensive EEG datasets encompassing di-
verse contexts and domains, achieving generalizability poses significant chal-
lenges. The landscape of EEG datasets spans across numerous types of EEG
signals, ranging from spontaneous EEG (e.g., emotion, motor imagery, men-
tal disorders, sleep stages) to evoked potentials (EP) (e.g., event-related po-
tentials (ERP), steady-state evoked potentials (SSEP)) [136]. Developing DL

models and generating results on this vast and diverse data would require
substantial computational resources and time investment.

One promising solution lies in the identification of a small yet represen-
tative subset of EEG datasets that captures the most information with low
redundancy and effectively represents the entire spectrum of EEG activity.
Such a subset would enable systematic testing and training of DL models
while significantly reducing computational costs. By focusing on a coreset
of datasets, researchers can evaluate the generalizability of DL models more
efficiently, ultimately fostering a more unified understanding of model per-
formance on EEG data.

This thesis undertakes an initial exploration of a principled approach to
selecting a representative subset of EEG datasets across multiple domains,
inspired by the approach proposed by Aitchison, Sweetser, and Hutter [5].
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1.3 objectives

The primary objective of this thesis is to investigate the feasibility of con-
structing a coreset that captures the inherent diversity of EEG signals. A well-
designed subset could serve as a standardized benchmark, facilitating the
development of robust DL models that adapt to variations across different
EEG signal types and tasks. This approach has the potential to significantly
enhance the generalizability of DL models, paving the way for future ad-
vancements in models capable of accurately classifying EEG data across di-
verse domains.

To achieve this goal, the following specific objectives are outlined:

• Dataset and Model Collection: Gather a diverse collection of EEG datasets
spanning various domains to build a foundation for subset selection.
Identify suitable DL architectures relevant to this study.

• Performance Evaluation: Train multiple models on the selected EEG

datasets to assess performance metrics, gaining insights into task vari-
ability and model generalization.

• Systematic Subset Selection: Develop a systematic method for selecting
a small yet representative subset from a large collection of EEG datasets,
ensuring minimal redundancy while retaining the most informative
features.

• Subset Identification: Demonstrate the approach by identifying an ex-
ample subset of EEG datasets as a proof of concept.

As secondary objectives, this study aims to explore two interrelated as-
pects of deep learning for EEG analysis:

1. Generalizability: Evaluate the extent to which state-of-the-art DL ar-
chitectures generalize across various domains by assessing their per-
formance on tasks outside their respective domains.

2. Compatibility: Analyze the compatibility of different DL architectures
with various EEG data types, offering insights into optimal pairing of
architectures with specific EEG signal domains.

1.4 research question

The main research question of this study is:

"Which collection of EEG datasets can best represent the entire
spectrum of EEG activity for evaluating and developing gener-
alizable deep learning models?"

This study hypothesizes that it is possible to identify a coreset of EEG

datasets that is significantly smaller in size yet captures the most critical in-
formation and effectively represents the entire spectrum of EEG activity. This
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coreset would provide a robust foundation for training and testing general-
izable DL models in the future.

1.5 structure

This thesis is organized into five chapters as follows:

• Chapter 1: Introduction – This chapter introduces the research topic,
motivation, problem statement, objectives, research questions, and the
overall structure of the thesis.

• Chapter 2: Theoretical Background – Provides an overview of existing
research on EEG analysis, DL models, and the challenges of generaliza-
tion. It identifies gaps in the literature that this study aims to address.

• Chapter 3: Methodology – Details the research methodology, includ-
ing:

– Conceptual Framework: Describes the theoretical foundation and
guiding principles of the study.

– Implementation: Outlines the practical steps involved in dataset
collection, preprocessing, model evaluation, and subset selection.

• Chapter 4: Results – Presents the findings of the study, including
model performance metrics, an analysis of results, insights into gen-
eralization, and an evaluation of the subset selection procedure.

• Chapter 5: Discussion – Interprets the findings, discusses limitations,
and provides recommendations for future research.



2
T H E O R E T I C A L B A C K G R O U N D

2.1 electroencephalogram

Figure 2.1 illustrates the raw EEG signals, displaying amplitude variations
over time, recorded from the DREAMER dataset across different subjects
and channels. EEG data typically appear noisy, with high-frequency oscil-
lations mixed with transient peaks. Additionally, significant differences in
amplitude ranges are observed across subjects and channels, reflecting the
inherently dynamic nature of EEG signals. Such variability arises from indi-
vidual differences in brain activity patterns, the brain regions being recorded
(channel-specific), and also the presence of physiological or external artifacts.
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Figure 2.1: Raw EEG Data from the DREAMER Dataset

2.1.1 Physiological Basis of EEG

EEG is a non-invasive medical imaging technique that measures the electrical
potentials generated by brain activity. The electroencephalogram is a visual
representation of these alternating electrical signals, captured from the scalp
using metal electrodes and a conductive medium [116]. Small Ag/AgCl disc-
shaped electrodes are placed on different locations of the scalp, typically fol-
lowing the standardized 10-20 international electrode placement system (Fig-
ure 2.2), which ensures consistency in electrode positioning across different
studies and subjects. Electrode positions are labeled with a letter indicating
the brain region - F for frontal, C for central, T for temporal, P for parietal,
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and O for occipital - followed by an odd or even number to specify the left
or right hemisphere [109].

Figure 2.2: 21 Electrodes of International 10-20 System for EEG [119].

Human brain functions are driven by complex neural activations and in-
teractions, which produce electromagnetic signal dynamics as primary ef-
fects, alongside secondary hemodynamic and metabolic changes [45]. Elec-
trical activity is generated by the exchange of electrochemical signals be-
tween pyramidal neurons. The simultaneous and synchronous transmission
of billions of tiny excitatory and inhibitory postsynaptic potentials (EPSPs
and IPSPs) within large neural populations sum up, creating electrical fields
strong enough to be detected from outside the head [25]. These signals thus
reflect instantaneous neural currents and can be used to study a wide range
of brain processes.

2.1.2 Characteristics of EEG Signals

EEG signals are characterized by their complex and dynamic nature through
oscillatory patterns, the statistical properties can be in multiple domains:
time, frequency, and spatial dimensions. These characteristics are used to
extract important features to interpret brain activity.

2.1.2.1 Time Domain Characteristics

EEG signals measure voltage fluctuations over time and are characterized
in the time domain by changes in signal amplitude and waveform dura-
tion relative to time [27]. These signals exhibit highly non-Gaussian and
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non-stationary behavior, meaning their statistical properties can vary unpre-
dictably over time. Key features in the time domain include basic statisti-
cal metrics (e.g., mean value, skewness and kurtosis), energy- and entropy-
related features, Hjorth parameters [48], and counts of zero-crossings and
local extrema [77]. Additionally, peaks, troughs, and transient events such
as spikes or bursts, which may correspond to specific cognitive or patholog-
ical events, are also observed.

2.1.2.2 Frequency Domain Characteristics

EEG captures neural oscillations, which are rhythmic or repetitive electrical
activities spanning a broad spectrum of frequencies [14]. Hence, frequency
domain features are widely used in EEG research to analyze oscillatory and
rhythmic patterns [22]. Frequency refers to the number of events occurring
within a specified time period and is typically measured in hertz (Hz), where
one hertz corresponds to one cycle per second [44]. These signals are typi-
cally decomposed into five major frequency bands, each associated with dis-
tinct brain functions and states: delta (1–4 Hz), theta (4–7 Hz), alpha (8–13

Hz), beta (13–30 Hz), and gamma (>30 Hz) [107].
A key feature derived from frequency analysis is the power spectral den-

sity (PSD) which reflects the distribution of signal power across different
frequencies [50]. However, a limitation of Power Spectral Density (PSD) is its
inability to determine the precise timing of frequency-specific events, as it
offers only overall power contributions in the frequency domain [44]. Ad-
ditional metrics such as the energy and entropy of PSD, intensity-weighted
mean frequency and bandwidth, edge frequency, and peak frequency are
often extracted for analysis [77].

2.1.2.3 Time-Frequency Characteristics

A key limitation of the time domain analysis of EEG is its inability to re-
veal the underlying "frequency content" or detect changes in frequency pat-
terns. Similarly, spectral analysis alone cannot accurately identify the time
localization of specific frequency components [50]. To address these limi-
tations, EEG signals are often analyzed jointly in both time and frequency
domains, reflecting their transient and dynamic nature. This combination
allows researchers to observe changes in the power of specific frequency
bands over time, offering insights into transient neural processes [24]. Time-
frequency analysis techniques, such as wavelet transforms (WT) and Short-
Time Fourier Transform (STFT), decompose signals into smaller components
within short time windows, enabling the simultaneous time and frequency
analysis.

2.1.2.4 Spatial Characteristics

EEG signals can be recorded from almost any location on the scalp, thanks to
the wide spatial arrangement of electrodes, which provides valuable insights
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into regional brain activity. While time and frequency features primarily re-
flect neural activity within a single EEG channel, spatial features capture the
interdependencies and functional connectivity between multiple channels
[131].

These spatial features illustrate how different areas of the brain commu-
nicate and work together to support various cognitive and neural processes.
Several neural activities involve distributed circuits rather than isolated brain
regions [131], and disruptions in these intricate networks have been linked to
cognitive deficits in disorders such as autism, schizophrenia, and major de-
pressive disorder [134]. EEG’s spatial structures enable the study of network
properties and the functional organization of brain regions [63]. Key spa-
tial features include correlation, coherence, phase synchronization, mutual
information, and the topological structure of EEG channels.

2.1.2.5 Noise and Artifacts

EEG signals are often contaminated by noise and artifacts from various sources,
which originate from non-cerebral activities [107]. Artifacts can be broadly
categorized into subject-related and technique-related types. Subject-related
artifacts arise from undesired physiological signals, including muscle activ-
ity (EMG), cardiac activity (ECG), eye movements, minor body movements,
and sweating. Technique-related artifacts, on the other hand, are caused by
external environmental factors, such as power line interference (50/60 Hz),
impedance fluctuations, cable movements, broken wire contacts, excessive or
dried electrode paste/jelly, and low battery levels [50]. Artifacts typically ex-
hibit higher amplitudes and distinct morphologies compared to true brain
activity. These can distort the actual neural signals, significantly affecting
their analysis and interpretation of EEG data. As a result, artifact removal is
a critical step in the preprocessing pipeline.

2.1.3 Strengths and Limitations of EEG

2.1.3.1 Advantages

The primary advantage of EEG is its highly precise temporal resolution. Most
cognitive processes are fast, dynamic, and unfold in temporal sequences that
occur within fractions of a second. The rapid propagation of electrical fields
allows EEG to capture complex neural patterns at the millisecond level after
a stimulus is triggered [24]. EEG also offers a multidimensional view of brain
activity, capturing information across several dimensions: time, space, fre-
quency, power (the strength of frequency-band-specific activity), and phase
(the timing of the activity) [24]. This multidimensionality enables EEG to offer
rich insights into brain function as well as dysfunction, supporting a variety
of analytical approaches.

Additionally, EEG is a popular brain-imaging tool due to its ability to di-
rectly measure neural activity, its relatively low cost, non-invasive nature,
and portability [3]. These advantages have led to its widespread application
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across numerous domains, highlighting EEG’s versatility and importance in
both research and practical settings. In clinical practice, injuries or abnormal-
ities in the brain can be detected using EEG. It serves as a first-line method
for investigating sleep patterns or epilepsy, as well as for diagnosing a range
of neurological and psychiatric disorders, such as attention deficit hyper-
activity disorder (ADHD), Alzheimer’s disease, brain tumors, Parkinson’s
disease, and schizophrenia [93, 109].

EEG is also instrumental in research involving neural engineering, neuro-
science, psychology and biomedical engineering, as it enables the study of
brain activity patterns associated with cognitive processes [13], emotional
responses [88], and sensory perceptions [79]. Furthermore, an EEG system
acts as a bridge between the brain and external devices, allowing the obser-
vation of brain’s responses to specific stimuli events and the interpretation
of certain aspects of a person’s cognitive state [123]. Therefore, EEG is widely
applied in brain-computer interface (BCI) as assistive technological solutions
for individuals with disabilities and brain-controlled rehabilitation devices
for patients with strokes and other neurological deficits [3].

2.1.3.2 Disadvantages

Although EEG is a powerful and informative brain-imaging technique, its
effectiveness in analysis and classification tasks is constrained by certain
limitations. First, EEG data suffer from low spatial resolution, providing only
a coarse measure of brain activity [50]. This limitation arises from the non-
invasive nature of EEG sensors, which measure neural activity at a distance
from its sources. As the brain’s electric fields pass through layers of tissue,
such as the skull and scalp, they become distorted, and electrical potentials
spread through the brain’s conductive medium [93], [136]. As a result, sig-
nals from multiple brain regions are mixed together, making it difficult to de-
termine the exact origin of brain activity or distinguish activity from closely
spaced regions.

Secondly, EEG signals have very a low SNR, with weak amplitudes typ-
ically ranging from 10 to 300 µV, making them easily contaminated with
various physiological and electrical noises [117]. To address this, advanced
filtering and noise reduction techniques are adopted to remove artifacts,
consequently reducing their impact and extract true brain activity from the
recorded signals.

Thirdly, EEG signals are nonlinear and non-stationary, meaning their statis-
tical properties vary over time [93]. This dynamic nature creates challenges
in extracting consistent and generalizable features, often hindering the per-
formance of models trained on such data, as the learned patterns may fail to
predict signals recorded at a different time from the same individual. Most
traditional methods struggle to capture the complexity, instability, and ir-
regularity of EEG signals, as they implicitly assume stationarity in the data
[128].

Finally, significant differences in brain activity patterns between individ-
uals (inter-subject variability) and within the same individual under vary-
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ing conditions (intra-subject variability) pose additional challenges for EEG

recordings [97]. This high variability further limits the practical applicabil-
ity of EEG, as well-trained models often fail to perform consistently across
multiple subjects or even on the same subject over time.

Together, these factors increase the complexity of preprocessing, modeling,
and extracting meaningful insights from EEG data, highlighting the need for
advanced techniques to overcome these challenges.

2.2 deep learning

2.2.1 Fundamentals of Deep Neural Networks

DL is a subset of ML that implements multilayered neural networks to learn
the hierarchical and complex patterns from input data [40]. DL does not re-
quire any human-designed rules; instead, it leverages massive amounts of
data to map the given inputs to specific labels [62]. Recent advancements in
DL have greatly outperformed its predecessors. Conventional ML methods
typically involve multiple sequential steps, including preprocessing, feature
extraction, feature selection, learning, and classification. Errors or biases at
any of these stages can adversely impact model performance. In contrast, DL

automates the feature learning process with an aim to extract discriminative
data representations with minimal human intervention or field knowledge.
Moreover, it integrates feature learning and classification into a unified pro-
cess, streamlining the workflow compared to traditional approaches [62].

2.2.1.1 The Basic Architecture of DNN

At its core, DL builds upon the concept of single-layer neural networks, also
known as perceptrons [90]. Introduced in the 1950s, the perceptron is a sim-
ple computational model that functions as a binary classifier. It feeds a set of
inputs, each associated with a weight, computes their weighted sum, and ap-
plies a threshold activation function to determine the output. A bias term is
added to shift the decision boundary, providing greater flexibility to position
it optimally within the input space [4].

Additionally, the perceptron utilizes a basic error-driven learning rule to
minimize the misclassification error in prediction, quantified using a loss
function. Softmax outputs with cross-entropy loss are commonly used for
discrete predictions, while linear outputs with squared loss are preferred
for real-valued predictions. During training, the parameters of the model,
such as weights and biases, are iteratively adjusted using gradient descent,
which minimizes the loss by updating the parameters in the direction of the
steepest descent, thereby improving prediction accuracy.

By stacking multiple perceptrons into interconnected layers and introduc-
ing non-linear activation functions (e.g., ReLU, sign, sigmoid, tanh) [4], arti-
ficial neural networks (ANNs) were developed to model non-linear and more
complex data structures. The additional intermediate layers between input
and output are known as hidden layers because their computations are not
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directly observable. The architecture of Artificial Neural Networks (ANNs) is
typically feedforward, as information extracted from input data flows in a sin-
gle direction through the hidden layers to the output layer. Each neuron in
the network applies weights and biases to its input and transforms it using
an activation function.[40].

ANNs with multiple hidden layers are referred to as Deep Neural Net-
works (DNNs). These networks are designed to learn high-level features with
greater complexity and abstraction compared to shallower networks. Basi-
cally, DNNs consist of three main types of layers: an input layer, multiple
hidden layers, and an output layer.

• Input layer: The first layer receives the initial raw data as input. Each
neuron in this layer represents a feature or attribute of the input data.

• Hidden layer: Positioned between the input and output layers, hidden
layers perform the primary computations. They transform the input
data into increasingly abstract representations through weighted con-
nections and activation functions [80].

The term "deep" in DNNs refers to the network’s depth, defined by
the number of hidden layers it contains [42]. Adding more hidden lay-
ers increases the depth of the network, enabling it to capture higher-
dimensional patterns and representations in the data. The hierarchical
features extracted in these layers empower DNNs to handle sophisti-
cated real-world problems, such as Natural Language Processing (NLP),
image classification, or object detection.

• Output layer: The final layer generates predictions based on the trans-
formed data, tailored to the specific task. For classification tasks, the
output represents the probability of belonging to each class, while in
regression tasks, it provides a continuous numerical value output. The
number of neurons in the output layer corresponds to the number of
target classes in classification problems.

2.2.1.2 Training Process in DNN

One of the defining features of DNNs is their capability of learning the dy-
namics embedded in data from the presentation of patterns. The iterative
learning process in DNNs follows a systematic sequence of steps designed to
adjust the model’s parameters — weights and biases — so that it can min-
imize the error between the predicted output and the actual target output.
This process repeats over multiple iterations, or epochs, until the model con-
verges to an optimal solution. The process can be broken down into five key
steps [23]:

1. Initialization of Weights and Bias Parameters

At the start of the training process, the weights and bias parameters of
the neural network are initialized. Common strategies include random
initialization for weights and setting biases to zero or small non-zero
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values [82]. Data-driven initialization, where the initialization point is
derived from data statistics [65]. These initial values provide the start-
ing point for the learning process, and the choice of initialization can
significantly affect the speed and effectiveness of training [82].

2. Forward Propagation

In this step, the input data passes through the network layer by layer,
with computations propagating forward using the current set of weights,
biases, and activation functions, finally generating predictions in the
output layer [4]. Each layer performs the following operations:

z(l) = W(l)a(l−1) + b(l), a(l) = ϕ(z(l))

where:

• z(l): Weighted input to the neuron.

• W(l): Weight matrix for layer l.

• b(l): Bias vector.

• a(l−1): Activations from the previous layer.

• ϕ(·): Activation function.

The final output layer produces predictions, denoted ŷ.

3. Loss Function Computation

The loss function quantifies the error between the predicted output (ŷ)
and the actual target (ytrue). The choice of loss function depends on the
task:

• For regression: Mean Squared Error (MSE).

• For classification: Cross-Entropy Loss.

Mathematically:

L(ŷ, ytrue) =
1
N

N

∑
i=1

Loss(ŷi, ytrue,i)

where N is the number of samples. This loss value guides the adjust-
ments needed in the weights and biases by computing its derivative
with respect to the output.

4. Backpropagation In single-layer perceptrons, updating the parameters
is straightforward with simple gradient computation because the loss
function can be expressed as a direct function of the weights. However,
in multi-layer networks, the loss is a complicated composition func-
tion involving the weights from previous layers [4], making gradient
computation more challenging.

The backpropagation algorithm efficiently addresses this problem by
applying the chain rule of differential calculus to compute the gradi-
ents. Backpropagation is the process of propagating the error calcu-
lated by the loss function, backward through the network. The chain
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rule calculates error gradients as summations of local gradient prod-
ucts along the various paths from a node to the output. Using this ap-
proach, the gradients of the loss function with respect to each weight
(W(l)) and bias (b(l)) at layer l are determined as follows:

∂L
∂W(l)

=
∂L

∂a(l)
· ∂a(l)

∂z(l)
· ∂z(l)

∂W(l)

∂L
∂b(l)

=
∂L

∂a(l)
· ∂a(l)

∂z(l)
· ∂z(l)

∂b(l)

∂L
∂a(l)

=
∂L

∂z(l+1)
· ∂z(l+1)

∂a(l)

where:

• z(l): Weighted input to the neuron.

• W(l): Weight matrix for layer l.

• b(l): Bias vector.

• a(l−1): Activations from the previous layer.

• ϕ(·): Activation function.

These gradients indicate the magnitude and direction in which each
parameter should be adjusted to minimize the loss. Through repeated
iterations over batches of training data across multiple epochs, back-
propagation enables the effective updating of weights and biases until
the neural network’s performance reaches a satisfactory level or con-
verges to a solution.

5. Update of Weights and Bias Parameters

After each backpropagation step, the weights and biases are updated
using an optimization algorithm, such as mini-batch gradient descent
or Stochastic Gradient Descent (SGD) [110]. The update rule is:

W(l) ←W(l) − η
∂L

∂W(l)

b(l) ← b(l) − η
∂L

∂b(l)

where η is the learning rate, controlling the step size of the updates.
This step adjusts the parameters to reduce the loss in the next iteration.

Besides, the training process of DNNs also involves several other important
steps, such as dataset preparation, where the data is usually split into three
subsets to ensure robust evaluation. Training set is used to train the model
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by adjusting weights and biases, while validation set is used during training
to tune hyperparameters and monitor for overfitting. Last but not least, test
dataset is used after training to evaluate the model’s performance on unseen
data.

Another key step is epochs and batches processing. An epoch is one com-
plete pass through the training data. During each epoch, the data is divided
into smaller subsets called batches. This enables efficient memory use and
faster convergence.

2.2.1.3 Regularization Techniques

During the training process, the type and amount of input data directly
affect the performance of DNNs. Insufficient training data can lead to is-
sues such as overfitting or underfitting [83]. Overfitting occurs when a model
achieves near-perfect predictions on the training data but fails to generalize
to unseen test data [31]. This happens possibly because the model memo-
rizes the training data and its corresponding outputs rather than learning
the actual underlying trends. Overfitting is often observed as a notable gap
between training and test data performance, especially in complex models
trained on small datasets. Underfitting, on the other hand, arises when the
model is unable to capture the data patterns, often due to an overly simpli-
fied model or poor-quality data, resulting in high error rates on both training
and test sets [31].

Regularization techniques mitigate this issue by improving the model’s
generalization ability. They ensure balanced performance on both training
and test datasets.

One common approach is dropout, which randomly deactivates some nodes
and their connections during training, encouraging the model to learn inde-
pendent features rather than relying too heavily on specific nodes [112]. A
related method, drop-weights, deactivates connections between nodes instead
of nodes themselves, promoting diverse learning pathways.

Data augmentation artificially increases the size of the training dataset by
applying transformations such as rotations, flips, color adjustments, or slid-
ing time windows. By simulating a larger dataset, this approach provides
a broader representation of possible input variations and helps to reduce
overfitting.

Batch normalization normalizes the output activations of each layer to fol-
low a unit Gaussian distribution, minimizing internal covariance shift and
improving training stability [11]. It also prevents the vanishing gradient prob-
lem, accelerates convergence, and reduces dependency on hyperparameter
tuning.

2.2.2 Common Architectures in Deep Learning

DL has evolved with the development of various architectures tailored to
different types of data and tasks. This section provides an overview of some
widely-used DL architectures and their unique characteristics.
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2.2.2.1 Deep Belief Network

Deep Belief Networks (DBNs) are probabilistic generative DL architectures
that differ from traditional multilayer perceptrons (MLPs) in their weight
initialization process [47]. Unlike Multi-Layer Perceptrons (MLPs), which ini-
tialize weights randomly, Deep Belief Networks (DBNs) utilize a greedy, layer-
wise pre-training algorithm based on Restricted Boltzmann Machines (RBMs)
to initialize their weights. Restricted Boltzmann Machines (RBMs) are stochas-
tic neural networks that model the probability distribution of input data,
using a two-layer architecture with visible and hidden units. DBNs are con-
structed by stacking multiple RBMs, where the output of one RBM serves as
the input to the next.

Training a DBN involves two main steps: pre-training and fine-tuning [74].
During pre-training, an unsupervised learning approach is applied for each
RBM in a bottom-up direction to extract features. This phase of DBNs en-
hances performance by initializing weights based on the input data struc-
ture, which brings them closer to the global optimum than random initializa-
tion. Once pre-training is complete, the DBN is fine-tuned using supervised
learning with backpropagation in a top-down direction to further refine the
network’s parameters. DBNs are effective for processing unlabeled data and
mitigating both overfitting and underfitting issues.

2.2.2.2 Convolution Neural Networks

Convolutional Neural Networks (CNNs) are a specialized class of DNNs

designed to process data with a grid-like structure, such as images [66].
In the field of DL, Convolutional Neural Networks (CNNs) are among the
most prominent algorithms, broadly recognized for their efficiency in pat-
tern recognition and image processing tasks. Typically, a CNN architecture
is composed of one or more stacked convolutional layers, each comprising
three stages: the convolution stage, the detector stage, and the pooling stage
[40].

The convolution stage involves applying convolutional filters to the orig-
inal 2D input data, resulting in multiple feature maps. In detector stage,
these output feature maps undergo a non-linear transformation using ac-
tivation functions such as Sigmoid and Rectified Linear Unit (ReLU). This
transformation introduces non-linearity, enabling the network to model com-
plex patterns in the data. Finally, pooling operations such as Max Pooling or
Average Pooling are applied to replace the output with summary statistics
of nearby regions. Pooling introduces translational invariance to the repre-
sentation and reduces the size of the input passed to the next convolutional
layer or a fully connected layer, and preserves essential information.

According to [40], CNNs offer three key advantages: sparse interactions,
parameter sharing, and equivariant representation. While traditional neural
network layers use matrix multiplication, where each output unit interacts
with every input unit, resulting in fully connected (FC) layers. In contrast,
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CNNs employ smaller kernels than the input size, with only a limited number
of weights connecting two adjacent layers.

Additionally, CNNs do not allocate separate weights for every neuron pair
in neighboring layers. Instead, a single set of weights operates across all
pixels of the input matrix, allowing the network to learn a unified set of
parameters rather than distinct ones for each location. By leveraging shared
weights and local connections, CNNs efficiently utilize the structure of 2D
input data. This approach drastically reduces the number of weight param-
eters, thereby lowering the demand for parameter storage, simplifying the
architecture, and accelerating the training process.

Another key property of CNNs is equivariance to translation, which refers
to the ability of convolution to produce consistent feature maps that change
predictably with transformations in the input. This property helps CNNs ex-
tract location-invariant features effectively.

2.2.2.3 Recurrent Neural Networks

Unlike feedforward neural networks, recurrent neural networks (RNNs) are
characterized by their cyclic connections [105], where the output of a layer
becomes the input to itself, forming a feedback loop. This structure enables
Recurrent Neural Networks (RNNs) to have memory about previous states
and integrates that into current computations. As a result, RNNs can pro-
cess a sequence of inputs and generate a corresponding sequence of outputs,
making them particularly well-suited for tasks that involve sequential and
time-dependent data. They excel at capturing features and long-term depen-
dencies in sequential data.

However, traditional RNNs often encounter the vanishing gradient prob-
lem during training, which limits their ability to learn long-term patterns
effectively. Long Short-Term Memory (LSTM) networks [49] address this is-
sue by incorporating multiplicative gates that regulate the flow of infor-
mation. These gates enable constant error propagation through specialized
units known as memory cells, allowing the network to retain important in-
formation over time. Stacking recurrent hidden layers further enhances the
learning capacity of RNNs, enabling them to capture higher-level temporal
patterns and complex dependencies.

2.2.2.4 Auto-encoder Neural Networks

Auto-encoder (AE) networks are widely used models for data compression
and dimensionality reduction [85]. An Auto-encoder (AE) consists of two
main components: an encoding network and a decoding network. The en-
coding network learns to represent the input data in a lower-dimensional
latent space, capturing the most important features. The decoding network
then reconstructs the original input data from this compressed representa-
tion. By minimizing reconstruction errors during training, AEs are designed
to preserve the most salient features of the input data.
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As an extension of traditional auto-encoder architectures, the Variational
Autoencoder (VAE) [20] introduces a probabilistic approach to the latent rep-
resentation. Instead of mapping input data to fixed encodings, Variational
Auto-encoder (VAE) maps it to a probability distribution in the latent space,
typically Gaussian. This probabilistic modeling enables the the generation of
new data samples by sampling from the learned latent distribution, which
makes AEs suitable for generative tasks and other applications requiring flex-
ibility in latent space representation.

2.2.2.5 Generative Adversarial Network

As generative models, generative adversarial networks (GANs) are widely used
for generating realistic data samples based on the learned probability distri-
bution of the original dataset [95]. A Generative Adversarial Network (GAN)
consists of two components: a generator and a discriminator. The generator
aims to create data samples that replicate the distribution of the training
data, while the discriminator’s role is to distinguish between real data and
generated data. These two models are trained adversarially, with the gener-
ator improving its ability to produce realistic samples as the discriminator
refines its ability to differentiate real data from generated data.

The training process uses a minimax loss function, where the generator
minimizes its loss by generating realistic samples, and the discriminator
maximizes its accuracy in distinguishing between real and generated data
[41]. As training progresses, the generator produces increasingly realistic
data samples, while the discriminator becomes more accurate in identify-
ing them. GANs are well-suited for tasks such as data augmentation, image
synthesis, and modeling complex data distributions.

2.3 eeg analysis methods

The analysis of EEG signals contributes significantly to understanding brain
activity [6, 88], diagnosing neurological disorders [118], and developing BCI

[122]. EEG processing methodology has evolved from basic techniques, such
as statistical comparisons, to advanced algorithms, including ML and DL.

The conventional approach of EEG analysis involves visually inspecting
raw signals, measuring frequency and amplitude based on simple rules
to detect transient features or anomalies [17, 27]. This manual monitoring
method is often considered subjective, time-consuming and labor-intensive,
as it requires specialized knowledge and experience of experts who need to
be well-trained in EEG interpretation to produce reliable results [118]. Fur-
thermore, the absence of clearly defined criteria makes the evaluation sub-
jective, potentially leading to inconsistencies among different evaluators.

The task becomes more challenging when it comes to evaluating large
amounts of high-dimensional EEG data. To address this problem and achieve
quicker and more accurate results with a higher degree of automation, computer-
aided technologies are increasingly utilized in EEG signal processing and
analysis. Automated classification also helps minimize human error while
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providing consistent and objective assessment for research and practical ap-
plications.

In recent years, the rapid progress in data-driven technologies has led re-
searchers to apply new and efficient ML and DL algorithms more frequently
to EEG decoding, establishing them as transformative tools in automating
EEG classification. These advancements build upon a structured EEG pro-
cessing pipeline, which typically consists of three key steps: preprocessing,
feature extraction, and classification. [102]

2.3.1 Preprocessing

Initially, raw EEG signals undergo preprocessing with an attempt to improve
signal quality without changing any of the data. Several preprocessing steps
are applied, such as artifact removal, filtering, re-referencing, segmenting,
and feature scaling[50].

The process begins with artifact removal, where undesired signals, such
as physiological artifacts and external noise are eliminated. This can be
performed manually or automatically using techniques, such as regression-
based methods and independent component analysis (ICA). Next, filtering
is applied to minimize irrelevant or noisy frequency components. Common
techniques include high-pass, low-pass, and bandpass filtering, which iso-
lates signals within a specific frequency range (e.g., 4–45 Hz), and notch
filtering, which removes power line interference at 50/60 Hz.

Re-referencing is the process of changing the reference channel(s), which
serve as the baseline to compare signals from the other channels. EEG signals
are inherently referential, meaning they are measured as the voltage differ-
ence between a recording electrode and a reference electrode [24]. However,
the initial choice of reference can cause some biases, making certain brain
regions appear more or less active than they truly are. Re-referencing to a
different site or method, such as linked mastoids, bipolar referencing, or
common average referencing, helps reduce this bias and provides a more
balanced representation of scalp activity.

In the next step, continuous EEG recordings are divided into smaller epochs
through segmentation. These segments are usually time-locked to the onset
of specific events to identify changes in EEG activity associated with sen-
sory stimulation or cognitive tasks [50]. Trials contaminated by artifacts and
poorly functioning channels are excluded to maintain data quality.

Last but not least, feature scaling is applied to normalize the data and en-
sure consistency across channels and trials. This step prevents excessive fluc-
tuations in the range of raw data values, reduces distortion caused by ampli-
tude differences and improves the overall reliability of subsequent analyses.

2.3.2 Feature Extraction

The next phase is feature extraction, which plays a decisive role in the inter-
pretation and classification of signals. Features represent distinctive compo-
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nents extracted from signal segments, differentiating them from other pat-
terns, as well as reflecting the underlying neural activity. Hence, the quality
of feature extraction will have a direct effect on the accuracy of classification.
However, extracting features from such complex and dynamic EEG data is
a challenging task. Feature extraction techniques can be classified into one-
dimensional approaches, which derive features from the time domain, fre-
quency/spectral domain, or decomposition domain, and multi-dimensional
approaches, which extract features from the time-frequency domain and spa-
tial domain [106].

Time-domain feature extraction is a primitive technique, focusing on an-
alyzing signals with respect to time and quantifying temporal changes. For
frequency-domain analysis, the time-domain signals are transformed into
frequency-domain representation using the Fast Fourier Transform (FFT) al-
gorithm. Another key feature, the PSD, is obtained by using Welch’s method
[127].

The third method involves decomposing EEG signals into simpler com-
ponents, each capturing specific aspects of the signal, such as frequency
bands, spatial patterns, or temporal dynamics. This decomposition-domain
approach functions both as a feature extraction and filtering technique by
isolating relevant features while simultaneously removing undesirable com-
ponents, such as noise or artifacts [106]. The Wavelet Transform (WT) is par-
ticularly popular due to its effectiveness with non-stationary signals. While
Continuous Wavelet Transform (CWT) provides a highly detailed and con-
tinuous time-frequency representation of the signal, Discrete Wavelet Trans-
form (DWT) uses discrete scales and positions to efficiently capture key fea-
tures of the signal.

In joint time-frequency domain feature extraction, both spectral and tem-
poral features are analyzed together. Time-frequency analysis techniques, in-
cluding WT and Short-Time Fourier Transform (STFT), achieve this by decom-
posing signals into smaller components within short time windows, allow-
ing for simultaneous examination of time and frequency characteristics.

Lastly, spatial-domain feature extraction method - also known as spatial
filtering - processes EEG signals by focusing on the spatial relationships be-
tween the signals recorded from multiple electrodes. Common Spatial Pat-
tern (CSP), a supervised spatial filter, transforms EEG signals into a unique
spatial representation where the variance of one class (e.g., a specific task
or mental state) is maximized while the variance of the other classes is min-
imized. This transformation creates features that are highly discriminative
for classification tasks.

Following feature extraction, optional steps such as feature selection and
dimensionality reduction can be applied to simplify the data and enhance
model performance while reducing computational overhead [102]. Feature
selection involves selecting the most relevant features from the high-dimensional
data while eliminating irrelevant and redundant features [100]. Dimension-
ality reduction, on the other hand, focuses on transforming the original
feature set into a smaller, lower-dimensional representation while preserv-
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ing critical information. This helps minimize processing time and improve
classification accuracy, especially for high-dimensional data like EEG signals.
Linear techniques like Principal Component Analysis (PCA) focus on find-
ing components with the greatest variance, while non-linear methods, such
as Independent Component Analysis (ICA), identify components with the
greatest statistical independence [102].

2.3.3 Classification

The final step is signal classification, where selected features are used to
identify patterns or predict the class label of new data points in specific
tasks, such as distinguishing between normal and abnormal brain activity
[91] or detecting cognitive states [10]. ML uses data as a guide to identify
patterns and make predictions on unseen and new data, enabling systems
to learn and improve performance without being specifically programmed.
Classification algorithms can be separated into two categories: conventional
ML algorithms and DL algorithms.

2.3.3.1 Conventional Classification Algorithms

Traditional ML algorithms are built on statistical concepts and use hand-
crafted input features extracted from raw data to train the model. The al-
gorithms then apply statistical methods or predefined rules to classify data
into the output categories [96].

ML approaches can broadly be categorized into supervised and unsuper-
vised learning. While supervised learning relies on labeled training data to
predict outputs with well-defined categories, unsupervised learning works
with unlabeled data, aiming to discover hidden patterns or clusters with-
out predefined labels. Among these, supervised learning methods are more
widely used for EEG data because they allow for precise mapping between
the input signals and their corresponding labels. This is particularly impor-
tant because EEG signals are highly complex and non-stationary, often requir-
ing analysis in short-duration segments tied to localized events [106].

The most prevalent classification algorithms encompass Naive Bayes (NB),
Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Logistic Regression (LR), and Random Forest (RF)
[96]. These methods are capable of building precise classification models
based on input data. However, they also come with some limitations. Tra-
ditional machine learning approaches heavily depend on human expertise,
prior domain knowledge of EEG data, and a clear understanding of the spe-
cific task to identify features deemed relevant for the classification.

Such reliance becomes problematic when dealing with real-world prob-
lems, as EEG data are highly complex and dynamic. Designing systems to
explicitly capture all the nuances and variability in EEG signals is highly
challenging, especially since handcrafted programming is often tailored to
specific datasets or scenarios, limiting the ability to uncover hidden pat-
terns or intricate interactions within the data [69]. Moreover, the need for
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domain-specific processing pipelines reduces the flexibility and generaliza-
tion capability of traditional algorithms, often leading to low classification
performance when handling highly dynamic features [93].

These challenges have driven progress toward more flexible and auto-
mated approaches, such as DL. Unlike conventional methods, DL can auto-
matically extract hierarchical features directly from raw data without relying
on separate feature extraction steps. This capability not only simplifies the
EEG processing pipeline by offering end-to-end learning and achieving com-
petitive performance on the target task [96].

2.4 deep learning in eeg classification

2.4.1 Overview of EEG Classification with Deep Learning

In the past decade, DL methods have made significant advancements in EEG

analysis and classification, driven by their powerful ability to handle large
datasets and decode complex patterns [39]. Numerous studies have shown
high performance of Deep Neural Networks (DNNs) in classifying EEG sig-
nals rapidly and accurately. To fully leverage the advantages of DL, selecting
an appropriate neural network architecture is crucial. A systematic literature
review by [91] analyzed 154 papers on EEG classification using DL published
between 2010 and 2018, revealing the prevalence of neural network architec-
ture choices. The most frequently used framework was CNN, accounting for
40% of the papers. RNNs and AEs followed, each being chosen for about 13%
of the works. Combinations of CNNs and RNNs, as well as DBNs, appeared
in 7% of studies, while other architectures, including Boltzmann machines
(RBMs), fully connected (FC) neural networks, and generative adversarial
networks (GANs), were used in the remaining studies.

The widespread adoption of CNNs can be attributed to their ability to
extract spatial features effectively, manage 2D and 3D representations, and
exploit hierarchical structures in EEG signals. Similarly, RNNs are favored for
their excellence at capturing temporal dependencies and sequential patterns
in time-series EEG data, while AEs are known for their strength in unsu-
pervised feature extraction. The advantage of a dual stream spatio-temporal
neural network, CNN-RNN, over an independent CNN or RNN model lies in its
stronger learning and memory capabilities [125]. The combination of CNNs

and RNNs offers a powerful approach to handle the spatiotemporal com-
plexity of EEG data, making full use of the strengths of each architecture to
uncover both spatial and temporal patterns. In addition to these approaches,
DBNs are effective for learning hierarchical features through unsupervised
pretraining and handling noisy EEG data. GANs can help generate synthetic
EEG data to address class imbalance and model complex distributions to
enhance classification performance.

Among the diverse applications of DL in EEG analysis, 86% of state-of-the-
art studies have focused on using DL for the classification tasks involving EEG

data [91]. The remaining research explores methods to enhance processing
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tools, including feature learning, artifact handling, and model visualization,
and generating data from EEG signals using DL. Researchers have applied DL

to a wide range of EEG classification tasks. According to the review by [26],
EEG classification tasks are categorized into six major groups along with their
respective application distributions: motor imagery (22%), emotion recogni-
tion (16%), mental workload (16%), seizure detection (14%), event-related
potential (ERP) detection (10%), and sleep stage scoring (9%). Beyond these
primary categories, 13% of studies explore various applications, such as
Alzheimer’s classification, bullying indices detection, depression diagnosis,
gender classification, and the detection of abnormal EEG patterns.

2.4.2 Deep Learning in various Types of EEG Classification Tasks

This section presents an overview of the different types of EEG classification
tasks as well as the DL methods applied to them. EEG classification tasks
cover a broad range of domains, each with unique challenges and require-
ments. The majority of existing studies have concentrated on developing
domain-specific DL models tailored to datasets from a particular domain.

2.4.2.1 Motor Imagery Tasks

Motor Imagery (MI) tasks are extensively studied for their ability to activate
similar brain pathways as in actual movement execution. MI signals are of
spontaneous type because they are generated solely through the user’s imag-
ination of performing specific movements (e.g., hand or foot movements)
without any physical execution [6].

A wide range of DL architectures has been developed for MI datasets. Ac-
cording to Al-Saegh, Dawwd, and Abdul-Jabbar [6], the most predominant
architecture type is CNN (73%), followed by hybrid-CNN (hCNN) and RNN

(including LSTM and GRU). hCNNs integrate layers from other architectures,
such as autoencoders or RNNs, with standard convolutional layers

Several well-known CNN models have been widely applied to MI tasks and
even across other domains, including EEGNet [67], DeepConvNet, and Shal-
lowConvNet [99]. Beyond standard CNNs, other advanced variants such as
attention-based CNNs, residual-based CNNs, inception-based CNNs, DenseNets,
and 3D-CNNs, have further enhanced MI classification, achieving accuracies
of up to 90% [10]. For instance, a CNN using wavelet transform temporal-
frequency image representations achieved 85.59% accuracy on BCIC-IV-2a
dataset and 90% on BCIC-II-3 [132], while an end-to-end multi-branch multi-
scale CNN achieved approximately 80% accuracy on BCIC-IV-2a [57].

Hybrid CNN architectures have also been effective. A hybrid CNN-Stacked
Autoencoder (SAE) model, which processes 2D spectral images using a 1D
convolutional layer followed by a six-layer SAE, attained accuracies of 90.0%
and 77.6% on the BCIC II-3 and BCI-C IV-2b datasets, respectively [115].
Zhang et al. [135] introduced a deep convolutional generative adversarial
network (DCGAN) consisting of four-layer GAN model for MI data augmen-
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tation. The DCGAN outperformed traditional data augmentation techniques
such as geometric transformations and autoencoders.

RNN/LSTM architectures have excelled at capturing temporal features in MI

EEG data. A model combining LSTM with common spatial pattern (CSP) and
support vector machine (SVM) achieved 82.52% accuracy on the BCIC-IV-1
dataset citekumar2019brain.

2.4.2.2 Emotion Recognition Tasks

Emotions are defined as complex mental states that influence physical behav-
iors and physiological activities [55]. They are vast, diverse and difficult to
categorize due to their non-mutually exclusive nature, causing overlaps and
ambiguities across categories. According to Russell [94], emotion can be clas-
sified using dimensional models into two dimensions: arousal and valence.
The term ’valence’ refers to the level of pleasure, ranging from unpleasant
(e.g., sad, stressed) to pleasant (e.g., happy, elated); meanwhile, ’arousal’ in-
dicates the level of excitation, from inactive (e.g., uninterested, bored) to
active (e.g., alert, excited).

EEG is considered a reliable and objective source for detecting true emo-
tions [98]. It is found that emotion recognition requires capturing expression
over long durations with contextual temporal dependencies. Therefore, emo-
tion recognition tasks typically involve having subjects watch video clips that
have been pre-labeled with specific emotions by experts. EEG was measured
during these viewings and an emotion self-assessment typically followed
[26].

Li et al. [70] introduced a CNN-RNN framework (C-RNN) using Continuous
Wavelet Transform (CWT) to preprocess EEG signals into 2D spectral energy
representations. The CNN layers extracted cross-channel correlations, while
the LSTM layers modeled temporal dependencies across sequential frames.
Evaluated on the DEAP dataset, the C-RNN achieved accuracies of 74.12%
for valence and 72.06% for arousal.

Alhagry, Fahmy, and El-Khoribi [7] presented an end-to-end LSTM-RNN

as a lightweight approach that outperformed feature-based methods with
accuracies of 85.65% for arousal and 85.45% for valence. Similarly, Salama
et al. [98] proposed a 3D-CNN to extract the spatiotemporal features from
EEG signals. A 3D input representation of EEG data was generated by com-
bining 2D spatial matrices of multiple EEG channels and temporal frames.
The model achieved recognition accuracies of 87.44% for valence and 88.49%
for arousal.

Song et al. [108] introduced a state-of-the-art method, Dynamical Graph
Convolutional Neural Network (DGCNN). Unlike traditional GCNNs, DGCNN
dynamically learned the adjacency matrix representing the intrinsic relation-
ships among EEG channels during training. EEG signals were modeled as
a graph, where each channel was a node, and graph convolution was ap-
plied to extract discriminative features across frequency bands. The model
achieved accuracies of 86.23% for valence, 84.54% for arousal on the DREAMER.
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2.4.2.3 Mental Workload Tasks

Mental workload (MWL) refers to the cognitive resources needed to com-
plete a given set of tasks. It is affected by factors such as task complexity,
the amount of information to be processed, and individual’s cognitive and
perceptual abilities [86]. To evaluate Mental Workload (MWL), subjects are
typically asked to perform a series of cognitive tasks with different levels of
task complexity. Common tasks include the n-back task, where the subject
needs to recall stimuli from n steps back, with the difficulty increasing as n
grows; the visual search task, which requires locating a target within a visual
field; the simultaneous capacity (SIMKAP) task, which assessed multitasking
and attentional capacity by measuring a person’s ability to process multiple
streams of information at the same time [86].

Parveen and Bhavsar [86] introduced an attention-based 1D-CNN model
for classifying EEG-based MWL on the STEW dataset, achieving accuracies of
98% for binary classification (rest vs. task) and 79.98% for ternary classifi-
cation (low, moderate, high workload). Similarly, Chakladar et al. [21] pro-
posed a Bidirectional Long Short-Term Memory (BLSTM)-LSTM hybrid model
optimized with Grey Wolf Optimization (GWO) for the same dataset, achiev-
ing accuracies of 86.33% for "No task" and 82.57% for "SIMKAP-based mul-
titasking" tasks.

In another study, Sharma and Ahirwal [103] developed a cascaded end-
to-end 1D-CNN-BLSTM model tested on the SIMKAP task dataset, achiev-
ing binary and ternary classification accuracies of 96.77% and 95.36%, re-
spectively. Furthermore, the study of Ganguly et al. [35] applied a stacked
LSTM on the EEGMAT database for mental arithmetic tasks, achieving 91.67%
mean accuracy with spectral feature extraction.

2.4.2.4 Sleep Staging Tasks

Polysomnography (PSG) is a sleep study to objectively assess the quality
of sleep, comprising EEG (brain activity), EOG (eye movement), EMG (mus-
cle activity), and ECG (heart activity) [113]. Sleep is categorized into two
primary types: non-rapid eye movement (NREM) and rapid eye movement
(REM) sleep. NREM sleep consists of four stages, which transition into the
REM sleep stage [75]. Sleep stage classification has been among the least
studied task in EEG analysis due to the large volume of overnight EEG record-
ings required [26]. These signals are typically scored by experts and classi-
fied into sleep stages 1, 2, 3, 4, and REM stage.

Supratak et al. [113] presented DeepSleepNet model, which combined
CNNs and BLSTM for automatic sleep stage scoring using raw single-channel
EEG. Eldele et al. [34] introduced AttnSleep, an attention-based deep learn-
ing architecture that used single-channel EEG signals. The model integrated
a multi-resolution CNN to extract frequency-specific features, adaptive fea-
ture recalibration to enhance feature quality, and a temporal context en-
coder leveraging multi-head attention combined with causal convolutions
to capture temporal dependencies. Similarly, Phan et al. [87] developed an
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attention-based bidirectional RNN RNN with GRUs. EEG data were trans-
formed into feature vectors, and smoothed with triangular or learned filter
banks. Attention weights identified discriminative temporal features, and a
linear SVM performed the final classification. All three models demonstrated
strong performance across benchmark Sleep-EDF datasets.

2.4.2.5 Seizure Detection Tasks

Epilepsy is among the most prevalent neurological diseases worldwide. Seizures
are defined as sudden changes in the brain’s electrical activity, leading to
altered behaviors including loss of consciousness, involuntary movements,
temporary breathing difficulties, and memory loss [107]. These episodes
primarily occur in the cortex, the brain’s outermost layer, making EEG the
most widely used signal for epileptic seizure detection [51]. When epilepsy
is present, seizure activity will appear as rapid spiking waves on the EEG

recording, often creating noticeable abnormalities that serves as a distinct
signature of epileptic activity in EEG data. EEG data are typically recorded
from epileptic patients during seizure and seizure-free periods, with some
datasets including non-epileptic patients as a control group [26].

There are several approaches to epileptic seizure-related classification: epilep-
tic seizure prediction to recognize the brain state before seizure event (pre-
ictal), seizure detection to distinguish between seizure (ictal) and non-seizure
(interictal) events, and specific seizure type classification, such as identifying
focal or non-focal seizures [121].

Truong et al. [120] utilized a CNN-based architecture for seizure prediction
by transforming EEG data into Short-Time Fourier Transform (STFT) spectral
images. This approach achieved high sensitivity and low false prediction
rate (FPR) on both intracranial and scalp EEG datasets. Tsiouris et al. [121]
developed a two-layer LSTM network and exploited a broad variety of fea-
tures including time and frequency domains, cross-correlation between EEG

channels, and graph-theoretic measures. Evaluated on the CHB-MIT Scalp
EEG database, the method achieved 100% sensitivity and specificity with a
very low FPR.

Hussein et al. [51] proposed an end-to-end LSTM network for seizure de-
tection on the Bonn EEG dataset, achieving 100% accuracy under optimal
conditions and remains robust against noise and artifacts such as muscle
activity and eye-blinking. Additionally, Xu et al. [133] implemented a 1D-
CNN-LSTM model on the UCI Epileptic Seizure Recognition Dataset. This
method integrated a 1D-CNN for feature extraction with LSTM layers for cap-
turing temporal patterns in EEG time-series data, achieving high recognition
accuracies of 99.39% and 82.00% on the binary and five-class classification,
respectively.

2.4.2.6 Event-Related Potential (ERP) Tasks

Event-Related Potentials (ERPs) are small brain voltages generated in re-
sponse to specific sensory, motor or cognitive events or stimuli [114]. De-
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tection of Event-related Potentials (ERPs) often involves recording EEG data
while subjects perform visual presentation tasks, where they observe a rapid
sequence of images or letters and focus their attention on specific targets [26].

The P300 wave, a type of ERPs detectable via EEG, is characterized by a pos-
itive voltage deflection occurring roughly 300 ms after the stimulus [19]. Its
presence, amplitude, timing, and spatial distribution serve as metrics of cog-
nitive function, particularly in decision-making processes. The P300 speller
is based on the oddball paradigm, where infrequent and expected stimuli
evoke a P300 response [89]. The main goal is to accurately and rapidly de-
tect the P300 peaks in the EEG. In this paradigm, a 6× 6 grid of alphanumeric
characters is presented, with subjects focusing on specific target characters.
Rows and columns were randomly intensified at 5.7 Hz, with 2 out of 12

intensifications containing the target character, eliciting P300 responses.
Deep learning models for accurate decoding of ERPs remain relatively

scarce in the literature [2]. Cecotti and Graser [19] explored various CNN

models, ranging from single classifiers (e.g., CNN-1, CNN-2a) to multi-classifier
systems (e.g., MCNN-1, MCNN-3) and compared their performance. The
best-performing method, MCNN-1, achieved a recognition rate of 95.5% for
character detection without requiring channel selection. In another study,
Maddula et al. [78] proposed a hybrid approach combining 3D-CNN, 2D-
CNN, and LSTM to capture the spatiotemporal structure of ERPs. However,
despite the efforts, the search for an optimal deep learning model for ERPs

decoding is still ongoing.
Apart from the aforementioned tasks, EEG classification using DL approaches

has also been explored in areas such as abnormalities detection, where EEG

signals are analyzed to identify irregular brain activities. CNNs have also
been applied to steady-state visually evoked potential (SSVEP) tasks, which
detect brain responses to flickering visual stimuli at distinct frequencies.
These responses help determine the user’s focus and identify their intended
selection [84]. Additionally, error-related potentials (ErrPs), which arise in
response to errors during task execution, have gained attention in BCIs
and cognitive monitoring for error correction and adaptive responses [111].
Recent studies have employed DL techniques, such as GAN-CNNs, to clas-
sify Error-related Potentials (ErrPs) with improved performance [36]. Further-
more, specialized tasks, such as fatigue detection, diagnosis of neurological
and neurodegenerative diseases (e.g., dementia, Alzheimer’s disease, brain
tumors, strokes, Parkinson’s disease) [107], have increasingly adopted DL

methods to develop automated detection systems and enhance EEG interpre-
tation, leading to improvements in accuracy, robustness, and automation in
real-world applications.

2.4.3 Generalizability in Deep Learning

The concept of generalizability in deep learning has been interpreted in
various ways across the literature, depending on the context in which it is
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applied. This section provides a precise definition of generalizability within
the scope of this thesis.

Conventionally, generalizability refers to the ability of a model to provide
accurate predictions on new and unseen data [12]. This includes performing
well not only on unseen samples from the same dataset it was trained on but
also on new datasets that may represent different conditions or distributions.

In the study of Shahbazi and Aghajan [101], generalizability is character-
ized as the ability of a seizure prediction method to perform reliably and
consistently across different patients and conditions. This challenge arises
from the complexity and variability of EEG data, both among subjects and be-
tween seizures from the same patient. In this study, generalizability specifi-
cally refers to the transferability of a model. That is, the model should not be
specifically tailored to each seizure or individual patient. Transferability is a
significant challenge in EEG-based DL due to the high intra- and inter-subject
variability in EEG data, together with the scarcity of labeled data. Typically,
data from a single patient is insufficient to train and test robust models.
Therefore, a model trained on one group of patients or seizure episodes
should generalize effectively to unseen patients or new seizure episodes.

Transfer learning has recently been widely explored as a means to im-
prove generalizability in EEG classification. In the review of transfer learning
in EEG, Wan et al. [124] defines generalizability as the transferability across
different datasets. This describes a model’s ability to achieve strong perfor-
mance on a different dataset after being trained on one, effectively trans-
ferring knowledge learned in one domain to another related domain with
minimal retraining. A generalizable model should be able to extract transfer-
able and domain-independent features.

Within the scope of this thesis, generalizability is defined as the ability of a
model to perform effectively across multiple datasets and domains without
requiring architectural adjustments. The model is trained and tested sep-
arately on each dataset, ensuring it learns dataset-specific patterns while
avoiding overfitting. A model’s generalizability reflects its capacity to learn
relevant features from new data and accurately classify them, assuming suf-
ficient data is available for training.

2.4.4 State of the Art

This section provides an overview of the current state of EEG-based deep
learning, focusing on recent advancements towards achieving generalization.
There is a limited number of articles directly addressing the generalizability
of EEG-based deep learning methodologies, as well as a representative col-
lection of EEG datasets.

A review conducted by Craik, He, and Contreras-Vidal [26] reveals the
prevalence of task-specific deep learning strategies in EEG analysis. While
tasks such as emotion recognition, motor imagery, and sleep stage scoring
showed no preference for specific DL algorithms, seizure detection studies
mostly leverage CNN’s or RNN’s, with RNN’s being slightly more in use,
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whereas studies on ERPs had a clear preference for CNNs. Additionally, the re-
view underscores the challenge in comparing classification accuracy achieved
by different architecture design choices across tasks and EEG datasets due to
the variety in algorithm design or input processing methods. This lack of
standardization makes evaluating the overall effectiveness of different DL

approaches for EEG analysis difficult.
Heilmeyer et al. [46] proposed a novel framework for the large-scale eval-

uation of DL architectures on EEG datasets across various decoding problems
of different difficulty, promoting generalizability beyond specific domains.
The evaluation leveraged four well-established CNN architectures: Braincode
Deep4 ConvNet, Braincode Shallow ConvNet and two versions of EEGNet.
To ensure that the success or failure of the compared methods is not limited
to a specific decoding domain, they selected a range of datasets representing
various common BCI tasks including motor tasks, speech imagery, and error
processing. This approach provides valuable insights into the performance
and applicability of DL architectures in diverse EEG decoding scenarios.

EEGNet, an EEG-specific convolutional neural network introduced by Lawh-
ern et al. [67], has proven its ability to generalize across different BCI paradigms:
P300 visual-evoked potentials, Error-Related Negativity (ERN), Movement-
Related Cortical Potentials (MRCP) and Sensory Motor Rhythms (SMR). It
is probably the first work that has validated the efficacy of a single network
architecture across multiple BCI datasets. The results showed that deep CNN

(i.e., five convolutional layers) tended to perform better on the oscillatory
BCI data set, while shallow CNN (i.e., two convolutional layers) achieved bet-
ter performance on the event-related potential BCI data set [39]. EEGNet was
further evaluated for emotion recognition in the study conducted by Wang
et al. [126], albeit achieving lower accuracy compared to other tasks.

Although still in its early stages, the development of generalizable DL

frameworks for EEG classification is gaining increasing attention. The end-
to-end multi-branch multi-scale CNN of Jia et al. [57], initially developed
on MI tasks, reached an outstanding accuracy compared to state-of-the-art
models and delivered consistent performance across subjects and time. The
authors now attempt to generalize this framework further by extending it to
other EEG classification domains, such as the EEG-based emotion recognition.



3
M E T H O D O L O G Y

This chapter explains the methodology used to address the research focuses
outlined in Chapter 1. It begins with an overview of the study design and re-
search framework, followed by a detailed explanation of its implementation.

3.1 conceptual framework

The framework consists of three key components: (i) a collection of EEG data,
(ii) DL methods for classification, and (iii) an approach for subset selection.
This chapter provides a detailed description of each component. The pri-
mary objective of this study is to identify a small yet representative subset
of EEG datasets that capture the diversity of a broader dataset collection. The
ultimate goal is to ensure that future researchers can evaluate algorithms
and confidently infer their performance on the entire range of EEG datasets
from various domains based on the subset. Additionally, this study explores
which datasets can consistently achieve high classification accuracy across
deep learning models, while also identifying datasets that remain particu-
larly challenging to classify with current techniques.

3.1.1 Dataset Selection

We selected commonly-used and publicly available EEG-based experiment
datasets as our primary data sources based on prominent literature review
articles in the field. Datasets should represent a broad spectrum of common
EEG-based classification paradigms, including emotion recognition, motor
imagery [6], sleep stage scoring, seizure detection, mental workload, and
ERPs.

3.1.1.1 Data Preprocessing

In conventional EEG classification pipelines, the initial step involves data pre-
processing and feature extraction from raw EEG data. In this study, multiple
end-to-end deep learning models are applied directly to raw EEG signals, au-
tomatically learning features from the data. Therefore, no additional feature
extraction step is necessary. However, EEG signals still need preprocessing to
eliminate or reduce the effects of artifacts caused by their low SNR [39]. To
eliminate any discrepancies and ensure fair comparisons across datasets, all
preprocessing steps are standardized.

As mentioned in Chapter 2, EEG data requires multiple preprocessing
steps to achieve high-quality data for reliable analysis. However, the wide
variety of available preprocessing techniques makes it impractical to exhaus-
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tively apply all of them. In order to select appropriate preprocessing steps
without negatively influencing the end results, we conducted a small experi-
ment. We searched for a study on EEG classification that demonstrated high-
performance results and provided publicly available code for both dataset
preprocessing and model implementation, along with an open-access dataset.
This paper served as a reference point for evaluating and refining prepro-
cessing pipelines. The study of Ingolfsson et al. [53] was selected, with the
corresponding code obtained from the associated GitHub repository. The
model proposed in this study, EEG-TCNet, was evaluated on the 4-class
motor-imagery BCI Competition IV-2a dataset, achieving classification accu-
racy of 77.35%. Various combinations of preprocessing steps (e.g., bandpass
filtering, downsampling, artifacts removal, sliding window, standardization)
were tested on the dataset and model to identify configurations that yield
results comparable to the reference study. Based on these tests, a simple
yet effective preprocessing pipeline was adopted, which includes downsam-
pling, normalization, and generating sliding window samples.

For our experiments, EEG signals are downsampled to 128 Hz, then nor-
malized by subtracting the mean and scaling each channel to unit variance.
This downsampling procedure enables the model to coherently analyze EEG

time-frequency patterns using a consistent encoder architecture [16]. Next,
the EEG recordings are divided into overlapping short time frames using a
sliding time window approach. Figure 3.1 illustrates a sliding window ex-
ample with a 2-second duration and a 1-second overlap. This step not only
facilitates signal processing by focusing on smaller and more manageable
segments of data but also serves as a form of data augmentation, effectively
increasing the size of the training dataset. Overlapping windows provide the
model with more diverse input samples while preserving important tem-
poral patterns. Finally, the resulting data shape is standardized across all
datasets to facilitate seamless input into deep learning models, formatted as
(number of segments, number of channels, segment length).

3.1.2 Deep Learning Model Selection

Widely-known DL models will be selected based on review papers in the
field, citation frequency, performance on tasks, and reproducibility. In this
study, we focused only on end-to-end DL models capable of decoding raw
EEG signals without any preprocessing and exploiting hierarchical structure
on the data.

As end-to-end DL has the capabilities to directly self-learn the hierarchi-
cal structure of datasets, it raises the question of whether these models can
effectively learn data from diverse categories. These categories often have
distinct structures and typically require feature extraction to be customized
for each category. The DL models in this study were specifically designed
to fit EEG data within certain categories. To evaluate their generalizability,
we tested the models across data from various categories, assessing their
performance beyond their intended domains. To ensure accurate results and
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Figure 3.1: An Example of EEG Window Sampling

minimize errors, we replicated the original implementations of the authors
for all decoding methods. For implementation details, refer to the respective
publications.

Performance Evaluation

To ensure a fair comparison, we aimed to use consistent train-test splits and
validation techniques across all models and datasets. However, due to con-
siderable differences in dataset structures, achieving the ideal scenario was
not feasible. Instead, we made an effort to apply methods that are as stan-
dardized as possible for all datasets, employing an appropriate train-test
split and cross-validation approach for each dataset.

3.1.2.1 Train-Test Splits

The main goal is to evaluate the performance of existing, readily available
models across various EEG datasets rather than to develop or fine-tune new
models. Therefore, a validation dataset, typically used for hyperparameter
tuning, is not required. Instead, each dataset is split into training and test sets
to directly assess the models’ performance. This approach ensures that the
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study remains aligned with its main goal without introducing unnecessary
complexity.

Because of the high inter-subject variability commonly seen in EEG data
[97], most of the EEG classification methods are developed in a subject-specific
scenario [52]. Thus, in most cases, the datasets are loaded so that models are
trained and evaluated on each subject’s data separately. Some datasets are
already split into predefined train and test sets; for the remaining datasets,
the data will be split trial-wise or segment-wise. However, for datasets with
a large number of subjects (more than 20) or limited data per subject, a
subject-independent classification approach with 3-fold cross-validation and
three repetitions is applied. The decision to use 3 folds was made after care-
ful consideration of the limited computational resources available.

Rather than combining data across all subjects and splitting it into k folds,
trials from a single subject are kept together within the same fold to prevent
data leakage. Splitting trials from the same subject across different folds
increases the risk of data leakage, as patterns unique to a specific subject
may appear in both training and testing sets, potentially inflating model
performance [58]. To address this, we apply subject-level splits. A subset of
randomly selected subjects is designated as the test set, while the remaining
subjects form the training set. This process is repeated three times, with a
different subset serving as the test set each time.

3.1.2.2 Metrics

Each of the DL models will be trained and tested on all EEG datasets to evalu-
ate their ability to generalize across different types of data. The performance
of the models will be assessed using a variety of metrics, including accu-
racy, F1-score, precision, and recall. These metrics are selected to address
potential class imbalances and provide a comprehensive view of model per-
formance. This multi-metric approach also ensures flexibility in identifying
the most suitable metrics for the subsequent subset selection steps. Since
each dataset includes multiple subjects or involves k-fold cross-validation,
the final performance metrics will be calculated as the average across all
subjects or repetitions. Additionally, confusion matrices and training history
will be generated to verify the functionality of the model and dataset im-
plementations by identifying potential issues in classification and training
behavior.

Representative Subset Selection Procedure

Once all models have been successfully trained across all datasets, the ex-
pected result is a matrix where each cell contains the performance metric
for a specific model-dataset pair. Building on this, we now shift focus to the
main objective of this study: finding a small yet representative subset of EEG

datasets.
This approach was inspired from the methodology outlined in the paper

Atari-5: Distilling the Arcade Learning Environment Down to Five Games, which



3.1 conceptual framework 34

proposed a novel strategy for selecting small but representative subsets of
reinforcement learning (RL) environments. The study addressed the compu-
tational inefficiency of evaluating algorithms on the full 57-game dataset of
the Arcade Learning Environment (ALE). By applying a systematic subset
selection method, the authors introduced Atari-5, a five-game subset capa-
ble of approximating the median score estimates on the full dataset, but at
less than one-tenth the cost. These results can accelerate the development of
novel algorithms through faster iteration and also improve the reproducibil-
ity of results in Reinforcement Learning (RL) [5]. In this study, the prediction
of an established summary score (target score) served as the guideline for
subset selection. Specifically, the performance scores from various RL algo-
rithms were used to evaluate all possible subsets of games of a given size.
The subsets were ranked based on their ability to predict the overall median
score, evaluated by R2 values. As R2 measures the percentage of variance in
the target score explained, a high R2 value indicates the subset’s ability to
capture the variability in performances of the full dataset.

Adapting this framework, we developed a customized algorithm specif-
ically tailored for this study. We implemented a modified subset selection
procedure using Ridge regression, combined with correlation analysis to ac-
count for multicollinearity between datasets. The goal is to identify a subset
of datasets that minimizes the prediction error of a regression model trained
to predict the summary metric while ensuring diversity without redundancy.

The computation of the target metric plays a crucial role in determining
the optimal subset. Two approaches are considered for computing t− k:

1. Included Approach: The target metric tk is computed as the median
F1-score across all EEG datasets, including the candidate subset. This ap-
proach ensures that the target metric reflects the performance diversity
across the entire dataset but risks introducing bias through data leak-
age when information from the target value leaks into the predictors.

2. Excluded Approach: The target metric tk is computed as the median
F1-score across all EEG datasets, excluding the candidate subset. This
approach avoids potential data leakage when the candidate subset re-
mains unseen during the computation of the target metric.

Additionally, to address multicollinearity, clustering and pruning steps
were introduced, which removed highly correlated EEG datasets before the
subset selection procedure.

Among the selected datasets, some originate from the same source but are
categorized differently (e.g., datasets used for emotion recognition may ana-
lyze emotions based on distinct dimensions named valence and arousal [54]),
while others represent extended versions of existing datasets. In such cases,
these datasets may show similar performance tendency across all models,
resulting in high correlations and potential multicollinearity issues. In re-
gression analysis, multicollinearity occurs when two or more predictors are
highly correlated. This is undesirable because it inflates the standard errors
of coefficients and causes unreliable coefficient estimates [28].



3.1 conceptual framework 35

It is crucial that the selected subset captures the diversity of the entire
dataset collection rather than duplicating information and becoming redun-
dant. To ensure this, a correlation analysis is conducted prior to regression
modeling to reduce redundancy and handle multicollinearity. A pairwise
correlation matrix of metrics across datasets is generated. Using hierarchi-
cal clustering, datasets with high correlations (e.g., correlation > 0.9) are
grouped into clusters based on Ward’s linkage method, which minimizes
within-cluster variance [81]. Only one dataset, the most similar to the others
in its cluster, is selected as the representative for each cluster. This is deter-
mined using a similarity-based criterion: the average similarity (or inverse
distance) of each dataset to all other datasets in the cluster is calculated. The
dataset with the highest average similarity is chosen as the representative
for its cluster. The end result is a collection of datasets with low correlations
and diverse characteristics.

Following the preprocessing, a brute force search, also known as exhaus-
tive search, is conducted to thoroughly evaluate all possible combinations of
datasets based on Mean Squared Error (MSE) through regression modeling.
This approach guarantees that the selected subset is the optimal choice ac-
cording to the evaluation criterion. For n datasets, there are 2n − 1 possible
non-empty subsets to evaluate.

Regression with regularization is employed to address any remaining cor-
relations among the datasets in the subset. Specifically, Ridge regression mod-
els are used to predict the target metric for models based on the subset of
datasets. Ridge regression applies a penalty to large coefficient estimates,
shrinking them toward zero, which mitigates correlations while maintain-
ing all features—in this case, datasets [56]. It is important to note that the
purpose of the regressions in this context is as a method of feature selec-
tion rather than predictive power. The primary focus is on identifying which
datasets are selected through this process, rather than on their exact perfor-
mance in predicting the target summary score.

Given m models Mk : k = 1, . . . , m, with their individual evaluations ski ∈
R on datasets i ∈ {1, . . . , n}, and a summary metric t ∈ Rm, where each
entry tk represents the summary metric (e.g., the median F1-score) of model
Mk across all datasets. The dataset for regression modeling is defined as:

D =


s11 s12 . . . s1n t1

s21 s22 . . . s2n t2
...

...
. . .

...
...

sm1 sm2 . . . smn tm

 ,

where ski is the performance of model Mk on dataset i.
Let I ⊆ {1, . . . , n} be a subset of columns (datasets), and sk,I represent

the corresponding sub-vector of scores for model k. We aim to find a map-
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ping f ∗I : R|I| → R that best predicts tk from sk,I , minimizing the following
objective:

f ∗I = arg min
f

m

∑
k=1

(tk − f (sk,I))
2 + λ∥θ∥2,

where λ is the Ridge regression regularization parameter and θ are the re-
gression coefficients.

Given |I| = C, we seek to find a subset I of fixed size C that minimizes
the prediction error. Thus, we solve:

I∗ = arg min
|I|=C

m

∑
k=1

(tk − f ∗I (sk,I))
2 ,

where f ∗I is the optimal Ridge regression model trained on the subset I.
This process involves iterating over all possible subsets I ⊆ {1, . . . , n}

of size C, training a Ridge regression model for each subset, and selecting
the subset I∗ that yields the lowest Mean Squared Error (MSE) via 5-fold
cross-validation. The final selected subset I∗ and its corresponding regres-
sion model f ∗ provide an efficient and interpretable solution to the repre-
sentative subset selection task.

3.2 implementation

3.2.1 Dataset Selection

3.1 provides a list of datasets along with their respective categories. The
selected datasets are publicly available and have been widely used as bench-
marks for state-of-the-art classification algorithms. A detailed description of
each dataset is presented below, including preprocessing steps, data splitting
strategies, cross-validation methods, and other relevant processing details.

Dataset Task Type

STEW, EEGMAT Mental Workload

SEED, SEED IV, DEAP, DREAMER Emotion Recognition

BCIC-IV-2a, BCIC-IV-2a,
High-Gamma, PhysioNetMI

BCIC-III-2 Dataset Event-Related Potential

CHB-MIT, Siena Scalp Dataset Epilepsy Detection

The TUH-Abnormal EEG Corpus Neurological Abnormality
Detection

Sleep-EDF Sleep stage scoring

Table 3.1: Selected EEG Datasets and Their Corresponding Task Types
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3.2.1.1 STEW Dataset

The Simultaneous Task EEG Workload (STEW) dataset contains raw EEG

data from 48 subjects who performed a multitasking mental workload ac-
tivity using the Simultaneous Capacity (SIMKAP) test [71]. EEG signals were
recorded from 14 channels at a sampling rate of 128 Hz. The experiment
consisted of two tasks: a ’No task’ condition and a ’SIMKAP task’ condi-
tion. First, participants were asked to sit comfortably without performing
any task for three minutes, which served as the resting condition. They then
completed the SIMKAP test for three minutes to assess their ability in mul-
titasking heavy occupations. To minimize transition effects, the first and last
15 seconds of each recording were excluded, resulting in 2.5 minutes of data
for each condition. After each segment of the experiment, participants rated
their perceived mental workload (MWL) on a 1-to-9 scale. These ratings were
divided into three levels: low, medium, and high MWL. For this study, we fo-
cus on classifying EEG data to distinguish between states with and without
mental workload. The signals were segmented into overlapping windows
with a window size of 2 seconds and a 1-second overlap. Given the large
number of subjects, a three-fold subject-level cross-validation scheme was
applied for robust model evaluation.

3.2.1.2 EEGMAT Dataset

The EEGMAT Dataset contains 23-channel EEG recordings sampled at 500

Hz from 36 participants, collected before and during the performance of
mental arithmetic tasks [38, 138]. The signals were preprocessed with arti-
fact removal, a high-pass filter at 30 Hz, a 50 Hz power line notch filter,
and segmented with a 60-second window. Each participant contributed two
recording files: a baseline recording, during which they were not perform-
ing any task and were instructed to sit comfortably, and a recording captured
while they performed the mental arithmetic task. For the arithmetic task, par-
ticipants were asked to serially subtract two numbers — a 4-digit minuend
and a 2-digit subtrahend — and communicate their results orally. In this
study, we focused on classifying EEG recordings as either with or without
mental arithmetic tasks. The EEG data were further epoched into one-second
intervals with a 1-second overlap. A subject-level 3-fold cross-validation tech-
nique was applied for classification.

3.2.1.3 DEAP Dataset

The DEAP dataset [64] was collected from 32 healthy participants aged
between 19 and 37. Their EEG and peripheral physiological signals were
recorded as they watched a set of 40 one-minute long music videos. After-
ward, participants were asked to complete a self-assessment to rate provide
subjective ratings for each video based on affective characteristics, including
arousal, valence, liking, dominance, and familiarity, using a discrete 9-point
scale. These ratings provided subjective insights into emotional impact of
the stimuli. For this study, only arousal and valence were selected for the
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classification task, with the data categorized into low and high arousal or
valence classes. The EEG signals were originally recorded at 512 Hz using a
48-channel setup. In addition to standard preprocessing steps, the data was
segmented into 60-second trials, with a 3-second pre-trial baseline removed.
Only 32 EEG channels were selected, and eye-movement artifacts were re-
moved. Based on the result of Liu et al. [72], a sliding window size of 8

seconds was used for evaluating the networks. This means that for each 60-
second trial, 14 segments were obtained using an 8-second window with a
4-second overlap. Each segment retained the label of the original sample. A
three-fold cross-validation was used for this dataset.

3.2.1.4 SEED Dataset

The SJTU Emotion EEG Dataset (SEED), contributed by Duan, Zhu, and Lu
[33] and Zheng and Lu [137], includes EEG recordings from 15 healthy partic-
ipants watching Chinese film clips designed to elicit neutral, negative, and
positive emotions. Each participant completed three experimental sessions
on different days, with 15 trials for each session. n a single trial, participants
were presented with a five-second movie hint, followed by a four-minute
film clip, a 45-second self-assessment and 15-second resting period. The EEG

signals were collected using a 62-channel EEG system at a sampling rate of
1000 Hz, which was further downsampled to 200 Hz with a bandpass fre-
quency filter of 0-75 Hz. Class labels -1, 0, and 1 represent the negative,
neutral, and positive emotional states, respectively. A subject-dependent ap-
proach was applied, where each participant’s data was used individually to
build and evaluate models for that specific subject. The 45 trials for each
participant were divided into training and testing sets with an 8:2 ratio.

3.2.1.5 SEED-IV Dataset

The SEED-IV dataset is an expanded version of the original SEED dataset.
The experimental setup is similar to that of SEED, but emotions are cat-
egorized into four distinct states: happiness, sorrow, neutrality, and fear.
EEG data was collected from 15 participants, each completing three sessions
with 24 trials per session. Each film clip lasted approximately two minutes,
preceded by a 5-second baseline period and followed by a 45-second self-
assessment time. For each participant, the 72 total trials were divided into
training and testing sets in an 8:2 ratio.

3.2.1.6 DREAMER Dataset

In the DREAMER dataset, 23 participants watched 18 film clips and pro-
vided self-assessments of their affective states after each stimulus. Signals
were recorded at a sampling rate of 128 Hz with 14 EEG channels. Each clip
varied in length from 64 to 393 seconds and was designed to evoke one
of nine emotions: amusement, excitement, happiness, calmness, anger, dis-
gust, fear, sadness, or surprise [60]. Participants rated their levels of arousal,
valence, and dominance on a five-point scale. For this study, arousal and
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valence were used in the classification task and were categorized into low
and high states using a threshold of 3. The data were segmented into one-
second sliding windows for training the models. A subject-dependent ap-
proach was initially considered for this dataset; however, due to imbalances
in class distribution among some subjects, a 3-fold cross-validation approach
was ultimately chosen to ensure more balanced and reliable model evalua-
tion. For example, subject 6 had only one low-arousal trial compared to 17

high-arousal trials (Appendix A)

3.2.1.7 BCI Competition IV-2a Dataset

The BCI Competition IV-2a (BCIC-IV-2a) dataset [18] consists of EEG record-
ings from nine subjects performing imagined movements of four different
body parts: the left hand, right hand, both feet, and tongue. Data collection
was organized into two separate sessions, one for training and the other for
testing, each containing a total of 288 trials with balanced class distribution.

EEG signals were recorded using 22 electrodes at a sampling frequency
of 250 Hz, with a bandpass filter between 0.5 and 100 Hz, along with an
additional 50 Hz notch filter. Each trial lasted 7.5 seconds, beginning with
a 2-second preparation period, followed by a 1.25-second cue indicating the
motor imagery (MI) task. Participants were then prompted to perform the
specified MI task and continue it for 4 seconds, with a brief break following
each trial.

Sliding input windows within each trial were generated based on the
method in Schirrmeister et al. [99], using a window size of 2 seconds and
a 1-second overlap. The first crop began 0.5 seconds before trial onset, and
the final crop extended to 4 seconds after trial onset. Models were evaluated
using a subject-dependent approach.

3.2.1.8 BCI Competition IV-2b Dataset

The BCI Competition IV-2b (BCIC-IV-2a) dataset [68] is designed for binary
classification of motor imagery (MI) involving imagined left-hand and right-
hand movements. Nine subjects participated in five sessions, each consisting
of 120 trials.

The first two sessions provided training data without feedback, while the
last three sessions included smiley feedback. In the cue-based screening ses-
sions, each trial presented a visual cue (a left or right arrow), prompting
the subject to imagine the indicated hand movement for four seconds. In the
feedback sessions, a smiley on the screen provided performance feedback by
turning green or red, with participants instructed to maintain motor imagery
to keep the smiley on the correct side.

The timing scheme of this paradigm is similar to that of BCIC-IV-2a. Three
bipolar recordings (C3, Cz, and C4) were sampled at 250 Hz and band-pass
filtered between 0.5 Hz and 100 Hz and notch filtered at 50Hz. Within the
trial, 2-second windows with a 1-second overlap were generated. For model
evaluation, the screening sessions and the first feedback session were used
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as training data, while the last two feedback sessions served as testing data.
A subject-dependent approach was applied, where each model was trained
and validated on individual participants’ data.

3.2.1.9 High-Gamma Dataset

High-Gamma Dataset was acquired under controlled recording conditions
to capture movement-related frequencies in the high-gamma range for motor
imagery (MI) tasks with minimal noise [99]. The dataset includes recordings
from 14 healthy subjects using 128 electrodes sampled at 500 Hz and con-
sists of 880 trials in training set and 160 trials in the test set. Subjects were
instructed via visual stimuli (arrow) to remain still, or repetitively tap the fin-
gers of either left hand, right hand, or flex the toes of both feet for a duration
of four seconds while the arrow was displayed. The task involved classifying
movements in each trial as left hand, right hand, both feet, or rest. The EEG

data was segmented using a 2-second sliding window. Models were trained
individually for each subject, and the average performance was calculated
to obtain the final results.

3.2.1.10 PhysioNet MI-EEG Dataset

The PhysioNet EEG Motor Movement/ Imagery Dataset [38] comprises 64-
channel EEG signals from 105 individuals recorded by BCI2000 system with
a sampling frequency of 160 Hz. Participants performed or imagined per-
forming motor tasks involving the opening and closing of their hand and
feet for a duration of 4 seconds each.

The experiment included three two-minute runs for four distinct motor
imagery (MI) tasks: left fist, right fist, both fists, and both feet, with each
MI task requiring 21 trials. A typical trial began with a 2-second relaxation
period, starting at t = -2 seconds, during which the participant was instructed
to relax. At t = 0s, a visual target appeared on the screen, indicating the task
to be performed or imagined. The participant then executed the assigned MI

task for 4 seconds. At t = 4s, the target disappeared, signaling the end of the
trial, followed by a 2-second rest interval before the next trial began.

The dataset in this study was subjected to three-fold cross validation. 2-
second windows with a 1-second overlap were generated within the trial.

3.2.1.11 BCI Competition III-2 Dataset

BCI Competition III Dataset II (BCIC-III-2) represents a record of P300 evoked
potentials generated using the P3 Speller paradigm in BCI2000 [138]. EEG

data were collected from two subjects across three sessions, using 64 elec-
trodes with signals bandpass-filtered between 0.1–60 Hz and sampled at 240

Hz. The goal is to classify whether the post-stimulus EEG signal contains a
P300 event-related potential (ERP).

In this study, continuous EEG data were segmented into target and non-
target trials, each capturing data of 667 ms after stimulus onset, as this time
window is sufficient for P300-based character recognition [89]. Each subject
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contributed 85 training and 100 testing characters. In each trial, two P300 tar-
get responses and ten non-target responses were generated, resulting in an
imbalanced dataset. To address this problem, oversampling was applied to
equalize the class distribution by replicating minority class instances. Specif-
ically, the P300 training samples were replicated four times to match the
sample sizes of P300 and non-P300 data [73].

3.2.1.12 CHB-MIT Dataset

The CHB-MIT Scalp EEG dataset was acquired through a collaboration be-
tween the Massachusetts Institute of Technology (MIT) and Boston Chil-
dren’s Hospital [38, 104]. It contains EEG recordings from 22 pediatric pa-
tients with intractable seizures. Subjects were observed for many days after
the withdrawal of antiseizure medication. The recordings can contain none,
one or more seizures, with the onset and end of each seizure annotated.
EEG signals were sampled at 256 Hz, and the number of channels varied be-
tween sessions, though most recordings used 23 channels. Each file contains
between one and four hours of EEG data.

In this study, the classification task is seizure detection, distinguishing
between seizure (ictal) and non-seizure (interictal) EEG segments. Seizures
have shorter duration than non-seizures, resulting in an imbalanced class
distribution. To address this, we extracted 5-second seizure segments with
a 4-second overlapping, while non-seizure segments were extracted as non-
overlapping 5-second windows [8].

A consistent set of 18 EEG channels was used across all 24 cases. Three
epochs from subject 12 (files “chb12_27–29.edf”) were excluded due to mon-
tage inconsistencies with the rest of the recordings [121]. For this data, our
evaluation focused on patient-specific modeling. For training and testing, a
trial-wise dataset split was applied, ensuring that one entire record (an .edf
file) was reserved for testing while the remaining files were used for training.

3.2.1.13 SIENA Dataset

The Siena Scalp EEG Database contains EEG recordings from 14 patients col-
lected at the Unit of Neurology and Neurophysiology, University of Siena
[29, 38]. The data were recorded using Video EEG Monitoring at a sampling
rate of 512 Hz, with most recordings using 29 electrodes. Seizures were clas-
sified by expert clinicians using International League Against Epilepsy cri-
teria after reviewing clinical and electrophysiological data. The dataset in-
cludes 41 EEG recordings with 47 seizure intervals, and recording durations
range from 1 to 13 hours. Start and end time of both recordings and seizures
were also annotated.

Data were segmented with a window length of five seconds. As the num-
ber of seizure segments was significant lower than the non-seizure ones, a 4-
second overlap was applied to seizure windows, while non-seizure windows
were non-overlapping. Patient-specific modeling, which involves training a
unique model using data from a single patient, was employed in this study.
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3.2.1.14 TUH-Abnormal Corpus

The TUH EEG Corpus, developed by Temple University Hospital, is the
world’s largest publicly available collection of clinical EEG data, containing
over 25,000 recordings from more than 14,000 patients [43]. For this study,
we used a subset, the TUH Abnormal EEG Corpus (v3.0.1), in which EEG

signals are labeled by experts as either normal or abnormal [30]. Abnormal
EEG signals were recorded from patients diagnosed with various pathologies,
such as epilepsy, strokes, depression, and Alzheimer’s disease.

This dataset is demographically balanced with respect to patient gender
and age and consists of 1,488 abnormal and 1,529 normal EEG sessions. It is
further divided into a training set (1,361 abnormal and 1,379 normal sam-
ples) and a test set (127 abnormal and 150 normal samples). Each patient
appears only once in the evaluation set, labeled as either normal or abnor-
mal, while some patients may appear multiple times in the training set.

The recordings include signals from at least 21 standard electrode posi-
tions, sampled predominantly at 250 Hz. Each recording contains approxi-
mately 20 minutes of EEG data. For preprocessing, a subset of 21 electrode
positions was selected, and the first minute of every recording was discarded
to remove potential artifacts [37].

Previous studies [76, 92] suggest that neurologists can accurately classify
an EEG session as normal or abnormal by examining just the first few min-
utes of the signal. Based on this observation, we initially extracted only the
first 60 seconds of EEG recordings for both the training and test datasets,
hypothesizing that deep neural networks could achieve similar classification
performance with this reduced input.

However, this approach significantly reduces the amount of data available
for training, potentially impacting model performance. To address this, we
extended the training set by extracting the first 4 minutes of each recording
and segmenting it into non-overlapping 1-minute epochs, thereby increas-
ing the number of training samples without performance degradation, as
demonstrated in the experiment by Roy, Kiral-Kornek, and Harrer [91].

For this dataset, a subject-specific approach is not feasible because pa-
tients in the training and evaluation sets are completely distinct, with no
overlap between the two groups. Since the training and evaluation sets are
already pre-defined, k-fold cross-validation cannot be applied. Instead, all
data within each set is concatenated and used for training and testing, re-
spectively.

3.2.1.15 Sleep-EDF Database Expanded

Sleep-EDF Expanded dataset is an extended version of Sleep-EDF dataset on
the Physiobank [9, 38, 61]. The dataset contains 197 whole-night polysomno-
graphic sleep recordings from both healthy subjects and individuals with
with mild difficulty falling asleep. Each recording includes two-channel EEG

signals, an EOG signal (horizontal), an EMG signal (chin), along with expert
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annotations of sleep stages for every 30-second segment, based on AASM
guidelines [59].

For this study, only the EEG data from healthy subjects were used. Sleep
is categorized into five sleep stages with distinct patterns of electrical brain
activity: Wake(W), Non-Rapid Eye Movement stage (NREM) which consists
of three stages (N1, N2 and N3) and Rapid Eye Movement stage (REM). Each
segment is manually classified into one of eight classes: W, N1, N2, N3, N4,
REM, MOVEMENT, or UNKNOWN.

Following Supratak et al. [113], the N3 and N4 stages were merged into
a single stage N3. At the beginning and end of each recording, there were
long periods of wakefulness (stage W) when the subject was not sleeping.
Only 30 minutes of these wake periods before and after sleep were included,
as the primary focus was on sleep phases. Movement artifacts labeled as
UNKNOWN or MOVEMENT were excluded, as they were not relevant to
the five sleep stages. For this dataset, sliding windows were not applied due
to the large size of the data (whole-night recordings) and limited computa-
tional resources. Instead, the data was segmented into standard 30-second
epochs, as this is sufficient for sleep stage classification. The modes’ perfor-
mance were evaluated using subject-wise 3-fold cross-validation.

3.2.2 Deep Learning Model Implementation

In the following sections, we briefly introduce the neural networks evaluated
in this study. 11 end-to-end DL models were selected. A total of 11 end-to-end
deep learning (DL) models were selected for comparison. A more detailed
description of each model is provided below.

3.2.2.1 EEGNet

EEGNet [67] is a compact convolutional neural network designed for EEG-
based BCIs which can generalize across various BCI paradigms, including
P300 visual-evoked potentials, error-related negativity (ERN), movement-
related cortical potentials (MRCP), and sensory motor rhythms (SMR). The
model uses depthwise and separable convolution to minimize the number
of parameters while still encapsulating key EEG-specific feature extraction
concepts like spatial filtering and filter-bank construction.

EEGNet processes EEG signals through three main blocks. First, the tem-
poral convolution layer only extracts frequency-specific features. Next, the
depthwise convolution operates on each feature map separately to extract
frequency-specific spatial filters. Lastly, the separable convolution, a compris-
ing a depthwise and pointwise convolution, combines temporal and spatial
filtering to reduce parameters and integrate features effectively. Each con-
volution layer is followed by a softmax classification layer. Regularization
techniques such as dropout and batch are applied at every layer to improve
training stability and prevent overfitting.
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3.2.2.2 DeepConvNet

DeepConvNet [99] is a deep convolutional neural network designed for de-
coding raw EEG signals. It excels at end-to-end learning, enabling automated
feature extraction and classification without reliance on expert knowledge,
while achieving competitive accuracies.

The network’s architecture is built to extract a wide range of features using
multiple convolutional and pooling layers. It consists of four connvolution-
max-pooling blocks, with a first block designed to handle EEG input, fol-
lowed by three standard convolution-max-pooling blocks and a dense soft-
max classification layer. The specialized first block is divided into two layers:
a temporal convolution layer which extracts frequency-specific features by
convolving across time, and a spatial filtering layer that applies spatial fil-
ters across electrodes to capture inter-channel relationships.

DeepConvNet employs Exponential Linear Units (ELUs) as activation func-
tions, applies batch normalization to the outputs of convolutional layers be-
fore the nonlinearity, and uses dropout to randomly set some layer inputs to
zero during each training update.

3.2.2.3 ShallowConvNet

ShallowConvNet [99] is a simpler convolutional neural network inspired by
the Filter Bank Common Spatial Patterns (FBCSP) pipeline. It is tailored to
extract band-power features specifically and is designed with fewer layers to
optimize these transformations.

The network consists of two layers, a temporal convolution and a spatial
filter, as in the deep ConvNet, analog to to the bandpass and CSP spatial
filter steps in FBCSP. Compared to DeepConvNet, the temporal convolution
of the shallow ConvNet had a larger kernel size to process a broader tempo-
ral context. After these layers, the output undergoes a squaring nonlinearity
and a mean pooling layer, which aggregate the squared activations over time.
This is followed by a logarithmic activation function, analogous to the log-
variance computation step in FBCSP. These components allow the network
to mimic key steps in traditional EEG feature extraction, embedding them
directly within the neural network.

Unlike DeepConvNet, ShallowConvNet’s architecture is specialized for
band power decoding and thus includes fewer layers. However, it benefits
from the ability to optimize all processing steps jointly through backpropa-
gation, unlike the separate stages in traditional methods.

3.2.2.4 CNN-FC

The model developed by Dose et al. [32] combines CNNs for feature extrac-
tion and a Fully Connected (FC) layer for classification. It consists of two
convolutional layers with 40 kernels per layer. The first convolutional layer
operates only performs convolution along the time axis, serving as a linear
pre-filtering for each EEG channel. Second convolutional layer operates spa-
tial convolution along the EEG channel axis, effectively reducing the number
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of channels to a single value per time step. The valid padding ensures no
extrapolation beyond the data.

An average pooling layer reduces the dimensionality of the output from
the convolutional layers. The resulting pooled features are flattened into a
1D vector, which is then passed to a fully connected layer with 80 neurons.
ReLU is used in all layers except the output, which uses a softmax activation
function for classification.

3.2.2.5 CNN-LSTM

The dual-stream spatio-temporal neural network processes EEG data with
a hybrid architecture that combines convolutional layers for feature extrac-
tion and recurrent layers for temporal modeling [32]. Similar to the CNN-FC

model, the network has two convolutional layers with 40 filters each, fol-
lowed by average pooling and flattening operations.

After convolution, an average pooling layer reduces the temporal reso-
lution and the output is flattened along the temporal dimension using a
time-distributed flattening layer. Sequential features are then processed by a
single LSTM layer with 40 units and a sigmoid activation function, capturing
temporal dependencies. This layer outputs the full sequence instead of only
the final timestep’s features.

Finally, the model includes a dense layer with a softmax activation func-
tion, producing probabilities for classification. Regularization is incorporated
using L1 regularization in the convolutional layers and dropout layers in
the recurrent components. The model is optimized using categorical cross-
entropy loss with the RMSprop optimizer.

3.2.2.6 MMCNN

Multi-branch Multi-scale Convolutional Neural Network (MMCNN) [57] is
an end-to-end model designed for motor imagery classification. The model
provides a solution for the problems of subject variability and time differ-
ences in EEG data by incorporating multi-branch and multi-scale convolu-
tional structures.

The model comprises five parallel branches, each implemented as an EEG

Inception Network (EIN). Each EIN is composed of three key components:
an EEG Inception Block (EIB), a Residual Block, and a Squeeze and Excitation
(SE) Block.

The EIB uses multi-scale convolution kernels of increasing sizes to capture
features at different frequency scales. The Exponential Linear Unit (ELU)
activation function is employed to mitigate gradient vanishing issues and
improve robustness to noise.

The Residual Block is designed to prevent the degradation problem in
deeper networks by introducing shortcut connections. It consists of two
branches: executes a sequence of operations interleaved with 1D convolu-
tional layers and Batch Normalization (BN) layers; and the other branch
includes a direct shortcut connection to bypass certain layers.
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The Squeeze-and-Excitation (SE) Block enhances the model’s attention to
important features by adaptively re-weighting feature maps. It comprises
two components: the squeeze operation, which captures channel dependen-
cies, and the excitation operation, which learns sample-specific activations
for each channel through a channel-dependent self-gating mechanism.

3.2.2.7 ChronoNet

ChronoNet [92] is a deep recurrent neural network developed for abnormal
EEG classification, combining the features from both convolutional and recur-
rent architectures. The network is constructed by stacking multiple 1D con-
volutional layers (Conv1D) followed by multiple Gated Recurrent Unit (GRU)
layers.

Each inception-style Conv1D layer has multiple filters with exponentially
varying lengths to capture features over multiple temporal scales. These con-
volutional layers are followed by stacked GRU layers, which model both short-
and long-term dependencies in EEG data. The GRU layers are densely con-
nected in a feed-forward manner, meaning the output of each GRU layer
is passed as input to all subsequent GRU layers. This dense connectivity
strengthens feature propagation, facilitates feature reuse, as well as helps
prevent issues such as vanishing or exploding gradients, which can degrade
training accuracy.

To aggregate features from varying temporal resolutions, a Filter-Concat
layer concatenates the outputs of Conv1D layers with different filter lengths
along the depth axis. The network concludes with a softmax layer for classi-
fication tasks.

3.2.2.8 Attention-based-1D-CNN

The Attention-based-1D-CNN architecture [86] is specifically designed for
mental workload classification using EEG signals. It combines CNNs and at-
tention mechanisms to extract temporal and spatial features while empha-
sizing relevant information within EEG data.

The network consists of four 1D convolutional layers, applied alternately
on time and channel axes. Temporal features are extracted using horizontal
convolutional filters along the time axis, whereas spatial features are cap-
tured using vertical convolutional filters along the channel axis. After each
1D-CNN block, feature-level self-attention blocks are applied to learn atten-
tion weights for each time step and EEG channel. With an attempt to focus
on critical features while suppressing irrelevant information, these blocks
assign weights to different parts of the input by computing a weighted sum
and passing it to the next layer.

The model employs LeakyReLU activation function with α = 0.001 and
global average pooling after each convolutional layer. The pooled features
are then passed to a dense layer with 100 neurons and a sigmoid activation
function to compute the contribution of particular input parts to the learned
features. These 1D-CNN blocks and attention layers are repeated four times.
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Following the 1D-CNN layers, fully connected layers are utilized with dif-
ferent number of neurons. To prevent overfitting, L1 and L2 regularization
are applied to penalize large weights, while Dropout is incorporated to ran-
domly deactivate neurons during training. The final layer applies a softmax
activation function for classification probabilities.

3.2.2.9 EEGTCNet

EEG-TCNet [53] is a temporal convolutional network which can achieve
high classification accuracy with few trainable parameters. It combines the
efficient feature extraction capabilities of EEGNet with temporal modeling
strengths of Temporal Convolutional Networks (TCNs).

The network starts with 2D temporal convolution layer to extract fre-
quency features, followed by a depthwise convolution layer to learn frequency-
specific spatial features. The separable convolution is then applied to sum-
marize temporal features for each spatial filter and to mix feature maps
across channels. Dropout and average pooling are used after depthwise and
separable convolutions for regularization and feature downsampling.

Following the EEGNet-inspired layers, the Temporal Convolutional Net-
work (TCN) module is applied to process the remaining temporal features.
The TCNs model sequential data by combining causal and dilated convolu-
tions. Causal convolutions produce outputs of the same length as the inputs
by using 1D fully-convolutional networks with zero-padding. They ensure
that outputs depend only on current and past inputs, preserving temporal
order and preventing future information from influencing past data. Dilated
Convolutions expand the receptive field exponentially with network depth by
introducing gaps between kernel elements, enabling the network to capture
long-term dependencies without increasing depth or kernel size.

TCNs are structured as stacks of residual blocks, each containing two lay-
ers of causal dilated convolutions with batch normalization, ELU activa-
tion functions, and dropout applied between layers. Skip connections within
residual blocks enhance gradient flow and allow deeper architectures.

Finally, the TCN output is fed into a fully connected dense layer with a
softmax activation function for classification.

3.2.2.10 BLSTM-LSTM

The BLSTM-LSTM model [21] is designed for EEG-based mental workload clas-
sification. It combines BLSTM and LSTM networks to capture both past and
future dependencies in sequential EEG data.

The architecture contains a single BLSTM layer with 256 neurons and two
stacked LSTM layers with 128 and 64 neurons, respectively. The BLSTM layer
reads the input in both forward and backward directions to capture con-
textual information from both the past and future. The stacked LSTM layers
further refine sequential dependencies from the BLSTM output. Dropout lay-
ers with a rate of 0.2 and batch normalization layers are applied after the
BLSTM and each LSTM layer.
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Following the recurrent layers, the model incorporates two fully connected
(dense) layers with 32 and 3 neurons, respectively. The final dense layer uses
a softmax activation function for classification.

3.2.2.11 DeepSleepNet

DeepSleepNet [113] is a deep learning model specifically designed for au-
tomatic sleep stage scoring using raw single-channel EEG data. The model
integrates CNNs to extract time-invariant features and bidirectional-LSTMs to
learn transition rules among sleep stages. It consists of two main parts: Rep-
resentation Learning and Sequence Residual Learning.

The Representation Learning component employs two parallel CNNs with
different filter sizes at the first layers. The small filter focuses on captur-
ing temporal patterns, while the larger filter extracts frequency components.
Each CNN comprises four convolutional layers and two max-pooling lay-
ers, with operations including 1D convolution, batch normalization, and
ReLU activation. The outputs of the two CNNs are concatenated to form
feature representations. For the Sequence Residual Learning part, two layers of
bidirectional-LSTMs are used to model sleep stage transition rules. A shortcut
connection with a FC to add LSTM outputs into CNNs features.

In order to effectively train model end-to-end via backpropagation and
prevent class imbalance problem in large sleep datasets, a two-step training
algorithm is applied. The first step is to perform a supervised pre-training
on the representation learning part of the model using a balanced dataset to
address class imbalance. In the fine-tuning step, the entire model, including
the sequence learning component, is trained on sequential EEG data. To pre-
vent overfitting, two regularization techniques are utilized: Dropout layers
with a probability of 0.5 in every layer and L2 weight decay in the initial
CNN layers.

3.2.3 Experimental Setup

All models were trained on a VX-3 computational server, equipped with 20

CPU cores, 80GB RAM, and an NVIDIA Tesla V100 GPU with 32GB VRAM.
The server operates on Ubuntu 22.04.4 LTS and features a 120GB root parti-
tion along with a 1TB SSD for data storage. Training was conducted using
TensorFlow 2.15.0 [1] with the Keras API, configured for compatibility with
CUDA 12.0 and NVIDIA Driver Version 550.54.15 to enable GPU-accelerated
computations.

The training hyperparameters, including the optimization method and
learning rate, were configured based on the settings provided in the orig-
inal publications for each model. Most models utilized the Adam optimizer,
while the CNN-LSTM model employed RMSprop. The learning rates alter-
nated between 0.0001 and 0.001. Additionally, the batch size was set to 16,
and training was conducted for 100 epochs. The training time varied signifi-
cantly depending on the model-dataset pair.
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3.2.4 Subset Selection

We decided on a subset size of 5, meaning all combinations of 5 variables
from the 17 datasets were evaluated based on their performance across 11

deep learning (DL) models.
To define an appropriate target metric for evaluation, the median was

chosen over the mean for its robustness against extreme values and its sta-
bility in the presence of high variability across datasets. Moreover, since
the datasets included both balanced and unbalanced class distributions, F1-
score was selected as a more reliable metric than accuracy. Ultimately, the
target metric was defined as the median F1-score for each model across all
datasets.

The target metric y and feature matrix X are organized as follows, adher-
ing to a tabular format. Each row corresponds to a specific model, while
each column represents a feature or the target value:

Model X1 X2 X3 X4 X5 y

1 X11 X12 X13 X14 X15 y1

2 X21 X22 X23 X24 X25 y2

3 X31 X32 X33 X34 X35 y3
...

...
...

...
...

...
...

11 X111 X112 X113 X114 X115 y11

Here:

• The columns X1, X2, X3, X4, X5 represent the features of the models.

• The last column y contains the target values corresponding to each
model.

The resulting table has a shape of (11, 7), where 11 represents the number
of models, and 7 represents the total number of variables (5 features and 1

target).
To evaluate the effectiveness of the proposed subset selection procedure,

We conducted an experiment with 2× 2 factorial design to explore the im-
pact of the target metric computation (include vs. exclude datasets in the
candidate subset) and preprocessing step of dataset pool (with vs. without
clustering and pruning) on the subset selection procedure. This design exam-
ines the combined effects of two independent factors, each with two levels:

1. Target Metric Computation

• Inclusion: The target metric is computed as the median F1-score
across all datasets, including the subset being evaluated.

• Exclusion: The target metric is computed as the median F1-score
across all datasets, excluding the subset being evaluated.
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2. Dataset Corpus Preprocessing

• Without Clustering/Pruning: The subset selection procedure is
applied directly to the full dataset pool without any preprocess-
ing.

• A correlation analysis is performed to group highly correlated
datasets into clusters, and only representative datasets are retained
before applying the subset selection procedure.

The above factorial design resulted in four following experimental condi-
tions:

1. Full Dataset Corpus + Inclusion: Evaluating subsets using target metric
including subsets without preprocessing the dataset corpus.

2. Full Dataset Corpus + Exclusion: Evaluating subsets using target met-
ric excluding subsets without preprocessing the dataset corpus.

3. Pruned Dataset Corpus + Inclusion: Evaluating subsets using target
metric including subsets with clustering and pruning the dataset cor-
pus.

4. Pruned Dataset Corpus + Exclusion: Evaluating subsets using target
metric including subsets with clustering and pruning the dataset cor-
pus.



4
R E S U LT S

This chapter provides an objective presentation of the study results. First,
an overview of the performance of various neural network models across
the datasets is presented. Next, the generalizability of DL architectures is
examined across diverse domains, evaluating their performance on tasks
outside their original domains. Generalizability is assessed based on lower
variance or standard deviation of F1-scores, which indicates more consistent
performance across datasets. All decoding metrics mentioned in this section
were caculated as mean F1-score.

Additionally, the study explores the compatibility of different DL architec-
tures with various types of EEG data, giving insights into the most effective
pairings of architectures with specific EEG signal domains. Finally, the re-
sults of the subset search on the EEG dataset collection are presented, using
the median F1-score as the target metric for evaluation.

4.1 comprehensive performance evaluation

In total, the performance of 11 models was evaluated across 17 datasets. Fig-
ure 4.1 presents a heatmap displaying the average F1-score for each model-
dataset pair. Table 4.1 and 4.2 provide key summary statistics for 11 DL mod-
els and 17 EEG datasets, respectively. The statistics include the Mean, Stan-
dard Deviation,Median of performance of each particular model and dataset.

4.1.1 Performance Evaluation of Models across Datasets

Figure 4.2 provides an overview of model performance based on their mean
performance and variability. What stands out the most is that half of selected
models demonstrate consistently comparable performance, as seen by their
clustering in the bottom-left corner of the plot, with low variability and mod-
erate mean F1-score. Only a few models are scattered more broadly across
the rest of the plot.

The top-performing models include EEGNet and ShallowConvNet, which
achieve the highest average mean values (M = 0.69). By comparison, BLSTM-
LSTM and DeepSleepNet models are marked by instability, with weaker
performance and more scattered results, (M = 0.54, SD = 0.18) and (M =

0.56, SD = 0.18), respectively. The median values align closely with mean
values, reflecting symmetric distributions in the model metrics.

As mentioned earlier, it is intriguing to analyze how well the selected mod-
els generalize, which can be partly assessed through the standard deviation
of their performance across datasets. A model demonstrates better general-
izability when the variability in metrics between datasets is low. However,
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Figure 4.1: Heatmap of F1-scores Across All Datasets and Models

the analysis shows that no single model significantly outperforms the others
in this regard, as the standard deviation ranges narrowly between 0.14 and
0.18. Figure 4.1 also clearly illustrates that no model exhibits a single-tone
color representation but instead a strong mix of colors, reflecting significant
variability in performance across datasets.
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4.1.2 Performance Evaluation of Datasets across Models

Figure 4.3 illustrates the distribution of F1-score for each dataset using box-
plot, summarizing how the selected models perform on the datasets. A diver-
sity in central tendency, box lengths, whiskers, and distribution of outliers
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Table 4.1: Summary of Model Performance Across Datasets (F1-score)

Model Mean Std Median

Attention-1DCNN 0.59 0.15 0.60

BLSTM-LSTM 0.54 0.18 0.55

CNN-FC 0.66 0.14 0.69

CNN-LSTM 0.67 0.14 0.69

ChronoNet 0.55 0.17 0.54

DeepConvNet 0.68 0.14 0.69

DeepSleepNet 0.56 0.18 0.57

EEGNet 0.69 0.14 0.69

EEGTCNet 0.68 0.14 0.68

MMCNN 0.61 0.14 0.65

ShallowConvNet 0.69 0.14 0.73

between datasets is observed. Some boxplots such as CHB-MIT, DREAMER
and DEAP display compact distributions with narrow interquartile ranges
(IQRs), suggesting stable performance across models. In contrast, other datasets
such as SEED, SEEDIV and BCIC-IV-2a show wider IQRs and extended
whiskers, reflecting more dispered results, where some models achieve high
scores while others score much lower. Outliers are also visible in certain
datasets, such as STEW, Sleep-EDF, and High-Gamma, where specific mod-
els perform much better or worse compared to the majority.

It is noticeable that the CHB-MIT dataset shows the highest average perfor-
mance and a low variability (M = 0.95, SD = 0.03), indicating consistently
high results across models. In contrast, BCIC-IV-2a has the lowest mean F1-
score and moderate variability (M = 0.41, SD = 0.12), which is an unex-
pected result given its frequent use as a benchmark dataset in ML and DL
studies for EEG data.

While the two dimensions of the DEAP dataset share similar statistical
properties, with comparable mean values (Mvalence = 0.49, Marousal = 0.5)
and identical standard deviations (SD = 0.03), the corresponding dimen-
sions of the DREAMER dataset exhibit distinct statistical patterns, with mean
values of 0.53 for valence and 0.67 for arousal.

The DREAMER Dataset achieves relatively consistent performance across
models, with the lowest variability for both dimensions (SDvalence = 0.02,
SDarousal = 0.01). On the other hand, although the SEED and SEED-IV
datasets have high average performance, considerable variations in model
performances are observed through the highest variability (SDvalence = SDarousal
= 0.18).

The median F1-score are typically aligned with the mean value, with a
few exceptions. For instance, High-Gamma (Median = 0.71) and SEED
(Median = 0.81) show higher medians than their respective means, prob-
ably due to skewed distribution.
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Figure 4.3: Boxplot of Model Performance Across Datasets

4.1.3 Model-Dataset Compatibility Analysis

In the original studies, each DL model was specifically tailored for a distinct
category of EEG data. Within the scope of this study, of exploratory interest
is how these models perform on their corresponding datasets, whether they
can also classify datasets from other categories effectively, as well as how
frequently a particular model achieves the best performance across datasets.

Table 4.1 highlights the compatibility between different DL architectures
and various types of EEG data, that is to say, which model performs best
for specific EEG datasets. Interestingly, none of the models achieve their
best performance on the benchmark datasets for which they were originally
developed.

From the table, it is evident that ShallowConvNet emerges as the most
compatible model, outperforming other models on five datasets, three of
which belong to the motor imagery category. Beyond that, ShallowConvNet
also performs well in other domains, including epilepsy detection (CHB-MIT,
SIENA) and emotion recognition (SEED-IV). EEGNet follows closely, deliv-
ering the best performance in four datasets from diverse domains. These
results suggest that both models are relatively effective at capturing rele-
vant features and are well-suited for handling EEG datasets across multiple
domains. As such, they can be considered strong candidates for general-
purpose EEG analysis tasks, especially when dataset characteristics are un-
known.

Models with moderate compatibility account for BLSTM-LSTM and CNN-
FC, which achieve the best performance on 3 and 2 datasets, respectively.
CNN-FC performs better than expected, surpassing the random baseline
on several datasets. In contrast, BLSTM-LSTM exhibits high inconsistency,
excelling on DEAP and DREAMER datasets but ending up at the bottom
in performance on five other datasets, with results even below the random
baseline.
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Table 4.2: Summary Statistics of F1-scores by Dataset

Dataset Mean Std Median

BCIC-III-2 0.68 0.11 0.71

BCIC-IV-2a 0.41 0.12 0.42

BCIC-IV-2b 0.67 0.07 0.70

CHB-MIT 0.95 0.03 0.95

DEAP (arousal) 0.50 0.03 0.51

DEAP (valence) 0.49 0.03 0.50

DREAMER (arousal) 0.67 0.01 0.67

DREAMER (valence) 0.53 0.02 0.53

EEGMAT 0.73 0.04 0.72

High-Gamma 0.66 0.17 0.71

PhysionetMI 0.47 0.10 0.47

SEED 0.73 0.18 0.81

SEEDIV 0.57 0.18 0.57

SIENA 0.68 0.05 0.70

SLEEP-EDF 0.57 0.12 0.60

STEW 0.66 0.08 0.68

TUH-Abnormal 0.74 0.07 0.77

Meanwhile, with outstanding performance on only one dataset, CNN-
LSTM, DeepConvNet, and EEG-TCNet show potential for a particular type
of datasets but lack broad compatibility. Unexpectedly, they do not perform
best on the tasks they were originally designed for. It is also worth highlight-
ing that DeepSleepNet performs the worst across seven datasets, indicating
a limited ability to classify EEG signals effectively.

4.2 subset selection

Before subset selection procedure, correlation analysis was conducted to
check multi correlation between datasets to avoid multilcollinearity prob-
lem.

4.2.1 Correlation Analysis

Figure 4.4 visualizes the correlation matrix across datasets. The correlation
matrix visually represents the pairwise relationships between datasets, with
correlation value ranging from -1 (strong negative correlation) to 1 (strong
positive correlation).

At first glance, what immediately strikes the eye are the dark warm-colored
blocks, indicating that several datasets highly correlate with one another. An-
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Table 4.3: Best Performing Models for Each EEG Dataset

Dataset Model F1-score

BCIC-III-2 CNN-LSTM 0.76

BCIC-IV-2a ShallowConvNet 0.57

BCIC-IV-2b EEGNet 0.75

CHB-MIT ShallowConvNet 0.98

DEAP (arousal) EEGNet 0.53

DEAP (valence) BLSTM-LSTM 0.52

DREAMER (arousal) BLSTM-LSTM 0.69

DREAMER (valence) BLSTM-LSTM 0.55

EEGMAT CNN-FC 0.80

High-Gamma ShallowConvNet 0.85

PhysionetMI DeepConvNet 0.72

SEED EEGNet 0.90

SEEDIV ShallowConvNet 0.77

SIENA ShallowConvNet 0.74

SLEEP-EDF CNN-FC 0.69

STEW EEGTCNet 0.75

TUH-Abnormal EEGNet 0.80

other noteworthy observation is that the dark-shaded blocks (strong corre-
lation) are not evenly spread across the matrix but are instead concentrated
in specific rows and columns, forming distinct clusters where datasets share
highly similar behaviors. For instance, datasets such as SEED, SEEDIV, BCIC-
IV-2b and High-Gamma exhibit extremely high multicorrelation (greater
than 0.9), collectively reflecting overlapping trends in model performance. In
other words, models performing well on one of these datasets are likely to
generalize effectively to the others. On the other hand, certain dataset pairs,
such as CHB-MIT with EEGMAT and BCIC-III-2 with TUH-Abnormal, show
weak or slightly negative correlations with others, underscoring their unique
characteristics and the potential need for specialized approaches. It further
draws attention to the relationship within the DREAMER dataset, where
two dimensions show no correlation with each other, in contrast to the high
correlation observed between these dimensions in the DEAP dataset.

Figure 4.5 presents the hierarchical clustering dendrogram, revealing pat-
terns of similarity and grouping based on model performance tendencies.
The y-axis represents the distance or dissimilarity between clusters, with
lower heights indicating stronger similarity between datasets. The dendro-
gram splits the datasets into two primary clusters. While Cluster 1 (orange)
show relative strong similarity, as evidenced by their clustering at lower
heights, the Cluster 2 (green) display more internal variability, as it subclus-
ters are formed at greater heights.
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Figure 4.4: Correlation Matrix of Datasets Based on F1-score

After clustering, a representative dataset for each cluster was selected
based on the highest average similarity within that cluster. The list of low-
correlated datasets includes SEED, STEW, BCIC-III-2, DEAP (arousal), DEAP
(valence), EEGMAT, SIENA, DREAMER (arousal), DREAMER (valence), CHB-
MIT, and PhysionetMI. In Cluster 1, the datasets in the left branch are closely
linked, leading to the selection of SEED as the representative dataset for this
group. For the right branch of Cluster 1, STEW was chosen as the representa-
tive dataset. In Cluster 2, the datasets display greater dissimilarity, reflecting
more distinct characteristics. As a result, more representative datasets were
selected to capture the diversity within the cluster.

4.2.2 Evaluation of Subset Selection Procedures

The subset selection procedure was proceeded under the four experimental
conditions outlined earlier in Chapter 3. The subsets generated under each
condition were assessed in terms of prediction error (Mean Squared Error,
MSE) and the diversity of selected datasets, as evidenced by pairwise corre-
lations among datasets.

Table 4.4 summarizes the Mean Squared Error (MSE) obtained from the
representative subsets of EEG datasets selected under each experimental con-
dition. As shown, the subset generated using the full dataset corpus while
applying the exclusion approach achieves the lowest MSE (0.001), resulting
in the most accurate prediction performance. When using the full dataset
corpus for the selection process, the exclusion condition obtains a slightly
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Figure 4.5: Hierarchical Clustering Dendrogram of Datasets Based on Similarity in
Model Performance

lower MSE than the inclusion condition, 0.0001 and 0.0002 respectively. The
same tendency is observed in the pruned dataset corpus with a lower MSE
for the exclusion condition. It can be concluded that across both dataset cor-
pora, the exclusion approach consistently yields lower MSE values compared
to the inclusion condition. Using the full dataset corpus also results in lower
MSE values for both approaches. For each condition, there is an overlap in
the EEG datasets selected in the representative subsets, such as BCIC-III-2,
SEED, EEGMAT, DEAP and DREAMER.

To further evaluate the diversity and redundancy of the selected subsets
under each condition, we analyzed their correlation matrices. Weak corre-
lations among datasets imply that each dataset in the subset has unique
characteristics, contributing to the diversity of the subset. Conversely, strong
correlations suggest potential redundancy, where datasets likely share sim-
ilar information, thereby reducing the overall diversity of the subset. Fig-
ure 4.6, 4.7, 4.8 and 4.9 visualize the correlation matrices for the selected
subsets under the four experimental conditions: Full Dataset Corpus + In-
clusion, Full Dataset Corpus + Exclusion, Pruned Dataset Corpus + Inclusion,
and Pruned Dataset Corpus + Exclusion, respectively. It can be observed that
some datasets within the subset are highly correlated with each other. The
presence of highly correlated datasets may reduce the interpretability of the
subset’s prediction performance.
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Table 4.4: Results of Four Experimental Conditions for Representative Subset Selec-
tion

Condition Representative Subset Mean
Squared
Error
(MSE)

Full Dataset Corpus
+ Inclusion

BCIC-III-2, BCIC-IV-2b,
DEAP (valence), EEGMAT,
STEW

0.0002

Full Dataset Corpus
+ Exclusion

BCIC-III-2, BCIC-IV-2a,
DREAMER (arousal),
High-Gamma, SIENA

0.0001

Pruned Dataset
Corpus + Inclusion

SEED, DREAMER (valence),
EEGMAT, CHB-MIT,
DREAMER (arousal)

0.001

Pruned Dataset
Corpus + Exclusion

SEED, BCIC-IV-2a, DEAP
(valence), DREAMER
(valence), PhysionetMI

0.0004

The subset under the Full Dataset Corpus + Inclusion condition includes a
mix of datasets with diverse characteristics, as evidenced by weakly corre-
lated datasets. However, it suffers from redundancy due to extremely high
correlation between BCIC-III-2 and DEAP (valence) (0.92).

Similarly, the correlation matrix under the Full Dataset Corpus + Exclusion
condition highlights a relatively diverse subset of EEG datasets, except for
the broad overlap in behavior between BCIC-IV-2a and High-Gamma (0.87).

In contrast to the above two conditions, four out of five datasets under the
Pruned Dataset Corpus + Exclusion condition exhibit strong correlations with
others, indicating limited diversity despite the preprocessing.

Remarkably, the Pruned Dataset Corpus + Inclusion condition stands out as
the only configuration with no high correlations among datasets, underscor-
ing its effectiveness in selecting datasets with strong diversity.

This brings forth an intriguing question: Why the inclusion approach per-
forms so distinctly better than the exclusion approach in the presence of
clustering and pruning?
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5
D I S C U S S I O N

This chapter discusses the results presented in Chapter 4 in relation to the
study’s objectives and research questions, evaluates their significance, dis-
cuss about limitations, and identifies potential directions for future research.

5.1 interpretation of results

5.1.1 Generalizability of DL Models

The study revealed that no single DL model demonstrated outstanding gen-
eralizability across all EEG datasets, as evidenced by the narrow range of
standard deviation values between 0.14 and 0.18 in model performance.

Models such as EEGNet and ShallowConvNet demonstrated low variabil-
ity in F1-scores and consistent ranking in performance across EEG datasets,
highlighting their potential as general-purpose models for diverse EEG tasks.
While MMCNN was proposed as a general framework for EEG classification
and has shown competitive performance in MI tasks, our findings suggest
its adaptability to other EEG domains remains limited.

Even the best-performing models displayed variability when applied to
datasets outside their original domain, indicating a limitation in the gener-
alization capabilities of existing architectures. This emphasizes the complex
and dynamic nature of EEG signals, where unique characteristics such as
noise, task-specific variability, and subject dependency challenge the robust-
ness of DL models.

5.1.2 Dataset-Specific Challenges

The variability in model performance across datasets also revealed some
dataset-specific characteristics. For instance, the CHB-MIT dataset exhibited
the highest average performance with low variability (M = 0.95, SD = 0.03),
which might imply that its features are easier for models to decode con-
sistently, although this interpretation remains speculative. Conversely, the
BCIC-IV-2a dataset, despite being a common benchmark in EEG research,
showed unexpectedly poor results (M = 0.41, SD = 0.12). This finding chal-
lenges the assumption that frequently used datasets are necessarily well-
suited for general DL evaluations.

The differing statistical patterns between the valence and arousal dimen-
sions in datasets like DEAP and DREAMER further illustrate the variability
in EEG datasets within the same category. While DEAP displayed similar
performance trends across both dimensions, DREAMER showed greater per-
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formance stability in the arousal dimension. Further analysis is necessary to
better understand these differences and their implications.

5.1.3 Compatibility of DL Models with EEG Domains

The compatibility analysis revealed that EEGNet and ShallowConvNet con-
sistently outperformed other models across multiple datasets, particularly in
MI, epilepsy detection, and emotion recognition tasks. Their versatility sug-
gests that these architectures effectively capture diverse EEG signal features.

Interestingly, most models did not perform best on the datasets for which
they were originally developed. This finding raises questions about the trans-
ferability of domain-specific architectures. For instance, ShallowConvNet ex-
celled on datasets beyond MI, such as epilepsy detection (CHB-MIT) and
emotion recognition (SEED-IV). In contrast, DeepSleepNet demonstrated the
lowest compatibility across datasets, likely due to its design being specifi-
cally tailored for sleep stage classification.

The inconsistency in BLSTM-LSTM’s results, outperforming in DREAMER
and DEAP datasets but underperforming in the others, reflects the influence
of task complexity and dataset variability on model performance.

5.1.4 Subset Selection Procedure

The correlation analysis and hierarchical clustering revealed distinct clusters
of highly correlated datasets, such as SEED, SEED-IV, and BCICIV2B. While
these clusters indicate overlapping trends in model performance, their in-
clusion in the same subset risks redundancy, which could undermine the
diversity required for robust model evaluation.

The selection of representative datasets from clusters balances diversity
and representativeness. The observation that CHB-MIT and PhysionetMI ex-
hibit weak correlations with other datasets underscores their potential as
unique additions to the subset, ensuring broader coverage of EEG character-
istics.

The evaluation of subset selection procedures confirmed that the Pruned
Dataset Corpus + Inclusion condition achieved the highest diversity, with
no high correlations among the selected datasets, although it did not yield
the lowest MSE. This outcome is somewhat unexpected, as the Exclusion
approach was anticipated to produce more robust and unbiased results. By
ensuring that the target metrics remain unseen from the subset, the Exclu-
sion approach is designed to avoid overly optimistic estimates, prevent data
leakage, and provide a more rigorous evaluation.

However, the Exclusion approach appeared to behave inconsistently un-
der clustering and pruning compared to the Inclusion approach. Without
pruning, the Exclusion approach resulted in subsets with fewer correlated
datasets than the Inclusion approach. Conversely, after pruning, the Exclu-
sion approach produced subsets with higher correlations among the selected
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datasets, while the Inclusion approach resulted in subsets with no correla-
tions at all.

This inconsistency can be attributed to the interaction between pruning
and the Exclusion approach. Pruning reduces the dataset pool to a smaller,
more "representative" subset of clusters. However, excluding all datasets in
the candidate subset may disrupt the balance and relationships between
datasets established by pruning. The Exclusion approach may accidentally
amplify existing correlations among the remaining datasets, as the excluded
datasets may have played a role in balancing similarities or mitigating redun-
dancy within the cluster structure. As a result, the selected subset includes
more correlated datasets than expected.

Additionally, in the Exclusion approach, the regression model is optimized
on a modified target metric that excludes candidate subset datasets. This par-
tial target metric can alters the subset selection dynamics by over-prioritizing
datasets that perform well on the remaining datasets, even if they are corre-
lated with each other.

In contrast, the Inclusion approach keeps all datasets for target metric
computation, preserving the diversity and relationships established during
pruning. This ensures that the subset selection process considers the entire
dataset pool.

The selected subset in this condition included datasets such as SEED,
DREAMER-Valence, EEGMAT, CHB-MIT, and DREAMER-Arousal, which
exhibited weak pairwise correlations, highlighting the subset’s diversity.

5.2 limitations

While this study provides valuable insights into the interaction between
GANs models and EEG datasets, as well as proposes a systematic subset se-
lection framework, several limitations must be acknowledged.

The relatively small scope of the study, along with limited time and avail-
able resources, restricts its potential to provide a comprehensive overview of
EEG diversity and fully evaluate the performance of more diverse DL archi-
tectures. It is challenging to establish consistent benchmarks for evaluating
deep learning (DL) models across diverse EEG datasets. External factors, in-
cluding preprocessing differences, variations in dataset structures, and chal-
lenges in reproducibility, may have introduced variability, thereby impacting
the accuracy of the results.

5.2.1 EEG Datasets

Several challenges arose during the dataset loading and preprocessing steps,
which impacted the study results. Each dataset had its own unique structure
and loading requirements, making it difficult to standardize the preprocess-
ing pipeline. This lack of standardization likely influenced the reliability and
comparability of the results.
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Some datasets exhibited highly imbalanced class distributions, which could
distort performance metrics, such as accuracy, making them less meaningful
when comparing results across datasets with varying class distributions. As
a result, conclusions drawn from these comparisons may be influenced by
the underlying class distributions rather than the true generalizability of the
models.

Take CHB-MIT as an example. This dataset exhibited exceptionally high
performance metrics, but this does not imply that data is easier to classify.
Instead, the imbalance in the dataset — where non-epileptic segments signif-
icantly outnumber epileptic ones — contributes to inflated metrics. Epileptic
events typically last only about one minute, while non-epileptic recordings
span approximately 30 minutes. Epilepsy detection, being a form of anomaly
detection, skews results toward the majority class (non-epileptic), leading
to overhyped accuracy. This imbalance complicates comparisons between
DL models and makes it difficult to draw meaningful interpretations about
CHB-MIT’s actual classification difficulty.

The labor-intensive effort involved in extracting features for each dataset
limited the ability to experiment with non-end-to-end deep learning models
or other machine learning approaches that require explicit feature extraction
before training. As a result, the study primarily focused on end-to-end DL

models, leaving other potentially valuable methodologies unexplored.

5.2.2 Deep Learning Models

The selection of DL algorithms in this study, while diverse within the cate-
gory of end-to-end deep learning models, lacks representation from other
types of approaches. Applying additional machine learning and deep learn-
ing models that require feature extraction steps before training could offer
greater understanding of model performance trends across datasets.

Moreover, more than half of the models included in this study were specif-
ically designed for motor imagery tasks, as many of the EEG-based well-
known and high-performing models are tailored for motor imagery classi-
fication. This may introduce a potential bias, as these models may perform
disproportionately well on motor imagery datasets compared to other do-
mains. Such a bias could increase the likelihood that motor imagery datasets
are overrepresented in the selected subset.

The study also face reproducibility challenges, particularly with DL archi-
tectures that were too complex to implement. This limitation restricted the
range of models included in the study, as some architectures were excluded
due to their high implementation difficulty. Furthermore, the reproducibil-
ity of model performance was affected by differences in preprocessing tech-
niques applied to the datasets. These variations may result in discrepancies
between this study’s findings and the results reported in the original papers.
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5.2.3 Performance Metrics

Performance scores play a crucial role in the subset selection procedure, par-
ticularly for Ridge regression modeling. A key consideration is determining
which metric should be used for modeling and evaluation, especially when
datasets vary in characteristics such as the number of classes or degree of
class imbalance.

To address the bias introduced by imbalanced datasets, where a classifier
might achieve high accuracy by favoring the majority class, this study used
the F1-score instead of accuracy as the primary performance metric. How-
ever, during the evaluation, it was observed that the F1-score did not fully
mitigate the impact of imbalanced class distributions.

As observed in Chapter 4, while the two dimensions of the DEAP dataset
displayed a similar trend with high correlation coefficients, the valence and
arousal dimensions in the DREAMER dataset showed completely different
behavior. Even under the Pruned Dataset Corpus + Inclusion condition, both
dimensions were chosen as part of the representative subset. A small inves-
tigation into the results of the DREAMER dataset revealed that the arousal
dimension suffers from significant class imbalance, which may explain its
weak correlation with the valence dimension.

To ensure equal importance for all classes, regardless of their size, the
macro F1-score was used for evaluation. This metric computes the F1-score
for each class independently and then averages them, ensuring that perfor-
mance on smaller classes is not overshadowed by dominant classes. By re-
flecting a model’s ability to correctly classify both minority and majority
classes, the macro F1-score provides a balanced evaluation.

Figure 5.1 illustrates the performance of selected models on EEG datasets
using macro-averaged F1-scores. Notably, the valence and arousal dimen-
sions of DREAMER dataset exhibited similar behavior and even correlated
highly with those of the DEAP dataset. Furthermore, CHB-MIT, which previ-
ously showed high accuracy, appeared less dominant under macro-averaging.
The use of macro-averaged F1-scores resulted in a remarkable change in cor-
relations and clustering among datasets (Figure 5.2). The datasets appeared
to share more common patterns, as evidenced by the lower linkage distances,
tighter clustering and fewer datasets at distinctly higher distances.

Additionally, comparing datasets with different numbers of classes presents
challenges because the number of classes directly impacts task complexity
and performance metrics. With more classes, the classification task becomes
more difficult as the classifier has a greater chance to make incorrect predic-
tions. For instance, an accuracy of 50% in a two-class dataset reflects only
random performance, but the same accuracy in a four-class dataset indicates
performance above the random threshold. Aggregated metrics like F1-scores
alone may not fully capture differences in task difficulty across datasets, po-
tentially leading to unfair comparisons.
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Figure 5.1: Heatmap of Macro average F1-score Across All Datasets and Models

5.2.4 Subset Validation

This study primarily focuses on exploring subset selection procedures to
support the development of generalizable deep learning (DL) models. How-
ever, as the subsets themselves are still in the early stages of development,
no concrete models or frameworks have yet been built to fully utilize these
subsets. It is currently difficult to test their validity or evaluate their effec-
tiveness in representing the diversity of EEG datasets. Additionally, due to
time constraints, there was no opportunity to design or implement a proper
procedure to assess their validity. As a result, while the subsets hold theoret-
ical potential, their practical utility and robustness remain untested, leaving
room for future work to explore their impact on the development of gener-
alizable DL models.

Despite these limitations, this study serves as an initial step toward under-
standing the generalizability of DL models for EEG analysis and highlights
the importance of systematic subset selection in improving model evaluation
frameworks. Addressing these limitations in future research could enhance
the robustness and applicability of the findings.

5.3 future work

This study leaves several areas open for further exploration and improve-
ment.

A critical avenue for future research is the validation of the effectiveness of
the selected subsets. One potential approach could involve testing novel, un-
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Figure 5.2: Hierarchical Clustering Dendrogram of Datasets Based on
Macro average F1-score

seen DL models on each dataset in the full collection, calculating the median
performance, and comparing it against their performance on the selected
subset. This would help determine if the results on the subset align with the
median performance across all datasets. Alternatively, DL models could be
trained on the subsets and evaluated on unseen EEG datasets to assess the
subsets’ ability to capture essential features and patterns that contribute to
cross-domain generalization.

The scope of this study was constrained by limitations in time and re-
sources, which affected the ability to implement a larger number of datasets
and DL models, leaving room for expanding the dataset coverage and in-
cluding a broader variety of models. Future work should aim to encompass
a broader range of datasets from additional domains to strengthen the rep-
resentativeness of the subset selection framework.

Similarly, expanding the variety of architectures beyond end-to-end DNN

could also enhance evaluations. While this study focused on widely-used
DNN such as CNNs and RNNs, future efforts could explore state-of-the-art
architectures like Transformers and attention-based models. Additionally,
conventional classification algorithms that require feature extraction could
be implemented for comparative analysis. Techniques that extract spatial fea-
tures by transforming EEG activities into a sequence of topology-preserving
multi-spectral images could be explored [15].
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To address potential biases toward motor imagery tasks, future studies
should also consider applying deep learning models originally designed for
datasets spanning multiple domains. Incorporating hybrid architectures or
transfer learning techniques could further improve the evaluation of gen-
eralization across EEG domains, offering richer information about dataset
performance.

Selecting an appropriate metric for evaluating and comparing performance
across datasets remains a critical challenge. Future studies should focus on
identifying performance metrics that enable reliable subset selection and en-
sure fair comparisons across datasets with varying characteristics. The alter-
native metrics should be able to balance class distributions and account for
differences in task complexity.

Experimenting with metrics such as normalized accuracy or weighted
F1-scores could help improve the subset selection methodology. A normal-
ized approach that considers the deviation of model performance relative
to random guessing (e.g., a baseline accuracy of 1

n , where n is the number
of classes) could enhance interpretability by highlighting whether a model
performs better or worse than random chance.

Another important direction is is the development of generalizable DL

models specifically designed to work across diverse EEG tasks and domains.
This could involve testing novel architectures that prioritize cross-task adapt-
ability, employing pre-training strategies or transfer learning techniques, and
comparing the performance of models trained on the selected subsets versus
those trained on the full datasets. Such efforts would quantify the subsets’
impact on enabling robust and efficient model training.

By addressing these directions, future research can enhance subset selec-
tion procedures for EEG datasets and establish a robust validation pipeline
for the selected subsets, paving the way for the development of more robust,
generalizable, and impactful DL models.

5.4 conclusion

This study attempts to tackle one of the challenges of generalizability in
EEG-based deep learning by proposing a systematic approach to identify
a representative subset of EEG datasets. By minimizing redundancy while
preserving diversity of EEG signals, this work demonstrates the feasibility
of constructing a subset that captures the variability across multiple EEG
classification tasks, paving the way for more efficient and scalable solutions.
The study also provides broader insights into the generalizability and com-
patibility of state-of-the-art end-to-end deep learning models across multiple
EEG datasets spanning different domains.

The study investigated the subset selection procedure for EEG datasets,
aiming to identify diverse and representative subsets that minimize predic-
tion error in regression models. Key findings demonstrate that the Pruned
Dataset Corpus + Inclusion approach offers the best trade-off between diver-
sity and redundancy, while the Full Dataset Corpus + Exclusion achieves the



5.4 conclusion 70

lowest prediction error but with higher redundancy. Preprocessing methods
like clustering and pruning play a critical role in subset selection, affecting
diversity and prediction accuracy.

Despite limitations, such as the absence of standardized pipelines for load-
ing, preprocessing, and training DL models across EEG datasets, as well as
the lack of suitable validation methods for the selected subset, this work
provides a foundational framework for developing generalizable EEG classi-
fication models. Future research should focus on exploring alternative subset
selection strategies and expanding the study with more datasets and models
to further improve diversity and predictive performance.
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