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Abstract English
The Research Data Center of the Federal Statistical Office of Germany offers data access to
German official microdata for independent research institutions. Depending on the selected
way of data access, the strict data privacy regulations for German official microdata mostly
require sensitive attributes, such as precise geospatial information, to be anonymized, which
makes the data products unusable for precise geospatial analysis. However, many research
institutes might heavily benefit from research data with precise geo-referencing. Targeting this
conflict, in this thesis paper we present and empirically examine five different data synthesis
methods on the German Census Data from 2011, with the goal of finding a way for creating
and providing useful synthetic versions of German official microdata with precise geospatial
attributes. Regarding the synthesis models, we apply two parametric synthesizers, which
are a Copula Synthesizer with Frequency Encoding and a Copula Synthesizer with One-Hot
Encoding, as well as two synthesizers without parametric assumptions, which are a Random
Forest Synthesizer and a CART (Classification and Regression Tree) Synthesizer, and finally
Geomasking, a commonly used anonymization method for georeferenced data. We assess
the potential the different synthesizers provide us using various metrics from the field of
data synthesis for quantifying data utility and data privacy. The result of this thesis is that
out of all examined synthesizers, the CART Synthesizer performs the best in terms of data
utility, while offering a negligible risk in regards to data privacy. It would be conceivable to
make such a synthetic data set with precise geospatial information accessible for independent
research institutions via the remote access system of the Research Data Center.
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Abstract Deutsch
Das Forschungsdatenzentrum des Statistischen Bundesamtes kann unabhängigen Forschungs-
einrichtungen Zugang zu amtlichen Einzeldaten gewähren. Je nach gewähltem Datenzu-
gangsweg verlangen die strengen Datenschutzbestimmungen für amtliche Datenprodukte in
der Regel, dass präzise räumliche Attribute, wie andere sensible Attribute auch, anonymi-
siert werden, was die Daten für Zwecke räumlicher Analysen unbrauchbar macht. Einige
Forschungseinrichtungen könnten jedoch stark von Forschungsdaten mit präziser Georeferen-
zierung profitieren. Um diesem Konflikt Abhilfe zu verschaffen, präsentieren und analysieren
wir in dieser Thesis fünf verschiedene Methoden der Datensynthese anhand der deutschen
Zensusdaten von 2011, mit dem Ziel der Erstellung und Bereitstellung brauchbarer syntheti-
scher Versionen amtlicher deutscher Datenprodukte mit präzisen räumlichen Attributen. Die
angewendeten Synthesemodelle sind ein Copula Synthesizer mit Frequency Encoding und
ein Copula Synthesizer mit One-Hot Encoding, welche beide parametrische Modelle sind,
sowie ein Random Forest Synthesizer und ein CART (Classification and Regression Tree)
Synthesizer, welche beide Synthesizer ohne parametrische Annahmen sind, und schließlich
Geomasking, eine häufig verwendete Anonymisierungsmethode für georeferenzierte Daten.
Wir bewerten das Potenzial der verschiedenen Synthesizer anhand verschiedener Metriken
aus dem Bereich der Datensynthese zur Quantifizierung der Data Utility und Data Pri-
vacy. Das Ergebnis dieser Thesis ist, dass von allen untersuchten Synthesizern der CART
Synthesizer in Bezug auf Data Utility am besten performt und gleichzeitig ein vernachlässig-
bares Risiko bezüglich Data Privacy aufweist. Es wäre denkbar, einen solchen synthetischen
Datensatz über das Remote Access System des Forschungsdatenzentrums für unabhängige
Forschungseinrichtungen zugänglich zu machen.
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1 Introduction

Statistical microdata plays an essential role in knowledge generation about various phenomena
in and among society. An example of such extremely large and thorough microdata is census
data. The research of independent scientific institutions can profit heavily from census data
products, as they include microdata from up to 100% of a country’s population with a huge
number of attributes. For some scientific questions geospatial analysis might be required, for
which the geospatial attributes of the census products in combination with other non-spatial
census attributes can be used. Moreover, the census data might be linked to auxiliary data,
using a matching process relying on the congruence of their geographic links. This procedure
makes geographically detailed analysis in other scientific fields possible. The authors of [T
K23] demonstrate this by calculating a regionally disaggregated metric (Necesidades Básicas
Insatisfechas (NBI)) that is officially used as national poverty index in Costa Rica. The more
precisely the housing location of the survey participants is known, the more accurate the
results of the respective research will be.

Since census data consists of the private microdata of the survey participants, sensitive
attributes, like name and address, are encrypted or stripped off in the published data sets.
This generally does not affect the utility of the data. Also, low-level geospatial information
might be sensitive because especially in combination with other census attributes it could
help a potential attacker to re-identify individuals among the data set. The more granular
these locations are listed, the easier it is to re-identify individuals and therefore access their
personal confidential data. In order to keep this re-identification risk low, spatial data should
only be listed on a reasonably high level.

Considering both views on the release of geospatial census data, the utility is conflicting
with the privacy demands of the individuals who have participated in the survey, as for
instance profoundly described in [DH23].

In order to protect the confidentiality of sensitive microdata while still preserving its
usefulness, scientists came up with a promising trade-off: Instead of releasing the original
data and risking privacy issues, they release synthetic data. Data providers fit a model to the
original data, sample values from this model and finally use them to replace the original values.
The idea of synthetic data for the purpose of disclosure avoidance is according to [DH23]
commonly attributed to [Rub93] and [Lit93]. Those first approaches were based on multiple
imputation, similarly as for imputing missing values. [Rub93] suggested to treat all values of
the data set as missing values, which were to be replaced by samples of the imputation model
trained on the original data set. This method is considered to be a full synthesis because every
attribute of the original data set is synthesized. The level of protection is very high because
not only is none of the original values present in the synthetic data set anymore, also there is
no one-to-one relation between one synthetic and one original record. The quality of such data,
however, strongly depends on the quality of the imputation model. It can be challenging to
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1 Introduction

find a model that would be able to preserve the complex relations between different variables
and simultaneously consider various and convoluted logical constraints. The approach by
[Lit93] is closely related and creates so-called partial data synthesis, overcoming some of the
challenges of fully synthetic data. The idea is to only treat some attribute values as missing,
for instance, those at especially high risk, and thus only impute those attributes with samples
from an imputation model. This approach allows a higher level of flexibility, since data pro-
viders can themselves decide which of the attributes to synthesize, based on their requirements.

The partial synthesis approach is nowadays commonly used to solve the privacy-utility-
conflict around geospatial microdata by only treating the sensitive geospatial attributes, as
explained in [DH20]. One group of such methods would include combinations of deletion
and perturbation procedures of the sensitive attributes, or replacing the true location of
an individual with aggregated (i.e. area-level), and possibly even randomized information.
The advantages of this procedure are that the quality of the remaining (non-spatial) survey
information is not affected. However, it often fails to provide a sufficient level of privacy
protection, since already small subsets of original attribute values can increase the risk of
re-identification, even in incomplete, pseudonymous datasets. Another way of synthesizing
the geospatial attribute is by recycling the fundamental ideas of data synthesis and fitting
machine learning models to the data. [DH20] compared a semi-parametric model based on a
Bayesian procedure to two CART (Classification and Regression Tree) Models. The study
results imply that the non-parametric CART Models generally performed better. This way of
treating the sensitive geo-attribute is supposed to allow better preservation of the original
distribution, as well as a better control over the re-identification risk. However, the geographic
links to potential auxiliary data get destroyed.

Addressing especially this last mentioned issue, [T K23] recently proposed a fundamentally
different microdata dissemination strategy. Their main idea was to publish two datasets,
instead of just one. The first one Dno is the original data with the sensitive geospatial
identifiers stripped off. The second one Dsyn consists of the synthetic microdata, while the
geospatial identifiers remain untouched. They justify their new approach with a more user-
centric perspective on synthetic data. Some analysis on household surveys requires precise
and representative data, while geospatial features are only to be considered on a high regional
level, if at all. In this case, the data set Dno can be used. Other kinds of analysis requires
low-level geospatial information, especially as a congruent link to auxiliary data, for which
Dsyn may be used. Their experiments of data synthesis and the calculation of quantifiable
metrics for privacy and utility were conducted on the Costa Rica Census Data from 2011.
The authors claim that their method reduces the re-identification risk and increases data
utility for spatial analysis, compared to other currently used solutions.

In Germany, official data is created and maintained by the Federal Statistical Office of
Germany (Statistisches Bundesamt). Based on §16 BStatG (Bundesstatistikgesetz), the
Federal Statistical Office is legally required to provide their official data sources for research
purposes to independent research institutions, which is offered through the Research Data
Center of this institution. At the same time, the legislation requires the Federal Statistical
Office to protect the personal data of survey participants from disclosure. Since the currently
used anonymization methods for personal microdata only dissolve this conflict partially,
the institution is sincerely interested in new advances in the field of data synthesis for the
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anonymization of sensitive data sources.

In this project, we will apply, evaluate, and compare five different data synthesis methods.
At first, we will examine the Copula Synthesizer with Frequency Encoding, as proposed by
[T K23]. Here, we will especially focus on replicating their work as closely as possible and
will compare our findings on this synthesis method with their findings. Secondly, we will
perform another Copula Synthesis, but with One-Hot encoding. The third synthesizer used
by us will be a CART Synthesizer, which is based on classification trees, while the fourth
synthesizer will be a Random Forest Synthesizer, based on multiple Random Forests. As the
final synthesis method, we will apply Geomasking, which was also carried out in [T K23]. In
order to evaluate the potential of the different synthesizers for German official statistics and
science, we will apply those five synthesizers to the German Census Data from 2011. Finally,
the five different approaches will be discussed and evaluated, especially considering the high
demands on data security for German official data.
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2 Data Synthesis

2.1 Administrative Geo-Spatial Structure Germany and
Geo-Spatial attributes in German Census Data

For understanding how the different synthesis algorithms can be applied to the German
Census Data, we first have to define the geospatial structure of levels of administrative areas
in Germany. For simplification reasons, we will only mention the administration levels relevant
for this project.

Germany is split into 16 federal states (Bundesländer). One level below the federal states
are the 412 counties and cities 1 (Kreise und kreisfreie Städte). On the lowest administration
level worth mentioning here are the communes (Gemeinden und Gemeindeverbände), of
which there are over 11,000 in the entire country.

For our project, we use 26 attributes of the German Census Data. The data set comprises
80,209,997 observations, one row or entry for every person living in Germany at the reference
date. In the following, one entry will be referred to as a record. Besides other attributes, one
important piece of information derivable from the Census Data is the home location of an
individual, which in the data is defined by two groups of geospatial attributes. One of those
groups consist of the geospatial administrative area types, which are the federal states, the
counties or cities and the communes, as described above. Defining the commune implicitly
also defines the county or city and the federal state of an individual. For the other group of
geospatial attributes, Germany is split up into grid cells of 10x10, 1x1 and 0.1x0.1 kilometers.
For all three of those levels, there is a separate attribute in the data revealing which grid
cells an individual is located in. All of the mentioned spatial attributes will be relevant later
on in section 5.2.2. However, for understanding how we apply the synthesis algorithms to the
census data, only the counties and cities as well as the 10x10km grid cells are of relevance.
The relationship between those two attributes is visually presented in figure 2.1. We can
clearly see that there is no hierarchy defined between the 10x10km grid cells and the counties
and cities, since one county or city can include multiple 10x10km grid cells and vice versa.

1More precisely: counties and cities not associated with a county
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2.2 Algorithms for Data Synthesis

Figure 2.1: Administrative Disaggregation Structure Germany (simplified)

Furthermore, additional details on our data source will be discussed later on in chapter 5.
A tabled summary including a semantic description of the different variables can be found in
the appendix 7.1.

2.2 Algorithms for Data Synthesis
Before presenting the algorithms, we will introduce a few general definitions. If not stated
otherwise, we will stick to those definitions throughout this entire document.

• The original data set Dorig is the Census Data after cleaning and feature selection, as
described in chapter 5.

• The synthetic data set Dsyn is the product of the data synthesis, based on Dorig and
any synthesis algorithm.

• If Dsyn is derived from a specific synthesis method, we will mark this with the respective
subscript:

– Copula Synthesis with Frequency Encoding: DcopF E

– Copula Synthesis with One Hot Encoding: DcopOH

– Random Forest Synthesizer: Drf

– CART Synthesizer: Dcart

– Geomasking: Dgeo

• Both Copula Synthesizers are based on a multivariate normal distribution. One aspect
of normal distributions is that they are only defined for numerical values. However,
our data source mainly comprises categorical attributes, which requires some data
transformation via encoding. The encoded versions of any data set will be marked by a
tilde: D̃orig, D̃copF E, D̃copOH
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2 Data Synthesis

• The counties and cities will be our strata s. For every stratum, we will apply the synthesis
algorithm separately and therefore train 412 separate models for each synthesis method
we want to evaluate.

• The identifier for the individuals will be i. The respective records will be Di. Therefore
Dorig,i is record i of Dorig, in the same way Dorig,s is all data from stratum s of Dorig.

• The identifier for the attributes will be noted as j. The respective attributes will be
noted as Dj. Therefore, Dj

orig is attribute j of Dorig and Dj
orig,s is attribute j of Dorig,s.

• We will use the 10x10km grid cells as spatial identifiers. The respective attribute in the
data source is called GITTER_ID_10KM, but we will mostly be referring to it as loc.
Since we will train a different synthesis model for every stratum s, the same spatial
identifier may be part of multiple strata.

• The spatial identifier loc is the only attribute that does not get synthesized (exception:
Geomasking). Therefore, Dorig,loc=Dsyn,loc.

• As already mentioned in the introduction, the second data set of the final data product,
which is the original data without spatial identifier D−j

orig, will be noted as Dno.

2.2.1 Copula Synthesis with Frequency Encoding
The Copula Synthesis with Frequency Encoding is the algorithm suggested by [T K23]. The
main idea of the Copula Synthesis is to sample synthetic records from a multivariate normal
distribution that was estimated on Dorig. [T K23] name this synthesis model Copula Synthesis
because they describe the sampling process from the synthesis model as sampling from a
multivariate Gaussian copula, as defined by [Skl59]. Those samples are the quantiles that later
create the synthetic samples by inserting them into the distribution function of a multivariate
normal distribution.

One aspect of normal distributions to consider is that they are only defined for numerical
values. However, our data source and also most census data in general is largely made up of
categorical variables. Thus, some data transformation is required. [T K23] uses Frequency
Encoding for the transformation from Dorig to D̃orig, while mentioning that One-Hot Enco-
ding could be applied instead. The method of Frequency Encoding used here is borrowed
from [Man77] and is applied separately to every attribute with categorical values. For every
attribute, also for Dorig,loc, the Frequency Encoding algorithm splits up the interval [0, 1] into
smaller intervals Ic and assigns each Ic to a class c. The sizes of Ic are proportional to the
sizes of c, moreover, the intervals Ic get ordered by size. Consequently, the smallest intervals
are close to zero, while the largest intervals are close to one. Then, it uses the mean value of
each Ic as encoded value of the respective class c. The result of this encoding process is the
encoded data set D̃orig. Since the data synthesis is carried out for each stratum separately,
we will also apply the encoding process for every stratum separately.

The basic idea behind the synthesis algorithm is that besides D̃orig,loc, the other attributes
are sampled from a multivariate normal distribution that is estimated from D̃orig, with the
sampling being conditioned on D̃orig,loc. We need to consider that sampled values from a
multivariate Gaussian normal distribution might not always follow logical characteristics

6



2.2 Algorithms for Data Synthesis

and relations that we expect from real word data. Thus, we will impose constraints on the
synthetic values (e.g. that a person’s age should not be negative), which are applied via
rejection sampling. That means, if a sample w does not meet the constraints, new samples w
are drawn until the constraints are met. Details on the imposed constraints can be found in
the appendix 7.2. In algorithm 1, one will find the pseudo code of the copula algorithm.

Algorithm 1 Copula-based data synthesis
Input D̃orig

Output D̃copF E

for s ∈ D̃orig do
Λ : Joint distribution of D̃orig with Λ ∼ N (µΛ, ΣΛ)
FΛ (x) : CDF (Cumulative Density Function) of Λ
for i ∈ s do

while w does not meet constraints do
w ∼ FΛ

(
x|x0 = D̃origF E,loc

)
▷ Sampling conditioned on spatial identifier

end while
D̃syn,i ← w ▷ The Sample is the new synthetic record

end for
end for

For the re-transformation from D̃copF E to DcopF E, the algorithm assigns a new categorical
value for each originally categorical attribute. Using the intervals Ic as obtained in the
encoding process, the decoding process checks for every record i from D̃copF E into which of
those intervals the numeric values fall. This decides, which class c to assign as new synthetic
value. The final result is the synthetic data set DcopF E.

2.2.2 Copula Synthesis with One-Hot Encoding
In this section, we will examine some of the features of the Copula Synthesis with Frequency
Encoding, and point out why this encoding method might suffer from some weaknesses.
We will furthermore introduce and discuss One-Hot Encoding as a potential alternative
encoding, as well as necessary alternations to the synthesis algorithm due to the use of
One-Hot Encoding instead of Frequency Encoding.

Potential Weaknesses of the Copula Synthesis with Frequency Encoding

For analyzing how the Copula Synthesis models frequency encoded attributes, we will take
a look at a density histogram of three frequency encoded variables chosen for demonstra-
tion purposes, FAMSTAND_AUSF, MHGLAND_KONT_MR and HH_STATUS_NAT
(details on the variables in table 7.1), together with their respective estimated Gaussian
curves, which is how the Copula Synthesizer models the distributions. To allow a better vi-
sual comparison, the histogram bars are scaled to the height of the highest bar being hmax = 1.

When taking a closer look at the algorithm of the Frequency Encoding, we will find that
before the encoding takes place, the interval between 0 and 1 is divided into intervals Ii of
length li, proportional to the size of class i. Therefore, after synthesis, a hypothetic random

7



2 Data Synthesis
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Figure 2.2: Distribution of Frequency Encoded Variables with their Gaussian Curves

sample of X ∼ U [0, 1] has the probability of p = li ending up in the interval Ii and being
decoded into class i. This is exactly how we would want the records from D̃copF E to behave
because the original distribution would be preserved. We would therefore have to assume a
multivariate uniform distribution for modeling D̃orig. This means that for all categorical and
therefore frequency encoded variables, there is a discrepancy between the normal distribution
assumed by the synthesis model and the actual, uniform distribution of the frequency encoded
data.

Although the frequency encoded categorical variables follow a uniform distribution, it might
not be sufficient to simply replace the multivariate normal distribution from the synthesis
model with a multivariate uniform distribution. To understand why, we will take a look at
figure 2.3 with the joint distribution of FAMSTAND_AUSF and HH_STATUS_NAT as an
example, together with the resulting bivariate Gaussian density function estimated by the
synthesis model.
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On the two axes we can find the
classes of both variables after Fre-
quency Encoding. We can see how
they divide the interval between 0
and 1 into intervals proportional
to their class size. The frequency
encoded values are presented as a
2-dimensional histogram. Color and
size of the squares represent the
mass and are normalized to their
highest value being equal to the ma-
ximum value of the Gaussian den-
sity function. As expected due to
the ordering of the classes, the hig-
hest absolute frequencies are to be
found in the upper right corner. It
is clearly visible that the highest
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2.2 Algorithms for Data Synthesis

values of the Gaussian density function are in the center of the figure, at the point (0.5|0.5).
However, the empirical distribution of the bivariate frequency encoded variable has mass
zero at values closest to (0.5|0.5). Generally, the second and third most frequent classes
of FAMSTAND_AUSF only have a mass greater than zero for the most frequent class of
HH_STATUS_NAT. Consequently, the empirical distribution of the samples from the under-
lying Gaussian density function does not reflect the empirical distribution of the original data
well. As already mentioned, the multivariate Gaussian distribution does not have very flexible
modeling properties. There is only one parameter that considers cross-variable relations,
which is the covariance. Geometrically speaking, for a bivariate distribution it can only
model the density distributions as an ellipsis with the center at (0.5|0.5). A multivariate
uniform distribution has no parameters to describe relations between different variables at
all, which makes it even less flexible than the normal distribution. And unless the classes of
both variables occur independently from each other, which is usually not the case, the true
relations of the different classes cannot be modeled.

To sum up, we are looking for an encoding method that fits to the assumed distribution,
while also taking into account the individual relations of the different classes across categorical
attributes.

One-Hot as potentially more suitable alternative to Frequency Encoding

One-Hot Encoding was also considered by [T K23], but eventually dismissed because of the
high computation costs resulting from the huge amount of additional variables. These costs
would still be high for our data source with 26 attributes, but more on a manageable level
than for the data source from [T K23].

We will choose this encoding strategy as alternative to Frequency Encoding because it
matches both requirements defined in section 2.2.2. Firstly, we can individually estimate
a correlation coefficient for every combination of classes between different variables. If for
instance a certain combination of two classes is rarely or never present in Dorig, the resulting
correlation coefficient will be negative, which will make this combination occur rarely in Dsyn.
Secondly, One-Hot Encoding only creates the values 0 and 1. And even though a normal
distribution assumption would not be justified, it might still be more adequate than for the
frequency encoded variables.

Algorithm Copula Synthesis with One-Hot Encoding

In the following section, we will focus on the aspects of the Copula Synthesis that are different
from the Copula Synthesis with Frequency Encoding. Apart from those differences, the
Copula Synthesis with One-Hot Encoding is applied the same way as in section 2.2.1. Since
the entire data source has 3826 classes in the spatial attribute GITTER__ID_10KM, but
only up to 48 classes per stratum, we will apply the One-Hot Encoding for every stratum
separately and therefore keep the number of new attributes created by the One-Hot Encoding
per data set at 48 or below.

One problem that One-Hot Encoding causes are potential multicollinearities. Consequently,
the estimated covariance matrix is not positive definite, which disables the creation of a
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numerically stable distribution function for drawing the synthetic samples. In order to avoid
this issue, the following procedures will be applied:

We encode Dorig by only creating nj
classes − 1 encoded variables for each variable j, thus,

the resulting matrix D̃orig has full rank. By encoding every stratum separately, we avoid that
certain strata of D̃orig have attributes that only contain the value zero and thereby avoid the
creation of singular columns. Another issue are the missing values for the three categorical at-
tributes RAUMANZAHL_KLASS, HH_GROESSE_PERSON and GEBTYPGROESSE, as
they all occur for the exact same records (more details on the missing values in section 5.1.3).
Since missing values in categorical attributes are considered a separate class, D̃orig will include
three identical columns. This issue is treated by using these missing values as the class that
does not receive its own variable and is therefore only represented as a row of zeros. Despite
applying those methods, the resulting covariance matrix is not positive definite. A specific rea-
son is not determinable, it therefore must be caused by multicollinearities in higher dimensions.

Figure 2.4 illustrates how many strata have a matrix D̃orig that is affected by multicol-
linearities. The shared horizontal axis has no unit, while the vertical axis represents the
number of strata. The histogram on the top with the title Eigenvalues counts the number of
eigenvalues lower than 10−8 for every stratum, under application of the procedures explained
above. The histogram with the title Identical shows the number of attributes with correlation
coefficient ρ = 1 and therefore effectively the number of identical attributes. One could argue
that such duplicate columns could simply be removed from the data source and added again
after synthesis, using the synthetic values of the identical attribute that was not deleted.
However, in the last histogram with the title Differences, where we present the stratum-wise
difference of the first two histograms (Eigenvalues−Identical), we can see that there are a
lot of strata where the number of eigenvalues lower than 10−8 is higher than the number
of correlation coefficients ρ = 1. The respective area is marked with a red circle. Removing
duplicate columns would therefore in many cases not solve the multicollinearity issue. The
differences < 0 can occur if more than two attributes are equal. Three identical columns for
instance produce three covariances with ρ = 1, while only causing two eigenvalues around zero.

We will now use a different approach, based on the following idea: Instead of trying to
obtain a positive definite covariance matrix, we will tweak the covariance matrix in order to
make it positive definite, even though the underlying data does not have full rank.

We start by calculating the normal distribution function Λ, which uses a null vector 0⃗ as
mean values, the correlations of correlation matrix PΛ as covariances, and 1 + ϵ as variances.
By adding ϵ to the diagonal of the covariance matrix ΣΛ, we make it positive definite. The
higher the value ϵ, the better the numerical stability of Λ gets, but also the higher the bias
of the variances gets. For the calculations in this project, we have to choose a value for ϵ and
choose ϵ = 0.05, as this value seems to be a good compromise between avoiding numerical
instabilities and keeping the bias of the variance low. After sampling from Λ, those samples
w are being z-transformed, so that the marginal distributions (therefore µΛ and σΛ) agree
with Λ. Now we check the same constraints for integer variables as described in section 2.2.1.
If all constraints are met, w are the values of the new synthetic record. The pseudo code of
the algorithm can be found in algorithm 2.
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Figure 2.4: Eigenvalues equal to Zero, compared to Number of Identical Attributes

Algorithm 2 Copula-based data synthesis with One-Hot Encoded Data
Input D̃orig

Output D̃copOH

for s ∈ D̃orig do
Λ : Joint distribution of D̃orig,s with Λ ∼ N (µΛ, ΣΛ)
µΛ : Marginal Mean Values of D̃orig,s

σΛ : Marginal Variances of D̃orig,s

PΛ : Correlation Matrix of D̃orig,s

P Λ ← PΛ + I · (1 + ϵ) ▷ Add ϵ to avoid numerical instabilities
Λ0 ∼ N

(⃗
0, P Λ

)
, FΛ0

(x) as CDF (Cumulative Density Function) of Λ0
for i ∈ s do

while w does not meet constraints do
w0 ∼ FΛ0

(
x|x1:nclass

= D̃orig,loc

)
▷ D̃orig,loc is a matrix with nclass columns,

which is the number of classes in Dorig,loc

w ← w0 · σΛ√
1+ϵ

+ µΛ ▷ Z-Transformation of marginal distributions
end while
D̃copOH,i ← w ▷ The Sample is the new synthetic record

end for
end for
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Since we artificially increase the main diagonal of the covariance matrix (multiplication
with 1 + ϵ) before sampling, while at the same time leaving the covariances unchanged
and later transform the samples (division with 1 + ϵ), the resulting covariances in Dsyn are
expected to be smaller than in Dorig, by ρorig · 1

1+ϵ
= ρsyn. An alternative approach could have

been to preserve the covariances by simply not dividing w0 by 1 + ϵ. However, we considered
it more important for the variances to be accurately preserved, since this at least leads to an
exact preservation of the marginal distributions, which would be useful for potential analysis
of the synthetic data with focus on the univariate distributions.

Decoder for reversing the One-Hot Encoding

Despite One-Hot Encoding being one of the most common methods to enable the use of
categorical attributes in a numerical model, applications where the transformation is reversed
by decoding appear to be relatively rare. The general issue is that the resulting samples
forming the data set D̃copOH are not binary, but numeric. Therefore, we need to find a decoder
that chooses the appropriate attribute for every encoded variable and record, which then
becomes the respective synthetic value. There are two different encoding schemes that we
have considered:

• Maximum: For record i, choose the attribute where D̃copOH,i has the highest value and
use the class represented by this attribute as synthetic values DcopOH,i.

• Distribution: Using D̃copOH,i as weights for a multinomial distribution from which
DcopOH,i is sampled. Classes with negative values are excluded since they would have
negative probabilities.

We investigated both methods using two times 99 small artificial data sets, consisting of
one categorical attribute with 2 and 11 classes, respectively. The relative size of our class of
interest, α, among the 99 data sets was [0.01, 0.02, ..., 0.99], while the other 1 or 10 classes
were filling up to 100% (while being of equal size). We applied One-Hot Encoding without
full rank to each data set, estimated a multivariate normal distribution, sampled n = 10000
records from it and finally applied both previously defined decoding mechanisms. The results
are displayed in figure 2.5.

In the two different rows of the figure we can find the data sets with 11 classes in the upper
row and with 2 classes in the bottom row, while the two different columns represent the two
different decoders. The gray dashed lines represent the ratio of α before encoding and after
decoding. A perfect encoder-decoder mechanism would produce synthetic data sets for which
those two relative sizes are always equal, which is presented by the blue angle bisector. This
means that we would like the line of the actual decoder to be as close as possible to the line
of the perfect decoder.

Based on the first impression of figure 2.5, we would select decoder Maximum for our
purpose. However, it is more interesting to focus on the performance of the low values (marked
with a red circle). Most classes in our data source have relative sizes below 10%, which is
also due to the fact that most attributes have a high number of classes. The problem with
encoder Maximum is that the preserved likelihoods of those small classes are extremely low
and for a relative size of 0.01 even completely vanish from the synthetic data. This appears
to be especially critical for variables with a small number of classes, as to be found in the left
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Figure 2.5: Potential of two different Decoders for Reversing One-Hot Encoding for our
Purpose. Upper Row: Plots for 11 Classes, Bottom Row: Plots for 2 Classes

bottom plot of the figure. The results of Distribution might overall not look as promising,
but this decoder seems to preserve the relative sizes of those small classes still much better,
although generating them a bit too big. To conclude, we choose Distribution as our decoding
mechanism for reversing the One-Hot Encoding.

2.2.3 Data Synthesis based on CART Models
In this section, we discuss the data synthesis based on CART (Classification and Regression
Trees) after [Rei05]. Initially, we will briefly discuss the general weaknesses of parametric
models on complex and mixed data sets and afterwards discuss how non-parametric synthesis
model might be more suitable for our purposes.

Potential Weaknesses of Non-Parametric Models for Data Synthesis in general

In order to point out potential weaknesses of non-parametric models for data synthesis, we will
take a look at an example of a density histogram of two integer variables, GEBTYPGROESSE
and HH_GROESSE_PERSONEN, together with their estimated Gaussian curves. Figure
2.6 illustrates, how the actual distribution of GEBTYPGROESSE does not fit the respective
Gaussian curve well, unlike the one of HH_GROESSE_PERSONEN. The restrictions in
modeling ability of the Copula Synthesis due to the parametric assumptions could potentially
be a severe problem, depending on the actual distributions of the data. This problem might
especially be severe for numeric attributes, since those might follow any marginal distributions
possible.
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Figure 2.6: Distributions of Integer Variables with their Gaussian Curves

CART Synthesizer as promising alternative to Copula Synthesizers

As an alternative to the Copula Synthesizers, CART Synthesizers by [Rei05] do not come
with any of the previously mentioned issues and are moreover highly popular in the field of
synthetic data [DH23]. The advantages of these models for data synthesis are the following:
Besides not requiring parametric assumptions they can model complex non-linear distributions
and perform semi-automatic variable importance selection, by being trained to only split
on relevant variables. CART, moreover, can be trained on a significantly smaller amount
of data observations than other Machine Learning models without parametric assumptions,
like Neural Networks, and generally require low computational costs. According to [DH23]
and [DR11], CART Models are often said to outperform any other type of synthesis mo-
del. Another advantage is that we do not have to impose any constraints on the synthetic
values because the synthesizer only produces values existing in the original data set. For
instance, as long as in the original data the lowest number of rooms of any apartment is
n = 1, there will be no synthetic record with a number of rooms of n = 0 or n = −1. Due
to the advantages the CART based Synthesis provides, we will use it to investigate whe-
ther the utility of our synthetic data can be improved further, compared to the Copula Models.

Algorithm CART Synthesis

To adapt the algorithm to our requirements, we will re-use the idea from [T K23] to create two
data sets, as also described in the introduction 1 : Dsyn, where we synthesize all attributes,
except for the spatial identifiers, and Dno, where we simply remove the spatial identifiers,
but leave the other attributes unchanged.

Just like with the other synthesizers, we want to synthesize all attributes, except for loc. For
synthesizing attribute j, a Classification or Regression Tree Tj is trained with the predictors
being all remaining attributes that have either been synthesized already or are not supposed
to be synthesized at all, while j is used as target variable. Then, for obtaining the synthetic
value for record i, which therefore would be Dj

syn,i, we sample one record from all records in
the same final node as i, using Bayesian Bootstrap [Rub81]. Attribute j of the sampled record
is the new synthetic value. In case of a Regression Tree, we would have samples from an
estimated kernel density distribution instead. Following this procedure, the model synthesizes
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all attributes one by one. The pseudo code of this algorithm can be found in algorithm 3.

Algorithm 3 CART Data Synthesis
Input Dorig

Output Dcart

for s ∈ Dorig do
for j ∈ Dorig,s do

Train Classification Tree Tj

Dj
orig,s ∼ Tj

(
D−j

orig,s

)
for i ∈ s do

nodei : Final Node of i
w ∼ Dj

orig,s ∈ nodei ▷ Sampling using Bayesian Bootstrap
Dj

cart,i ← w

end for
end for

end for

Regarding the synthesis order of the different attributes, [Rei05] presents two different
approaches. The first option would be to use feature importance. We train a classification
tree Tj for every candidate attribute j, with ja as target attribute and all other attributes as
predictors. The earlier a tree splits by a certain attribute, the higher its feature importance.
The second option would be to synthesize the attributes by ascending order of the number of
classes. Since this second option can speed up computation significantly, we choose to use
this way of ordering for our project.

2.2.4 Data Synthesis based on Random Forests with OOB (Out Of
Bag) Prediction

The standards for data privacy of German official micro data are very high and passing
legal requirements for obtaining permission to release synthetic data with precise geospatial
attributes is expected to be challenging. CART Synthesizers are generally found to perform
best regarding the privacy-utility trade-off. However, [DR11] also finds that regarding data
privacy, Random Forest Synthesizer ([CR10]) tend to outperform CART models. Since a
special focus on data privacy is highly required for German official micro data, in this project
we will also examine Random Forests Synthesizers. They generally provide similar advantages
and disadvantages to CART Synthesizers. Despite being more expensive to run, which also
depends on the hyperparameters and the size of the data source, Random Forests use a set
of trees instead of just one, which might give them the ability to model even more complex
attribute relationships than the CART Models.

Algorithm Random Forest Synthesis

The main idea is to train a Random Forest on the original data and then use predictions
based on OOB votes for sampling the values of the new synthetic attribute.
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Algorithm 4 Random Forest data synthesis
Input Dorig

Output Dcart

(j1, j2..., jmax): synthesis order of the different attributes

for s ∈ Dorig do
for jj ∈ (j1, j2..., jmax) do

Train Random Forest Tj

Dj
orig,s ∼ Tj

(
D

(jloc,j1,...,jj−1)
orig,s

)
with Tj =

(
T 1

j , ..., T tmax
j

)
, tmax the number of trees

for i ∈ s do
Generate a vote vt from every tree T t

j in Tj

(v1, ..., vtmax)← Tj

(
D

(jloc,j1,...,jj−1)
orig,s

)
Use the votes as probabilities for a multinomial distribution
M (v1, ..., vtmax)← (v1, ..., vtmax)

Use random sample from M as new synthetic value
w ∼M (v1, ..., vtmax)
Dj

rf,i ← w

end for
end for

end for
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Just as CART Models, Random Forests can only have one target variable at a time, which
means that we will again synthesize the attributes after each other. We start by synthesizing
the first attribute j1, by training a Random Forest T1 with loc as predictor and j1 as target.
Then we use every tree in T1 to predict votes (v1, ..., vtmax) based on loc for every record i
individually. Based on the counts of those votes, we create a multinomial distribution and
then randomly sample the synthetic values from it, which gives us D1

rf . Now this process is
repeated for j2: We train a random forest T2 with j1 and loc as predictors and j2 as target.
For predicting the values for the multinomial distribution, we use the already synthesized
attributes. The idea behind this is to generate new synthetic observations with attribute
values fitting to each other. This procedure is now also applied for j3, ..., jmax and we finally ob-
tain the synthetic data set Drf . The pseudo code of this algorithm can be found in algorithm 4.

One significant issue of Random Forest Synthesizers is that they tend to predict the
synthetic values very close to the original values. This happens because the trees that have
been trained on record i will usually predict the original value as new value for i. The resulting
multinomial distributions would consequently be highly peaked around that original value.
Without any further adjustment, the actual purpose of the data synthesis, which is masking
Dorig to make it impossible to learn anything about certain individuals, would be missed.
The authors of [CR10] suggest two ways of solving this issue.

The first one would be to include prior distributions to the multinomial distributions.
This could ensure that there are only non-zero probabilities of generating any supported
outcome values and would lower the peak around the class of the original value. The other
one is to base the data for the multinomial distribution only on trees for which i does
not appear in the training sample. Those trees are the so-called OOB trees. Their usual
purpose is to allow calculating the OOB error for testing the performance of a Random
Forest. Here, the OOB trees are simply used for prediction. We have to keep in mind that
for data synthesis we cannot investigate the predicting abilities of our models because there
is no quantifiable optimization criterion. The disadvantage of this method is that there
is always a certain number of trees that will not be used for generating the multinomial
distribution, which is why a high number of trees might be required. For solving this issue, we
eventually chose an approach outside the proposals of [CR10]: We used approximate Random
Forests by only using a very small sample size to train the trees. For approximate Random
Forests, the R-function RandomForestSRC::rfscr.fast() for instance uses n0.75 as default
sample size. In the course of this, we increase the number of OOB trees to be close to the to-
tal number of trees, while at the same time limiting already high calculation costs significantly.

Regarding the synthesis order of the variables, the authors make the following suggestion,
which we apply for this project: Different orderings might create different utility and risk
profiles. However, if computation costs are a concern, one should order the variables by
increasing number of categories. This means that the attributes with many categories are
only included in the last Random Forests of a sequence, which can speed up the computation.

17



2 Data Synthesis

2.2.5 Geomasking
As mentioned in the introduction 1, Geomasking is a commonly used method for protecting
micro data with sensitive spatial attributes. The authors of [T K23] used it as baseline model.
The basic idea is that the locations get randomly altered within a certain radius, in order to
obfuscate the true survey locations.

The Geomasking is the only algorithm in this project that is not applied stratum-wise. The
prior location of i, ri, is the geometric center of the attribute value of GITTER_ID_100x100m,
in which the individual is located. First, two random samples from different uniform distri-
butions are selected, creating angle ϕ ∼ U [0, 2π] and distance d ∼ U [0, Uupper]. The upper
bound Uupper for the distance varies according to whether the record is located in a rural or
an urban area. Afterwards, the new location rmasked

i is obtained by a shift of ri, using the
previously sampled values, as presented in equation 2.2.1.

rmasked
x,i ← rx,i + s · cos(ϕ) (2.2.1)

rmasked
y,i ← ry,i + s · sin(ϕ) (2.2.2)

Finally, the algorithm checks a constraint for the new location; it must still be within the
borders of its original stratum s. If this is not the case, the process for record i is repeated.
Using this constraint we make sure that the population structure within each county or
city stays unmodified. After that process, the attribute loc of all records get assigned with
their new spatial identifier. The new synthetic data set is called Dgeo. Except for the spatial
identifier, all other attribute values remain unchanged.

To find appropriate upper boundaries Uupper for sampling the distances d, in this project
(and unlike in [T K23]) we decide to use a flexible upper boundary, depending on the
population density of the respective stratum. In that way, we only need to deal with one
hyper parameter, which is the number of other individuals Ncloser who are expected to
be closer to an individual’s true location than its location in the synthetic data set. The
dependency of Ncloser and Uupper is presented in equation 2.2.3, with Ns being the number of
inhabitants, As the area (in m2) and Ds the population density (in 1

m2 ) of stratum s and
AExpected being the expected area that is closer to an individual’s true location than the
individual itself is after Geomasking.

Ncloser = AExpected ·Ds = π(Uupper

2 )2 · Ns

As

(2.2.3)

Uupper = 2 ∗
√

As

Ns

· Ncloser

π
(2.2.4)
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The objective of the risk evaluation is to quantify the risk of a potential attacker being able
to learn some information about individuals in the original data, based on the synthetic data
and other prior knowledge. This is an unspecific definition. In reality, we can only quantify
re-identification risks for a certain attacking scenario. The attacking scenarios may differ in
the following aspects:

• Known key variables (attribute values the attacker already knows)

• Prior knowledge about the synthesis method

• Target variables (attributes the attacker is interested in)

• Whether we consider attribute disclosure (revealing information about attribute values)
or identity disclosure (revealing information on whether a certain individual in present
in the data set)

• Whether there is other information available that might help him find some attribute
values? (In our case this would be Dno)

In the following, we will present two different methods that help to get a good idea of
the general re-identification risk of a synthetic data set. For all risk metrics calculated in
this project, we assume that the attacker has both data sets (Dsyn and Dno) available, since
both of them are meant to be released at some point, even though they are not meant to be
accessed simultaneously for research purposes.

3.1 Privacy Attack
The main idea of the Privacy Attack [T K23] is to train a model that predicts the sensitive
attributes, based on some information that a potential attacker might have.

The authors of [T K23] suggest training a model f based on Dsyn, with the sensitive
attribute loc as target variable and the others as predictors. Then, based on Dno, they would
try to predict the original spatial identifier Dloc

true using f and compare it to the true original
spatial identifier. For f , the authors used a Random Forest Model with ntree = 500 trees.
Details on the other hyper-parameters are not given. Similarly, we use the R implementation
RandomForestSRC::rfsrc() [Ish+08] with its default parameters, however with only 50 trees
due to computational reasons.

For evaluating the results of the Privacy Attack we use the accuracy and the balanced
accuracy. We define the accuracy acc in equation 3.1.1 and the balanced accuracy bacc in
equation 3.1.2. Those metrics give us information on the risk of attribute disclosure regarding
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the spatial attribute.

acc = TP + TN

TP + TN + FP + FN
(3.1.1)

bacc = (Precision + Recall)
2 =

(
TP

TP + FP
+ TN

TN + FN

)
· 0.5 (3.1.2)

TP : True Positives, TN : True Negatives, FP : False Positives, FN : False Negatives

Both of those metrics have a different meaning and tell us about different risk-related
aspects of the data set. While the accuracy represents the actual number of individuals at
potentially higher risk, because their spatial identifier was re-identified, the balanced accuracy
weighs every class equally. Consequently, the re-identified individuals from smaller classes
contribute more to a high balanced accuracy value, which is desirable in our case because the
re-identification of individuals from smaller classes provides a higher increase of information
for the attacker.

3.2 Population Uniqueness
The Population Uniqueness [T K23] Ξt for a data set Dsyn is defined as the proportion of
records i being unique among a certain subset Dt

syn with t ∈ [1, ..., m] attributes, while the
respective record i in Dt

orig is unique as well and additionally Dt
orig,i = Dt

syn,i applies. This
proportion naturally increases the more attributes are added to the subset, because more
and more records end up being unique, while at the same time the proportion also decreases,
because it gets less likely that all attribute values of the synthetic and original records are
identical. The authors choose the approach of adding the attributes in a random order to
the subset Dt

syn, which however stays the same for the examination of the different data
sets. The resulting Population Uniqueness Ξt tells us what proportion of individuals could
theoretically be uniquely re-identified if the attacker exactly knew those attribute values of
the given subset Dt

true. Thus, it gives us information on the risk of identity disclosure, which
automatically also influences the risk attribute disclosure.
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One of the main objectives of data synthesis is to generate data sets that are altered, yet
still useful for various analyses and for obtaining reliable results by the user. For obtaining
quantifiable metrics on this usefulness of the synthetic data we will perform an evaluation of
utility. Since we trained a different synthesis model for every stratum, we will also calculate
the utility evaluation metrics separately for every stratum and accumulate the results.

[DH23] discusses various strategies for quantifying the utility of the generated data and
divides them into three categories. The first one are the so-called global utility metrics, which
are usually computed by directly comparing the synthetic and the true data. They offer the
huge advantage that no assumptions need to be made regarding the analyses carried out on
the synthetic data. However, they only give an idea of the general utility potential and are
not necessarily transferable to a specific analysis the user might be interested in. For those
cases, outcome-specific utility metrics can be used, which tell us about the utility for one
specific analysis. They can be seen as use cases, for instance for the estimation of a certain
distributional parameter, for which one would compare the estimations based on synthetic
and original data with each other. The third category are the fit-for-purpose measures. They
can be used for data exploration at the beginning of any utility assessment. Those could
be graphical comparisons of marginal or bivariate distributions on similarity, as well as
consistency checks for implausible values in the synthetic data.

For this project, we want to get a broad overview over the potential for allowing a reliable
comparison of the different synthesis methods, which is why we choose at least one method
from each of the three categories.

4.1 Fit-For-Purpose Metrics
For quantifying how well the distribution of the synthetic data matches the original distribu-
tion, we are searching for methods that can be applied to our mainly categorical data set.
We will apply those to the marginal and bivariate distributions, in order to also learn how
well the synthesis preserves the relationship between the different variables.

The authors of [RND21] have analyzed various Fit-For-Purpose measures that are calcula-
ted by cross-tabulation. For the application to numerical attributes, these attributes need to
be grouped in advance. The authors calculated ten metrics empirically for 120 syntheses and
found that almost all the metrics were highly correlated, in most cases even ρ ≥ 0.99. The
only metric that did not show a correlation of ρ > 0.9 constantly with every other metric was
the likelihood-ratio test statistic. In order to obtain a profound idea of the utility regarding
univariate and bivariate distributions we will calculate the likelihood-ratio test statistic and
one other metric that is highly correlated with many other metrics. As other metric we will
choose the Pearson χ2 Statistic. This choice is made because it is highly correlated (ρ ≥ 0.99)
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with the Freeman-Turkey statistic, the Jensen-Shannon divergence and the pMSE (Propensity
Score Mean Squared Error), the latter of which we will use later in section 4.2. Moreover, the
Pearson χ2 Statistic is a well-established and commonly used metric, also outside the field of
data synthesis.

In the following formulas for the test statistics, l ∈ L are all the levels of the respective
attributes of Dsyn, while nsyn are the counts of class l in the synthetic attribute and norig the
counts of class l in the original attribute. For multivariate tests, where the distributions of
two or more attributes are compared, l ∈ L stands for all possible tuples of classes of the
examined attributes. For instance for a bivariate test where attribute a has 4 classes and
attribute b has 3 classes, the resulting term would have 12 summands.

We want to point out that the test statistics calculated here do not act as hypothesis tests,
because the synthetic data is generated from the distribution of the original data, which means
that the data sets cannot be considered independent samples. Therefore, the p-value of the
tests cannot be used to make assumptions about whether the two distributions are statistically
equal or not, like in a χ2-Homogeneity test. However, we can compare the test statistics of
the different data sets to find out how close the distributions of Dsyn and Dorig are. Low
Test-Statistic values would mean that Dsyn and Dorig have similar distributions, which would
indicate a high level of utility of the synthetic data, while high Test-Statistic values mean
that the distributions of both data sets significantly differ, which indicates a low level of utility.

4.1.1 VW-Test (Pearson Chi-Squared Statistic)
The Test-Statistic for the adjusted χ2-Statistic as in [RND21] for utility evaluation can
be found below in equation 4.1.1. The VW-Test Statistic includes a little difference to the
commonly known Pearson’s χ2-Test Statistic for homogeneity. [VW01] proposes to replace
the denominator of the formula with the mean value of the original and synthetic counts
to avoid division-by-zero errors, in case the new synthetic data falls into groups that are
not present in the original data. Even though our applied synthesis algorithms prevent such
cases, we will calculate the VW-Test Statistic in this commonly used way. The VW-Test as
in [RND21] is implemented in R as synthpop::utility.tables(tab.stats=’VW’) [NRD16].

T = 2 ·
∑
l∈L

(nsyn − norig)2

(norig + nsyn) (4.1.1)

4.1.2 G-Test (Likelihood Ratio Chi-Squared Statistic)
The calculation of the Likelihood Ratio χ2-Statistic as in [RND21] is also referred to as
G-Test. The respective formula is displayed in equation 4.1.2. The authors add that the
G-Test is not suitable for sparse tables, which is the consequence of the logarithm not being
defined for the case nsyn = 0. Therefore, only levels where both nsyn > 0 and norig > 0
apply are used for the calculation. For sparse tables that would mean that many attributes
that are actually present in the data are not part of the metric. Since in our case we only
use tables based on a maximum number of two attributes while having data frames with
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high numbers of records, the resulting cross-tables and therefore our calculations are not
expected to be affected by those issues. The G-Test as in [RND21] is implemented in R as
synthpop::utility.tables(tab.stats=’G’) [NRD16].

G = 2 ·
∑
l∈L

nsyn · ln
(

nsyn

norig

)
(4.1.2)

4.2 Global Utility Metrics
For quantifying the Global Utility of the synthetic data set, a method commonly used
according to [DH23] is the usage of propensity scores from a model that tries to discriminate
between synthetic and true data records, based on supervised learning. Propensity score
methods are based on the work of [RR83] on propensity score matching. [RM09] were the
first to introduce them as a measure to evaluate global utility of synthetic data. There is an
existing implementation in the synthpop-package in R, as synthpop::utility.gen() [NRD16].

As explained in [Sno+18], for this method Dsyn and Dorig are stacked to create Dcomb.
Now an additional binary variable b gets added to Dcomb, which indicates whether a record is
from Dsyn or Dorig. Then a model is fitted, using Db

comb as target and D−b
comb as predictors.

From that model, we obtain a vector with the propensity scores p̂ representing the predicted
likelihood of i ∈ Dsyn for every record i.

The authors of [Sno+18] also suggest several models for estimating the propensity sco-
res. While for simple synthetic data sets they recommend logistic regression models with
first-order interaction terms; for more complex data sets they recommend to include higher
order interaction terms as well. For big data sets with a large number of attributes, as in
our case, they recommend using CART models, because parametric models with higher
order interaction terms would probably not be computationally feasible anymore. Another
argument for using a CART model is that there is no need to first encode our categorical
variables.

After calculation of the propensity scores p̂ with a CART Model, we need to find a way
to calculate a meaningful utility metric based on them. According to [DH23], the pMSE
(equation 4.2.1) is a currently popular metric, which was introduced by [MK09] for this
purpose, together with the propensity score calculations.

pMSE = 1
N

n∑
i=1

(p̂i − c)2 (4.2.1)

The difference to the regular Mean Squared Error is that c stands for the value of pi under a
perfect synthesis. In this case, the propensity model would not be able to distinguish between
records from Dsyn and Dorig at all, and constantly predict the proportion of synthetic records
among Dcomb, which is 50%. For our case we will therefore use c = 0.5. It is important to
mention that the pMSE is highly dependent on the original data source and the power of the
underlying discrimination model for the propensity scores. Moreover, [MK09] adds that its
value naturally increases with the number of predictors in the data set. Thus, this value can
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only be used to compare synthetic data sets from the same source with equally calculated
propensity scores with each other, not to draw general conclusions about their utility.

4.3 Outcome-Specific Utility Metrics
Besides metrics that compare the distributions of the different data sets, we are also interested
in how well an actual analysis on the synthetic data would perform. In our use case, we
calculate the unemployment rate for synthetic and original data and compare the results.
Therefore, we will assume the binomial and identically distributed variables Xi, which tell us
whether individual i is unemployed or not. We will calculate the unemployment rate rsyn for
sub-stratum levels on Dsyn and compare it to the same analysis rorig on Dorig.

For comparing the results, we will calculate two metrics. Firstly, we calculate the relative
error of the estimated rate, which we calculate as |rorig−rsyn|

rorig
. In case rorig = 0, while rsyn ̸= 0

applies, in order to allow a finite aggregation, we will calculate |rorig−rsyn|+1
rorig+1 = rsyn + 1.

Secondly, we calculate the CIs (Confidence Intervals) Overlap CIover of the 95% CI, as
mentioned in [DH23]. The CI Overlap represents the percentage that the confidence intervals
for the unemployment rates obtained from the original and synthetic data overlap. Since
we assumed Xi to be binomial and identically distributed, the 95% CIs are calculated as
displayed in equation 4.3.1.

[µ− z95% · σ, µ + z95% · σ] (4.3.1)

With expectation value µ and the standard deviation being

µ = n · p, σ =
√

n · p · (1− p) (4.3.2)

and z95% being the z-score for the 95% CI. We first calculate the CIs, using the R function
stats::prop.test(). Based on that, we calculate CIover, which is how many percent of the
unification of their CIs both intervals share. If both intervals do not intersect at all, or one
of the data sets does not include any individuals within the respective area, we will use
CIover = 0.

24
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5.1 Data Preparation
In this section, we describe the preparation of our data set. The preparation was carried out
in a way so that it could be processed by the synthesis algorithms. This includes creating the
raw data table by joining the provided sub-tables, data cleaning and finally the treatment of
missing values, which also must be considered in depending on the synthesis models used
later on.

5.1.1 Acquisition of Raw Data
Due to its huge amount of data with complex relations, the Census Data is split up into
many sub-tables that can be joined via matching keys. First, we had to join the sub-tables
to the dataset required for our project, directly discarding unused attributes. The decision
which attributes to keep and which ones to discard was made based on the following criteria.
There should be a potential interest in synthesizing this specific attribute because a potential
attacker could either be interested in the attribute values or use them to reveal the values
of other attributes. Keys and IDs would therefore not need to get synthesized, since their
value has no semantic meaning anyway. Moreover, IDs for linking related individuals with
each other, such as parents or children, were ignored in this project. Furthermore, duplicate
or almost duplicate variables were discarded. These often occurred, if categorical attributes
had a national and an EU-based, or additionally even another sub-national representation.
Similarly, in the relationship between the two attributes for age and year of birth the two
attributes make each other one almost completely redundant. After removing all attributes
that were not to be used, the final data set consists of 26 attributes, including PERSON_ID,
the unique identifier. The summary of this data set can be found in table 7.1.

5.1.2 Data Cleaning
Generally, the provided data tables were already in a well-kept condition and only a few
minor data cleaning steps had to be applied. One aspect was that many variables that could
actually be stored and presented as factor (R-specific format) were stored in a character
(string) format, which meant an unnecessary big usage of memory. This was due to the data
being provided in a CSV format, which does not support factors. Since how ever R and RDS
(R Data Sets) do so, those values were converted to this less memory-consuming format.
Only the unique identifier PERSON_ID was converted to integer instead of to factor. In
the summary of the final data set in the appendix 7.1 we can see that there are 20 factor
attributes and five integer attributes (without PERSON_ID), almost all of them with 11 or
less unique values, but no variable in double (float) value format.
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In order to detect illogical or corrupted values, the unique values for each attribute were
viewed. Only for the age variable ALTER_01JS, a summary of the distribution was viewed
instead. As we found, there were hardly any illogical or unexpected values. Besides some
missing values, all attributes had exclusively values in agreement with the provided value
glossary of the meta data [Bay16], except for the geospatial identifiers. The geospatial
attributes, except for the AGS_12, had about 10K records with an obviously corrupted
character string, which at this point were all set to NULL. The background and treatment of
the missing values will be discussed in the following section 5.1.3.

5.1.3 Treatment of Missing Values
Besides the general data cleaning steps, like checking for and treating illogical or corrupted
values, one essential step is to treat the missing values before the synthesis for every synthesis
model, according to the specific requirements of the model. The original data tables did not
come with any missing values among the semantic attributes (non-key attributes). However,
due to some missing or corrupted key values, the joins resulted in two different groups of
missing values in the raw data set.

The first group occurred because of some foreign keys (GEBÄUDE_ID, WOHNUNGS_ID)
in the table PERSON (which contains one record per individual) having missing IDs, which
prohibited links with the tables for housing and buildings. About 1.54M records were affected
and therefore had missing values in six of the 26 attributes of the final data frame (details
in table 7.1). The missing keys occurred for individuals for which no connection to any
residential object could be established [Sta16]. Accordingly, these are common incidences and
result from missing or insufficient residential capacities at the respective property or address.
Presumably, those individuals did either provide an obviously incorrect address or no address
at all. The resulting missing values carry a semantical meaning and can therefore hardly
be considered MCAR (Missing Completely at Random). At the same time, other attributes,
like the status of an individual’s family (FAMSTAND_AUSF), are expected to have some
dependency on the affected attributes, which is why assuming MAR (Missing at Random)
seems appropriate.

To treat this first group of missing values in the six affected attributes, we need to distin-
guish between categorical and numerical attributes. For categorical attributes, the missing
values can be introduced as a separate class, as long as they carry a specific semantic meaning,
which is the case here. For the numerical attributes, a possible way of treatment would be
imputation. Unfortunately, the linear imputation with its relatively low computation costs
cannot be used on mixed data sets consisting of categorical and numerical attributes. Theore-
tically, we could use One-Hot Encoding on the categorical attributes to solve this problem,
but this would lead to the following issues: First of all, the data set already consists of over
80M observations. Using such an encoder on all of the 20 categorical attributes, of which
many of them have ten classes or more, would make the amount of data too large to handle.
Moreover, the geographical attributes with information on county and coordinates have so
many classes that One-Hot Encoding would be impossible. The respective attributes would
have to be excluded from the imputing procedure. Other imputation algorithms can actually
handle mixed data sets, for instance, one by [AHJ13] that uses PCA (Principal Component
Analysis) to handle the huge amount of attributes resulting from the One-Hot Encoding and
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is implemented in R as missMDA::imputeFAMD(). However, this imputation method would
be computationally also extremely expensive on our data. Theoretically, we could simply
choose only a few attributes that prove to have a dependency on the attributes affected by
missing values. A possible choice would be FAMSTAND_AUSF. Unfortunately, this attribute
is categorical. Due to the high number of classes in FAMSTAND_AUSF, using the mentioned
imputation method would still lead to a very expensive calculation. Moreover, the calculation
of a correlation coefficient for examining whether there is an actual dependency between
the variables of different data types, would hardly be possible within a reasonable amount
of effort. Another aspect to consider is that the objective of this project is to investigate
methods to synthesize the true census data. Imputing missing values would always create data
further away from reality than the original data. Taking this last aspect and the potential
problems imputation could cause into account, it seems reasonable to try and find a way to
make the synthesis models work despite the remaining missing values in the numeric attributes.

In the following, we will explain the functionalities of the different algorithms in processing
the data. Geomasking relocates the spatial identifier of an observation, which affects attributes
with geographical information while all other attributes remain untouched. Since the missing
values occur exclusively among non-geographical attributes, the attributes affected by missing
values can be left as they are. The Random Forest Synthesizer and the CART Synthesizer
both use classification trees. Thus, before running this algorithm on our data we have to
transform the integer attributes to categorical attributes anyway. This means that we can
introduce the missing values as a separate class before running the synthesis. More details on
the transformation from integer to categorical attributes will be presented later in section 5.1.4.

Both Copula Syntheses models only run on numerical data, which is why all of the catego-
rical attributes are frequency encoded before the multivariate density functions are estimated.
On the encoded data set, the only calculations carried out are the attribute-wise estimation
of the means and variances, as well as the pairwise estimation of the covariances. Let us
first take a look at the mean estimators. If the missing values xNULL

j were to be ignored,
the resulting estimators for µj would be biased, because mean(x−NULL

j ) = mean(xNULL
j )

generally does not apply for MAR attributes. However, we could consider the calculated
estimator µj = mean(x−NULL

j ) as only applicable for x−NULL
j . Thus, we are allowed to sample

from a distribution with this estimator, as long as we set the previously missing values as
missing again after synthesis. In addition to µj, we want to estimate covariance estimators
ρj1,j2 without any bias. If we use the setting use = "pairwise.complete.obs" in the R function
base::cov(), we calculate the covariance estimator between two columns only based on value
pairs where both values are not missing. If we assume cov(x−NULL

j1 , x−NULL
j2 ) = cov(xj1 , xj2),

we can consider ρj1,j2 as applicable for the entire attribute. We decide to make this assumption
for enabling the calculations for the synthesis algorithms; moreover, the same assumption
would have to be made for using Linear Imputation. Since Missing Value Imputation turns
out to be neither convenient nor necessary for running our synthesis algorithms, we simply
decide to leave those missing values as they are.

The second group of missing values affects about 10K records of individuals from the
table PERSON, which came with missing values among almost all the spatial attributes. As
mentioned in section 5.1.2, the attribute AGS_12 was the only geographical attribute not
to be affected by missing values. AGS_12 is the commune-level spatial identifier and is a
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composition of keys from different administrative disaggregation levels. Therefore, it was
possible to figure out that the corresponding regional identifier 1700 from REGION_KREIS
on does not exist. Those missing values have to be considered as NMAR (Not Missing at
Random), because all of the affected records are from a specific county and there is no
reasonable way to deduct from the available attributes the missing geographical identifier.
While in other data science problems missing values of type NMAR might cause bigger issues,
in this case we estimate a separate model for each county. Consequently, those missing values
could only have an effect on the county where the records are actually located. Within the
affected county or counties there is no way of knowing what type of missing data the missing
attributes have. Also, we do not know which of the 412 counties those records are located in.
Consequently, there is no alternative to removing the affected variables from the data set.

5.1.4 Treatment and Grouping of Integer Attributes for Methods
requiring Categorical Attributes

For preparing our data set for the CART and the Random Forest Synthesizer, it is necessary
to transform the integer variables to categorical variables. The same applies for some of the
algorithms for risk and utility metrics, such as the discriminator on propensity scores, both
χ2-distributed statistics and the privacy attack algorithm. For attributes with low numbers of
classes this is possible without any further adjustments and even solves the issue of missing
values, as explained in section 5.1.3. For integer variables with higher numbers of levels,
which only applies to ALTER_01JS, we will apply grouping as follows: We simply round
the attribute values to tens (0, 10, 20...), which results in eleven groups. This comes with
the advantage of not having to check any constraints on the synthetic samples to obtain
logical value levels, since decision trees will only predict classes present in the original data.
A re-transformation of this grouping is not necessary at any point.

5.1.5 Treatment of the Singular Spatial Attribute for Copula, CART
and Random Forest Synthesis

The stratum 9461 only has one value for the attribute GITTER_ID_10KM, which for
the Copula Synthesis makes the required estimated covariance matrix singular. Similarly,
the algorithm for Classification Trees, used for CART and Random Forest Synthesis, does
not support predictors with only one class. Since the affected county has a relatively small
population < 70k anyway, the main concern was to find a fix to make the algorithm run
for all synthesis models without producing errors. Therefore, we introduced two artificial
factor levels for the attribute GITTER_ID_10KM and randomly split the population of this
stratum into two equally sized groups. One of the new levels was assigned to the first group,
the other one to the second group.

28



5.2 Steps and considerations to permit results comparable with [T K23]

5.2 Steps and considerations to permit results comparable
with [T K23]

For assessing the potential of the data synthesis methods, we calculate various metrics for
quantifying the utility and re-identification risk. We would like to compare our findings for
the Geomasking and the Copula Synthesis with Frequency Encoding to the findings from [T
K23] using these metrics. Thus, we want to apply these synthesis methods to our data set in
a way as similarly as possible to [T K23]. In this section, we will describe our thoughts and
considerations that led us to applying the synthesis algorithms to our data set the way we
did.

5.2.1 Costa Rican Census Data and Administrative Disaggregation
Structure

[T K23] apply the Copula Method and the Geomasking to a 10% sample of the 2011 Costa
Rican Census, which contains data of the entire population of Costa Rica. The sample consists
of 427,830 records and 106 attributes and can be accessed via [SC]. In order to understand
how [T K23] apply the synthesis methods to their data set, we have to take a brief look at
the administrative structure of Costa Rica.

Administratively, Costa Rica has among other disaggregation levels six planning regions,
81 cantons, and 473 municipalities. The municipalities represent the smallest geographical
information available in the Costa Rican Census. Their identifier is the zip code. The zip
code is also the most granular spatial information available in their data set.

5.2.2 Stratification and application of the algorithm to the data

How [T K23] applies the algorithm to the data

In the paper, the authors used the same strata as in the sampling design for the Main National
Household Survey ENAHO (Encuesta Nacional de Hogares), where twelve strata are used,
as each of the six planning regions is further disaggregated into urban and rural municipalities.

For the Copula Method, [T K23] estimated a separate synthesis model for each of the
strata. The authors use the zip code as spatial identifier for the conditional sampling.

For the Geomasking, the authors sampled the distances d for moving the locations of the
individuals from uniform distributions depending on whether the respective municipality is ru-
ral or urban. For rural municipalities, they sampled the distances for the relocation (in meters)
as d ∼ U [0, 5, 000], for urban municipalities, they sampled the distances as d ∼ U [0, 2, 000].
After moving the location, the condition was that the new location still should be within
the same canton, otherwise the new location would be rejected and a new sample would
be drawn. Using this method for obfuscating the true location, only roughly 30% of the
records were assigned to a new zip code, while the other 70% remained with the same zip code.
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How we apply the Copula Synthesis with Frequency Encoding to the German Census
data

For the application to the German Census Data, our objective was to find a sufficiently
low-level disaggregation that would provide strata for allowing precise modeling of the local
population structure, while still including a solid number of individuals in every stratum and
thus keeping disclosure risks low. A too little number of individuals in one stratum would
cause the synthesis model to be overfitted. Moreover, the synthetic samples would be more
likely to reveal too much information about individuals from the underlying data.

As in the paper [T K23], we want to base our stratification on administrative areas.
Consequently, we will select one level of administrative disaggregation areas and use them as
strata for our project. Table 5.1 displays the levels of administrative disaggregation we could
use for that purpose.

Table 5.1: Administrative Disaggregations Germany
Disaggregation Official Name Variable Unique Values
Square 100x100m - GITTER_ID_100M 3,296,697
Square 1x1km - GITTER_ID_1KM 217,992
Square 10x10km - GITTER_ID_10KM 3,826
Commune,City Gemeinde,Stadt AGS_12 11,491
County,City Landkreis, Kreis-

freie Stadt
REGION_KREIS 412

State Bundesland - not in data set- 16

A general challenge is the strongly varying numbers of individuals within different ad-
ministrative disaggregation levels. Considering the disclosure risk, we decide to view the
number of individuals per administrative area on each level (table 5.2) and choose the most
granular disaggregation level where the lowest numbers of individuals are still sufficiently high.

Table 5.2: Population per Administrative Area in each Disaggregation
Disaggregation Minimum Maximum Mean Median
Square 100x100m 1 1,969 24.3 13
Square 1x1km 1 23,379 368 59
Square 10x10km 1 850,247 20,964 9,580
Commune,City 11 3,292,365 7,074 1,666
County,City 34,200 3,292,365 194,684 137,069

As we can see, only on county-level we have minimum population numbers that are consis-
tently high. Therefore, we choose the counties for the stratification.
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When running the synthesis algorithms later on for both Copula Syntheses, we would now
draw synthetic samples, conditioned on a low-level spatial identifier. Similarly, the CART and
Random Forest Synthesizer would use this identifier as predictor. Thus, we need to choose
another disaggregation level below strata-level for that. On one hand, we would like this
disaggregation to be granular, in order to generate accurate synthetic data for precise spatial
identifiers. On the other hand, all synthesis models come with upper limitations for the
number of classes that still would be processable. For the Copula Synthesis with Frequency
Encoding, this limitation is the number of classes that can reasonably be represented in a
single frequency encoded vector. The more classes there are, the less accurate the conditional
samples will describe the population structure in the sub-stratum areas. For the CART and
Random Forest Synthesizer, it is the maximum number of classes that one predictor can have.
In the R function RandomForestSRC::rfsrc(), this number is 53, although some workarounds
(splitting up an attribute into multiple attributes e.g.) could also allow processing variables
with more classes. In order to choose our sub-stratum disaggregation level, we decide to view
the number of those sub-stratum areas per stratum for each sub-stratum disaggregation level.

Table 5.3: Number of disaggregation units below stratum level
Disaggregation Minimum 1st Quar-

tile
Median Mean 3rd

Quartile
Maximum

Square 100x100m 920 4,726 7,154 8,006 10,310 40,247
Square 1x1km 34 231 496 541 756 2,077
Square 10x10km 1 8 16 16.6 23 48
Commune,City 1 1 21 27.5 37 235

Table 5.3 shows us that only the population counts for the 10x10km grid cells and maybe
for the communes are sufficiently low for allowing the synthesis models to function properly.
In order to decide between those two options, we take a look at the lower 1st quartile of
the distribution. We can see that many of the strata include only one commune because the
underlying attribute AGS_12 does not further disaggregate within most bigger cities. This
implies that in cities, like Berlin, Hamburg, and many others, we would completely waste the
potential of our synthesis models to consider sub-stratum level differences in the population
structure. Since all communes and cities, with one exception, are big enough to include
more than one 10x10km grid cell, we will choose the attribute 10x10km_GITTER_ID as
sub-stratum disaggregation level and therefore as spatial identifier loc.

5.2.3 Reasons to refrain from sampling from our data set
The sampling process in [T K23] is a stratified two-stage cluster design. They introduce the
PSUs (Primary Sampling Units) based on the municipalities. Due to the fact that single
municipalities can include both rural and urban areas, some of them were disaggregated
further, which resulted in 767 PSUs. For empiric reasons, this sampling process was repeated
100 times and the risk and utility examinations were applied to each of the 100 synthetic data
sets. Their sampling method consists of two steps. In the first sampling stage, the authors
sampled on average 123 out of the 767 PSUs, separately for each stratum. The selection
probability for each PSU was proportional to the population size of the respective stratum.
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In the second stage, they used random sampling without replacement to sample records from
all selected PSU. Afterwards, they discard PSU with less than 10 selected individuals from
the procedure, which on average affected around 4% of PSU. The resulting data sets contain
n = 7.638− 11.914 records and holds about 2% of the original 10%-sample.

We need to keep in mind that in this project, our goal is to answer the question how well
the examined synthesis algorithms would perform on the German census data or on similar
data sets with spatial attributes. Therefore, we want to use a sampling method that will not
affect the performance of the examined synthesis algorithms positively or negatively.

As described above, the authors of [T K23] perform the data synthesis only on a 2% sample
of the originally available data set, which moreover only contains data from on average 123
of all 767 existing PSUs. Our question is, whether the synthesizing abilities of the examined
algorithms are affected, if on average only ten instead of 64 PSUs are used per stratum.
In that case, the encoded original data set D̃orig would have a frequency encoded vector
with on average only 16% of the actual unique values, of which all of them are supposed to
represent a different conditional distribution. Details to the calculated numbers can be found
in the equations 7.0.1 and 7.0.3. According to our considerations, it might be possible that
the performance of the conditional sampling might not be as good when all PSUs are used
instead. This would mean that in reality, when the synthesis is performed on the entire data
set, the utility of the low-level spatial synthetic data from [T K23] might be worse.

After the second sampling step, [T K23] remains with on average 70 individuals per PSU,
compared to the original 558 individuals per PSU that would be present if the complete data
set was used. Our question is whether this difference could also cause significantly different
results for the utility and privacy examination. To give an example: If, due to sampling, one
stratum only had a very small number of individuals, the risk evaluation of the synthetic
data might suggest some increased re-identification risk for individuals within the respective
stratum. However, in reality this risk might not exist because the entire data set with a
much higher number of individuals would be synthesized. Moreover, one could argue that due
to the much higher number of records, in reality the parameter estimation might perform
better, which again could indicate that the algorithm would perform better on the full data set.

Considering the potential shortcomings that come along with examining the performance
of the synthesizers on samples, we have decided to use all data records from every stratum
in this project. We only perform one run for each model and parameter setting due to
computational reasons, unlike the 100 runs in [T K23]. This significantly reduces empirical
power, but on the other hand, we do not run into any of the sampling-caused problems
mentioned before. By using this conservative sampling strategy (which for the synthesis
means no sampling at all), we accept a slightly higher variance among our key values for de-
scribing the utility and re-identification risk, while avoiding different biases of unknown extent.

5.3 Shape Files
During the Geomasking, one part of the algorithm is to check whether the new location of
an individual is within the same stratum as before. Thus, a shape file with all of the county
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borders of Germany is required, for which we use the files [Kar] for. They include a layer of
the county polygons and the necessary metadata, which we both combined to a geospatial
data frame.

As preparation for the algorithm, we preprocessed the geospatial data as follows. Since
some counties consist of two or more polygons, all polygons of one county were merged to
one multi-polygon. We obtained the number of inhabitants of every stratum from the census
data by counting the number of records for each stratum to attain the population density of
the counties. Then, the geospatial multi-polygons were merged with the census data, using
the county ID REGION_KREIS. The population density was calculated by division with the
polygon size, which was also an attribute of the geospatial data. Now that the multi-polygons
and the population density were added to the original data as additional attributes, the
spatial identifier GITTER_ID_100m was transformed to geospatial coordinates. Since the
Geodetic CRS (Coordinate Reference System) that the spatial identifier GITTER_ID_100m
was based on is the Lambert Projektion LAEA (EPSG:3035), they first had to be transformed
to UTM zone 32N (ESPG:25832), the CRS of the multi-polygons. After the Geomasking
algorithm was run, as described in section 2.2.5, the new coordinates were transformed back
to their original coordinate system and matched with their respective spatial identifier from
GITTER_ID_100m.

5.4 Hyperparameters
For the different synthesis models, we have the option to choose different hyperparameters.
We are interested in finding the best hyperparameter combination to achieve the best utility-
risk ratio possible. Hyperparameter optimization can get computationally expensive, since
usually the model needs to run for every possible combination of hyperparameters within a
set range, if possible for the entire data set. Hence, we need to select the hyperparameters
we want to check, their values we are interested in, and the sample size of the data set to test on.

5.4.1 Choice of Parameters, Parameter Values, and Data Sample
Looking at how we will be applying the synthesis algorithms, we find that we apply the
same algorithm for every stratum. Thus, it seems reasonable to just randomly sample some
of the strata and perform the optimization on them, instead of having to calculate the
metrics of interest for the entire data set. We decide to choose 40 randomly sampled strata,
which includes slightly below 10% of the entire 412 strata. Which hyperparameters could
theoretically be optimized can be found in table 5.4.

For the Geomasking we use the only possible parameter ncloser, which is the number of
individuals who are expected to be closer to the true location of individual i than the synthetic
location of i is. We choose to optimize for four different values of ncloser, as to be found in
table 5.5.

For the CART and Random Forest Synthesizer, there is a wider choice of hyperparameters.
Regarding the synthesis order of the variables, we will stick with ordering them in ascending
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Table 5.4: Hyperparameters

Copula
Synthesizer
Frequency
Enc.

Copula
Synthesizer
One-Hot
Enc.

Geomasking CART Synthesi-
zer

Random Forest
Synthesizer

Available - - Ncloser Parameters for
pruning, Synthe-
sis order of varia-
bles

Parameters of
the Random
Forests, Syn-
thesis order of
variables

Chosen - - Ncloser Maximum num-
ber of records in
final node nmtry

Number of trees
ntrees, Minimum
nodes size nmtry,
Sample size
nsamp

order by number of unique values, which is due to computational reasons and was already
pointed out in section 2.2.3 and section 2.2.4. Regarding the Classification Trees and Random
Forests, we choose parameters that influence how precisely the original data will be learned,
and therefore, how precisely the synthetic data values can be predicted. If the prediction is
too precise, the re-identification risk might be too high, while too low precision of the models
can make the synthetic data useless for precise geospatial analysis.

For the CART Synthesizer, we will only optimize one parameter for regularization, which
is the minimum allowed number of observations in any node of the tree nmtry. Since this
synthesis method has relatively low computational costs, we will optimize using five different
values. The selected parameters for the Random Forest Synthesizer are the number of trees
in every forest ntrees, nmtry as for the CART Synthesizer and the number of records nsampl,
which is selected from the N records in Dtrue. We chose three different values for each
hyperparameter for the grid search (see table 5.5) because the grid would increase drastically
with any additional value. Even though we might not find the absolutely optimal values for
each hyperparameter in that way, we will still get an idea of which of the hyperparameters
might have an influence on the synthesis, and which not.

Table 5.5: Hyperparameter Values
Geomasking ncloser 4,000;16,000;64,000;256,000
CART Synthesizer nmtry 1;3;5;10;15
Random
Forest
Synthesizer

ntrees 50;200;500
nmtry 1;3;10
nsamp N0.6, N0.7, N0.8
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5.4 Hyperparameters

5.4.2 Choice of Evaluation Metric
For synthetic data, there is not just one criterion to be optimized, like a loss function, but
there is a compromise between utility and risk to be made. For our evaluation, we will
therefore have to consider utility and risk metrics and choose those hyperparameters that
lead to the overall best results, according to our judgment. It would be desirable to use
metrics that are calculated based on the entire synthetic data set and return us only one
final value as a result, instead of for instance one value per attribute. The latter would force
us to think of a way to accumulate those values properly into a meaningful result that would
allow comparison between the different hyperparameters. For the same reason, we only want
to use one risk and one utility metric each. Among the metrics presented in the chapters 3
and 4, there is only one metric each that delivers one final figure for describing the entire
data set. As evaluation metrics we will therefore use the Propensity Score Model (section
4.2) for utility and the Privacy Attack (section 3.1) for risk evaluation.

5.4.3 Results of Hyperparameter Optimization
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Figure 5.1: Hyperparameters for Random Forest Synthesizer

For the Random Forest Syn-
thesizer, the hyperparameters
generally do not seem to ha-
ve a severe influence on the
risk and utility of the syn-
thetic data, as to be found
in figure 5.1. More precise-
ly, for the examined parame-
ter values the only parameter
that might have some influ-
ence is the number of trees
ntrees. This influence mainly
affects the pMSE only. The
pMSE is lowest for ntrees =
200, which is why this para-
meter is chosen. The slight-
ly lower accuracy values for
ntrees = 500 do not influ-
ence our choice, also becau-
se Random Forest Synthesi-
zers tend to have a low re-
identification risk anyway. Sin-
ce no influence of the other two
parameters nmtry and nsamp

can be found, we choose the
values expected to result in
the cheapest calculation, which
are nmtry = 10 and nsamp =
N0.6.
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5 Empirical Examination
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Figure 5.2: Hyperparameters for CART Synthesizer

For the CART Synthesizer, the influence of the examined hyperparameter nmtry is also
insignificant. Examining the accuracy results, we expect a negative correlation between nmtry

and the accuracy, since a tree with fewer nodes is expected to predict Dsyn less close to Dorig.
Therefore, it is surprising that nmtry = 5 produces the lowest accuracy, although the relative
differences between the different values are negligible. Since we want the CART Synthesizer
to primarily focus on producing good results for the utility metrics, we again make our choice
based on the pMSE. We will therefore use nmtry = 5, which [Rei05] also recommends as
default value for data synthesis.

For the Geomasking, we find that both the pMSE and the accuracy are lowest for the
biggest value Ncloser = 256, 000, which means that this would have to be the value of our
choice. However, we have to consider that the results of the discriminator for the propensity
scores might not be perfectly suitable for examining this synthesis method, since only the
attribute values of GITTER_ID_10KM are altered. The discriminator, however, considers
the distribution of all attributes. Another hint that the pMSE might not be a perfectly
valid metric for the Geomasking is that the pMSE and the accuracy seem to be positively
correlated. In theory, a better utility and thus a lower value for the pMSE should come with a
higher re-identification risk, thus a higher accuracy. Consequently, we decide not to consider
the pMSE from the propensity scores for choosing the hyperparameter values. When looking
at the different accuracies of the Privacy Attack we notice that there is a strong decrease
between Ncloser = 16, 000 and Ncloser = 64, 000, the decrease between Ncloser = 64, 000 and
Ncloser = 256, 000 however is only minor. If we take a look at the actual distances d that the
locations of the individuals were on average moved during Geomasking, as presented in table
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5.4 Hyperparameters
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Figure 5.3: Hyperparameters for Geomasking

5.6, we see that between Ncloser = 64, 000 and Ncloser = 256, 000 there is still a difference
of 29.5%. This can make a severe difference for the utility of synthetic data for low-level
spatial analysis. To sum up, we choose Ncloser = 64, 000 as hyperparameter for the Geomasking.

Table 5.6: Averagely moved distances Geomasking
ncloser d
4,000 2,009.598 m
16,000 3,788.147 m
64,000 6,439.553 m
256,000 8,668.326 m
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6 Results
Since the Geomasking has a fundamentally different approach in comparison to the other
synthesis methods, special conditions apply for this algorithm and the results of the utility
and risk evaluation metrics cannot always be compared to the results of the other synthesizers.
For simplification, in the following chapter we will refer to the CART, the Random Forest,
and the Copula Synthesizers as full synthesizers, as they synthesize the entire data set (except
for the geospatial attribute).

6.1 Results of Risk Evaluation

6.1.1 Results of Privacy Attack
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Figure 6.1: Accuracy and Balanced Accuracy of Privacy At-
tack

In figure 6.1 we present
the accuracy and balanced
accuracy, accumulated with
equal weights over every stra-
tum and therefore indepen-
dent from the number of in-
dividuals per stratum. We
choose this way of accumu-
lation in order for the stra-
ta with a lower number of
individuals to have a stron-
ger impact on the evaluati-
on metric, since smaller stra-
ta tend to be more in dan-
ger of a higher re-identification
risk, as explained in chapter
3.

The figure (6.1) illustrates that for all full synthesizers, the accuracy is far higher than
the balanced accuracy. This means that the Privacy Attack tends to classify bigger classes
more often correctly than smaller classes, which can be explained by Random Forests being
biased towards bigger classes if trained on data sets of different class sizes. Comparing the full
synthesizers with each other, we do not see any major differences. The accuracy for the CART
Synthesizer is only slightly lower than for the other three, while all full synthesizers have
roughly the same balanced accuracy. The Geomasking also has a balanced accuracy equal to
the full synthesizers. However, the accuracy is almost as low as the balanced accuracy. This
is probably the case because the Geomasking moves the individuals around the different grid
cells within the entire stratum, which results in them being almost equally distributed over
the area of the stratum. For interpreting the absolute values of the accuracy, we added two
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6.1 Results of Risk Evaluation

horizontal dashed lines to the figure. The orange line represents the accuracy of a Privacy
Attack algorithm that predicts the grid cell by sampling from a multinomial distribution with
weights of the actual class sizes. The red line represents the accuracy of a Privacy Attack
algorithm that always predicts the biggest class. Therefore, both lines stand for a certain way
of guessing and should point out that using Privacy Attack the absolute re-identification risk
of the examined synthesis methods is not or not much higher than if the spatial identifier e.g.
the grid cell was predicted by guessing.

6.1.2 Results of Population Uniqueness
We will now investigate the results of the Population Uniqueness analysis, based on figure 6.2.
On the horizontal axis we can see which attributes are added in which order to the subset of
interest. To give an example: The values for HH_GROESSE_PERSON represent the results
of an analysis for a subset of HH_GROESSE_PERSON, RAUMANZAHL_KLASS, and
ALTER_01JS. On the vertical axis we can see the proportion of uniquely re-identifiable
individuals for the given subset, grouped by synthesis method. The lighter colors (Mean)
represent the average proportion of all strata, while the darker colors (Max) depict the highest
proportion of re-identified individuals out of all strata.
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Figure 6.2: Proportion of Uniquely Re-identifiable Records

As shown in the figure (6.2), the re-identification risk based on Population Uniqueness
is negligible for all full synthesizers. On the one hand, the chances for a unique record
increase with an increasing number of attributes in the observed subset. On the other hand,
with an increasing number of attributes there is a drastically decreasing chance of the
original and synthetic records being identical. This makes it very unlikely for those four
synthesizers to generate uniquely re-identifiable records. Because the Geomasking only alters
the spatial attribute, the other attributes in the synthetic data set are always identical to
the original attributes, and the more attributes are part of the investigated subset, the more
this proportion increases. As a consequence, there are close to 100% uniquely re-identifiable
records in cases where the attacker already knows almost all of the non-sensitive attribute
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6 Results

values. However, we need to add that this risk only refers to the non-sensitive records in the
Geomasked data set, since for the Geomasking only one data set is to be published. After
re-identifying an individual, the attacker will still be confronted with the shifted spatial
identifiers.

6.2 Results of Utility Evaluation
The following metrics were, except for the use case, calculated using the [NRD16] package in
R. In order to get a first impression of the utility of the different synthesis methods, we will
take a look at the results of the pMSE.

Table 6.1: pMSE Results
Synthesis Copula

Frequency Enc.
Copula
One-Hot Enc.

CART Random
Forests

Geomasking

pMSE 0.24999 0.24226 0.19816 0.21867 0.10040

We can see that the pMSE of the Copula Synthesis with Frequency Encoding is almost as
high as 0.25, which is the highest value possible. This could indicate a very poor similarity of
the overall distribution between Dgeo and Dorig. The value of the Copula Synthesizer with
One-Hot Encoding of 0.242 is also very high, but already notably further away from 0.25.
For the Random Forest Synthesizer, we get an even lower value of 0.219 and for the CART
Synthesizer we obtain the lowest value for all full synthesizers, which is 0.198. As explained in
section 4.2, the pMSE is highly dependent on the discriminator model and naturally increases
with the number of predictors, which makes it impossible to make statements about the
absolute utility only based on the pMSE. In total, the Geomasking algorithm delivers by far
the lowest value, which is presumably due to the fact that only the spatial identifier was altered.

6.2.1 Preserving Univariate Distributions
To learn more about the synthetic distributions, we will now take a look at figure 6.3 of the
univariate distributions, based on the VW-Test.

The test statistic was calculated for every stratum separately. The results in the plots
are ordered by the number of individuals in the respective stratum, with low numbers on
the bottom. We can see that the tendencies found for the pMSE continue. For almost all
variables, the test statistic is visibly higher for DcopF E than for DcopOH , while Drf and Dcart

have even lower values. Moreover, among the attributes where the values are comparably low
anyway, Dcart maintains lower values than Drf . We also can see that the same attributes for
all four sets have higher values than the others. The fact that high numbers of individuals
per stratum lead to a higher value of the test statistic is influenced by the higher number of
counts for the different classes, which leads to higher values of the test statistics. It does not
mean that the utility is better or higher for less populated strata. The variables in the plots
are ordered by their number of unique values, increasing from left to right. In accordance
with our expectations, the test statistic values for variables with a higher number of unique

40



6.2 Results of Utility Evaluation

4. Random Forest 5. Geomasking

1. Copula Frequency Enc. 2. Copula One Hot Enc. 3. CART
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Figure 6.3: Univariate WV-Test Statistic
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4. Random Forest 5. Geomasking

1. Copula Frequency Enc. 2. Copula One Hot Enc. 3. CART
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Figure 6.4: Univariate G-Test Statistic

values are higher. However, among variables with similar numbers of unique values, some
appear to be affected more than others.

Since categorical attributes have to undergo an encoding and decoding process, one thing
that we might expect to find is that for categorical attributes the distributions might generally
not be preserved as well as for integer attributes. Moreover, this is one of the reasons we
chose a CART and a Random Forest Synthesizer as alternative methods in the first place.
Details on that can be found in section 2.2.4. For all full synthesizers, we can see that for
instance ALTER_01JS and HH_GROESSE_PERSONEN both show way lower values than
their neighboring attributes, while both are integer attributes. On the other hand, the three
attributes with the most black patches in the plots, HH_STATUS_NAT, WZ_MZ_REG,
and MHGLAND_AUSF_MR, are categorical variables. Generally, all integer attributes
have comparably low values, except for GEBTYPGROESSE. Furthermore, many categorical
attributes have very low values, such as FAMSTAND_AUSF.

For gathering further information on whether the data type of a variable could influence
how well the distribution is maintained, we will also take a look at the results of the G-Test
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6.2 Results of Utility Evaluation

for the univariate distributions in figure 6.4. Here we can see that the general tendencies of
the test statistic values are the same as for the VW-Test. By comparing the variables, we
again find how GEBTYPGROESSE as the only integer variable has comparably high values.
Moreover, FAMSTAND_AUSF again shows comparably low values. In order to learn more
about the influence of the data type, we will now take a more detailed look at the figure of
the Random Forest Synthesizer. If our theory about the influence of the different data types
was true, we would expect to find the categorical attributes to improve more than the integer
attributes between the Copula Method with Frequency Encoding and the Random Forest
Synthesizer. However, the figure reveals that such a pattern is not obvious. There are strong
reductions in the VW-Test statistic for categorical attributes, like RELIGION_KURZ or
WZ_MZ_REG, but equally also for the integer variable GEBTYPGROESSE.

In figure 2.6, we could observe how GEBTYPGROESSE is far away from following a
normal distribution, which is why we would expect the test statistic of this value to improve
largely by modeling it with the CART or Random Forest Method. In figure 6.3 we can confirm
that the test statistic of this variable became considerably lower.

The results of the Geomasking synthesizer are as expected: For both test statistics, the
values are extremely high for the spatial identifier and zero for all other variables. Similarly,
the values for the spatial identifiers for the full synthesizers are zero, since no alteration was
made.

A further interesting finding is that for the G-Test, EU_OCS has extremely low values
close to zero for the Copula Synthesizers with Frequency Encoding, compared to the VW-Test.
To investigate this phenomenon, we will compare the value counts before and after synthesis.

Table 6.2: EU_OCS Value Counts
Class OCS_01 OCS_02 99
True 78,648,050 1,276 1,560,671
Copula Frequency Enc. 80,209,997 - -
Copula One-Hot Enc. 74,792,789 60,038 5,357,170
Random Forest 78,612,001 1,768 1,596,228

Table 6.2 reveals that the synthetic attribute of the Copula Method with Frequency En-
coding only contains class OCS_01. The synthesis did not preserve the distribution well.
However, as the G-Test only considers classes where the synthetic counts are greater than
zero, the resulting test statistic values do not reflect the absence of the classes OCS_02 and
99. Therefore, they also do not reflect the bad preservation of the distribution of the attribute
EU_OCS in the synthetic data.
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Figure 6.5: Bivariate VW-Test Statistic

6.2.2 Preserving Multivariate Distributions

In the following, we want to figure out how well the multivariate distributions are preserved
for the different synthesis methods and what kind of distributions might be troubling for the
synthesizers. For this purpose, we will now look at the results of the VW-Test in figure 6.5
for bivariate distributions. The results of the bivariate G-Test can be found in the appendix
in figure 7.1. For both test statistics, the figures only show minor differences.

Generally, this figure (6.5) indicates the same tendencies as the univariate distribution plots.
The same variables tend to have higher or lower test statistic values than others. However,
there seem to be some variable combinations where the distribution is preserved worse than
for the surrounding combinations. In section 2.2.2, we took a closer look at the bivariate
distribution between HH_STATUS_NAT and FAMSTAND_AUSF and discussed why the
Copula Method with Frequency Encoding would be expected to struggle modeling this
distribution. We can see from the figure that this combination indeed does have a comparably
high test statistic value. However, this combination of attributes also shows comparably high
test statistic values for the other synthesizers. This means that the other synthesizers also
do not preserve this distribution properly. Therefore, distributions where the classes have
strong and complex dependencies to each other might still be challenging for the tree-based
synthesizers, even though we expected these kind of distributions to be the key strength of
tree-based synthesizers.
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After all, we want to keep in mind that, regarding the bivariate plots, mainly the distri-
butions including the geospatial attribute (locid) are of special interest, since a potential
data product should allow precise geospatial analysis. We can see how these distributions are
by far the worst for the Geomasking. This could be a hint that the full synthesizers could
actually provide an advantage for low-level spatial analysis, compared to Geomasking.

6.2.3 Results Use Case: Unemployment Rate
The results of the use case, as defined in section 4.3, show us how useful the results of a
low-level spatial analysis on the different synthetic data sets would be. First, we examine the
aggregated results in table 6.3, where the results for each grid cell (unique value of spatial
identifier GITTER_ID_10KM) were weighted by the number of individuals per grid cell. By
far the highest relative error is to be found for the Copula Method with Frequency Encoding.
On average, the calculated unemployment rate has a relative error of 125% compared to
the true value. The results for the other four methods are notably better, while the Copula
Method with One-Hot Encoding still performs worse than the tree-based methods and the
Geomasking. The best results are obtained for the CART Synthesizer, with only 19.0%
relative error. For the CI Overlap, we observe how the value of the Copula Method with
One-Hot Encoding is extremely low (0.4%). The best CI Overlap (13.5%) is again provided
by the CART Synthesizer.

Table 6.3: Use Case Results Aggregated

Synthesis Copula
Frequency
Enc.

Copula
One-Hot
Enc.

CART Random
Forests

Geomasking

Relative Error 1.2575 0.4394 0.1903 0.3696 0.3580
CI Overlap 0.0651 0.0040 0.1351 0.0831 0.1158

Figure 6.6 shows relative error and CI Overlap disaggregated by grid cell. These cells are
ordered by number of individuals on the horizontal axis.

First, we notice that there are many grid cells where all full synthesizers have no values at
all. This happens because these grid cells are actually uninhabited, but since the Geomasking
moves the locations around within the entire stratum, it often happens that some of them
get moved into uninhabited grid cells. For the same reasons, some grid cells show some gray
lines for the Geomasking, while in the same grid cell the other synthesizers have counts: The
Geomasking moved all individuals away. The relative errors in figure 6.6 for the different
synthesizers correspond with the aggregated results in table 6.3. Moreover, for the relative
error, there does not seem to be an obvious tendency regarding the number of individuals
per grid cell. Regarding the CI overlap, we find that grid cells with a very low number of
individuals tend to have high values, which go up to 100%. This is often the case when in
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Figure 6.6: Use Case Results by Grid Cell

those cells there are only a few individuals living, which are all in employment, as correctly
reflected in the synthetic data. Therefore, for the true and synthetic binomial distributions
of unemployed individuals p = 0 applies, which makes the 95% CI [0, 0] and results in a
100% overlap. Speaking of absolute figures, however, the CI Overlaps are rather small for all
synthesizers. Especially for more populated grid cells, the overlap is often equal or close to
zero, which means there is no overlap at all. For the Copula Method with One-Hot Encoding,
the CI Overlaps are even worse compared to the other synthesizers.

In order to investigate the CI Overlap further, we will consider figure 6.7, which compa-
res the synthetic and true unemployment rates together with their 95% confidence interval.
As an example, we use the grid cells of only one randomly selected stratum for this comparison.

On the horizontal axis we can see the grid cells ordered by number of inhabitants, in
ascending order from left to right, while on the vertical axis we see the unemployment rate.
Since we model the employment status of an individual with a binomial distribution, as
explained in section 4.3, the CIs are shrinking for more populous grid cells. Therefore, even
though the relative error from the synthetic data might not be that severe, the CIs are so
small that they do not overlap.

This figure (6.7) also gives us more details about the performance of the different syn-
thesizers, especially, which of them produce a bias for the estimators of the unemployment
rate. Obviously, the strongest bias was generated by the Copula Synthesis with One-Hot
Encoding, which also has the overall worst CI Overlap. The proportions of unemployed
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Figure 6.7: 95% CI: Comparison between True and Synthetic Data

individuals in DcopOH are so high that not even the less populated grid cells produce any
overlap. This finding matches with the results from section 2.2.2, where the method for
reversing the One-Hot Encoding was discussed. From figure 2.5 we could learn that our
reversing method is biased towards small classes, thus, creating the proportion of small classes
in the synthetic data too high. The bad results for the CI Overlap together with the plotted
confidence intervals could therefore point out that the weakness of the reversing process
of the One-Hot Encoding has a huge negative influence on the synthetic data. Also, the
Copula Method with Frequency Encoding and the Random Forest Synthesizer generate a
visible bias. The only two synthesizers where the estimators of the unemployment rate do
not have a visible bias are the Geomasking and the CART Synthesizer. Moreover, the esti-
mators of the Geomasking seem to have a bigger variance than those of the CART Synthesizers.

Another thing we visually notice is that for none of the synthesizers, the unemployment
rates on the sub-stratum level seem to be preserved. This would mean that in this project
the conditioning on the spatial identifier did not influence the synthetic data noticeably.

To sum up, the CART Synthesizer delivers the best results for this use case, which are
notably better than the results of the Geomasking. The worst results are generated by the
two Copula methods. The Copula Method with One-Hot Encoding seems to suffer severely
from the bias caused by the reversing of the One-Hot Encoding, while the Copula Synthesis
with Frequency Encoding produces huge relative errors.
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In this project, we have evaluated five different synthesis methods, which are two Copula
Synthesizers with Frequency Encoding and One-Hot Encoding, respectively, as well as a
Random Forest Synthesizer, a CART Synthesizer, and Geomasking. The purpose was to
analyze the potential that synthetic versions of official micro data with exact geospatial
attributes offer for the German official statistics and science.

Generally, the evaluated risk metrics suggest a negligible re-identification risk for all syn-
thesizers, except for the Geomasking. Therefore, the final assessment of which model has the
highest potential for the German official statistics and science is mainly based on the utility
evaluation. Out of all synthesizers from this project, the CART Synthesizer produced the
most promising results based on global and specific utility metrics and the evaluated use
case. The Random Forest Synthesizer performed notably worse than the CART Synthesizer
but still better than the Copula Synthesizers. For the Copula Synthesizer with Frequency
encoding, we could see from an example that the proportion of small classes in the synthetic
data is constantly too low, which means that the respective estimator in the synthesis model
is biased. The estimators of the proportion of small classes from the Copula Method with
One-Hot Encoding are affected by an even larger bias than the Random Forest Synthesizer,
while the Copula Synthesizer with Frequency Encoding performed the worst in general. The
Geomasking comes with an extremely uncontrollable re-identification risk, so even though
this synthesizer produces overall competitive utility metrics, it cannot be considered an
alternative to the CART Synthesizer.

During the project, we were able to determine the following reasons, why the Copula
Method with Frequency Encoding did perform worse than the other models. Firstly, the
Frequency Encoding produces uniformly distributed marginal distributions of the categorical
attributes and expects the synthetic samples to be uniformly distributed. However, the synthe-
sis algorithm models all attributes with a normal distribution. Secondly, the integer attributes
also often do not follow a normal distribution, which also results in poorly preserved marginal
distributions in the synthetic data. Finally, the complexity of the relationships between the
categorical attributes is too high to be properly modeled (after Frequency Encoding) by just
the covariance, which is the only parameter in the Copula Model that is capable of describing
the relationships between different attributes. Worth mentioning is that for calculating this
synthesis model we had to make some distributional assumptions regarding the covariances in
order to deal with the missing values in the original data. The required assumption was that
the covariance of two attributes is equal to the covariance of only the missing values among
those two attributes. We cannot definitively determine from our results whether this assump-
tion is justified or whether this phenomenon considerably impacts the modeling properties
of the synthesis. To sum up, the parametric assumptions of the Copula Model seem to be
too restrictive to allow the synthetic data to fit the distribution of the original data sufficiently.
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[T K23] presents the Copula Synthesis with Frequency Encoding as promising method
for providing synthetic geo-referenced micro data. According to the authors’ findings, this
synthesis method provides a lower re-identification risk and at the same time a higher uti-
lity than Geomasking. While our project also found a lower re-identification risk for the
Copula Synthesis with Frequency Encoding compared to the Geomasking, the results of our
project regarding the utility do not support their findings. One possible reason for these
contradictory results is that the relative number of numerical attributes in our data was
relatively low, which means that most attributes had to be Frequency Encoded, which due
to the modeling properties of this encoding method might have had a negative influence on
preserving the distribution of the data. By their application of the algorithm, only roughly
30% of individuals got assigned a new spatial identifier (zip code), which leaves the entire
records of 70% of individuals completely unmodified. This might also be a further explanation
for [T K23] finding a higher re-identification risk for the Geomasking. For comparison, in
our project more than 80% of individuals were assigned a new spatial identifier during the
Geomasking, represented by the attribute GITTER_ID_10km. Another likely reason for the
different findings is that we did not perform any sampling at all and therefore performed
the data synthesis always on the entire data set. In contrast, [T K23] used a two-stage
stratified sampling technique, which might naturally have an effect on the risk and utility
metrics. Especially the notably higher risk of re-identification via unique records found in
[T K23] has most likely been caused by fewer individuals being present in the data source there.

The authors of [T K23] also examined the Copula Synthesis for One-Hot Encoding, with
the result that Frequency Encoding leads to a slightly better utility and to better computation
costs, while at the same time avoiding the issue of potential multicollinearities in the encoded
data. However, in our project we found that One-Hot Encoding leads to a notably higher
utility than Frequency Encoding. One possible reason for the different results is that the
data source of [T K23] includes a notably higher number of attributes (106, instead of 26
), which might have caused in regard to One-Hot Encoding even bigger multicollinearity
issues and computational costs. We also want to add that the way [T K23] handles potential
multicollinearities, as well as the way they reversed the One-Hot Encoding after drawing
the synthetic samples, is not derivable from their paper. In our project, we therefore might
have used completely different approaches, markedly lowering the comparability of their
and our results. We noticed that our approach of reversing the One-Hot Encoding caused
biased estimators of the proportions of small classes in the synthetic data. More precisely,
the relative size of small classes in the synthetic data is too high. The method for reversing
the One-Hot Encoding as used in our project is probably the main weakness of the Copula
Synthesis with One-Hot Encoding. Further weaknesses may include the modeling of the
One-Hot Encoded attributes with a normal distribution, since for One-Hot Encoded attributes
a normal distribution is most likely not given. Moreover, a weakness could be the slightly
reduced covariances caused by the treatment of the multicollinearities.

According to expectations, the CART and Random Forest Synthesizers, which have the
capability of modeling complex categorical multivariate relationships without underlying
parametric assumptions, are much better capable of transporting the original distribution
to the synthetic data than the Copula Methods, which results in them producing notably
better results for the utility metrics. Furthermore, our results support ideas from [DR11] and
[DH23] that in data synthesis, CART Synthesizers usually outperform other synthesis models.
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Moreover, unlike in [DR11], we could not detect a higher re-identification risk of our CART
Synthesizer in comparison to our Random Forest Synthesizer.

One of the aspects that according to our observations did not show a significant influence
was the data type of the attributes. The categorical attributes did not show notably higher
values for the test statistics than the integer attributes, which applied to all synthesizers,
regardless of whether the synthesizer used encoding. Hyperparameters also do not seem to
impact the performance of the tree-based models considerably. Especially for the CART
Synthesizer, this influence was found to be negligible for the values over which the depth of
the trees got optimized. Only for the Geomasking, a certain influence of the hyperparameters
was noticeable.

There are other synthesis models without parametric assumptions that we could have
possibly considered and want to present briefly at this point. According to [DH23], literature
about GANs (Generative Adversarial Networks), first introduced by [Goo+14], is growing
rapidly in regards to data synthesis. GANs consist of two networks competing with each
other. Based on white noise, the so-called generator tries to generate an artificial object as
close to the training data as possible. At the same time, the so-called discriminator tries
to discriminate between the original and the synthetic object, while minimizing its own
classification error. Since a low classification error of the discriminator leads to a high penalty
for the generator, the network learns to generate synthetic data that is indistinguishable from
real data. That means, if we train GANs on a data set, the generator can produce synthetic
data samples from it. Another type of generative models for data synthesis would be VAEs
(Variational Auto Encoders), introduced by [KW22] and first published in 2013. These models
train an encoder-decoder architecture projecting into and from a so-called latent space. During
the encoding process, noise is added to the training observations. This has the effect that one
training record is not only represented by one exact position in the latent space, but by an
entire distribution (e.g. the area close by). Moreover, the latent space is locally restricted
by being forced to follow a certain distribution (e.g. the multidimensional standard normal
distribution). For the predictions, this means that independently from where in the latent
space we decode a sample, we will always receive a meaningful output. While this property of
VAEs can be used for generating synthetic objects like artificial images, it can also be used
to generate synthetic data records. Just as for other generative models, the big disadvantages
of the two presented ones are the huge amount of required training data and high training
costs. Another reason why they are not suitable for our purpose is that in their base form
they do not allow the generation of synthetic samples based on predefined conditions via
conditional sampling. Therefore, they cannot be used for the synthesis of partially synthetic
data. Finally, since they are based on neural networks they require numerical data, which
would require an additional encoding and decoding process for our predominantly categorical
data set. Considering the presented disadvantages, we decided against evaluating generative
models like GANs and VAEs in this project.

Since even for the CART Synthesizer the re-identification risk is negligible in absolute
terms, there might still be potential ways of obtaining synthesis models that produce synthetic
data with higher utility and yet with still an acceptable re-identification risk. One conceivable
option may be to use a synthesis model that is able to model the distribution of the original
data more precisely than the CART Synthesizer. This could be a model based on Ensemble
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Methods, like a Random Forests Synthesizer, but with predictions from all trees instead of
only OOB predictions. Moreover, very interesting to observe was that even for the CART
Synthesizer, the conditioning on the spatial identifier did not show any noticeable influence
on the synthetic data. This would mean that for producing more accurate low-level synthetic
data the spatial identifier of the grid cells might require more influence in the synthesis process.
Another aspect that makes especially controlling of the re-identification risk more challenging
is the varying sizes of the strata and varying number of individuals per 10x10km grid cell. If
the spatial identifier of an individual living in a 10x10km grid cell with only one inhabited
building is re-identified correctly, the address of this individual is re-identified as well. In
order to avoid this kind of problem, it would be desirable to work with strata that all have the
same population and the same number of equal-sized sub-strata disaggregations. Since the
German administrative disaggregations do not provide such criteria, an alternative would be
to use an algorithm that disaggregates Germany into smaller areas of equal population, which
could be used as strata. If these strata were disaggregated further into a fixed number of
smaller same-sized sub-strata areas, these could be used as spatial identifiers (in this project:
GITTER_ID_10KM).

Finally, we want to give a statement on the main topic of this project, which is an assess-
ment of the potential that data synthesis offers for providing sensitive official micro data
with exact geo-referenced attributes. First of all, regarding the generation of two data files
as proposed by [T K23], it seems unlikely that access to both of the files could be provided
at the same time, due to increased data privacy risks. However, providing controlled access
by technically ensuring that they can only access one of the data sets at a time would be
conceivable.

For providing a controlled data access for independent scientific research institutions,
the Research Data Center of the German statistical office offers different ways of access,
depending on the level of anonymity of the requested data source, as described in [Rot19]
and [Züh+05]. Onsite access allows analyzing microdata with the highest analytic potential
because only direct identifiers are removed. Researchers either need to visit the so-called Safe
Center, a workplace within the Statistical Offices, or use Remote Execution. For Remote
Execution, researchers program their codes based on publicly available absolutely anonymous
files that only give information on the structure of the data. Hence, they do not produce
interpretable results before the code is run by employees of the Research Data Center on the
true data. Moreover, standardized and de facto anonymous data sets can be downloaded as
SUF (Scientific Use File), after a registration process. Such data files contain samples of the
original data sources, where potentially sensitive attributes, such as spatial identifiers are
either anonymized, for instance via aggregation, or completely removed.

A synthetic data set, as discussed in this project, could potentially be considered de
facto anonymous, which means that considering its level of anonymity it would have to
be positioned between a SUF and onsite data. According to the given regulations on data
privacy of German official microdata, this could allow for such a synthetic data set to be
accessible as RSUF (Remote Scientific Use File) via Remote Access. For Remote Access,
there are several technical, organizational, and contractual measures to ensure data privacy
(e.g., access is only possible for a specified range of IP addresses from the network of the
research institute, up- and downloading of data is prohibited and all performed runs on the
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7 Discussion

data are automatically logged, de-anonymization is contractually forbidden and leads to
contractual penalties). Instead of requiring the researchers to commute to the office buildings
of the German Statistical Office, synthetic data accessible as RSUF would allow researchers
to work directly from their research institutes, which would be advantageous as long as the
synthetic data provides them with an adequate alternative to the original data source. A
provision of the described data source as SUF seems to be rather unlikely because of the
strict privacy-ensuring regulations for German official microdata.
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Appendix
Number of PSUs per stratum on stratified sample from paper [T K23], compared to on full
data:

On Sample : nsample
P SU

nstrata

= 123
12 ≈ 10 (7.0.1)

On Full Data : ntrue
P SU

nstrata

= 767
12 ≈ 64 (7.0.2)

Individuals per PSU on 2% stratified sample from paper [T K23], compared to on full data:

On Sample : N · psample ·
1

nP SU

= 427.830 · 0.02 · 1
123 ≈ 70 (7.0.3)

On Full Data : N

nP SU

= 427.830
123 ≈ 558 (7.0.4)
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Figure 7.1: Bivariate G-Test Statistic
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Table 7.1: Data Source Overview

Variable Meaning Data
Type

Unique
Values

Missing
Values

Missing
Values
(Raw
Data)

PERSON_ID Individual ID integer 80,209,997 0 0
ALTER_01JS age integer 101 0 0
GESCHLECHT sex integer 2 0 0
RAUMANZAHL_KLASS number of rooms integer 7 1,537,015 1,546,713
HH_GROESSE_PERSON household size integer 11 1,537,015 1,546,713
GEBTYPGROESSE Size of home building integer 10 1,537,015 1,546,713
AGS_12 ID for commune factor 11,491 0 0
HH_STATUS_NAT house hold status factor 16 0 0
MHG_AUSF_MR migration country factor 6 0 0
MHGLAND_KONT_MR continent of origin factor 9 0 0
ERWERBSTAT employment status factor 5 0 0
FAMSTAND_AUSF family status factor 8 0 0
GEBURTSLAND_GRUP country of birth factor 5 0 0
RELIGION_KURZ religion factor 3 0 0
STAATSANGE_GRUP citizenship factor 5 0 0
STELLUNG_BERUF_REG employment position factor 3 0 0
WZ_KURZ_REG Employment Sector factor 5 0 0
WZ_MZ_REG Empl. Sub-Sector factor 12 0 0
EU_HAR Type of accommoda-

tion
factor 4 0 0

NUTZUNG — factor 4 0 1,546,713
HEIZTYP Way of heating factor 7 0 1,546,713
EU_OCS — factor 3 0 1,546,713
GITTER_ID_100M ID of 100x100m squa-

re
factor 3,296,697 0 9,698

GITTER_ID_1KM ID of 1x1km square factor 217,992 0 9,698
GITTER_ID_10KM ID of 10x10km squa-

re
factor 3,826 0 9,698

REGION_KREIS ID of county factor 412 0 9,698

Table 7.2: Constraints for Conditional Sampling
ALTER_01JS x ≥ −0.5
GESCHLECHT x ∈ [0.5, 2.5]
RAUMANZAHL_KLASS x ∈ [0.5, 7.5]
HH_GROESSE_PERSON x ∈ [0.5, 11.5]
GEBTYPGROESSE x ∈ [0.5, 10.5]
All Categorical Attributes x ∈ [0, 1]

All non-categorical attributes are after sampling rounded to the next integer.
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