
Darmstadt University of Applied
Sciences

– Faculty of Mathematics and Natural sciences –
– Faculty of Computer Science –

EEG-Based Eye Tracking for Consumer-Grade
BCIs: Evaluation of Different Approaches
with a Focus on Functional Data Analysis

Submitted in partial fulfillment of the requirements for
the degree of

Master of Science (M.Sc.)

by

Tiago Vasconcelos Afonso

Matriculation number: 1122173

Supervisor : Prof. Dr. Florian Heinrichs

Co-Supervisor : Prof. Dr. Timo Schürg

Date of registration : April 24, 2024

Date of submission : October 9, 2024

Tiago Vasconcelos Afonso: EEG-Based Eye Tracking for Consumer-Grade BCIs:
Evaluation of Different Approaches with a Focus on Functional Data Analysis, ©
October 9, 2024

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch
nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Darmstadt, 09.10.2024

Tiago Vasconcelos Afonso

A B S T R A C T

EEG-based eye tracking (ET) is an emerging application of brain-computer
interfaces (BCIs). EEG, typically used for recording brain activity, also cap-
tures eye movement artifacts that can be leveraged for tracking eye move-
ment. This approach offers advantages over traditional camera-based ET,
especially in poor lighting or with closed eyes. It also reduces hardware re-
quirements and simplifies experiments that require both eye movement and
EEG data. Despite its potential, EEG-based ET research has been limited
to laboratory settings and expensive equipment. This thesis investigates its
feasibility using consumer-grade hardware under more realistic conditions,
filling a gap in current research. For this, methods based on Functional Data
Analysis (FDA) are explored, a framework well-suited to the continuous na-
ture of eye movement data, but one that has yet to be applied in this context.

The contents of this thesis are primarily structured around two main points:
the creation of a novel EEG-ET dataset using consumer-grade hardware and
the evaluation of models on this dataset, including the SpatialFilterCNN, a
deep learning model and BMOTE, a white-box model that incorporates the
physical processes of the eye through explicit modeling, as well as newly
developed Functional Neural Networks (FNNs) based on FDA.

A major outcome is the introduction of the currently largest known EEG-
ET dataset using consumer-grade hardware, with 11 hours and 45 minutes
of continuous data from 113 participants. Results showed that EEG-based
eye tracking is feasible with consumer-grade hardware, with the Spatial-
FilterCNN achieving a Mean Euclidean Distance (MED) of 109.0 mm and
99.38 mm on the most challenging tasks of the dataset and FNNs achieving
a MED of 127.5 mm and 100.8 mm on the same tasks, in both cases beating
the mean baseline. The BMOTE displayed random performance on all tasks.
Evaluating the FNNs on the related EEGEyeNet dataset revealed state-of-the-
art performance, though similar results were obtained from non-functional
models, leaving the role of functional layers inconclusive and suggesting
further research is needed.

Z U S A M M E N FA S S U N G

EEG-basiertes Eye-Tracking (ET) ist ein vielversprechendes neues Anwen-
dunggebiet von Brain-Computer-Interfaces (BCIs). EEG, das normalerwei-
se zur Erfassung der Gehirnaktivität verwendet wird, zeichnet auch elek-
trische Artefakte der Augenbewegungen auf, die für das Tracking dieser
Bewegungen genutzt werden können. Dieser Ansatz bietet gegenüber her-
kömmlichem kamerabasiertem Eye-Tracking mehrere Vorteile, insbesondere
unter schwierigen Bedingungen wie schlechten Lichtverhältnissen oder ge-
schlossenen Augen. Außerdem können die Hardwareanforderungen redu-
ziert und Versuchsaufbauten, die sowohl Augenbewegungen als auch EEG-
Daten erfassen, vereinfacht werden. Trotz des Potenzials war EEG-basiertes
Eye-Tracking bislang auf Anwendungen mit teurer Ausrüstung und unter
Laborbedingungen beschränkt. Diese Arbeit untersucht die Machbarkeit des
EEG-basierten Eye-Tracking mit kostengünstiger Hardware unter altagsna-
hen Bedingungen und schließt damit eine Lücke in der aktuellen Forschung.
Zu diesem Zweck werden Methoden basierend auf der Funktionalen Da-
tenanalyse (FDA) untersucht, einem Rahmenwerk, das besonders gut für
kontinuierliche Daten wie Augenbewegungen geeignet ist, jedoch bisher in
diesem Zusammenhang nicht angewendet wurde.

Der Inhalt dieser Arbeit gliedert sich hauptsächlich in zwei Punkte: die Er-
stellung eines EEG-ET-Datensatzes auf Basis von kostengünstiger Hardwa-
re und die Evaluierung von Modellen auf diesem Datensatz, darunter das
SpatialFilterCNN, ein Deep-Learning-Modell, und BMOTE, ein White-Box-
Modell, das die physikalischen Prozesse des Auges explizit modelliert, sowie
neu entwickelte Funktionale Neuronale Netze (FNNs) auf Basis von FDA.

Ein wesentliches Ergebnis dieser Arbeit ist die Einführung des derzeit größ-
ten bekannten EEG-ET-Datensatzes, der mit verbrauchertauglicher Hardwa-
re erstellt wurde. Dieser umfasst 11 Stunden und 45 Minuten an kontinuier-
lichen Aufzeichnungen von 113 Teilnehmern. Die Ergebnisse zeigten, dass
EEG-basiertes Eye-Tracking mit kostengünstiger Hardware möglich ist. Das
SpatialFilterCNN erzielte dabei eine mittlere euklidische Distanz (MED) von
109.0 mm und 99.38 mm bei den anspruchsvollsten Aufgaben des Datensat-
zes, während die FNNs eine MED von 127.5 mm und 100.8 mm erreichten.
Das BMOTE-Modell hingegen zeigte in allen Aufgaben zufällige Ergebnis-
se. Eine zusätzliche Evaluation der FNNs auf dem verwandten EEGEyeNet-
Datensatz führte zu den bisher besten Ergebnissen auf diesem Datensatz,
wobei ähnliche Resultate auch mit nicht-funktionalen Modellen erreicht wur-
den. Somit kann der Einfluss der funktionalen Schichten nicht abschließend
geklärt werden, was weitere Forschungen erforderlich macht.

C O N T E N T S

i thesis

1 introduction 2

1.1 Motivation . 2

1.2 Goal . 3

1.3 Structure . 4

2 background 5

2.1 EEG and ET Fundamentals . 5

2.2 Related Work . 8

2.2.1 Related Dataset: EEGEyeNet 9

2.2.2 Other Method: SpatialFilterCNN 11

2.2.3 Other Method: Battery Model of the Eye 15

2.3 Basics of Functional Data Analysis 17

2.4 Functional Neural Networks . 21

3 dataset 25

3.1 Description . 25

3.2 Session Structure . 26

3.3 Stimuli Presentation . 29

3.4 Dataset Structure . 31

3.5 Benchmark . 32

4 methods 34

4.1 Preprocessing . 34

4.2 Validation of Model Implementations 40

4.3 Functional Neural Network Architectures 46

4.4 Experimentation Setup . 51

4.5 Metrics . 53

5 evaluation and results 56

5.1 Baseline and Reference Results 56

5.2 SpatialFilterCNN Results . 58

5.3 BMOTE Results . 62

5.4 FNN Results . 67

5.5 FNN Results on EEGEyeNet dataset 70

6 discussion, outlook and conclusion 72

ii appendix

a supporting documents 79

a.1 Consent Form . 79

a.2 Demographic Data Questionnaire 84

bibliography 87

L I S T O F F I G U R E S

Figure 2.1 Illustration of What the Visual Angle Is 7

Figure 2.2 The Eye as a Dipole . 8

Figure 2.3 Layout of the Grid used in the "Large Grid" Paradigm 9

Figure 2.4 Architecture of the SpatialFilterCNN Model 13

Figure 2.5 Weather Station Data . 18

Figure 3.1 Recording Setup of the Consumer EEG-ET dataset . . . 25

Figure 3.2 Electrode Placement on the Muse S 2 Headband 26

Figure 3.3 Age Distribution of the Participants in the Consumer
EEG-ET dataset . 27

Figure 3.4 Stimuli Presentation in the Consumer EEG-ET dataset 29

Figure 3.5 Example of a Curve in the Consumer EEG-ET dataset . 30

Figure 3.6 Grid Point Positions in the Saccades Experiments of
the Consumer EEG-ET dataset 31

Figure 4.1 Effect of Missing Value Imputation on the Data 36

Figure 4.2 Effect of Filtering on the Data 37

Figure 4.3 Effect of Bandpass Filter on the Data 37

Figure 4.4 Effect of Filtering on the Blink Detection Data 38

Figure 4.5 Learned Filters of the Blink Detection Models 40

Figure 4.6 Segment of the Data with Detected Blinks 40

Figure 4.7 Electrode Positions used in EOG Dataset 43

Figure 4.8 Recorded Voltages vs Model Voltages from the BMOTE 44

Figure 4.9 True vs Predicted Gaze Angles for the Battery Model
of the Eye (BMOTE) Model 45

Figure 4.10 Models with the Same MED but Different Prediction
Patterns . 55

Figure 5.1 Webcam Results for the Level-1 Smooth Task 57

Figure 5.2 Bar Chart of the SpatialFilterCNN Model Performance
with Unfiltered and Filtered Data 58

Figure 5.3 Predictions of the best SpatialFilterCNN Model 60

Figure 5.4 Comparison of the SpatialFilterCNN Model and the
Webcam on the Level-1 Saccades Task 62

Figure 5.5 Comparison of EEG and EOG Data 63

Figure 5.6 Tuning of the Constant C for the BMOTE Model 65

Figure 5.7 Comparison of the Fully Functional Model and the
Minimally Functional Model on the Level-1 Saccades
Task . 69

L I S T O F TA B L E S

Table 2.1 Total Time of Data Collected for Each Paradigm in the
EEGEyeNet dataset . 10

Table 2.2 Excerpt of the Results from EEGEyeNet 12

Table 2.3 Results of the SpatialFilterCNN Model on the EEGEyeNet
Benchmark . 14

Table 3.1 Duration of the Experimental Paradigms in the Con-
sumer EEG-ET dataset 27

Table 3.2 Demographic Data of the Participants in the Consumer
EEG-ET dataset . 27

Table 3.3 Train and Test Data Proportions for the Benchmark
Tasks . 33

Table 4.1 Recordings excluded from the Dataset 34

Table 4.2 Architecture of the Blink Detection Model 39

Table 4.3 Comparison of the EEGEyeNet Benchmark Results . . 42

Table 4.4 Comparison of Theoretical and Estimated Electrode
Positions . 44

Table 4.5 Validation Results of the BMOTE on the EOG Dataset . 45

Table 4.6 Stem of the Functional Neural Network Architectures . 47

Table 4.7 ResBlock and FuncResBlock 48

Table 4.8 Fully Functional Architecture 49

Table 4.9 Functional Body Architecture 50

Table 4.10 Minimally Functional Architecture 51

Table 4.11 Hardware specifications of the NVIDIA DGX Work-
station used for the experiments. 52

Table 5.1 Results of the Baseline and Reference Models 57

Table 5.2 Results of the SpatialFilterCNN Models 61

Table 5.3 Results of the BMOTE Models 66

Table 5.4 Results of the FNN Models 68

Table 5.5 Results of the FNN Models on the EEGEyeNet dataset 71

A C R O N Y M S

BCI Brain-Computer Interface
BMOTE Battery Model of the Eye
CNN Convolutional Neural Network
CPU Central Processing Unit
CSV Comma Separated Values
EEG Electroencephalography
ELU Exponential Linear Unit
EOG Electrooculography
ET Eye Tracking
FDA Functional Data Analysis
fMRI Functional Magnetic Resonance Imaging
FNN Functional Neural Network
GPU Graphics Processing Unit
HD High Definition
MAE Mean Absolute Error
MED Mean Euclidean Distance
MEG Magnetoencephalography
MRS Magnetic Resonance Spectroscopy
MSE Mean Squared Error
PET Positron Emission Tomography
RAM Random Access Memory
ReLU Rectified Linear Unit
REM Rapid Eye Movement
RMSE Root Mean Squared Error
SARIMA Seasonal Autoregressive Integrated Moving Average
TPE Tree-structured Parzen Estimator
XDF Extensible Data Format

Part I

T H E S I S

1
I N T R O D U C T I O N

In the future, Brain-Computer Interfaces (BCIs) might offer us the fascinat-
ing possibility of restoring or augmenting our sensory perception, such as
allowing a blind person to see [29], or even converting our thoughts into text
[45], enabling real telepathic communication. Today this technology already
holds enormous potential for a wide range of applications, from assisting
people with disabilities [4, 6] to controlling devices in smart homes [27].
However, there is still a long way to go before BCIs are reliable and easy
enough to use such that a wide spread adoption is possible. An important
milestone on this path could be eye tracking based on Electroencephalogra-
phy (EEG). To this end, the collection of large amounts of data is necessary
to develop and evaluate new models. This is addressed in this work by cre-
ating the Consumer EEG-ET dataset. Additionally, new models based on
Functional Data Analysis (FDA) are developed, evaluated, and compared to
existing models on the new dataset.

1.1 motivation

EEG-based eye tracking is emerging as a promising application of BCIs [12,
15, 23, 40]. While EEG is typically used to record the electrical activity of the
brain, it also captures eye movement artifacts due to the inherent electrical
activity of the eyes. Although these signals are usually considered noise in
other BCI applications and are often removed [10], they can be effectively
used to track eye movements. These signals are also easier to decode than
brain activity, as they are not complicated by the complexity and noise as-
sociated with brain signal interpretation. In addition, achieving reliable and
accurate eye tracking using EEG technology could significantly enhance ex-
isting consumer BCIs, opening up a wide range of new applications.

Apart from the potential for BCI applications, EEG-based eye tracking
is an interesting alternative to eye tracking in its own right, offering sev-
eral advantages over camera-based eye tracking, which is the predominant
method used for eye tracking today. Compared to camera-based methods,
EEG-based eye tracking works even in poor lighting conditions or with
closed eyes, such as during sleep. Additionally, performing experiments
that require both eye movement and EEG data are more practical with EEG-
based eye tracking, as no additional hardware is required. Such experiments
are quite common in cognitive neuroscience or psychology research. The
same holds for consumer BCIs, where the integration of eye tracking is more
practical with EEG-based eye tracking than with camera-based eye tracking.
However, the development of EEG-based eye-tracking is still lagging behind.
Previous results have been achieved under laboratory conditions with expen-

1.2 goal 3

sive hardware. These systems are impractical for everyday use (e.g., because
a gel must be applied between the electrodes and the scalp before use).

Finally, in addition to their applications, joint EEG and eye tracking data
is itself of interest to the field of FDA. Before many FDA methods can be ap-
plied, a suitable transformation of time is necessary to align the data, which
is called "registering a function". This is, however only possible if meaning-
ful features can be identified in the data or if the onset of the event of interest
is externally triggered. In the case of EEG data, where the event of interest is
often a self-paced action and the signal is noisy and complex, curve registra-
tion is infeasible. Therefore, EEG-based eye tracking data may be of interest
for developing and testing new methods that work with unregistered data.

All of this motivates the development of a new dataset where EEG and
eye tracking data are collected simultaneously. Even though such datasets
already exist, they are based on expensive hardware and are not suitable for
consumer BCIs. Also those datasets mostly only contain data where the eyes
are either fixating or jumping to a new location. Smooth pursuit data, which
is especially interesting for FDA, is missing in current datasets. Furthermore,
with such a dataset at hand, a new model based on FDA can be developed
and evaluated.

1.2 goal

A key objective of this work is to create the Consumer EEG-ET dataset, a
dataset that contains EEG and eye tracking data collected simultaneously.
This dataset is intended to be comparable in structure to the already exist-
ing EEGEyeNet dataset [23] but will be based on consumer hardware with
dry electrodes. Since no such dataset currently exists and the feasibility of
reconstructing gaze position from EEG data recorded with consumer hard-
ware is uncertain, the dataset will be divided into different "difficulty levels".
The first level will include data where eye movements occur along a single
axis, either up, down, left, or right. The second level will then include data
where eye movements occur along both axes. In order to assess the quality of
the dataset, the performance of two existing models [2, 15] will be evaluated
on the Consumer EEG-ET dataset. For this, both methods will be reimple-
mented and evaluated on the new dataset. Additionally, new models based
on FDA will be developed and also evaluated on the new dataset. FDA is
a promising approach for EEG-based eye tracking, as smooth movements
are naturally represented as functions and can be modeled in this frame-
work with much fewer parameters than other methods, which might make
it more robust to noise. However, FDA has not been used for eye movement
data yet. This work aims to close this gap and to evaluate the performance
of FDA on EEG-based eye tracking data. For this purpose, the new model
will also be evaluated on already existing EEGEyeNet dataset.

1.3 structure 4

1.3 structure

This work is structured as follows: In Chapter 2 we provide all necessary
background information to understand the work. This includes an introduc-
tion to Electroencephalography (EEG) and Eye Tracking (ET) and a more
detailed explanation on how EEG is actually used for eye tracking. We also
provide an overview of related work and explain the methods "SpatialFilter-
CNN" and the Battery Model of the Eye (BMOTE) that are reimplemented
in this work and explained in detail. Finally, we introduce the basics of Func-
tional Data Analysis (FDA). In Chapter 3, we introduce the Consumer EEG-
ET dataset. We explain how the dataset was collected, key facts like the
number of participants, the hardware used, etc. We also explain the stimuli
presentation and experimental paradigms in detail. Finally, we explain the
structure in which the dataset will be made available and provide guidelines
on how to benchmark models on the dataset, ensuring that the dataset can
be used by other researchers. In Chapter 4 we present the new FDA meth-
ods that are evaluated in the next chapter as well as any preprocessing or
other methods that are used in the evaluation. We also explain how the reim-
plemented models were validated, briefly explain the experimentation setup
and what the evaluation metrics are. Following this, in Chapter 5 we present
and discuss the results of the evaluation in the following order:

1. The results of the reimplemented models on the Consumer EEG-ET
dataset

2. The results of the new FDA model on the Consumer EEG-ET dataset

3. The results of the new FDA model on the EEGEyeNet dataset

Finally, in Chapter 6 we summarize and discuss the implications of the re-
sults. We also discuss the limitations of the work and give an outlook on
future work and finish with a short conclusion.

2
B A C K G R O U N D

This chapter provides the necessary background for the work presented in
this thesis. It starts by introducing the fundamentals of Electroencephalogra-
phy (EEG) and Eye Tracking (ET) in Section 2.1. Section 2.2 presents related
work in the field of EEG-based ET. The chapter concludes with Section 2.3
and Section 2.4 where the basics of Functional Data Analysis (FDA) are intro-
duced and the concept of Functional Neural Networks (FNNs) is explained.

2.1 eeg and et fundamentals

Electroencephalography (EEG) is a non-invasive method to measure the elec-
trical activity of the brain. It is based on the recording of electrical potentials
generated by the brain’s neurons. The electrical activity is measured by plac-
ing electrodes on the scalp of the subject. The electrodes are connected to
an amplifier, which amplifies the electrical signals. Various fields such as
medicine, psychology, and neuroscience use EEG for different purposes. It
is used to diagnose epilepsy [6], sleep disorders [4], and brain death [26], or
to monitor the effect of sedative/anesthesia in patients in medically induced
coma [21]. In psychology, EEG is used to study cognitive processes such as
attention [24], memory [8], and language [36]. In neuroscience, EEG is used
to study brain function and brain disorders [1].

The main limitation of EEG is its spatial resolution. An action potential
of a single neuron is too weak to be detected by an electrode, a signal thus
always represents the sum of the electrical activity of a large number of
neurons that are aligned with the electrode. Furthermore, neural activity
that occurs below the upper layers of the brain is poorly measured by EEG.
Another limitation is a large amount of noise that is present in the signal.
The noise can come from the environment (e.g. electrical devices, lights, etc.)
or from the subject (e.g. muscle activity, eye movements, etc.).

Despite the drawbacks mentioned above, EEG has several advantages. It
is easy to use, and is relatively inexpensive and compact compared to other
methods such as Functional Magnetic Resonance Imaging (fMRI), Positron
Emission Tomography (PET), Magnetic Resonance Spectroscopy (MRS), or
Magnetoencephalography (MEG), which require bulky and immobile equip-
ment. For example, MEG requires equipment consisting of liquid helium
cooled detectors at a total cost of several million dollars [19] and fMRI re-
quires the use of a 2-3 meter long hollow cylindrical magnet [39]. In addi-
tion, both only work in magnetically shielded rooms. Furthermore, EEG has
a high temporal resolution, allowing the measurement of brain activity with
millisecond precision.

2.1 eeg and et fundamentals 6

Eye Tracking

Eye Tracking (ET) is a method to measure the gaze of a person. It is used
in various fields such as marketing, psychology, and Human Computer In-
teraction. For example, to study consumer behavior in marketing [16] or to
study attention, perception, and memory in psychology [28]. Eye tracking
is used to enable people with disabilities to interact with computers or in
Augmented Reality or Virtual Reality environments [13]. With products like
Meta Quest or Apple Vision Pro being released in the last years, eye tracking
is becoming more and more relevant in the consumer market.

The dominant approaches in eye tracking are video-based. A camera is
focused on one or both eyes and the eye movement is recorded. From this
data, the person’s gaze can be calculated. Most modern eye trackers use in-
frared/near infrared light to create bright reflections on the cornea making
it particularly easy to detect the position and orientation of the eye. It also
allows tracking in very bright and dark lighting conditions. Eye trackers can
be head-mounted or remote. Remote eye trackers are placed in front of the
subject and either require the head to be still or use a head tracking system to
compensate for head movements. Head-mounted eye trackers move with the
head and thus automatically compensate for head movements. Due to the
reduced accuracy at high off-axial angles, camera-based eye trackers need to
be placed within your field of vision, which means they will always block
a portion of it. This is especially true for head-mounted eye trackers. Prices
for hardware specifically designed for camera-based eye tracking range from
$300 [42] to $25, 000 [43]. It is also possible to use a regular webcam for eye
tracking. In this case hardware starting at $50 might be sufficient, but the
accuracy will be reduced compared to special hardware. Additionally, soft-
ware is needed to process the video stream and calculate the gaze. For this
there are many solutions available, such as RealEye, Eyezag, WebGazer.js,
Eyeware beam, EYEVIDO, GazeRecorder and many more, of which some
are free and some are paid. The software used in this thesis is the free soft-
ware GazePointer from GazeRecorder.

The accuracy of an eye tracker is typically measured in degrees of visual
angle. Conceptually the visual angle is the angle that two points on a screen
make with the eye, as shown in Figure 2.1. Given the position of two points
on the screen and the distance between the eye and the screen, the visual
angle can be calculated. The easiest way is probably using the geometric
definition of the dot product

a · b = ‖a‖2‖b‖2 cos(θ),

where a and b are the vectors from the eye to the two points and θ is the
angle between them. Solving for θ leads to

θ = arccos(
a · b

‖a‖2‖b‖2
).

2.1 eeg and et fundamentals 7

Figure 2.1: The visual angle is the angle that two points on a screen make with the
eye. Image taken from [41]

Given a set of targets and corresponding predictions of the eye tracker, the
accuracy can then be calculated by taking the average of all visual angles
between the targets and predictions. Note that in general the visual angle
depends on the specific position of both points not just their distance ‖a−
b‖2. For example, placing two points near the middle of the screen will
result in a larger visual angle than when the points are placed at the same
distance near the edges of the screen, due to the greater distance from the
screen. This means that one cannot simply convert between accuracy based
on distance and accuracy in degrees.

High-end camera-based eye trackers can be accurate to within 0.25◦-0.50◦

[35]. Using a webcam, the accuracy is generally greater than 1◦. In a report
comparing the accuracy of the GazeRecorder software based on images from
webcams to the SMI RED 250 eye tracker, a standard infrared light camera-
based eye tracker, the accuracy of the webcams was found to be less than
0.9◦-1◦, which is comparable to the SMI RED 250 device [11]. In this thesis
we could not reproduce these results. The accuracy of the webcam running
the GazePointer software was found to be much worse than 1◦.

EEG based Eye Tracking

In addition to camera-based eye tracking, it is also possible to track eye move-
ments using electrodes placed around the eyes. This method is called Elec-
trooculography (EOG). It is much less commonly used than camera-based
eye tracking. Its main applications are in sleep research, where it can be used
to detect Rapid Eye Movement (REM) sleep [17], and in the diagnosis of cer-
tain eye diseases [7]. The method is based on the fact that the cornea of the
eye is positively and the retina negatively charged making the eye a dipole.
Thus, when the eye moves, electrodes placed around the eyes will record a
change in voltage that is proportional to the eye movement. This is depicted
in Figure 2.2. Those changes in voltage are also present in EEG recordings,
where they are typically considered an artifact that needs to be removed.

However, recently different authors have shown that it is also possible
to use this signal to track eye movements [12, 15, 23, 40]. A working EEG-
based eye tracking system promises a few advantages over camera-based

2.2 related work 8

Figure 2.2: The eye as a dipole. The image shows how the voltage measured with
electrodes placed around the eyes changes when the eye moves due to
the cornea being positively and the retina negatively charged. Image
taken from [12].

eye tracking. For example, it does not block a portion of the field of view
and it can be used when the eyes are closed. Furthermore, it would simplify
experiments that require both EEG and eye tracking (which are common
in psychology and neuroscience) by removing the need for a separate eye
tracking system that frequently needs to be recalibrated.

Other ways of getting the gaze position from EEG, that are not based
on the electrical potential of the eye, have also been explored. For example,
high blinking frequencies, on graphical user interfaces. When the user looks
at graphical elements like a button that blinks at a certain frequency, a cor-
responding frequency can be extracted from the EEG signal, even when the
blinking is not consciously perceived by the user [30]. Another approach
tries to differentiate visual exploration fixations (i.e. looking at something
without a specific goal, e.g. looking at different parts of a picture) and con-
trol fixations (i.e. intentionally looking at something, e.g. a button) just from
the electrical activity of the brain [38].

2.2 related work

In this section, we review work related to EEG-based eye tracking. We be-
gin by introducing the EEGEyeNet dataset, a large-scale dataset collected
using high-end equipment under laboratory conditions, which shares sim-
ilarities with the dataset introduced in this thesis. In addition to our new
dataset, the EEGEyeNet dataset will be used to evaluate the models devel-
oped in this work. We will also discuss two existing methods for EEG-based
eye tracking: the SpatialFilterCNN, a deep learning model, and BMOTE, a
white-box model that incorporates the physical processes of the eye through
explicit modeling. As these methods have been shown to enable EEG-based
eye tracking on other datasets, they will be used to assess whether our new
dataset, collected with consumer-grade hardware, is suitable for this task, as
well as to provide a basis for comparison with the new functional models
developed in this thesis.

2.2 related work 9

Figure 2.3: The layout of the grid used in the "Large Grid" paradigm of the
EEGEyeNet study. Image taken from [23].

2.2.1 Related Dataset: EEGEyeNet

In the paper titled "EEGEyeNet: a Simultaneous Electroencephalography
and Eye-tracking Dataset and Benchmark for Eye Movement Prediction" [23],
the authors introduce a new dataset called EEGEyeNet together with an ac-
companying benchmark for eye movement prediction. In their work they
collected data in three different experimental paradigms, from 356 partici-
pants comprising a total of 47 hours of data. This makes it the largest known
dataset specifically collected for EEG-based eye tracking to date.

The recording setup consisted of a 128-channel EEG Geodesic Hydrocel
system using wet electrodes at a sampling rate of 500 Hz and an infrared
video-based eye tracking EyeLink 1000 Plus from SR Research at a sam-
pling rate of 500 Hz and an accuracy of 0.25◦-0.50◦ [35]. The eye tracker was
carefully calibrated before each recording, repeating the calibration until the
error between two measurements at any point was less than 0.5◦, or the
average error for all points was less than 1◦. During recordings the head po-
sition was stabilized using a chin rest, placing the participants at a distance
of 68 cm away from a 24 inch monitor, with a resolution of 800 px× 600 px.

Experimental Paradigms

The three different experimental paradigms were called "Pro- and Antisac-
cade", "Large Grid" and "Visual Symbol Search". In the "Pro- and Antisac-
cade" paradigm participants were first asked to direct their gaze to the cen-
ter of the screen. After a randomized time-period, a dot appeared on the left
or right hand-side of the central fixation square. The participants were then
asked to either look at the dot (prosaccade) or to look at the opposite side
of the screen (antisaccade). In both cases the dot was shown for 1 s before
disappearing. The participants were then asked to return their gaze to the
center of the screen.

In the "Large Grid" paradigm the subjects had to fixate on a dot which
repeatedly changed its position to one of 25 points on a grid. The layout of
the grid is shown in Figure 2.3. The order of the points at which the dot

2.2 related work 10

Paradigm Total Time

Pro- and Antisaccade 38 h
Large Grid 7 h 52 min
Visual Symbol Search 1 h 29 min

Table 2.1: Total time of data collected for each paradigm in the EEGEyeNet dataset
using minimal preprocessing.

appeared on the screen was the same for every participant, but an effort was
made to make it hard for the participant to predict the next position.

In the final paradigm "Visual Symbol Search" participants were shown 15
rows of symbols, each row containing 5 symbols and 2 target symbols. The
participants were tasked with finding the target symbols in each row. If the
target symbols were present in a row, the participant was asked to confirm
this with a click on a button next to the row saying "YES", otherwise they
were asked to click on a button saying "NO".

Data for each paradigm is available in two different levels of preprocess-
ing: minimal and maximal. The minimal preprocessing consists of the re-
moval and interpolation of bad electrodes as well as filtering the data with
a 40 Hz low-pass filter and a 0.5 Hz high-pass filter. The maximal prepro-
cessing additionally includes the removal of various different artifacts, such
as muscle, heart, line noise, channel noise, but, importantly, also eye move-
ment artifacts. The amount of data collected varies between the different
paradigms. In Table 2.1 the total time per paradigm is shown for the mini-
mally preprocessed data.

Benchmark

In addition to the dataset, the authors also introduce a benchmark for EEG-
based eye tracking based on their dataset. This benchmark consists of three
tasks of increasing difficulty. In each task the minimally preprocessed data
is used and the recordings are cut into 1 s windows of shape 500× 128 (time
points × channels). The first task called "Left-Right" is based on the data
from the "Pro- and Antisaccade" paradigm, specifically the data from the
prosaccade trials. Windows in this task are created in such a way that they
start with the appearance of the dot on the left or right side of the screen.
The task is to predict one of the classes "left" or "right" based on the data in
the window. Performance is evaluated using the standard accuracy metric
(#True Predictions / #All Predictions).

The second task called "Angle/Amplitude" is based on the data from the
"Large Grid" paradigm. Windows in this task are created in such a way that
the saccade is in the middle of the window. The task is to predict the angle
and amplitude of the saccade. This is a regression task and performance is
evaluated using the Root Mean Squared Error (RMSE) for the angle (in radi-

2.2 related work 11

ans along the shortest path of the unit circle) and amplitude (in millimeters)
separately.

The third task is called "Absolute Position". It is again based on data from
the "Large Grid" paradigm. In this task the windows only contain the fix-
ation period after a saccade. The task is to predict the absolute position of
the gaze on the screen in millimeters. Performance is measured as the Mean
Euclidean Distance (MED) between the predicted and the true gaze posi-
tion.1 The benchmark does not include a task for the "Visual Symbol Search"
paradigm.

Together with the dataset the authors also published a file for every task
with the correct windows already cut out and sorted in a way to be split in
a clearly defined and reproducible way into the train, validation and test set.
The split is done across participants with 70% of participants in the train set,
15% in the validation set and 15% in the test set.

Baseline Results

Finally, the authors also present baseline results for each of the tasks for dif-
ferent models. The models are generally divided into two categories: "Ma-
chine Learning" and "Deep Learning". The "Machine Learning" models are
based on hand-crafted features and include models like Random Forest, K-
Nearest Neighbors and Linear Regression. The "Deep Learning" models are
based on neural networks and include a standard Convolutional Neural Net-
work (CNN), a pyramidal shaped CNN, the EEGNet model by Lawhern et al.
[25], an InceptionTime model [14] and an Xception model [9]. Every model
is evaluated five times and the mean performance and standard deviation
are reported. In addition to results for each of those models, a naive baseline
is established using the mean of the training set for regression tasks and the
majority class for the classification task.

In their paper the authors find that the "Deep Learning" models outper-
form the machine learning models on all tasks. A "reduced" version of the
results from the paper is shown in Table 2.2 focusing on the "Left-Right" and
"Absolute Position" tasks, which are the most relevant tasks for this thesis as
well as only showing the performance of the "Deep Learning" models which
are most strongly related to the other methods introduced or developed in
this thesis.

2.2.2 Other Method: SpatialFilterCNN

A successor to the EEGEyeNet paper is the paper titled "One step closer to
EEG based eye tracking" [15] in which the authors propose a new method
for EEG-based eye tracking and evaluate it on the "Absolute Position" task of
the EEGEyeNet benchmark. The authors introduce a novel neural network

1 Even though the euclidean distance is stated as the metric that should be used to evaluate
the performance on this task, the authors themselves do not report the euclidean distance in
their baseline results, but the RMSE instead.

2.2 related work 12

Left-Right Absolute Position
Model (Accuracy) (RMSE)

CNN 98.3± 0.5 70.2± 1.1
PyramidalCNN 98.5± 0.2 73.6± 1.9
EEGNet 98.6± 0.1 81.7± 1.0
InceptionTime 97.9± 1.1 70.8± 0.8
Xception 98.8± 0.1 78.7± 1.6

Naive Baseline 52.3 123.3

Table 2.2: Excerpt of the results from [23] focusing on the "Left-Right" and "Absolute
Position" tasks and the "Deep Learning" models.

architecture, where the design of the first layers is inspired by spatial filter-
ing methods. A spatial filter is a filter that acts across different electrodes,
combining signals at a single time point. This is in contrast to temporal fil-
tering, which is also common in EEG data processing, and often includes
filtering out certain frequency ranges using bandpass or notch filters.

In every case the goal is to enhance the signal to noise ratio. The authors
explain that in their network the first layer is inspired by Canonical Corre-
lation Analysis, in which a linear transformation is used to maximize the
correlation between two sets of variables. In their case this is done by a con-
volutional layer that — in theory — transforms the EEG data into a space
that maximizes the correlation between the transformed EEG data and the
eye movement data. The first layer should thus act as a learnable spatial filter.
The authors did not give their method a name, but for the purpose of this
thesis it will be referred to as "SpatialFilterCNN", which reflects the main
idea behind the method.

The detailed architecture of the SpatialFilterCNN model is shown in Fig-
ure 2.4. The model consists of a spatial filtering layer, two residual blocks
and two fully connected layers at the output. In the case of the EEGEyeNet
data, the input is a matrix of shape 500× 128 (time points × channels). The
spatial filtering layer is a one-dimensional convolutional layer with 16 filters
and a kernel size of 1. It is followed by a batch normalization layer and a
Rectified Linear Unit (ReLU) activation function. The output of this layer
is then passed through two residual blocks. Each residual block consists of
two one-dimensional convolutional layers, with either 32 filters for the first
residual block or 64 filters for the second. The first convolutional layer in
each residual block has a kernel size of 9, and uses padding to keep the first
dimension of the output shape the same as the input shape.2 This is followed
by a Batch Normalization layer and a ReLU activation function.

The second convolutional layer has a kernel size of 1 and is followed
by another Batch Normalization layer. The output of the second convolu-

2 Some details of the architecture are not mentioned in the paper, but were necessary to imple-
ment the model or reproduce the reported parameter count. This includes the use of padding
in the first convolutional layer of the residual blocks.

2.2 related work 14

Absolute Position
Model MAE

CNN 86.61± 1.12
PyramidalCNN 90.25± 0.50
EEGNet 97.03± 1.07
InceptionTime 88.38± 1.31
Xception 94.65± 1.59
SpatialFilterCNN 49.20± 0.60

Table 2.3: The MAE of the "Deep Learning" models and the new SpatialFilterCNN
on the "Absolute Position" task of the EEGEyeNet benchmark as reported
in [15].

tional layer is then added to the input of the residual block, which is passed
through another one-dimensional convolutional layer in order to match the
output shape of the second convolutional layer.3 The added output is then
passed through a ReLU activation function and an average pooling layer
with a pool size of 2 and a stride of 2.4 After the second residual block the
output is flattened and passed through a fully connected layer with 256 neu-
rons and a ReLU activation function. The output of this layer is then passed
through another fully connected layer with 2 neurons, which is the output
of the model and represents the prediction of the gaze position in pixels.

The authors also experimented with slight variations of this architecture.
They tested the model with and without the spatial filtering layer, and with
both convolutional layers of the residual blocks having a kernel size of 9.
Using the variant with a spatial filtering layer (spatial_filtering: true), and
unequally sized convolutional layers (equally_sized: false), a Mean Abso-
lute Error (MAE) of 49.2 on the "Absolute Position" task of the EEGEyeNet
benchmark is reported, which is state of the art at the time of publication.

The authors do not give a reason for why they did not use the MED, which
in the EEGEyeNet paper was defined to be the metric for this task, or the
RMSE which was used in the baseline results of the EEGEyeNet paper, but
instead use the MAE. The MAE for the other "Deep Learning" models are
also reported in the paper and are shown in Table 2.3.

In an interesting note at the end of the paper, the authors acknowledge
that the EEGEyeNet dataset only allows the evaluation of EEG-based eye
tracking under laboratory conditions with wet electrodes, their goal however,
is to use dry electrodes under more general conditions. This thesis hopes to
address this issue by introducing the missing dataset and evaluating the
SpatialFilterCNN model on it.

In total, the SpatialFilterCNN has the following hyperparameters:

3 The use of a convolutional layer to match the shapes at the add connection was not mentioned
in the paper, but was necessary to implement the model

4 The use of a stride of 2 in the average pooling layer was not mentioned in the paper, but was
necessary to reproduce the reported parameter count.

2.2 related work 15

• Number of Spatial Filters: The number of filters NS in the spatial fil-
tering layer.

• Number of Filters in 1st Convolutional Layer: The number of filters
N1 in the first convolutional layer.

• Number of Filters in 2nd Convolutional Layer: The number of filters
N2 in the second convolutional layer.

• Equally Sized Convolutional Layers: A boolean value equally_sized

indicating whether the two convolutional layers in the residual blocks
have the same kernel size.

• Inclusion of Spatial Filtering Layer: A boolean value spatial_filtering

indicating whether the spatial filtering layer is included.

2.2.3 Other Method: Battery Model of the Eye

In the paper titled "EOG-Based Gaze Angle Estimation Using a Battery
Model of the Eye" [2] the authors develop a method to estimate the gaze
angle using Electrooculography (EOG). In this document we will refere to
this method as "BMOTE" short for "Battery Model of the Eye". Despite the
fact that this method is based on EOG and not EEG, it is still relevant for this
thesis and can easily be adapted. This is because the main principle to detect
eye movements behind both methods is the same: the eye as a dipole. In con-
trast to other methods which are based on "black-box" models (like the ones
presented in the previous sections), this method is an explicit, physically-
driven, "white-box" model. That is, the eye is modeled as a battery with a
positive pole at the cornea and a negative pole at the retina. In detail the
authors extend the model proposed by Shinomiya et al. in [37] to account
for both eyes.

In the extended model the voltage Vi at the i-th electrode is given by

Vi =
I

4πσ

(
1

d(l)c

− 1

d(l)r

)
+

I
4πσ

(
1

d(r)c

− 1

d(r)r

)
, (2.1)

where d(l)c and d(l)r are the distances from the i-th electrode to the the cornea
and retina of the left eye, d(r)c and d(r)r are the distances from i-th electrode to
the cornea and retina of the right eye, I is the electrical current flowing inside
the eyeball from the retina to the cornea, radially out of the cornea, and
back inside the eyeball through the retina, and σ denotes the conductivity of
the eyeball. In [2] the constant I/4πσ is empirically determined, and set to
25 µV m.

Writing out the distances in detail we get:

d(l)c = ‖pi − p(l)
c (θ)‖2 d(r)c = ‖pi − p(r)

c (θ)‖2 (2.2)

d(l)r = ‖pi − p(l)
r (θ)‖2 d(r)r = ‖pi − p(r)

r (θ)‖2, (2.3)

2.2 related work 16

where pi is the position of the i-th electrode and p(l)
c , p(r)

c , p(l)
r and p(r)

r are the
positions of the left and right cornea and retina respectively, which are func-
tions of the gaze angle θ. The detailed relationship between retina/cornea
positions and gaze angle are described in [2]. We will only note that they
depend on the radius r of the eyeball and the interpupillary distance dPD,
which are assumed to be known.

Therefore, equation (2.1) relates the following three quantities: the voltage
at the electrode, the position of the electrode, and the gaze angle (via the
position of the cornea/retina). This means that in order to estimate the gaze
angle from the voltage at the electrodes, the electrode positions need to be
known. But at the same time, given data of the voltages at the electrodes and
the gaze angle that induced them, the electrode positions can be estimated!
Thus, the authors propose a two-step algorithm to estimate the gaze angle.
First the electrode positions are estimated from the data. Then in a second
step the gaze angle can be calculated based on the estimated electrode posi-
tions and voltage readings.

The electrode positions can then be estimated by solving the following
least squares problem:

p̂i = arg min
pi

∥∥∥V(mod)
i (θ; pi)−V(rec)

i

∥∥∥2

2
, (2.4)

where V(mod)
i is the vector of voltages at the electrode i for the gaze angle

θ, calculated using the model, and V(rec)
i is the vector of voltages at the

electrode i for the gaze angle θ, as recorded in the data. This is however
not what the authors propose in [2]. We still mention the first method as it
resulted in more understandable results in our experiments.

The authors propose to solve the following least squares problem:

p̂i = arg min
pi

∥∥∥∆V(mod)
i

(
θ(s), θ(f); pi

)
− ∆V(rec)

i

∥∥∥2

2
, (2.5)

where ∆V(mod)
i is a vector made up of the terms Vi(θ

(f)
k)− Vi(θ

(s)
k), i.e. the

voltage difference at the electrode i for the k-th saccade at the start and
end of the saccade, calculated using the model and ∆V(rec)

i is the vector of
voltage differences at the electrode i for the k-th saccade at the start and
end of the saccade, as recorded in the data. In the paper, the authors did
not provide a reason for why they chose this method over the first one, but
reaching out to them, they mentioned that the second method, based on
∆Vi instead of Vi, was used to mitigate the impact of potential errors in the
voltage measurements. These errors could arise due to baseline drift, which
can skew the absolute voltage values over time. By using the ∆Vi values, the
authors hoped to reduce the impact of such errors.

2.3 basics of functional data analysis 17

After the electrode positions P̂ := (p̂1, . . . , p̂Ne) of all Ne electrodes are
estimated, the gaze angle can be calculated by solving the following least
squares problem:

θt = arg min
θ

∥∥∥V(mod) (θ; P̂
)
−V(rec)

t

∥∥∥2

2
, (2.6)

where V(mod) := (V1(θt), . . . , VNe(θt))
> is the vector of voltages at all elec-

trodes for the gaze angle θt, calculated using the model, and V(rec)
t is the

vector of voltages at all electrodes for the gaze angle θt, as recorded in the
data. This is very similar to (2.4), but instead of fixing the gaze angle and
estimating the electrode positions, the electrode positions are fixed and the
gaze angle is estimated.

2.3 basics of functional data analysis

This section provides a basic overview of Functional Data Analysis (FDA),
which underlies the new methods developed in this thesis. Put very gener-
ally — though admittedly not very helpful — the field of FDA is concerned
with "the analysis of functional data". For this statement to be useful one
first has to know what functional data even is.

Functional data consist of observations that can be viewed as functions
xi(t), where t belongs to some continuous domain (e.g., time, space, wave-
length), and i indexes the individuals or units. In practice, the data is usually
discrete, meaning that we only have a finite number of observations at cer-
tain points, however the underlying assumption is that these observations
are samples from a function. This function is assumed to be smooth, i.e. dif-
ferentiable to some degree. This means that adjacent data values are linked
together to some extent and unlikely to be too different from each other. If
this smoothness property did not apply, there would be nothing much to be
gained by treating the data as functional rather than just multivariate.

In order to better understand what functional data really is and differ-
entiate it from multivariate data, an example might be useful. For this, the
"weather station data" frequently meantioned in [32] should be well suited.
The data consists of monthly averages of various weather related variables
like temperature, precipitation, etc. collected from many weather stations
across Canada. The temperature curves of a few different weather stations
can be seen in Figure 2.5.

Treating this as multivariate data, one would have a separate variable for
each measurement at each month, i.e. XTemp,Jan, XTemp,Feb, . . . , XPrecipitation,Jan,
etc. Looking at the data in this way, one would neglect the intrinsic order of
the variables and the spacing between measurements, as well as the smooth
nature of the data that connects the values at the different time points to-
gether. The very intuitive plot shown in Figure 2.5 is actually very unusual
under the multivariate framework, as we are plotting the realisation of a vari-
able against its index. This is not normally done for multivariate data, as the
order of the variables is arbitrary. All of this suggests that we should not sim-

2.3 basics of functional data analysis 18

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
Month

30

20

10

0

10

20

Te
m

pe
ra

tu
re

 (°
C)

Average Daily Temperature

Figure 2.5: Daily temerature averages of 35 canadian weather stations, down-
loaded from https://www.psych.mcgill.ca/misc/fda/downloads/.
This dataset is prominently used by Ramsay and Silverman in [32] to
introduce concepts of FDA.

ply treat the data as multivariate, but rather as functional. It is much more
natural to think of the temperatures at the different time points to come from
a continuous function xTemp(t), and the precipitation from another function
xPrecipitation(t), etc.

Functional data is actually quite common, think of images, audio, etc,
these are all functional data. But typically such data is not explicitly mod-
elled as functional data (i.e. the discrete samples are used) and the tools
for analysing this data ignore the functional structure. This is where FDA
comes in. It is the toolbox to explicitly treat the observations as functions
and to apply methods that "exploit" the functional structure.

Smoothing Functions

Since the data typically comes in discrete form, the first step in FDA is of-
ten to turn the samples into a function. As stated before, in the functional
framework, it is assumed that the observations y1, . . . , yN are samples from
a smooth function x(t). Incorporating the noise that is typically present in
the raw data, we write

yi = x(ti) + εi, (2.7)

where εi is the noise. The goal is now to estimate the underlying function x(t)
from the noisy data yi, which is quite a challenge as the space of functions
is infinite-dimensional. For this purpose one typically uses basis expansions.
That means that the function x(t) is represented by

x(t) =
M

∑
m=1

cmφm(t), (2.8)

where φm(t) are the basis functions and cm are the coefficients. With this
approach, we can effectively bridge the gap between the infinite-dimensional
world of functions and the finite-dimensional world of vectors. This becomes

2.3 basics of functional data analysis 19

especially apparent when we consider that the coefficients cm can be seen as
a vector c and the basis functions φm(t) as a functional vector ΦM(t), so that
we can write

x(t) = c>ΦM(t). (2.9)

A typical choice are the normed Fourier basis functions on the interval
[0, 1], which are especially well suited for periodic data. Those are the func-
tions

1,
√

2 sin (2πnx) ,
√

2 cos (2πnx) for n ∈N.

Another common choice are the Legendre polynomials

1, t,
1
2

3t2 − 1,
1
2

5t3 − 3t, . . . ,

which are frequently used to represent functions of the form 1/t, commonly
encountered in physics. One example is in electrostatics, which is also where
the Legendre polynomials were first introduced by Adrien-Marie Legendre.

Both the Fourier basis and the Legendre basis are complete orthogonal basis
for the space of square-integrable functions L2([a, b]; R) equipped with the
inner product 〈 f , g〉 =

∫ b
a f (t)g(t)dt. The Fourier basis is complete on the

interval [0, 2π] and the Legendre basis on the interval [−1, 1]. This means
that for any f ∈ L2([a, b]; R) it holds that

lim
M→∞

∥∥∥ f (t)− c>ΦM(t)
∥∥∥

2
= 0, (2.10)

where ‖ · ‖2 =
√
〈 f , f 〉 is the L2-norm and cm are the coefficients of the

basis expansion, which (because of the orthogonality) are simply 〈 f , φm〉 =∫ b
a f (t)φk(t)dt.
There are various methods to estimate the coefficients cm from the data.

The simplest one is probably the least squares method, which finds the co-
efficients that minimize the squared error between the data and the basis
expansion

N

∑
i=1

(
yi − c>ΦM(ti)

)2
= (y−ΦMc)> (y−ΦMc) , (2.11)

where y = (y1, . . . , yN)
> is the vector of the data and ΦM is the matrix of

column vectors ΦM(ti). As stated in [32, p. 60], the solution to this problem
is given by

ĉ =
(

Φ>MΦM

)−1
Φ>My. (2.12)

By changing the objective function, one can get different estimators. For
example, locally adaptive methods are possible by weighting the observa-

2.3 basics of functional data analysis 20

tions close to the point of interest more heavily. The corresponding objective
function is then

N

∑
i=1

wi(t)
(

yi − c>ΦM(ti)
)2

= (y−ΦMc)>W(t) (y−ΦMc) , (2.13)

where W(t) is a diagonal matrix with the weights wi(t) on the diagonal. In
this case the solution is given by

ĉ(t) =
(

Φ>MW(t)ΦM

)−1
Φ>MW(t)y, (2.14)

where we refer to [32, p. 77] for more details. Note, that using this method a
different coefficient vector ĉ(t) needs to be estimated for each point t.

Another very common alternative adds a "roughness penalty" to the objec-
tive function. Measuring the roughness of a function by the squared L2-norm
of its second derivative, the objective function becomes

N

∑
i=1

(
yi − c>ΦM(ti)

)2
+λ

∥∥∥∥ d2

dt2 c>ΦM(t)
∥∥∥∥2

2
= (y−ΦMc)> (y−ΦMc)+λc>Rc,

(2.15)
where R is the matrix with entries

Rij =
∫ b

a

d2

dt2 φi(t)
d2

dt2 φj(t)dt (2.16)

and λ controls the trade-off between the fit to the data and the smoothness
of the function. The solution to this problem can be found in [32, p. 87] and
is given by

ĉ =
(

Φ>MΦM + λR
)−1

Φ>My. (2.17)

Having estimated the underlying function x(t) is already quite useful. For
example, one can now evaluate the function at any point in the domain, thus,
be able to handle missing data or irregularly sampled data. Furthermore, it is
now much more feasible to calculate derivatives of the function, which due
to the noise can be quite challenging to do directly from the raw discrete
data.

Registering Functions

For many applications one more step is necessary before functional methods
can be applied. In order to compare functions, it is often necessary to align
them, such that evaluating the functions at the same point t corresponds to
the same feature. This is called "registering" the functions. This is especially
relevant for data where the event of interest does not happen at the same
point in time for all observations. For example, in the EEGEyeNet data sac-
cades do not always happen at the same point in time for all participants.
The simplest way to register functions is by shifting them until a certain

2.4 functional neural networks 21

criterion is met. e.g. shifting them until a specific feature (e.g. a peak, a zero-
crossing, etc.) is at the same point t for all functions, or shifting them such
that the L2-distance to the mean function is minimized.

This is however only possible if meaningful features can be identified in
the data or if the onset of the event of interest is externally triggered. In
the case of EEG data, where the event of interest is often a self-paced action
and the signal is noisy and complex, curve registration is infeasible. To ad-
dress this issue, a shift invariant method has been proposed in [20] which
is based on the idea of Convolutional Neural Networks (CNNs). The new
class of neural networks is called "Functional Neural Networks" and will be
introduced in the next section.

2.4 functional neural networks

In [20] the authors extend both the classical fully connected/dense layers
and the convolutional layers to functional data. We will first introduce the
functional convolutional layers as those only differ slightly from the classi-
cal convolutional layers. Then we will introduce the functional dense layers,
which are rather different from the classical dense layers.

Functional Convolutional Layers

We will focus on one dimensional convolutions as those are sufficient for the
EEG data handled in this thesis. However, everything discussed can easily
be extended to higher dimensions. Furthermore the batch dimension will be
ignored in the following discussion, as it only serves technical and perfor-
mance reasons and does not change the underlying principles.

The input to a one dimensional convolutional layer is a matrix X ∈ RSin×Cin ,
where Sin is the number of "steps" at the input and Cin is the number of "in-
put channels". The steps correspond to the domain of the function (e.g. time
or space) and the channels to the number of functions (e.g. different variables
like temperature, precipitation, etc. or different electrodes of the EEG).

A convolutional layer is a function that maps such an input matrix to
an output matrix Y ∈ RSout×Cout by convolving the input matrix with a set
of filters. Here Sout is the number of steps at the output and Cout is the
number of "output channels" which corresponds to the number of filters.
The mapping is given by

Ys,k = σ

(
bs,k +

Cin

∑
j=1

K

∑
t=1

wt,j,k · Xs−t,j

)
, (2.18)

where s is the step and k the channel index at the output, K is the kernel size
and wt,j,k is the weight at the input channel j for of the filter k at position t
of the kernel. The activation function σ, which is applied at the end, is there
to introduce non-linearity.

2.4 functional neural networks 22

One important thing to note, is that a convolutional layer already expects
a functional input (i.e. an ordered list of scalars where entries that are close
together are related to each other). Thus by substituting the input matrix
X with a functional input x(t), the weights wt,j,k with functional weights
wj,k(t) defined on the interval [0, 1], the bias bs,k with a functional bias bk(t)
and the sum with an integral, we already get the scaffold for a functional
convolutional layer

yk(s) = σ

(
bk(s) +

Cin

∑
j=1

∫ 1

0
wj,k(t)xj(s− t)dt

)
. (2.19)

In order to learn the weight functions wj,k(t) and bias functions bk(t) from
the data, several methods are possible. One could for example train the
model through backpropagation based on Fréchet derivatives which is the
approach taken in [34] and [33]. Alternatively, one can use a basis expansion,
as in (2.7), to represent the weight and bias functions

wj,k(t) =
M

∑
m=1

c(j,k)
m φm(t) and bk(t) =

M

∑
m=1

c(k)m φm(t) (2.20)

and learn the coefficients of the expansion via standard backpropagation.
This is the approach taken in [20] which simplifies the computations and
simultaneously reduces the dimension of the parameter space.

The way (2.19) is implemented in practice is by discretizing the integral
and replacing it by a sum. Furthermore, the level of discretization can be
controlled by a "resolution" parameter R, which determines the number of
samples the discretization uses. With this the mapping becomes

yk(s) = σ

(
bk(s) +

Cin

∑
j=1

R+1

∑
t=1

wj,k((t− 1)/R)xj(s− t)

)
, (2.21)

which is very similar to the classical convolutional layer (2.18). Thus, the real
practical difference between the two is the way the weights are represented
and learned. In the functional convolutional layer the weights and biases are
always "smooth" along the "steps"-dimension and can only be set indirectly
by changing the coefficients of the basis expansion. This reduces the number
of parameters, which might allow for a more interpretable model and result
in a kind of regularization that might help against overfitting.

A functional convolutional layer has the following hyperparameters:

• Resolution: The resolution of the basis functions R, which is compara-
ble to the kernel size in classical convolutional layers.

• Type of Basis Functions: The type of basis functions used to represent
the weight and bias functions (e.g. Fourier or Legendre).

• Number of Basis Functions: The number of basis functions M used to
represent the weight and bias functions.

2.4 functional neural networks 23

• Number of Filters: The number of filters Cout used in the layer.

• Activation Function: The activation function σ used to introduce non-
linearity.

Functional Dense Layers

A classical fully connected or dense layer maps an input vector x ∈ RNin to
an output vector y ∈ RNout by the function

yk = σ

(
bk +

Nin

∑
j=1

wj,kxj

)
, (2.22)

where Wj,k are the weights, bk are the biases and σ is the activation function
of the layer. There are many ways to extend this to functional data. The
authors in [20] settled on the following approach: the neurons xj at the input
are replaced by functions xj(t), the weights wj,k by functional weights wj,k(t)
defined on the interval [0, 1] and the biases bk by bias functions bk(t). The
mapping then becomes

yk(t) = σ

(
bk(t) +

Cin

∑
j=1

wj,k(t)xj(t)

)
, (2.23)

where we renamed Nin to Cin since every neuron now corresponds to a
complete function occupying its own channel. Just like before we represent
the weights and biases by a linear combination of basis functions in order to
simplify the gradient computation and reduce the number of parameters.

Note that in contrast to the functional convolutional layer, where the in-
put and output of the classical counterpart were already functional, the input
and output to a classical dense layer is not functional. This changes however
for the functional dense layer, where the input and output are now func-
tional. This makes the functional dense layer, in its application, more similar
to the classical convolutional layer than to the classical dense layer, taking in
inputs from RSin×Cin and outputting to RSout×Cout .

It is also possible to define a functional dense layer with functional inputs
and scalar outputs. This is done by taking the scalar product between the
weights and input functions and reverting the bias function to a scalar bias.
This can be useful for example to produce a scalar output at the last layer of
a neural network. The mapping is given by

yk = σ

(
bk +

Cin

∑
j=1

∫ 1

0
wj,k(t)xj(t)dt

)
. (2.24)

2.4 functional neural networks 24

This is implemented in practice by approximating the integral using the
mean, leading to

yk = σ

(
bk +

Cin

∑
j=1

1
Sin

Sin+1

∑
t=1

wj,k((t− 1)/Sin)xj(t)

)
. (2.25)

This can be seen as a global average pooling operation, where the input is
weighted by a smooth function that is learned, before the average is taken.

A functional dense layer has the following hyperparameters:

• Type of Basis Functions: The type of basis functions used to represent
the weight and bias functions (e.g. Fourier or Legendre).

• Number of Basis Functions: The number of basis functions M used to
represent the weight and bias functions.

• Number of Neurons: The number of neurons (functions), Cout, at the
output of the layer.

• Activation Function: The activation function σ used to introduce non-
linearity.

• In this case, the resolution R is not a hyperparameter, as it must always
equal the number of steps Sin at the input.

3
D ATA S E T

Because of the lack of existing datasets that combine EEG and eye track-
ing data, where the EEG is collected using a consumer-grade device, a new
dataset was created. The dataset, which will be made freely available, is
called the "Consumer EEG-ET dataset". Using this dataset, the performance
of existing EEG-ET methods as well as new ones can be evaluated on consumer-
grade EEG. Furthermore, it is intended to serve as a new challenging bench-
mark for FDA techniques as well as future research in the field of EEG-ET.
In this chapter, the dataset is described in detail. The structure of the ses-
sions, the stimuli presentation, the data acquisition and hardware used are
explained. Finally, a benchmark is proposed to evaluate the performance of
existing and new methods on this dataset.

3.1 description

The dataset consists of simultaneously recorded EEG and eye tracking data
from 113 participants, collected during 116 sessions, in which 4 experimental
paradigms were presented to the participants. The experimental paradigms
are designed in a way that it becomes increasingly challenging to reconstruct
the gaze position from the EEG data as the eye movement becomes less re-
stricted. In every paradigm, the participants were instructed to follow a dot
moving on the screen as accurately as possible with their eyes. The presenta-
tion was also designed in a way that helped the participants follow the dot
very closely.

The participants were seated in front of a 24 inch desktop monitor with a
resolution of 2560 px× 1440 px and a 60 Hz refresh rate, placed 60 cm away

Figure 3.1: Recording setup of the Consumer EEG-ET dataset. The person in the
image is the author wearing the Muse S 2 Headband.

3.2 session structure 26

Figure 3.2: Electrode placement on the Muse S 2 Headband. The left image shows
the headband laid out flat with the electrodes facing up together with
a schematic of the electrode placement in the 10-20 system. The right
image shows the headband from the front. Image adapted from [31].

from the participants and raised high enough such that the center of the
screen matched the eye height of the subject. A webcam was mounted on
a stand in front of the screen, adjusted to be as high as the lower edge of
the screen, looking up at the subject. The recording setup is illustrated in
Figure 3.1.

The webcam used was the Logitech StreamCam, which records in Full HD
(1920 px× 1080 px), at 60 frames per second. The EEG data was recorded us-
ing the Muse S 2 Headband, a consumer-grade EEG-Headset with five dry
electrodes (four EEG-channels and one reference electrode) used by more
than 500, 000 users, according to the manufacturer.1 The headband records
at a sampling rate of 256 Hz. An image of the headband and the electrode
placement in the standard 10-20 system is shown in Figure 3.2. Two lap-
tops were used: one for controlling the stimuli presentation and recording
the data and one for showing the stimuli to the participants. Both laptops
communicated via a socket connection.

In total, the dataset contains 11 hours and 45 minutes of EEG and eye
tracking data, which amounts to 1.54 GB in size or 10, 495, 839 rows of data.
The total time recorded per paradigm and the duration in one session can
be seen in Table 3.1.

In addition to the EEG and eye tracking data, demographic data was col-
lected from the participants. The demographic data includes the age, gender,
handedness, vision correction, neurological disorders, and color blindness of
the participants. The demographic data is summarized in Table 3.2, the age
distribution is shown in Figure 3.3.

3.2 session structure

Most sessions took place during 90 minute practice groups of different arti-
ficial intelligence related courses at the Hochschule Darmstadt. The partici-

1 Information obtained from https://choosemuse.com/products/muse-s-gen-2, accessed on
October 8, 2024.

3.2 session structure 28

pants were seated in the back of the room in which the practice group took
place next to a big window. At the start of the group exercise, before any
session started, all participants were briefed about the study and the data
collection. The participants were informed about the purpose of the study,
the data that would be collected, the duration of the study, that participa-
tion was voluntary, and that any collected data would be anonymized. After
the briefing, the first subject was seated in front of the screen and the first
session started.

Each session (nominally) lasted ten minutes in total and consisted of the
following parts: introduction, practice, and recording. The introduction in-
cluded the calibration of the camera-based eye tracker, fitting the EEG head-
set to the participants head, and checking signal quality. Furthermore, the
distance to the screen and the height of the screen were adjusted to match
the eye height of the subject. The participants also were instructed not to
move or speak during the recording. Before each recording, a short practice
session was conducted to prepare the participants for the respective experi-
mental paradigm.

During the actual data collection, EEG and eye tracking data were recorded
in four different situations: level-1-smooth, level-1-saccades, level-2-smooth,
and level-2-saccades. The duration of each paradigm is shown in Table 3.1.
A level-1 experiment only required the subject to move their eyes left, right,
up or down for one minute. Data from those experiments is meant to serve
as a first stepping stone for potential EEG-ET techniques. In the level-2 ex-
periments the participants were presented with a dot that could move in any
direction. Level-2 experiments took 2 minutes.

In a "smooth" experiment the dot moved across the screen in a continuous
manner. The subject followed the dot using eye movement called "smooth
pursuit", in which the eyes move smoothly to follow a moving object. A "sac-
cades" experiment required the subject to follow the dot using a series of
quick eye movements called "saccades". Here the dot jumped between pre-
defined points on the screen. For all paradigms the stimuli presentation was
designed in such a way, that the user could always anticipate the movement
or a jump of the dot. This way the position of the dot is always close to
the ground truth gaze position. If the participant experienced eye strain or
fatigue, a break was taken before the next experiment.

Every participant was asked to sign two documents. The first document
was a consent form, where the participants agreed to take part in the study,
and the data collection. The second document was the demographic ques-
tionnaire, where the participants provided information about their age, gen-
der, handedness, vision correction, neurological disorders, and color blind-
ness. Both documents can be found in the appendix in English and German.
(A.1 and A.2.) Depending on the language in which the practice group was
held, either a German or an English version of the documents was used.

3.3 stimuli presentation 29

Smooth Movement

Countdown at the
start

The "Ghost" dot
starts approaching

The "Ghost" dot dis-
appears

A line hints at the
target movement

Saccades Movement

Countdown at the
start

The target shrinks The target shrinks
again

The target jumps

Figure 3.4: Stimuli presentation in the Consumer EEG-ET dataset. The presentation
of the stimulus in a smooth experiment is shown on the top, the presen-
tation of the stimulus in a saccades experiment is shown on the bottom.

3.3 stimuli presentation

In addition to the EEG and eye tracking data, the position of the dot on
the screen and the presentation state were recorded. All four data streams
were synchronized using the Lab Streaming Layer Protocol. The lsl streams
were recorded using the LabRecorder software, which properly resolves the
synchronization information of multiple streams. The gaze position was cal-
culated from the webcam video using the GazePointer software.

The dot was presented to the participants using a custom stimuli presen-
tation software written in Python using the Qt framework. The presentation
differed between the "smooth" and "saccades" paradigms. In a "smooth" ex-
periment, in addition to the yellow dot that moved across the screen, which
the participant was instructed to follow, a line was shown, that hinted the
path of the movement. Furthermore, before the yellow dot started moving
a "ghost" dot was shown, that hinted the start and speed of the movement.
See Figure 3.4 for an example of the stimuli presentation in a "smooth" ex-
periment.

In a "saccades" experiment a line connected the current position of the
dot with the target position, i.e. the position to which the dot jumped to.
To indicate the moment when the jump occurred the dot got scaled down
3 times, completely disappearing the last time. The moment the dot disap-
peared was the moment the jump happened. This is shown in the lower half
of Figure 3.4. Those design choices were made to help the participants antic-
ipate the movement of the dot, such that the position of the dot was always
as close as possible to the ground truth gaze position.

The path along which the dot moved in the "smooth" experiments was
created using a parameterized curve. In detail, for a given t ∈ [0, 1] the x

3.3 stimuli presentation 30

-200 mm -100 mm 0 mm 100 mm 200 mm-1
00

 m
m

-5
0

m
m

0
m

m
50

 m
m

10
0

m
m

0

5

10

15

20

25

30
Time (s)

Figure 3.5: Example of a curve in the Consumer EEG-ET dataset that was presented
to a participant. It was created using the parameterized function (3.1).

and y position of the dot in millimeters relative to the center of the screen
were given by:

f : [0, 1]→ R2, t 7→
(
(cos(at) sin(bt) + et) · w

2

(cos(ct) sin(dt) + f t) · h
2

)
, (3.1)

where w and h are the width and height of the bounding box in millimeters
in which the curve is drawn. The time in seconds the dot takes to traverse
the complete curve can be controlled by the parameter T. The value of t
is incremented by 1

120 /T every frame, resulting in a smooth movement of
the dot. For all level-1 experiments a = b = c = d = 0, e, f ∈ {−1, 0, 1}
and T = 1 or 2 depending on the direction. This results in paths where the
dot moves continuously from the center to one of the edges of the specified
bounding box. For level-2 experiments a, b, c, d were randomly selected from
the interval [−50, 50], e = f = 0 and T = 28.5. This results in paths where
the dot moves in a more complex manner. An example of a path created
using this method is shown in Figure 3.5. Multiple curves were shown in
each experiment. Before the dot started to move along the next curve, the
dot waited for 2 seconds in the center of the screen.

The grid point positions in the level-1 saccades and level-2 saccades exper-
iments are shown in Figure 3.6. In a level-1 experiment, there was a saccade
to the edge of the bounding box every second, followed by a saccade back
to the center of the screen in the next second. In a level-2 experiment the dot
jumped to any of the grid points every 1.5 seconds.

A new set of curves and new jump sequences was generated before every
practice group. In a level-1 smooth experiment, only four possible curves
existed, one for each direction. The order in which the curves were shown
was determined by randomly sampling without replacement from a pool
where every direction existed 4 times, resulting in a sequence of 16 curves
in total. In a level-2 smooth experiment four curves were shown which were
manually created by randomly picking values for a, b, c, d from the interval
[−50, 50]. A level-1 saccades experiment was created by repeatedly sampling

3.5 benchmark 32

and YY is the session number for this participant. Writing out the folder
structure in a tree-like manner one would get the following:

(csv or xdf)/

level-1-smooth/

train/

P001_01.(csv or xdf)

P001_02.(csv or xdf)

P002_01.(csv or xdf)

...

test/

P037_01.(csv or xdf)

P042_01.(csv or xdf)

...

level-1-saccades/

...

level-2-smooth/

...

level-2-saccades/

...

Both the CSV file containing the complete dataset, and the "csv" and "xdf"
folders will be made freely available.

3.5 benchmark

In addition to the dataset, a benchmark is proposed to evaluate the perfor-
mance of existing and new methods on the Consumer EEG-ET dataset. The
benchmark consists of four tasks, one for every experimental paradigm. The
tasks are designed in a way that it becomes increasingly challenging to re-
construct the gaze position from the EEG data as the eye movement becomes
less restricted.

The necessary data to benchmark a model on a given task is provided in
the "csv" folder, which was described in the last section. The data is already
split into train and test, with the twelve participants 21, 27, 35, 38, 46, 55, 60,
68, 73, 81, 84, 94 being used for testing and all other participants for training.
The selection of the participants for the test data was based on the quality
of the data, and the demographics of the participants. The participants were
selected in a way that the test data is representative of the training data
and recordings with low quality were excluded from the test data. Table 3.3
shows the exact proportions of the train and test data for every task.

A model is evaluated on a task by predicting the stimulus position (columns
Stimulus_x and Stimulus_y) at every timestamp given the current and past
EEG data (columns EEG_TP9, EEG_AF7, EEG_AF8, EEG_TP10). This is done for ev-
ery recording in the test data. In order to simplify data pipelines the train
and test data have the same columns. That means that the test data also in-
cludes the columns Gaze_x and Gaze_y, i.e. the gaze position as measured by
the webcam. Those should not be used as input features.

3.5 benchmark 33

Train Data Test Data
Experimental Paradigm Duration / Percentage Duration / Percentage

level-1-smooth 1 h 38 min / 90% 11 min / 10%
level-1-saccades 1 h 44 min / 90% 12 min / 10%
level-2-smooth 3 h 42 min / 90% 26 min / 10%
level-2-saccades 3 h 28 min / 90% 24 min / 10%

Total 10 h 32 min / 90% 1 h 13 min / 10%

Table 3.3: Train and test data proportions for the benchmark tasks. The total dura-
tion is given as well as the percentage of the total data.

The performance of the model is evaluated using the Mean Euclidean Dis-
tance (MED) between the predicted and the ground truth stimulus position.
The MED is calculated as:

MEDk =
1

Nk

Nk

∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2, (3.2)

where Nk is the number of samples in the k-th recording of the test data, xi
and yi are the ground truth stimulus position and x̂i and ŷi are the predicted
stimulus position. The final score of a model is the MED over all recordings
in the test data, which is equal to:

MED =
1

∑12
k=1 Nk

12

∑
k=1

NkMEDk. (3.3)

The MED was chosen as the evaluation metric because of its easy and clear
interpretation. That is, the MED will tell you the average radius of a circle
around the ground truth stimulus position in which the predicted stimulus
position will lie. Other possible metrics would have been the Mean Squared
Error (MSE), RMSE, or MAE, but compared to the MED they do not result in
values that are easily interpretable, as they correspond to the mean of their
respective one-dimensional metrics for the x- and y-axis.

Test data, even from other tasks, must never be used for training. Other-
wise, the benchmark has no restrictions on training data. This means that
training data from any or all tasks can be used to train a model for any
task. When reporting the performance of a model, one should always report
the MED for every task. This allows for a more nuanced comparison of the
performance of different models, as models could overfit to one task and
perform poorly on others, making them unsuited for general purpose eye
tracking.

4
M E T H O D S

This chapter will cover the methods used during experimentation. This in-
cludes the preprocessing of the data, the Functional Neural Network (FNN)
architectures that were evaluated, and the metrics used to evaluate the per-
formance of the models. We also cover how the two reimplemented methods,
the SpatialFilterCNN and Battery Model of the Eye (BMOTE) were validated
and go over the experimental setup.

4.1 preprocessing

Not all the preprocessing steps described in this section were applied in all
experiments, with the exception of windowing and missing value imputa-
tion, which were applied in all experiments. The exact preprocessing steps
applied to the data are described in the respective sections of the experi-
ments.

Manual Recording Exclusion

During the data recording process, live EEG measurements and gaze data
(tracked via the webcam) were continuously monitored. This real-time mon-
itoring enabled early detection of recording issues, allowing the task to be
restarted when anomalies were observed. In certain cases, it was not possi-
ble to achieve reliable readings from specific electrodes. These instances, and
similar issues, were documented during the recording sessions, and the cor-
responding recordings were excluded from all subsequent experiments. The
full list of excluded recordings along with reasons for exclusion, is shown
in Table 4.1. In total 14 recordings were excluded from the dataset due to
various issues.

Recording(s) Reason for Exclusion

P002_01 Webcam calibration quality declined significantly

P004_01 Gaze_x attained unrealistically high values

P016_01-P020_01 A lot of missing values due to bluetooth interference

P050_01 level-1-saccades EEG disconnected before the recording finished

P062_01-P067_01 Very high AF8 readings due to faulty hardware

P079_01 High TP9 and TP10 readings from wearing a hijab

Table 4.1: List of recordings excluded from the dataset due to various issues.

4.1 preprocessing 35

Additionally, model experimentation began before the complete dataset
was available, leading to all models being trained on a slightly smaller
dataset than what is currently available. To maintain consistency and com-
parability across experiments, we continued using the smaller dataset for all
experiments, even after the full dataset became available. As a result, partic-
ipants 103-113 were excluded from the dataset used in these experiments.

Windowing

The models evaluated in this thesis received the EEG data in the form of
windows. The length of the windows was controlled by a hyperparame-
ter window_size. The windows were created by sliding a window of size
window_size over the four EEG channels with a step size of 4 samples during
training and 1 sample during validation and testing. At a sampling rate of
256 Hz this corresponds to steps of 15.625 ms and 3.906 ms respectively. The
step size of 4 samples during training was chosen to reduce the amount of
data that needed to be processed during training, effectively speeding up
one epoch of training by a factor of 4 compared to training with a step size
of 1, while still providing enough data for the model to learn from. Windows
at the intersection of two recordings were discarded. The target was the last
stimulus of the window

Missing Value Imputation

Because missing values were recorded as zeros, which are also valid values,
the first step was to distinguish actual missing values from legitimate zero
readings. To address this, zero values that occurred as part of an uninter-
rupted sequence of at least three zeros were identified as missing values.
That means a zero was flagged as missing if it was preceded, followed, or
surrounded by two other zeros. This approach was adopted to ensure that
isolated zero values were retained as valid data points while sequences of
zeros (which are unlikely to occur naturally in the data) were treated as
missing data.

Once the missing values were identified, they were imputed using a Kalman
smoother. In this case, an Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) model was used as the underlying state-space model for the
Kalman smoother. The optimal SARIMA model for each recording was deter-
mined automatically using the auto_arima function from the pmdarima library.
This function performs differencing tests to decide the order of differencing
required for stationarity, together with a stepwise algorithm, as outlined by
[22], to select the p, q, and seasonal P and Q orders based on the Akaike
Information Criterion.

The auto_arima function was applied with default parameters, with the
exception of the seasonal lag, which was set to 5. This choice was made due
to the particularly strong presence of the 50 Hz powerline noise signal in

4.1 preprocessing 36

100
50

0
50

EE
G_

TP
9

40

20

0

EE
G_

AF
8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

50

0

EE
G_

TP
10

Vo
lta

ge
 (

V)

Imputed Original

Figure 4.1: Effect of missing value imputation on the example of recording "P045_01
level-1-saccades". No missing values were present in electrode AF7,
which is why it is not shown.

the data, which, at a sampling rate of 256 Hz, corresponds to a period of
approximately 5 samples (256/50 = 5.12 ≈ 5).

Figure 4.1 illustrates the effect of the missing value imputation on the data.

Filtering

As EEG data is highly prone to noise from various different sources, filtering
is a common preprocessing step in EEG analysis. However, filtering turned
out to be only sometimes beneficial, which is why it was not applied in all
experiments. When the preprocessing included filtering, a combination of
multiple filters was applied to the data. First a 60 Hz notch filter was applied
to remove the noise from the monitor refresh rate. This was followed by
another 50 Hz notch filter to remove the noise from the power lines. Finally
a 0.5 Hz to 40 Hz butterworth bandpass filter was applied to remove noise
from other sources (e.g. muscle activity, baseline drift, etc.). All filters were
applied forwards and backwards to avoid phase distortion.

The filters were implemented using second-order sections instead of di-
rectly applying the difference equation, as this was found to be more stable
during testing. In Figure 4.2 the effect of applying the filters on the data is
shown. The result of filtering without second-order sections is also shown.

Even though the bandpass filter already limits the frequency range of the
data between 0.5 Hz and 40 Hz — which should already exclude the 50 Hz
and 60 Hz noise from the power lines and monitor — we have found that
applying the bandpass alone was insufficient to remove the noise from the
power lines. This can be seen in Figure 4.3 where the noise from the power
lines is still present in the data after applying the bandpass filter. Filtering

4.1 preprocessing 37

100

0

100

EE
G_

TP
9

100

0

100

EE
G_

AF
7

100

0

100

EE
G_

AF
8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

100

0

100

EE
G_

TP
10

Vo
lta

ge
 (

V)

Original Filtered Filtered (sos)

Figure 4.2: Effect of filtering on recording "P045_01 level-2-saccades", where missing
values were imputed as described in the above section. It is evident that
the filter without second-order sections causes the signal to diverge over
time, while the filter with second-order sections keeps the signal stable.
Both filters used the combination of a 60 Hz and a 50 Hz notch filter and
a 0.5 Hz to 40 Hz bandpass filter as described in the text. However, the
first filter used an 8th order bandpass filter and applied all filters only
forwards, as applying them backwards as well would cause the signal to
attain extreme values throughout. The filter with second-order sections
used a 4th order bandpass filter and applied all filters both forwards and
backwards doubling the order of the filter and correcting phase shift.

0 20 40 60 80 100
Frequency (Hz)

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

Fast Fourier Transform of Different Levels of Filtering EEG_TP9
Original (EEG_TP9)
Bandpass Filtered
Notch & Bandpass Filtered

Figure 4.3: Effect of the bandpass filter on the TP9 electrode of recording "P045_01
level-2-smooth". The noise from the power lines is still clearly present
in the data after applying the bandpass filter. In order to better see the
bandpass filtered data (orange), the line width was increased.

4.1 preprocessing 38

200

0

Vo
lta

ge
 (µ

V)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

5

0
St

an
da

rd
ize

d
Vo

lta
ge

Channels
TP9
AF7
AF8
TP10

Figure 4.4: A visual comparison of the signal before and after filtering. The win-
dow contains a blink right in the middle, which does not get lost after
filtering.

was applied after the missing value imputation step but before the window-
ing step for better runtime performance and to avoid edge effects.

Blink Detection

Participants were allowed to blink naturally during the recordings. For tasks
involving smooth and continuous eye movements — particularly the level-2
tasks, which required 30 seconds of uninterrupted movement — expecting
participants to refrain from blinking for such extended periods would have
been unreasonable. Also, allowing blinks more accurately reflects real-world
conditions, which makes testing more representative of the practical applica-
tion. However, the presence of blinks might complicate the analysis, particu-
larly in the early stages of model training. Thus a method was developed to
automatically label blinks.

Manual labelling of blinks was not feasible due to the large amount of
data collected. As an alternative, a blink detection model was developed
that was trained on a specially collected dataset in which the author was
the sole participant. This model is a simple neural network that works in a
similar manner to template matching algorithms.

The custom dataset consists of various 5-minute recording sessions. Dur-
ing these sessions, the head and eyes were maintained in different states,
including relatively stable positions, movement of the eyes to their extreme
positions within the socket, random eye movements, and tilting the head.
Throughout these recordings, blinks happened randomly, and the occur-
rence of each blink was manually marked in real-time. Subsequently, with
the help of the blink markers, the exact blink ranges were determined through
visual inspection of the data, and annotated and saved in the XDF file format
using custom software.

For each recording extensive filtering was applied, including a bandpass
filter ranging from 1 Hz to 10 Hz and notch filters at 50 Hz and 60 Hz, to en-
hance the clarity of the signal relevant for blink detection. Additionally, all
EEG channels were standardized to have mean 0 and a standard deviation
of 1. A visual comparison of the signal before and after filtering and stan-

4.1 preprocessing 39

Layer Parameters Output Shape

Input — (batch_size, 128, 4)
Conv1D padding: same,

activation: elu,
filters: 1,
kernel_size: 64

(batch_size, 128, 1)

Flatten — (batch_size, 128)
Dense activation: sigmoid (batch_size, 1)

Table 4.2: The general structure of the blink detection models. Layer and parameter
names generally follow the naming conventions of the TensorFlow library.

dardization can be seen in Figure 4.4. The data was split into a training and
a test set using a 80% / 20% split. Windows of size 128 samples, with a step
size of 1 sample were used, following the procedure described in the section
Windowing.

The final model used a quite simple architecture that is shown in Table 4.2.
This architecture effectively serves as a (simple) extension of a template
matching algorithm, where the template, i.e. the filters in the convolutional
layer, are learned from the data and matches can be differently weighted
by the dense layer. We also experimented with an architecture using a func-
tional convolutional layers, followed by a global average pooling layer and a
sigmoid activation, resulting in an architecture even more similar to a tem-
plate matching algorithm.

Both models were trained for 2 epochs with binary crossentropy as the
loss function. Upon evaluation, the convolutional model outperformed the
functional convolutional model, achieving a recall of 0.99 and a precision
of 0.93 at a threshold of 0.5 on the test set. Although the functional model
produced much more interpretable filters, the superior accuracy of the stan-
dard convolutional model made it the preferred choice for further analysis.
However, near perfect accuracy is not expected, as the true blink ranges are
manually labeled and will not always be perfectly accurate. Therefore, very
high accuracy could actually indicate overfitting. On the other hand, it is
important to note that blink detection is a relatively straightforward task, as
blinks are highly distinctive in the data and despite the presence of noise
remain clearly visible, even to the human eye (see Figure 4.4). This generally
allows for high accuracy.

Figure 4.5 displays the learned filters for both models, while Figure 4.6
illustrates a segment of the data with detected blinks.

Once the model was validated, it was applied to the actual EEG-ET data,
where the blink probability predicted by the model was added as an addi-
tional feature to the data. This could then be used by the downstream data
processing pipeline to remove windows with a high probability of contain-
ing a blink.

4.2 validation of model implementations 40

0 20 40 60
Index

0.2

0.0

0.2

W
ei

gh
t

Conv1D

0 20 40 60
Index

FuncConv1D
Channels

TP9
AF7
AF8
TP10

Figure 4.5: Learned filters of the blink detection models. The filters of the functional
model clearly resemble the shape of a blink in the EEG data (e.g. the
one in Figure 4.4), while the filters of the convolutional model are not
interpretable.

0 5 10 15 20 25 30
Time (s)

0

1

Bl
in

k
Pr

ob
ab

ilit
y true

pred

Figure 4.6: A segment of the data with detected blinks. The true blink probability
(which is either 100% or 0%) is shown in blue, while the predicted blinks
are shown in orange. The accuracy will never be 100%, as the true blink
ranges are manually labeled.

4.2 validation of model implementations

Both the SpatialFilterCNN and BMOTE were implemented from scratch in
Python. To ensure the accuracy and reliability of our implementations, we
conducted a series of validation tests for each model.

Validation of the SpatialFilterCNN Model

The implementation of the SpatialFilterCNN was relatively straightforward
to implement using the deep learning libraries TensorFlow and Keras, as
the model architecture can be constructed using standard building blocks
like convolutional layers, dense layers, max pooling layers, etc. However, cer-
tain implementation details were not explicitly stated in the original paper,
including

1. The mode of padding used ("valid" or "same")

2. The stride of the pooling layers

3. The method for transforming the input to match the correct dimen-
sions for addition to the output of the residual blocks

To address these gaps, we made informed decisions based on common prac-
tices in CNN design and the parameter count stated in the original paper:

4.2 validation of model implementations 41

1. We opted for "same" padding such that the sample size of the output
of a residual block matched the input size.

2. For the pooling layers, we used a stride of 2, reducing the input size
by a factor of 2 at each pooling step.

3. To transform the input for the residual blocks, we added a convolu-
tional layer with a kernel size of 1 to the input branch of each residual
block.

These choices allowed us to successfully replicate the parameter count of
2.06 · 106 stated in the original paper, providing a good indication that our
implementation closely matched the intended architecture.

To properly validate our implementation, we aimed to replicate the results
reported in the original paper [15] that introduced the SpatialFilterCNN.
In that paper, the model was evaluated on the EEGEyeNet dataset using
the MAE metric. The first step to do this was to set up the EEGEyeNet
Benchmark environment and ensure its correct functionality. Fortunately, the
authors of the EEGEyeNet paper provided extensive code for this purpose,
available on GitHub at https://github.com/ardkastrati/EEGEyeNet.

After setting up the benchmark environment, our first step was to test
the deep learning models included in the repository. This initial assessment
was important to verify the overall functionality of the environment, before
proceeding with our own implementation. However, this process presented
several unexpected challenges. The provided code did not calculate results
in millimeters, and the conversion method from pixels to millimeters was not
clearly documented. There was ambiguity regarding which specific metric
was being reported in the original paper.

After extensive testing, we determined that a conversion factor of 0.5 px/mm
briefly mentioned in the appendix of the EEGEyeNet paper, allowed us to
replicate the naive baseline (predicting the mean of the training data) when
used in conjunction with the MED metric. Using this established conversion
factor, we were able to successfully replicate the naive baseline results.1

However, our implementation of the other deep learning models, includ-
ing the SpatialFilterCNN, produced results that differed significantly from
those reported in the original EEGEyeNet paper.2 Table 4.3 presents a com-
parison between the original results reported in the EEGEyeNet paper and
the results obtained from our implementation. The results for the MED met-
ric with a conversion factor of 0.5 are shown on the left side of the table.

Despite these challenges, we proceeded to benchmark our implementation
of the SpatialFilterCNN model on the EEGEyeNet dataset. For this evalua-
tion, we used the MAE metric, consistent with the approach in [15]. The
results of this benchmark are presented on the right side of Table 4.3. These

1 Attempting to derive a conversion factor using the screen dimensions in pixels and inches
yielded a different factor (0.6096 px/mm) that did not reproduce the reported naive baseline
values using any of the possible metrics.

2 This was true for all attempts of pixel to mm conversion and choice of metric.

4.2 validation of model implementations 42

Model MED MED (ours) MAE MAE (ours)

CNN 70.2± 1.1 205.4± 6.1 86.6 129.9± 4.3
PyramidalCNN 73.6± 1.9 101.5± 2.4 90.3 64.9± 1.2
EEGNet 81.7± 1.0 77.3± 0.3 97.0 48.7± 0.2
InceptionTime 70.8± 0.8 114.8± 3.3 88.4 71.8± 1.8
Xception 78.7± 1.6 116.48± 5.3 94.7 72.8± 2.9
SpatialFilterCNN — 68.8± 1.4 49.2 42.9± 0.8

Naive Baseline 123.3 123.3 — 80.4

Table 4.3: Comparison of the original results and the results obtained by us for the
Absolute Position task of the EEGEyeNet Benchmark. The results for the
MED metric with a conversion factor of 0.5 are shown on the left side of
the table together with the results from the EEGEyeNet paper [23]. The
results for the MAE metric, also with a conversion factor of 0.5, are shown
on the right side of the table together with the results from the SpatialFil-
terCNN paper [15] in which no standard deviations were reported.

results nearly matched those reported in the SpatialFilterCNN paper [15].
The remaining differences could potentially be attributed to a different con-
version factor used for the metrics, as the SpatialFilterCNN paper also did
not explicitly state the conversion factor they employed.

Notably, our implementation of the SpatialFilterCNN performed signifi-
cantly better than the other models in the benchmark. This substantial per-
formance gap provided us with confidence in the correctness of our imple-
mentation. It is worth mentioning that the discrepancies in results for the
other models included in the EEGEyeNet benchmark remain unexplained.
Despite our efforts, we were unable to replicate the results reported in the
EEGEyeNet paper for these models.

Validation of the Battery Model of the Eye

The implementation of the BMOTE is considerably more complex, requiring
a lot of custom code, rather than relying on standard deep learning libraries.
Initially, our plan was to use the original implementation of BMOTE rather
than creating our own. We reached out to the authors of the original paper
requesting access to their implementation. However, they informed us that
their code was not currently packaged in a way that would allow for easy ex-
ecution. Despite this setback, the authors generously offered their assistance
with the implementation process.

Given this situation, we proceeded to implement BMOTE ourselves, with
the intention of testing the implementation by estimating electrode posi-
tions and evaluating the model’s performance using the dataset from the
original paper. However, we encountered another obstacle: the authors of
the original paper were unable to provide us with their dataset. As an al-
ternative, the authors referred us to a dataset from a follow-up paper [3].

4.2 validation of model implementations 43

Figure 4.7: Schematic of the electrode positions used in the EOG dataset. Image
taken from [3]. The ground electrode is labeled as "G" and the reference
electrode as "R".

Specifically, they directed us to Dataset 2 available at https://www.um.edu.
mt/cbc/ourprojects/eyecon/eogdataset. This dataset became our primary
resource for testing the implementation of the BMOTE model.

Given the dataset, we first checked if the electrode positions estimated
by our implementation aligned with the positions from the dataset specifi-
cations. For this, we first obtained values for the radius of the eye and the
interpupillary distance, which are needed for the electrode position estima-
tion. Unfortunately, the authors did not provide these values in the paper,
we instead had to base these on publicly available averages.

For this we used [5], where the authors concluded that the the human eye
is approximately 24.2 mm wide, 23.7 mm high and 22.0 mm to 24.8 mm deep,
with no significant difference between sexes and age groups. Calculating
the mean of the width, height, and the average depth, we get a diameter
of approximately 24 mm or a radius of 12 mm. The interpupillary distance
is assumed to be 62 mm [18], based on the average of the median values
of males (64 mm) and females (62 mm). With these values, we could then
estimate the positions of the electrodes.

The electrode placement according to the specifications is depicted in Fig-
ure 4.7. Using the interpupillary distance and the average eye radius, we
calculated rough theoretical positions for each electrode. In those calcula-
tions we assumed that the electrodes were placed at a distance of 24 mm
— the average eye diameter — away from the center of the eye. Table 4.4
presents a comparison between these calculated positions and the positions
estimated by our BMOTE implementation using the first half of the dataset.

Looking at the table, we see that the estimated positions are fairly close to
the theoretical positions, with most differences being less than 10 mm. After
successfully estimating the electrode position, we were able to create the
plot shown in Figure 4.8. In this figure, the predicted and actual voltages are
plotted against the horizontal and vertical gaze angle. We can see how the
model voltage adequately follows the true voltage readings, which nearly
grow linearly with the gaze angle.

4.2 validation of model implementations 45

Model
MAE

Horizontal Gaze Angle
MAE

Vertical Gaze Angle

Original [2] 2.42± 0.91 2.30± 0.50
Follow-up [3] 2.89 7.30
Ours 5.83 6.49

Table 4.5: The MAE of the horizontal and vertical gaze angles in degrees of visual
angle. Our results, along with those from the follow-up study [3], are for
Subject 3 of the dataset used in that study. The results from the original pa-
per [2] represent the mean and standard deviation across all participants
of a different dataset.

20

0

20

Horizontal Gaze Angle

0 10 20 30 40 50 60
40

20

0

20

Vertical Gaze Angle

Time (s)

Ga
ze

 A
ng

le
 (D

eg
re

e)

True Predicted

Figure 4.9: True vs Predicted Gaze Angles for the BMOTE Model. Data is from Sub-
ject 3.

We also see how the estimated electrode positions using formula (2.4) dif-
fer from the electrode positions calculated using the formula (2.5) provided
in the paper. The latter resulting in the correct shape for the model voltage,
but shifted up or down.

To complete our validation process, we evaluated the BMOTE model fol-
lowing the methodology described in [2]. This evaluation consisted of the
following steps: We performed 2-fold cross-validation. The baseline drift was
removed by fitting and subtracting a 20th order polynomial and gaze errors
were computed based on the difference between the true gaze angle and the
mean of all predictions during a fixation. The resulting horizontal and ver-
tical errors, measured in degrees of visual angle, are presented in Table 4.5.
This table also includes the results from the original paper and comparable
results from a follow-up paper for comparison.

From the table, one can see that our horizontal gaze error is larger than
reported in the referenced papers. The vertical gaze error fits with the one
reported in the follow-up paper but is larger than the one reported in the

4.3 functional neural network architectures 46

original paper. However, an exact comparison is difficult, as the results from
the original paper are for a different dataset than the one we used, and
the results from the follow-up are based on a more advanced model. We
acknowledge that those results are not perfect, but combined with the rea-
sonable electrode position estimation in Table 4.4, and the close alignment
between the model’s predicted and recorded voltages in Figure 4.8, we are
confident that the model is implemented correctly. This is further supported
when we look at the true vs. predicted gaze angles in the test data, as shown
in Figure 4.9, where we can see that the model’s predictions follow the true
gaze angles.

4.3 functional neural network architectures

Because FNNs are rather new and effective design practices are not yet es-
tablished, we relied on established CNN architectures as a reference point
to guide the development of our FNN architectures. These architectures typ-
ically consist of three main components: the stem, body, and head.

Stem: The stem is the initial part of the network responsible for converting
the input signal into a form that can be processed by the subsequent
layers. In a traditional CNN architecture, the stem often includes a con-
volutional layer with a large kernel size, followed by a pooling layer to
reduce the spatial dimensions of the input. For our FNNs, we replaced
the standard convolutional layer with a functional convolutional layer,
using a large resolution to mimic the large kernel size of conventional
CNNs. In addition, we preceded this layer with a spatial filtering layer,
inspired by early experiments with the SpatialFilterCNN, where it was
found to be beneficial for enhancing the model’s performance. This de-
sign formed the foundation of the stem used in all the architectures we
explored. The general structure of the stem is shown in Table 4.6.

Body: The body of the network is where the bulk of the computation takes
place. It is composed of multiple stages, each consisting of several
blocks. For two-dimensional signals (like images) a typical block is
structured as a sandwich of three convolutional layers, where the outer
two use 1× 1 kernels, and the middle layer uses a 3× 3 kernel. In our
architectures, we decided to omit the first 1× 1 convolution following
insights from the SpatialFilterCNN [15]. Since we are working with
one-dimensional signals, we replaced the 3 × 3 kernel with a kernel
size of 9. Each convolutional layer was followed by batch normaliza-
tion before applying the activation function, which is a common prac-
tice. Additionally, we incorporated residual connections within each
block, allowing the input to be added to the output of the last convo-
lutional layer. The resulting block structure is shown in Table 4.7.

As in CNNs, each stage of our FNN body concludes with a pooling
layer, that reduces the length of the input signal by a factor of two,

4.3 functional neural network architectures 47

effectively narrowing the signal as it progresses deeper into the net-
work. Concurrently, the number of filters in the convolutional layers
was increased at each stage, resulting in a deeper network.

Head: In a typical CNN, the head consists of one or more dense layers
that transform the output of the body into the final prediction. To ac-
commodate this, the output from the body must first be flattened or
aggregated (e.g. through global average pooling).

Based on this reference architecture, we designed three FNNs and eval-
uated their performance. We did this by replacing different parts of the
architecture with functional layers. The functional layers are implemented
using the code published by one of the authors of [20], which is available
on GitHub at https://github.com/FlorianHeinrichs/functional neural

networks. All architectures are sized to have a similar number of parameters
of around 1.2× 106, resulting in models of approximately 4 MB in size. This
way the models are comparable in terms of complexity.

Layer Parameters Output Shape

Input — (batch_size, window_size, 4)
Conv1D kernel_size: 1,

filters: 16
(batch_size, window_size, 16)

BatchNorm axis: -1 (batch_size, window_size, 16)
ReLU — (batch_size, window_size, 16)
FuncConv1D padding: same,

resolution: 128,
n_functions: 9,
basis_type: Fourier

(batch_size, window_size, 64)

AvgPool pool_size: 2,
strides: 2

(batch_size, window_size/2, 64)

Table 4.6: The general structure of the stem, which is used by all three FNN archi-
tectures. Layer and parameter names generally follow the naming conven-
tions of the TensorFlow library. FuncConv1D is a functional convolutional
layer. The parameters are explained in Section 2.4.

4.3 functional neural network architectures 48

Layer Parameters Output Shape

Input — (batch_size, steps, channels_in)
(Func)Conv1D padding: same,

filters: channels_out
(standard only)
kernel_size: 9
(functional only)
resolution: 24,
n_functions: 6,
basis_type: Legendre

(batch_size, steps, channels_out)

BatchNorm axis: -1 (batch_size, steps, channels_out)
elu — (batch_size, steps, channels_out)
Conv1D padding: same,

filters: channels_out,
kernel_size: 1

(batch_size, steps, channels_out)

BatchNorm axis: -1 (batch_size, steps, channels_out)
Add — (batch_size, steps, channels_out)
elu — (batch_size, steps, channels_out)

Table 4.7: The structure of a standard ResBlock and a FuncResBlock. Layer and
parameter names generally follow the naming conventions of the Ten-
sorFlow library. In the ResBlock, the (Func)Conv1D layer is a standard
convolutional layer with a kernel size of 9. In the FuncResBlock, the
(Func)Conv1D layer is a functional convolutional layer with the param-
eters listed under (functional only). In both cases, the "same" padding and
a total of "channels_out" filters are used.

Fully Functional Architecture

The first FNN follows a "fully functional" design, meaning that every com-
ponent in the network is functional. For this, the residual block from the
reference architecture is replaced by a "functional residual block", where
the first convolution is changed to a functional convolutional layer. The sec-
ond convolution, which uses a kernel size of 1, remains unchanged, as a
functional convolutional layer with resolution 1 is only a complicated way
of applying a standard convolutional layer. The functional residual block
is shown together with the standard residual block in Table 4.7. Parts that
differ between the two blocks are marked accordingly.

Multiple of such functional residual blocks are then chained together mak-
ing up one big stage, with the number of filters increasing progressively with
the depth of the network. No pooling layers are used in or after the stage.
There are two reasons for this: Firstly, pooling operations with a stride break
the smooth structure of the signals passing through the network. Secondly,
using only functional layers at the head avoids the "parameter explosion"

4.3 functional neural network architectures 49

that would normally occur after the flattening operation. This is explained
in more detail below.

In the head of the network, solely functional dense layers are employed.
Because these layers expect functional inputs, there is no need to flatten the
output of the body. Instead, the body’s output is fed directly to the head. This
leads to a significant reduction in the number of parameters. Without the
need to flatten the body’s output, the first dense layer in the head requires
only last_channels_out × neurons weights. In contrast, if the output had been
flattened, the number of weights would be last_channels_out × last_steps

× neurons, where last_steps refers to the number of time steps remaining
after the body.

For instance, with a window size of 512 and no pooling, the last_steps

would be 512. Assuming last_channels_out is 256 and there are 256 neurons
in the first dense layer, this requires only 256× 256 = 65, 536 weights, which
equates to approximately 257 KB, assuming 4-byte floats. In contrast, if the
output had been flattened, the network would require 512 × 256 × 256 =

33, 554, 432 weights, or approximately 128 MB with 4-byte floats.
The complete architecture of the first "fully functional" FNN is shown in

Table 4.8.

Architecture #1: Fully Functional

Layer Parameters Output Shape

STEM — (batch_size, window_size/2, 64)
FuncResBlock filters: 64 (batch_size, window_size/2, 64)
FuncResBlock filters: 96 (batch_size, window_size/2, 96)
FuncResBlock filters: 144 (batch_size, window_size/2, 144)
FuncResBlock filters: 216 (batch_size, window_size/2, 216)
FuncDense neurons: 256,

n_functions: 12,
basis_type: Legendre,
activation: elu

(batch_size, window_size/2, 256)

FuncDense neurons: 2,
n_functions: 12,
basis_type: Legendre,
activation: linear,
pooling: True

(batch_size, 2)

Table 4.8: The detailed structure of the first "fully functional" architecture. Func-
Dense is a functional dense layer. The parameters are explained in Sec-
tion 2.4. This model has 1, 150, 488 trainable parameters, amounting to
4.39 MB.

Functional Body Architecture

The second FNN architecture takes a hybrid approach, using functional lay-
ers only in the body while concluding with standard dense layers in the
head. Unlike the fully functional architecture, using standard dense layers

4.3 functional neural network architectures 50

in the head necessitates pooling layers at the end of each stage, to reduce the
number of steps flowing into the head.

The body of this architecture is structured into two stages, each composed
of two functional residual blocks. In the first stage, each block contains 64
filters, while in the second stage, the number of filters is increased to 112.
Pooling operations at the end of each stage reduce the input size by half,
helping to control the dimensionality of the data as it passes through the
network.

The output of the body is then flattened and passed through the head,
which consisted of two standard dense layers. The first dense layer contains
64 neurons with an Exponential Linear Unit (ELU) activation function, while
the second layer has two neurons with a linear activation function, produc-
ing the final output.

Table 4.9 provides a detailed breakdown of the second FNN architecture.

Architecture #2: Functional Body

Layer Parameters Output Shape

STEM — (batch_size, window_size/2, 64)
FuncResBlock filters: 64 (batch_size, window_size/2, 64)
FuncResBlock filters: 64 (batch_size, window_size/2, 64)
AvgPool pool_size: 2,

strides: 2
(batch_size, window_size/4, 64)

FuncResBlock filters: 112 (batch_size, window_size/4, 112)
FuncResBlock filters: 112 (batch_size, window_size/4, 112)
AvgPool pool_size: 2,

strides: 2
(batch_size, window_size/8, 112)

Flatten — (batch_size, window_size/8× 112)
Dense neurons: 64,

activation: elu
(batch_size, 64)

Dense neurons: 2,
activation: linear

(batch_size, 2)

Table 4.9: The detailed structure of the second "functional body" architecture. Layer
and parameter names generally follow the naming conventions of the Ten-
sorFlow library. This model has 1, 157, 394 trainable parameters, amount-
ing to 4.42 MB.

Minimally Functional Architecture

The third FNN architecture uses functional layers sparingly, with only a sin-
gle functional dense layer in the head. 3 This functional layer helps avoid
the need to flatten the body’s output, which similar to the first architecture,
reduces the number of required parameters. The "saved" parameters are re-
allocated to an additional larger dense layer in the head, rather than adding
more blocks to the body. This approach introduces some architectural vari-

3 And the one functional convolutional layer in the stem that is part of all three architectures.

4.4 experimentation setup 51

ety. The body of this architecture is similar to that of the second FNN, but it
employs standard residual blocks rather than functional ones. At the head,
the output from the body is first aggregated by a functional dense layer
with 512 neurons. This layer includes pooling and uses the ELU activation
function. It acts as a more flexible global average pooling layer, providing
the flexibility to weigh different parts of the signal differently, as opposed
to standard global average pooling, which averages all inputs equally. After
the functional layer, the data is processed by a standard dense layer with 512
neurons, also using the ELU activation function. The architecture concludes
with a final standard dense layer with two neurons and a linear activation
function for the output. The details of the third FNN architecture are shown
in Table 4.10.

Architecture #3: Minimally Functional

Layer Parameters Output Shape

STEM — (batch_size, window_size/2, 64)
ResBlock filters: 64 (batch_size, window_size/2, 64)
ResBlock filters: 64 (batch_size, window_size/2, 64)
AvgPool pool_size: 2,

strides: 2
(batch_size, window_size/4, 64)

ResBlock filters: 112 (batch_size, window_size/4, 112)
ResBlock filters: 112 (batch_size, window_size/4, 112)
AvgPool pool_size: 2,

strides: 2
(batch_size, window_size/8, 112)

FuncDense neurons: 512,
activation: elu,
n_functions: 12,
basis_type: Legendre,
pooling: True

(batch_size, 512)

Dense neurons: 512,
activation: elu

(batch_size, 512)

Dense neurons: 2,
activation: linear

(batch_size, 2)

Table 4.10: The detailed structure of the third "minimally functional" architecture.
Layer and parameter names generally follow the naming conventions
of the TensorFlow library. FuncDense is a functional dense layer. The pa-
rameters are explained in Section 2.4. This model has 1, 275, 570 trainable
parameters, amounting to 4.87 MB.

4.4 experimentation setup

The experiments were conducted on an NVIDIA DGX Workstation, the hard-
ware specifications of which are outlined in Table 4.11. The system features
four NVIDIA Tesla® V100-DGXS GPUs, each with 32 GB of memory, sup-
ported by an Intel Xeon E5-2698 v4 CPU running at 2.2 GHz with 20 physical

4.4 experimentation setup 52

Component Specification

GPUs 4 × NVIDIA Tesla® V100-DGXS-32GB
CPU 1 × Intel Xeon E5-2698 v4 2.2 GHz (20-Core/40 vCores)
RAM 256 GB ECC Registered-DIMM DDR4 SDRAM
OS DGX OS 5.4.2 (Ubuntu 20.04)
CUDA 11.4

Table 4.11: Hardware specifications of the NVIDIA DGX Workstation used for the
experiments.

cores, and 40 virtual cores. Additionally, the workstation is equipped with
256 GB of RAM.

While the workstation has the capacity to run multiple GPUs simultane-
ously, initial tests revealed that, using multiple GPUs did not result in a
significant reduction in training time. This is likely due to the bottleneck in
data loading. As a result, each experiment was conducted on a single GPU.
However, multiple GPUs were used to run several experiments concurrently.

All experiments were conducted within a Docker container environment.
Specifically, we utilized the NVIDIA TensorFlow container image nvcr.io/

nvidia/tensorflow:24.06-tf2-py3, which provided an optimized runtime for
TensorFlow with CUDA 11.4 support.

For experiment tracking, we utilized MLflow, which was self-hosted on a
separate machine dedicated to logging and monitoring experimental data.
Most of the key metrics and parameters were captured automatically using
MLflow’s autologging feature. In addition to the standard metrics, we man-
ually logged various other metrics including the following:

• The commit hash to ensure that the exact version of the code used for
each experiment was traceable.

• A fingerprint or hash of the dataset, along with accompanying meta-
data, to guarantee data reproducibility and traceability.

• The complete experiment configuration, including hyperparameters
and other settings.

• The serialized model in Keras format (model.keras) for future inference
or tests.

• Various plots, including visualizations of the dataset and model pre-
dictions.

Hyperparameter tuning was handled using Optuna, with the Tree-structured
Parzen Estimator (TPE) sampler configured for efficient search through the
hyperparameter space. Additionally, Optuna was set up to allow for the
saving, loading, and continuation of tuning sessions, ensuring flexibility in
managing the optimization process.

4.5 metrics 53

4.5 metrics

In this section, we introduce the three key metrics used to evaluate model
performance in our experiments: the Mean Euclidean Distance (MED), Preci-
sion, and the Pearson correlation coefficient. These metrics provide comple-
mentary insights into different aspects of model accuracy, helping us assess
the quality of predictions across both smooth pursuit and saccadic eye move-
ments.

Mean Euclidean Distance

In line with the benchmarking guidelines, introduced in Section 3.5, we col-
lected the MED in all experiments. It is calculated using the formula given
in Equation 3.2 and Equation 3.3. It is clear and easily interpretable, and can
be used for both the saccades and smooth pursuit tasks.

Precision

In conjunction with the MED, we also calculated the precision of the model’s
predictions. However, here "Precision" does not refer to the precision in clas-
sification tasks, but rather to the variation in the predicted gaze positions.
This "version" of the Precision metric is common in the field of metrology
[44], but can also be found in related works such as [40]. The metric is calcu-
lated by taking the mean of all successive predictions differences, i.e.

1
N

N

∑
i=1
‖ŷi+1 − ŷi‖2 , (4.1)

where ŷi is the predicted gaze position at time step i. We adjusted this pre-
cision metric to account for moving targets. Specifically, in cases where the
target gaze position is dynamic, the above formula will be incorrect. There-
fore, we modified the metric to only consider deviations in predictions that
are not caused by the motion of the target. The modified formula is given by

Precision :=
1
N

N

∑
i=1
‖ŷi+1 − ŷi − (yi+1 − yi)‖2 , (4.2)

where yi is the true gaze position at time step i.

Correlation

We also measure the Pearson correlation coefficient, which is defined as

corr := ∑N
i=1(yi − ȳ)(ŷi − ¯̂y)√

∑N
i=1(yi − ȳ)2 ∑N

i=1(ŷi − ¯̂y)2
, (4.3)

4.5 metrics 54

where yi and ŷi are the individual data points for the true and predicted
values, and ȳi and ¯̂yi are their respective means. It measures the linear rela-
tionship between the two variables, resulting in a value between −1 and 1,
with 1 indicating perfect correlation.

Since the Pearson correlation can only be computed for one-dimensional
variables, we calculate the correlation separately for the x and y components
of the predicted gaze positions. These separate metrics are referred to as
corrx and corry, respectively. To obtain a single combined correlation metric,
which can be used for tasks such as hyperparameter tuning, we compute the
mean of corrx and corry. This combined metric is referred to simply as corr
in our experiments.

While the MED serves as a primary measure of model performance, we
introduced the Pearson correlation coefficient to complement the MED due
to its additional, desirable properties in certain scenarios. One advantage of
the correlation metric is that it easily detects when a model has "collapsed
to the mean." When all predictions are the same (such as when a model
predicts only the mean value from the training data), the Pearson correlation
coefficient will be zero.

Another property of the Pearson correlation is that it is both translation
and scale invariant. This makes it particularly useful for assessing models
that are beginning to capture the right "form" of the targets, even if they
have not yet learned the correct scale or position. For example, a model
might predict the general shape or direction of the gaze movement but miss
the exact magnitude, which would be penalized heavily by the MED but less
so by the correlation. This property makes correlation especially valuable in
early stages of model development, where capturing the form is a positive
sign of learning.

To further illustrate this, consider a plot of predicted values against the
true values, with the true values plotted along the x-axis. For a perfect
model, all points would lie on the 45◦ line, indicating that the predicted
and true values are identical. The MED essentially measures the average ver-
tical distance that each point lies away from this ideal 45◦ line. However, two
different models can achieve the same MED while having fundamentally dif-
ferent prediction patterns. Take for example the predictions in Figure 4.10.
The model on the left whose predictions randomly oscillate around the 45◦

line with a fixed distance (random noise) will have the same MED as the
model on the right where all predictions lie on a straight line parallel to
the 45◦ line but offset (systematic bias). The latter clearly captures important
patterns of the data, while the former does not, yet their MED values would
be identical.

It is important to note, however, that while correlation can provide valu-
able insights during model training, it is not as useful for benchmarking
more advanced models. As models become more capable, they should not
only capture the form but also accurately predict the scale and magnitude of
the values. In these cases, MED becomes more relevant as a final evaluation
metric, since it directly measures how close the predictions are to the true

5
E VA L U AT I O N A N D R E S U LT S

In this chapter, we present and analyze the results of our experiments. We
begin by discussing the baseline and reference results on the Consumer EEG-
ET dataset introduced in this thesis. Next, we evaluate the performance of
the SpatialFilterCNN and BMOTE models on the same dataset. Finally, we
conclude by showcasing the results of the FNNs described in Section 4.3,
comparing their performance both on our dataset and on the EEGEyeNet
dataset.

5.1 baseline and reference results

Before we conducted various experiments with the proposed models, we
first established different baselines and reference scores to compare the re-
sults against. Those include the following:

• Random Baseline: At every timestep, predict a random position.

• Mean Baseline: At every timestep, predict a constant: the mean of all
training targets (stimulus positions).

• Webcam: At every timestep, predict what the webcam measured at that
timestep (gaze position).

The purpose of the random baseline is to provide a lower bound to see if
the model is learning anything at all. The purpose of the mean baseline is
to provide a harder, more informative bound to see if the model is learning
anything useful. It is rather easy for the models to collapse to the mean, so a
model that beats the mean is probably learning something useful. The score
of the webcam servers multiple purposes.

First, it serves as a target for "good" performance, as the webcam, from
manual inspection, for the most part performs well. Second, it allows a di-
rect comparison between "consumer-grade camera-based eye tracking" (i.e.
webcam-based eye tracking) and "consumer-grade EEG-based eye tracking".
The webcam is also a good sanity check for the metrics, i.e. most models
probably perform worse than the webcam, the metrics should properly re-
flect that. The results of these baselines and reference scores are shown in
Table 5.1. For the level-1 task, especially the level-1 smooth task, the mean
baseline turns out to be surprisingly good, even beating the webcam in the
MED metric.

There are several reasons for this outcome. First, the target remains in the
center for a long time, in which cases, the mean baseline makes minimal er-
rors. Second, after the dot jumps back to the center, the participants’ reaction
time causes the webcam to produce large errors. Both effects are visible in

5.1 baseline and reference results 57

level-1-saccades level-1-smooth

Model MED Precision MED Precision corrx corry

Random 165.9 177.1 143.6 177.4 −0.005 0.002
Mean 83.58 0.650 51.98 0.364 0 0
Webcam 81.89 1.479 74.59 0.890 0.687 0.347

level-2-saccades level-2-smooth

Model MED Precision MED Precision corrx corry

Random 199.8 177.3 164.5 177.5 0.002 0.002
Mean 162.3 0.591 104.5 0.420 0 0
Webcam 87.19 1.474 77.00 0.999 0.897 0.753

Table 5.1: Results of the baseline and reference models.

200

0

200

Stimulus_x Webcam_x

100

0

100

200

P0
38

_0
1

Stimulus_y Webcam_y

200

0

200

100

0

100
P0

46
_0

1

0 10 20 30 40 50
Time (s)

200

0

200

0 10 20 30 40 50
Time (s)

100

0

100

P0
94

_0
1

Po
sit

io
n

(m
m

)

Figure 5.1: Webcam results for the level-1 smooth task. A selection of three partic-
ipants from the test set is shown. Blinks are clearly visible as spikes in
the vertical axis. Using those for blink detection would probably be more
robust than our EEG-based blink detection approach. However, for this,
webcam data together with labeled blinks would be needed, which was
not recorded.

5.2 spatialfiltercnn results 59

• Spatial filtering: Enabled or Disabled

• Equally sized windows: Enabled or Disabled

• NS (number of spatial filters): 4 to 64

• N1 (number of filters in the first residual block): 8 to 128

• N2 (number of filters in the second residual block): 16 to 256

For each task, we trained 20 models with different hyperparameter configu-
rations, each for 30 epochs. Performance was evaluated on a validation set
separate from the test set. This approach was chosen to prevent potential
overfitting to the test set that could occur through repeated evaluations dur-
ing the hyperparameter tuning process. The validation set was constructed
to mimic the characteristics of the test set. For this purpose, we selected the
recordings from participants 1, 20, 28, 42, 52, and 69, which are of similar
high quality and display similar demographic characteristics as the partici-
pants chosen in the test set. After the hyperparameter tuning was complete,
we selected the best model based on its performance on the validation set.
This final model was retrained and then tested on the unused test set.

For the saccades tasks the MED on the validation set was used as the
objective function for the optimization process. While the MED proved to be
an effective tuning metric for saccade tasks, it was less suitable for smooth
pursuit tasks. As we had already seen in the baseline results in Section 5.1,
the mean baseline performed surprisingly well on the level-1 smooth task,
even beating the webcam in the MED metric.

This observation led us to use the correlation metric instead of MED as
the tuning metric for the smooth pursuit tasks, which resulted in models,
that successfully learned and reproduced the underlying structure of the
smooth pursuit data, as shown in the results in Figure 5.3. The figure offers
a detailed comparison of predicted versus true stimulus positions of the Spa-
tialFilterCNN model deemed best by the hyperparameter tuning procedure
for the level-1 and level-2 smooth tasks. For each task, three recordings from
the twelve available in the test set are shown. The recordings were selected to
provide a balanced representation of the model’s overall performance, high-
lighting both strong and weak predictions to give a comprehensive view of
its capabilities.

A clear trend across both tasks is that predictions for the Stimulus_x (left
panels) tend to be more accurate than those for Stimulus_y (right panels). Fur-
thermore, there are noticeable differences between recordings. Some record-
ings yield better predictions than others, likely reflecting differences in the
quality of the recordings themselves.

Focusing on the level-1 smooth task, the model demonstrates reasonably
accurate amplitude and timing in capturing the onset of smooth movement.
However, it frequently fails to detect or fully reproduce certain movements,
resulting in missed or incomplete predictions. For the level-2 smooth task,
the model captures the timing of movements well, particularly the changes
in direction, but struggles more with predicting the correct amplitude. The

5.2 spatialfiltercnn results 60

level-1 smooth

200

0

200

Stimulus_x

100

0

100

P0
27

_0
1

Stimulus_y

200

0

200

100

0

100

P0
60

_0
1

10 20 30 40 50
Time (s)

200

0

200

10 20 30 40 50
Time (s)

100

0

100

P0
73

_0
1

Po
sit

io
n

(m
m

)

True Pred

level-2 smooth

200

0

200
Stimulus_x

100

0

100

P0
27

_0
1

Stimulus_y

200

0

200

100

0

100

P0
60

_0
1

0 20 40 60 80 100 120
Time (s)

200

0

200

0 20 40 60 80 100 120
Time (s)

100

0

100

P0
73

_0
1

Po
sit

io
n

(m
m

)

True Pred

Figure 5.3: Predictions of the best SpatialFilterCNN model. Note, even though all
smooth recordings started with the target at the center, this is not appar-
ent from the plot. This is because the first value of each plot is the last
value of the first window, which might not start at the center.

5.2 spatialfiltercnn results 61

level-1-saccades level-1-smooth

Model MED Precision MED Precision corrx corry

SFCNN (unfiltered) 76.60 14.07 62.44 12.72 0.226 0.038
SFCNN (filtered) 66.54 7.087 59.32 12.79 0.140 −0.021
SFCNN (tuned) 54.62 4.648 57.92 6.093 0.199 0.192

level-2-saccades level-2-smooth

Model MED Precision MED Precision corrx corry

SFCNN (unfiltered) 146.7 53.69 119.3 48.92 0.322 0.069
SFCNN (filtered) 139.5 33.65 128.0 46.37 0.226 0.038
SFCNN (tuned) 109.0 6.454 99.38 20.84 0.434 0.157

Table 5.2: Results of the SpatialFilterCNN models. The unfiltered model was trained
on unfiltered data, the filtered model on filtered data (as described in
under Filtering of Section 4.1), and the tuned model was the best model
found by the hyperparameter tuning process.

predicted movements often oscillate around the mean, meaning that the
model has difficulty reproducing the lower frequency components of the
target’s motion.

Despite this, it is important to note that the frequency of the target move-
ments varies significantly both within and across recordings. The model
demonstrates an impressive ability to adapt to these variations, accurately
predicting the moments when the target changes direction, even though it
does not have access to past target positions. This highlights the model’s
ability to infer the correct timing for directional shifts based solely on the
current window of EEG data. Furthermore, it should be emphasized that
the participants included in the test set were not part of the training set.
This means that not only were the recordings themselves novel to the model,
but the participants were as well.

The results of the "best" SpatialFilterCNN model — as determined by the
hyperparameter tuning process — are shown in Table 5.2, together with the
results of the unfiltered and filtered models. The best (tuned) SpatialFilter-
CNN outperforms the mean baseline in terms of MED on all tasks except for
the level-1 smooth task. However, as observed in Figure 5.3, the model has
captured important aspects of the underlying structure of the level-1 smooth
data, showing that it is doing more than simply predicting the mean. Com-
pared to the webcam, all SpatialFilterCNN models perform worse in terms
of MED on both level-2 tasks. On the level-1 tasks, surprisingly, all Spatial-
FilterCNN models outperform the webcam.

However, looking at the correlation metrics, the webcam is clearly superior.
This is further supported when comparing Figures 5.3 and 5.1. To better
assess the differences in performance on the level-1 saccades task between
the best SpatialFilterCNN model and the webcam, we created a figure that

5.3 bmote results 63

500

250

0

250

EOG Electrode 1 (Above Right Eye)

200

0

200

400
Baseline Corrected EOG Electrode 1

0 20 40 60 80 100 120
Time (s)

100

50

0

50
EEG Electrode AF8 (Above Right Eye)

Vo
lta

ge
 (

V)

Figure 5.5: In the first panel, the EOG signal measured from subject 4 at the first
electrode, the electrode above the right eye, is shown without any base-
line correction. In the second panel, the same signal is shown with base-
line correction. The third panel shows the EEG signal from recording
"P045_01 level-2-saccades" at the electrode AF8, which is located on the
forehead above the right eye on the Muse headband. The EEG signal is
shown without any preprocessing.

package, which was used to interface with the Muse headset, we found
no evidence of any preprocessing being applied by either the hardware or
software.

This difference in the behavior of the EEG signal required extra thought
when applying the BMOTE model to our data. In the original BMOTE paper,
the authors employed several preprocessing steps, including:

• Bandpass filtering from 0 Hz to 30 Hz and applying a 50 Hz notch filter

• Blink removal based on template matching

• Baseline drift correction

Since our EEG signals did not show any baseline drift, we questioned whether
applying an additional baseline correction step was necessary. Similarly, we
were cautious about applying excessive filtering, as it might remove critical
information from the signals.

To determine which preprocessing steps to retain or modify, we experi-
mented with different levels of preprocessing. We started with only blink
removal, using the blink detection model described in Section 4.1 with a
threshold of 0.3, then tested blink removal combined with filtering, and fi-
nally, we applied the full set of preprocessing steps: blink removal, filtering,
and baseline drift compensation. To evaluate the effectiveness of each ap-
proach, we examined the correlation between the voltage and gaze position,
analyzing plots similar to Figure 4.8.

5.3 bmote results 64

The results, however, were inconclusive. All preprocessing variations pro-
duced very similar outcomes. Given this lack of differentiation between
the preprocessing methods, we decided to stick with the full preprocessing
pipeline from the BMOTE paper to avoid introducing unnecessary devia-
tions from the original approach.

To properly evaluate the BMOTE model, two additional steps were re-
quired:

1. We needed initial values for the electrode positions to begin the opti-
mization process, as outlined in (2.5)

2. We needed to determine a suitable value for the constant C = I/4πσ,
since the conductivity of the Muse headset electrodes was likely differ-
ent from that of the electrodes used in [3]

To estimate the initial electrode positions Pinit, we measured the placement
of the Muse headset’s electrodes relative to the center between the author’s
eyeballs while wearing the device. This was accomplished by taking both
front-facing and side-facing images of the author’s head zoomed-in from a
distance to approximate an orthographic view. A reference object of known
dimensions was placed next to the head in the images to provide a scale.
From these images, we were able to estimate the electrode dimensions and
positions, which were then averaged into a position per electrode. The final
set for the TP9 (over left ear), AF7 (forehead left side), AF8 (forehead right
side), and TP10 (over right ear) initial electrode positions in millimeters was
(in this order)

Pinit =
{−83.19

−87.33

−0.02

 ,

 12.11

−49.48

58.64

 ,

12.11

49.48

58.64

 ,

−83.19

87.33

−0.02

}.

In order to determine the value for the constant C, we conducted a search
over a range of values, aiming to find the value for which the voltage lev-
els of the model most closely matched the true voltage levels. For this, we
calculated the power2 of the voltage signal predicted by the model on the
complete level-2 saccades training data and compared it to the power of the
true signal measured by the electrodes.

The electrode positions of the model were initialized to Pinit and estimated
with formula (2.4) (instead of the original one (2.5)) also using the complete
level-2 saccades training data. The average of the difference in power over
all electrodes was calculated using the following formula

1
Ne

Ne

∑
i=1

∣∣∣∣ 1
N

N

∑
k=1

V(mod)
i (θk)

2

︸ ︷︷ ︸
power of model voltage

− 1
N

N

∑
k=1

V(rec)
i (θk)

2

︸ ︷︷ ︸
power of recorded voltage

∣∣∣∣, (5.1)

2 The power of a signal is the sum of the squared values of the signal divided by the number
of samples. It measures the amount of energy consumed per unit time.

5.3 bmote results 65

4.000 5.000 6.000 7.000 8.000 10.000 11.0008.947
C (Vm)

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.077

Av
er

ag
e

Po
we

r D
iff

er
en

ce
 (n

W
)

Figure 5.6: Tuning of the constant C for the BMOTE model. The optimal value for C
is marked with dotted lines. Average power difference is given in "nano
Watt".

where Ne is the number of electrodes, N is the number of samples, V(mod)
i

is the predicted voltage level of electrode i, V(rec)
i is the recorded voltage

level of electrode i, and θk is the vector of vertical and horizontal gaze angle
at time k. The difference in power was calculated for 20 values of C evenly
spaced between 5 µV m and 50 µV m. The results are shown in Figure 5.6,
where the power difference is minimized for C = 8.95.

With the values for Pinit and C determined, we were able to proceed with
evaluating the BMOTE model on the test data. In the original BMOTE pa-
per, the model is evaluated using electrode positions estimated from data
of the same participant. However, in our case, we did not have additional
(level-2) saccades data for the participants in the test set. This meant that the
same level-2 saccades data used to estimate the electrode positions was also
used to evaluate the model’s performance on the level-2 saccades task. This
approach potentially introduces an optimistic bias in the level-2 saccades
evaluation, as the electrode positions were estimated using the same data
they were tested on.

Ideally, we would have split the level-2 saccades data into two halves, one
half for estimating the electrode positions, and the other half for evaluation.
However, this was not feasible for two key reasons: first, we did not have
enough level-2 saccades data per participant to make such a split, and sec-
ond, splitting the data in this way would result in evaluating BMOTE on a
different test set compared to the other models, making direct comparisons
difficult. To mitigate this issue, we also evaluated the BMOTE model always
using the electrode positions form the run with the optimal C value, i.e. elec-
trode positions estimated from the full level-2 saccades training data.

Furthermore, we introduced a post-processing step where predictions out-
side a plausible range were discarded. This was necessary because the model
often predicted extreme gaze angles close to or exceeding 90◦, which, when
converted to screen coordinates, resulted in extremely large values or even

5.3 bmote results 66

level-1-saccades level-1-smooth

Model MED Precision MED Precision corrx corry

BMOTE* 164.86 158.30 140.31 150.14 0.022 −0.027

BMOTE (orig. formula)** 158.82 73.01 121.57 60.67 −0.089 −0.009

BMOTE (train estimated)*** 159.34 184.84 145.35 181.28 −0.060 −0.049

Discarded: * 98.4%, ** 98.4%, *** 99.7% Discarded: * 97.9%, ** 96.7%, *** 99.8%

level-2-saccades level-2-smooth

Model MED Precision MED Precision corrx corry

BMOTE* 197.51 164.17 164.49 153.99 −0.007 0.017

BMOTE (orig. formula)** 194.91 76.99 143.73 74.25 0.059 0.078

BMOTE (train estimated)*** 196.64 203.87 163.79 186.43 0.003 −0.002

Discarded: * 97.9%, ** 98.4%, *** 99.8% Discarded: * 97.3%, ** 98.8%, *** 99.9%

Table 5.3: Results of the BMOTE models. The results under BMOTE correspond to
the models evaluated using the electrode positions estimated for every
participant separately with formula (2.4). The results under BMOTE (orig.
formula) correspond to the models evaluated using the electrode posi-
tions estimated for every participant separately with the original formula
(2.5) from the paper. The results under BMOTE (train estimated) corre-
spond to the models evaluated using the electrode positions estimated
from the full level-2 saccades training data with formula (2.4). The per-
centage of discarded predictions is shown below each task.

infinity. To prevent these outliers from distorting the overall metrics, we
removed all predictions that fell outside the known viewing boundary of
−220 mm to 220 mm mm on the x-axis and −110 mm to 110 mm on the y-
axis. We believe this adjustment is reasonable, as it could also be applied
during inference in practical applications.

The results of both experiments are shown in Table 5.3, including the num-
ber of discarded values. The experiment where electrode positions were es-
timated for every participant separately, was done once with the original
formula for electrode positions estimation (2.5) and once with the alterna-
tive formula (2.4). We see that all configurations performed close to random,
with nearly all of the predictions (always over 97%) being discarded during
post-processing. This is likely in large part due to the assumption of point
electrodes not being met by the Muse headband. Additionally, the EEG data
we collected differed noticeably from the EOG data used in the original
BMOTE paper [3]. While we anticipated this to impact the model’s perfor-
mance, we did not expect a complete failure in gaze prediction. Such a poor
performance probably suggests that, at distances further from the eye, the
voltage differences are no longer primarily governed by a simple battery
model but are heavily influenced by other factors.

5.4 fnn results 67

5.4 fnn results

After introducing the FNN architectures in Section 4.3, we now evaluate
the performance of these models on our dataset. All models were trained
for 30 epochs using the Adam optimizer, with a learning rate of 0.0008, a
batch size of 384, and MSE as the loss function. We excluded blinks from
the training data by filtering out windows, which included samples with a
blink probability of at least 0.3. No additional filtering was applied to the
data, even though filtered data had previously shown improved results for
saccades tasks with the SpatialFilterCNN. This omission is acknowledged as
a missed opportunity.3

To isolate the impact of functional layers on model performance, control
models were trained for each architecture. These control models retained
the overall structure of the FNNs but replaced the functional layers with
equivalent "standard" layers. This allowed for a direct comparison between
functional and standard architectures.

For the fully functional architecture, the functional residual blocks were
replaced by standard residual blocks, while the two final functional dense
layers were substituted with two convolutional layers followed by a global
average pooling layer. The first convolutional layer contained 256 filters with
an ELU activation function, and the second contained 2 filters with a linear
(no) activation. Both layers had a kernel size of 12. This "substitution" closely
mirrors the structure of the FNN, but allows the filters to adopt arbitrary
(potentially non-smooth) forms, unlike the functional layers with inherent
smoothness constraints.

In the architecture featuring a functional body, the control model is sim-
ply created by replacing the functional residual blocks with standard resid-
ual blocks. Finally, for the minimally functional architecture, where only the
head contained a functional layer, we replaced the single functional dense
pooling layer with a standard convolutional layer, a global average pool-
ing layer, and an ELU activation. The convolutional layer had 512 filters, to
match the 512 neurons of the functional dense layer, and a kernel size of 12.
Global average pooling was used to obtain a "scalar" output as in the func-
tional dense pooling layer. Once again, this configuration closely matched
the original FNN, though the convolutional layer allowed for arbitrary fil-
ters in contrast to the smooth filters produced by the functional dense layer.

With these closely matched control models, we can attribute any system-
atic differences in performance to the functional layers themselves. The con-
trol models were trained under the exact same conditions as the functional
models, namely for 30 epochs with the Adam optimizer, a learning rate of
0.0008, a batch size of 384, and MSE as the loss function.

The results of the FNN models, along with their control counterparts, are
presented in Table 5.4. Across nearly every task and metric, the FNNs out-
perform the control models. One exception is observed in the level-1 smooth

3 Filtering was planned for the saccades tasks, but was forgotten during implementation. Un-
fortunately this was noticed too late to be corrected without the need for significant re-
training.

5.4 fnn results 68

level-1-saccades level-1-smooth

Model MED Precision MED Precision corrx corry

FullyFunc 73.02 1.908 61.18 0.898 0.220 0.052

FullyFunc (control) 73.41 1.772 55.11 0.882 0.285 0.011
FuncBody 78.35 2.278 57.47 0.965 0.259 0.027
FuncBody (control) 78.85 2.366 64.69 1.100 0.220 0.046

MinFunc 64.72 1.865 56.18 0.901 0.168 0.070
MinFunc (control) 71.13 1.920 58.30 1.007 0.154 0.076

level-2-saccades level-2-smooth

Model MED Precision MED Precision corrx corry

FullyFunc 127.5 2.276 100.8 0.913 0.409 0.138

FullyFunc (control) 128.8 2.391 104.4 1.092 0.364 0.104
FuncBody 130.6 2.842 104.2 1.161 0.384 0.097
FuncBody (control) 135.8 2.747 105.2 1.176 0.378 0.146

MinFunc 129.7 2.602 101.5 1.181 0.411 0.159
MinFunc (control) 132.2 2.494 108.2 1.336 0.348 0.087

Table 5.4: Results of the FNN models. The better result between the functional and
control model is highlighted in bold, and the best result for each metric
is underlined. The control models are named by appending "(control)"
to the model name, which admittedly is not ideal, as for example the
"FullyFunc (control)" model has no functional layers (except for one in
the stem). However, this naming convention makes it easier to see the
functional-control pairs.

5.5 fnn results on eegeyenet dataset 70

while on the saccades tasks, the best SpatialFilterCNN model outperforms
all FNN models in the MED metric.

Importantly, the fully functional model outperforms any untuned (and
unfiltered) SpatialFilterCNN across all tasks and metrics.4 This opens up the
possibility that with further tuning, the FNNs could potentially deliver even
better overall performance than the SpatialFilterCNN, not just in smooth
tasks but also in saccades tasks. Furthermore, the FNNs were not trained
with any additional filtering, which was shown to improve the performance
of the SpatialFilterCNN models on the saccades tasks.

5.5 fnn results on eegeyenet dataset

To gain a more comprehensive understanding of the performance of func-
tional models on EEG-based eye tracking data, we extended our evaluation
to include the EEGEyeNet dataset. Unlike our dataset, which reflects what is
currently possible with consumer-grade hardware, the EEGEyeNet dataset
represents the high-end of data quality for EEG-based eye tracking, featuring
laboratory-controlled conditions and research-grade EEG equipment with
more electrodes and wet sensors. This comparison allows us to explore how
FNNs perform under optimal data collection conditions, versus more practi-
cal, real-world scenarios.

The exact same architectures and parameters that were used on our dataset
were applied to the EEGEyeNet dataset The training parameters were set to
match the ones used by the SpatialFilterCNN. This included early stopping
based on the validation loss, with patience of 20 epochs, the Adam optimizer
with a learning rate of 0.0001 and a batch size of 64. Models were trained for
a maximum of 50 epochs, with a window size of 500 (which is fixed by the
EEGEyeNet dataset).

Following the standard practice from the EEGEyeNet paper [23], each
model was trained and evaluated five times. The results, including the mean
and standard deviation of the MED and MAE metrics, are summarized in
Table 5.5. With the exception of the fully functional control model, all func-
tional architectures outperformed the SpatialFilterCNN in both the MED
and MAE metrics, resulting in new state-of-the-art results on the EEGEyeNet
benchmark (at least to the best of our knowledge). The best-performing
model was the MinFunc control model, which surpassed the SpatialFilter-
CNN by 2.6 mm in the MED and 1.8 mm in the MAE.

It is important to note that the architectures used in these experiments
were not tuned specifically for the EEGEyeNet dataset, and it is likely that
further improvements could be achieved with hyperparameter tuning. How-
ever, the same can be said for the SpatialFilterCNN, as its parameters were
adopted directly from the work of [15], which did not indicate any kind of
tuning.

Unlike the results on our dataset, where functional layers showed a clear
benefit, the differences between the functional, and control models on the

4 With one exception being the corrx metric on the level-1 smooth task

5.5 fnn results on eegeyenet dataset 71

Model MED MAE

FullyFunc 68.5± 1.0 42.7± 0.6
FullyFunc (control) 69.9± 1.3 43.6± 0.8
FuncBody 68.0± 0.8 42.4± 0.6
FuncBody (control) 68.1± 0.5 42.3± 0.3
MinFunc 66.8± 0.5 41.5± 0.4
MinFunc (control) 66.2± 0.8 41.1± 0.5

SpatialFilterCNN 68.8± 1.4 42.9± 0.8

Table 5.5: Results of the FNN models on the EEGEyeNet dataset. The mean and stan-
dard deviation of the MED and MAE metrics are shown for each model.
The better result between the functional and control model is highlighted
in bold, and the best result for each metric is underlined. The results of
the SpatialFilterCNN are included for comparison. The MED and MAE
are reported in millimeters using a conversion factor of 0.5.

EEGEyeNet dataset were much smaller. In fact, the control models outper-
formed the functional models half of the time. Therefore, the advantage of
functional layers in the constructed architectures is less clear when evaluated
on the EEGEyeNet dataset.

Several factors could explain these results. One possibility is that func-
tional models scale better with larger window sizes or handle noisy data
better than the control counterparts. This could account for the more consis-
tent improvements observed with the FNNs compared to the control models
in our dataset, where the window size was larger, and the signal from the
dry electrodes less clean. Alternatively, the differences observed between
the functional and control models may simply be due to chance, such as
variations caused by random weight initialization. To confidently assess the
influence of functional layers, many more repeated experiments would be
required. That being said, the results already suggest that the benefit of
functional layers on the EEGEyeNet dataset, at least for the constructed ar-
chitectures, is minimal at best.

Finally, we note that having surpassed the current state of the art with a
model architecture that is mostly based on standard convolutional architec-
tures, suggests that there is still considerable room for improvement in the
field of EEG-based eye tracking.

6
D I S C U S S I O N , O U T L O O K A N D C O N C L U S I O N

In this final chapter, we will revisit the key contributions of this thesis, sum-
marizing the major findings and their implications. We begin by discussing
the "Consumer EEG-ET dataset" a large-scale EEG and eye tracking dataset
that we collected. Next, we reflect on the insights gained from experimenting
with FNNs, and their performance on EEG-ET tasks. Finally, we consider the
broader limitations of our work and outline potential directions for future
research, ending with a final conclusion.

discussion and implications

One of the key contributions of this thesis is the introduction of a new, large-
scale EEG eye tracking dataset collected using consumer-grade hardware.
This dataset stands out as the largest known dataset of its kind, featuring
over 11 hours and 45 minutes of continuous training data from 113 partici-
pants. It incorporates two different experimental paradigms: smooth pursuit
and saccades tasks in two increasing levels of difficulty. Notably, this dataset
addresses critical gaps present in other EEG-ET datasets, which either lack
smooth movements — important for applications like the FDA — or rely on
research-grade hardware, making them less applicable to real-world scenar-
ios.

Because such a dataset was never collected before, it was unclear whether
EEG data recorded with consumer-grade hardware — with as little as four
electrodes — would be sufficient to predict gaze position in any meaning-
ful way. Additionally, the relaxed recording conditions compared to related
works, such as the absence of a chin rest, no special isolated room for record-
ing, etc. introduced the potential for high noise levels that could obscure
any usable signal. To address these concerns, we evaluated a range of mod-
els and compared their performance against simple baselines, such as mean
and random predictions.

With the exception of the level-1 smooth task, where even the webcam
failed to outperform the mean baseline, all baseline models could be suc-
cessfully beaten by an evaluated model. Based on this and detailed investiga-
tions using various metrics and visualizations, we can confidently conclude
that the Consumer EEG-ET dataset contains sufficient information to predict
gaze positions across all tasks. Thus demonstrating that simple EEG-based
eye tracking works even with consumer-grade hardware (with as few as four
electrodes!), and in relaxed recording conditions, making a first step towards
EEG-based eye tracking in real-world applications.

A Webcam is effectively the consumer-grade hardware for camera-based
eye tracking. Having recorded the gaze position with it, we can thus make a

discussion, outlook and conclusion 73

comparison between EEG-based and camera-based eye tracking using consumer-
grade hardware. The webcam achieved accuracies ranging from 6.94◦ to
7.69◦ across the four tasks, which is significantly lower than the performance
of high-end camera-based eye tracking systems that typically reach accura-
cies between 0.25◦ and 0.50◦ [35]. Despite this, the webcam generally outper-
formed the models trained on EEG data. Specifically, on the level-2 smooth
and level-2 saccades tasks, the best model (SpatialFilterCNN) achieved ac-
curacies of 9.29◦ and 9.96◦, respectively. However, on both level-1 tasks, the
FNNs and SpatialFilterCNN surpassed the webcam in terms of the MED
metric.

This comparison suggests that while consumer EEG hardware is not yet
competitive with consumer camera-based systems for general eye tracking
tasks, it shows promise in more controlled scenarios where eye movement is
restricted to one axis. In such cases, the EEG-based models performed favor-
ably compared to the webcam. Nevertheless, it is important to acknowledge
that a webcam-based model specifically trained for this restricted scenario
would likely show improved results.

The second major contribution of this thesis is the exploration of FNNs for
EEG-based eye tracking tasks. FNNs produced compelling results on both
our dataset and the EEGEyeNet dataset. When compared to the SpatialFil-
terCNN, the FNNs demonstrated competitive or superior performance on
smooth tasks, and benefited from more precise predictions on all tasks, with
the fully functional model generally performing the best out of the three
proposed architectures. Importantly, this was achieved without any tuning
or data filtering, suggesting potential for even greater performance with fur-
ther optimizations. Additionally, we set a new state-of-the-art benchmark on
the EEGEyeNet dataset.

However, these successes were not exclusive to the FNNs. Control mod-
els, in fact, achieved similar results, with a control model securing the best
performance on the EEGEyeNet dataset. On our dataset, functional models
generally outperformed their control counterparts on most tasks and across
various metrics. On the EEGEyeNet dataset, however, the performance gap
between the functional and control models was less distinct. This suggests
that the functional layers may have had only a minor impact, with the overall
architecture playing a more significant role in driving the results. While we
observed hints of improved performance from the functional layers, further
experimentation is needed to draw any definitive conclusions.

The fact that state-of-the-art performance was achieved with control mod-
els — based on relatively simple reference architectures — was surprising.
This highlights the untapped potential in the field of EEG-based eye tracking,
where more advanced architectures, such as those based on transformers,
could yield even better results. Regarding functional layers, given their nov-
elty, it remains unclear whether traditional CNN architectures are the most
suitable for them. It is possible that different, more "functional-aware" ar-
chitectures could allow these layers to demonstrate their full potential. This,
however, remains an open question requiring further research.

discussion, outlook and conclusion 74

The BMOTE performed quite poorly on our dataset, failing to make any
meaningful predictions and performing close to random. In fact, when not
discarding predictions outside the viewing boundary, the BMOTE model
actually performed significantly worse than the random baseline. One key
reason for this poor performance is likely the assumption of point electrodes,
which is not well-suited to the Muse headband. However, comparing our
EEG recordings to the EOG recordings from the original BMOTE paper, this
is probably not the only limitation at play. Given that BMOTE is based on a
physical model of the eye, its failure to generalize from EOG to EEG suggests
that the voltage differences measured further from the eye are no longer
governed by a simple battery model.Instead, they are heavily influenced by
additional processes.

limitations

Despite the promising results and contributions presented in this thesis, sev-
eral limitations need to be acknowledged. These limitations highlight areas
where the methodology or scope of the study could be refined as well as
open questions that remain unresolved. Addressing these factors in future
research could further strengthen the findings and expand upon the work
conducted here.

One limitation of the dataset collection process is the absence of a high-
end camera-based eye-tracking system for providing a reliable ground truth.
Although we acquired a dedicated eye tracker, licensing issues prevented us
from using it in our study. As a result, we relied on a standard webcam,
which due to its limited accuracy is not suitable as a precise ground truth
system but rather serves as a reference model. Consequently, the stimulus
position itself was used as ground truth. While this approach provides a
reasonable approximation, it does not account for cases where participants
failed to follow the target accurately, or lagged behind the target due to reac-
tion time delays. Despite these challenges, we aimed to mitigate such issues
by designing the stimulus presentation to guide participants, ensuring they
could easily anticipate the movement and timing of jumps of the target. Fur-
thermore, the webcam, while lacking spatial precision, offers high temporal
accuracy, which could potentially allow for reaction time correction, and the
detection of major deviations from the expected gaze patterns.

Another limitation lies in the design of the level-1 smooth task. While it
was intended to reflect smooth eye movements, the task was not entirely
continuous, as the dot jumped back to the center after smoothly reaching
the edge of the screen. A more ideal movement pattern would have involved
a gradual slowdown at the screen’s edge, followed by a smooth return to
the center. As a result, performance on the level-1 smooth task may be less
representative of continuous smooth eye movements, making it unsuitable
as a proxy for model performance on more complex smooth tasks like the
level-2 smooth task. Essentially, the dataset lacks a true entry-level smooth
task. This also reduces its usefulness for FDA. However, the level-2 smooth

discussion, outlook and conclusion 75

task, which offers more varied movements and twice the amount of data,
remains available for such analyses.

An unexpected observation during the dataset collection was the absence
of baseline drift in the EEG recordings obtained from the Muse headband.
This is somewhat unusual, as baseline drift is typically expected in EEG
signals. While this requires further investigation, it does not pose a signif-
icant problem, as a first step in most EEG processing is usually to remove
the baseline drift by filtering out low-frequency components anyways. Addi-
tionally, we were able to demonstrate that, despite differences compared to
traditional EEG recordings, meaningful eye-tracking predictions could still
be made based on this dataset.

Due to limited time and compute resources, we were unable to perform hy-
perparameter tuning for the FNNs, leaving room for potential performance
improvements. Moreover, the models were trained only on unfiltered data.
Using filtered data might have further improved the results on the saccades
task as we observed for the SpatialFilterCNN models. This presents a clear
opportunity for future work to explore.

Additionally, while our findings suggest that FNNs generally outperformed
control models on our dataset, these conclusions would benefit from more
experimental runs, ideally with cross-validation. Increasing the number of
repetitions would provide a more robust assessment of the impact of the
functional layers and allow for more definitive conclusions.

Finally, we were unable to fully reproduce the results reported in the
EEGEyeNet paper, as the original work did not clearly specify the metric or
pixel-to-millimeter conversion used. Additionally, the provided code yielded
results that differed significantly from those in the paper. While this cre-
ates some uncertainty around our quantitative findings on the EEGEyeNet
dataset, our qualitative conclusion remains: based on the plots of true versus
predicted values, FNNs appear to be either better than or at least competitive
with the SpatialFilterCNN.

outlook and future work

There are several directions for future work to address the limitations of
this study. Hyperparameter tuning and training on filtered data, which were
omitted due to time and resource constraints, could be straightforward to im-
plement and may lead to immediate performance gains. Optimizing the data
loading pipeline is another area of improvement. Faster loading would re-
duce training times and allow for more extensive experimental runs, helping
in the assessment of the impact of functional layers. To further explore the
potential of FNNs, future research could attempt to design more "functional-
aware" architectures. For example, one missed opportunity in this thesis was
training FNNs with functional outputs, which could potentially better lever-
age the unique capabilities of these architectures. Lastly, the discrepancies
with the EEGEyeNet paper could likely be resolved by consulting the origi-

discussion, outlook and conclusion 76

nal authors for clarification on their metrics and pixel-to-millimeter conver-
sion.

To further enhance EEG-based eye tracking performance, several promis-
ing strategies could be explored. One key area is improving and expanding
on ways the data is preprocessed. For instance, using webcam data we could
correct for participants’ reaction times, by temporally aligning the stimu-
lus position with the gaze position recorded by the webcam. Dynamic Time
Warping, which we began experimenting with, could for example be a viable
approach for this task. Additionally, filtering out sections where participants
failed to follow the target could further improve the quality of the training
data, particularly when combined with temporally corrected targets.

Another avenue is experimenting with lagged target data, where instead
of using the latest stimulus of each window as the training target, an ear-
lier stimulus is used as the target. This approach would provide the model
with "post-eye-movement" EEG data, which might contain more useful in-
formation about the eye’s position at the lagged time as relevant voltage
fluctuations might not immediately settle after the eye movement. However,
while this method might improve model performance, it would also intro-
duce some latency into the model’s predictions, which in real-time appli-
cations can only be tolerated to a certain extent. Note, that this too would
benefit from time corrected targets, as otherwise the lagged targets, in reality,
would be lagged by different amounts.

Additionally, a simple way to increase the data available for training could
be to train with data from all tasks and then fine-tune on a specific task.

Another potential improvement is training models to predict relative move-
ment instead of absolute gaze position. Given that the voltages in our record-
ings tend to revert to the mean over time (which we observed as a missing
baseline drift), information about the absolute position of the eye can gradu-
ally be lost in the signal. Predicting relative movement could help preserve
the model’s accuracy over longer time windows. Modern architectures capa-
ble of incorporating much larger windows of past data, such as transformers,
could also address this challenge.

Another promising approach involves utilizing endogenous data, treating
the problem more like a time series forecasting task. The methods presented
in this thesis rely solely on exogenous data (EEG) to predict eye position, but
incorporating past predictions of the stimulus position could provide useful
context. Although implementing this would require the model to rely on
its own predictions at test time — introducing some challenges — it could
help the model follow slow eye movements and improve performance over
extended periods.

Finally, exploring regularization techniques like early stopping or dropout
could help avoid overfitting. While we briefly tested these strategies in a
few initial experiments without seeing substantial gains, more thorough im-
plementation could lead to improvements in future studies. This might be
particularly important, as all trained models showed a tendency to overfit,
performing significantly better on the training set than on the validation set.

discussion, outlook and conclusion 77

conclusion

In this thesis, we set out to build a large-scale EEG-ET dataset using consumer-
grade hardware and assess the feasibility of EEG-based eye tracking under
those conditions. The result is the largest known dataset of its kind. Through
extensive analysis, we demonstrated that simple EEG-based eye tracking is
possible even with consumer-grade hardware in relaxed recording condi-
tions, a promising step for future applications.

Additionally, we explored the performance of models based on functional
data analysis, specifically FNNs, for EEG-based eye tracking tasks. While the
FNN architectures showed some promise, achieving state-of-the-art perfor-
mance on the EEGEyeNet dataset, the impact of functional layers remains
inconclusive and requires more extensive experimentation.

Overall, we showed that EEG-based eye tracking with consumer-grade
hardware is feasible and provided a new dataset to continue work in this
area. It is now up to future research to explore the limits of this technol-
ogy and advance it further. There are many avenues for further research, as
outlined above, and we strongly believe that the current state of EEG-based
eye tracking, largely reliant on standard techniques, is only scratching the
surface of what is possible. More focused efforts could push the technology
significantly forward, revealing its full potential.

Part II

A P P E N D I X

A
S U P P O RT I N G D O C U M E N T S

a.1 consent form

The following pages contain the consent form that was signed by each par-
ticipant before the study. It is available in both English and German.

General Participant Information and Consent

Title of the Study: Creation of a Consumer EEG-ET Dataset

1. Research Project

Welcome to our study “Creation of a Consumer EEG-ET Dataset”! We appreciate your interest in this study.

The goal of this study, conducted as part of a master's thesis, is to create a dataset that includes EEG and eye-tracking
data (EEG-ET). This dataset will be used to train models that can reconstruct eye movements based on EEG data
(measured with consumer hardware).

The EEG data will be collected using the Muse S Gen 2 headset, a widely used consumer EEG headset with 4 dry
electrodes. To capture eye movements, the positions of the targets on the screen will be recorded, and a webcam
will also be used to track eye movements. No images or video will be saved, only the eye position derived from the
live video stream.

Study Procedure

Participation in this study will take approximately 10 minutes in total and consists of the following parts:
introduction, practice, and recording. Data will be collected for a total of 6 minutes.

1. Introduction: During the introduction, relevant demographic data will be collected, the camera-based eye
tracker will be calibrated, you will be fitted with the EEG headset, which will be adjusted to your head, and the
signal quality will be checked. You will also receive important instructions to follow during the recordings.

2. Practice: Before each recording, a short practice session will be conducted to prepare you for the respective
task.

3. Recording: During the actual data collection, EEG and eye-tracking data will be recorded in four different
situations:

Level 1 Smooth:
You will follow a point with your eyes that repeatedly moves steadily from the center to the left,
right, up or down. Duration: approx. 1 minute.

Level 1 Saccades:
You will follow a point with your eyes that repeatedly jumps from the center to the left, right, up
or down. Duration: approx. 1 minute.

Level 2 Smooth:
You will follow a point that steadily traverses various paths on the screen. Duration: approx. 2
minutes.

Level 2 Saccades: You will follow a point that jumps around on a grid. Duration: approx. 2 minutes.

If you have any questions, please contact the experimenter.

2. Voluntary Participation and Anonymity

Participation in the study is voluntary. You can withdraw your consent to participate in this study at any time and
without providing any reasons, without any disadvantages to you. Data collection is completely anonymized,
meaning your name will not be requested at any point. Your responses and results will be stored under a participant
number that cannot be traced back to you.

3. Compenstation

No financial compensation is offered for participation in this study. Please be aware that your participation is

voluntary and unpaid. We greatly appreciate your commitment and support for our research and sincerely thank

you for your participation.

4. Contact Information

Tiago, Vasconcelos Afonso
Tel.: +49 173 4161278
E-Mail: tiago.vasconcelosafonso@stud.h-da.de

5. Consent to Participate in the Study

I hereby voluntarily consent to participate in the study “Creation of a Consumer EEG-ET Dataset.” I have been

adequately informed and had the opportunity to ask questions.

I have received a copy of the information and consent form.

Place, Date

__

Name of the Participant in Block Letters

__

Signature of the Participant

Allgemeine Teilnehmerinformation und Einwilligung

Titel der Studie: Erstellung eines Consumer EEG-ET Datensatzes

1. Forschungsvorhaben

Herzlich willkommen bei unserer Studie „Erstellung eines Consumer EEG-ET Datensatzes“! Wir danken Ihnen für Ihr
Interesse an dieser Studie.

Ziel dieser Studie ist es im Rahmen einer Masterarbeit, einen Datensatz zu erstellen, der EEG- und Eye-Tracking-
Daten (EEG-ET) umfasst, der verwendet werden kann, um Modelle zu trainieren, welche die Augenbewegung
anhand von EEG-Daten (gemessen mit Consumer Hardware) rekonstruieren können.

Die EEG-Daten werden mithilfe des Muse S Gen 2 Headsets erfasst, einem weit verbreiteten Consumer EEG-Headset
mit 4 Trockenelektroden. Zur Erfassung der Augenbewegungen werden einerseits die Positionen der Targets auf
dem Bildschirm aufgezeichnet und andererseits wird die Augenbewegung durch eine Webcam aufgezeichnet. Dabei
wird lediglich die aus dem Video bestimmte Augenposition gespeichert. Es werden keinerlei Bild- oder Videodaten
gespeichert.

Ablauf der Studie

Die Teilnahme an dieser Studie dauert insgesamt etwa 10 Minuten und setzt sich aus folgenden Teilen zusammen:

Einführung, Übung und Aufnahme. Dabei werden insgesamt 6 Minuten lang Daten aufgenommen.

1. Einführung: In der Einführung werden relevante demografische Daten erfasst, der kamerabasierte Eye Tracker

kalibriert, Sie bekommen das EEG-Headset aufgesetzt, dieses wird an Ihren Kopf eingestellt und die

Signalqualität überprüft. Außerdem erhalten Sie wichtige Hinweise, die während den Aufnahmen beachtet

werden sollen.

2. Übung: Vor jeder Aufnahme wird eine kurze Übung durchgeführt, um Sie auf die jeweilige Aufgabe

vorzubereiten.

3. Aufnahme: Während der eigentlichen Datenerhebung werden EEG- und Eye-Tracking-Daten in vier

verschiedenen Situationen aufgezeichnet:

Level 1 stetig:

Sie verfolgen mit Ihrem Blick einen Punkt, der sich mehrfach von der Mitte stetig nach links, rechts, oben

oder unten bewegt. Dauer: ca. 1 Minute.

Level 1 Sakkaden:

Sie verfolgen mit Ihrem Blick einen Punkt, der wiederholt von der Mitte nach links, rechts, oben oder unten

springt. Dauer: ca. 1 Minute.

Level 2 stetig:

Sie verfolgen einen Punkt, der verschiedene Pfade auf dem Bildschirm stetig durchquert. Dauer: ca. 2

Minuten.

Level 2 Sakkaden:

Sie verfolgen einen Punkt, der auf einem Raster umherspringt. Dauer: ca. 2 Minuten.

Sollten Sie noch Fragen haben, wenden Sie sich damit bitte an den Versuchsleiter.

2. Freiwilligkeit und Anonymität

Die Teilnahme an der Studie ist freiwillig. Sie können jederzeit und ohne Angabe von Gründen Ihre Einwilligung zur
Teilnahme an dieser Studie widerrufen, ohne dass Ihnen daraus Nachteile entstehen. Die Erhebung der Daten erfolgt
vollständig anonymisiert, d. h. an keiner Stelle wird Ihr Name erfragt. Ihre Antworten und Ergebnisse werden unter
einer Probandennummer gespeichert, welche nicht auf Sie zurückzuführen ist.

3. Vergütung

Für die Teilnahme an dieser Studie wird keine finanzielle Vergütung angeboten. Wir möchten Sie darauf hinweisen,

dass Ihre Teilnahme auf freiwilliger Basis erfolgt und nicht entlohnt wird. Wir schätzen Ihr Engagement und Ihre

Unterstützung für unsere Forschung sehr und danken Ihnen herzlich für Ihre Teilnahme.

4. Kontaktdaten

Tiago, Vasconcelos Afonso
Tel.: +49 173 4161278
E-Mail: tiago.vasconcelosafonso@stud.h-da.de

5. Einwilligung an der Teilnahme der Studie

Hiermit willige ich freiwillig die Teilnahme an der Studie „Erstellung eines Consumer EEG-ET Datensatzes“ ein. Ich

bin ausreichend informiert worden und hatte die Möglichkeit, Fragen zu stellen.

Eine Kopie der Aufklärung und der Einwilligung habe ich erhalten.

Ort, Datum

__

Name des Einwilligenden in Druckbuchstaben

__

Unterschrift des Einwilligenden

A.2 demographic data questionnaire 84

a.2 demographic data questionnaire

The following pages contain the demographic data questionnaire that was
filled out by each participant before the study. It is available in both English
and German.

Participant Number (DO NOT FILL IN): ___________________

Demographic Data

Age: ___________________

Gender (male/female/diverse): ___________________

Handedness (left/right/ambidextrous): ___________________

Vision Correction (Yes/No): ___________________

Neurological Disorder (Yes/No): ___________________

Color Blind (Yes/No): ___________________

Probandennummer (BITTE NICHT AUSFÜLLEN): ___________________

Demografische Daten

Alter: ___________________

Geschlecht (männlich/weiblich/divers): ___________________

Händigkeit (Links-/Rechts-/Beidhändig): ___________________

Sehhilfe (Ja/Nein): ___________________

Neurologische Erkrankung (Ja/Nein): ___________________

Farbenblind (Ja/Nein): ___________________

B I B L I O G R A P H Y

[1] FA Alturki, K AlSharabi, AM Abdurraqeeb, and M Aljalal. “EEG Sig-
nal Analysis for Diagnosing Neurological Disorders Using Discrete
Wavelet Transform and Intelligent Techniques.” In: Sensors (Basel) 20.9
(2020), p. 2505. doi: 10.3390/s20092505.

[2] Nathaniel Barbara, Tracey A. Camilleri, and Kenneth P. Camilleri.
“EOG-Based Gaze Angle Estimation Using a Battery Model of the
Eye.” In: 2019 41st Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC). 2019, pp. 6918–6921. doi:
10.1109/EMBC.2019.8856323.

[3] Nathaniel Barbara, Tracey A. Camilleri, and Kenneth P. Camilleri.
“Real-time continuous EOG-based gaze angle estimation with baseline
drift compensation under stationary head conditions.” In: Biomedical
Signal Processing and Control 86 (2023), p. 105282. issn: 1746-8094. doi:
https://doi.org/10.1016/j.bspc.2023.105282. url: https://www.s
ciencedirect.com/science/article/pii/S1746809423007152.

[4] Ramina Behzad and Aida Behzad. “The Role of EEG in the Diagnosis
and Management of Patients with Sleep Disorders.” In: Journal of Be-
havioral and Brain Science 11.10 (2021), pp. 257–266. doi: 10.4236/jbbs
.2021.1110021.

[5] Inessa Bekerman, Paul Gottlieb, and Michael Vaiman. “Variations in
eyeball diameters of the healthy adults.” English. In: Journal of Ophthal-
mology 2014 (2014). PMCID: PMC4238270, p. 503645. issn: 2090-004X.
doi: 10.1155/2014/503645. url: https://www.hindawi.com/journals
/joph/2014/503645/.

[6] J.W. Britton, L.C. Frey, J.L. Hopp, et al. Electroencephalography (EEG):
An Introductory Text and Atlas of Normal and Abnormal Findings in Adults,
Children, and Infants. Ed. by E.K. St. Louis and L.C. Frey. Chicago:
American Epilepsy Society, 2016. Chap. EEG in the Epilepsies. url:
https://www.ncbi.nlm.nih.gov/books/NBK390347/.

[7] Malcolm Brown, Michael Marmor, Vaegan, Eberhard Zrenner, Mitchell
Brigell, and Michael Bach. “ISCEV Standard for Clinical Electro-
oculography (EOG) 2006.” In: Documenta Ophthalmologica 113.3 (2006),
pp. 205–212. issn: 1573-2622. doi: 10.1007/s10633-006-9030-0. url:
https://doi.org/10.1007/s10633-006-9030-0.

[8] Wen-Sheng Chang, Wei-Kuang Liang, Dong-Han Li, Neil G. Mug-
gleton, Prasad Balachandran, Norden E. Huang, and Chi-Hung Juan.
“The association between working memory precision and the nonlin-
ear dynamics of frontal and parieto-occipital EEG activity.” In: Scien-
tific Reports 13.1 (2023), p. 14252. issn: 2045-2322. doi: 10.1038/s41598
-023-41358-0. url: https://doi.org/10.1038/s41598-023-41358-0.

bibliography 88

[9] François Chollet. “Xception: Deep Learning with Depthwise Separable
Convolutions.” In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.195.

[10] R.J. Croft and R.J. Barry. “Removal of ocular artifact from the EEG: a re-
view.” In: Neurophysiologie Clinique/Clinical Neurophysiology 30.1 (2000),
pp. 5–19. issn: 0987-7053. doi: https://doi.org/10.1016/S0987-7053
(00)00055-1. url: https://www.sciencedirect.com/science/articl
e/pii/S0987705300000551.

[11] Szymon Deja. The comparison of accuracy and precision of eye tracking:
GazeFlow vs. SMI RED 250. Tech. rep. Version 1.1. Accessed: 2024-07-
30. Kraków: SIMPLY USER, User Experience Lab, 2013. url: https:
//gazerecorder.com/Raport/.

[12] Marc Philipp Dietrich, Götz Winterfeldt, and Sebastian von Mam-
men. “Towards EEG-based eye-tracking for interaction design in head-
mounted devices.” In: 2017 IEEE 7th International Conference on Con-
sumer Electronics - Berlin (ICCE-Berlin). 2017, pp. 227–232. doi: 10.1109
/ICCE-Berlin.2017.8210634.

[13] Chady El Moucary, Abdallah Kassem, Dominick Rizk, Rodrigue Rizk,
Sawan Sawan, and Walid Zakhem. “A low-cost full-scale auto eye-
tracking system for mobility-impaired patients.” In: AEU - International
Journal of Electronics and Communications 174 (2024), p. 155023. issn:
1434-8411. doi: https://doi.org/10.1016/j.aeue.2023.155023. url:
https://www.sciencedirect.com/science/article/pii/S143484112

3004971.

[14] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte
Pelletier, Daniel F. Schmidt, Jonathan Weber, Geoffrey I. Webb, Lhas-
sane Idoumghar, Pierre-Alain Muller, and François Petitjean. “Incep-
tionTime: Finding AlexNet for Time Series Classification.” In: CoRR
abs/1909.04939 (2019). arXiv: 1909.04939. url: http://arxiv.org/ab
s/1909.04939.

[15] Wolfgang Fuhl, Susanne Zabel, Theresa Harbig, Julia-Astrid Moldt,
Teresa Festl Wietek, Anne Herrmann-Werner, and Kay Nieselt. “One
step closer to EEG based eye tracking.” In: Proceedings of the 2023
Symposium on Eye Tracking Research and Applications. ETRA ’23. Tub-
ingen, Germany: Association for Computing Machinery, 2023. isbn:
9798400701504. doi: 10.1145/3588015.3588423. url: https://doi.or
g/10.1145/3588015.3588423.

[16] CM Gheorghe, VL Purcărea, and IR Gheorghe. “Using eye-tracking
technology in Neuromarketing.” In: Rom J Ophthalmol 67.1 (2023),
pp. 2–6. doi: 10.22336/rjo.2023.2.

[17] IS Gopal and GG Haddad. “Automatic detection of eye movements in
REM sleep using the electrooculogram.” In: Am J Physiol 241.3 (1981),
R217–21. doi: 10.1152/ajpregu.1981.241.3.R217.

bibliography 89

[18] Claire C. Gordon et al. 2012 Anthropometric Survey of U.S. Army Per-
sonnel: Methods and Summary Statistics. Technical Report ADA611869.
Final report, Oct 2010-Apr 2012. Natick, MA: Army Natick Soldier Re-
search, Development and Engineering Center, 2014. url: https://app
s.dtic.mil/sti/citations/ADA611869.

[19] Matti Hämäläinen, Riitta Hari, Risto J. Ilmoniemi, Jukka Knuutila,
and Olli V. Lounasmaa. “Magnetoencephalography-theory, instrumen-
tation, and applications to noninvasive studies of the working human
brain.” In: Reviews of Modern Physics 65.2 (1993), pp. 413–497. doi: 10
.1103/RevModPhys.65.413.

[20] Florian Heinrichs, Mavin Heim, and Corinna Weber. “Functional Neu-
ral Networks: Shift invariant models for functional data with applica-
tions to EEG classification.” In: Proceedings of the 40th International Con-
ference on Machine Learning. Ed. by Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett. Vol. 202. Proceedings of Machine Learning Research. PMLR,
2023, pp. 12866–12881. url: https://proceedings.mlr.press/v202/h
einrichs23a.html.

[21] David F. Hight, Henrik A. Kaiser, John W. Sleigh, and Michael S.
Avidan. “Continuing professional development module: An updated
introduction to electroencephalogram-based brain monitoring during
intended general anesthesia.” In: Canadian Journal of Anesthesia 67.12

(2020), pp. 1858–1878. doi: 10.1007/s12630-020-01820-3.

[22] Rob J. Hyndman and Yeasmin Khandakar. “Automatic Time Series
Forecasting: The forecast Package for R.” In: Journal of Statistical Soft-
ware 27.3 (2008), pp. 1–22. doi: 10.18637/jss.v027.i03. url: https:
//www.jstatsoft.org/index.php/jss/article/view/v027i03.

[23] Ard Kastrati, Martyna Plomecka, Damian Pascual Ortiz, Lukas Wolf,
Victor Gillioz, Roger Wattenhofer, and Nicolas Langer. “EEGEyeNet: a
Simultaneous Electroencephalography and Eye-tracking Dataset and
Benchmark for Eye Movement Prediction.” In: Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks. Ed. by
J. Vanschoren and S. Yeung. Vol. 1. Curran, 2021. url: https://datas
ets-benchmarks-proceedings.neurips.cc/paper files/paper/2021

/file/a3c65c2974270fd093ee8a9bf8ae7d0b-Paper-round1.pdf.

[24] Pallavi Kaushik, Amir Moye, Marieke van Vugt, and Partha Pratim
Roy. “Decoding the cognitive states of attention and distraction in a
real-life setting using EEG.” In: Scientific Reports 12.1 (2022), p. 20649.
issn: 2045-2322. doi: 10.1038/s41598-022-24417-w. url: https://do
i.org/10.1038/s41598-022-24417-w.

[25] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M
Gordon, Chou P Hung, and Brent J Lance. “EEGNet: a compact convo-
lutional neural network for EEG-based brain-computer interfaces.” In:
Journal of Neural Engineering 15.5 (2018), p. 056013. doi: 10.1088/1741-
2552/aace8c. url: https://dx.doi.org/10.1088/1741-2552/aace8c.

bibliography 90

[26] Seo-Young Lee, Won-Joo Kim, Jae Moon Kim, Juhan Kim, Soochul
Park, and on behalf of the Korean Society of Clinical Neurophysiol-
ogy Education Committee. “Electroencephalography for the diagno-
sis of brain death.” In: Annals of Clinical Neurophysiology 19.2 (2017),
pp. 118–124. doi: 10.14253/acn.2017.19.2.118.

[27] Wei Tuck Lee, Humaira Nisar, Aamir S. Malik, and Kim Ho Yeap. “A
brain computer interface for smart home control.” In: 2013 IEEE Inter-
national Symposium on Consumer Electronics (ISCE). 2013, pp. 35–36. doi:
10.1109/ISCE.2013.6570240.

[28] ML Mele and S Federici. “Gaze and eye-tracking solutions for psy-
chological research.” In: Cogn Process 13 Suppl 1 (2012), S261–5. doi:
10.1007/s10339-012-0499-z.

[29] Mahiul Muhammed Khan Muqit, Yannick Le Mer, Lisa Olmos de Koo,
Frank G. Holz, Jose A. Sahel, and Daniel Palanker. “Prosthetic Vi-
sual Acuity with the PRIMA Subretinal Microchip in Patients with
Atrophic Age-Related Macular Degeneration at 4 Years Follow-up.”
In: Ophthalmology Science 4.5 (2024), p. 100510. issn: 2666-9145. doi:
https://doi.org/10.1016/j.xops.2024.100510. url: https://www.s
ciencedirect.com/science/article/pii/S2666914524000460.

[30] S Nagel and M Spüler. “World’s fastest brain-computer interface:
Combining EEG2Code with deep learning.” In: PLoS One 14.9 (2019),
e0221909. doi: 10.1371/journal.pone.0221909.

[31] Khune Satt Nyein Chan, C. Srisurangkul, N. Depaiwa, and S. Pangkre-
ung. “Detection of driver drowsiness from EEG signals using wearable
brain sensing headband.” In: Journal of Research and Applications in Me-
chanical Engineering 9.2 (2021), JRAME–21. url: https://ph01.tci-th
aijo.org/index.php/jrame/article/view/243597.

[32] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. 2nd ed.
Springer Series in Statistics. Published: 08 June 2005 (Hardcover), 10

November 2010 (Softcover), 28 June 2006 (eBook). Springer New York,
NY, 2005, pp. XIX, 429. isbn: 978-0-387-40080-8. doi: 10.1007/b98888.

[33] Aniruddha Rajendra Rao and Matthew Reimherr. “Modern non-
linear function-on-function regression.” In: Statistics and Computing
33.6 (2023). issn: 1573-1375. doi: 10.1007/s11222-023-10299-z. url:
http://dx.doi.org/10.1007/s11222-023-10299-z.

[34] F. Rossi, B. Conan-Guez, and F. Fleuret. “Functional data analysis with
multi layer perceptrons.” In: Proceedings of the 2002 International Joint
Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290). Vol. 3.
2002, 2843–2848 vol.3. doi: 10.1109/IJCNN.2002.1007599.

[35] SR Research. EyeLink 1000 Plus Specifications. Accessed: 2024-07-30.
2017. url: https://www.sr-research.com/wp-content/uploads/2
017/11/eyelink-1000-plus-specifications.pdf.

bibliography 91

[36] McCall E. Sarrett, Bob McMurray, and Efthymia C. Kapnoula. “Dy-
namic EEG analysis during language comprehension reveals interac-
tive cascades between perceptual processing and sentential expecta-
tions.” In: Brain and Language 211 (2020), p. 104875. issn: 0093-934X.
doi: https://doi.org/10.1016/j.bandl.2020.104875. url: https:
//www.sciencedirect.com/science/article/pii/S0093934X2030134

6.

[37] Kayo Shinomiya, Hiroshi Shiota, Yaeko Ohgi, Nobuyuki Itsuki, Ray
Tabesh, Masashi Yamada, and Masanori Kubo. “Analysis of the Char-
acteristics of Electrooculogram Applied a Battery Model to the Eye-
ball.” In: 2006 International Conference on Biomedical and Pharmaceutical
Engineering. 2006, pp. 428–431.

[38] SL Shishkin, YO Nuzhdin, EP Svirin, AG Trofimov, AA Fedorova, BL
Kozyrskiy, and BM Velichkovsky. “EEG Negativity in Fixations Used
for Gaze-Based Control: Toward Converting Intentions into Actions
with an Eye-Brain-Computer Interface.” In: Front Neurosci 10 (2016),
p. 528. doi: 10.3389/fnins.2016.00528.

[39] Afonso C. Silva and Hellmut Merkle. “Hardware considerations for
functional magnetic resonance imaging.” In: Concepts in Magnetic Res-
onance Part A 16A.1 (2003), pp. 35–49. doi: https://doi.org/10.1002
/cmr.a.10052. eprint: https://onlinelibrary.wiley.com/doi/pdf/1
0.1002/cmr.a.10052. url: https://onlinelibrary.wiley.com/doi/a
bs/10.1002/cmr.a.10052.

[40] Rui Sun, Andy S. K. Cheng, Cynthia Chan, Janet Hsiao, Adam J. Privit-
era, Junling Gao, Ching-hang Fong, Ruoxi Ding, and Akaysha C. Tang.
“Tracking gaze position from EEG: Exploring the possibility of an EEG-
based virtual eye-tracker.” In: Brain and Behavior 13.10 (2023), e3205.
doi: https://doi.org/10.1002/brb3.3205. url: https://onlinelibr
ary.wiley.com/doi/abs/10.1002/brb3.3205.

[41] Tobii Technology. Accuracy and Precision Test Method for Remote Eye
Trackers. Tech. rep. Version 1.1. Test Specification Version: 2.1.1, Febru-
ary 7, 2011. Tobii Technology, 2012. url: https://go.tobii.com/Tobi
i-accuracy-and-precision-test-method.

[42] Tobii. Tobii Eye Tracker 5. https://gaming.tobii.com/product/eye-tr
acker-5/. Accessed: 2024-07-30. 2024. url: https://gaming.tobii.co
m/product/eye-tracker-5/.

[43] Florida Atlantic University. Tech Fee Proposal Building up an eye-tracking
research laboratory. 2013. url: https://techfee.fau.edu/approvedpro
posals/Generate.cfm?pid=44 (visited on 07/10/2024).

[44] Wikipedia contributors. Accuracy and precision — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Accur
acy and precision&oldid=1246807706. [Online; accessed 8-October-
2024]. 2024.

bibliography 92

[45] Francis R. Willett et al. “A high-performance speech neuroprosthesis.”
In: Nature 620.7976 (2023), pp. 1031–1036. issn: 1476-4687. doi: 10.103
8/s41586-023-06377-x. url: https://doi.org/10.1038/s41586-023-
06377-x.

