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Abstract

Censored data frequently occurs in fields such as medical research and survival analysis,
posing unique challenges for reliable variance estimation in predictive models. This study
addresses these challenges by developing and evaluating a novel variance estimation method
tailored to predictions from IPC-weighted classification models.

In this thesis, we develop the Infinitesimal-Jackknife-after-weighted-Bootstrap-unbiased (IJK-
AWB-U) estimator. Building upon Wager’s Infinitesimal Jackknife approach for unweighted
bagged learners, the IJK-AWB-U estimator extends this methodology to IPC-weighted re-
sampling and incorporates an effective bias correction to adjust for finite bootstrap samples.
This novel estimator provides unbiased variance estimates for bagged learners, particularly
those based on decision trees, when dealing with censored data.

An extensive simulation study was conducted following the ADEMP framework to compare
the performance of the IJK-AWB-U estimator with traditional methods, including the non-
parametric Bootstrap and the Jackknife-after-Bootstrap. The results demonstrated that the
IJK-AWB-U estimator offers reliable and accurate variance estimates, especially under low to
moderate censoring proportions and with larger training sample sizes. It effectively corrects
the bias present in the original IJK-AWB estimator and achieves a favorable balance between
accuracy and computational efficiency. Compared to the computationally intensive Bootstrap
estimator, the IJK-AWB-U estimator provides similar accuracy with significantly reduced
computational time. In contrast, while the Jackknife-after-Bootstrap estimator is unbiased
under unweighted resampling, it consistently overestimated variance in IPC-weighted contexts,
making it less reliable in such settings. Given these findings, the IJK-AWB-U estimator
emerges as the preferred method for variance estimation in our context

The practical application of the IJK-AWB-U estimator to the TxReg dataset further validated
its reliability and utility. The estimator produced confidence intervals closely aligned with
those generated by the Bootstrap estimator, demonstrating its effectiveness in real-world
scenarios where computational efficiency is crucial.

Future research directions include extending the IJK-AWB-U estimator to other machine
learning architectures such as gradient-boosting models and neural networks, and applying it
to diverse fields beyond medical research, including finance, engineering, and epidemiology.
These extensions would further validate the estimator’s versatility and adaptability.

Keywords: IPC-weighted Classification Models, Censored Data, Infinitesimal Jackknife,
Jackknife, Jackknife-after-Bootstrap, Nonparametric Bootstrap, Survival Analysis, Bagged
Learner, Decision Trees, Uncertainty Estimation
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Zusammenfassung

Zensierte Daten treten häufig in Bereichen wie der medizinischen Forschung und der Überleben-
sanalyse auf und stellen einzigartige Herausforderungen für eine zuverlässige Varianzschätzung
der Vorhersagen in prädiktiven Modellen dar. Diese Studie adressiert diese Herausforderungen
durch die Entwicklung und Bewertung einer neuartigen Varianzschätzungsmethode, die auf
IPC-gewichtete Klassifikationsmodelle zugeschnitten ist.

In dieser Arbeit entwickeln wir den Infinitesimal-Jackknife-after-weighted-Bootstrap-unbiased
(IJK-AWB-U) Schätzer. Aufbauend auf Wagers Infinitesimal-Jackknife-Ansatz für ungewichtete
Bagged Learner erweitert der IJK-AWB-U Schätzer diese Methodik auf IPC-gewichtetes
Resampling und beinhaltet eine effektive Bias-Korrektur zur Anpassung für endliche Bootstrap-
Stichproben. Dieser neuartige Schätzer liefert unverzerrte Varianzschätzungen für Bagged
Learner, insbesondere solche, die auf Entscheidungsbäumen basieren, wenn mit zensierten
Daten gearbeitet wird.

Eine umfangreiche Simulationsstudie wurde nach dem ADEMP-Rahmenwerk durchgeführt,
um die Leistung des IJK-AWB-U Schätzers mit traditionellen Methoden, einschließlich des
nichtparametrischen Bootstraps und des Jackknife-after-Bootstrap, zu vergleichen. Die Ergeb-
nisse zeigten, dass der IJK-AWB-U Schätzer zuverlässige und genaue Varianzschätzungen
bietet, insbesondere bei niedrigen bis moderaten Zensierungsanteilen und größeren Train-
ingsstichprobengrößen. Er korrigiert effektiv den Bias des ursprünglichen IJK-AWB Schätzers
und erreicht ein günstiges Gleichgewicht zwischen Genauigkeit und rechnerischer Effizienz.
Im Vergleich zum rechnerisch intensiven Bootstrap-Schätzer bietet der IJK-AWB-U Schätzer
ähnliche Genauigkeit bei deutlich reduzierter Rechenzeit. Im Gegensatz dazu überschätzte der
Jackknife-after-Bootstrap Schätzer, obwohl er unter ungewichtetem Resampling unverzerrt
ist, die Varianz in IPC-gewichteten Kontexten konsequent, was ihn in solchen Fällen weniger
zuverlässig macht. Angesichts dieser Ergebnisse erweist sich der IJK-AWB-U Schätzer als
bevorzugte Methode für die Varianzschätzung in unserem Kontext.

Die praktische Anwendung des IJK-AWB-U Schätzers auf den TxReg-Datensatz bestätigte
weiter seine Zuverlässigkeit und Nützlichkeit. Der Schätzer erzeugte Konfidenzintervalle, die
eng mit denen übereinstimmen, die durch den Bootstrap-Schätzer generiert wurden, was seine
Effektivität in realen Szenarien demonstriert, in denen rechnerische Effizienz entscheidend ist.

Zukünftige Forschungsrichtungen umfassen die Erweiterung des IJK-AWB-U Schätzers auf
andere maschinelle Lernarchitekturen wie Gradient-Boosting-Modelle und neuronale Netze
sowie die Anwendung in verschiedenen Bereichen jenseits der medizinischen Forschung, ein-
schließlich Finanzen, Ingenieurwesen und Epidemiologie. Diese Erweiterungen würden die
Vielseitigkeit und Anpassungsfähigkeit des Schätzers weiter validieren.
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1 Introduction

The analysis of event times is a cornerstone of statistical research, especially in fields such
as medical research and survival analysis. However, traditional methods that rely on event
time models often face significant challenges when dealing with censored data, a common
feature in real-world datasets. Censoring occurs when the objective is to model the time
until a specific event occurs, but the event does not happen for all observations within the
study period, or the exact event time cannot be precisely determined.

To address these challenges, reducing the problem to a classification framework, combined
with inverse probability of censoring weights (IPCW), has emerged as a promising approach.
This methodology allows for unbiased estimates from censored data, overcoming some of the
limitations inherent in traditional event time models.1

The primary objective of this thesis is to evaluate the statistical properties of IPC-weighted
classification methods in comparison to traditional event time models, with a particular focus
on the uncertainty of predictions. The research specifically examines how the reduction to
classification methods affects the uncertainty of predictions when applied to censored data.
To follow this objective, a nonparametric method for variance estimation first has to be
developed. The Infinitesimal Jackknife method for uncertainty estimation has been modified
to better align with the unique requirements of IPC-weighted resampling, leading to the
development of our Infinitesimal-Jackknife-after-weighted-Bootstrap.

A structured simulation study, conducted according to the ADEMP (Aim, Data-generating
mechanism, Estimand, Methods, Performance measures) principle, serves as the basis for com-
paring these methods. The simulation study compares the performance of our Infinitesimal-
Jackknife-after-weighted-Bootstrap, the Jackknife-after-Bootstrap, and the nonparametric
Bootstrap in estimating the uncertainty of predictions from IPC-weighted classification
methods. The results aim to provide insights into whether, and to what extent, the reduction
to classification problems increases the uncertainty of predictions. These findings are further
validated through their application to the TxReg dataset, serving as a practical example
demonstrating the effectiveness of the newly developed method.

Overview of the Thesis:

Table 1.1 shows an overview of methods for estimating the variance of a prediction, generated
with different type of learners. The methods marked in green in the table already exist in
the literature and are discussed in our Methods chapter. In contrast, the methods marked in
blue do not currently exist and are derived in our work. The Infinitesimal Jackknife method

1[Gon+21]
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Contents

and it’s bias corrected version for bagged learners with unweighted resampling was derived
by Wager in Paper [WHE14] and is not part of this work.

Nonparametric
Methods for
estimating

var(p̂(x))

Prediction p̂(x) derived from

Unbagged Learner
Bagged Learner
with unweighted
Resampling

Bagged Learner
with IPC-weighted
Resampling

Nonparametric
Bootstrap

Unbiased Unbiased Unbiased

Jackknife / Jackknife
after Bootstrap

Unbiased for linear
and smooth p̂(x)

Unbiased for linear
and smooth p̂(x)

-

Infinitesimal Jackknife
Unbiased for smooth
p̂(x)

Unbiased for smooth
p̂(x) and B → ∞

Unbiased for smooth
p̂(x) and B → ∞

Bias corrected
Infinitesimal Jackknife

Not applicable
Unbiased for smooth
p̂(x) and B < ∞

Unbiased for smooth
p̂(x) and B < ∞

Table 1.1: Methods for estimating the variance of a prediction, generated with different type
of learners

• Chapter 2.1 establishes the theoretical framework for IPC-weighted classification
methods.

• Chapter 2.2 discusses existing nonparametric variance estimation techniques for
unbagged learners, such as the Jackknife, nonparametric Bootstrap and Infinitesimal
Jackknife.

• Chapter 2.3 introduces variance estimates for bagged learners under unweighted
resampling, such as Jackknife and Jackknife-after-Bootstrap.

• Chapter 2.4.1 introduces the gold standard of variance estimates, the nonparametric
Bootstrap. Here it is adapted to fulfill the requirements for variance estimates of bagged
learners under IPC-weighted resampling

• Chapter 2.4.2 and 2.4.3 introduces the newly developed Infinitesimal-Jackknife-
after-weighted-Bootstrap and it’s bias corrected version, including its derivation. This
method can be used for bagged learner with IPC-weighted resampling.

• Chapter 3 presents the simulation study that compares the performance of traditional
methods (Jackknife-after-Bootstrap and nonparametric Bootstrap) with the new method,
following the ADEMP structure.

• Chapter 4 applies the Infinitesimal-Jackknife-after-weighted-Bootstrap, the nonpara-
metric Bootstrap and the Jackknife-after-Bootstrap methods to the TxReg dataset,
highlighting the practical implications of the findings.

• Chapter 5 concludes the thesis with a summary of the results and a discussion of
potential directions for future research.

Through this structured approach, the thesis aims to provide a comprehensive understanding
of uncertainty estimation in IPC-weighted classification methods and to demonstrate the
advantages of the newly developed Infinitesimal-Jackknife-after-weighted-Bootstrap method
in handling censored data within this framework.

2



2 Methods

2.1 Binary Classification with IPC-Weighted Resampling

In many real-world applications, especially in medical research and survival analysis, we
encounter right-censored data, where the event of interest (e.g., disease occurrence,
equipment failure) has not occurred for all subjects during the observation period. Traditional
binary classification methods may not be suitable in this context, as they do not account
for censoring and may lead to biased predictions. To address this challenge, we can employ
Inverse Probability of Censoring Weighting (IPCW) in conjunction with weighted resampling
to adjust for censoring and improve the predictive performance of classifiers. This will be the
content of this chapter.

2.1.1 Inverse Probability of Censoring Weighting (IPCW)

IPCW is a technique used to handle right-censored data by weighting each observation
inversely proportional to the probability of it being uncensored. This approach compensates
for the loss of information due to censoring by giving more weight to observed data. To
formally define the notations used for a right-censored dataset, we present the following
definitions:

Definition 2.1.1: Right-Censored Dataset Notations

Let {(xi, ti, ¶i)}
n
i=1 denote the dataset, where:

• xi ∈ R
p is the feature vector for the i-th subject.

• ti is the observed time, which is the minimum of the event time t∗
i and the

censoring time ci, i.e., ti = min(t∗
i , ci).

• ¶i = I{t∗
i f ci} is the event indicator, where ¶i = 1 if the event is observed and

¶i = 0 if the observation is censored.

To account for censoring, we define the IPC-weight for the i-th observation as follows:

3



2.1.2 IPC-Weighted Resampling for Binary Classification

Definition 2.1.2: IPC-Weights

Let Ä be a specified time horizon for classification. The binary classification task aims
to predict whether the event **does not** occur by time Ä . Accordingly, we define the
binary outcome yi for each observation as:

yi =







1, if ti > Ä,

0, otherwise.

To account for censoring in this classification problem, the IPC-weights wi are calculated
based on the following three cases.a

1. Case 1: If ci < Ä and ci < t∗
i (i.e., the subject is censored before Ä and before

the event occurs),
wi = 0.

2. Case 2: If Ä < ci and Ä < t∗
i (i.e., the subject is censored after Ä and the event

has not occurred by Ä),

wi =
1

Ĝ(Ä)
.

3. Case 3: If t∗
i < ci and t∗

i < Ä (i.e., the event occurs before Ä and before
censoring),

wi =
1

Ĝ(ti)
.

Here, Ĝ(t) = P (C > t) is the estimated survival function of the censoring distribution
at time t. It can be estimated with the Kaplan-Meier Estimator (suitable when
censoring is independent of event time).

a[Voc+16, p. 121]

By upweighting observations that provide more information about the **non-occurrence** of
the event by Ä , the method corrects for the bias introduced by censoring, leading to more
reliable and unbiased predictions.1

2.1.2 IPC-Weighted Resampling for Binary Classification

To perform binary classification in the presence of right-censored data, it is essential to adjust
the resampling process to account for censoring. The IPC-weighted resampling method
integrates the IPC-weights into the bagging framework (the bagging framework, bagged
learner, will be explained later in Section 2.3.1), ensuring that the resampling procedure
appropriately reflects the censoring mechanism. This adjustment enables the creation of an
ensemble of base classifiers that provide unbiased and accurate predictions.

1[Voc+16, p. 121f.]
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2.1.2 IPC-Weighted Resampling for Binary Classification

Definition 2.1.3: IPC-Weighted Bagging Procedure

The IPC-weighted bagging procedure for binary classification with right-censored data
is defined as follows:

1. Compute IPC Weights: For each observation i, calculate the IPC-weight wi

and binary outcome yi using Definition 2.1.2.

2. Weighted Resampling: Generate B bootstrap samples by sampling observa-
tions with replacement from the original dataset. In each sampling step within a
bootstrap sample, the probability of selecting observation i is proportional to its
IPC-weight wi. Specifically, the probability pi of selecting observation i in each
draw is:

pi =
wi

∑n
j=1 wj

,

where pi represents the selection probability for observation i in each individual
resampling step.

3. Model Training: For each bootstrap sample b = 1, . . . , B, train a base classifier
t(b) on the resampled data {(xi, yi)}

n
i=1. This ensures that the base learner is

trained on data adjusted for censoring.

4. Bagged Learner’s Prediction: For a new observation xnew, aggregate the
predictions from all base classifiers to form the final prediction of the Bagged
Learner. This can be done by averaging the predicted probabilities:

ŷ(xnew) =
1

B

B
∑

b=1

t(b)(xnew).

This procedure ensures that the resampling process accounts for the censoring mechanism,
specifically tailored for the binary classification task of predicting events by time Ä .

Choice of Base Learners

The performance of IPC-weighted bagging procedure can vary depending on the choice of
base classifiers. Common options include:

• Decision Trees: Simple and interpretable but may have high variance.

• Random Forests: Ensemble of trees that can capture complex interactions.

• Gradient Boosting Machines: Powerful but may require careful tuning.

In this work we will work with Decision Trees.

Performance Evaluation with IPCW-MSE

Evaluating the performance of classifiers in the presence of censoring requires metrics that
account for incomplete observations. The IPCW Mean Squared Error (IPCW-MSE) is one
such metric. It measures the average squared difference between the predicted probabilities
and the true outcomes, adjusted for censoring by weighting with IPC weights. It is computed
as:

5



2.1.2 IPC-Weighted Resampling for Binary Classification

Definition 2.1.4: IPCW Mean Squared Error (IPCW-MSE)

The IPCW-MSE is defined as:

IPCW-MSE =
1

n

n
∑

i=1

pi (yi − ŷ(xi))
2 ,

where:

• yi is the true binary outcome for observation i (i.e., yi = 1 if the event is seen by
Ä , and yi = 0 otherwise).

• ŷ(xi) is the predicted probability of the event occurring by Ä for observation i.

• pi are the normalized IPC weights as defined in Definition 2.1.3.

This metric accounts for censoring by upweighting the uncensored observations, providing an
unbiased estimate of the mean squared error. Lower values of IPCW-MSE indicate better
predictive performance. The IPCW-MSE is the same as the expected Brier Score.2

In this chapter, we introduced the **Inverse Probability of Censoring Weighting (IPCW)**
method and its integration with **weighted resampling** to address right-censored data in
binary classification tasks. By defining the necessary notations and outlining the **IPC-
Weighted Bagging Procedure**, we demonstrated how weighted resampling and ensemble
learning can mitigate the bias introduced by censoring. Additionally, we introduced the
**IPCW Mean Squared Error (IPCW-MSE)** as an unbiased metric for evaluating classifier
performance. The next chapter will explore **Nonparametric Variance Estimates**, providing
a foundation to accurately estimate the variance of predictions generated by the IPC-weighted
bagging procedure.

2.2 Nonparametric Variance Estimates

Variance estimation is a fundamental component in statistical analysis, providing insights
into the variability and reliability of predictive models. Accurate variance estimates are
crucial for assessing the uncertainty associated with model predictions, enabling informed
decision-making and enhancing the credibility of analytical results. Unlike parametric meth-
ods, nonparametric variance estimation techniques make minimal assumptions about the
underlying data distribution, offering greater flexibility and robustness in diverse applications.

This chapter explores a range of nonparametric methods for estimating variance, including
the **Jackknife Estimate**, **Nonparametric Bootstrap**, and their **Geometric Inter-
pretations**. We also introduce the **Infinitesimal Jackknife** as an advanced technique
for variance approximation. Through theoretical discussions and simulation studies, we
demonstrate the effectiveness and applicability of these methods in various scenarios. By es-
tablishing a comprehensive understanding of nonparametric variance estimation, this chapter
lays the groundwork for subsequent discussions on variance estimation for bagged learners in
Chapter 2.3 and 2.4.

2[Gra+99, p. 2538]
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2.2.1 Jackknife

2.2.1 Jackknife

The jackknife method is a classic statistical technique used to estimate both the bias and
variance of an estimator. This method, which predates the more widely known bootstrap
technique, shares several conceptual similarities with it but is often simpler to implement.
In this section, we will explore the fundamentals of the jackknife method and examine its
limitations.

Definition of the Jackknife

The jackknife method is typically employed in situations involving one-sample problems,
where the dataset, denoted by

X = {X1, X2, . . . , Xn}, (2.2.1)

is assumed to consist of independent and identically distributed (iid) observations from an
unknown probability distribution F . A real-valued statistic,

¹̂ = s(X), (2.2.2)

is computed using a function s : Rn → R, which is applied to the entire sample X. The
function s is permutation invariant, meaning that the order of the inputs Xi does not affect
the result. The primary objective of the jackknife method is to estimate the variance of ¹̂,
which reflects the variability of ¹̂ under the sampling model.

The jackknife procedure begins by systematically leaving out each observation Xi from the
sample to form a reduced dataset,

X(i) = {X1, X2, . . . , Xi−1, Xi+1, . . . , Xn}. (2.2.3)

Next, the statistic of interest, ¹̂(i), is recalculated using this reduced sample:

¹̂(i) = s(X(i)). (2.2.4)

Definition 2.2.1: Jackknife estimate of Variance

The jackknife estimate of the variance of ¹̂ is defined asa:

v̂arJK(¹̂) =
n − 1

n

n
∑

i=1

(

¹̂(i) − ¹̂(·)
)2

,

where

¹̂(·) =
1

n

n
∑

i=1

¹̂(i).

a[ET93, p. 141]

In addition to variance estimation, the jackknife method can also be used to detect outliers
by evaluating the influence of each observation Xi on the overall variance estimate. The
contribution of each observation Xi to the jackknife variance estimate can be assessed by
calculating:

7



2.2.1 Jackknife

(¹̂(i) − ¹̂(·))2

∑n
j=1(¹̂

(j) − ¹̂(·))2
. (2.2.5)

One of the key advantages of the jackknife method is its flexibility. Unlike parametric methods,
the jackknife does not require any specific assumptions about the underlying distribution
F . This nonparametric nature makes the jackknife a broadly applicable tool. Moreover,
the jackknife method is automated and straightforward: a single algorithm can take the
dataset X and function s as inputs and output the jackknife variance estimate. The method
operates under the assumption that the statistic ¹̂ behaves smoothly (i.e., small changes in
the data lead to small changes in the statistic’s value). As defined in Definition 2.2.15, the
term smooth will be discussed in more detail later.

While the jackknife method offers simplicity and robustness, it also has limitations, particularly
when dealing with highly skewed or heavy-tailed distributions, or in the presence of strong
dependencies between observations. In such cases, more sophisticated methods like the
bootstrap may provide better variance estimates.3 4

Examples

The motivation behind the jackknife variance estimation formula (Definition 2.2.1) becomes
clearer when considering a simple scenario where ¹̂ represents the sample mean of the dataset
X.

Example 1

Jackknife Variance of the Sample Mean

For the sample mean, ¹̂ = X̄, where each observation Xi belongs to R
1, the jackknife estimate

of variance can be derived as follows:

¹̂(i) =
1

n − 1





n
∑

j=1

(Xj) − Xi



 =
nX̄ − Xi

n − 1
,

where ¹̂(i) is the estimate obtained by leaving out the i-th observation. The mean of these
leave-one-out estimates is:

¹̂(·) =
1

n

n
∑

i=1

¹̂(i) =
1

n

n
∑

i=1

nX̄ − Xi

n − 1
= X̄.

The difference between each leave-one-out estimate and the overall mean is:

¹̂(i) − ¹̂(·) =
nX̄ − Xi

n − 1
− X̄ =

X̄ − Xi

n − 1
.

Substituting this into the jackknife variance formula gives:

v̂arJK(¹̂) =
n − 1

n

n
∑

i=1

(

¹̂(i) − ¹̂(·)
)2

=

∑n
i=1(X̄ − Xi)

2

n(n − 1)
=

Ã̂2
X

n
.

3[ET93, pp. 188-189]
4[ET93, pp. 309-311]
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2.2.1 Jackknife

This example illustrates that the jackknife estimate of variance for the sample mean is
essentially the empirical variance of the sample X divided by the sample size n, which aligns
with the classical formula for variance estimation for the sample mean. This shows the
consistency of the jackknife method for the sample mean. More generally, for a linear statistic

Definition 2.2.2: Linear Statistic

A statistic is considered linear if it can be expressed as follows:a

¹̂ = s(X) = c +
1

n

n
∑

i=1

³(Xi),

where ³(·) is a function, and c is a constant. A simple example of a linear statistic is
the sample mean, where ³(Xi) = Xi and c = 0.

a[ES81, p. 590f.]

, the jackknife method also performs well, as we will see later in the subsection Bias of
Jackknife (2.2.1).

Example 2

Jackknife Variance of a Function of the Sample Mean

Now, let us consider a statistic that is a function of the sample mean, such as ¹̂ = g(X̄). In
such cases, the variance of this statistic is typically calculated using the delta method5:

v̂ardelta(¹̂) = g′(µ)2 · var(X̄),

where µ = E(X). Here, the mean of the Xi values is typically used for µ, and an estimate for
the true variance var(X̄) is substituted. Therefore, the delta method’s estimate of variance
for the statistic g(X̄) is:

v̂ardelta(¹̂) = g′(X̄)2 ·
Ã̂2

X

n
.

For the calculation of the jackknife estimate of variance for the statistic ¹̂ = g(X̄), we need g
to be a smooth function (cf. Definition 2.2.15). For simplicity we calculate it for the case,
where each observation Xi ∈ R

1:

¹̂(i) = g(X̄(i)) = g

(

nX̄ − Xi

n − 1

)

.

Using a linear approximation (first-order Taylor expansion around X̄):

¹̂(i) = g(X̄) + g′(X̄) ·
(

X̄(i) − X̄
)

= g(X̄) + g′(X̄) ·
X̄ − Xi

n − 1
.

The mean of these leave-one-out estimates is:

¹̂(·) =
1

n

n
∑

i=1

(

g(X̄) + g′(X̄) ·
X̄ − Xi

n − 1

)

= g(X̄).

5[EH16, p. 20]
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2.2.1 Jackknife

Therefore, the Jackknife variance estimate is:

v̂arJK(¹̂) =
n − 1

n

n
∑

i=1

(

g′(X̄) ·
X̄ − Xi

n − 1

)2

= g′(X̄)2 ·
Ã̂2

X

n
.

This example demonstrates that the delta method provides the same variance estimate as
the jackknife when a linear approximation is used for ¹̂(i). However, if the statistic ¹̂ is
nonlinear, the jackknife’s reliance on a first-order Taylor expansion can lead to a loss of
information, resulting in a biased variance estimate v̂arJK(¹̂). **Is the square of the mean a
linear statistic?** According to Definition 2.2.2, a statistic is linear if it can be expressed as:

¹̂ = s(X) = c +
1

n

n
∑

i=1

³(Xi),

where ³(·) is a function and c is a constant. The square of the mean, ¹̂ = X̄2, does not fit
this form because it involves a quadratic transformation of X̄. Specifically:

¹̂ = X̄2 =

(

1

n

n
∑

i=1

Xi

)2

=
1

n2

n
∑

i=1

n
∑

j=1

XiXj,

which includes product terms XiXj that are not covered by the linear definition. Therefore,
since ¹̂ = X̄2 is nonlinear, using a linear approximation in the jackknife method can result in
a biased variance estimate due to information loss.

Example 3

Jackknife Variance of the Median

Beyond the linearity of the statistic, another important assumption of the jackknife method
is that the statistic is smooth (smoothness will be discussed in more detail in Definition 2.2.15
later). Some statistics, like the median, do not satisfy this assumption, leading to inconsis-
tencies in the jackknife variance estimate, as illustrated in the following example.

Consider the following ordered values from a data sample:

X = [10, 27, 31, 40, 46, 50, 52, 104, 146].

The median of this sample is 46. If we adjust one of the observations, say X4 = 40, by
increasing its value, the median remains unchanged until X4 exceeds 46. Once X4 surpasses
46, the median changes abruptly. This behavior illustrates that the median is not a smooth
function of the data. As a result, the jackknife variance estimate v̂arJK(¹̂) becomes inconsistent
when applied to the median. Using the data sample above, the jackknife estimates ¹̂(i) for
the median yield only three distinct values: 43, 45, and 48. The resulting jackknife variance
estimate is:

v̂arJK(¹̂) = 44.64.

In contrast, the bootstrap variance estimate, based on B = 100 bootstrap samples, is 71.23,
which is significantly larger. As n → ∞, the jackknife variance estimate v̂arJK(¹̂) fails to
converge to the true variance, demonstrating its inconsistency for non-smooth statistics like
the median. On the other hand, the bootstrap method accounts for variability in the data
and provides a consistent estimate even for non-smooth statistics.6

6[ET93, p. 148]
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2.2.1 Jackknife

Bias of Jackknife

As demonstrated in the previous examples, the jackknife method effectively estimates the
variance of mean statistics and functions of mean statistics, when the statistic is both linear
and smooth. However, for nonlinear and non-smooth statistics, such as the median, the
jackknife method may introduce bias into the variance estimate. This section explores the
sources of bias in the jackknife variance estimate.

The jackknife variance estimate, v̂arJK(¹̂) (as defined in Definition 2.2.1), relies on leave-one-
out samples X(i) of size n − 1. In contrast, the original statistic ¹̂, whose variance we aim to
estimate, is calculated from the full sample X of size n. This discrepancy in sample sizes can
introduce bias into the variance estimate. The jackknife method estimates the true variance
var(¹̂) through two key steps:7

1. **Estimate the Variance Based on n − 1 Observations:**
We estimate the variance of the statistic based on n − 1 observations using:

v̂arn−1 =
n
∑

i=1

(

¹̂(i) − ¹̂(·)
)2

, (2.2.6)

where ¹̂(i) = s(X(i)) is the statistic computed from the sample with the i-th observation
omitted, and ¹̂(·) = 1

n

∑n
i=1 ¹̂(i) is the average of the leave-one-out estimates.

2. **Adjust to Estimate the Variance Based on n Observations:**
We adjust v̂arn−1 to estimate the variance of the statistic based on n observations:

v̂arJK(¹̂) =
n − 1

n
v̂arn−1. (2.2.7)

This adjustment accounts for the difference in sample sizes between the original statistic
and the leave-one-out statistics.

Efron and Stein showed in [ES81] that:

Theorem 2.2.3

For linear statistics (cf. Definition 2.2.2) the jackknife variance estimate (cf.
Definition 2.2.1) is unbiased.a

E
(

v̂arJK(¹̂)
)

= var(¹̂)

a[ES81, pp. 590-591]

For nonlinear statistics, the jackknife variance estimate can be biased, and the direction
and magnitude of the bias depend on the specific statistic and the underlying distribution.
Despite the potential for bias, Efron and Stein identified that for specific classes of nonlinear
statistics, the jackknife variance estimate remains asymptotically unbiased as the sample size
n becomes large.

7[ES81, p. 586]
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2.2.2 Nonparametric Bootstrap

Theorem 2.2.4

For statistics that belong to the classes of U-statistics, von Mises functionals,
or quadratic forms, the jackknife variance estimate (cf. Definition 2.2.1) is
asymptotically consistent and conservative, meaning that as n → ∞:a

E
(

v̂arJK(¹̂)
)

g var(¹̂) + o(1) and E
(

v̂arJK(¹̂)
)

→ var(¹̂)

where o(1) denotes a positive term that goes to zero as n → ∞.

a[ES81, pp. 592-593]

These classes cover a significant portion of commonly used nonlinear statistics. Examples
include:

• U-Statistics: Sample variance, Gini coefficient, Kendall’s tau, Pearson correlation

• von Mises Functionals: Empirical cumulative distribution function (ECDF), sample
moments

• Quadratic Functionals: Sample covariance, Hajek projection, eigenvalue estimates

For these statistics, the jackknife variance estimator becomes increasingly accurate as the
sample size increases.

In conclusion, while the jackknife method demonstrates robustness in estimating the variance
for linear statistics and certain classes of nonlinear statistics, it can introduce bias when
applied to other nonlinear statistics, with the bias potentially being either positive or negative.
Therefore, understanding the properties of the statistic in question is crucial when using the
jackknife method for variance estimation. An alternative approach for variance estimation is
the nonparametric bootstrap method, which we will explore in the next section.

2.2.2 Nonparametric Bootstrap

The nonparametric bootstrap is a versatile and robust resampling technique that extends
the capabilities of traditional methods, such as the jackknife. Unlike the jackknife, which
systematically excludes one observation at a time, the bootstrap resamples with replacement
from the original dataset, allowing the same observation to appear multiple times in a
bootstrap sample. This method is particularly effective for estimating the distribution of a
statistic and its variance, especially when dealing with non smooth (cf. Definition 2.2.15) or
non linear (cf. Definition 2.2.2) statistics.8

The nonparametric bootstrap process is illustrated in Figure 2.1.

8[DH97]
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Empirical
Distribution

F̂

X

Bootstrap
Samples
of Size n

Bootstrap
Replications

of ¹̂

Bootstrap
Estimate

of Standard Error

X∗1

X∗2

X∗b

X∗B

¹̂∗1 = s(X∗1)

¹̂∗2 = s(X∗2)

¹̂∗b = s(X∗b)

¹̂∗B = s(X∗B)

ˆvarboot(¹̂ = s(X))

Figure 2.1: Nonparametric Bootstrap Process

The process involves the following steps:9

1. **Generate Bootstrap Samples:**
Create B bootstrap samples X

∗1, X
∗2, . . . , X

∗B by resampling n observations with
replacement from the original dataset X = {X1, X2, . . . , Xn}.

2. **Compute Bootstrap Replicates:**
For each bootstrap sample, compute the statistic of interest: ¹̂∗b = s(X∗b).

3. **Estimate Variance:**
The empirical variance of the B bootstrap replicates ¹̂∗b provides an estimate
of the variance of the statistic.

Definition 2.2.5: Bootstrap estimate of Variance

The bootstrap estimate of the variance of a statistic ¹̂ is given by:

v̂arboot(¹̂) =
1

B − 1

B
∑

b=1

(

¹̂∗b − ¹̂∗

)2

,

where:

¹̂∗ =
1

B

B
∑

b=1

¹̂∗b.

Like the jackknife method, the bootstrap method does not require any specific assumptions
about the form of the underlying distribution F . By relying on the empirical distribution
of the data, the bootstrap method proves to be a robust tool for statistical inference. It

9[EH16, p. 159]
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2.2.3 Geometric Interpretation of Jackknife and Nonparametric Bootstrap

offers several advantages over traditional methods such as the jackknife. Notably, it is highly
versatile and can be applied to various types of data and statistics, including those that are
non-smooth or non-linear. In addition to variance estimation, the bootstrap method can be
employed to construct confidence intervals and perform hypothesis tests. These applications
further highlight the flexibility and power of the bootstrap method in statistical analysis,
making it a valuable technique for a wide range of statistical problems.

In summary, while both jackknife and bootstrap offer robust solutions for variance estimation,
their fundamental differences can be more clearly understood through a geometric perspective,
which we explore in the next section.

2.2.3 Geometric Interpretation of Jackknife and Nonparametric
Bootstrap

The preceding sections introduced the conceptual and mathematical foundations of the
jackknife and bootstrap methods. While these approaches have been analyzed primarily
through algebraic properties, understanding their geometric interpretation can provide a
deeper and more intuitive grasp of how these resampling techniques operate. By visualizing
jackknife and bootstrap within a geometric space, we can gain insight into how the mass
distribution over the data points is modified and how these changes impact the resulting
variance estimates.

Resampling Vectors and the Empirical Distribution

Consider a data sample X = {X1, X2, . . . , Xn}, where each observation Xi is independently
and identically distributed (i.i.d.) from an unknown distribution F . The empirical distribution
F̂ assigns a uniform mass 1

n
to each observation Xi, leading to the statistic

¹̂ = s(X) = h
(

F̂
)

. (2.2.8)

Here, h is a functional, which maps a distribution function F to a real number. The statistic
¹̂ is the quantity of interest, and in the following sections, we focus on estimating its variance.

Definition 2.2.6: Functional h

A functional h is a mapping from the space of distribution functions to the real numbers,
defined by:

¹ = h(F ) =
∫

g(x) dF (x),

where F is a distribution function and g is a measurable function.

For example, when we want to calculate the mean statistic, the function g would be the
identity function. Therefore, we have:

¹̂ = h(F̂ ) =
∫

g(x) dF̂ (x) =
1

n

n
∑

i=1

g(Xi) =
1

n

n
∑

i=1

Xi. (2.2.9)

This general formulation allows h to represent a broad class of statistics, depending on the
choice of g.
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2.2.3 Geometric Interpretation of Jackknife and Nonparametric Bootstrap

The jackknife and bootstrap methods explore how this statistic changes when the mass
distribution is altered. Geometrically, these methods can be understood by examining the
resampling vectors.

Definition 2.2.7: Resampling Vector

M = (m1, . . . , mn)T , with 0 f mi and
n
∑

i=1

mi = 1

A resampling vector M represents a distribution of mass among the observations Xi,
where each mi indicates the proportion of total mass assigned to Xi.

This collection of vectors forms an n-dimensional simplex.

Definition 2.2.8: n-Dimensional Simplex

An n-dimensional simplex is the set of all vectors M = (m1, m2, . . . , mn)T satisfying:

mi g 0 for all i,
n
∑

i=1

mi = 1.

It represents all possible ways to distribute a unit mass among n non-negative compo-
nents.

The concept of the simplex is fundamental as it allows us to map the relationship between
the resampling method and the variability of the statistic in a concrete way. The empirical
distribution under resampling is denoted by F̂ (M), which places mass mi on each observation
Xi. Consequently, the corresponding statistic becomes:

Definition 2.2.9: Statistic under Resampling with Weighted Empirical Distri-

bution

The statistic under resampling with weighted empirical distribution is defined as:

¹̂(M) = H(M) = h
(

F̂ (M)
)

=
n
∑

i=1

mig(Xi),

where:

• M = (m1, m2, . . . , mn)T is the resampling vector,

• g is the function associated with the functional h,

• F̂ (M) is the weighted empirical distribution assigning mass mi to observation Xi.

If the mass is equally distributed, meaning each observation receives an equal share of the
total mass, then the statistic under resampling with weighted empirical distribution simplifies
to the statistic of interest whose variance we aim to estimate.

¹̂ = H (M0) = h
(

F̂ (M0)
)

, (2.2.10)

where
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2.2.3 Geometric Interpretation of Jackknife and Nonparametric Bootstrap

Definition 2.2.10: Uniform Resampling Vector

The uniform resampling vector M0 is defined as:

M0 =
(

1

n
,

1

n
, . . . ,

1

n

)¦

,

where n is the number of observations. Each component mi = 1
n

indicates that the
mass is equally distributed among all observations.

This geometric framework helps visualize the impact of resampling on the distribution of mass
and ultimately on the statistical estimates. The variability introduced by resampling can be
interpreted as movements within this simplex, shifting the mass across different observations.
This perspective is particularly useful in understanding the robustness and efficiency of the
jackknife and bootstrap methods in various statistical applications.

Geometric Representation within the Simplex

As established in Definition 2.2.9, the statistic under resampling H(M) depends on the
resampling vector M , which lies within the n-dimensional simplex (cf. Definition 2.2.8). This
simplex provides a geometric framework to visualize all possible distributions of mass among
the observations Xi and to understand how different resampling methods explore this space.
For the case of three observations (n = 3), the simplex becomes a two-dimensional equi-
lateral triangle. Each point inside this triangle represents a unique resampling vector M ,
corresponding to a specific allocation of masses mi to the observations Xi. Figures 2.2a and
2.2b illustrate this concept:

• Figure 2.2a shows the simplex as an equilateral triangle, with each vertex representing
a resampling vector where all mass is placed on one observation (mi = 1) and zero
mass on the others (mj = 0 for j ≠ i). Points along the edges and inside the triangle
represent resampling vectors with mass distributed among observations.

• Figure 2.2b depicts the surface of the statistic H(M) over the simplex domain,
illustrating how the value of the statistic changes with different mass distributions.
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2.2.3 Geometric Interpretation of Jackknife and Nonparametric Bootstrap

(a) Resampling vector M within the sim-
plex

(b) Statistic H(M) over the simplex do-
main

Figure 2.2: Geometric representation of resampling vectors and the statistic for n = 3.
Adapted from [ET93, Chapter 20].

To understand how the jackknife and bootstrap methods relate to this simplex, we consider
the specific resampling vectors they use. The definitions of these resampling vectors are as
follows:

Definition 2.2.11: Jackknife Resampling Vectors MJK

The jackknife resampling vectors MJK(i) are defined for each i = 1, 2, . . . , n as:

MJK(i) =
(

m
(i)
1 , m

(i)
2 , . . . , m(i)

n

)¦
,

where

m
(i)
j =







1
n−1

, if j ̸= i,

0, if j = i.

That is, MJK(i) assigns zero weight to the i-th observation and equal weights 1
n−1

to
the remaining n − 1 observations.
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Definition 2.2.12: Bootstrap Resampling Vectors Mboot

The bootstrap resampling vectors Mboot are random vectors defined as:

Mboot =
(

mboot
1 , mboot

2 , . . . , mboot
n

)¦
,

where Mboot follows the distribution:

Mboot ∼
1

n
· Multinomial (n, W ) ,

with W = (w1, w2, . . . , wn)¦ being an arbitrary probability vector satisfying:

wi g 0 for all i,
n
∑

i=1

wi = 1.

Here, W represents the vector of probability weights associated with each
of the n observations, indicating the likelihood of resampling each observation
during the bootstrap process.

Each component mboot
i represents the proportion of times observation Xi is selected in

a bootstrap resample of size n and is given by:

mboot
i =

ki

n
,

where (k1, k2, . . . , kn)¦ is a realization from the multinomial distribution:

(k1, k2, . . . , kn)¦ ∼ Multinomial (n, W ) .

Thus, the bootstrap resampling vector Mboot assigns mass mboot
i to observation Xi,

based on the counts from the multinomial distribution scaled by 1/n.

Figure 2.3 illustrates the resampling vectors used by the jackknife and bootstrap methods for
n = 3:

Figure 2.3: Geometric representation of resampling vectors used by the bootstrap (black dots)
and jackknife (white dots) methods on a simplex for n = 3, laid flat on the page.
Adapted from [ET93, Chapter 20].
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2.2.3 Geometric Interpretation of Jackknife and Nonparametric Bootstrap

In this figure:

• Jackknife Method: The resampling vectors MJK(i) (white dots) correspond to the
points where one observation is omitted (i.e., mi = 0), and the remaining observations
each receive equal mass 1

n−1
. These points lie at the medians of the simplex, reflecting

the jackknife’s systematic omission of each observation in turn.

• Bootstrap Method: The resampling vectors Mboot (black dots) represent all possible
combinations of masses obtained by resampling n times with replacement from the
observations. Each point corresponds to a specific allocation of masses mboot

i , determined
by the counts ki from the multinomial distribution.

Let’s consider an example to illustrate the definition of Mboot using n = 3. When resampling
with replacement, the possible values of (k1, k2, k3) are all combinations of non-negative
integers summing to n = 3. The number of such combinations is given by the multiset
coefficient:

Number of combinations =

(

2n − 1

n

)

=

(

5

3

)

= 10.

These combinations correspond to the 10 black dots in Figure 2.3. Each dot represents a
possible bootstrap resampling vector Mboot with components:

Mboot =

(

k1

3
,
k2

3
,
k3

3

)¦

.

For example:

• If (k1, k2, k3) = (3, 0, 0), then Mboot = (1, 0, 0)¦. This corresponds to resampling X1

three times.

• If (k1, k2, k3) = (1, 1, 1), then Mboot =
(

1
3
, 1

3
, 1

3

)¦
. This corresponds to each observation

being selected once.

• If (k1, k2, k3) = (2, 1, 0), then Mboot =
(

2
3
, 1

3
, 0
)¦

. This corresponds to X1 being selected
twice and X2 once.

These examples demonstrate how the bootstrap resampling vectors Mboot cover more points
within the simplex compared to the jackknife resampling vectors MJK, which are limited to
the medians.

Variance Estimation in Geometric Terms

The geometric perspective not only illustrates the differences in resampling vectors between
the jackknife and bootstrap methods but also provides valuable insights into how these
methods estimate variance.

In geometric terms, the ideal bootstrap variance estimate, denoted by v̂ar∞
boot(¹̂), captures

the spread of the statistic across the entire simplex, effectively serving as a "gold standard"
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2.2.3 Geometric Interpretation of Jackknife and Nonparametric Bootstrap

for variance estimation.10. It is derived by calculating the variance of the statistic under
resampling (cf. Definition 2.2.9) with all possible bootstrap resampling vectors (cf. Definition
2.2.12).

Definition 2.2.13: Bootstrap variance estimate in geometric Terms

v̂ar∞
boot(¹̂) = var (H (Mboot))

It’s important to note that the number of all possible resampling vectors for the bootstrap
method grows combinatorially with n, specifically as

(

2n−1
n

)

. For n = 3, there are 10 possible
bootstrap resampling vectors (cf. Figure 2.3), but as n increases, this number becomes
impractically large to compute or enumerate. Consequently, in practice, a large but fea-
sible number of bootstrap samples (B) is drawn to approximate the distribution of the statistic.

To further illustrate this concept, for n = 3 the ideal bootstrap variance estimate can be
expressed as:

v̂ar∞
boot

(

¹̂
)

= var (H (Mboot))

=
10
∑

k=1

pk

(

H(Mboot(k)) −

(

10
∑

k=1

pkH(Mboot(k))

))2 (2.2.11)

where pk is the probability of obtaining the resampling vector Mboot(k) according to the
multinomial distribution, based on the probabilitiy weights W (cf. Definition 2.2.12). For
n = 3, this formula is exact, as it considers all possible resampling vectors without the need
for approximation. The approximation would be:

v̂ar∞
boot

(

¹̂
)

≈ v̂arB
boot

(

¹̂
)

=
1

B − 1

B
∑

i=1

(¹̂∗b − ¹̂∗)2, (2.2.12)

where ¹∗b is the the statistic of interest calculated on a bootstrap sample drawn with the
probability weights W (cf. Section 2.2.2). The choice of the number of bootstrap replications
B significantly impacts the accuracy of the bootstrap variance estimate v̂arB

boot. While theoret-
ically, an infinite number of replications (B → ∞) would provide the most accurate estimate
v̂ar∞

boot, in practice, increasing B beyond a certain point yields diminishing returns. This is
because v̂ar∞

boot itself varies with the observed sample X, introducing inherent randomness
into any variance estimate. According to Efron and Tibshirani [ET93, Chapter 6.4], B = 200
is generally sufficient for reliable variance estimation. For constructing confidence intervals,
much larger values of B are typically required to ensure accuracy in the tails of the bootstrap
distribution.

The jackknife variance estimate, v̂arJK

(

¹̂
)

, can be seen as an approximation of the bootstrap
variance. It has been shown that for linear statistics:

10[ET93, p. 287]
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Theorem 2.2.14

For linear statistics (cf. Definition 2.2.2), the jackknife variance estimate (cf. Def-
inition 2.2.1) is a scaled version of the bootstrap variance estimate (cf. Definition
2.2.5). Specifically, we have:a

v̂arJK

(

¹̂
)

=
n

n − 1
v̂arboot(H

LIN)

where HLIN is the linear hyperplane approximation of H(M) (cf. Definition 2.2.9)
passing through the n jackknife points H(MJK(i))

a[Efr82, p. 39 f.]

The scaling factor n
n−1

in the above Theorem not only ensures that v̂arJK

(

¹̂
)

is nearly un-
biased for linear statistics, but also helps to correct for the slight downward bias that the
bootstrap variance estimate can exhibit in such cases.

**Why does a linear statistic results in a linear hyperplane?** In the geometric repre-
sentation of resampling methods, we consider the statistic ¹̂ as a function of masses
M = (m1, m2, . . . , mn) assigned to the observations Xi (cf. Definition 2.2.9). Then the
linear statistic can be rewritten as:

H(M) = c +
n
∑

i=1

mi³(Xi), (2.2.13)

where c is a constant ³(·) is any function. By recognizing that the linearity in the definition
of a linear statistic refers to its dependence on the masses mi, we understand why a linear
hyperplane arises geometrically from a linear statistic.

Figure 2.4 provides a geometric view (for n = 3) of the linear hyperplane approximation of
H. The curved surface H(M) represents the true behavior of the statistic over all possible
resampling vectors (cf. Definition 2.2.7). The linear hyperplane HLIN passes through these
jackknife points H(MJK(i)), providing a linear approximation of the statistic’s behavior.
The jackknife variance estimate corresponds to the variability of the statistic on this linear
hyperplane, while the bootstrap variance estimate reflects the variability across the entire
simplex, including regions not captured by the linear hyperplane. This difference in scope
explains why the jackknife variance struggles with non-linear statistics, as it does not capture
the full range of variability that the bootstrap method accounts for.
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Figure 2.4: The hyperplane approximation HLIN through the jackknife points H(MJK(i)) in
the simplex for n = 3. Adapted from [ET93, Chapter 20].

Alternative Approximations

Given the limitations of the jackknife method for nonlinear statistics, alternative approxima-
tions that better capture the complexity of such statistics are needed. One such alternative
is the tangent-plane approximation at H(M0), as illustrated in Figure 2.5. Unlike the linear
hyperplane approximation, this method accounts for the curvature of H(M) around the
central point M0, offering a potentially more accurate representation of nonlinear behavior.
This method is called the Infinitesimal Jackknife.

Figure 2.5: Tangent-plane approximation at H(M0). Adapted from [ET93, Chapter 20].
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2.2.4 Infinitesimal Jackknife

The geometric interpretation of the jackknife and bootstrap methods illuminates how these
resampling techniques redistribute mass within the simplex and how this redistribution
impacts variance estimation. By understanding the geometric properties of these methods,
we can make more informed decisions about which technique is most appropriate for esti-
mating the variability of a given statistic. While the jackknife is efficient for linear statistics
and the bootstrap is better suited for complex nonlinear cases, the tangent-plane approach
provides a promising alternative that strikes a balance between the simplicity of the jackknife
and the robustness of the bootstrap, making it particularly suitable for nonlinear statistics.
In situations where both accuracy and computational cost are critical, the tangent-plane
approximation offers a compromise between accuracy and computational efficiency.

In the next section, we will explore the Infinitesimal Jackknife in greater detail, assessing its
advantages and limitations, especially for nonlinear statistics. This exploration will enhance
our understanding of variance estimation and improve the accuracy of statistical inferences
across various applications.

2.2.4 Infinitesimal Jackknife

Building on the limitations identified in the classical jackknife method for nonlinear statistics,
the infinitesimal jackknife offers a more refined approach to variance estimation. This method,
proposed by Jaeckel11, enhances our ability to assess the sensitivity of a statistic to small
changes in the data distribution, making it particularly valuable for complex and nonlinear
scenarios.

Influence Function

At the core of the infinitesimal jackknife is the concept of the influence function Ui. Unlike
the classical jackknife, which assesses the impact of completely removing an sample Xi, the
infinitesimal jackknife evaluates how the statistic reacts to an infinitesimal change in the
mass mi of a sample Xi. This nuanced approach allows for a more precise analysis of each
observation’s influence on the overall statistic, particularly in cases where the statistic may
not respond linearly to changes in the data.

In Chapter 2.2.1, we discussed the assumption in the jackknife method that the statistic ¹̂
must be smooth. Now, we can express this requirement more formally:

Definition 2.2.15: Smooth Statistic in the Context of Resampling Methods

A statistic ¹̂ = H(M0) is considered a smooth function if the function H(M) is
continuously differentiable with respect to the masses mi. This means that for each
i = 1, 2, . . . , n:a

∂H

∂mi

(M) exists and is continuous in a neighborhood of M0.

a[ES81, p. 590f.]

This smoothness ensures that ¹̂(M) can be consistently calculated based on the weighted

11[Jae72]
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2.2.4 Infinitesimal Jackknife

empirical probability distribution, which is a critical requirement for the validity of the
jackknife and the infinitesimal jackknife method.

The influence function Ui for the infinitesimal jackknife method is defined as the directional
derivative of the statistic H at M in the direction of a point mass at the i-th data sample Xi.
Essentially, it measures the sensitivity of the estimator to small perturbations at a particular
data sample, offering insights into the robustness of the statistic. The formal definition is
given by:

Definition 2.2.16: Influence Function

The influence function U(Xi) is defined as:a

U(Xi) = lim
ε→0

H ((1 − ε)M + εei) − H(M)

ε
,

where ei denotes the unit vector placing all mass on the i-th observation, and H is the
statistic as a function of the mass vector M .

A key property of the influence function is that it is centered with respect to M:b

1

n

n
∑

i=1

U(Xi) = 0

a[Efr82, p. 40]
b[ET93, p. 300]

When the data samples are unweighted, meaning M = M0 with mi = 1
n

for all i, this
expression simplifies to:

U(Xi) = lim
ε→0

H
(

1−ε
n

, . . . , 1−ε
n

+ ε, . . . , 1−ε
n

)

− H(M0)

ε
, (2.2.14)

where the i-th component of the mass vector is 1−ε
n

+ε, and all other components are 1−ε
n

. This
simplification illustrates how the influence function quantifies the impact of each observation
under the assumption of uniform weights. By providing a finer-grained analysis of influence,
the infinitesimal jackknife method allows for more accurate variance estimation, particularly
in scenarios where the classical jackknife may struggle.

Variance Estimation with Influence Functions

To deepen our understanding of how the influence function relates to the variance estimation
of the statistic ¹̂, we consider the following fundamental result from the theory of influence
functions:
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2.2.4 Infinitesimal Jackknife

Theorem 2.2.17

When a distribution G is "close" to F , meaning e.g. that G is the empirical
distribution based on a large sample from F , the statistic can be approximated
by:a

h(G) = h(F ) +
∫

U(x) dG(x)

where:

• h(G) = ¹̂ is the calculated statistic based on the distribution G,

• h(F ) = ¹ is the statistic under the true distribution F ,

• U(x) is the influence function of the statistic at the point x with respect to
the distribution F .

a[Ham+86, pp. 85–86]

With the above theorem, we can now define the variance estimate of a statistic, calculated
on a dataset X = (X1, . . . , Xn) with the weighted empirical distribution G, through:

var
(

¹̂
)

= var
(

¹ +
∫

U(x) dG(x)
)

= var
(∫

U(x) dG(x)
)

= var

(

n
∑

i=1

miU(Xi)

)

=
n
∑

i=1

m2
i Var (U(Xi)) ,

(2.2.15)

where mi indicates the mass that sample Xi receives in calculating the statistic ¹̂. Since
the observations Xi are independent and identically distributed, we can further simplify the
above equation:

var
(

¹̂
)

=

(

n
∑

i=1

m2
i

)

var (U(X))

≈

(

n
∑

i=1

m2
i

)

v̂ar (U(X))

=

(

n
∑

i=1

m2
i

)

n
∑

i=1

mi

(

U(Xi) − Ū
)2

,

(2.2.16)

where Ū = 1
n

∑n
i=1 U(Xi). Since the mean of the influence function over all samples Xi is

zero (cf. Definition 2.2.16), i.e., Ū = 0, we can now define the infinitesimal jackknife variance
estimate as:
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2.2.4 Infinitesimal Jackknife

Definition 2.2.18: Infinitesimal Jackknife Variance Estimate

The infinitesimal jackknife variance estimate of the statistic ¹̂ is defined as:

v̂arIJK

(

¹̂
)

=

(

n
∑

i=1

m2
i

)

n
∑

i=1

miU(Xi)
2,

where U(Xi) are the influence functions (cf. Definition 2.2.16) evaluated at each
observation Xi, and mi are the masses assigned to the observations to calculate the
statistic ¹̂.

When the data samples Xi are unweighted to calculate the statistic ¹̂, meaning mi = 1
n

for
all i = 1, . . . , n, the above definition simplifies to:

v̂arIJK

(

¹̂
)

=

(

n
∑

i=1

1

n2

)

n
∑

i=1

1

n
U(Xi)

2

=
1

n2

n
∑

i=1

U(Xi)
2,

(2.2.17)

which is the classical infinitesimal jackknife estimate for the variance of a statistic calculated
on unweighted data samples.12

By adjusting the value of ε in the influence function, we can derive the jackknife variance
estimate (cf. Definition 2.2.1) as well. If we set ε = −1

n−1
and consider unweighted data

samples, the influence function (cf. Definition 2.2.16) becomes:

U(Xi) = lim
ε→ −1

n−1

H ((1 − ε)M0 + εei) − H(M0)

ε

=
H
(

1
n−1

, . . . , 0, . . . , 1
n−1

)

− H(M0)
−1

n−1

,

(2.2.18)

where the i-th component of the mass vector is 0, and all other components are 1
n−1

. Using

this influence function and Theorem 2.2.17, we can estimate the variance of the statistic ¹̂:

v̂ar
(

¹̂
)

=
1

n2

n
∑

i=1

U(Xi)
2

=
1

n2

n
∑

i=1

(

(n − 1)
(

¹̂(i) − ¹̂
))2

=
(n − 1)2

n2

n
∑

i=1

(

¹̂(i) − ¹̂
)2

,

(2.2.19)

which is very similar, especially for large n, to the jackknife estimate of variance (cf. Definition
2.2.1).

12[Efr82, p. 41]
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2.2.4 Infinitesimal Jackknife

By examining how the choice of ε affects the influence functions in both methods, we can see
how this impacts the variance estimation:

• Infinitesimal Jackknife (ε → 0): Captures the local behavior of the statistic,
accounting for small, incremental changes. This is particularly important for nonlinear
statistics, where the relationship between the data and the estimator may not be
well-approximated by finite differences.

• Classical Jackknife (ε = −1
n−1

): Uses a finite change corresponding to the removal of
an observation. While effective for linear statistics, it may not capture the curvature or
higher-order interactions present in nonlinear statistics.

For nonlinear statistics, small perturbations may have different effects compared to larger
ones due to the curvature in the estimator’s functional form. The infinitesimal jackknife’s
focus on infinitesimal changes allows it to better capture this local sensitivity, leading to
more accurate variance estimates.

However, it is important to note that in practice, a slight downward bias is often observed.
This bias arises from the approximation methods used in calculating the influence function
U(Xi), particularly in finite samples and with complex satistics. Empirical studies have
shown that this bias tends to result in variance estimates that are slightly lower than their
true values.13 To address this, methods like the bootstrap estimate of variance (cf. Definition
2.2.5), which can accommodate the full distributional complexity by resampling the data,
may provide better variance estimates. Or bias correction techniques can be applied to bring
the estimates closer to their true values.

Conversely for linear statistics, the infinitesimal jackknife estimate is the same as the ideal
bootstrap variance estimate:

Theorem 2.2.19

For linear statistics (cf. Definition 2.2.2), the infinitesimal jackknife estimate (cf.
Definition 2.2.18) is equally to the ideal bootstrap estimate (cf. Definition 2.2.13)
and a scaled version of the jackknife estimate (cf. Definition 2.2.1): a

v̂arIJK

(

¹̂
)

= v̂ar∞
boot(¹̂) =

n − 1

n
v̂arJK

(

¹̂
)

a[ET93, p. 302]

Practical Computation

In practice, evaluating the limit in U(Xi) (cf. Definiton 2.2.16) is often infeasible. Therefore,
U(Xi) is typically approximated numerically by choosing a small value for ε, such as 10−6,
and computing:

U(Xi) ≈
H ((1 − ε)M0 + εei) − H(M0)

ε
. (2.2.20)

This numerical approximation allows for practical computation of the infinitesimal jackknife
variance estimator, even for complex or nonlinear statistics.

13[Efr82, p. 42]
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2.2.5 Simulations

Infinitesimal Jackknife - Example

To illustrate the infinitesimal jackknife method in practice, consider the case where the
satistic ¹̂ is the sample mean X̄, with Xi ∈ R

1. In this scenario, the influence function U(Xi)
can be explicitly calculated as follows:

U(Xi) = lim
ε→0

H
(

1−ϵ
n

, . . . , 1−ϵ
n

, 1−ϵ
n

+ ϵ, 1−ϵ
n

, . . . , 1−ϵ
n

)T
− H(M0)

ϵ
, (2.2.21)

which simplifies to:

Ui = lim
ε→0

∑n
j=1

1−ϵ
n

xj − 1−ϵ
n

xi + (1−ϵ
n

+ ϵ)xi − 1
n

∑n
j=1 xj

ϵ
= xi − x̄. (2.2.22)

Given this influence function, the infinitesimal jackknife variance estimator for the sample
mean can be computed as:

ˆvarIJK(¹̂) =
1

n2

n
∑

i=1

U2
i =

1

n2

n
∑

i=1

(xi − x̄)2 =
n − 1

n

Ã̂2
X

n
.

This expression shows that the infinitesimal jackknife variance for the sample mean is closely

related to the classical Jackknife variance ˆvarJK(¹̂) =
Ã̂2

X

n
(cf. Example 1). Specifically, the

relationship between the two can be expressed as:

ˆvarIJK(¹̂) =
n − 1

n
ˆvarJK(¹̂), (2.2.23)

demonstrating that the infinitesimal jackknife variance is a scaled version of the classical
jackknife variance for the sample mean, a linear statistic.

This example demonstrates how the infinitesimal jackknife can be computed exactly for sim-
pler statistics like the sample mean. However, for more complex statistics such as the Pearson
correlation coefficient or the median, the calculation of the influence function can become
algebraically complicated. Therefore, in practice, these are often estimated numerically. To
illustrate this, we will present small simulations in the next section.

2.2.5 Simulations

In this section, we present simulation studies that validate the theoretical concepts discussed
earlier. The simulations focus on three commonly used statistics: the mean (a linear statistic),
the Pearson correlation (a non-linear statistic), and the median (a non-smooth statistic). Each
simulation compares the performance of different variance estimation methods, specifically
the jackknife, bootstrap, and infinitesimal jackknife, in alignment with the theory discussed
in previous sections. The relative errors reported in the following sections are mean errors
over the simulations, and the corresponding boxplots of these relative errors are shown in
Figures 2.6, 2.7, and 2.8.

Variance for Mean Estimation

The first simulation examines the variance estimation for the mean, a linear statistic, under
the assumption that the data follows a standard normal distribution. This choice of statistic
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2.2.5 Simulations

aligns with the discussions in Example 1, where the jackknife method is expected to perform
well due to the linear nature of the mean. Moreover, as discussed in Section 2.2.1, the
jackknife method is known to provide unbiased estimates in expectation for linear statistics
(cf. Theorem 2.2.3), making it particularly effective in this scenario.

Figure 2.6: Variance estimates for ¹̂ = mean(X), underlying data is X ∼ N(0, 1). The
boxplots contain the estimates over 2000 simulations (each with n = 100) and for
the bootstrap method B = 200 was used. Relative errors are calculated with the
true variance var(¹̂) = ÃX

n
.

Results showed that the jackknife method achieved a mean relative error of 0.1%, validating
its accuracy and unbiasedness for linear statistics (cf. Figure 2.6). The bootstrap method
had a slightly downward bias, the mean relative error is -1%. This slight negative bias also
supports the equation in Theorem 2.2.14, where the bootstrap variance estimate was noted
to exhibit a slight downward bias in cases, where the statistic in linear. The infinitesimal
jackknife showed a mean relative error of -0.9%, which is similar to that of the bootstrap,
indicating their close relationship (cf. Theorem 2.2.19). The values are not identical because,
in the bootstrap method, the number of bootstrap samples B is finite (here B = 200) rather
than infinite.

Variance for Pearson Correlation Estimation

Next, we evaluated the performance of the variance estimation methods for the Pearson
correlation coefficient, a non-linear statistic. As discussed in Section 2.2.1, the jackknife
method may exhibit an upward bias when applied to non-linear statistics, particularly due to
its reliance on linear approximations (cf. Theorem 2.2.4).
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2.2.5 Simulations

Figure 2.7: Variance estimates for ¹̂ = pearsoncorrelation(X), underlying data is (X, Y ) ∼

N

((

0
0

)

,

(

1 0.7
0.7 1

))

. The Boxplots contain the estimates over 2000 simulations

(each with n = 400) and for the bootstrap method B = 200 was used. Relative

errors are calculated with the true variance var(¹̂) = (1−Ä2)2

n
(cf. [Bow28, p. 31]).

In this case, the jackknife method had a mean relative error of 0.9%, while the bootstrap
method performed better with a mean relative error of 0.4%, and the infinitesimal jackknife
showed a mean relative error of -0.5%. These results (see Figure 2.7) confirm the theoretical
prediction of slight upward bias in the jackknife estimates for non-linear statistics. The
bootstrap method, as expected, provided more accurate estimates, consistent with its theoret-
ical advantages mentioned earlier in Section 2.2.2 . Additionally, the infinitesimal jackknife
outperformed the jackknife for non-linear statistics and showed a slight downward bias, as
discussed in Section 2.2.4.

Variance for Median Estimation

Finally, we explored variance estimation for the median, a non-smooth statistic, which
presents a significant challenge for the jackknife and infinitesimal jackknife method. As
predicted in Example 3 and Section 2.2.4, both methods failed to provide reliable estimates
for the median due to its non-smooth nature.
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2.2.5 Simulations

Figure 2.8: Variance estimates for ¹̂ = median(X), underlying data is X ∼ N(0, 1). The
Boxplots contain the estimates over 2000 simulations (each with n = 400 and for
the bootstrap method B = 200 was used. Relative errors are calculated with the
empirical variance of ¹̂ from the 2000 simulations.

The simulation results (see Figure 2.8) showed a mean relative error of 80.9% for the jackknife
method, illustrating its inadequacy for this statistic. Similarly, the infinitesimal jackknife had
a high mean relative error of 80.7%. In contrast, the bootstrap method, known for its flexi-
bility in dealing with non-smooth statistics, provided a much more reasonable approximation
with a mean relative error of -3.9%. These findings align with the theoretical discussions in
Section 2.2.2, where the bootstrap’s robustness for non-linear and non-smooth statistics was
emphasized .

The simulation results confirm that the jackknife method is highly accurate and nearly
unbiased for linear statistics, as shown by its minimal error in mean estimation. However, it
struggles with non-linear and non-smooth statistics, evidenced by its high error in median
estimation. In contrast, the bootstrap method consistently provides reliable variance estimates
across various statistics. The infinitesimal jackknife, performing similarly to the bootstrap for
linear statistics and better than the jackknife for non-linear statistics, is a valuable extension.
Nevertheless, its slight downward bias highlights the importance of applying bias correction
techniques in practice.

2.3 Nonparametric Variance Estimates for Bagged Learners

— Under Unweighted Resampling

In the previous chapter, we explored various methods for variance estimation, including
the Jackknife, Bootstrap, and Infinitesimal Jackknife techniques. These methods provide
valuable insights into the stability and reliability of statistical estimates by resampling data
and assessing how changes in the dataset affect the estimates. Building on this foundation,
we now focus on variance estimates for Bagged Learners (BL) under unweighted resampling.
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2.3.1 Bagged Learner (BL)

In the following sections, we will first provide a comprehensive overview of Bagged Learners.
Subsequently, we will introduce and evaluate two nonparametric variance estimation tech-
niques—Jackknife and Jackknife-after-Bootstrap—to assess their effectiveness in estimating
the variance of a Bagged Learner under unweighted resampling.

2.3.1 Bagged Learner (BL)

Bagged Learners, or Bootstrap Aggregating, are designed to reduce variance, improve
robustness, and handle overfitting, particularly in high-variance models. By combining the
predictions of multiple models generated from different bootstrap samples, bagging can
stabilize predictions and prevent overfitting, making it particularly valuable in complex or
noisy data environments. The process begins with a training dataset, denoted as:

Definition 2.3.1: Training Dataset

X = (X1, . . . , Xn)¦ = ((x1, y1), . . . , (xn, yn))¦ ,

where X consists of input-output pairs (xi, yi).

The prediction of a base learner, trained on the dataset X, for a given input x is represented
as:

Definition 2.3.2: Base Learner’s Prediction Function

The base learner’s prediction function t(x; X) provides a prediction ¹̂(x) for a given
input x, based on the training dataset X:

¹̂(x) = t(x; X).

The goal of bagging is to stabilize the base learner t through resampling. This involves
generating multiple bootstrap datasets, denoted as {X

∗1, . . . , X
∗B}, and using them to create

an ensemble of learners.

Definition 2.3.3: Bootstrap Samples and Count Vectors

The bootstrap samples {X
∗1, . . . , X

∗B} are datasets obtained by sampling with re-
placement from the original training dataset X = (X1, X2, . . . , Xn)¦ using probability
weights W = (w1, w2, . . . , wn)¦, where wi g 0 and

∑n
i=1 wi = 1.

Each bootstrap sample X
∗b consists of n observations drawn from X. The number

of times each observation Xi appears in the bootstrap sample X
∗b is recorded in the

count vector N∗b = (N∗b
1 , N∗b

2 , . . . , N∗b
n )¦, where:

N∗b
i = number of times Xi appears in X

∗b.

The count vector N∗b follows a multinomial distribution:

N∗b ∼ Mult (n, W ) .

The ideal bagged learner, which represents the expectation of the base learner over all possible
bootstrap samples, is defined as:
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2.3.1 Bagged Learner (BL)

Definition 2.3.4: Ideal Bagged Learner

The ideal bagged learner is defined as the expectation of the base learner over all
possible bootstrap samples:

¹̂∞(x) = E∗ [t(x; X
∗)] ,

where X
∗ represents a bootstrap sample drawn from the original dataset X. The

expectation E∗ is taken with respect to the probability distribution of X
∗, which is

determined by the resampling scheme using the probability weights W .

This ideal scenario is equivalent to letting the number of bootstrap samples, B, approach
infinity. However, in most cases, this ideal bagged learner cannot be evaluated directly.
Instead, we can approximate it using Monte Carlo methods. This approximation, which is
practical for implementation, is given by:

Definition 2.3.5: Approximated Bagged Learner

The approximated bagged learner with B bootstrap samples is defined as:

¹̂B(x) =
1

B

B
∑

b=1

t(x; X
∗b) or equivalently ¹̂B(x) =

1

B

B
∑

b=1

T (x; N∗b),

where:

• T (x; N∗b) is the prediction of the base learner T at input x, trained using the
count vector N∗b associated with the bootstrap sample.

The functions t() and T () differ in how they utilize the bootstrap samples:

• t() operates directly on the resampled dataset X
∗b.

• T () uses the count vector N∗b to weight the original observations X accordingly.

This approximation enables bagging to combine predictions from multiple base learners, each
trained on different bootstrap samples, resulting in a more stable and accurate final model.
This reduction in variance is particularly valuable in complex or noisy data environments,
as bagging enhances model robustness and mitigates overfitting.14 Moreover, by averaging
predictions across multiple resampled datasets, bagging inherently smooths the estimator.
This smoothness is crucial for the validity of the jackknife and infinitesimal jackknife methods,
as it ensures the consistent calculation of the statistic (cf. Section 2.2.4). Consequently,
bagged learners naturally satisfy the smoothness requirements (cf. Definition 2.2.15).

In the next sections, we will discuss how we can estimate the prediction uncertainty of bagged
learners. Understanding this uncertainty is crucial, as it helps assess the reliability of the
model’s predictions and guides decision-making, especially in high-stakes scenarios.

14[Bre96]
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2.3.2 Jackknife for BL

The Jackknife procedure can also be employed to estimate the variance of a bagged learner
¹̂B(x) under unweighted resampling. This method follows a similar approach to the classical
Jackknife (cf. Definition 2.2.1) but adapts it to the bagging context. The steps are as follows:

1. Leave out sample Xi from X and generate new bootstrap datasets {X(i)∗1, ..., X(i)∗B}.

2. Calculate the new bagged learner estimate ¹̂B(i)(x) on the new bootstrap datasets.

3. The Jackknife variance estimate for the bagged learner ¹̂B(x) is then given by:

ˆvarJK

(

¹̂B(x)
)

=
n − 1

n

n
∑

i=1

(

¹̂B(i)(x) − ¹̂B(·)(x)
)2

, with ¹̂B(·)(x) =
1

n

n
∑

i=1

¹̂B(i)(x)

(2.3.1)

However, this approach requires generating B bootstrap datasets for each ¹̂B(i)(x), which can
be computationally intensive. In total, this process necessitates generating n × B bootstrap
samples and training n × B base learners for variance estimation, resulting in a significant
increase in computational overhead. To overcome this challenge, an alternative approach
called the Jackknife-after-Bootstrap was introduced by Efron in 1992, presented in the next
section.

2.3.3 Jackknife-after-Bootstrap for BL

The Jackknife-after-Bootstrap method leverages a key result regarding the distribution of
bootstrap samples when an observation is left out.

Theorem 2.3.6

Let X = {X1, X2, . . . , Xn} be a dataset consisting of n observations. Con-
sider generating bootstrap samples by sampling with replacement from X. Let
X

(i) = X \ {Xi} denote the dataset with the i-th observation removed.

Then, the distribution of bootstrap samples drawn with replacement from X
(i) is

identical to the distribution of bootstrap samples drawn with replacement from
the full dataset X, conditioned on the event that Xi does not appear in the
sample. Mathematically, we have:a

Distribution of X
(i)∗ ≡ Distribution of (X∗ | Xi /∈ X

∗) ,

where:

• X
(i)∗ is a bootstrap sample drawn with replacement from X

(i).

• X
∗ is a bootstrap sample drawn with replacement from the full dataset X.

a[Efr92, p. 89]

This Theorem allows us to compute leave-one-out estimates ¹̂B(i)(x) without generating new
bootstrap samples from the reduced dataset X

(i). Instead, we can use the existing bootstrap
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samples from the full dataset X and consider only those samples where Xi does not appear.
Using the Theorem 2.3.6, we define the Jackknife-after-Bootstrap variance estimate for bagged
learners as follows:

Definition 2.3.7: Jackknife-after-Bootstrap Variance Estimate for Bagged Learn-

ers

Let ¹̂B(x) =
1

B

∑B
b=1 T (x; N∗b) be the bagged learner’s prediction at input x, where

T (x; N∗b) is the prediction of the base learner trained on the b-th bootstrap sample
represented by the count vector N∗b.

The Jackknife-after-Bootstrap variance estimate of ¹̂B(x) is given by:

v̂arJAB

(

¹̂B(x)
)

=
n − 1

n

n
∑

i=1

(

∆̂i

)2
,

where:

• ∆̂i = ¹̂B(i)(x) − ¹̂B(x) is the difference between the leave-one-out estimate and
the overall bagged estimate.

• ¹̂B(i)(x) =
1

Bi

∑

{b=1,N∗b

i
=0} T (x; N∗b) is the averaged prediction over all bootstrap

samples where the i-th observation Xi does not appear, with Bi = |{b : N∗b
i = 0}|

being the number of such samples.

• N∗b
i is the number of times Xi appears in the b-th bootstrap sample.

If Bi = 0 (i.e., Xi appears in all bootstrap samples), we set ∆̂i = 0.

By utilizing the bootstrap samples where Xi is absent, we can efficiently compute the leave-
one-out estimates ¹̂B(i)(x) without the need for additional resampling. This significantly
reduces computational effort compared to the naive approach.

Bias Correction for Jackknife-after-Bootstrap
When estimating variance using resampling methods like the Jackknife-after-Bootstrap (Defi-
nition 2.3.7), a finite number of bootstrap samples B can introduce bias into the variance
estimate. This bias arises because the estimator based on a finite B differs from the ideal
estimator as B → ∞.

In general, the bias of an estimator ¹̂ is defined as:

Bias(¹̂) = E[¹̂] − ¹, (2.3.2)

where E[¹̂] is the expected value of the estimator, and ¹ is the true parameter. For variance
estimation, the bias of the variance estimator v̂ar(¹̂) is:

Bias(v̂ar(¹̂)) = E[v̂ar(¹̂)] − var(¹̂), (2.3.3)

where var(¹̂) is the true variance of ¹̂. Applying this to the Jackknife-after-Bootstrap variance
estimator v̂arJAB(¹̂B(x)), the bias due to finite B is:
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2.3.3 Jackknife-after-Bootstrap for BL

Bias
(

v̂arJAB(¹̂B(x))
)

= E
[

v̂arJAB(¹̂B(x))
]

− v̂arJAB(¹̂∞(x)), (2.3.4)

where ¹̂B(x) is the bagged estimator based on B bootstrap samples, and ¹̂∞(x) is the ideal
bagged estimator as B → ∞.

To derive the bias of v̂arJAB(¹̂B(x)), consider:

1. **Variance estimator with finite B:**

v̂arJAB(¹̂B(x)) =
n − 1

n

n
∑

i=1

(

∆̂i

)2
, (2.3.5)

where ∆̂i = ¹̂B(i)(x) − ¹̂B(x), and ¹̂B(i)(x) is the leave-one-out estimator.

2. **Variance estimator as B → ∞:**

v̂arJAB(¹̂∞(x)) =
n − 1

n

n
∑

i=1

(∆i)
2 , (2.3.6)

where ∆i = ¹̂∞(i)(x) − ¹̂∞(x).

The bias is then:

Bias
(

v̂arJAB(¹̂B(x))
)

= E
[

v̂arJAB(¹̂B(x))
]

− v̂arJAB(¹̂∞(x))

=
n − 1

n

n
∑

i=1

(

E
[

(

∆̂i

)2
]

− (∆i)
2
)

.
(2.3.7)

Recognizing that:

var
(

∆̂i

)

= E
[

(

∆̂i

)2
]

−
(

E
[

∆̂i

])2
= E

[

(

∆̂i

)2
]

− (∆i)
2 , (2.3.8)

assuming E
[

∆̂i

]

= ∆i. Substituting back:

Bias
(

v̂arJAB(¹̂B(x))
)

=
n − 1

n

n
∑

i=1

var
(

∆̂i

)

. (2.3.9)

Thus, the bias of the variance estimator is the sum of the variances of ∆̂i. Wager and Efron
[WHE14] derived the bias of the Jackknife-after-Bootstrap estimator:
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2.3.3 Jackknife-after-Bootstrap for BL

Theorem 2.3.8

The bias of the Jackknife-after-Bootstrap variance estimator (Definition 2.3.7) is
given by:a

Bias
(

v̂arJAB

(

¹̂B(x)
))

=
n − 1

n

n
∑

i=1

var
(

∆̂i

)

≈
n

B
(e − 1) v̂ar (T (x; N∗)) ,

where:

• ∆̂i = ¹̂B(i)(x) − ¹̂B(x) is the difference between the leave-one-out estimate
and the overall bagged estimate.

• T (x; N∗) is the prediction of the base learner T at input x, trained using
the bootstrap sample represented by the count vector N∗.

• v̂ar (T (x; N∗)) =
1

B − 1

∑B
b=1

(

T
(

x; N∗b
)

− ¹̂B(x)
)2

is the empirical vari-

ance of the base learner’s predictions across all bootstrap samples.

This approximation holds under the condition that equal probability weights

W =
(

1

n
,

1

n
, . . . ,

1

n

)¦

are used during bootstrap sampling.

a[WHE14, Page 1646]

The approximation shows that the bias is proportional to the ratio n
B

, the factor e − 1, and
the variance of the base learner predictions for the sample x across all bootstrap samples.
This correction helps mitigate the upward bias and improves the accuracy of the variance
estimate. The bias-corrected version of the Jackknife-after-Bootstrap variance estimator is
given as follows:
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2.3.3 Jackknife-after-Bootstrap for BL

Definition 2.3.9: Bias-Corrected Jackknife-after-Bootstrap Variance Estimate

for Bagged Learners

The bias-corrected Jackknife-after-Bootstrap variance estimator for the bagged learner
¹̂B(x) is:a

v̂arJAB-U

(

¹̂B(x)
)

=
n − 1

n

n
∑

i=1

(

∆̂i

)2
−

n

B
(e − 1) v̂ar (T (x; N∗)) , (2.3.10)

where:

• ∆̂i = ¹̂B(i)(x) − ¹̂B(x) is the difference between the leave-one-out estimate and
the overall bagged estimate.

• ¹̂B(i)(x) is the averaged prediction over all bootstrap samples where the i-th
observation Xi does not appear:

¹̂B(i)(x) =
1

Bi

B
∑

b=1
N∗b

i
=0

T
(

x; N∗b
)

,

with Bi =
∣

∣

∣

{

b : N∗b
i = 0

}∣

∣

∣ being the number of bootstrap samples where Xi is
absent.

• T
(

x; N∗b
)

is the prediction of the base learner T at input x, trained using the

bootstrap sample represented by the count vector N∗b.

• v̂ar (T (x; N∗)) is the empirical variance of the base learner’s predictions across
all bootstrap samples:

v̂ar (T (x; N∗)) =
1

B − 1

B
∑

b=1

(

T
(

x; N∗b
)

− ¹̂B(x)
)2

.

This bias correction is valid under the assumption that equal probability weights are
used during bootstrap sampling, meaning each observation Xi has an equal probability

wi =
1

n
of being selected.

a[WHE14, p. 1629]

In many practical applications, the simple Jackknife-after-Bootstrap estimator (Definition
2.3.7) may require B = Θ(n1.5) bootstrap replicates to reduce Monte Carlo noise to acceptable
levels. However, with the bias-corrected version, the number of required bootstrap replicates
can often be reduced to B = Θ(n), making the estimation process more computationally
feasible without compromising accuracy.15

However, as highlighted in Definition 2.1.3, the IPC-Weighted Bagging Procedure necessitates
weighted resampling. This weighting introduces additional complexities in variance estimation,
as traditional methods that assume equal weights may no longer provide accurate or unbiased

15[WHE14, p. 1638]
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2.4.1 Nonparametric Bootstrap for BL

estimates. To address these challenges, the next chapter delves into variance estimation
methods tailored for Bagged Learners under weighted resampling.

2.4 Nonparametric Variance Estimates for Bagged Learners

— Under Weighted Resampling

2.4.1 Nonparametric Bootstrap for BL

To assess the prediction uncertainty of a Bagged Learner (BL), the bootstrap method outlined
in Section 2.2.2 offers a robust approach. However, when dealing with scenarios that necessi-
tate weighted resampling—as introduced in Definition 2.1.3—a straightforward bootstrap
procedure may fall short in providing accurate variance estimates. In such cases, it becomes
imperative to adapt the bootstrap method to accommodate the differential weights assigned
to observations. This adaptation is achieved through a two-level bootstrap process, which
effectively captures the complexities introduced by weighting.

The two-level bootstrap involves an initial resampling phase that approximates the underlying
data distribution without considering weights, followed by a secondary resampling phase
where weights are applied to the resampled observations. This layered approach ensures
that the inherent variability due to weights is adequately represented, thereby enhancing
the reliability of the variance estimates for the BL’s predictions. Figure 2.9 illustrates the
two-level bootstrap process, highlighting how weights are integrated into the resampling
strategy.
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ˆvarboot

(

¹̂B2(x)
)

Figure 2.9: Two-Level Bootstrap Process for Bagged Learners

1. **First-Level Bootstrap**: We generate B1 bootstrap samples under unweighted resam-
pling from the original training dataset, denoted as {X∗1, ..., X∗B1}. For each bootstrap
sample, a separate bagged learner is trained, resulting in a set of predictions for the
input x, denoted as {¹̂B2(∗1)(x), ..., ¹̂B2(∗B!)(x)}.

2. **Second-Level Bootstrap**: For each first-level bootstrap sample, we generate B2

bootstrap samples under IPC-weights as described in Definiton 2.1.3 . We need this
second-level resampling to build our separate bagged learners.

The empirical variance of the predictions from the different bagged learners is then used to
estimate the prediction uncertainty:
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2.4.2 Infinitesimal Jackknife for BL

Definition 2.4.1: Bootstrap Variance Estimate for Bagged Learners

The bootstrap variance estimate of a bagged learner ¹̂B2(x) at input x is defined as:

v̂arboot

(

¹̂B2(x)
)

=
1

B1 − 1

B1
∑

i=1

(

¹̂B2(∗i)(x) − ¹̄B2(x)
)2

,

where:

• ¹̂B2(∗i)(x) =
1

B2

∑B2
j=1 t(x; X

∗i∗j) is the prediction of the i-th bagged learner,

trained on the i-th first-level bootstrap sample X
∗i.

• ¹̄B2(x) =
1

B1

∑B1
k=1 ¹̂B2(∗k)(x) is the mean of the bagged predictions over all

first-level bootstrap samples.

• t(x; X
∗i∗j) is the prediction of the base learner trained on the second-level boot-

strap sample X
∗i∗j.

This variance estimate v̂arboot

(

¹̂B2(x)
)

provides an assessment of the prediction uncertainty

for the bagged learner ¹̂B2(x) trained on the dataset X.

While the two-level bootstrap method provides a robust framework for variance estimation
in Bagged Learners under weighted resampling, it is not without its challenges. The primary
limitation lies in its significant computational demands, as generating and training B1 × B2

base learners can be resource-intensive and time-consuming. To address these constraints
and enhance the efficiency of variance estimation, the following chapter introduces a novel
nonparametric variance estimation technique specifically tailored for Bagged Learners. This
new method aims to reduce computational overhead while maintaining accuracy and reliability
in predicting Bagged Learners uncertainty under weighted resampling.

2.4.2 Infinitesimal Jackknife for BL

The infinitesimal jackknife (IJK) method, as introduced in Section 2.2.4, can be adapted to
estimate the variance of a Bagged Learner (BL) by utilizing influence functions to measure
the sensitivity of predictions to small perturbations in the data. While existing methods,
like Jackknife-after-Bootstrap (Definition 2.3.7), provide unbiased variance estimates under
unweighted resampling, we have developed a novel modification of the infinitesimal jackknife
specifically tailored to handle scenarios involving weighted resampling within BL. The name
of our method is infinitesimal-jackknife-after-weighted-Bootstap-unbiased (IJK-AWB-U).

This extension addresses the complexities introduced by differential probability weights
during resampling, ensuring accurate and reliable variance estimates for BL predictions. In
the following sections, we derive the influence function for our method, examine the biased
variance estimate, introduce a bias correction, and validate the approach through simulation
studies.
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2.4.2 Infinitesimal Jackknife for BL

Derivation of the Influence Function

In our setup, the resampling process involves weighting of observations, as defined by the nor-
malized IPC-weights W = (w1, . . . , wn)T (Definition 2.1.2). Unlike the traditional resampling
vector M0, which assigns weights 1

n
to all observations, W incorporates differential weights

that reflect the varying probabilities of each observation being included in the bootstrap sam-
ples. By substituting M with W , we align the influence function with the actual resampling
strategy employed by the Bagged Learner under weighting. This substitution is essential for
accurately capturing the influence of each observation on the model’s predictions, thereby
enabling the computation of unbiased and reliable variance estimates despite the presence of
weights.

Following the ideas used by Wager for unweighted resampling in paper [WHE14], we can
express the influence function Ui (Definition 2.2.16) under weighted resampling as:

U(Xi) = lim
ε→0

H ((1 − ε)W + eiε) − H(W )

ε

= lim
ε→0

H
(

Wadj(i)

)

− H(W )

ε

(2.4.1)

Here, H(W ) represents the prediction of the BL (Definition 2.3.5) with the IPC Weighted
Bagging Procedure (cf. Definition 2.1.3, the pi in this Definition are the wi in this chap-
ter), resulting in the base learner predictions T (x; N∗b). The term H

(

Wadj(i)

)

denotes the
prediction of the BL using the adjusted probability weights ((1 − ε)W + eiε). While this
adjustment would typically require a new resampling process to obtain updated base learner
predictions, it can be calculated using the already obtained base learner predictions T (x; N∗b)
from the original resampling process, as we will see later. In Section 2.3.1 we discussed, that
the prediction of the BL can be seen as an approximation of the ideal BL (Definition 2.3.4),
that means:

E (T (x; N∗)|N∗ ∼ Mult(n, W )) ≈ H(W )

=
B
∑

b=1

T (x; N∗b) · P (N∗ = N∗b | N∗ ∼ Mult(n, W ))
(2.4.2)

With this relation we can express the influence function U(Xi) from Equation 2.4.1 in
expectation of the multinomial distribution:

Definition 2.4.2: Expected Influence Function

U(Xi) = lim
ε→0

E
(

T (x; N∗) | N∗ ∼ Mult
(

n, Wadj(i)

))

− E (T (x; N∗) | N∗ ∼ Mult(n, W ))

ε

As previously mentioned, we can calculate the expected value E
(

T (x; N∗) | N∗ ∼ Mult
(

n, Wadj(i)

))

using the existing base learner predictions T (x; N∗b) from the original resampling process.
To achieve this, we introduce a weighting function wb():
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2.4.2 Infinitesimal Jackknife for BL

Definition 2.4.3: Weighting Function

wb
(

Wadj(i)

)

=
PWadj(i)

(N∗b)

PW (N∗b)

where:

•• PW (N∗b) = P
(

N∗ = N∗b | N∗ ∼ Mult(n, W )
)

• PWadj(i)
(N∗b) = P

(

N∗ = N∗b | N∗ ∼ Mult(n, Wadj(i))
)

• Wadj(i)

= (1 − ε)W + eiε
= ((1 − ε)w1, . . . , (1 − ε)wi−1, (1 − ε)wi + ε, . . . , (1 − ε)wn)T

that facilitates the computation of the expected value as shown in Equation 2.4.3.

E
(

T (x; N∗) | N∗ ∼ Mult
(

n, Wadj(i)

))

= E
(

T (x; N∗) · wb(Wadj(i)) | N∗ ∼ Mult (n, W )
)

(2.4.3)
The Equation 2.4.3 illustrates that the expected prediction of the base learner under the
adjusted weight vector Wadj(i) is obtained by weighting the original predictions T (x; N∗b)
with the function wb() under the initial resampling distribution W . Essentially, it allows
us to compute the expected value under the new weights by appropriately adjusting the
contributions of existing bootstrap samples. The weighting function wb() is defined as the
ratio of the probability of observing a specific count vector N∗b under the adjusted weights
Wadj(i) to its probability under the original weights W . This ratio enables the reweighting of
existing bootstrap samples to reflect the new sampling probabilities without necessitating
additional resampling. The Equation 2.4.3 holds because:

E
(

T (x; N∗) · wb(Wadj(i)) | N∗ ∼ Mult (n, W )
)

≈
B
∑

b=1

T (x; N∗b) · wb(Wadj(i)) · PW (N∗b)

=
B
∑

b=1

T (x; N∗b) ·
PWadj(i)

(N∗b)

PW (N∗b)
· PW (N∗b)

=
B
∑

b=1

T (x; N∗b) · PWadj(i)
(N∗b)

≈ E
(

T (x; N∗) | N∗ ∼ Mult
(

n, Wadj(i)

))

(2.4.4)

The approximation in Equation 2.4.4 arises due to the use of a finite number of bootstrap
samples B. With Equation 2.4.3, 2.4.2 and the weighting function wb() (Definition 2.4.3) we
can rewrite the expected Influence Function (Definition 2.4.2) :
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U(Xi) = lim
ε→0

E
(

T (x; N∗) | N∗ ∼ Mult
(

n, Wadj(i)

))

− E (T (x; N∗) | N∗ ∼ Mult(n, W ))

ε

= lim
ε→0

E
(

T (x; N∗) · wb(Wadj(i)) | N∗ ∼ Mult (n, W )
)

− E (T (x; N∗) | N∗ ∼ Mult(n, W ))

ε

≈ lim
ε→0

∑B
b=1 T (x; N∗b) · wb(Wadj(i)) · PW (N∗b) −

∑B
b=1 T (x; N∗b) · PW (N∗b)

ε

= lim
ε→0

∑B
b=1 T (x; N∗b) · PW (N∗b) ·

(

wb(Wadj(i)) − 1
)

ε
(2.4.5)

For further improvement of the Equation 2.4.5, we need now to simplify the weighting function
wb() (Definition 2.4.3). Under the multinomial distribution, the probabilities of the count
vectors can be rewritten as:

wb
(

Wadj(i)

)

=
P
(

N∗ = N∗b | N∗ ∼ Mult(n, Wadj(i))
)

P (N∗ = N∗b | N∗ ∼ Mult(n, W ))

=

∏n
k=1,k ̸=i((1 − ε)wk)N∗b

k · ((1 − ε)wi + ε)N∗b

i

∏n
k=1(wk)N∗b

k

=

∏n
k=1(1 − ε)N∗b

k

(1 − ε)N∗b

i

·

(

(1 − ε)wi + ε

wi

)N∗b

i

= (1 − ε)n−N∗b

i ·
(

1 + ε
(

1 − wi

wi

))N∗b

i

.

(2.4.6)

Applying the binomial theorem for natural exponents, we can further simplify this expression:

wb
(

Wadj(i)

)

=





n−N∗b

i
∑

k=0

(

n − N∗b
i

k

)

(−ε)k



 ·





N∗b

i
∑

k=0

(

N∗b
i

k

)

(

ε
(

1 − wi

wi

))k




All terms that have a power of ε equal to 2 or greater can be neglected, since ε → 0. Thus,
the expression simplifies to:

wb
(

Wadj(i)

)

≈
(

1 + (n − N∗b
i )(−ε)

)

·
(

1 + N∗b
i

(

1 − wi

wi

)

ε
)

≈ 1 + ε

(

N∗b
i

wi

− n

)

.
(2.4.7)

Now we can further improve the expected Influence Function from Equation 2.4.5 with the
simplified weighting function fom Equation 2.4.7:
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U(Xi) = lim
ε→0

∑B
b=1 T (x; N∗b) · PW (N∗b) ·

(

wb(Wadj(i)) − 1
)

ε

=
B
∑

b=1

T (x; N∗b) · PW (N∗b) ·

(

N∗b
i

wi

− n

)

=
B
∑

b=1

(

T (x; N∗b) − E (T (x; N∗) + E (T (x; N∗)
)

· PW (N∗b) ·
1

wi

·
(

N∗b
i − win

)

=
1

wi

B
∑

b=1

(

T (x; N∗b) − E (T (x; N∗) + E (T (x; N∗)
)

· PW (N∗b) ·
(

N∗b
i − E(N∗

i )
)

=
1

wi

B
∑

b=1

(

T (x; N∗b) − E (T (x; N∗)
)

·
(

N∗b
i − E (N∗

i )
)

· PW (N∗b)

+
E (T (x; N∗)

wi

B
∑

b=1

(

N∗b
i − E (N∗

i )
)

· PW (N∗b)

(2.4.8)

The expected values, E(·) in he above equation refers to the expectation under the multinomial
distribution of the count vector N∗. As B approaches infinity, the sum

∑B
b=1

(

N∗b
i − E (N∗

i )
)

·

PW (N∗b) = E(N∗
i ) − E(N∗

i ) = 0. Therefore, the Equation 2.4.8 simplifies to:

U(Xi) =
cov (N∗

i , T (x; N∗) |N∗ ∼ Mult(n, W ))

wi

. (2.4.9)

According to Definition 2.2.18 the Infinitesimal Jackknife variance estimate is:

v̂arIJK

(

¹̂
)

=

(

n
∑

i=1

w2
i

)

n
∑

i=1

wiU(Xi)
2 (2.4.10)

Here, we only sum the influence functions that have a non-zero weight. With this in mind,
we can now define our Infinitesimal Jackknife variance estimate for the ideal BL’s prediction
under weighted resampling with Equation 2.4.9 and 2.4.10 as:
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Definition 2.4.4: Infinitesimal Jackknife Variance Estimate for Ideal Bagged

Learner’s Prediction (IJK-AWB)

v̂arIJK-AWB

(

¹̂∞(x)
)

=

(

n
∑

i=1

w2
i

)

n
∑

i=1
wi ̸=0

cov2
i

wi

.

where:

• covi = Cov (N∗
i , T (x; N∗) | N∗ ∼ Mult(n, W ))

covi represents the covariance between the entry N∗
i of the count vector N∗ and

the base learner’s prediction T (x; N∗) under the multinomial distribution with
weights W .

• wi are the normalized IPC weights used for resampling in the Bagged Learner.
These weights correspond to the resampling procedure upon which the Bagged
Learner was trained. Specifically, wi can be an entry from any resampling vector
(Definition 2.2.7)

• ¹̂∞(x) is the prediction of the Bagged Learner with an infinite number of bootstrap
samples, representing the ideal scenario for variance estimation.

This result shows that our IJK-AWB variance estimate relies on the covariance between the
resampling counts N∗

i and the base learner’s predictions T (x; N∗), scaled by the inverse of
the resampling weights wi. By aggregating these scaled covariances, the IJK-AWB effectively
captures the variability introduced by weighted resampling.

2.4.3 Bias-corrected Infinitesimal Jackknife for BL

When estimating variance using resampling methods, a finite number of bootstrap samples B
can introduce bias into the variance estimate. This bias arises because the estimator based
on a finite B differs from the ideal estimator as B → ∞. Therefore, we do not know the
true covariances covi , which are required for the calculation of the IJK-AWB estimator, and
instead estimate them using ˆcovi. To ensure the accuracy of the variance estimates, it is
essential to apply bias corrections. The bias of our IJK-AWB variance estimate (Defintion
2.4.4) under weighted resampling with a finite B can be expressed as:
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Bias
(

v̂arIJK-AWB

(

¹̂B(x)
))

= E
(

v̂arIJK-AWB

(

¹̂B(x)
))

− v̂arIJK-AWB

(

¹̂∞(x)
)

= E





(

n
∑

i=1

w2
i

)

n
∑

i=1,wi ̸=0

ˆcov2
i

wi



−

(
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Since T (x; N∗b) depends on all n observations, in practice, N∗b
i and T (x; N∗b) can be considered

independent when calculating var ( ˆcovi), particularly when n is large.
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(2.4.12)

The approximation of the bias shows that the bias of our IJK-AWB estimate depends on
the variance of the base learner’s predictions and the sample size. Specifically, the bias is
inversely proportional to the number of bootstrap samples B, and thus increasing B can
reduce bias.

Having discussed the bias correction approach, we can now present our unbiased form of
IJK-AWB variance estimate for the BL’s prediction with a finite B under weighted resampling
as:
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Definition 2.4.5: Unbiased Infinitesimal Jackknife Variance Estimate for Bagged

Learner’s Prediction (IJK-AWB-U)

v̂arIJK-AWB−U
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− v̂ar (T (x; N∗))
n

B

n
∑

i=1
wi ̸=0

(1 − wi)






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where:

• ˆcovi = 1
B

∑B
b=1

(

N∗b
i − win

)

(

T (x; N∗b) −
∑

B

i=1
T(x;N∗i)
B

)

ˆcovi represents the estimated covariance between the observed resampling counts
N∗b

i and the base learner’s prediction T (x; N∗b) under the multinomial distribution
with weights W .

• wi are the normalized IPC weights used for resampling in the Bagged Learner.
These weights correspond to the resampling procedure upon which the Bagged
Learner was trained. Specifically, wi can be derived from any resampling vector
(Definition 2.2.7).

• ¹̂B is the prediction of the Bagged Learner, trained with B bootstrap samples.

• v̂ar (T (x; N∗)) = 1
B−1

∑B
b=1

(

T
(

x; N∗b
)

−
∑

B

i=1
T(x;N∗i)
B

)2

v̂ar (T (x; N∗)) is the empirical variance of the base learner predictions across all
bootstrap samples.

When unweighted resampling is applied during the resampling process, such that wi = 1
n

for
i = 1, . . . , n, the variance estimate in Definition 2.4.5 simplifies to:

v̂arIJK−AB−U

(

¹̂B(x)
)

=
n
∑

i=1

ˆcov2
i −

n − 1

B
v̂ar (T (x; N∗)) (2.4.13)

This result for unweighted resampling has also been derived by Wager and co-authors in their
paper [WHE14].16

2.4.4 Simulations

To validate the proposed method IJK-AWB-U (Definition 2.4.5) we conducted two simulation
studies.

1. Simulation: Weighted Bagged Mean Estimator

In the first simulation, we employ a weighted Bagged Learner that computes the mean of
the input dataset X. Specifically, we compare the theoretically derived variance of the mean
estimator with the variance estimated using our method IJK-AWB-U and the biased method
IJK-AWB. The simulation framework is outlined as follows:

16[WHE14, p. 1629]
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Simulation Setup

We generate synthetic datasets with the following characteristics:

• Sample Size (n): We fix the sample size at n = 1,000.

• Variable (X): For simplicity, we generate observations from a standard normal
distribution, i.e., Xi ∼ N (0, 1), independently for each observation.

• Synthetic Dataset: X = (X1, . . . , Xn).

• Weight Distribution (W ): The first 500 observations are assigned a weight of
wi = 2

1000
for i = 1, . . . , 500, and the last 500 observations are assigned a weight of

wi = 0 for i = 501, . . . , 1000. These weights reflect the probability of each observation
being selected in the bootstrap samples.

• Number of Bootstrap Samples (B): We vary the number of bootstrap samples
among B = 500, 1000, 2000, 4000, and 10000 to assess the stability of our estimator
with respect to the number of bootstrap samples.

The weighted Bagged Learner computes the mean of the dataset X = (X1, . . . , Xn) using
bootstrap samples drawn according to the weight distribution W . Formally, for each bootstrap
sample b = 1, . . . , B, we draw n observations with replacement according to the probabilities
W , and compute the mean for the base learner T (·):

T (N∗b) =
1

n

n
∑

i=1

N∗b
i Xi,

where N∗b
i is the count of the i-th observation in the b-th bootstrap sample. The mean

computation of the weighted Bagged Learner is then:

¹̂B(X) =
1

B

B
∑

b=1

T (N∗b). (2.4.14)

In expectation, the mean computation of the weighted Bagged Learner approximates:

E (T (N∗) | N∗ ∼ Mult(n, W )) ≈ ¹̂B(X). (2.4.15)

Theoretical Variance Calculation

Under the multinomial resampling scheme with weights W , the theoretical variance of the
expected mean computation of the weighted Bagged Learner can be derived as follows. Given
that Xi ∼ N (0, 1) and are independent of the resampling process, the true variance is:
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var (E (T (N∗) | N∗ ∼ Mult(n, W ))) = var
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(2.4.16)

and with our simulation setup we get

var (E (T (N∗)|N∗ ∼ Mult(n, W ))) = 1 ·

(

500
∑

i=1

(

2

1000

)2

+
1000
∑

i=501

0

)

= 0.002

(2.4.17)

This theoretical variance serves as the ground truth for evaluating the accuracy of our
IJK-AWB-U variance estimator.

Simulation Run

We conduct 2,000 simulation runs for each value of the number of bootstrap samples B. For
each simulation run, the following steps are performed:

1. Generate synthetic dataset X = (X1, . . . , X1000) as desribed in the simulation setup.

2. Assign weights W = (w1, . . . , w1000)
T , with wi = 2

1000
for i = 1, . . . , 500 and wi = 0 for

i = 501, . . . , 1000.

3. Draw B bootstrap samples from the multinomial distribution Mult(1000, W ) and with
these samples calculate the count vectors N∗b

4. For each count vector N∗b , compute the base learner prediction T (N∗b) = 1
1000

∑1000
i=1 N∗b

i Xi.

5. Compute variance estimates IJK-AWB (Definition 2.4.4) and IJK-AWB-U (Definition
2.4.5) using N∗b and T (N∗b)

Simulation Results

The simulation results presented in Table 2.1 demonstrate the performance of the IJK-AWB-U
and IJK-AWB variance estimators relative to the theoretical variance.
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Table 2.1: Simulation Results: Theoretical Variance vs. IJK-AWB-U Estimated Variance vs.
IJK-AWB

B Theoretical Variance IJK-AWB-U estimate IJK-AWB estimate
500 0.002000 0.0020 ± 0.0003 0.0040 ± 0.0005

1,000 0.002000 0.0020 ± 0.0002 0.0030 ± 0.0003
2,000 0.002000 0.0020 ± 0.0002 0.0025 ± 0.0002
4,000 0.002000 0.0020 ± 0.0002 0.0022 ± 0.0002
10,000 0.002000 0.0020 ± 0.0001 0.0021 ± 0.0001

IJK-AWB-U Estimator: The IJK-AWB-U estimates are remarkably consistent with the
theoretical variance of 0.002 across all values of B. The estimated variances are all approxi-
mately 0.002, with standard deviations decreasing as B increases. For example, at B = 500,
the estimate is 0.002 ± 0.0003, and at B = 10000, it is 0.002 ± 0.0001. This consistency
indicates that the IJK-AWB-U estimator is unbiased and reliable, even with a smaller number
of bootstrap samples. The decreasing standard deviations with larger B suggest increased
precision due to the averaging effect of more bootstrap samples. These results align with the
theoretical expectation that the IJK-AWB-U estimator corrects for bias inherent in finite
bootstrap samples.

IJK-AWB Estimator: The IJK-AWB estimates exhibit a positive bias, particularly notice-
able at smaller values of B. At B = 500, the estimate is 0.004 ± 0.0005, which is double the
theoretical variance. As B increases, the bias diminishes, and the estimates converge toward
the theoretical variance. At B = 1000, the estimate decreases to 0.0030 ± 0.0003, and by
B = 10000, it reaches 0.0021 ± 0.0001, closely matching the theoretical value. The decreasing
standard deviations with larger B reflect improved precision. This behavior suggests that
while the IJK-AWB estimator is consistent in the limit as B → ∞, it is biased in finite
samples due to the lack of bias correction for the finite number of bootstrap samples.

Conclusion The results underscore the importance of using the IJK-AWB-U estimator
when an unbiased variance estimate is crucial. The IJK-AWB-U estimator provides accurate
variance estimates without requiring a large B. This simulation validates the theoretical
properties of the IJK-AWB-U estimator, confirming its unbiasedness and efficiency in variance
estimation for weighted Bagged Learners.

2. Simulation: Weighted Bagged Tree Model

In this simulation, we investigate the performance of our IJK-AWB-U variance estimator
(Definition 2.4.5) in the context of a weighted Bagged Tree model, similar to the analysis
presented in Figure 2 of [WHE14]. We consider a scenario where half of the observations
are assigned a weight of 2

n
, and the other half are assigned a weight of zero for the weight

distribution W .

Simulation Setup

We conduct the simulation with the following specifications:

• Sample Size (n): We fix the sample size at n = 1,000.
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2.4.4 Simulations

• Input Variable (xi): Each observation xi is drawn independently from a uniform
distribution on the interval [0, 1], i.e., xi ∼ Uniform(0, 1) for i = 1, . . . , n.

• Response Variable (yi): The response variable is generated according to a step
function with added noise:

yi = f(xi) + εi,

where f(x) is defined as in Figure 2.10, and εi ∼ N
(

0,
(

1
2

)2
)

represents Gaussian noise

with standard deviation 1
2
.

Figure 2.10: Step Function f(x). Figure adapted from [WHE14, p. 1648]

• Weight Distribution (W ): Randomly select n
2

observations to be assigned a weight
of wi = 2

n
; the remaining observations are assigned a weight of wi = 0.

• Model: We use a weighted Bagged Regression Tree. The base learner is a regression
tree with 5 terminal nodes (leaves), grown using the bootstrap samples drawn according
to the weight distribution W .

• Number of Bootstrap Samples (B): We set the number of bootstrap samples to
B = 1,000.

Variance Estimation Methods

For each simulation run, we estimate the variance of the Bagged Tree predictions using the
IJK-AWB-U estimator (Definition 2.4.5) and compare it with the empirical variance of the
Bagged Tree predictions over all 2,000 simulations.

Simulation Procedure

For each of the nsim = 2,000 simulation runs, we perform the following steps:

1. Data Generation:

a) Generate the input variables xi ∼ Uniform(0, 1) for i = 1, . . . , 1,000.
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b) Compute the response variables yi = f(xi) + εi, where εi ∼ N
(

0,
(

1
2

)2
)

.

c) create training dataset X = ((x1, y1), ..., (x1000, y1000))

2. Assign Weights: Create the weight vector W = (w1, . . . , w1,000)¦ by randomly selecting
n
2

= 500 indices without replacement to assign wi = 2
n
; the remaining indices are assigned

wi = 0.

3. Bootstrap Sampling: For each bootstrap sample b = 1, . . . , 1,000, draw n = 1,000
observations with replacement according to the multinomial distribution Mult(n, W )
to obtain the bootstrap samples and count vectors N∗b.

4. Model Training: Fit a regression tree Tb with 5 leaves to each bootstrap sample

5. Prediction: For 1,000 fixed test points x0 evenly spaced between 0 and 1, compute
the Bagged Tree predictions:

¹̂B(x0) =
1

B

B
∑

b=1

Tb(x0).

6. Variance Estimation: Estimate the variance of ¹̂B(x0) using the IJK-AWB-U estima-
tor for each test point.

At the end, we compute the empirical variance of the Bagged Tree predictions over all 2,000
simulations for each test point x0.

Simulation Results

The results are presented in Figure 2.11, which shows the mean variance estimates
obtained from the IJK-AWB-U estimator over all simulations, compared to the empirical
variance of the Bagged Tree predictions over all simulations. The empirical variance can
be considered as the true variance of the Bagged Tree predictions. The purple shaded
area represents the mean variance estimates plus or minus one standard deviation of the
IJK-AWB-U variance estimates across the simulations.

The results in Figure 2.11 demonstrate that, on average, the IJK-AWB-U estimator accurately
captures the variability of the Bagged Tree predictions across different values of the input
variable x0. The mean variance estimates from the IJK-AWB-U estimator closely match the
empirical variance computed over all simulations, indicating that the estimator effectively
accounts for the uncertainty in the ensemble predictions.

The empirical varaince of the Bagged Tree predictions, shown as the solid blue line, can
be considered the true variance in this context. The purple shaded area, representing ±1
standard deviation of the IJK-AWB-U variance estimates, illustrates the variability of our
variance estimator across the simulations. This area encompasses the true variance throughout
of the range of x0, demonstrating the reliability of the IJK-AWB-U estimator.

Notably, the variance is higher near the step in the function f(x) at x = 0.35, 0.45, 0.55, 0.65
reflecting the increased difficulty of predicting in regions where the step function (cf. Figure
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Figure 2.11: Variance estimates of the Bagged Tree predictions using the IJK-AWB-U esti-
mator and the empirical variance over all simulations.

2.10) changes abruptly. Our variance estimator accurately identifies the location and mag-
nitude of these spikes in variance, successfully capturing the behavior of the true variance
across the entire range of x0.

These results underscore the effectiveness of the IJK-AWB-U estimator in providing reliable
variance estimates, even in challenging scenarios with abrupt changes in the underlying
function. The close alignment between the mean IJK-AWB-U variance estimates and the
empirical variance confirms that the estimator can be confidently used for quantifying uncer-
tainty in ensemble predictions.

We now proceed to a comprehensive simulation study. This study is structured following
the ADEMP framework—Aim, Data-generating mechanisms, Estimands, Methods, and
Performance measures—to systematically evaluate the variance estimation methods in the
context of IPC-weighted resampling.
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3 Simulation Study Documentation
Following the ADEMP Framework

3.1 Simulation Design

3.1.1 Aim (A)

The primary aim of this simulation study is to investigate the performance of the Infinitesimal-
Jackknife-after-weighted-Bootstrap-unbiased (IJK-AWB-U) method for survival probability
predictions in the context of right-censored survival data. In particular, this study will
focus on the accuracy and robustness of IJK-AWB-U when applied to a bagging ensemble
of decision trees (DecisionTreeBaggingClassifier). As part of this investigation, we will also
compare the results of IJK-AWB-U with other variance estimation methods to provide a
broader understanding of its relative performance. Following variance estimation methods
are considered:

Variance Estimation Methods

1. Infinitesimal-Jackknife-after-weighted-Bootstrap (IJK-AWB) :

• Accounts for IPC weighted bagging procedure.

• The variance estimate is calculated as described in Definition 2.4.4.

2. Infinitesimal-Jackknife-after-weighted-Bootstrap-unbiased (IJK-AWB-U):

• Accounts for IPC weighted bagging procedure.

• Accounts for bias introduced through finite bootstrap samples, generated with
IPC weights.

• The variance estimate is calculated as described in Definition 2.4.5.

3. Jackknife-after-Bootstrap-unbiased (JK-AB-U):

• Does not account for IPC weighted bagging procedure

• Assumes equal probability weights, used during bootstrap sampling.

• Accounts for bias introduced through finite bootstrap samples, generated with
equal probability weights.

• The variance estimate is calculated described in Definiton 2.3.9.

4. Bootstrap:

• The method accounts for IPC weighted bagging procedure.
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• Variance is estimated by resampling the data B1 times (with replacement with
equal probability weights), retraining the bagged-model (in the model training
IPC weights are used), and computing the variance of the predictions.

• Number of Bootstrap Samples (B1): 200

• The variance estimate is calculated as described in Definition 2.4.1.

Additionally, the study investigates how these methods perform under varying sample sizes,
different levels of censoring in the dataset, and different shape parameters of the Weibull
distribution used for data generation (specifically, shape parameters k = 1 and k = 1.5). For
the models, various numbers of bootstrap samples B are considered during training of the
DecisionTreeBaggingClassifier. The ultimate goal is to determine the accuracy and reliability
of IJK-AWB-U method when applied to survival predictions in the presence of censoring.

3.1.2 Data-Generating Mechanisms (D)

Synthetic survival data are generated based on a Weibull distribution, incorporating several
covariates that affect the survival times. The data generation process simulates event
times and censoring times independently to reflect right-censored survival data commonly
encountered in practice.

Parameters

The parameter values selected for this simulation study were chosen arbitrarily, but they
were designed to span a broad spectrum of possible scenarios. This allows for a comprehen-
sive evaluation of the performance of the models under different conditions that could be
encountered in practice.

• Number of Simulation Runs (nsim): The simulation study consists of nsim = 1000
replicates for each combination of parameters.

• Random Seed: A base random seed is set (e.g., seed = 42), and different seeds are used
for each simulation replicate to ensure variability (seed + i for the i-th simulation).

• Sample Sizes (n): Simulations are conducted for different sample sizes:

n = {714, 1428, 2857}
(The sample sizes were chosen to ensure that the desired training sizes can be
obtained later after the train-test split.)

• Weibull Shape Parameters (k):

– k = 1: Corresponds to an exponential distribution (constant hazard).

– k = 1.5: Represents a Weibull distribution with increasing hazard over time.

• Censoring Proportion (cens-p): The censoring proportion represents the fraction of
samples that are censored before time Ä :

cens-p =
number of censored samples before Ä

total number of samples

This proportion is set to one of the following values: 0.1, 0.3, 0.5, or 0.7, indicating
10%, 30%, 50%, and 70% of the samples being censored, respectively.
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• Event Proportion (event-p): The event proportion denotes the proportion of samples
in which the event of interest is observed before time Ä . It is derived by multiplying
the remaining proportion of uncensored samples by a factor p, where p takes values in
{0.1, 0.2, 0.3, 0.4}. Mathematically, it is expressed as:

event-p = (1 − cens-p) × p

For each censoring proportion, the event proportion is set to 10%, 20%, 30%, and 40%
of the uncensored samples. This ensures that the number of events scales appropriately
with the level of censoring.

Example: If the censoring proportion is 0.3 (30%), the remaining uncensored proportion
is 0.7. The event proportion would then be:

event-p = 0.7 × p

where p can be 0.1, 0.2, 0.3, or 0.4, resulting in event proportions of 7%, 14%, 21%,
and 28%, respectively.

Note: The censoring and event proportions represent the average values across 1000
simulated datasets. Each simulation run may exhibit slightly different proportions.

• Number of bootstrap samples (B): Defines the number of decision trees used in the
DecisionTreeBaggingClassifier. We used 4 different values B = 500, 1000, 2000, 4000 in
our simulation study.

Therefore, there are 2 · 3 · 43 = 384 parameter combinations. However, Bootstrap variance
estimates are only calculated for the combinations with n = 2857, B = 1000 and k = 1.5 due
to computational runtime constraints.

Covariates

For each individual Xi in the dataset we generate 5 covariates (xi1, xi2, xi3, xi4, xi5) with
following characteristics (using the NumPy library):

x1 ∼ N (50, 102) x2 ∼ Bernoulli(p = 0.3) x3 ∼ N (25, 52)

x4 ∼ Bernoulli(p = 0.2) x5 ∼ LogNormal(µ = 5, Ã = 1)

(x5 Values are clipped to the range [30, 8000] to avoid extreme values)

Survival Times

Survival times are generated using a Weibull distribution with the following characteristics
(using the NumPy library):

• Baseline Scale Parameter (¼0):

Adjusted to achieve different levels of censoring in the data. Specific values are provided
in the Appendix under Section 6.0.2.
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• Scale Parameter (¼i):

The individual-specific scale parameter ¼i is calculated using a baseline scale parameter
(¼0) and a linear predictor (LPi) based on the covariates:

¼i = ¼0 × exp(LPi)

The linear predictor LPi is defined as:

LPi = − 0.405 · xi1 − 0.4 · xi2 − 0.05 · xi3 − 0.01 · (xi4 − 25)2 − 0.2 · log(xi5)

• Shape Parameter (k):

As specified above (k = 1 or k = 1.5).

• Event Times (t∗
i ):

Generated as:

t∗
i ∼ Weibull(k, ¼i)

The Weibull probability density function is:

f(t) =
k

¼i

(

t

¼i

)k−1

exp

(

−
(

t

¼i

)k
)

The true survival probability at a specific time point Ä and for a specific observation
Xi can be derived as:

S(Ä |Xi) = exp

(

−
(

Ä

¼i

)k
)

and being interpreted as the probability that an individual with covariate values Xi

survives beyond time Ä . In other words, it quantifies the likelihood that the event of
interest (e.g., death) has **not** occurred by time Ä .

Censoring Times (ci)

Censoring times are generated from an exponential distribution to simulate right-censoring
(using the NumPy library):

ci ∼ Exponential(rate = ¼c)

The rate parameter ¼c is adjusted to achieve desired censoring proportions in the data.
Specific values are provided in the Appendix under Section 6.0.2.
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Observed Times and Events

For each individual, the observed time and event indicator are determined:

• Observed Time (ti):

ti = min(t∗
i , ci)

• Event Indicator (¶i):

¶i =







1, if t∗
i f ci

0, otherwise

Train-Test Split

The dataset is split into training and testing sets using a stratified split that maintains the
proportion of events and censored observations (using the train_test_split function from
the sklearn.model_selection library).

• Training Set (ntrain): 70% of the data

– ntrain = {499, 999, 1999}

• Test Set (ntest): 30% of the data

– ntest = {215, 429, 858}

Inverse Probability of Censoring Weights (IPCW)

• A Kaplan-Meier estimator is used to approximate the censoring distribution in the
training set (using the lifelines library).

• Cut-off Time (Ä): The time horizon for classification is set to Ä = 37.

• IPC weights are calculated for each individual in the training set using the Kaplan-Meier
estimator of the censoring distribution (using Definition 2.1.2).

• IPC weights are normalized, so
∑ntrain

i=1 wi = 1.

• Survival Status (= Target Column) (yi): For each individual in the training and test
set, the target value is determined:

yi =















1, if ti > Ä

0, if ti f Ä, ¶i = 1

NA, otherwise
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3.1.3 Estimands (E)

The estimands of interest in this simulation study refer to the prediction for a specific
individual with predetermined covariate values denoted as Xpred = (50, 0, 25, 0, e5+0.5). These
covariate values represents the expected individual.

1. Predicted Survival Probability at Time Ä :

Estimate the survival probability at time Ä for Xpred

Ŝ(Ä |Xpred)

using different models (Weibull AFT and DecisionTreeBaggingClassifier).

2. Estimated Variance of Predicted Survival Probability at Time Ä :

Utilize various variance estimation methods to estimate the variability of the predicted
survival probability for Xpred at time Ä using the DecisionTreeBaggingClassifier

model:

3. Model Performance Metrics on Test Data:

IPC-weighted MSE of the survival predictions on the test data.

3.1.4 Methods (M)

The following 2 models are used to generate survival predictions:

1. Weibull Accelerated Failure Time (W-AFT) (using the lifelines library):

• A parametric survival model assuming a Weibull distribution.

• Fitted to the training data using the covariates and observed times/events.

• Survival probabilities are predicted for the test data and Xpred at time Ä .

2. DecisionTreeBaggingClassifier (DTBC):

• A custom bagging ensemble of decision trees (not using the RandomForest or
BaggingClassifier implementation from scikit-learn).

– The custom DTBC class is designed to train multiple decision trees (using
DecisionTreeClassifier implementation from scikit-learn) and aggregate
their predictions to output the probability for class 1 (e.g., survival).

– Unlike standard implementations, this class provides a method to return
bootstrapped samples, used for training the descion trees.

• Each decision tree is trained on a bootstrapped sample of the training data using
the covariates and the target column.

• Bootstrapping is weighted using the normalized IPC weights.

• The DTBC estimates the probability of the Survival Status being 1 at Time Ä ,
representing the likelihood of surviving beyond time Ä .

• Survival probabilities are predicted for the test data and Xpred at time Ä .
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• The hyperparameters of the DTBC ( max_depth= 4, min_samples_split= 5,
max_features= log2) were selected through cross-validation on a sampled dataset,
optimizing for the IPC-weighted MSE. Once determined, these hyperparameters
were kept constant across all simulations.

And with the following metric we will evaluate the performance of the models:

• IPC-weighted MSE:

MSE =
1

n

n
∑

i=1

wi (yi − ŷi)
2

where wi are the normalized IPC weights, yi are the observed survival statuses, and ŷi

are the predicted survival probabilities.

Simulation runs are parallelized using a ProcessPoolExecutor to efficiently utilize computa-
tional resources.

3.1.5 Performance Measures (P)

The performance of the models and variance estimation methods is assessed using the following
measures:

1. Mean Prediction

• The mean predicted survival probabilitiy for Xpred at time Ä across all simulation
replicates

Ŝ (Ä |Xpred) =
1

1000

1000
∑

sim=1

Ŝ(Ä |Xpred)sim

is calculated for the models W-AFT and DTBC.

2. Empirical Standard Deviation of Predictions

• The empirical standard deviation s of the predicted survival probabilities for Xpred

at time Ä across all simulation replicates

s
(

Ŝ
)

=
1

999

1000
∑

sim=1

(

Ŝ(Ä |Xpred)sim − Ŝ(Ä |Xpred)
)2

is calculated for the models W-AFT and DTBC.

• Serves as the benchmark for the true variability in predictions.

3. Estimated Standard Deviations of Predictions

• Standard deviations are estimated for the predictions of the DTBC

• For each variance estimation method (IJK-AWB, IJK-AWB-U, JK-AB-U, Boot-
strap), the estimated standard deviation is calculated as the square root of the
estimated variance:

Ã̂sim =
√

v̂arsim
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• The mean estimated standard deviation across simulations is computed for each
method:

Ã̂ =
1

1000

1000
∑

sim=1

Ã̂sim

4. Mean Relative Bias (MRB) of Estimated Standard Deviations

MRB (%) =





Ã̂ − s
(

Ŝ
)

s
(

Ŝ
)



× 100%

5. Coefficient of Variation (CV) of Estimators

• The Coefficient of Variation (CV) of the estimated standard deviations across all
simulations is calculated as:

CV =







1
999

∑1000
sim=1

(

Ã̂sim − Ã̂
)2

Ã̂





× 100%

• Enables the assessment of the relative stability and reliability of the different
variance estimation methods with different levels of censoring in the data.

6. Model Performance Metric: Mean MSE

• IPC-weighted MSE on test data, averaged across the 1000 simulation runs:

MSE =
1

1000

1000
∑

sim=1

MSEsim

3.2 Simulation Results

3.2.1 Model’s Performance

This section presents the findings from the simulation study, focusing on the performance of
the Weibull Accelerated Failure Time (W-AFT) model and the DecisionTreeBaggingClassifier
(DTBC) model under various simulation settings. We examine how the models behave under
different simulation settings, and the impact on the accuracy and variability of survival
probability predictions.

Table 3.1 summarizes the model performance metrics for the W-AFT model and the DTBC
model under different simulation settings. The results are presented for both Weibull shape
parameters (k), a censoring proportion (cens-p) of 0.5, an event proportion (event-p) of 0.15,
and for the DTBC, a bootstrap sample size of B = 1000 was used.
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Table 3.1: Model Results with cens-p= 0.5, event-p= 0.15 and for DTBC here was used
B = 1000

k ntrain s
(

Ŝ
)

for W-AFT s
(

Ŝ
)

for DTBC MSE for W-AFT MSE for for DTBC

1
499 0.0204 0.0485 0.1581 0.1618
999 0.0150 0.0380 0.1580 0.1588
1999 0.0100 0.0317 0.1565 0.1562

1.5
499 0.0192 0.0508 0.1550 0.1578
999 0.0140 0.0426 0.1548 0.1544
1999 0.0094 0.0362 0.1537 0.1522

Impact of Sample Size (ntrain) From Table 3.1, we observe that increasing the training
sample size ntrain leads to a reduction in the empirical standard deviation s

(

Ŝ
)

of the
predicted survival probabilities for both models. Specifically:

• For the W-AFT model with k = 1, s
(

Ŝ
)

decreases from 0.0204 at ntrain = 499 to 0.0100
at ntrain = 1999.

• Similarly, for the DTBC with k = 1, s
(

Ŝ
)

decreases from 0.0485 to 0.0317 as ntrain

increases.

This trend indicates that both models produce more consistent predictions with larger
training datasets, as expected due to the increased information available for model training.
Furthermore, this trend is observed across all combinations of censoring proportions, event
proportions and the number of bootstrap samples B as the training sample size increases.
Notably, the number of bootstrap samples B used in the DTBC does not appear to significantly
influence the empirical standard deviation of its predictions, as long as B is chosen to be
in the order of O(n), meaning that a number of bootstrap samples proportional to the size
of the training data is sufficient to maintain prediction stability. These findings can also be
verified in the figures located in the appendix under Sections 6.0.5 and 6.0.6.

Comparison Between W-AFT and DTBC Models Following observations can be made,
when comparing the performance of the W-AFT and DTBC models:

• Empirical Standard Deviation of Predictions s
(

Ŝ
)

:

– The DTBC consistently exhibits a higher s
(

Ŝ
)

compared to the W-AFT model
across all settings. For instance, with k = 1 and ntrain = 499, the DTBC has
s
(

Ŝ
)

= 0.0485 versus 0.0204 for the W-AFT.

– This suggests that the DTBC predictions are more variable across simulation
replicates, potentially reflecting greater sensitivity to the training data.

– These findings can also be observed across all combinations of simulation parame-
ters (cf. figures in Section 6.0.5 and 6.0.6).

• Mean MSE (MSE):

– The MSE values for both models decrease slightly as ntrain increases, indicating
improved prediction accuracy with more data.
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3.2.1 Model’s Performance

– The W-AFT model generally achieves lower MSE values than the DTBC, although
the differences are small and diminish with larger sample sizes.

– For example, at ntrain = 1999 and k = 1, the MSE for W-AFT is 0.1565 compared
to 0.1562 for DTBC, showing comparable performance.

– These findings can also be observed across all combinations of simulation parame-
ters. Notably, the number of bootstrap samples B used in the DTBC does not
influence the MSE of DTBC’s predictions (cf. figures in Section 6.0.5 and 6.0.6).

Effect of Weibull Shape Parameter (k) The shape parameter k influences the hazard
function of the Weibull distribution. Comparing the results between k = 1 and k = 1.5 we
observed:

• For the W-AFT model, both the empirical standard deviation s
(

Ŝ
)

and the MSE de-

crease as k increases.The observed decrease in MSE suggests that the specific simulation
conditions favor improved performance with higher k.

• In contrast, for the DTBC model, the empirical standard deviation s
(

Ŝ
)

increases with
k, indicating more variability in predictions under increasing hazard rates. However,
the mean squared error MSE decreases slightly, similar to the W-AFT model.

• These findings are also observed across different combinations of censoring proportions
and event proportions in the figures located in the appendix under Sections 6.0.5 and
6.0.6.

Examining the 24 figures located in the appendix under Sections 6.0.5 and 6.0.6, we observed
consistent patterns regarding the performance of the DTBC and W-AFT models under
varying simulation parameters. Since these patterns are similar across different training
sample sizes (ntrain) and numbers of bootstrap samples (B), we focus our analysis on Figure
3.1 to illustrate these findings. All 24 figures follow the same structure and layout as Figure
3.1, allowing for easy comparison of results across different settings.

Key Observations In Figure 3.1:

• Impact of Event Proportion on s
(

Ŝ
)

and MSE: Panels with smaller event propor-
tions show narrower error bars for both models, indicating smaller empirical standard
deviations in the predicted survival probabilities. Additionally, the MSE is also lower
when event proportions are smaller. Fewer events simplify the survival patterns that the
models need to learn, leading to more consistent predictions across simulation replicates
and reduced variability.

• Impact of Censoring Proportion on s
(

Ŝ
)

and MSE: When comparing subplots with
similar event proportions but varying censoring proportions, we observe that higher
censoring proportions result in wider error bars for both the W-AFT and DTBC models.
This indicates higher empirical standard deviations s

(

Ŝ
)

in the predicted survival

probabilities. Additionally, the MSE increases with higher censoring proportions.
Increased censoring in the data reduces the amount of observed event information,
which in turn diminishes the models’ ability to accurately learn and predict survival
patterns. This loss of information introduces greater uncertainty and variability in the
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3.2.1 Model’s Performance

survival probability estimates, leading to less consistent predictions across simulation
replicates.

Figure 3.1: Simulation study results for model’s performance with k = 1, ntrain = 1999,
B = 1000. The prediction of the models represents the mean estimated survival

probability Ŝ(Ä |Xpred) and the MSE represents the MSE over the 1000 simulation

runs. The error bars correspond to Ŝ(Ä |Xpred) ± 1.96 · s
(

Ŝ
)

, which provides an
approximate 95% confidence interval of the mean prediction. Each subplot
corresponds to a different event and censoring proportion, as indicated by the
"Event Prop" and "Cens Prop".

• Confidence Interval Coverage of the True Survival Probability: Across all scenarios,
the approximate 95% confidence interval of the mean prediction from the DTBC model
consistently includes the true survival probability S(Ä |Xpred). This suggests that the
DTBC model’s predictions fluctuate around the true value across simulations. In
scenarios with higher event proportions (starting from event-p = 0.14), the W-AFT
model’s error bars do not include the true survival probability. This indicates that the
W-AFT model’s predictions are consistently biased away from the true value in these
settings. The Weibull assumptions may be violated in the simulation settings, leading
to biased predictions that do not align with the true survival probability.

65



3.2.2 Variance Estimator’s Performance

• Systematic Underestimation of the True Survival Probability: A key observation across
almost all models is that they tend to systematically underestimate the true survival
probability on average. This underestimation is particularly notable in settings with
higher event proportions. However, as this phenomenon is not the focus of the present
study, it will not be further investigated.

In summary, the analysis of the model performance reveals that both the W-AFT and
DTBC models benefit from larger training sample sizes, exhibiting reduced variability and
improved prediction accuracy. The DTBC model consistently shows higher variability in
its predictions compared to the W-AFT model, possibly due to its non-parametric nature
and sensitivity to data complexity. Additionally, the DTBC model’s predictions fluctuate
around the true survival probability, while the W-AFT model’s predictions may exhibit bias
in certain scenarios.

These observations highlight the necessity of accurately quantifying the variability associated
with model predictions. Therefore, in the next section, we focus on evaluating the performance
of the variance estimation methods, we used for the DTBC model. We aim to determine how
well these methods capture the true variability of the model’s predictions across different
simulation settings.

3.2.2 Variance Estimator’s Performance

This section presents the findings from the simulation study, focusing on the performance of
the Infinitesimal-Jackknife-after-weighted-Bootstrap-unbiased (IJK-AWB-U) variance estima-
tor under various simulation settings. We will evaluate how well the IJK-AWB-U estimator
captures the true variability of the DecisionTreeBaggingClassifier’s (DTBC) predictions.
Following this evaluation, we will compare the IJK-AWB-U estimator’s performance with
other variance estimators, such as the IJK-AWB, JK-AB-U, and Bootstrap estimator.

Performance of IJK-AWB-U

The Mean Relative Bias (MRB(%)) is calculated as the percentage difference between
the mean of the estimated standard deviations (Ã̂) and the empirical standard deviation
of the predictions (s

(

Ŝ
)

). A positive MRB(%) indicates that the variance estimator is
overestimating the true variability, while a negative MRB(%) indicates underestimation.
Table 3.2 presents the MRB(%) of the IJK-AWB-U variance estimator under different
simulation settings. The results are shown for both Weibull shape parameters (k = 1 and
k = 1.5), and the different training sample sizes (ntrain), and varying numbers of bootstrap
samples (B). The censoring proportion (cens-p) is fixed at 0.3, and the event proportion
(event-p) is set at 0.21.

Key observations from Table 3.2:

• Effect of Training Sample Size (ntrain):

– The MRB decreases as the training sample size increases. At ntrain = 499, the
MRB ranges from 7% to 15%, while at ntrain = 1999, it decreases to values between
−3% and 4%.
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3.2.2 Variance Estimator’s Performance

Table 3.2: MRB(%) for Variance Estimator IJK-AWB-U with Simulation Parameters: cens-
p= 0.3 and event-p= 0.21

k ntrain MRB (%) for IJK-AWB-U
B = 500 B = 1000 B = 2000 B = 4000

1
499 13 15 15 15
999 8 10 11 11
1999 0 3 4 4

1.5
499 7 9 10 10
999 0 3 4 4
1999 -3 0 1 1

– This trend indicates improved accuracy of the IJK-AWB-U estimator with larger
training datasets.

• Effect of Number of Bootstrap Samples (B):

– The MRB tends to increase slightly with larger B, especially noticeable at smaller
ntrain. For example, with k = 1.5 and ntrain = 999, the MRB increases from 0% at
B = 500 to 3% at B = 1000 and remains at 4% after that for larger B.

– This suggests diminishing returns in variance estimation accuracy when increasing
B beyond a certain point. A moderate number of bootstrap samples (e.g., B =
ntrain ÷ 2) appears sufficient. Therefore, computational resources may be better
utilized elsewhere once a reasonable number of bootstrap samples is reached.

• Effect of Weibull Shape Parameter (k):

– The MRB values are generally lower for k = 1.5 compared to k = 1, indicating
better performance of the variance estimator when the hazard rate is increasing.
At ntrain = 999, the MRB for k = 1.5 is 0% at B = 500, whereas for k = 1, it is
8%.

The patterns observed in Table 3.2 are consistent across different combinations of event
proportions and censoring proportions. It is important to note that the MRB does not always
remain within ±15% under other settings. In some scenarios with different combinations
of event proportions and censoring proportions, the IJK-AWB-U estimator may exhibit
higher MRB. To recognize the settings where the estimator performs well and identifying its
limitations, we now present Figure 3.2.

The Figure 3.2 illustrates the performance of various variance estimators for the Decision-
TreeBaggingClassifier (DTBC) under different simulation settings, specifically focusing on
the event and censoring proportions. Each subplot corresponds to a unique combination of
event and censoring proportions, indicated by the "Event Prop" and "Cens Prop" labels at
the top of each panel.

(The 24 figures located in the appendix under Section 6.0.4 and 6.0.3 follow the same structure
and layout as Figure 3.2, except that the bootstrap variance method was not applied there due
to computational runtime constraints. These figures contain results for the other combinations
of ntrain, k and B.)
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Figure 3.2: Simulation study results for variance estimator’s performance with k = 1, ntrain =
1999, B = 1000. DTBC’s prediction represents the mean estimated survival

probability Ŝ(Ä |Xpred) and the DTBC emp. std stands for s
(

Ŝ
)

over the 1000

simulation runs. The 4 error bars correspond to Ŝ(Ä |Xpred) ± 1.96 · Ã̂, which
provides an approximate 95% confidence interval of the mean prediction. The
mean estimated standard deviations (Ã̂) for each error bar is based on an estimator
from the legend. If |mrb(%)| f 10, it is colored green, if 10 < |mrb(%)| f 20, it
is colored yellow, otherwise its colored red.

Several patterns regarding the performance of the IJK-AWB-U estimator can be
identified from Figure 3.2:

• Effect of Censoring Proportion on MRB(%): The MRB(%) of the IJK-AWB-U estimator
is significantly influenced by the censoring proportion. When the censoring proportion is
less than 0.7, the MRB ranges between −9% and 10%, indicating acceptable estimation
accuracy. However, at a censoring proportion of 0.7, the MRB increases substantially,
ranging from 22% to 33%, which suggests an overestimation of the variance. This
pattern appears consistent regardless of the event proportion. Observations from the
additional figures in the appendix (Sections 6.0.4 and 6.0.3) confirm that for censoring
proportions up to 0.3, the absolute MRB is generally less than or equal to 10%. For
a censoring proportion of 0.5, the absolute MRB typically ranges between 5% and
25%, and for a censoring proportion of 0.7, it generally lies between 10% and 40%.
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These findings imply that the IJK-AWB-U method performs well on average when the
censoring proportion is moderate to low.

• Effect of Event and Censoring Proportion on CV: When holding the censoring proportion
constant and examining the subplots in each row, we observe that the CV decreases as
the event proportion increases. To better illustrate this relationship, we have extracted
the relevant values from Figure 3.2 and present them in Table 3.3:

Table 3.3: Impact of Event Proportion on Coefficients of Variation (Simulation Parameters:
k = 1.5, ntrain = 1999, B = 1000 )

Cens-p = 0.5

Event-p CV

0.05 0.89
0.1 0.51
0.15 0.49
0.2 0.44

Cens-p = 0.3

Event-p CV

0.07 0.51
0.14 0.43
0.21 0.43
0.28 0.39

Cens-p = 0.1

Event-p CV

0.09 0.41
0.18 0.39
0.27 0.39
0.36 0.38

For example the CV decreases from 0.89 to 0.44, when incresing the event proportion,
for a cens propotion of 0.5 . Conversely, when comparing subplots with similar event
proportions but different censoring proportions, we notice that the CV increases with
higher censoring. For instance, the CV is 0.41 for cens-p = 0.1 and event-p = 0.09,
while it increases to 0.51 for cens-p = 0.5 and event-p = 0.1. These patterns we can
also observe in the additional figures in the appendix (Sections 6.0.4 and 6.0.3). This
indicates that higher event proportions lead to more stable variance estimates (lower
CV), whereas higher censoring proportions increase the variability of the variance
estimates (higher CV).

In summary, the IJK-AWB-U estimator provides reliable variance estimates under conditions
of low to moderate censoring proportions. Its performance, in terms of MRB(%) and CV, is
adversely affected by high censoring proportions, where it tends to overestimate the variance
and exhibit greater variability. The event proportion has a more pronounced effect on the
CV than on the MRB(%), with higher event proportions leading to more stable variance
estimates. These observations highlight the importance of considering the censoring and
event proportions when applying the IJK-AWB-U estimator in practice.

Comparison of IJK-AWB-U Estimator with Other Variance Estimators

In addition to the IJK-AWB-U estimator, we compared its performance with other variance
estimators, namely the IJK-AWB, JK-AB-U, and Bootstrap estimators. Figure 3.2 illustrates
the performance of these estimators under various simulation settings.

The key observations from the comparison are as follows:

• IJK-AWB Estimator: The Infinitesimal-Jackknife-after-weighted-Bootstrap (IJK-
AWB) estimator, without the bias correction applied in the IJK-AWB-U method,
exhibits significantly higher MRB(%) compared to the IJK-AWB-U estimator (cf.
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Figure 3.2). This indicates that the bias correction in the IJK-AWB-U estimator
effectively improves the accuracy of the variance estimates.

Table 3.4: Impact of Bootstrap Sample Size (B) on MRB(%) of IJK-AWB-U, IJK-AWB
and JK-AB-U (Simulation Parameters: k = 1.5, ntrain = 1999, cens-p= 0.3, and
event-p= 0.21)

MRB(%) of

B IJK-AWB-U IJK-AWB JK-AB-U

500 −3 244 166
1,000 0 154 100
2,000 1 93 57
4,000 1 55 31

Specifically, the IJK-AWB estimator tends to overestimate the variance considerably,
especially in scenarios with smaller B, as observed in Table 3.4. For instance, at
B = 500, the MRB for the IJK-AWB estimator is 244%, indicating a substantial
overestimation of the variance, whereas the IJK-AWB-U estimator shows an MRB
of −3%, closely aligning with the true variability. As B increases, the MRB(%) for
the IJK-AWB estimator decreases but remains significantly higher than that of the
IJK-AWB-U estimator, suggesting persistent overestimation even with larger bootstrap
sample sizes. Observations from the additional figures in the appendix (Sections 6.0.4
and 6.0.3) confirm that the bias correction in the IJK-AWB-U estimator is effective in
almost every scenario of our simulation settings.

Given these findings, we conclude that the IJK-AWB estimator lacks reliability due
to its tendency to overestimate variance, which can mislead interpretations of model
uncertainty. Therefore, the bias-corrected IJK-AWB-U estimator is preferred for
providing more accurate and dependable variance estimates of the DTBC model’s
predictions.

• JK-AB-U Estimator: The Jackknife-after-Bootstrap-unbiased (JK-AB-U) estimator
exhibits mixed performance. Generally, as shown in Figure 3.2 and supported by
Table 3.4, it consistently displays higher MRB(%) values compared to the IJK-AWB-U
estimator, indicating substantial overestimation of the variance. This overestimation is
particularly evident at lower bootstrap sample sizes (B).

However, in scenarios with low censoring proportions and larger bootstrap sample sizes,
the performance of the JK-AB-U estimator improves and can become comparable to
that of the IJK-AWB-U estimator. This is illustrated in Table 3.5, which presents
results under different simulation parameters (k = 1.5, ntrain = 1999, cens-p= 0.1, and
event-p= 0.18). In Table 3.5, as B increases, the MRB of the JK-AB-U estimator
decreases significantly, reaching 1% at B = 4000, which is comparable to the MRB of
−8% for the IJK-AWB-U estimator. This improved performance at low censoring levels
is likely because the effect of censoring is minimal in these scenarios. It is important to
note that the JK-AB-U estimator is misspecified for our simulation settings, as it does
not account for censoring. Therefore, its performance decrease in scenarios with higher
censoring proportions where the impact of censoring becomes more pronounced.
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Table 3.5: Impact of Bootstrap Sample Size (B) on MRB(%) of IJK-AWB-U and JK-AB-U
(Simulation Parameters: k = 1.5, ntrain = 1999, cens-p= 0.1, and event-p= 0.18)

B MRB(%) of IJK-AWB-U MRB(%) of JK-AB-U

500 −14 53
1,000 −9 26
2,000 −8 10
4,000 −8 1

Overall, despite occasional comparable performance under specific conditions (e.g.,
low censoring proportion and large B), the JK-AB-U estimator generally provides less
accurate variance estimates compared to the IJK-AWB-U estimator. The consistent
overestimation observed in most scenarios (as seen in Figure 3.2 and the additional
figures in the appendix Sections 6.0.4 and 6.0.3) indicates that the JK-AB-U estimator
is less reliable for accurate variance estimation in the context of our simulation settings.
Consequently the IJK-AWB-U estimator remains the preferred choice for variance
estimation of the DTBC model’s predictions.

• Bootstrap Estimator: Due to computational runtime constraints, the Bootstrap
estimator was only evaluated under the simulation setting corresponding to Figure 3.2.
Therefore, we have results for the Bootstrap estimator only from this figure. Both Table
3.6 and Table 3.7 were generated from Figure 3.2 to better illustrate these performance
comparisons.

Table 3.6: Performance Comparison at Low to Moderate Censoring Proportions for IJK-
AWB-U and Bootstrap Estimators (k = 1.5, ntrain = 1999, B = 1000)

Cens-p Event-p IJK-AWB-U Bootstrap IJK-AWB-U Bootstrap
MRB(%) MRB(%) CV CV

0.1 0.09 −1 14 0.41 0.27
0.1 0.18 −9 5 0.39 0.20
0.1 0.27 −7 6 0.39 0.19
0.1 0.36 −7 4 0.38 0.17
0.3 0.07 5 17 0.51 0.36
0.3 0.14 −1 6 0.43 0.25
0.3 0.21 0 7 0.43 0.21
0.3 0.28 −2 5 0.39 0.19
0.5 0.05 6 10 0.89 0.53
0.5 0.10 7 9 0.51 0.31
0.5 0.15 9 7 0.49 0.24
0.5 0.20 10 9 0.44 0.22

Analyzing the performance of the Bootstrap estimator in Table 3.6, we observe that it
provides variance estimates with relatively low MRB(%) and CV across the simulated
scenarios. At low to moderate censoring proportions (cens-p f 0.5), the Bootstrap
estimator shows good performance, MRB(%) values ranging from 5% to 17%, indicating
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acceptable bias in variance estimation. The CV values are lower than those of the
IJK-AWB-U estimator, suggesting more stable variance estimates. Additionally, they
show decreasing CV values with increasing event proportions, as we previously observed
with the IJK-AWB-U estimator.

At higher censoring proportions (cens-p = 0.7), both estimators exhibit increased
MRB(%) and CV values. Table 3.7 presents the performance metrics in these settings.

Table 3.7: Performance Comparison at High Censoring Proportions for IJK-AWB-U and
Bootstrap Estimators (k = 1.5, ntrain = 1999, B = 1000)

Cens-p Event-p IJK-AWB-U Bootstrap IJK-AWB-U Bootstrap
MRB(%) MRB(%) CV CV

0.7 0.03 27 26 0.99 0.64
0.7 0.06 34 26 0.66 0.47
0.7 0.09 22 8 0.67 0.34
0.7 0.12 33 18 0.52 0.29

In these high censoring scenarios, the Bootstrap estimator consistently achieves lower
MRB(%) than the IJK-AWB-U estimator. However, the Bootstrap estimator also faces
challenges in accurately capturing the true variance at high censoring levels. The CV
values for the Bootstrap estimator are lower, indicating more stable variance estimates.
Here too, we observe decreasing CV values with increasing event proportions, similar
to the pattern seen with the IJK-AWB-U estimator.

However, it is important to note that the computational cost of the Bootstrap estimator
is significantly higher due to the need for resampling and refitting the DTBC model
multiple times. This may limit its practicality for larger datasets or more complex models.
The IJK-AWB-U estimator, despite having higher CV values, offers a balance between
computational efficiency and acceptable variance estimation accuracy. Therefore, in
practice, the choice between the Bootstrap and IJK-AWB-U estimators should consider
both the statistical performance and the computational resources available.

In summary, our simulation study demonstrated that the IJK-AWB-U estimator provides
reliable and accurate variance estimates for the DTBC model’s prediction, especially under
low to moderate censoring proportions and higher training sample sizes. It effectively corrects
bias present in the IJK-AWB estimator and offers a good balance between accuracy and
computational efficiency compared to the Bootstrap estimator, which, despite its stability,
is computationally intensive. The JK-AB-U estimator was generally less reliable due to
its consistent overestimation of variance. Given these findings, the IJK-AWB-U estimator
emerges as the preferred method for variance estimation in our context.

In the next chapter, we will apply the variance estimation methods discussed in this chapter
to the TxReg dataset to assess their practical utility in estimating the variance of predictions
made by a DTBC on real-world data.
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4 Application on TxReg Dataset

In the earlier chapters, we delved into various methods for estimating the variance of the
Decision Tree Bagging Classifier’s (DTBC) prediction, evaluating their effectiveness through
extensive simulation studies. Building on these insights, we now shift our focus to applying
these variance estimation techniques to a real-world dataset to assess their practical applica-
bility.

This chapter examines the use of the IJK-AWB-U, IJK-AWB, JK-AB-U, and Bootstrap
variance estimators on the TxReg dataset, which contains retrospective and anonymized data
from the German Transplant Registry. These data have been supplied by the Transplant
Registry Agency, represented by the Gesundheitsforen Leipzig GmbH.

The research project within which this thesis was conducted is funded by the Federal Ministry
of Education and Research (project 13FH019KX1). As part of this project, the registry data
underwent comprehensive feature engineering and data cleaning processes. These efforts
resulted in a refined dataset Xclean devoid of missing values and comprising only contextually
relevant features. The results presented in this thesis are the responsibility of the author.

4.1 Description of the Dataset

The Xclean dataset utilized in this study comprises 17,016 observations across 21 distinct
features, of which 19 are used for prediction and 2 represent the time and event variables.
Table 4.1 provides a detailed overview of the dataset’s features, categorized by their respective
data types.

Table 4.1: Features of the TxReg Dataset Categorized by Data Type

Data Type Features

float64 (×10)

time, donor_age_years, donor_height_cm, donor_weight_kg,
donor_creatinin_umol_per_l, recipient_age_years, recipient_height_cm,
recipient_weight_kg, recipient_dialysis_years,
transplant_cold_ischemia_time_min

object (×1) destination

bool (×10)
event, donor_sex, recipient_sex, donor_diabetes, donor_hypertension,
donor_smoking, donor_hcv, recipient_bloodtransfusion, recipient_hcv,
recipient_pra

The dataset encompasses a diverse range of features that capture both donor and recipient
characteristics, as well as transplantation-specific details. Additionally, the dataset was
filtered to include only observations with time > 0. Furthermore, the ‘’Local’‘ category in
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the destination feature was removed due to its low frequency (14 instances), resulting in
destination having only three categories. Now the dataset comprises 15,786 observations.

In our classification problem, we consider a time horizon of three years. Specifically, the
objective is to determine whether a patient has not experienced the event of interest within
this three-year period. The distribution of events and censored observations in the dataset
after the cutoff time Ä = 3 years is as follows:

• Proportion of Censored Observations: 19.63%
represents the fraction of samples that are censored before time Ä

• Proportion of Events: 18.69%
denotes the proportion of samples in which the event of interest is observed before time
Ä

These proportions indicate that a moderate portion of the data is censored at a time horizon
of three years.

4.2 DTBC Model

To effectively predict patient outcomes within a three-year time horizon, we employed a
Decision Tree Bagging Classifier (DTBC).

Hyperparameter Evaluation

The performance of the DTBC model is highly dependent on the selection of optimal
hyperparameters. To systematically identify the best combination of hyperparameters, we
implemented a cross-validation approach encapsulated within the evaluate_params function.
This function performs the following steps:

1. Cross-Validation Setup: Utilizing K-Fold cross-validation with K = 10 folds, the
dataset is partitioned into training and validation subsets. This ensures that the model
is evaluated on diverse data segments, enhancing the reliability of performance metrics.

2. Model Training and Validation: For each fold, the DTBC model is trained on the
training subset with a specific set of hyperparameters. The Kaplan-Meier estimator is
fitted on the training data to account for censored observations, and Inverse Probability
of Censoring Weights (IPCW) are computed for both training and validation sets to
adjust for censoring bias.

3. Feature Encoding and Alignment: Categorical variables are transformed into
dummy variables to facilitate model training. To maintain consistency across folds, the
validation subset is reindexed to match the training subset’s feature space, filling any
missing columns with zeros.

4. Performance Evaluation: The trained model predicts the survival probabilities at
Ä = 3 years for the validation subset. The IPCW Mean Squared Error (MSE) is then
calculated to assess the model’s predictive accuracy, accounting for censored data.

5. Aggregation of Results: The IPCW MSE scores from all folds are averaged to obtain
a mean performance metric for the given hyperparameter set.
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Hyperparameter Grid and Optimization

To explore the hyperparameter space comprehensively, we defined a parameter grid encom-
passing various configurations:

• B: Number of decision trees in the ensemble (n
2

≈ 8000).

• max_depth: Maximum depth of each decision tree (e.g., [5, 6, 7, 8, 9, 10]).

• min_samples_split: Minimum number of samples required to split an internal node
(e.g., [10, 20, 30, 40, 50]).

• max_features: Number of features to consider when looking for the best split (e.g.,
[’sqrt’, ’log2’]).

Given the extensive search space, a grid search strategy was employed in conjunction with
parallel computing to expedite the hyperparameter tuning process. Each combination of
hyperparameters was evaluated using the evaluate_params function across all folds, and
the mean IPCW MSE was recorded.

Selection of Optimal Hyperparameters

After evaluating all hyperparameter combinations, the configuration yielding the lowest mean
IPCW MSE was identified as follows:

• ’B’: 8000

• ’max_depth’: 10

• ’min_samples_split’: 40

• ’max_features’: ’sqrt’

This combination achieved an IPCW MSE of 0.1438. These optimal hyperparameters were
then used to train the final DTBC model on the entire training dataset.

Implementation Details

The hyperparameter tuning process was carried out using Python, leveraging libraries such as
pandas for data manipulation, lifelines for survival analysis, and scikit-learn for ma-
chine learning utilities. The custom DecisionTreeBaggingClassifier class is implemented
as described in Section 3.1.4.

4.3 Variance Estimates

To illustrate the capabilities of the variance estimators applied to the DTBC model’s predic-
tions, we selected three representative patients from the dataset whose three-year survival
probabilities were predicted. The average patient was identified using the Gower distance
metric, which quantifies the similarity between instances.1 Following the prediction of survival
probabilities for all patients in the dataset, we identified the patients with the lowest and

1[Gow71]
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highest predicted survival probabilities. These selections provide a comprehensive view of
the variance estimators’ performance across different risk profiles. Table 4.2 summarizes the
covariates of these three patients along with their corresponding survival probabilities.

Table 4.2: Covariates of Selected Patients

Covariate Survival Probability (%)

Low Mean High

time 145.0 1826.25 1319.0
event 1 0 0
donor_age_years 76.0 57.0 18.0
donor_sex male male male
donor_height_cm 157.0 175.0 175.0
donor_weight_kg 68.0 78.0 65.0
donor_creatinin_umol_per_l 70.9 25.6 54.8
donor_diabetes True False True
donor_hypertension True False False
donor_smoking False False False
donor_hcv False False False
recipient_age_years 72.70 52.77 49.51
recipient_sex male male female
recipient_height_cm 178.0 173.0 175.0
recipient_weight_kg 117.0 84.0 61.0
recipient_bloodtransfusion True False False
recipient_dialysis_years 4.12 4.88 8.28
recipient_hcv False False False
recipient_pra False False False
transplant_cold_ischemia_time_min 538 829 565
destination Regional Regional Regional

Survival Probability Ŝ
(

1095 | Xpatient(i)

)

40.83 % 89.44 % 95.03 %

The time variable is measured in days. The patient with the lowest survival probability
experienced an event after approximately 0.4 years. The average patient was censored after
approximately 5 years, and the patient with the highest survival probability was censored
after approximately 3.6 years. We subsequently applied the following variance estimators to
these three predictions:

• Infinitesimal-Jackknife-after-weighted-Bootstrap (IJK-AWB)

• Infinitesimal-Jackknife-after-weighted-Bootstrap-unbiased (IJK-AWB-U)

• Jackknife-after-Bootstrap-unbiased (JK-AB-U)

• Bootstrap (with B1 = 200)

The results of the variance estimators are presented in Figure 4.1. This figure illustrates
the variance estimates for each of the three selected patients across the different variance
estimation methods.

76



3.2.2 Variance Estimator’s Performance

Figure 4.1: Variance Estimates on predicted Survival Probabilities at Ä = 3 years of 3 Patients
from the TxReg Dataset. The 4 error bars correspond to Ŝ

(

1095 | Xpatient(i)

)

±

1.96 · Ã̂, which provides an approximate 95% confidence interval of the prediction.
The estimated standard deviations (Ã̂) for each error bar is based on an estimator
from the legend.

The figure reveals a clear trend: all four estimators exhibit the widest confidence intervals for
the patient with the lowest survival probability (left panel), indicating the highest uncertainty.
As survival probability increases (middle and right panels), the confidence intervals become
progressively narrower for each method, suggesting increased confidence in the predictions.
This pattern is consistent across all estimators, reflecting the DTBC model’s greater stability
in estimating higher survival probabilities.

In previous chapters, we identified the Bootstrap variance estimator as a "gold standard" due to
its stability and robustness in simulated settings. Here, the IJK-AWB-U estimator produces
variance estimates closely aligned with those of the Bootstrap method, which suggests that
IJK-AWB-U performs reliably on this real dataset as well. This similarity supports the
choice of IJK-AWB-U as a computationally efficient yet accurate alternative for variance
estimation in survival predictions.

Conversely, the IJK-AWB estimator, which lacks bias correction, consistently shows the widest
intervals, particularly for the patient with low survival probability, indicating a tendency to
overestimate the variance. The JK-AB-U estimator performs slightly better than IJK-AWB
but still overestimates variance compared to the Bootstrap and IJK-AWB-U methods.

In summary, Figure 4.1 supports the insights gained from the simulation study. The
IJK-AWB-U estimator provides narrower confidence intervals that closely align with the
Bootstrap estimator, which was identified as the most stable approach in the simulated
settings. This alignment suggests that the IJK-AWB-U estimator may offer a reliable
approximation of variance in practical applications. In contrast, the IJK-AWB and JK-AB-U
estimators consistently produce wider confidence intervals, particularly for lower survival
probabilities, indicating a tendency to overestimate variance. This overestimation underscores
the limitations of these methods for practical use in variance estimation within the DTBC
model with survival data.
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5 Conclusion

The present study addressed the question, "How can variance estimation methods for IPC-
weighted classification models be developed to provide reliable estimates in the context
of censored data?" A comprehensive analysis of existing methods for both weighted and
unweighted classification models was conducted, alongside the development and evaluation
of a novel approach. Specifically, a new method, the Infinitesimal-Jackknife-after-weighted-
Bootstrap-unbiased (IJK-AWB-U), was developed to provide unbiased variance estimates for
bagged learners utilizing IPC-weighted resampling.

The results indicate that the IJK-AWB-U estimator provides robust and efficient variance
estimation, especially under conditions of moderate to low censoring rates and with larger
training sample sizes. A simulation study, designed within the ADEMP framework, demon-
strated that this method outperformed the gold standard, the nonparametric Bootstrap,
in terms of computational efficiency while maintaining high accuracy. This positions the
IJK-AWB-U estimator as a valuable tool for predictive modeling in real-world scenarios,
particularly when working with censored data in medical research and survival analysis.

Moreover, the practical application to the TxReg dataset validated the estimator’s reliability,
showing that the IJK-AWB-U estimator produced confidence intervals that closely align
with those generated by the Bootstrap estimator, widely regarded as the gold standard in
variance estimation. This close alignment underscores the practical utility of the IJK-AWB-U
estimator, especially as traditional estimators such as the Jackknife-after-Bootstrap showed
significantly higher bias under IPC-weighted resampling, leading to overestimated variance
and potential inaccuracies in predictive intervals. By focusing on bagged learners based on
decision trees, this study demonstrated that IJK-AWB-U can be effectively adapted to work
within specific machine learning frameworks, such as decision tree ensembles, while delivering
unbiased results.

This work contributes methodologically by adapting existing variance estimation techniques
to censored data frameworks. Specifically, the IJK-AWB-U estimator builds upon Wager’s
Infinitesimal Jackknife approach for unweighted bagged learners, extending it to address
key challenges associated with IPC-weighted resampling. Moreover, by implementing an
effective bias correction that adjusts for the bias introduced by finite bootstrap samples,
the IJK-AWB-U estimator provides more accurate variance estimates. This adaptation
makes the IJK-AWB-U estimator a robust choice for censored data applications. The
extensive simulation study provides insight into the estimator’s performance across different
censoring rates, event proportions, and sample sizes. The results demonstrate that the
estimator maintains stable bias and coverage properties under moderate to low degrees of
censoring, suggesting broad applicability and resilience of the method across various levels
of censoring. However, under conditions of high censoring, the estimator’s performance
diminishes, indicating that its reliability may be limited in extreme censorship contexts. This
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highlights the importance of selecting appropriate methods based on the degree of censoring
in the data. Additionally, by addressing the inadequacies of the Jackknife-after-Bootstrap
under IPC-weighting, this study clarifies the limitations of conventional methods that do not
incorporate weights in their estimations, demonstrating that these methods fail to provide
reliable results in weighted contexts.

Limitations and Future Directions

While this thesis makes significant advancements, several limitations must be acknowledged.
First, the study focuses exclusively on bagged learners based on decision trees, which, while
highly relevant, may limit generalizability to other machine learning architectures, such as
gradient-boosting models or neural networks. Additionally, the simulation study was based
on specific data-generating mechanisms, which may not encompass all real-world scenarios.
While extensive, the simulation scope does not fully capture all variability types encountered
in diverse applications of censored data. Future work could expand on this by testing the IJK-
AWB-U estimator across a broader range of data types and model frameworks. Furthermore,
as shown in this study, the Jackknife-after-Bootstrap method, although traditionally effective
under unweighted resampling, performed poorly in IPC-weighted scenarios, underscoring the
need for further research into extending existing methods for IPC-weighted applications.

Building on these findings, future research could pursue several promising directions. First,
expanding the application of the IJK-AWB-U estimator to diverse datasets and more complex
model architectures will be essential to validate its versatility and generalizability. Addition-
ally, exploring hybrid methods that combine the strengths of the IJK-AWB-U estimator with
other machine learning frameworks may yield improvements in predictive accuracy. Finally, ap-
plying the estimator in various fields, including finance, engineering, and epidemiology, would
provide further insights into its robustness and adaptability beyond medical research contexts.

In summary, this thesis presents a significant advancement in variance estimation for IPC-
weighted classification models, addressing the complex challenges posed by censored data.
By developing and validating the IJK-AWB-U estimator, the study provides a new tool
that enhances predictive accuracy and reliability, paving the way for more sophisticated and
tailored approaches to uncertainty estimation in censored data analysis.
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6 Appendix

6.0.1 Repository

All experiments and figures presented in this thesis were generated using the codebase
provided in the repository https://github.com/rehan-b/Masterarbeit__Butt. This repository
contains all scripts and configurations required to reproduce the analyses and visualizations,
ensuring transparency and reproducibility of the results.

6.0.2 Parameters for Data Generation in Simulation Study

The following parameters were used for the Data Generating Mechanism (cf. Section 3.1.2)
in the Simulation Study.

params_data = [

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.09
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 24 _300 ,

’rate_censoring ’: 0.003 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.18
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 10803.76159628643 ,

’rate_censoring ’:0.003170578469623819 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.27
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 6539.41883092019 ,

’rate_censoring ’:0.0033904243453215187 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.36
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 4453.164150258696 ,

’rate_censoring ’: 0.003624326851330594 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.07
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 28000 ,

’rate_censoring ’: 0.01 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.14
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 12463.811039838654 ,

’rate_censoring ’: 0.010725364504143705 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,
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’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.21
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’:7500 ,

’rate_censoring ’: 0.011600103696876245 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.28
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 5122.0241237382925 ,

’rate_censoring ’: 0.012470507897824007 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.05
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 34000 ,

’rate_censoring ’: 0.019578490533008537 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.10
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 15800 ,

’rate_censoring ’: 0.02052170406791234 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.15
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 9600 ,

’rate_censoring ’: 0.0218 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.20
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 6600 ,

’rate_censoring ’: 0.022901136686777616 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.03
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 45 _000 ,

’rate_censoring ’: 0.034 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.06
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 21700 ,

’rate_censoring ’: 0.0352 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.09
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 13 _000 ,

’rate_censoring ’: 0.0375 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.12
{ ’shape_weibull ’: 1, ## ( = k )

’scale_weibull_base ’: 9115.851814783131 ,

’rate_censoring ’: 0.04021055606963396 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,
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’n’: n, ’seed ’: seed , ’tau ’: 37}

]

Listing 6.1: Parameter for Data-Generating Mechanism for k = 1

params_data = [

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.09
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 12239.657909989573 ,

’rate_censoring ’:0.002923945373663359 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.18
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 6764.6566929711325 ,

’rate_censoring ’: 0.0031267247333730632 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.27
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 4750.499036902161 ,

’rate_censoring ’:0.003341895652382912 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .1 // Event P r o p o r t i o n = 0.36
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 3519.924999170495 ,

’rate_censoring ’: 0.0036209661533116422 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.07
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 12980.954805020172 ,

’rate_censoring ’: 0.009892476005579862 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.14
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 7479.611749700075 ,

’rate_censoring ’: 0.010427842997795981 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.21
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 5156.811483486331 ,

’rate_censoring ’: 0.011388821997114692 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .3 // Event P r o p o r t i o n = 0.28
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’:3880.8399775438843 ,

’rate_censoring ’: 0.011920788360226362 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.05
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 14705.860131739864 ,

’rate_censoring ’: 0.019500697591904738 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.10
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 8374.984580837609 ,

’rate_censoring ’: 0.020387722883706005 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.15
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 5840.913861634944 ,

’rate_censoring ’: 0.021592256830888657 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .5 // Event P r o p o r t i o n = 0.20
{ ’shape_weibull ’: 1.5 ,

’scale_weibull_base ’: 4400.762312906189 ,

’rate_censoring ’: 0.022856524563802574 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.03
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 17169.304714916914 ,

’rate_censoring ’: 0.03414274145819428 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.06
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 10028.241813497492 ,

’rate_censoring ’: 0.03561801193145946 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.09
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 7090.0587356224605 ,

’rate_censoring ’: 0.036824097764675705 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37} ,

# Cens_prop = 0 .7 // Event P r o p o r t i o n = 0.12
{ ’shape_weibull ’: 1.5 , ##(( = k )

’scale_weibull_base ’: 5597.308204063027 ,

’rate_censoring ’: 0.038465201478012315 ,

’b_bloodp ’: -0.405 , ’b_diab ’: -0.4, ’b_age ’: -0.05 ,

’b_bmi ’: -0.01 , ’b_kreat ’: -0.2,

’n’: n, ’seed ’: seed , ’tau ’: 37}

]

Listing 6.2: Parameter for Data-Generating Mechanism for k = 1.5

6.0.3 Simulation Study Results for Variance Estimator’s Performance
(k = 1)

The explanations of these figures are provided in Figure 3.2.
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 499, B = 500

(b) Sim-Results for: k = 1, ntrain = 499, B = 1000

Figure 6.1: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1,
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 499, B = 2000

(b) Sim-Results for: k = 1, ntrain = 499, B = 4000

Figure 6.2: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1,
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 999, B = 500

(b) Sim-Results for: k = 1, ntrain = 999, B = 1000

Figure 6.3: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1,
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 999, B = 2000

(b) Sim-Results for: k = 1, ntrain = 999, B = 4000

Figure 6.4: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1,
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 1999, B = 500

(b) Sim-Results for: k = 1, ntrain = 1999, B = 1000

Figure 6.5: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1,
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6.0.3 Simulation Study Results for Variance Estimator’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 1999, B = 2000

(b) Sim-Results for: k = 1, ntrain = 1999, B = 4000

Figure 6.6: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1,
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

6.0.4 Simulation Study Results for Variance Estimator’s Performance

(k = 1.5)

The explanations of these figures are provided in Figure 3.2.
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 499, B = 500

(b) Sim-Results for: k = 1.5, ntrain = 499, B = 1000

Figure 6.7: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1 5,
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 499, B = 2000

(b) Sim-Results for: k = 1.5, ntrain = 499, B = 4000

Figure 6.8: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1 5,
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 999, B = 500

(b) Sim-Results for: k = 1.5, ntrain = 999, B = 1000

Figure 6.9: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1 5,
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 999, B = 2000

(b) Sim-Results for: k = 1.5, ntrain = 999, B = 4000

Figure 6.10: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1 5,
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 1999, B = 500

(b) Sim-Results for: k = 1.5, ntrain = 1999, B = 1000

Figure 6.11: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1 5,
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6.0.4 Simulation Study Results for Variance Estimator’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 1999, B = 2000

(b) Sim-Results for: k = 1.5, ntrain = 1999, B = 4000

Figure 6.12: Simulation Results for Variance-Estimation-Methods Evaluation for: = 1 5,
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

6.0.5 Simulation Study Results for Model’s Performance (k = 1)

The explanations of these figures are provided in Figure 6.13.
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 499, B = 500

(b) Sim-Results for: k = 1, ntrain = 499, B = 1000

Figure 6.13: Simulation Results for Model Evaluation for: = 1, = 499, = 500 and
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 499, B = 2000

(b) Sim-Results for: k = 1, ntrain = 499, B = 4000

Figure 6.14: Simulation Results for Model Evaluation for: = 1, = 499, = 2000 and
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 999, B = 500

(b) Sim-Results for: k = 1, ntrain = 999, B = 1000

Figure 6.15: Simulation Results for Model Evaluation for: = 1, = 999, = 500 and
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 999, B = 2000

(b) Sim-Results for: k = 1, ntrain = 999, B = 4000

Figure 6.16: Simulation Results for Model Evaluation for: = 1, = 999, = 2000 and
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 1999, B = 500

(b) Sim-Results for: k = 1, ntrain = 1999, B = 1000

Figure 6.17: Simulation Results for Model Evaluation for: = 1, = 1999, = 500 and
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6.0.5 Simulation Study Results for Model’s Performance (k = 1)

(a) Sim Results for: k = 1, ntrain = 1999, B = 2000

(b) Sim-Results for: k = 1, ntrain = 1999, B = 4000

Figure 6.18: Simulation Results for Model Evaluation for: = 1, = 1999, = 2000
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

The explanations of these figures are provided in Figure 6.13.
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 499, B = 500

(b) Sim-Results for: k = 1.5, ntrain = 499, B = 1000

Figure 6.19: Simulation Results for Model Evaluation for: = 1 5, = 499, = 500
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 499, B = 2000

(b) Sim-Results for: k = 1.5, ntrain = 499, B = 4000

Figure 6.20: Simulation Results for Model Evaluation for: = 1 5, = 499, = 2000
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 999, B = 500

(b) Sim-Results for: k = 1.5, ntrain = 999, B = 1000

Figure 6.21: Simulation Results for Model Evaluation for: = 1 5, = 999, = 500
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 999, B = 2000

(b) Sim-Results for: k = 1.5, ntrain = 999, B = 4000

Figure 6.22: Simulation Results for Model Evaluation for: = 1 5, = 999, = 2000
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 1999, B = 500

(b) Sim-Results for: k = 1.5, ntrain = 1999, B = 1000

Figure 6.23: Simulation Results for Model Evaluation for: = 1 5, = 1999, = 500
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6.0.6 Simulation Study Results for Model’s Performance (k = 1.5)

(a) Sim Results for: k = 1.5, ntrain = 1999, B = 2000

(b) Sim-Results for: k = 1.5, ntrain = 1999, B = 4000

Figure 6.24: Simulation Results for Model Evaluation for: = 1 5, = 1999, = 2000
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