h da

HOCHSCHULE DARMSTADT
UNIVERSITY OF APPLIED SCIENCES

Hochschule Darmstadt

— Faculty of Mathematics and Natural Sciences
and Computer Science-

How to Build 3D Models Anywhere:
Photogrammetry vs. Gaussian Splatting on
Mobile, Desktop and Cloud Platforms

Submitted in Partial Fulfillment of the Requirements for
the Degree of

Master of Science (M.Sc.)

Submitted by

Salime Faizi

Student ID: 731994

First Examiner : Prof. Dr. Elke Hergenrother

Second Examiner : Prof. Dr. Timo Schiirg

Salime Faizi: How to Build 3D Models Anywhere:
Photogrammetry vs. Gaussian Splatting on Mobile, Desktop and Cloud Platforms,
© 16.10.2025

DECLARATION

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstandig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wortlich oder sinngeméfs aus verdffentlichten oder noch
nicht veroffentlichten Quellen enthommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder dhnlicher Form noch bei keiner anderen
Priifungsbehdrde eingereicht worden.

Im Rahmen der sprachlichen Uberarbeitung wurde Kiinstliche Intelligenz
eingesetzt, insbesondere DeepL.com, um Formulierungen sowie Grammatik
zu verbessern.

Darmstadt, 16.10.2025

Salime Faizi

ABSTRACT

This thesis investigates the feasibility and performance of classical photogram-
metry and modern differentiable scene-representation methods, with a par-
ticular focus on 3D Gaussian Splatting (3DGS). The study systematically com-
pares mobile applications (Kiri Engine, Polycam), desktop software (Meshroom,
PostShot), and the official 3DGS source-code implementation executed on
Amazon AWS. The evaluation covers a diverse range of scenarios, including
static objects, architectural structures, outdoor environments, and dynamic
motion sequences, to analyze visual quality, reconstruction robustness, and
hardware efficiency under realistic conditions.

Quantitative metrics (PSNR, SSIM, LPIPS) were applied to source-code
models, while all other tools were assessed qualitatively through structured
visual evaluation. Photogrammetry demonstrated strong performance for
metrically consistent, watertight object reconstructions but degraded under
motion, illumination changes, or limited parallax. In contrast, 3DGS achieved
visually immersive, continuous scene representations with superior consis-
tency in dynamic and large-scale environments, though at the cost of high
GPU memory demands and reduced sharpness in peripheral regions.

Across all methods, data quality, particularly image stability, parallax,
and lighting uniformity, proved to be the decisive factor for reconstruction
success. Mobile applications provided the lowest entry barrier and fastest
turnaround times, enabling even non-expert users to generate realistic 3D
models directly from smartphone captures.

Overall, the results show that high-quality 3D reconstructions are achiev-
able under limited hardware resources and without expert knowledge. This
opens new opportunities for cost-efficient 3D digitization in cultural her-
itage, education, and other domains where accessibility and visual realism
are prioritized.

ZUSAMMENFASSUNG

Diese Masterarbeit untersucht die Machbarkeit und Leistungsfahigkeit klas-
sischer Photogrammetrie im Vergleich zu modernen, differenzierbaren Sze-
nenreprasentationen, insbesondere 3D Gaussian Splatting (3DGS). Ziel war
es, die Eignung beider Ansédtze unter begrenzten Hardware-Ressourcen zu
bewerten und ihre Stdarken und Schwéachen im Hinblick auf Rekonstrukti-
onsqualitdt, Robustheit und Zugénglichkeit aufzuzeigen.

Verglichen wurden mobile Anwendungen (Kiri Engine, Polycam), Desktop-
Software (Meshroom, PostShot) sowie die offizielle 3DGS-Source-Code- Imple-
mentierung auf Amazon AWS. Die Evaluation umfasste verschiedene Szena-
rien, darunter statische Objekte, architektonische Strukturen, Aufienaufnah-
men und dynamische Bewegungsszenen, um die visuelle Qualitdt, Robust-
heit und Hardwareeffizienz unter realistischen Bedingungen zu analysieren.

Die Ergebnisse zeigen, dass Photogrammetrie besonders bei statischen,
strukturierten Szenen metrisch prazise und geschlossene 3D-Modelle erzeugt,
jedoch unter Bewegung, wechselnden Lichtbedingungen oder geringer Par-
allaxe an Stabilitit verliert. 3DGS hingegen erzielt visuell konsistente und
immersive Szenenrekonstruktionen, ist aber stark speicherintensiv und zeigt
in Randbereichen Qualitidtsverluste.

Entscheidend fiir die Ergebnisqualitiat sind die Aufnahmedaten selbst —
insbesondere Bildstabilitdt, Parallaxe und gleichméfsige Beleuchtung. Mobi-
le Anwendungen bieten dabei die niedrigste Einstiegshiirde und ermogli-
chen auch technisch unerfahrenen Nutzerinnen und Nutzern die Erstellung
realistischer 3D-Modelle direkt vom Smartphone aus.

Insgesamt verdeutlicht die Arbeit, dass hochwertige 3D-Rekonstruktionen
auch mit begrenzter Rechenleistung und ohne Expertenwissen moglich sind.
Dies eroffnet neue Perspektiven fiir die kosteneffiziente 3D-Digitalisierung
in Bereichen wie Bildung und Kulturerhalt.

CONTENTS

Thesis

Introduction

1.1 Relevance of 3D Reconstruction
1.1.1 AimsoftheThesis
1.1.2 Contribution. Lo Lo oL

1.2 Structure of the Thesis

Omitted 3D Reconstruction Methods

2.1 High-End Neural Rendering Methods

2.2 Newer Photogrammetry Methods

Fundamentals of 3D Reconstruction: From Pixels to Geometry

3.1 Flat vs. Spatial: Understanding 3D Data Representations
3.1.1 2D vs. 3D Representation
3.1.2 Forms of representation in the 3D reconstruction
3.1.3 Voxel

3.2 Decoding the Blackbox: The Math Behind 3D Reconstruction .
3.2.1 The Pinhole Camera Model
3.2.2 Feature Detection and Description
3.2.3 Epipolar Geometry L
3.2.4 RANSAC (Random Sample Consensus)
3.2.5 Triangulation - Estimating 3D Points from Image Pairs .
3.2.6 Perspective-n-Point (PnP)
3.2.7 Bundle Adjustment (BA)

Photogrammetry

4.1 Photogrammetry-Pipeline
4.1.1 Structure-from-Motion (SfM) L.
4.1.2 Multi-View Stereo MVS)
413 Meshing 0L
414 Texturing.,

4.2 Tools and Platforms for Photogrammetry
4.2.1 Open-source software as a baseline
4.2.2 Commercial software as high-end solutions
4.2.3 Mobile applications as arecent trend

4.3 Photogrammetry Limitations

3D Gaussian Splatting (3DGS)

5.1 Comparison with NeRF and Photogrammetry

52 Foundations L0 L
5.2.1 Novel View Synthesis (NVS)
5.2.2 Radiance Fields
52.3 3D Gaussians Lo oL
5.2.4 Real-Time Rendering

5.3 Method: 3D Gaussian Splatting in Detail

II

CONTENTS

5.3.1 Parametrization of the 3D Gaussians
5.3.2 Adaptive Density Control
5.3.3 Differentiable Rasterization
5.3.4 Rendering Pipeline
5.4 Practical Implementation and Tools
5.4.1 Pre-processing with COLMAP
5.4.2 Training Pipeline (Original Code)
5.4.3 From Code to Application: User-Oriented Tools and
Platforms
5.5 Technical Limitations
Method Selection and Evaluation Setup
6.1 Overview of Tested Tools
6.2 Experimental Setup
6.2.1 Mobile Applications
6.2.2 Desktop Software
6.2.3 Source Code Implementation
6.2.4 Drone-based Data Acquisition
6.3 Evaluation Criteria
6.3.1 Metric Evaluation.
6.3.2 Visual Evaluation
6.3.3 Tool Evaluation
6.4 Experimental Design,
6.4.1 Datasets and Evaluation Protocol
6.4.2 Experimental Procedure
Results and Discussion
7.1 Photogrammetry Models Results
7.1.1 Feasibility Tests on Edge-Case Datasets (Photogram-
metry)
7.1.2 Photogrammetry Visual Evaluation of Everyday Sce-
NArios o
7.1.3 Robustness Test for Photogrammetry Citadel Model
7.2 3D Gaussian Splatting Models Results
7.2.1 Feasibility Tests on Edge-Case Datasets (3DGS)
7.2.2 3DGS Models from Everyday Scenarios Datasets .
7.2.3 Robustness Tests of 3DGS Citadel Models
7.3 Cross-Method Comparison
7.4 Tool Evaluation
7.5 Limitations L
conclusion

Appendix

Appendix

.1 Mathematical Details of Spherical Harmonics in 3DGS
1.1 Use of SH in Neural Rendering
1.2 Application in 3D Gaussian Splatting
.1.3 Limitations and Advances

51

55

- 57

60
60
67
70
75
78
8o
82

vii

CONTENTS
1.4 Conclusion. L oo 85
Dataset Collages 85
2.1 Bveryday Scenario Datasets 85
22 EdgeCaseDatasets 85
2.3 External Datasets 87
Tool Specifications 88
3.1 Mobile Applications 88
3.2 Desktop and Server Solutions 88
Feasibility Criteria 89

Bibliography 97

viii

LIST OF FIGURES

Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 7.1

Pinhole camera model: a 3D point is projected onto

the 2D image plane through the camera center. [48] . . 10
Epipolar plane and point correspondence geometry . . 15
Epipolar geometry and epipolar pencil 15
Triangulation from two views 18
Reprojection error in triangulation 18
Incremental Structure-from-Motion pipeline. [56]. . . . 24

Delaunay-based meshing via restriction: a 3D Delau-
nay tetrahedralization is built on the samples, and a
surface is extracted by restricting to the vicinity of the
underlying surface. [9]) o oL 27
The texturing process: the mesh with chart bound-
aries (left), the charts as separate UV patches in the
2D texture atlas (center), and the final textured model
(right). [39] oo 28
Ilustration of projected disc rendering: surfels are
represented as discs in object space (right), which are
projected onto the screen space as ellipses (left). [20]. . 34
Construction of a splat primitive: a colored point prim-
itive ¢ is multiplied with an alpha mask w(x, y), often
represented as a 2D Gaussian function, resulting in a
smooth splat. [20]. 35
Visualization of the first spherical harmonics func-
tions. Blue regions indicate positive values, yellow
regions negative values, while the distance from the
center corresponds to the magnitude of the function. [69] 37
Adaptive Gaussian densification scheme from Kerbl
et al. [33]. Top row: under-reconstruction (clone). Bot-
tom row: over-reconstruction (split). 38
Pipeline of 3D Gaussian Splatting: starting from an
Structure from Motion (SfM) point cloud, Gaussians
are optimized through adaptive density control and
differentiable rasterization. The final stage produces

real-time renderings suitable for interactive exploration. [33].

Photogrammetry-based reconstruction of the Owl dataset
using three different tools: Kiri Engine (left), Polycam
(center), and Meshroom (right). A toy owl was placed

on a rotating turntable and recorded from all sides to
capture thedataset. 52

40

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

LIST OF FIGURES

Photogrammetry-based reconstructions of the Car Ride
dataset using the Kiri Engine and Polycam apps. Record-
ings were taken from the passenger seat at 30-50 km/h.
Screenshots are arranged chronologically from left to
right. 53
Photogrammetry-based reconstructions of the Forest
360-Degree Shot dataset. The top row shows Kiri En-
gine; the bottom row shows Polycam. 53
Photogrammetry-based reconstructions of the Walk-

way dataset, captured while walking along a path.

Top: Kiri Engine; bottom: Polycam. 54
Photogrammetry-based reconstructions of Schloss Philipp-
sruhe (Castle Compound dataset). Top: Kiri Engine.
Bottom: Polycam., 55
Photogrammetry-based reconstructions of Schloss Philipp-
sruhe (front side): top Kiri Engine, middle Meshroom,
bottom Polycam. 56
Photogrammetry-based reconstructions of the Bush dataset.
Top: Kiri Engine; middle: Polycam; bottom: Mesh-
room. Multiple viewpoints are shown, including side

andtopviews. Lo Lo 57
Polycam photogrammetry-based reconstructions of the
Citadel dataset. 58
Kiri Engine photogrammetry-based reconstructions of

the Citadel dataset. 60
Meshroom photogrammetry-based reconstructions of

the Citadel dataset. 61

3D Gaussian Splatting (3DGS) reconstructions of the

Owl (Eule100) dataset created with four pipelines (top

to bottom): Kiri Engine, Polycam, PostShot, and the
3DGS source code. The toy owl was recorded on a
rotating turntable to obtain 360° coverage. 62
3DGS reconstructions of the Car Ride (100 frames) vari-

ant. From top to bottom: Kiri Engine, Polycam, and
3DGS source code. Frames were extracted from a
short car ride around Schloss Philippsruhe and are
shown in capture order. 64
3DGS reconstruction of the Car Ride (video) variant with

Kiri Engine. The video was recorded from the pas-
senger seat at ~30-50km/h. Frames are shown in
chronological order (left to right, top to bottom). 64
3DGS reconstructions of the Forest 360-Degree Shot dataset.
Rows: Kiri Engine (top), Polycam (middle), 3DGS
source code (bottom). Within each row, frames are
ordered lefttoright. 65

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19

Figure 7.20

Figure 7.21

Figure 7.22

Figure .1

Figure .2

Figure .
Figure .4

(S8

Figure .5
Figure .6
Figure .7

Figure .8

LIST OF FIGURES

3DGS reconstructions of the Walkway dataset. Record-
ings were taken while walking with mostly forward-
facing camera direction. Rows: Kiri Engine (top),
Polycam, PostShot, 3DGS source code (bottom). 66
3DGS reconstructions of the Castle Compound dataset
with four tools: Kiri Engine, Polycam, PostShot, and

the 3DGS sourcecode. 68
3DGS reconstructions of Schloss Philippsruhe (front
side) with matching top views for each tool. 69

3DGS reconstructions of the Bush dataset (top to bot-
tom: Kiri Engine, Polycam, PostShot, 3DGS Source
Code). All methods use the same 360° capture for
direct visual comparison.00 71
3DGS reconstructions of the Citadel dataset using the
Polycam app. Left: full model (20, 50, 100, 200 images
from top to bottom). Right: corresponding detail crop
of the electricity pylon in front of the fortress wall. . . . 72
3DGS reconstructions of the Citadel dataset using the
Kiri Engine app. From top to bottom: 20, 50, 100,
and 200 input images. 73
3DGS reconstructions of the Citadel dataset using Post-
Shot. From top to bottom: 20, 50, 100, and 200 input
images. 75
3DGS reconstructions of the Citadel dataset using the
Source Code implementation. From left to right: 20,
50, 100, and 200 input images. 76
All frames of the Bush dataset as a collage (thumbnails). 86
Overview of the captures in the Castle Compound

dataset. 87
Sample overview of the captures in the Owl dataset. . 91
All frames of the Walkway dataset as a collage (thumb-
nails). 92
All frames of the Forest 360-Degree Shot dataset as a
collage (thumbmnails). 93
All frames of the Car Ride dataset as a collage (thumb-
nails). 94
All frames of the Castle Compound dataset as a col-

lage (thumbmnails). 95

All frames of the Citadel dataset as a collage (thumb-
nails). L 96

xi

LIST OF TABLES

Table 6.1 Workstation specifications for desktop software testing. 45
Table 6.2 AWS EC2 specifications for source code experiments. . 46
Table 6.3 Criteria for visual evaluation of reconstructed models. 48
Table 6.4 Criteria for tool evaluation. 49
Table 7.1 Feasibility results for the Owl dataset (photogramme-
try). .o 52
Table 7.2 Feasibility results for the Car Ride dataset (photogram-
metry). 52
Table 7.3 Feasibility results for the Forest 360-Degree Shot dataset
(photogrammetry). 53
Table 7.4 Feasibility results for the Walkway dataset (photogram-
metry). 54
Table 7.5 Feasibility results for the Castle Compound dataset (pho-
togrammetry). L Lo 54
Table 7.6 Visual evaluation of photogrammetry-based reconstruc-
tions for the Castle Frontside dataset. 56
Table 7.7 Visual evaluation of photogrammetry-based reconstruc-
tions for the Bush dataset. 57
Table 7.8 Visual evaluation of Polycam photogrammetry recon-
structions for the Citadel dataset (20-200 images). . . . 58
Table 7.9 Visual evaluation of Kiri Engine photogrammetry re-
constructions for the Citadel dataset (20-200 images). . 59
Table 7.10 Visual evaluation of Meshroom photogrammetry re-
constructions for the Citadel dataset (20-200 images). . 59
Table 7.11 Feasibility results for the Owl dataset (3DGS). 62
Table 7.12 Feasibility results for the Car Ride dataset variants (3DGS). 63
Table 7.13 Feasibility results for the Forest 360-Degree dataset (3DGS). 63
Table 7.14 Feasibility results for the Walkway dataset (3DGS). . . . 65
Table 7.15 Feasibility results for the Castle Compound dataset (3DGS). 67
Table 7.16 Quantitative evaluation of 3DGS models for Edge-Case
datasets. 67
Table 7.17 Visual evaluation of Castle Frontside 3DGS reconstruc-
tions (Kiri Engine, Polycam, PostShot). 69
Table 7.18 Visual evaluation of 3DGS reconstructions of the Bush
dataset. 70
Table 7.19 Quantitative evaluation of 3DGS Source Code models
for Everyday Scenario datasets. 70
Table 7.20 Visual evaluation of Polycam 3DGS reconstructions for
the Citadel dataset (20—200 images). 71
Table 7.21 Visual evaluation of Kiri Engine 3DGS reconstructions

for the Citadel dataset (20200 images). 73

Table 7.22
Table 7.23
Table .1

Table .2

LIST OF TABLES

Visual evaluation of PostShot 3DGS reconstructions for

the Citadel dataset (20-200 images). 74
Quantitative evaluation of 3DGS Source Codemodels
for the Citadel reference series. 74
Comparison of mobile 3D reconstruction apps [27-31,
49-52]. .o 88

Comparison of selected desktop/server solutions for
3D reconstruction [16, 24, 44]. 89

xiii

LISTINGS

LIST OF ABBREVIATIONS

SIFT Scale-Invariant Feature Transform

StM Structure from Motion

MVS Multi-View Stereo

NeRF Neural Radiance Fields

3DGS 3D Gaussian Splatting

FPS Frames per Second

SMERF Streamable Memory Efficient Radiance Fields
MipNeRF360 Multi-scale Neural Radiance Fields 360
InstantNGP Instant Neural Graphics Primitives
Plenoxels Sparse Voxel-based Radiance Fields
ZipNeRF Compressed Neural Radiance Fields
MVSNet End-to-End Deep Learning Architecture for Multi-View Stereo
CasMVSNet Cascade Cost Volume Multi-View Stereo Network
SURF Speeded-Up Robust Features

ORB Oriented FAST and Rotated BRIEF

BRISK Binary Robust Invariant Scalable Keypoints
AKAZE Accelerated KAZE Features

FED Fast Explicit Diffusion

M-LDB Modified-Local Difference Binary

DoG Difference of Gaussians

PnP Perspective-n-Point

EPnP Efficient Perspective-n-Point

BA Bundle Adjustment

NVS Novel View Synthesis

SH Spherical Harmonics

MLP Multi-Layer Perceptron

VRAM Video Random Access Memory

VOXEL Volumetric Pixel

RANSAC Random Sample Consensus

SGM Semi-Global Matching

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index

LIST OF ABBREVIATIONS XVi

LPIPS Learned Perceptual Image Patch Similarity

AWS Amazon Web Services

Part1

THESIS

INTRODUCTION

1.1 RELEVANCE OF 3D RECONSTRUCTION

The accurate representation of objects and environments has always been
essential for human understanding. Historical examples illustrate the conse-
quences of missing references: medieval European artists, lacking first-hand
knowledge of exotic animals such as elephants, often produced depictions
that appear distorted to today’s viewers [34]. This underlines the importance
of authentic modeling to avoid misconceptions and to provide reliable visual
knowledge. In modern contexts, realistic three-dimensional reconstructions
tulfill a similar role by enabling precise documentation and interpretation of
real-world structures.

The digital transformation of images or videos into 3D models has there-
fore become a central component of contemporary science and society. Ap-
plications span robotics [46], augmented and virtual reality [65], medical
imaging [66], and the preservation of cultural heritage [18]. In particular, the
digitization of monuments in conflict zones or remote regions highlights the
societal value of these technologies: they help to safeguard cultural identity
while offering new opportunities for analysis and education.

Education and communication represent another domain where 3D re-
construction demonstrates its relevance. Digital learning environments in-
creasingly combine physical and virtual spaces, allowing learners to ex-
plore complex content through immersive interaction. Realistic 3D models
support comprehension and engagement, thereby contributing to future-
oriented learning concepts such as Future Learning Spaces [15].

At the same time, accessibility remains a critical issue. While research pro-
totypes and commercial systems often rely on expensive hardware or special-
ized software, mobile and cloud-based solutions aim to broaden availability.
Yet these simplified tools frequently sacrifice transparency, controllability, or
visual fidelity [11, 33]. It is imperative to strike a balance between accuracy,
efficiency, and accessibility. This is the fundamental challenge that underlies
the investigation conducted in this thesis.

1.1.1 Aims of the Thesis

The aims of this thesis are:

* to identify 3D reconstruction approaches that provide a balance be-
tween model quality, user-friendliness, and cost-efficiency,

¢ to evaluate how modern methods such as 3DGS can be made applicable
under limited hardware resources,

1.2 STRUCTURE OF THE THESIS

* to explore how different usage contexts (mobile, desktop, cloud) influ-
ence accessibility and scalability of 3D reconstruction,

* to provide orientation for cultural heritage, education, and everyday
documentation by determining which methods are most suitable for
non-expert users.

1.1.2 Contribution

This thesis contributes by:

* presenting a structured comparison between photogrammetry and 3DGS
across different platforms,

¢ evaluating the feasibility of mobile, desktop, and cloud-based solutions
under constrained hardware conditions,

¢ applying both quantitative image-similarity metrics and qualitative tool-
and model-based criteria,

* highlighting pathways to make advanced reconstruction methods ac-
cessible and scalable for non-expert users.

In doing so, the thesis connects state-of-the-art research with practical appli-
cability, demonstrating how complex reconstruction techniques can be trans-
lated into usable solutions in resource-limited scenarios.

1.2 STRUCTURE OF THE THESIS

The remainder of this thesis is structured as follows. Each chapter is briefly
introduced below.

Chapter 2: Omitted 3D Reconstruction Methods provides an overview of
3D reconstruction approaches that are mentioned for completeness but not
examined in detail in this work. It briefly introduces representative neu-
ral rendering lines (Neural Radiance Fields (NeRF) family, Streamable Mem-
ory Efficient Radiance Fields (SMERF) and newer deep-learning Multi-View
Stereo (MVS) methods.

Chapter 3: Fundamentals of 3D Reconstruction: From Pixels to Geome-
try. This chapter introduces the mathematical and algorithmic foundations
of 3D reconstruction, covering data representations (point clouds, meshes,
Volumetric Pixel (VOXEL)s), camera projection, epipolar geometry, feature
detection/description, and robust estimation. It concludes with Perspective-
n-Point (PnP) and Bundle Adjustment (BA) as optimization methods that link
image data to consistent 3D structure.

Chapter 4: Photogrammetry. This chapter outlines the classical photogram-
metry pipeline: StM, MVS, meshing, and texturing, as well as its practical re-
alization in AliceVision/Meshroom, which is used in later experiments. The
chapter also establishes the scope in relation to other tools. It summarizes
limitations that commonly affect reconstruction quality.

3

1.2 STRUCTURE OF THE THESIS

Chapter 5: 3D Gaussian Splatting (3DGS). This chapter introduces 3DGS, be-
ginning with its conceptual foundations, such as Novel View Synthesis (NVS),
radiance fields, 3D Gaussians, and real-time rendering, and detailing its in-
ternal pipeline, including parametrization, adaptive density control, differ-
entiable rasterization, and rendering. The chapter also introduces practical
tools (COLMAP preprocessing, training code, and user-oriented platforms)
and summarizes technical limitations relevant for later comparison.
Chapter 6: Method Selection and Evaluation Setup. This chapter defines
the evaluation framework and introduces the tested tools, including mobile
applications, desktop software, and the 3DGS source code implementation
executed on Amazon Web Services (AWS). It outlines the dataset categories
(Everyday Scenarios and Edge Cases), describes the experimental procedure,
and specifies both qualitative (visual and feasibility) and quantitative (Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Learned Per-
ceptual Image Patch Similarity (LPIPS)) evaluation criteria used throughout
the study.

Chapter 7: Results and Discussion. This chapter presents and interprets
the experimental results, systematically comparing photogrammetry and 3D
Gaussian Splatting across all dataset categories. The analysis follows a struc-
tured evaluation framework, reporting feasibility tests on Edge Cases and
visual assessments of Everyday Scenarios for both methodologies. A compre-
hensive robustness analysis examines reconstruction stability across varying
input sizes, followed by a cross-method comparison and an extensive tool
evaluation covering performance, usability, and scalability. The chapter con-
cludes with a critical discussion of methodological limitations and study
constraints that contextualize the overall findings.

Chapter 8: Conclusion. This chapter concludes the thesis with a synthesis of
the main findings, evaluating photogrammetry and 3D Gaussian Splatting
under practical and hardware-limited conditions. It highlights that coherent
3D models can be created even by non-expert users using accessible mobile
or cloud-based tools, and that image quality and recording design are de-
cisive for reconstruction success. The chapter closes with perspectives for
future research, addressing challenges such as merging independently cap-
tured segments and mitigating motion-related artifacts to improve robust-
ness in real-world scenarios.

4

OMITTED 3D RECONSTRUCTION METHODS

The variety of available 3D reconstruction tools and pipelines is extensive.
This thesis focuses on a selected set of methods implemented in both open-
source and commercially available applications, provided that their cost re-
mains within a reasonable range and they are suitable for comparative anal-
ysis within the study’s scope.

2.1 HIGH-END NEURAL RENDERING METHODS

In recent years, significant advances have been made in neural rendering
methods for 3D reconstruction. Methods like NeRF and its successors such as
Multi-scale Neural Radiance Fields 360 (MipNeRF360), Instant Neural Graph-
ics Primitives (InstantNGP), and Sparse Voxel-based Radiance Fields (Plenoxels)
achieve impressive results but exhibit a fundamental trade-off between im-
age quality and efficiency. MipNeRF360 can reach state-of-the-art fidelity, yet
requires up to 48 hours of training time and several seconds per frame for
rendering, making them impractical for interactive or everyday use [33].
Faster variants such as InstantNGP and Plenoxels provide real-time training
or interactive frame rates, but typically at the expense of reduced visual
fidelity [33].

3D Gaussian Splatting 3DGS overcomes this limitation by combining high-
quality results with real-time rendering performance. In the original eval-
uation, fully converged models were obtained in 35-45 minutes on a sin-
gle RTX A6ooo GPU, while maintaining frame rates well above 30 Frames
per Second (FrS) at 1080p resolution [33]. However, the method is not with-
out drawbacks: its GPU memory footprint can exceed 20 GB for large-scale
scenes in the current prototype implementation [33].

Another relevant approach is SMERF, which addresses the challenge of
rendering for large outdoor or indoor scenes - up to 300m2. SMERF intro-
duces a hierarchical scene partitioning strategy and distillation from high-
quality teacher models (e.g. Compressed Neural Radiance Fields (ZipNeRF)),
enabling real-time rendering even on commodity devices such as web browsers
or smartphones. However, this runtime efficiency comes at the cost of ex-
tremely high training requirements. The reported models were trained for
100k-200k steps in clusters of 8 x V1oo or 16 x A10o GPU [12]. Consequently,
while SMERF is highly promising for large-scale scenarios, its training cost
makes it unsuitable in the context of this thesis, which focuses on hardware-
efficient and broadly accessible approaches to 3D reconstruction.

2.2 NEWER PHOTOGRAMMETRY METHODS

2.2 NEWER PHOTOGRAMMETRY METHODS

This thesis focuses on selected classical photogrammetry methods, namely
those implemented in the open-source tools COLMAP [56] and AliceVi-
sion/Meshroom; hereafter Meshroom [3]. These approaches are based on SfM
and MVS and are integrated into user-friendly pipelines, making them suit-
able for the experiments conducted in this work. Note that not all classical
photogrammetry methods are covered here, but only those relevant to the
chosen tools.

In addition, there are more recent and promising approaches, such as
deep-learning-based methods, like End-to-End Deep Learning Architecture
for Multi-View Stereo (MVSNet) [74] and Cascade Cost Volume Multi-View
Stereo Network (CasMVSNet) [73]. Although these methods have demonstrated
significant scientific progress, they are not discussed in this thesis because a
detailed analysis would exceed the intended scope. Furthermore, they have
not yet been included in the tested, user-friendly open-source pipelines.

It is important to note that photogrammetry has many applications, in-
cluding geodesy, aerial mapping, architecture, cultural heritage, medicine,
and forensics [54]. However, this thesis deliberately restricts its focus on
the 3D reconstruction of ordinary photographs, as these can be taken by
non-expert users with standard cameras or mobile devices. Specialized ap-
plications, such as industrial metrology, are therefore not part of the analysis.

FUNDAMENTALS OF 3D RECONSTRUCTION: FROM
PIXELS TO GEOMETRY

This chapter introduces the mathematical and algorithmic foundations of 3D
reconstruction. It explains the basic principles that connect 2D images to 3D
geometry and prepares the ground for the methods presented in Chapters 4
and 5. It focuses on common representations, camera models, geometric re-
lationships, and optimization techniques that are essential for both classical
photogrammetry and modern approaches such as 3DGS.

3.1 FLAT VS. SPATIAL: UNDERSTANDING 3D DATA REPRESENTATIONS

Understanding the difference between 2D and 3D representations is the start-
ing point for any reconstruction method. This section introduces the two
most common data structures: point clouds, polygonal meshes and VOXEL
grids. Each format has its own advantages and limitations. Together, they
form the basis for storing and processing reconstructed geometry.

3.1.1 2D vs. 3D Representation

In order to reconstruct 3D models from images, it is necessary to understand
the fundamental difference between 2D and 3D. A 2D representation, such
as a photograph or drawing, projects a scene onto a flat plane using only
width (x) and height (y). Although this captures the appearance of a scene,
it lacks geometric depth, which prevents true spatial interaction [43].

In contrast, a 3D representation incorporates a depth dimension - the z-
axis - enabling a complete spatial model that can be rotated, measured, and
navigated. The 3D reconstruction process uses visual cues in 2D images,
such as texture, shading, and perspective, to infer missing spatial informa-
tion through geometric analysis [43]. This makes 3D reconstruction applica-
ble to fields such as robotics, cultural heritage, and architecture, where an
understanding of spatial properties is essential.

3.1.2 Forms of representation in the 3D reconstruction

The resulting 3D structure can be represented in various shapes, depending
on the chosen reconstruction method. In traditional workflows, the three
most commonly used formats are point clouds, polygonal meshes and VOXEL
grids. These formats form the basis of many classical reconstruction systems
and are introduced in the following sections.

3.1 FLAT VS. SPATIAL: UNDERSTANDING 3D DATA REPRESENTATIONS 8

3.1.2.1 Point Cloud

A point cloud is a set of discrete points in 3D space. Each point is defined
by its spatial coordinates (x, y, z). A point cloud captures the geometry of an
object or scene. This is done in an unstructured format. This means that it
does not include explicit information about surfaces or connectivity.

In many cases, additional attributes such as color, intensity, or surface
normals can be stored for each point. This makes point clouds flexible rep-
resentations for both visualization and further processing.[77].

Point clouds are typically generated using image-based methods, such as
SftM 4.1.1, or depth estimation techniques 4.1.2. Depending on the method
used, the resulting clouds may be sparse or dense and their accuracy and
resolution may vary.[56]

Although point clouds offer flexible geometric abstraction, they are not di-
rectly suitable for rendering or simulation. In traditional workflows, they are
typically converted into polygonal meshes and textured to generate visually
appealing and functional 3D models (see Sections 4.1.3) and 4.1.4).

3.1.2.2 Polygonal Meshes

A polygonal mesh is a surface representation created by connecting points
(vertices) with edges to form polygons, which are typically triangles or quadri-
laterals. Meshes are a compact, structured format that is widely used for
rendering, simulation, and geometric analysis.

There are three main components of a mesh:

VERTICES: Points in 3D space that are usually defined by coordinates (x, y,
z). They act as the structural nodes of the mesh.

EDGES: Line segments that connect pairs of vertices.
FACES: Enclosed polygons (usually triangles) formed by three or more edges.[72]

Generally, meshes are created from point clouds using a process called
surface reconstruction. (see Section 4.1.3).

3.1.3 Voxel

A VOXEL is the smallest element of a regular 3D grid. Each VOXEL represents
a specific volume in space. It can store attributes such as occupancy, density,
or color. Similar to pixels in a 2D image, VOXELs divide space into discrete
units, but in three dimensions.

VOXEL grids provide a simple and intuitive way to represent volumetric
data. Their regular structure makes them compatible with 3D convolutional
neural networks. They are also suitable for tasks such as scene representa-
tion, semantic labeling, or shape completion.

However, VOXEL representations consume a lot of memory, especially at
high resolutions. According to Xiao et al. (2025), this cubic memory growth
restricts their applicability to large-scale or high-detail scenes. Despite these

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

limitations, VOXEL-based approaches laid the foundation for many early vol-
umetric neural rendering methods. [71]

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUC-
TION

Creating reliable 3D geometry from image data requires solid mathemat-
ical and algorithmic tools. This section introduces the key concepts that
form the basis of many reconstruction pipeline. First, we explore the pin-
hole camera model, which illustrates how 3D points are projected onto a
2D image plane. Second, we examine epipolar geometry, which defines the
geometric relationship between multiple views of the same scene. Follow-
ing that, we introduce feature detection and description methods, such as
Scale-Invariant Feature Transform (SIFT) and Accelerated KAZE Features
(AKAZE), which enables robust matching across images under varying con-
ditions. Next, Random Sample Consensus (RANSAC) is discussed as a robust
estimation technique that removes outliers and ensures geometric consis-
tency.

Finally, two key optimization methods are presented: PnP and BA. PnP reli-
ably estimates camera poses from 2D-3D correspondences. BA refines poses
and 3D structures by minimizing reprojection error across all images. To-
gether, these methods provide the mathematical and algorithmic basis nec-
essary for accurate, consistent 3D reconstruction. They also serve as the link
between raw image data and the reconstruction pipelines that will be exam-
ined in the following chapters.

3.2.1 The Pinhole Camera Model

In order to understand how a 3D scene is reconstructed from 2D images, it
is essential to understand how a camera projects 3D points from the world
coordinate system onto the 2D image plane. The mathematical basis of this
process is defined by the pinhole camera model, which is applied in both
traditional methods like photogrammetry and modern techniques such as
3DGS.

In the pinhole model, a camera is abstracted as a sealed box with a small
aperture, or pinhole, through which light travels in straight lines to form
an image on the opposite plane. This produces a perspective projection, in
which distant objects appear smaller. [48].

Figure 3.1 illustrates the geometric setup of perspective projection. A 3D
point P projects through the center of the camera into the image plane. The
following equations, (X,Y,Z) denotes the world coordinates of this point
P, while (X, Y., Z.) denote its coordinates in the camera frame as given by
Equation (3.5).

PROJECTION EQUATION OF THE PINHOLE MODEL

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

| principal
point
{czscy)

Pinhole camera model

Figure 3.1: Pinhole camera model: a 3D point is projected onto the 2D image plane
through the camera center. [48]

The projection from a 3D world point onto a 2D image point is written in
homogeneous coordinates as:

X
! Y
w o] =K[R ¢ (3-1)
Z
1
1
The result of this multiplication explicitly is:
u X
Y
| =K [R t} . (3-2)
zZ
w
1
The final pixel coordinates (u,v) are obtained by normalization:
u' v’
u=-_ v=_ (3-3)

Here, w is the homogeneous scale factor and corresponds to the depth Z,
of the 3D point in the camera coordinate system.[21, 48]

INTRINSIC PARAMETERS
The intrinsic matrix K encodes the internal characteristics of the camera:

fx Sskew Cx
K=|0 f of- (3-4)
0 0 1

* fx, fy: focal lengths along the x- and y-axes (in pixels),

10

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

* ¢y, cy: principal point (typically near the image center),

* Ssew: Skew parameter, usually close to zero and generally insignificant
[48].

EXTRINSIC PARAMETERS
The extrinsic parameters (R, t) define the camera’s orientation and posi-
tion relative to the world frame. A world point is first transformed into the
camera frame:

X, X
Y.| =R |Y| +t (3-5)
Z. Z

Relative poses between multiple views are fundamental to 3D reconstruction
methods such as sfM [21, 48].

HOMOGENEOUS COORDINATES AND NORMALIZATION

The use of homogeneous coordinates is essential to express the pinhole
projection in a compact linear form. In this representation, a 2D point (x,y)
is written as (x : y : w), where all nonzero scalar multiples describe the
same point. The actual Cartesian coordinates are obtained by normalization:
(x/w, y/w). This formulation makes perspective projection a linear opera-
tion and allows for the representation of points at infinity when w = 0 [21].
This normalization step corresponds to Equation (3.3) introduced in the pin-
hole projection.

CALIBRATED VS. UNCALIBRATED CAMERAS

A camera is calibrated if its parameters, particularly the intrinsic matrix K
(see Equation (3.4)) and lens distortion, are known or estimated. In contrast,
an uncalibrated camera lacks this information, so its intrinsic parameters are
treated as unknown and must be inferred along with the scene geometry. In
practice, these parameters are typically estimated directly from the image
data during the reconstruction process. Despite such deviations from the
ideal pinhole assumption, the model remains a robust approximation and
the mathematical backbone of methods like SfM.

3.2.2 Feature Detection and Description

Feature detection and description are fundamental steps in many computer
vision and photogrammetry pipelines, including image matching, sfM, and
3D reconstruction. The overall goal is twofold: First, identify salient and
repeatable keypoints feature detection). Second, compute descriptors that cap-
ture the local image structure around these keypoints in a transformation-
invariant manner (feature description). Effective features should be robust
against geometric transformations such as scale changes, rotation, and mod-

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

erate viewpoint variation, as well as photometric changes such as illumina-
tion differences.

Over the years, numerous algorithms have been proposed and widely
adopted in practice. Among the most prominent are the Scale-Invariant Fea-
ture Transform (SIFT) [41], Speeded-Up Robust Features (SURF) [7], Oriented
FAST and Rotated BRIEF (ORB) [55], Binary Robust Invariant Scalable Key-
points (BRISK) [38], as well as the KAZE and AKAZE family of detectors[2].
Each method makes different trade-offs between robustness, invariance, com-
putational cost, and memory usage. Classical algorithms such as SIFT and
SURF prioritize robustness and accuracy, while methods such as ORB and
BRISK emphasize efficiency and suitability for real-time or embedded sys-
tems.

In the following, two representative and widely used methods are dis-
cussed in more detail: the classical SIFT algorithm, which introduced the
concept of a scale-invariant linear scale space, and the more recent AKAZE
algorithm, which employs a nonlinear scale space with efficient binary de-
scriptors.

3.2.2.1 SIFT: Scale-Invariant Feature Transform

Introduced by Lowe in 2004, SIFT is one of the most influential methods for
detecting and describing distinctive local image features. SIFT descriptors
are invariant to scale and rotation, and are robust against affine transforma-
tions, viewpoint changes, illumination changes, and image noise. [41]. Con-
sequently, the method is highly effective for tasks such as object recognition,
image stitching, and particularly in SfM pipelines. In SfM, SIFT provides the
reliable feature correspondences that are essential for accurately estimating
camera pose.
The SIFT algorithm follows a structured four-stage process:

1. Scale-space extrema detection: A Difference-of-Gaussian (Difference
of Gaussians (DoG)) pyramid is constructed to detect potential key-
points invariant to scale. Keypoints are identified as local extrema in
this 3D scale space.

2. Keypoint refinement: Candidate keypoints are adjusted to sub-pixel
precision, and those with insufficient contrast or strong edge domi-
nance are excluded to ensure stability.

3. Orientation assignment: Every keypoint is assigned a dominant orien-
tation by analyzing the gradient directions in its local neighborhood.
This crucial step gives the descriptor rotational invariance.

4. Descriptor generation: For every keypoint, a 128-dimensional vector of
floating-point values is created to represent the distribution of gradient
magnitudes and orientations within its surrounding region.

The resulting descriptors achieve excellent matching performance across
a wide range of transformations, but their computation and storage are rela-
tively expensive compared to more recent methods.

12

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

3.2.2.2 AKAZE: Accelerated KAZE Features

The AKAZE algorithm extends the earlier KAZE method by introducing a
more computationally efficient nonlinear scale space. Unlike traditional lin-
ear scale spaces that rely on Gaussian smoothing, AKAZE builds its repre-
sentation using edge-preserving Fast Explicit Diffusion (FED). This allows
fine details and object boundaries to be preserved while reducing noise in
homogeneous regions [2].

Key aspects of AKAZE include:

¢ Nonlinear scale space: Built using FED to adaptively smooth regions
while retaining edge structures.

e Feature detection: Relies on the determinant of the Hessian, which
exhibits strong responses at blob-like image regions.

* Feature description: Utilizes a Modified-Local Difference Binary (M-LDB)
descriptor that combines intensity and gradient information into a
compact binary format. This ensures invariance to scale and rotation.

The binary M-LDB descriptors can be matched efficiently using Hamming
distance, which makes AKAZE particularly suitable for real-time or resource-
constrained applications. Compared to SIFT, AKAZE typically offers better
computational efficiency while still achieving competitive feature quality, es-
pecially in images with pronounced edges and fine structures. The output
of both SIFT and AKAZE is a list of keypoints and their descriptors. These
features are then matched across different images by identifying correspon-
dences in a process called feature matching.

COMPARISON

SIFT and AKAZE represent different paradigms in feature detection and
description. SIFT employs a linear Gaussian scale space and produces high-
dimensional floating-point descriptors that are invariant with respect to scale
and rotation, and are designed to be robust against affine transformations,
lighting changes, and image noise.[41]. In contrast, AKAZE uses a nonlinear
scale space based on FED and generates binary descriptors M-LDB that are
highly efficient, scale- and rotation-invariant, and require less storage [2]. In
comparative studies, SIFT is consistently recognized for its robustness and
matching accuracy, while AKAZE provides a favorable trade-off by achieving
competitive feature quality at significantly lower computational cost [2, 61].

3.2.2.3 Feature Matching

The outcome of feature detection and description is a collection of keypoints,
each associated with a descriptor. The purpose of feature matching is to
identify corresponding features across multiple images, forming the foun-
dation for estimating epipolar geometry and performing 3D triangulation.
The similarity between the descriptors is quantified using different distance
metrics depending on their type. For floating-point descriptors like SIFT, the

13

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

Euclidean distance serves as the standard measure. In contrast, binary descrip-
tors, such as those generated by AKAZE rely on the Hamming distance.

To obtain reliable correspondences despite noise, repetitive textures, or
occlusions, several matching strategies are commonly applied:

¢ Nearest-Neighbor Search (NN): For each feature in the first image,
the most similar feature in the second image is chosen based on the
smallest descriptor distance.

* Ratio Test (Lowe): To eliminate uncertain correspondences, the algo-
rithm compares the distance of the best match (d;) with that of the
second-best candidate (d;). A match is accepted only if the ratio % <T,
where T is typically set to 0.75 [41].

* Cross-Checking: A match is kept only if it is consistent in both di-
rections, i.e., feature x in image A matches feature x" in image B and
vice versa. This helps eliminate asymmetric matches caused by noise
or repetitive patterns.

The result of this step is a list of putative point correspondences { (x;, x/) }N ;.

Since this set still contains outliers, a subsequent geometric verification step
is required. In SfM pipelines, robust estimation methods such as RANSAC are
typically applied to simultaneously estimate a consistent epipolar geometry
(e.g. the fundamental matrix) and reject outliers [13].

3.2.3 Epipolar Geometry

Epipolar geometry characterizes how two images of the same 3D scene,
taken from distinct camera positions, are geometrically related. It is a central
concept in projective geometry and forms the mathematical foundation of
stereo vision (see Section 4.1.2) and SfM pipelines [21]. In such pipelines, lo-
cal features (e.g. SIFT) are first detected and matched between images. Epipo-
lar geometry is then applied to verify whether these correspondences are
geometrically consistent.

When a 3D point X is projected into two images, it appears as x in the
first image and x’ in the second. From the perspective of the first camera, the
image point x defines a ray in the 3D space that passes through the center
of the camera C. Together with the center C’ of the second camera, this
ray forms the epipolar plane. The intersection of this plane with the second
camera image plane defines the epipolar line I, where the corresponding
image point x’ must be located (see Fig. 3.2). The connecting line between the
two camera centers is known as the baseline. The epipoles e and e are located
where the baseline intersects the respective image planes. Furthermore, all
epipolar lines within a single image converge at that image’s epipole. As the
3D point X moves through space, the corresponding epipolar plane rotates
around the baseline, forming a family of planes referred to as the epipolar

pencil. (Fig. 3.3) [21].

14

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

-
£
L
-

epipolar plane 1T .

% //'
X? x

w

a¥

(=N 1
e

.
V=" epipalar line

fiar =

A b

Figure 3.2: Illustration of point correspondence geometry between two camera
views. A 3D point X is projected into the two image planes as x and
x'. The camera centers C and C’ and these projections together define
the epipolar plane P. The viewing ray passing through C and x meets
the second image plane along the epipolar line 1, which constrains the
potential position of x. [21]

Y
1 1 -
L
N /l + X
-
. 3 / 3 . , o
" ;
U baseline -/ / Lsaseling 4

Figure 3.3: This is the epipolar geometry between two camera views. The baseline
connecting the two camera centers intersects each image plane at its
respective epipole (e and e). Any plane that contains this baseline is an
epipolar plane. These planes intersect the image planes at corresponding
epipolar lines, 1 and 1'. As the 3D point X moves, its associated epipolar
plane swivels around the baseline, creating the epipolar pencil, which is a
family of planes. [21]

15

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

Based on this geometry, each image point in the first view corresponds to
a line in the second image where its matching point must lie. This geometric
restriction is expressed by the fundamental matrix F, a 3 x 3 matrix of rank 2.

For each pair of corresponding image points x <+ X/, the epipolar constraint
holds:

X Fx = 0. (3.6)

In practice, robust estimation methods such as RANSAC are employed to
compute the fundamental matrix from noisy point correspondences (see Sec-
tion 3.2.4).

For calibrated camera systems, the epipolar relationship is represented by
the essential matrix E. This matrix operates on normalized image coordinates
and encapsulates the relative orientation and position of the two camera
views:

X¥TEx=0. (3.7)

The fundamental matrix F can be converted into the essential matrix E using
the intrinsic calibration parameters of both cameras:

E=K FK. (3.8)

While F suffices for projective reconstruction, E enables metric reconstruc-
tion and pose estimation between calibrated views [21].

Modern sfM systems, such as COLMAP [56] or Meshroom[19], make ex-
tensive use of epipolar geometry to validate feature correspondences. The
advantage is practical: instead of searching for a match across the entire im-
age, the search is restricted to the corresponding epipolar line. This reduces
computational effort and improves robustness in large-scale or resource-
constrained scenarios [21, 60]. Thus, epipolar geometry serves as the bridge
between feature matching and robust 3D reconstruction.

3.2.4 RANSAC (Random Sample Consensus)

Even robust feature matching methods usually produce some incorrect cor-
respondences (outliers). These outliers can strongly distort the estimation
of geometric models such as epipolar geometry or camera poses. RANSAC
(Random Sample Consensus) [13] is a robust estimation method that can
successfully compute models even when there are many outliers.

Basic idea: RANSAC follows a hypothesis-and-test strategy. Instead of es-
timating a model from all data points, it repeatedly selects small random
subsets (the minimum sample set) and computes a candidate model. Each hy-
pothesis is then tested against the full dataset.

Algorithm steps:

1. Minimal sample: Randomly choose the smallest subset of point cor-
respondences required to estimate the model (e.g., seven correspon-

16

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

dences are needed to compute the fundamental matrix F, see Equa-
tion (3.6) [21]).

2. Model estimation: Compute a candidate model from this subset.

3. Evaluation: Count how many other points (the inliers) are consistent
with the model, that is, within a defined error threshold.

4. Iteration: Repeat the steps above. The number of iterations is adapted
based on the inlier ratio of the best model found so far to ensure a high
probability of finding the correct solution [13].

5. Selection: The final model is determined by selecting the candidate with
the most inliers identified during the evaluation phase.

6. Refinement (optional): Re-estimate the final model using all inliers for
higher accuracy.

Applications in 3D reconstruction: RANSAC is a key component in mod-
ern SftM systems such as COLMAP [56]. Typical use cases include:

¢ Estimation of the fundamental matrix F or essential matrix E from 2D-
2D correspondences (see Equations (3.6)—(3.8)),

¢ Estimation of camera poses with PnP algorithms from 2D-3D corre-
spondences (see Section 3.2.6),

¢ Estimation of homographies for planar scenes.

3.2.5 Triangulation - Estimating 3D Points from Image Pairs

Triangulation refers to the geometric procedure used to reconstruct the spa-
tial position of a 3D point based on its projections observed in two or more
camera views. It builds directly on the epipolar geometry (see Section 3.2.3),
which constrains the possible location of corresponding points to epipolar
lines. Once consistent correspondences have been identified, triangulation
computes their 3D position in space. The method requires known or previ-
ously estimated intrinsic and extrinsic camera parameters, represented by
the projection matrices P and P’ (see Section 3.2.1). As a core step in 3D re-
construction pipelines, triangulation provides the first 3D structure (sparse
point cloud) from 2D correspondences.

GEOMETRIC IDEA

Let x <> x’ be a pair of corresponding image points. The projection equa-
tions

x=PX, x =PX (3.9)

define two rays in space that pass through the respective camera centers
and image points. In the absence of noise, these rays intersect at the true

17

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

3D point X. In practice, due to noise and calibration errors, they do not
intersect exactly. Triangulation then estimates the 3D point that minimizes
the distance to both rays (Fig. 3.4), based on the projection equations in
Equation (3.9) [21].

LS

image 1 . image 2

Figure 3.4: Each image point defines a ray in 3D space. In the ideal case, the rays
intersect at the true 3D point X. With noise, the estimated point is chosen
closest to both rays. [21]

REPROJECTION ERROR
The quality of a triangulated point is measured by its reprojection error,
i.e., the distance between the original image points and the projections of the
estimated 3D point:

I — |2+ [1x' - %] (3.10)

A small error according to Equation (3.10) indicates a high consistency with
the observations (Fig. 3.5). [21]

Eatd

Figure 3.5: The 3D point X is optimized such that its projections lie as close as
possible to the observed image points x and x". [21]

18

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

METHODS
A common approach is linear triangulation, where the problem is formu-
lated as a homogeneous linear system.

AX =0 (3.11)

and solved via Singular Value Decomposition (SVD). This formulation in
Equation (3.11) is efficient, but can be inaccurate in degenerate configura-
tions (e.g. narrow baselines). More accurate results are obtained with nonlin-
ear triangulation, which minimizes the reprojection error from Equation (3.10),
typically through iterative optimization [21].

ROLE IN SFM
In SfM systems, triangulation provides the initial 3D points that form a
sparse point cloud. These points are then used to estimate additional camera
poses and are refined together with camera parameters in the subsequent BA
step (see Section 3.2.7). Robust pipelines combine triangulation with RANSAC
to remove outlier correspondences. The precision of triangulation directly
impacts the quality of the final reconstruction.[21].

3.2.6 Perspective-n-Point (PnP)

After an initial set of 3D points has been reconstructed using triangulation,
the next step is to determine the poses of additional cameras. This is formu-
lated as the Perspective-n-Point (PnP) problem. PnP is essential in SfM pipelines,
as it allows the incremental expansion of reconstruction by localizing new
cameras relative to already known 3D points.

PROBLEM DEFINITION
The PnP problem is defined as the task of estimating the position and
orientation of a calibrated camera from a set of known 3D points and their
2D image projections [37]. Formally, given:

e A calibrated camera with known intrinsic matrix K € R3*3,

* A set of n > 4 reference points with known 3D coordinates {X;}! ; in
a world reference frame,

e Their corresponding 2D projections {x;}”_; in the image plane.

Each 3D-2D correspondence is related by the perspective projection equa-
tion

X‘
u; Yl

Ai jv;| =K [R t} Zl , (3-.12)
1 11

19

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

where A; € R7 is a projective depth factor, and X; is expressed in homoge-
neous coordinates. The rotation matrix R is orthonormal (RTR = I3) and
orientation-preserving (det(R) = +1), making it a member of the special
orthogonal group SO(3). The vector t € R® denotes the translation.

The objective of the PnP problem is therefore to estimate the camera pose
parameters [R | t] that best satisfy Equation (3.12) for all n correspondences,
following the definition and notation introduced by Lepetit, Moreno-Noguer,
and Fua [37].

CLASSICAL METHODS

P3P (Perspective-Three-Point). The camera pose can be estimated from ex-
actly three correspondences, yielding up to four possible solutions. A fourth
point is required to disambiguate the correct one [17].

DLT (Direct Linear Transform). For n > 6, the pose can be estimated lin-
early via a homogeneous equation system solved with SVD (Singular Value
Decomposition)[21]. This method is efficient, but sensitive to noise and un-
stable when the 3D points are nearly coplanar, as this configuration leads to
an ambiguous solution for the translation component.

Iterative methods. Nonlinear optimization methods (e.g., Gauss-Newton
or Levenberg-Marquardt) minimize the reprojection error (see Equation (3.10))
[21, 42]. They are accurate but slower and require good initialization.

MODERN METHOD: EPNP
The Efficient Perspective-n-Point (EPnP) algorithm provides a closed-form
solution with linear complexity. Each 3D point is represented as a linear
combination of four predefined control points:

4

4
X; = Zaijcj with Z“ij =1 (3.13)
=1 =1

This reduces the number of unknowns, allowing the pose to be estimated via
a linear system followed by solving a small quadratic set of constraints. An
optional Gauss-Newton refinement step improves precision with minimal
computational overhead. EPnP is robust to noise and performs well even in
nearly planar configurations.[37]

ROBUST ESTIMATION USING RANSAC
In practice, 2D - 3D correspondences often contain outliers. To handle this,
PnP is commonly combined with RANSAC. The algorithm repeatedly selects
small random subsets, estimates a candidate pose, and counts how many
correspondences agree with it. The pose with the most inliers is chosen,
followed by a refinement step using all inliers.[13, 37]

POSE REFINEMENT IN THE PIPELINE
The pose estimated by PnP serves as an initial guess for BA (see Sec-
tion 3.2.7). In this global optimization, all camera poses and 3D points are

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

refined jointly by minimizing the total reprojection error, which substantially
enhances the overall precision and coherence of the reconstructed scene.

3.2.7 Bundle Adjustment (BA)

BA is the final optimization step in a SfM pipeline. In earlier steps — Trian-
gulation (Section 3.2.5) and PnP (Section Section 3.2.6) — camera poses and
3D points are estimated locally. BA takes all cameras and all 3D points and
optimizes them jointly. This makes it possible to remove the accumulation
of drift and systematic errors, providing the most accurate and consistent
reconstruction of the entire scene [62]. Reprojection error is widely used and
preferred because it evaluates predictions directly against the measured im-
age points.[40]

MATHEMATICAL IDEA
BA minimizes the global reprojection error over all camera and point pa-
rameters. A common multi-view formulation is

. 2
{yf?lgj} IZJ;Uij P(\|xii — 7(yi, 2j)|| >, (3.14)

where:
* x;; is the measured image point of 3D point j in camera i,

e 77(-) is the camera projection function (see Section 3.2.1 and Equa-
tion (3.1)),

* v;; € {0,1} denotes visibility,
* o(+) is a robust loss (Huber norm).

A common convention is to fix one reference camera to define the world
frame[40].

HOW IT WORKS
This is a nonlinear least-squares problem. In practice, one linearizes per
iteration and solves a Gauss-Newton system

g'né = -7, (3.15)

where] is the Jacobian w.r.t. all camera and point parameters and r stacks
the reprojection residuals [40]. The Jacobian in BA has a block structure (cam-
era vs. point parameters), enabling the classic Schur complement reduction:
eliminate point blocks, solve the reduced camera system, then recover points
by back-substitution [62]. For efficiency in large-scale settings, practical sys-
tems use windowed BA and motion-only BA, and BA can also be viewed as
a graph optimization problem (nodes = parameters, edges = measurements)

[40].

3.2 DECODING THE BLACKBOX: THE MATH BEHIND 3D RECONSTRUCTION

LOCAL VS. GLOBAL BUNDLE ADJUSTMENT
Two main variants of BA are used in SfM pipelines [59]:

¢ Local BA: Only a subset of the model is optimized, typically the most
recently added camera and a limited set of nearby points and cameras.
This is common in incremental SfM after registering a new image. It is
faster but ensures only local consistency.

* Global BA: All cameras and all 3D points are optimized together. This
is usually performed at the end of the reconstruction to achieve the
highest possible accuracy, but it is more computationally expensive.

SCALING TO LARGE SCENES
For very large datasets, classical BA quickly becomes too slow and mem-
ory intensive. Modern approaches therefore apply more efficient optimiza-
tion strategies, such as iterative solvers and preconditioning techniques, to
handle large-scale problems [1].

22

PHOTOGRAMMETRY

Photogrammetry is one of the most established approaches to 3D reconstruc-
tion and has been applied for decades in fields such as surveying, architec-
ture, and cultural heritage. Unlike modern neural methods, it is based on
classical geometry and image processing, which makes its results metrically
accurate and interpretable, as it relies on physically explainable geometric
principles rather than learned priors. In the context of this thesis, photogram-
metry serves as a methodological baseline: it provides a transparent, repro-
ducible pipeline whose strengths and weaknesses can be directly compared
to newer approaches such as 3D Gaussian Splatting (Chapter 5).

The following sections first outline the typical photogrammetry pipeline
(Section 4.1), before highlighting common limitations that strongly influence
reconstruction quality in practice (Section 4.3).

4.1 PHOTOGRAMMETRY-PIPELINE

The classical photogrammetry pipeline consists of four stages: SfM for cam-
era poses and a sparse 3D structure, MVS for dense geometry, followed by
meshing and texturing. Meshing converts the dense point cloud into a con-
tinuous polygonal surface, and texturing projects the input photographs
onto this surface via UV parameterization to obtain a photorealistic appear-

ance [19, 39].

SCOPE AND TOOLING.

Each stage is a substantial research area in its own right. In the following,
we provide a compact overview that emphasizes classical, geometry-driven
methods and, where appropriate, mentions more recent relevant approaches.
We describe the concrete realization with Meshroom, which we used in our ex-
periments. Other photogrammetry applications tested in this work (e.g., Kiri
Engine, Polycam) do not publicly disclose their internal algorithms; there-
fore, they are not discussed in detail here [19].

4.1.1 Structure-from-Motion (SfM)

Structure-from-Motion SfM describes the simultaneous estimation of camera
parameters (intrinsic and extrinsic camera parameters) (see Section 3.2.1)
and a 3D scene structure from 2D images. The goal is to create a geomet-
rically consistent reconstruction from unordered photo collections. SftM ap-
proaches are commonly divided into three categories: incremental, global,
and hybrid [25, 56, 75]. This thesis focuses on incremental SfM, the founda-
tion of widely used tools like COLMAP and Meshroom, due to its robustness

4.1 PHOTOGRAMMETRY-PIPELINE

and scalability. Practical scalability is achieved through efficient BA imple-
mentations (see Section 3.2.7).

One of the first influential works was the "Photo Tourism" system by
Snavely et al. [58]. It introduced a clear SfM pipeline: First, local features
such as SIFT are detected in the images (see Section 3.2.2). These features
are matched across the images (Section 3.2.2.3), and incorrect correspon-
dences are filtered using epipolar geometry (Section 3.2.3). The reconstruc-
tion starts with a stable image pair, from which initial 3D points are obtained
by triangulation (Section 3.2.5). The initial pair is chosen to be geometrically
strong, with many inliers after robust estimation and a sufficiently wide base-
line/parallax to support stable triangulation. New cameras are added with
the PnP algorithm (Section 3.2.6). After each step, a local BA (Section 3.2.7)
is applied to refine the solution. A global BA is run periodically or at the
end to reduce drift and improve overall consistency (Section 3.2.7). Certain
configurations reduce stability: near-planar scenes, very small baselines, or
repeated patterns can lead to weak constraints and higher uncertainty in
triangulation (see Section 3.2.3 and 3.2.5). This iterative process produces
a gradually growing sparse 3D reconstruction: a set of reliable 3D points
that reflect the skeletal geometry of the scene without capturing fine surface
details (see Figure 4.1).

Schonberger et al. [56] proposed systematic improvements, introducing
more robust feature matching, stable initialization strategies, and efficient
camera registration with PnP and RANSAC. Their work also improved the
scalability of BA, making it possible to process very large datasets. These
improvements form the basis of COLMAP , which today is considered the
standard implementation of incremental SfM.

The output of SfM is a sparse 3D reconstruction together with estimated
camera poses. This output provides the geometric framework for the entire
photogrammetry pipeline. It serves as input for the next step, MVS (Sec-
tion 4.1.2), which densifies the reconstruction. Note that SfM recovers struc-
ture and motion only up to an unknown global scale. An absolute scale can
be fixed by adding a metric constraint (e.g., a known distance or external
sensor information).

Images Correspondence Search Incremental Reconstruction Reconstruction

1

Geometric Verification

Figure 4.1: Incremental Structure-from-Motion pipeline. [56].

4.1.2 Multi-View Stereo (MVS)

Multi-View Stereo MVS takes the camera poses and sparse 3D points esti-
mated by SfM as input and densifies the reconstruction. The goal of MVS is

24

4.1 PHOTOGRAMMETRY-PIPELINE 25

to compute accurate depth values for a large number of pixels across mul-
tiple images, leading to a dense 3D point cloud of the scene. In contrast to
stM, which provides only a sparse reconstruction, MVS exploits redundant
information from many overlapping views to achieve high-resolution geom-
etry. This dense point cloud then serves as the foundation for meshing and
texturing in the subsequent steps of the photogrammetry pipeline. In offline
pipelines, the sparse SfM points also help restrict plausible depth ranges and
guide view selection for robust estimation (see Section 4.1.1).

Principle: rooted in classical stereo matching. Stereo matching consid-
ers two images taken from slightly different viewpoints. For a pixel in the
first image, the corresponding pixel in the second image is searched. The
displacement between these pixels is called disparity. Using the camera ge-
ometry, the depth can then be computed as:

_fb

2=

where f denotes the focal length, b represents the baseline, which measures
the distance between the two cameras, and d corresponds to the observed
disparity between matching pixels.

EXAMPLE (USED HERE): SEMI-GLOBAL MATCHING (SGM).

Semi-Global Matching (SGM) enforces a near-global smoothness prior by
aggregating dynamic-programming costs along multiple 1D paths through
the image, rather than solving a full 2D optimization. First, a pixel-wise
matching cost is computed using Mutual Information (MI), which is robust
to radiometric differences between images. The costs are then aggregated
along multiple directions by accumulating minimal path costs for each pixel
and disparity. Small changes in disparity are penalized with a lower term P,
while larger jumps receive a higher penalty P,, which encourages smooth
surfaces while preserving discontinuities [22]. A winner-takes-all selection
over the aggregated costs yields the disparity for each pixel, which can be
refined to sub-pixel accuracy. SGM runs with linear complexity O(W - H - D)
and achieves a good trade-off between computational cost and reconstruc-
tion accuracy. In this thesis, per-view depth maps are computed with Mesh-
room, whose depth-map stage employs SGM with a ZNCC-based multi-view
photo-consistency measure and CUDA acceleration [19, 22].

Practical issues and multi-view extension. In practice, stereo matching
faces several challenges. Typical failure cases are occlusions, untextured re-
gions, slanted surfaces, and radiometric differences such as changes in illu-
mination or exposure. These issues often lead to errors in disparity estima-
tion. MVS extends this concept from two views to many overlapping images
precisely to mitigate these issues: redundancy increases robustness and en-
ables more detailed reconstructions. From the sparse point cloud provided
by sfM, MVS builds dense depth maps for each image and fuses them into a
consistent 3D representation.

Algorithmic approaches for depth-map generation:

4.1 PHOTOGRAMMETRY-PIPELINE

* Voxel-based methods: Divide space into voxels and test occupancy.
They are robust but memory intensive.

¢ Depth-map fusion: Compute a per-view depth map, then fuse them
into a consistent 3D model. This is efficient and widely used. In this
thesis we follow this approach with Meshroom (SGM-based depth esti-
mation) [19, 22].

¢ Patch-based methods (background only): Estimate small surface patches
and refine them iteratively (e.g., PatchMatch Stereo); not part of our
pipeline, but widely used in the literature [6, 8].

LEARNING-BASED MVS (BACKGROUND ONLY; NOT EVALUATED).

Recent surveys describe learning-based MVS as building plane-sweep cost
volumes and learning their regularization (e.g., with 3D convolutions or
coarse-to-fine schemes) before regressing a per-view depth map, followed by
offline fusion; online (video) variants often rely on TSDF volumes as an inter-
mediate representation. These models can achieve strong benchmark results
but typically require substantial compute and specialized frameworks. We
acknowledge this line of work for completeness and keep our focus on the
classical, geometry-driven depth-map MVS implemented in Meshroom [64]. A
representative early end-to-end model is MV SNet, which learns to construct
and regularize cost volumes directly from multiple views [74].

4.1.3 Meshing

After generating a dense point cloud, the next step is to reconstruct a contin-
uous surface ("meshing"). The goal is to transform an unstructured set of 3D
points into a polygonal mesh that approximates the underlying geometry.
A mesh is typically represented as connected triangles that form a coherent
surface. This step converts discrete points into a usable 3D model that can
be visualized, edited, or used in downstream applications.

Delaunay-based surface reconstruction. A common approach to surface
reconstruction is based on Delaunay triangulation, which partitions space
into tetrahedra and allows surfaces to be extracted from their connectivity.
Delaunay methods first compute the 3D Delaunay triangulation D(P) from
the given set of sample points P, which is the dual of the Voronoi diagram.
A surface is then extracted by selecting an appropriate subcomplex of D(P).
Two classical routes are: (i) restriction of D(P) to a subset that approximates
the (unknown) surface. For example, restricted Delaunay/«a-complexes, and
(ii) inside/outside labeling of tetrahedra. The interface between the labeled cells
yields the surface. Figure 4.2 illustrates the idea of restricting a Delaunay tri-
angulation to a surface. Under suitable conditions (e.g., closed-ball property),
the restricted Delaunay triangulation Dg(P) is topologically consistent with
the underlying surface [9].

MESHING IN ALICEVISION/MESHROOM.

4.1 PHOTOGRAMMETRY-PIPELINE

In the workflow used here, meshing follows AliceVision’s default pipeline.
After StM, the per-view depth maps are back-projected and fused into a
dense point cloud using a KD-tree structure. From this point cloud, a 3D
Delaunay tetrahedralization is constructed. Per-tetrahedron weights are then
computed according to Jancosek et al., and a graph-cut optimization labels
tetrahedra as inside or outside to extract the final surface. Finally, local arti-
facts are filtered out and bilateral smoothing is applied to improve surface
quality [19]. This approach implements the inside/outside labeling paradigm
(via voting and graph-cut) rather than the restricted-Delaunay subcomplex
extraction illustrated in Fig. 4.2.

Figure 4.2: Delaunay-based meshing via restriction: a 3D Delaunay tetrahedraliza-
tion is built on the samples, and a surface is extracted by restricting to
the vicinity of the underlying surface. [9])

POISSON RECONSTRUCTION (ANOTHER RELEVANT METHOD).
Poisson Surface Reconstruction (PSR) seeks an implicit indicator function
X whose gradient matches the oriented normal field by solving a Poisson
equation Ay = V-V. An iso-surface is then extracted from this function.
PSR produces watertight surfaces and is robust to noise. However, it may
smooth out fine details, and the screened variant mitigates this effect [23].

OTHER RELEVANT VARIANTS.

Beyond Delaunay and Poisson, several other approaches to surface re-
construction have been proposed. Triangulation-based methods include Ball-
Pivoting and greedy or Delaunay-based extractions. Point-set surface meth-
ods rely on moving least squares, such as APSS or RIMLS. Implicit repre-
sentations can be obtained with radial basis functions, while primitive or
template fitting methods approximate geometry with simple shapes such as
planes or cylinders. More recently, learning-based techniques employ neural
implicit fields to reconstruct surfaces [23].

4.1.4 Texturing

Texturing is the final step of the photogrammetry pipeline. While the previ-
ous stages reconstruct the geometry of the object as a mesh, texturing gives

4.1 PHOTOGRAMMETRY-PIPELINE

this mesh a realistic appearance. The input photos are projected onto the
surface, so that colors, patterns, and fine details become visible [19, 39].
The basic method is called UV mapping. The 3D mesh is unfolded into a 2D
space. Each vertex of the mesh receives coordinates (1, v). These coordinates
link the mesh to a texture image, which can then be projected back onto the

surface. In practice, the mesh is divided into parts called charts (UV patches).

Each chart is mapped separately into the UV space. Figure 4.3 illustrates
this process: on the left, the 3D mesh with chart boundaries is shown, in
the center the charts are visible as separate UV patches arranged in the 2D
texture atlas, and on the right the final textured model.

Figure 4.3: The texturing process: the mesh with chart boundaries (left), the charts
as separate UV patches in the 2D texture atlas (center), and the final
textured model (right). [39]

Texturing introduces several challenges. Visible seams may appear at the
boundaries of charts, especially when input photos differ in lighting or color
values. Overlapping coverage, where multiple photos capture the same re-
gion, can lead to inconsistencies such as color shifts, blurring, or ghosting if
not combined consistently. In addition, distortions arise when the unfolding
into the UV plane is not uniform, causing textures to appear stretched or
compressed [39].

4.1.4.1 Least Squares Conformal Maps (LSCM)

A common method to reduce distortion is the Least Squares Conformal Maps
(LSCM) algorithm introduced by Lévy et al. [39]. It creates an almost angle-
preserving unfolding of the mesh by approximating conformal maps. LSCM
is efficient, robust against triangle flips, and requires only minimal con-
straints. Today, it is considered a classical algorithm for UV parametrization
and is implemented in tools such as Meshroom [19].

4.1.4.2 Advanced and semantic texturing approaches

Beyond classical projection-based methods, recent research explores seman-
tic guidance and learning-based UV mappings to improve texture consis-
tency, alignment, and transfer (see Section 4.1.4.1).

28

4.2 TOOLS AND PLATFORMS FOR PHOTOGRAMMETRY

Semantic UV mapping for indoor texture inpainting. Recent work lever-
ages semantic instance segmentation of indoor scenes to guide UV unwrap-
ping and improve texture inpainting after clutter removal [63]. The pipeline
segments structural elements (e.g., walls, floor), removes loose objects, re-
constructs missing geometry using plane-intersection boundaries, and then
aligns UV seams with semantic boundaries. Charts are oriented consistently
and unwrapped with low distortion so that adjacent faces in 3D remain adja-
cent in UV; missing regions are inpainted per element in 2D and reprojected
to the mesh, followed by UV repacking for better texture-space usage [63].

Learning aligned UV maps for texture transfer (AUV-Net). AUV-Net
learns to embed 3D surfaces into a shared, aligned UV space to enable tex-
ture transfer, texture synthesis, and textured single-view reconstruction [10].
The model jointly learns (i) a set of texture basis images with per-shape co-
efficients (alighment module), (ii) a shared UV mapper that assigns surface
points to UV coordinates, and (iii) a masking network that predicts a soft
segmentation of the surface into a small number of charts (e.g., “front/back”)
to reduce distortion. The aligned UV images allow the use of standard 2D
generative models (e.g. StyleGAN2) for texture synthesis, supporting tasks
such as texture transfer and texture completion, across categories such as
cars, chairs, heads, and animals [10].

4.2 TOOLS AND PLATFORMS FOR PHOTOGRAMMETRY

Unlike the still emerging ecosystem around 3DGS (see Chapter 5), photogram-
metry has been established for many years and offers a wide spectrum of
mature tools. These range from open-source frameworks used in research
to professional software suites and, more recently, simplified mobile appli-
cations. The diversity of tools reflects the long tradition of photogrammetry
as well as its broad adoption across disciplines such as surveying, cultural
heritage, and visual effects.

4.2.1 Open-source software as a baseline

Frameworks like COLMAP and Meshroom have become standard tools in
academic and experimental settings. They implement the classical pipeline
of stM and MVS, offering transparency, reproducibility, and access to inter-
mediate results. This makes them suitable as a methodological baseline in
this thesis. However, they require technical expertise and powerful desktop
hardware.

4.2.2 Commercial software as high-end solutions

Professional packages such as RealityCapture, Agisoft Metashape, and Pix4D
provide optimized pipelines that deliver high accuracy and efficiency. These
tools are widely used in industry and cultural heritage documentation, but
they are license-based and therefore outside the scope of this work.

29

4.3 PHOTOGRAMMETRY LIMITATIONS

4.2.3 Mobile applications as a recent trend

In recent years, mobile apps have extended photogrammetry to a broader
audience. They hide most of the complexity by outsourcing the pipeline to
cloud services. Although this makes the technology highly accessible, it lim-
its control and reproducibility, since intermediate data such as camera poses
or sparse reconstructions are not exposed. Moreover, the exact photogram-
metry methods implemented in these services are not documented, which
prevents a precise methodological comparison. For this reason, such apps
are considered in the evaluation mainly from the perspective of accessibility
and usability rather than metric accuracy.

In summary, photogrammetry offers a mature and diverse ecosystem of
tools. For this thesis, open-source frameworks are used as a transparent base-
line, while mobile applications are included to reflect their growing role in
making 3D reconstruction accessible to nonexpert users. Detailed analyses
of the selected tools are presented in Chapter 7.

4.3 PHOTOGRAMMETRY LIMITATIONS

Photogrammetry performance strongly depends on image data, scene prop-
erties, and algorithmic choices. Typical limitations can be grouped into three
categories: image- and scene-dependent issues, algorithmic issues, and tech-
nical constraints.

Image- and scene-dependent issues

* Low texture, repetitive patterns, specular/transparent materials. Fea-
ture matching and photoconsistency become unreliable, causing holes,
noise or floating points in MVS depth maps [22, 64].

¢ Insufficient parallax and degenerate geometry. Small or uneven base-
lines, forward-only motion or near-planar scenes make triangulation
ill-conditioned. The depth accuracy degrades with distance (small dis-
parities) and weak baselines (see Section 4.1.2) [57].

¢ Dynamic content and illumination changes. Moving or non-rigid ob-
jects, motion blur, and rolling-shutter distortions cause mismatches in
StM/MVS. Exposure shifts, white balance differences, and shadows of-
ten produce ghosting or color seams in the texture [64].

* Occlusions and coverage gaps. Self-occlusions and missing viewpoints
reduce overlap and lead to incomplete reconstructions, particularly for
thin structures and concavities [57].

30

4.3 PHOTOGRAMMETRY LIMITATIONS 31

Algorithmic issues

* MVS failure modes. Even with good poses, multiview depth estima-
tion can fail in textureless, reflective, or slanted /low-baseline regions.
Fusion must reject outliers and may leave gaps [22, 64].

* Meshing trade-offs. Delaunay-based extraction preserves detail, but
may yield nonwatertight surfaces and require cleanup. Poisson or screened
Poisson produces watertight results but can over-smooth sharp fea-
tures [9, 23].

¢ Texturing artifacts. UV unwrapping introduces distortion. Seams be-
come visible under radiometric changes, and multi-view blending can
cause blurring or ghosting under parallax. Parameterizations such as
LSCM and careful view selection help, but cannot remove all arti-

facts [19, 39].

Technical constraints

¢ Calibration and scale. Inaccurate intrinsics (e.g., distortion) or extrin-
sics, and missing control points affect metric accuracy and absolute
scale. Passive imaging cannot directly observe the scale without exter-
nal cues [54].

¢ Compute and memory. Large image sets and high-resolution depth
maps are resource intensive. GPU acceleration is commonly used for
the depth map stage and texture generation [19].

Mitigation (brief). Good acquisition protocols (sufficient overlap and parallax,
exposure locking, sharp images), reliable calibration and scale references,
and adapted method / tool choices (e.g. mesh variant, texturing strategy)
can substantially reduce these issues, but cannot fully remove the inherent
limitations of passive image-based reconstruction.

3D GAUSSIAN SPLATTING (3DGS)

5.1 COMPARISON WITH NERF AND PHOTOGRAMMETRY

Before introducing the internal concepts of 3D Gaussian Splatting (3DGS), it
is useful to position the method in relation to two established approaches:
classical photogrammetry and NeRF.

Photogrammetry, as described in Chapter 4, reconstructs explicit geome-
try by estimating camera poses, generating point clouds, and subsequently
creating meshes and textures [54, 56]. This pipeline yields metrically accu-
rate models and has a long tradition in fields such as surveying and cultural
heritage documentation. However, it strongly depends on image quality and
overlap, struggles with reflective or textureless surfaces, and requires addi-
tional meshing and texturing steps to produce visually convincing results
(see Section 4.3).

NeRF, on the other hand, represents a scene as a volumetric function that
predicts color and density for each point in space given a viewing direc-
tion [45]. This implicit formulation enables the generation of photorealistic
novel views that capture both intricate lighting variations and view-dependent
appearance effects. Nevertheless, NeRF is computationally demanding: train-
ing often requires hours on high-end GPUs, and rendering new images in-
volves dense sampling along camera rays, which makes real-time perfor-
mance difficult to achieve.

3DGS combines aspects of both approaches. Like NeRF, it directly addresses
the task of NVS, but instead of an implicit neural function, it employs an ex-
plicit set of Gaussian primitives that can be efficiently optimized [33]. At the
same time, 3DGS relies on SfM results, similar to photogrammetry, to initialize
camera poses and a sparse reconstruction, which then serve as input for the
Gaussian optimization. This hybrid positioning explains why 3DGS has at-
tracted significant attention: it enables real-time rendering while delivering
visual quality that can surpass traditional photogrammetry, particularly in
challenging scenarios such as fine vegetation or semi-transparent structures
(see Section 5.3 for details).

5.2 FOUNDATIONS

To understand the internal concepts of 3D Gaussian Splatting (3DGS), it is
necessary to introduce a set of theoretical foundations that link the method
to classical and modern reconstruction approaches. While Chapter 3 out-
lined the general mathematical and algorithmic principles of 3D reconstruc-
tion, this section focuses on concepts that are particularly relevant for ;DGS:
NVS as the overarching task, radiance fields as a volumetric representation

5.2 FOUNDATIONS

of scenes, 3D Gaussians as explicit primitives, and real-time rendering as
the enabling technology for interactive applications. Together, these notions
provide the conceptual bridge between general background knowledge and
the specific pipeline of 3DGS, which will be detailed in Section 5.3.

5.2.1 Novel View Synthesis (NV'S)

Novel View Synthesis NVS refers to the generation of new views of a scene
from a limited set of recorded images. In other words, it creates images from
perspectives that were not originally captured. To achieve this, the three-
dimensional structure of the scene must be reconstructed in such a way that
novel perspectives can be rendered computationally [5].

The central challenge of NVS is to represent the scene so that the geome-
try, texture, and lighting effects appear realistic from arbitrary viewpoints.
Instead of relying on classical pipelines that reconstruct explicit geometry,
such as meshes or dense point clouds, NVS focuses on creating representa-
tions that directly support the synthesis of unseen views.

In the context of this thesis, NVS is particularly relevant because 3DGS
achieves novel view generation by modeling the scene through a collection
of 3D Gaussian elements. Each Gaussian encodes spatial location, shape
parameters, color, and opacity, which enables real-time rendering of novel
viewpoints once the model has been optimized.

The following section introduces radiance fields as one prominent way to
realize NVS through volumetric representations, before discussing 3DGS in
detail as an alternative approach.

5.2.2 Radiance Fields

Radiance fields describe a scene implicitly. Instead of using explicit geomet-
ric shapes such as meshes or points, they define a continuous function. This
function assigns each 3D position and viewing direction a color and a den-
sity value [53]. Rendering an image then means integrating color and density
along the rays that pass through the scene.

The most prominent implementation of radiance fields is NeRF, introduced
by Mildenhall et al. [45]. In NeRF, a Multi-Layer Perceptron (MLP) approxi-
mates the radiance field function from a set of calibrated input images. For
each ray, the network predicts color and density at multiple sample points.
These predictions are then combined through volumetric rendering to form
the final image. This allows the generation of realistic new views that include
fine lighting variations and view-dependent effects.

While radiance fields represent a breakthrough for NVs, they also face sig-
nificant limitations: training is slow, rendering is computationally intensive
due to the large number of samples per ray, and high-end GPUs are typically
required [33, 45, 53]. These drawbacks limit their accessibility for everyday
or resource-constrained applications.

33

5.2 FOUNDATIONS

In the context of this thesis, radiance fields are introduced as a conceptual
foundation of NVS. They show the visual potential of implicit volumetric rep-
resentations. However, their computational demands motivate newer meth-
ods such as 3DGS, which uses an explicit point-based scene representation
and enables real-time rendering.

5.2.3 3D Gaussians

A simple point cloud represents a scene as a collection of individual dots in
3D space. Although useful, this often leads to a "digital" look with visible
gaps and jagged edges when rendered, making it difficult to represent fine
details such as fur or leaves [20]. 3DGS overcomes this limitation [33]. Instead
of plain points, it represents a scene with 3D Gaussians. Each Gaussian can
be understood as a small, soft, and stretchable blob, defined by:

¢ A position in 3D space (its center point).

* A covariance matrix, which controls stretching and rotation (its 3D
shape).

¢ An opacity value, which controls transparency.

* A view-dependent appearance, modeled with Spherical Harmonics
(SH), allowing the color to change with viewing direction.

The key innovation is in the rendering. Instead of drawing hard dots, each
3D Gaussian is projected onto the 2D image plane as a disc (see Fig. 5.1).
This projection results in an ellipse in screen space, which is then combined
with a Gaussian-shaped alpha mask to form a soft splat (see Fig. 5.2) [33,
78]. These splats overlap and blend together seamlessly through an efficient
filtering process, which reduces aliasing and produces continuous surfaces
with high visual quality [78].

screen space object space

normal

surfel disc

projected surfel disc

Figure 5.1: Illustration of projected disc rendering: surfels are represented as discs in
object space (right), which are projected onto the screen space as ellipses
(left). [20].

34

5.2 FOUNDATIONS

Y, *k y[= vl .
X X X
colored point alpha mask splat primitive
primitive c w(x,y) c *w(x,y)
(often a 2D

Gauss function)

Figure 5.2: Construction of a splat primitive: a colored point primitive ¢ is multi-
plied with an alpha mask w(x,y), often represented as a 2D Gaussian
function, resulting in a smooth splat. [20].

Visually, a scene made with 3D Gaussians appears as a cloud of colorful,
soft-edged, and elastic blobs of different sizes and shapes. When viewed
from arbitrary angles, these blobs combine to form a smooth and high-
quality image of the underlying scene [33].

In summary, 3DGS builds on the classic ideas of point-based graphics [20]
and splat rendering [78]. It employs modern optimization techniques to cre-
ate a representation that is both efficient to render and capable of modeling
complex visual detail more effectively than simple points or meshes.

Having introduced the conceptual foundation of 3D Gaussians as the core
representation, Section 5.3 will now detail the specific mathematical param-
eterization and the algorithms that make up the full 3DGS pipeline.

5.2.4 Real-Time Rendering

Real-time rendering describes the process of producing and displaying im-
ages of a 3D scene fast enough to enable interactive visualization. In general
computer graphics, this is often defined as at least 30 frames per second FPs,
while immersive Virtual Reality (VR) typically requires 60 FPS or more to
maintain presence and prevent motion sickness [35, 70].

In interactive 3D environments, such as those found in VR or Augmented
Reality (AR), real-time rendering is essential. It enables natural interaction
with virtual content, creates a convincing sense of immersion, and ensures
that users can explore or manipulate 3D environments smoothly.

While classical photogrammetry produces static models through an of-
fline process (see Chapter 4), modern methods such as 3DGS are designed
from the ground up to meet this real-time requirement. By replacing slow
mesh generation or neural raymarching with a rasterization-based pipeline
(see Section 5.3.4), 3DGS achieves high frame rates immediately after a fast
optimization step, enabling true interactive exploration [33].

35

5.3 METHOD: 3D GAUSSIAN SPLATTING IN DETAIL

5.3 METHOD: 3D GAUSSIAN SPLATTING IN DETAIL

Building on the conceptual foundations introduced in Section 5.2, this sec-
tion presents in detail the internal pipeline of 3D Gaussian Splatting (3DGS).
The approach uses an explicit set of 3D Gaussian elements together with
a fast differentiable projection scheme to generate novel views in real time
with high visual quality.

The pipeline can be divided into four main components: (1) the parametriza-
tion of 3D Gaussians, which defines their geometric and photometric at-
tributes; (2) adaptive density control, which dynamically refines or prunes
Gaussians during optimization; (3) a differentiable rasterization process,
which projects Gaussians into image space; and (4) the final rendering stage,
where splats are blended into photorealistic images.

Together, these components form the algorithmic core of 3DGS, allowing
both efficiency and visual fidelity. The following subsections describe each
of them in turn.

5.3.1 Parametrization of the 3D Gaussians

The core idea of 3DGS is to replace the discrete points of a classical point
cloud with continuous, anisotropic 3D Gaussian primitives. Each Gaussian
G; is defined by the following parameters:

* Position y; € R3: the center of the Gaussian in 3D space.

* Covariance Matrix &; € IR¥*3: controls anisotropic scaling and orienta-
tion, resulting in an ellipsoidal shape. To ensure that ¥; stays positive
semi-definite throughout the optimization process, it is parameterized
as

¥ = R(q;) - diag(s;)* - R(q/) ",

where q; is a unit quaternion representing rotation and s; € R3 is a
scale vector.

* Opacity a; € [0,1]: determines the transparency and blending weight
during composition. For rendering, these opacities are combined using
classical a-compositing.

¢ Color: modeled via SH, enabling smooth view-dependent changes. By
default, SH of degree L = 3 are used, which corresponds to 16 basis
functions per channel and thus 48 coefficients per Gaussian. For a de-
tailed explanation of the SH formulation, see Section 5.3.1.1.

Together, these parameters define an anisotropic 3D Gaussian "blob". The
initial set of Gaussians is typically initialized from a sparse SfM reconstruc-
tion (e.g., from COLMAP), which provides a strong geometric prior [33].

Visualization: Ellipsoids with variable density and color. Initialization:
From SfM point cloud or random.

5.3 METHOD: 3D GAUSSIAN SPLATTING IN DETAIL

5.3.1.1 Spherical Harmonics for View-Dependent Appearance

In contrast to position, covariance, and opacity, the color parameter of a
Gaussian requires special treatment to capture a view-dependent appear-
ance. In 3DGS, directional appearance is represented using spherical harmon-
ics (SH), which form a compact orthonormal basis for functions defined on
the sphere. Each Gaussian stores a set of SH coefficients, typically up to de-
gree L = 3 (48 coefficients in total), allowing its color to vary smoothly with
the viewing direction. This enables complex view-dependent effects such as
specular highlights to be modeled efficiently, although the parameter count
per Gaussian also introduces a memory bottleneck in large reconstructions.

Figure 5.3 illustrates the first spherical harmonics basis functions. They
form the building blocks for representing direction-dependent color compo-
nents in 3DGS, where higher-order terms capture finer variations of light and
reflection across viewing angles.

Figure 5.3: Visualization of the first spherical harmonics functions. Blue regions in-
dicate positive values, yellow regions negative values, while the distance
from the center corresponds to the magnitude of the function. [69]

Further mathematical details and implementation aspects are provided in
Appendix .1.

5.3.2 Adaptive Density Control

The initial set of 3D Gaussians is derived from the sparse StM point cloud
(see Section 4.1.1). On its own, this initialization is insufficient to capture all
the details of the scene. To achieve a dense and accurate representation, the
system must add Gaussians where detail is missing and remove those that
no longer contribute [33].

This process, called adaptive density control, is periodically executed during
training. It relies on the positional gradient (how strongly a Gaussian wants
to move) and its size to decide whether to clone, split, or prune a Gaussian

(see Fig. 5.4) [33]:

37

5.3 METHOD: 3D GAUSSIAN SPLATTING IN DETAIL

* Cloning (filling missing detail): If a Gaussian shows a large gradient
and has a small volume, it means that the model needs more coverage
in that area. The algorithm duplicates the Gaussian and shifts the copy
in the direction of the gradient. This adds more detail in regions that
were underrepresented [33].

¢ Splitting (refining structure): If a Gaussian is too large to capture fine
details, yet still exhibits a high gradient, it is split into two smaller
Gaussians. Their scales are reduced (by a factor of ¢ = 1.6) and their
positions are adjusted according to the original distribution.

¢ Pruning (removing redundancy): If a Gaussian opacity « falls below a
small threshold, it is removed to avoid wasting resources on elements
that do not contribute to rendering.

In essence, cloning fills the gaps, splitting refines the coarse regions, and
pruning removes redundant elements. This dynamic adjustment enables the
system to evolve from a sparse initialization to a dense, high-quality repre-
sentation that is both accurate and efficient [33].

Under
Reconstruction

Clane

Optimization
Continues

Ower
Reconstruction

Figure 5.4: Adaptive Gaussian densification scheme from Kerbl et al. [33]. Top row:
under-reconstruction (clone). Bottom row: over-reconstruction (split).

5.3.3 Differentiable Rasterization

A key innovation of 3DGS is its custom differentiable rasterizer. In contrast to
NeRF methods that rely on slow ray marching, 3DGS employs a fast, tile-
based rasterization technique that is fully differentiable, enabling both real-
time rendering and efficient training [33].

The goal is to project millions of 3D Gaussians onto the 2D image plane
and blend their colors correctly and efficiently. The process includes three
main steps:

® Frustum & Tile Culling: Gaussians outside the camera view are dis-
carded. The screen is divided into 16 x 16 pixel tiles. Each Gaussian is
assigned to overlapping tiles, but for efficiency each tile stores at most
128 Gaussians [33].

38

5.3 METHOD: 3D GAUSSIAN SPLATTING IN DETAIL

¢ Depth Sorting: Within each tile, Gaussians are sorted by their depth
using a GPU-based Radix sort, ensuring correct blending at interactive
rates.

¢ Alpha Blending: Each Gaussian is projected onto the 2D image plane
as an ellipse with an associated opacity. This principle is similar to
the surfel disc projection shown in Figure 5.1, but extended with per-
Gaussian covariance and opacity. Within each tile, the ellipses are blended
from back to front using standard alpha compositing:

—_

N -
C=Y wc[[(1—a), (5.1)
-1

Il
—

where ¢; is the color and «; the opacity of the i-th Gaussian. This
accumulation ensures that multiple overlapping Gaussians contribute
smoothly, resulting in continuous and photo-realistic images (see Eq. 5.1).

DIFFERENTIABILITY IN TRAINING
The rasterizer is central to not only rendering, but also optimization. Dur-
ing the backward pass, it computes how each Gaussian parameter (position,
scale, rotation, opacity, color) influence the final image and the loss:

¢ Gradients are propagated throughout the blending process.

* Unlike earlier methods, any number of Gaussians can contribute per
pixel, so even deep Gaussians remain trainable.

¢ Gradients for rotation and scale are computed explicitly for stabil-
ity and speed, avoiding the overhead of generic automatic differenti-
ation [33].

In summary, the differentiable rasterizer combines the efficiency of GPU
rasterization with the learning capability of volumetric rendering, making
3DGS both fast and trainable [33].

5.3.4 Rendering Pipeline

The rendering pipeline of 3DGS integrates initialization, adaptive density con-
trol, and differentiable rasterization into a single workflow. It begins with a
sparse point cloud from sfM, which provides the initial Gaussians and cam-
era poses (see Section 4.1.1). From there, the system alternates between
density control and rasterization until the scene is represented at high qual-
ity. An overview of this process is shown in Figure 5.5, adapted from Kerbl
et al. [33].

Once the Gaussians have been optimized, the rendering of a novel view
is extremely efficient and executed in real time. The process performed for
each frame can be summarized in three main steps [33]:

5.4 PRACTICAL IMPLEMENTATION AND TOOLS

Camera | ——
/' Projection ‘\‘

. "4 Differentiable | —»

S~ —| Initialization | — Akt Image
"Tae ¥ Tile Rasterizer | *
i ;

Adaptive &
Density Control — Operation Flow # Gradient Flow

SfM Points 3D Gaussians

Figure 5.5: Pipeline of 3D Gaussian Splatting: starting from an SftM point cloud,
Gaussians are optimized through adaptive density control and differ-
entiable rasterization. The final stage produces real-time renderings suit-
able for interactive exploration. [33].

1. Projection: Each Gaussian, defined by its mean y, covariance matrix
Y, and opacity «, is projected into the view space of the camera. In
the image plane, this results in a 2D ellipse with covariance X'. The
Gaussian color is evaluated from its SH coefficients.

2. Tile-Based Sorting: The screen is divided into tiles (e.g., 16 x 16 pix-
els). Each Gaussian is assigned to overlapping tiles, but for efficiency
each tile stores at most 128 Gaussians. A GPU-based Radix sort orders
Gaussians by tile ID and depth, ensuring a correct rendering order.

3. Alpha Blending and Composition: Within each tile, the Gaussians are
blended back-to-front using the alpha compositing rule (Eq. 5.1). Once
the accumulated opacity is close to 1, deeper Gaussians are skipped, a
technique known as early termination.

This single-pass rasterization pipeline avoids costly ray marching and
achieves real-time performance, often exceeding 100 FPS at 1080p resolution.
Its efficiency makes 3DGS suitable for interactive applications and one of the
most impactful recent methods in neural rendering [33].

5.4 PRACTICAL IMPLEMENTATION AND TOOLS

After outlining the theoretical foundations and internal workflow of 3D
Gaussian Splatting (3DGS) in the preceding sections, this part turns to its
practical implementation. The goal is to outline how the method can be ap-
plied in real-world scenarios, which tools are available, and what require-
ments need to be considered.

We discuss both the open-source reference implementation by Kerbl et
al. [33], as well as software solutions and platforms that integrate or build
upon 3DGS. These include preprocessing systems for initialization, the train-
ing and rendering pipeline of the original codebase, and user-oriented tools
that make the method accessible beyond expert communities. Together, these
aspects form the bridge from the algorithmic concept to its use in practice,
which is crucial for the comparative analysis in Chapter 6.

40

5.4 PRACTICAL IMPLEMENTATION AND TOOLS 41

5.4.1 Pre-processing with COLMAP

Initialization of 3DGS requires camera poses and a sparse geometric prior.
These are obtained via incremental SfM (see Section 4.1.1) using COLMAP ,
which estimates the intrinsics, extrinsics of the camera and a sparse 3D point
cloud [56]. This sparse reconstruction is sufficient to initialize the first set of
Gaussians [33]. Importantly, dense MVS (see Section 4.1.2) is not required,
avoiding both the computational cost and the fragility of dense reconstruc-
tion steps [33].

COMMON PITFALLS. Since 3DGS relies on the accuracy of the COLMAP SfM
output, typical issues in this step directly propagate into the Gaussian ini-
tialization:

¢ Pose inaccuracies. Errors in camera registration or drift in estimated
poses produce inconsistent point clouds, leading to misaligned Gaus-
sian initialization. This often results in blurred or unstable reconstruc-
tions and, in severe cases, flickering artifacts in novel views. [56]

¢ Insufficient image coverage. COLMAP ’s reconstruction quality strongly
depends on sufficient image overlap. If the input photos are too few or
poorly distributed, parts of the scene remain uncovered and Gaussians
cannot be initialized there. [26]

5.4.2 Training Pipeline (Original Code)

The official implementation of 3DGS follows a streamlined pipeline with
three main stages. The input is a sparse reconstruction from COLMAP (see
Section 5.4.1), which provides intrinsic camera data, extrinsic data, and a
sparse 3D point cloud. [26, 56]

1. Data conversion. The script convert.py transforms the COLMAP out-
put into the internal format required by the 3DGS codebase. The camera
parameters and the sparse points are converted into Gaussian primi-
tives for initialization. [16, 33]

2. Training. The core optimization is performed with train.py, which
refines the position, scale, opacity, and SH coefficients of the Gaussians.
Key hyperparameters include the learning rate for Gaussian attributes
and density thresholds that control adaptive densification (splitting,
cloning, and pruning) [16, 33].

3. Rendering. After training, novel views can be generated with render. py,
which uses the differentiable rasterizer to produce images or video se-
quences. In addition, the repository provides an OpenGL-based real-
time viewer for interactive exploration of the trained model. [16, 33]
This uses the tile-based rasterization pipeline described in Section 5.3.3,
enabling real-time rendering.

5.5 TECHNICAL LIMITATIONS

In summary, the reference codebase integrates COLMAP -based initializa-
tion with a dedicated training and rendering workflow. This makes it possi-
ble to obtain real-time 3D scene representations while avoiding the compu-
tational overhead of dense MVS reconstruction. [33]

5.4.3 From Code to Application: User-Oriented Tools and Platforms

Although the original codebase offers full control over the training process,
its setup requires technical expertise (CUDA, PyTorch, COLMAP preprocess-
ing) and access to high-end GPUs, which limits accessibility for non-experts.
[16, 33]

To bridge this gap, several user-oriented platforms have emerged that au-
tomate image input to visualization pipeline. These can be broadly grouped
into three categories:

¢ Desktop applications with a local GUI that integrate COLMAP and
Gaussian splatting but still require a capable GPU.

¢ Managed cloud services that process uploaded images on remote servers,

removing local hardware requirements but introducing costs and exter-
nal dependencies.

¢ Cloud infrastructure solutions that provide access to GPUs via simpli-
fied front-ends or direct code execution environments.

Concrete examples of such tools and platforms, along with their technical
requirements, workflows, and cost models, are introduced in the following
Chapter 6, while their practical evaluation is presented later in the Results
and Discussion Chapter 7.

5.5 TECHNICAL LIMITATIONS

Despite its strengths in efficiency and visual quality, 3DGS also faces several
technical limitations that are important to consider in practical applications

[33, 361

* High memory requirements. Each scene is represented by millions
of Gaussians storing position, scale, opacity, and SH coefficients. For
large-scale environments, this number grows rapidly, resulting in high
GPU memory consumption and making reconstructions difficult on
hardware with limited Video Random Access Memory (VRAM). [33]

* Reflective and transparent surfaces. Like other image-based rendering
approaches, Gaussian Splatting struggles with mirror-like or transpar-
ent materials. Their appearance depends strongly on view-dependent
effects and global light transport, which are not fully captured by local
Gaussian primitives. Reflections and refractions are, therefore, often
rendered inaccurately. [36]

42

5.5 TECHNICAL LIMITATIONS

¢ Extreme viewing angles. Quality decreases for viewpoints far out-
side the range of the input images. Under such extrapolation, arti-
facts emerge because Gaussians were not optimized for unseen re-
gions, a problem that is particularly visible in sparse data sets or highly
anisotropic structures. [33, 36]

In summary, 3DGS achieves real-time performance while maintaining high
visual quality. However, its applicability is limited by hardware require-
ments, material properties, and training data coverage. These factors are
crucial when comparing 3DGS with classical methods such as photogramme-
try (see Chapter 4.3).

43

METHOD SELECTION AND EVALUATION SETUP

The preceding chapters have established the theoretical foundation for this
comparative study by introducing two major paradigms of 3D reconstruc-
tion. Both classical photogrammetry and modern neural rendering rely on
SfM to estimate camera poses and sparse 3D structures from multiple overlap-
ping images. While photogrammetry continues this process through dense
multi-view stereo and surface reconstruction to produce watertight meshes,
(3DGS) leverages the recovered camera parameters to optimize a differen-
tiable, point-based scene representation designed for real-time rendering
and high visual fidelity.

Building upon this shared foundation, this chapter defines the method-
ological framework for the practical comparison of these approaches across
different tools and usage scenarios. It serves as a bridge between theoretical
analysis and experimental evaluation, structured around three key compo-
nents:

¢ Tool Selection: Mobile applications, desktop software, and source code
implementations, along with recording devices (iPhone 16 Pro and DJI
Mini 4K drone)

¢ Experimental Setup: Hardware configurations (local workstation and
AWS cloud instance) ensuring reproducibility

¢ Evaluation Design: Qualitative criteria and quantitative metrics ap-
plied to the selected datasets

This framework enables the systematic evaluation in Chapter 7, analyzing
performance across Everyday Scenarios, Edge-Cases, and Robustness Tests.

6.1 OVERVIEW OF TESTED TOOLS

The evaluation considers three categories of tools: mobile applications, desk-
top software, and a source code implementation. This selection ensures cov-
erage of both end-user solutions and research-level methods.

* Mobile applications: Kiri Engine and Polycam. These applications run
on modern smartphones, with photogrammetry supported from iPhone 12
Pro (LiDAR) or equivalent Android devices. While accessible and easy
to use, they require relatively recent hardware for reliable processing.

¢ Desktop software: Meshroom (open-source photogrammetry) and Post-
Shot, which is currently in its beta version and is based on 3DGS. Both
tools allow for local or hybrid processing with extended parameter

6.2 EXPERIMENTAL SETUP

control. In practice, both tools require a CUDA-capable NVIDIA GPU,
with at least mid-range consumer GPUs recommended for usable run-
times.

* Source code implementation: The official 3DGS repository (GitHub)
was fully integrated into the evaluation. Models were trained and tested
on GPU-accelerated AWS cloud servers to ensure controlled experimen-
tal conditions. This setup allowed for detailed benchmarking of the
method with respect to runtime and output quality, complementing
the results obtained from mobile and desktop tools.

Detailed technical specifications, including device support, input and ex-
port formats, and system requirements, are provided in Appendix .3.

6.2 EXPERIMENTAL SETUP

To ensure comparability and reproducibility, this section describes the hard-
ware and software environments in which the tested tools were executed, as
well as the data acquisition setup.

6.2.1 Mobile Applications

The mobile applications Kiri Engine and Polycam were executed on an Apple
iPhone 16 Pro. In contrast to the standard workflow of capturing images di-
rectly within the app, all tests in this study used the same custom datasets
introduced in Section 6.4.1 to ensure comparability across methods. The
images were uploaded to the respective applications, where processing was
performed via the vendors’ cloud infrastructure. Detailed device specifica-
tions are listed in Appendix .3.

6.2.2 Desktop Software

The desktop software Meshroom and PostShot were executed on a local work-
station with the following configuration:

Table 6.1: Workstation specifications for desktop software testing.

Component Specification

CPU Intel Core i7 (4th Generation)

GPU NVIDIA GeForce RTX 2070 Ti (CUDA Com-
pute Capability 7.5)

RAM 32 GB

Operating System Windows 10 Pro

Both Meshroom and PostShot were run with default configurations, using
GPU acceleration on the RTX 2070 Ti (with PostShot trained for 30,000 itera-
tions).

45

63 EVALUATION CRITERIA

6.2.3 Source Code Implementation

The official 3DGS repository was executed on GPU-accelerated AWS cloud
servers. In accordance with the repository requirements [16], the exact CUDA
and PyTorch versions were installed. COLMAP was compiled in headless
mode, as the instance provided no graphical user interface. Training was
executed headless and final renderings generated without GUIL

Table 6.2: AWS EC2 specifications for source code experiments.

Component Specification

Instance type g5.2xlarge

GPU NVIDIA A10G (24 GB VRAM)
vCPUs 8

Memory (GiB) 32

Storage EBS volume (SSD), 300 GB

Operating System Ubuntu 22.04 LTS
CUDA / PyTorch As specified in the official repository

Additional tools COLMAP (headless), git, cmake, ffmpeg,
ImageMagick

All datasets introduced in Section 6.4.1 were trained for 30,000 iterations
(to ensure comparability with the training conditions applied in PostShot)
at full resolution (1280x720, portrait: 720x1280). An exception are the Citadel
datasets, which had a native 4K resolution (3840x2160). The Citadel200 dataset
was downscaled to half resolution due to GPU memory constraints.

6.2.4 Drone-based Data Acquisition

Selected datasets were recorded using a DJI Mini 4K drone to obtain aerial
perspectives. The aerial imagery complements ground-level smartphone cap-
tures, providing additional viewpoints for larger structures.

63 EVALUATION CRITERIA

To fully capture reconstruction quality, three perspectives are applied: quan-
titative image metrics, visual inspection, and tool-related aspects. The met-
rics are described in Section 6.3.1, while the criteria for visual and tool eval-
uation are summarized in Tables 6.3 and 6.4.

6.3.1 Metric Evaluation

Quantitative evaluation relies on objective measures that assess how closely
a reconstructed model matches the original image data. In this study, three
complementary metrics are employed: PSNR, SSIM, and LPIPS. Together, they

46

63 EVALUATION CRITERIA

capture different aspects of reconstruction quality, ranging from pixel-level
fidelity to perceptual similarity. Nevertheless, as discussed in the following
paragraph on limitations, these metrics cannot be applied consistently across
all tools and datasets.

PEAK SIGNAL-TO-NOISE RATIO (PSNR)
PSNR expresses the ratio between the maximum possible pixel value and
the mean squared error (MSE) between a reference image I and a reconstruc-
tion I. It is reported in decibels (dB):

MAX?
PSNR = 10- 1Og10 <1\/ISEI> ’ (61)
with
1 Y 12
MSE = < Y (L—15)7, (6.2)

i=1

where MAX| is the maximum pixel value (e.g., 255 for 8-bit images) and N
is the number of pixels. Higher PSNR values indicate closer fidelity to the
reference [32].

STRUCTURAL SIMILARITY INDEX (SSIM)
SSIM compares a reference image x and a distorted image y by evaluating
luminance, contrast, and structural information. It is defined as:

(Z,ux]ly + Cl)(za'xy + CZ)

SSIM(x,y) = ,
(x.y) (M2 +p5+Ci)(0F + o7+ C)

(6.3)

where ji, and i, denote the mean luminance values, (73% and (TyZ represent
the variances, and oy, is the covariance between both images. C; and C;
are small constants added to stabilize the division. An SSIM score close to 1
indicates a high degree of structural similarity [68].

LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY (LPIPS)

LPIPS evaluates perceptual similarity by analyzing differences in deep fea-
ture representations between a reference image x and its reconstruction %, ex-
tracted from a pretrained convolutional network (e.g., VGG). For each layer
I of the network, feature activations y; and #J; are compared:

2, (6.4)

1
LPIPS(x, %) =) ——) w;- ||y -

where H;, W, are spatial dimensions of the feature map and w; are learned
scalar weights [76]. Lower values indicate higher perceptual similarity; scores
below 0.3 typically correspond to images with no or only minor perceptual
differences. In contrast to PSNR and SSIM, LPIPS is designed to approximate

6.4 EXPERIMENTAL DESIGN 48

human visual perception more closely, since it evaluates similarity based on
learned feature representations rather than raw pixel differences.

LIMITATIONS OF THE EVALUATION APPROACH

The applied metrics (PSNR, SSIM, LPIPS) require exact camera poses to ren-
der reference views, a condition only fulfilled for models generated with the
3DGS/COLMAP pipeline. For mobile and desktop tools, no exportable poses
are available, restricting their evaluation to qualitative assessments.

This results in a dual evaluation strategy: quantitative metrics for the 3DGS
source code implementation, and qualitative visual inspection for all other
tools. The qualitative assessment follows the criteria defined in Section 6.3.2
and Section 6.3.3, focusing on geometric accuracy, texture quality, and overall
visual plausibility based on human perception.

6.3.2 Visual Evaluation

Since metric evaluation cannot be applied consistently across all tools, vi-
sual inspection becomes the primary method to ensure comparability. It also
captures aspects of model quality that numerical measures cannot reflect.
Two dimensions are considered: geometric accuracy and texture quality. The
criteria are summarized in Table 6.3, with each item rated on a 1-5 scale.

Table 6.3: Criteria for visual evaluation of reconstructed models.

Dimension Criteria

Geometric Accuracy Detail preservation (fine structures, edges)
Completeness (missing areas or holes)
Distortions (unnatural deformations)
Noise (surface smoothness)

Texture Quality Color fidelity (accuracy of colors)
Resolution (sharpness of textures)
Consistency (seams, artifacts)

6.3.3 Tool Evaluation

Beyond reconstruction quality, the tools themselves are compared with re-
spect to processing speed, usability, scalability, model quality, and costs. The
dimensions are summarized in Table 6.4.

64 EXPERIMENTAL DESIGN

This section describes the datasets, evaluation protocol, and experimental
procedures used to compare the reconstruction methods across different sce-
narios and conditions.

64 EXPERIMENTAL DESIGN

Table 6.4: Criteria for tool evaluation.

Dimension Criteria

Processing Speed Time required to generate a model after data input or
capture, including potential delays due to queuing or
hardware limitations

Usability and Workflow Ease of use (intuitiveness of the interface)
Workflow automation (manual steps vs. one-click pro-
cessing)
Degree of parameter customization

Scalability Performance on large datasets (handling of complex
or extensive scenes)
Dependence on hardware resources (GPU, RAM,
cloud capacity)

Model Quality Strengths and weaknesses of each tool in model recon-
struction

Costs Cost model of the tool, including free versions, sub-
scription models, cloud-related expenses, or one-time
licenses

6.4.1 Datasets and Evaluation Protocol

The evaluation uses two dataset categories (introduced below) to assess
both typical capture conditions and challenging reconstruction scenarios. All
datasets were recorded by the author, except for the external Citadel dataset,
which originates from a professional drone recording by National Television
Afghanistan (RTA Mili TV) at 4K resolution [4]. The Castle datasets were cap-
tured with a DJI Mini 4K drone, while all remaining datasets were recorded
with an iPhone 16 Pro.

EVERYDAY SCENARIOS
This category reflects common capture conditions with varying lighting,
perspectives, and backgrounds. It includes: Bush, Castle Frontside, and Citadel.
The Citadel dataset exemplifies typical, freely accessible imagery used in ev-
eryday 3D reconstruction scenarios.

EDGE-CASES
These datasets represent challenging conditions with strong deviations
from optimal acquisition, such as motion blur, dense vegetation, or inconsis-
tent viewpoints. The category includes: Owl, Forest 360-Degree Shot, Car Ride,
Walkway, and Castle Compound.

DATA SPLITS AND EVALUATION PROTOCOL
For the 3DGS source code implementation, models followed an 8o/ 20 train-
test split according to the official protocol, using the test set for metric eval-

49

64 EXPERIMENTAL DESIGN

uation (PSNR, SSIM, LPIPS). All other tools (mobile applications and desktop
software) were trained on 100% of the data, as they lack dedicated evaluation
splits and exportable camera poses required for metric assessment.

Visual comparisons across all tools are based on consistent rendering
sources: screenshots from Kiri Engine, Polycam, Meshroom, and PostShot, and
rendered test views from 3DGS source code evaluation scripts.

6.4.2 Experimental Procedure

The evaluation applies the criteria from Section 6.3 through a structured
three-phase procedure:

¢ Edge-Cases — Feasibility Testing: All tools are tested on challenging
datasets to determine if they can produce recognizable 3D models. The
feasibility definition is given in Section 6.4.2.1. The outcome is binary
(Yes/No), complemented by qualitative observations.

¢ Everyday Scenarios - Quality Assessment: Mobile applications and
desktop software are evaluated using the visual criteria (Table 6.3) with
ratings on a 1-5 scale for geometric accuracy and texture quality.

* Robustness - Scalability Testing: Methods are tested on the Citadel
dataset with varying input sizes (200, 100, 50, 20 images) to evaluate
sensitivity to reduced image coverage and scalability with larger in-
puts. Visual evaluation follows the same criteria as everyday scenarios.

The evaluation follows a tool-specific approach: 3DGS source code models
are assessed quantitatively using the metrics defined in Section 6.3.1, while
mobile applications and desktop software undergo qualitative visual inspec-
tion. To prevent bias, quantitative evaluation was performed after qualitative
assessment.

6.4.2.1 Feasibility Criteria

A reconstruction is considered feasible if it yields a coherent and recogniz-
able 3D representation of the intended object or scene, prioritizing scene-
wide structural coherence over fine detail. Dataset-specific notes and exam-
ples are provided in Appendix .4.

50

RESULTS AND DISCUSSION

This chapter presents and interprets the results from the experimental de-
sign in Section 6.4. The analysis follows the dataset taxonomy (Section 6.4.1)
and evaluation procedures (Section 6.3): we first report photogrammetry-
based reconstructions, distinguishing between feasibility tests on challenging
Edge-Cases (see Section 6.4.2.1) and the visual evaluation of Everyday Scenarios
(details in Section 6.3.2).

Subsequently, we present results for 3D Gaussian Splatting (3DGS) using
the same structure. Tool-based 3DGS models (Kiri Engine, Polycam, PostShot)
are assessed qualitatively, while models trained with the official 3DGS source
code are evaluated quantitatively using PSNR, SSIM, and LPIPS (Section 6.3.1).

Finally, we include robustness analyses on the Citadel dataset—investigating
how reconstruction quality responds to varying numbers of input images
and to different tools—and close with a cross-method comparison, a tool
evaluation, and the limitations of this study.

7.1 PHOTOGRAMMETRY MODELS RESULTS

This section summarizes results from three photogrammetry pipelines: two
mobile applications (Kiri Engine, Polycam) and a desktop solution (Meshroom).
We report (i) feasibility on Edge-Case datasets—i.e., whether a recognizable
3D reconstruction can be produced (criteria in Appendix .4) —and (ii) a vi-
sual evaluation on Everyday Scenarios using the rubric defined in Section 6.3.2
(Table 6.3). All figures show representative views of the reconstructed mod-
els; tables list the corresponding feasibility (Yes/No) and 1-5 visual scores.

7.1.1 Feasibility Tests on Edge-Case Datasets (Photogrammetry)
We qualitatively report the per-dataset feasibility outcomes below.

7.1.1.1 Owl Dataset (Photogrammetry)

Table 7.1 summarizes feasibility for the Owl dataset. As shown in Figure 7.1,
both Kiri Engine and Polycam reconstructed a recognizable owl, although
parts of the back are missing in both models. By contrast, Meshroom failed
during dense reconstruction/texturing (cf. Sections 4.1.2, 4.1.4) and yielded
only a sparse, incomplete structure.

7.1.1.2 Car Ride Dataset (Photogrammetry)

Table 7.2 summarizes feasibility for the Car Ride dataset. As illustrated in Fig-
ure 7.2, both Kiri Engine and Polycam produced only fragmented, distorted

7.1 PHOTOGRAMMETRY MODELS RESULTS

Table 7.1: Feasibility results for the Owl dataset (photogrammetry).

Photogrammetry Tool | Feasibility
Kiri Engine Yes
Polycam Yes
Meshroom No

Kiri Photogrammetry Palycam Photogrammetry Meshroom Photogrammetry

Figure 7.1: Photogrammetry-based reconstruction of the Owl dataset using three dif-
ferent tools: Kiri Engine (left), Polycam (center), and Meshroom (right).
A toy owl was placed on a rotating turntable and recorded from all sides
to capture the dataset.

geometry and did not yield a coherent 3D structure. Given the high motion
blur and rapid viewpoint changes during capture (30-50 km/h), neither app
produced a usable model. By contrast, Meshroom failed during the StM step
and produced no model.

Table 7.2: Feasibility results for the Car Ride dataset (photogrammetry).

Photogrammetry Tool | Feasibility
Kiri Engine No
Polycam No
Meshroom No

7.1.1.3 Forest 360-Degree Shot Dataset (Photogrammetry)

Table 7.3 summarizes feasibility for the Forest 360-Degree Shot dataset; here-
after Forest 360°. As shown in Figure 7.3, both Kiri Engine and Polycam failed
to generate coherent 3D models: the reconstructions are fragmented, with

52

7.1 PHOTOGRAMMETRY MODELS RESULTS

Kin Engine App Photogrammetry 30 Model

Polycam App Photogrammetry 30 Model

Figure 7.2: Photogrammetry-based reconstructions of the Car Ride dataset using the
Kiri Engine and Polycam apps. Recordings were taken from the passenger
seat at 30-50km/h. Screenshots are arranged chronologically from left
to right.

distorted geometry and inconsistent surfaces, which is consistent with repet-
itive tree/foliage patterns that provide too few distinctive features for reli-
able matching. Meshroom likewise produced no model.

Table 7.3: Feasibility results for the Forest 360-Degree Shot dataset (photogrammetry).

Photogrammetry Tool | Feasibility
Kiri Engine No
Polycam No
Meshroom No

LA 4

Kiri Engine App Photogrammetry 30 Model

N /
-
Paolycam App ogrammetry 30 Model

Figure 7.3: Photogrammetry-based reconstructions of the Forest 360-Degree Shot
dataset. The top row shows Kiri Engine; the bottom row shows Poly-
cam.

7.1 PHOTOGRAMMETRY MODELS RESULTS 54

7.1.1.4 Walkway Dataset (Photogrammetry)

Table 7.4 shows the feasibility for the Walkway dataset. As illustrated in Fig-
ure 7.4, outputs from Kiri Engine and Polycam do not meet the feasibility
criterion of a coherent and recognizable scene. Although some structures
such as paths and trees were visible, the models remained fragmented and
inconsistent, with distorted geometry and stretched textures. Meshroom pro-
duced no model.

Table 7.4: Feasibility results for the Walkway dataset (photogrammetry).

Photogrammetry Tool | Feasibility
Kiri Engine No
Polycam No
Meshroom No

Kirl Engine App Photogrammaetry Model

AR <

Polveam App Photoorammetry Model

Figure 7.4: Photogrammetry-based reconstructions of the Walkway dataset, captured
while walking along a path. Top: Kiri Engine; bottom: Polycam.

7.1.1.5 Castle Compound Dataset (Photogrammetry)

Table 7.5 summarizes feasibility for the Castle Compound dataset. As illus-
trated in Figure 7.5, both Kiri Engine and Polycam produced recognizable
models of Schloss Philippsruhe, but the combined dataset led to misalign-
ments, ghost structures, and fragmented roof areas. While facades remain
partly recognizable, the geometry is incoherent and deviates from the cas-
tle’s symmetric U-shaped layout. Meshroom produced no model.

Table 7.5: Feasibility results for the Castle Compound dataset (photogrammetry).

Photogrammetry Tool | Feasibility

Kiri Engine Yes
Polycam Yes

Meshroom No

7.1 PHOTOGRAMMETRY MODELS RESULTS

Figure 7.5: Photogrammetry-based reconstructions of Schloss Philippsruhe (Castle
Compound dataset). Top: Kiri Engine. Bottom: Polycam.

Key takeaway: Photogrammetry is feasible for static, well-textured objects, but
fails with motion, low parallax, or repetitive vegetation; cloud apps fare better than
Meshroom, and combined captures are feasible but prone to misalignment/ghosting.

7.1.2 Photogrammetry Visual Evaluation of Everyday Scenarios

We now assess the visual quality of photogrammetry results on the Everyday
Scenario datasets (e.g., Castle Frontside, Bush). Evaluations follow the rubric
in Section 6.3.2 (Table 6.3) with 1-5 scores per criterion. Unlike the feasibility
tests, this section compares successfully reconstructed models across tools.

7.1.2.1 Castle Frontside Dataset (Photogrammetry)

Table 7.6 and Figure 7.6 show that photogrammetry captures the overall
U-shaped layout of Schloss Philippsruhe in the Castle Frontside dataset. Kiri
Engine and Polycam yield recognizable facades and roofs, though textures are
blurry and fine architectural details are missing. Meshroom reconstructs the
basic geometry but shows irregular surfaces and stronger artifacts, which is
reflected in the lower scores.

7.1.2.2 Bush Dataset (Photogrammetry)

Table 7.7 summarizes the visual evaluation for the Bush dataset. As shown in
Figure 7.7, both Kiri Engine and Polycam capture the overall bush volume, but
fine leaf structures are missing and textures appear blurry. Distortions and

55

7.1 PHOTOGRAMMETRY MODELS RESULTS

Table 7.6: Visual evaluation of photogrammetry-based reconstructions for the Castle
Frontside dataset.

Tool / App Detail Complete- Distortions Noise Color Reso- Consis- Total

pres. ness fidelity lution tency Points
Kiri Engine 3 4 3 3 3 3 3 22
Polycam 3 4 3 3 3 3 3 22
Meshroom 2 3 2 2 3 2 2 16

Figure 7.6: Photogrammetry-based reconstructions of Schloss Philippsruhe (front
side): top Kiri Engine, middle Meshroom, bottom Polycam.

noise are present in both models; overall, Kiri Engine scores slightly higher
than Polycam in our rubric. Meshroom did not yield a coherent model and
produced only fragmented structures.

56

7.1 PHOTOGRAMMETRY MODELS RESULTS

Table 7.7: Visual evaluation of photogrammetry-based reconstructions for the Bush

dataset.
Tool
! App Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points
Kiri Engine 2 2.5 3 3 3 2 1.5 17
Polycam 2 2 2 2 3 2 2 15
Meshroom 1 1 1 1 2 1 1 8

Kiri Engra App Phatogrammetry Model

Polycam App Phologrammetry Model

Meshroomialice Vision Saftware Protogrammetry Model

Figure 7.7: Photogrammetry-based reconstructions of the Bush dataset. Top: Kiri
Engine; middle: Polycam; bottom: Meshroom. Multiple viewpoints are
shown, including side and top views.

7.1.3 Robustness Test for Photogrammetry Citadel Model

We evaluate photogrammetry robustness on the Citadel dataset by varying
the number of input images (20, 50, 100, 200) for Polycam, Kiri Engine, and
Meshroom. Using the visual rubric in Section 6.3.2 (Table 6.3), we examine
how input size and tool choice affect completeness and perceived visual
quality under the same capture conditions.

7.1.3.1 Citadel Dataset (Polycam — Photogrammetry)

Table 7.8 and Figure 7.8 summarize the Polycam photogrammetry results on
the Citadel dataset. With 20 images, the facade is recognizable but roofs/up-
per sections remain incomplete; distortions, sky gaps, and irregular surfaces
are visible, with soft textures despite reasonable colors. Using 50 or 100 im-
ages yields more coherent geometry and clearer facades; 50 images achieves
the highest total (30 points), with 100 images second (26 points). At 200 im-
ages, coverage is most complete (Completeness=5) but distortions and incon-
sistency increase, reducing visual fidelity. More input does not necessarily
improve photogrammetry quality.

57

7.1 PHOTOGRAMMETRY MODELS RESULTS

Table 7.8: Visual evaluation of Polycam photogrammetry reconstructions for the
Citadel dataset (20—200 images).

Polycam

/ Images Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points

20 images 3 2 3 3 5 3 3 22

50 images 4 4 3 5 5 5 4 30

100 images 3 4 3 3 5 4 4 26

200 images 2 5 4 2 5 2 5 25

200 images

Figure 7.8: Polycam photogrammetry-based reconstructions of the Citadel dataset.

7.1.3.2 Citadel Dataset (Kiri Engine — Photogrammetry)

Table 7.9 and Figure 7.9 summarize the Kiri Engine photogrammetry results
on Citadel. With 20 images, the model is blurred and incomplete (sky largely

7.1 PHOTOGRAMMETRY MODELS RESULTS

missing). At 50 images, coverage improves, but wall edges remain soft. The
100- and 200-image models are most complete and visually strongest, with
sharper textures and more stable geometry; scores tie at 29. Distortions re-
main similar across all runs, while noise and resolution improve with image
count, indicating diminishing returns beyond ~100 images.

Table 7.9: Visual evaluation of Kiri Engine photogrammetry reconstructions for the
Citadel dataset (20-200 images).

Kiri Engine

/ Images Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points
20 images 2 2 3 2 5 2 3 19
50 images 3 3 3 3 5 3 3 23
100 images 4 4 3 4 5 5 4 29
200 images 4 4 3 4 5 5 4 29

7.1.3.3 Citadel Dataset (Meshroom — Photogrammetry)

Table 7.10 and Figure 7.10 summarize the Meshroom photogrammetry results
on Citadel. With 20 images, Meshroom produces a sufficiently coherent re-
construction with recognizable facades and walls (Total = 16). At 50 images,
quality improves slightly (more detail /resolution; Total = 18), although dis-
tortions remain. At 100 images, the result degrades marginally relative to 50
(notably stronger artifacts in the sky and less consistent color; Total = 17). At
200 images, the texture step fails, producing fragmented surfaces and poor
color reproduction (Total = 10).

Table 7.10: Visual evaluation of Meshroom photogrammetry reconstructions for the
Citadel dataset (20-200 images).

Meshroom

/ Images Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points

20 images 1 3 2 2 3 2 3 16

50 images 2 3 3 2 3 3 2 18

100 images 3 3 2 2 2 3 2 17

200 images 1 4 1 1 1 1 1 10

“The texturing step failed, leading to fragmented surfaces and poor color
reproduction.

Key takeaway: Across tools on Citadel, the sweet spot is 50—-100 images. Polycam
peaks at 50, Kiri Engine levels off at 100—200, and Meshroom degrades beyond 50
and fails texturing at 200. Thus, more input increases coverage but not fidelity and
can destabilize some pipelines.

59

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

200 images

Figure 7.9: Kiri Engine photogrammetry-based reconstructions of the Citadel
dataset.

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

Mirroring the photogrammetry analysis, we evaluate 3DGS on the same dataset
categories (Everyday Scenarios, Edge-Case, and the Citadel robustness series).
Tool-based 3DGS pipelines (Kiri Engine, Polycam, PostShot) are assessed quali-
tatively using the visual rubric from Section 6.3.2, whereas the official 3DGS
source-code implementation is evaluated quantitatively with the metrics de-
fined in Section 6.3.1 (PSNR, SSIM, LPIPS).

7.2.1 Feasibility Tests on Edge-Case Datasets (3DGS)

Analogous to the photogrammetry evaluation (Section 77.1.1), we test whether
3DGS can produce coherent, recognizable reconstructions under non-ideal

60

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

200 images

Figure 7.10: Meshroom photogrammetry-based reconstructions of the Citadel
dataset.

conditions. The same Edge-Case datasets probe robustness to motion, un-
structured geometry, and challenging illumination. Tool-based pipelines (Kiri
Engine, Polycam, PostShot) are qualitatively assessed using the feasibility cri-
teria in Appendix .4 (binary: Yes/No), while the official 3DGS source-code
models are additionally reported with quantitative metrics (PSNR, SSIM, LPIPS;
Table 7.16) to contextualize visual findings.

7.2.1.1 Owl Dataset (3DGS)

Table 7.11 summarizes 3DGS feasibility on the Owl dataset (Figure 7.11).
Among tool-based pipelines, only Polycam yields a partially recognizable
model whose overall shape persists under rotation, although with distor-
tions and incomplete geometry. Kiri Engine and PostShot lose structural co-

61

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS 62

herence in rotation, breaking into ghosting or fragmented point distributions.
The official source-code model achieves SSIM = 0.841 in static re-renders,
but the accompanying PSNR = 20.66 and LPIPS = 0.376 indicate limited
perceptual fidelity; blurring and deformations become apparent when rotat-
ing (cf. Table 7.16).

Table 7.11: Feasibility results for the Owl dataset (3DGS).

3DGS Tool | Feasibility
Kiri Engine No
Polycam Yes
PostShot No

3DGS Source Code Owl Model

Figure 7.11: 3DGS reconstructions of the Owl (Euleioo) dataset created with four
pipelines (top to bottom): Kiri Engine, Polycam, PostShot, and the 3DGS
source code. The toy owl was recorded on a rotating turntable to obtain
360° coverage.

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

7.2.1.2 Car Ride Dataset (3DGS)

We evaluated two variants: a model trained directly from the original video
(Figure 7.13) and a model trained from ~100 extracted frames (Figure 7.12).
As summarized in Table 7.12, only the Kiri Engine video-based model met
the feasibility criterion (recognizable scene over time). All other pipelines
either reconstructed only the last frames or failed entirely (PostShot aborted
during camera tracking). Across reconstructions, motion blur and ghosting
were prominent and limited visual plausibility.

Quantitatively, the source-code models attained SSIM = 0.656, PSNR =
16.52, LPIPS = 0.397 at 100 frames and SSIM = 0.583, PSNR = 16.27,
LPIPS = 0.376 at 200 frames (Table 7.16), indicating low pixel-wise fidelity
and weak structural consistency for this high-motion sequence.

Table 7.12: Feasibility results for the Car Ride dataset variants (3DGS).

3DGS Tool | Car Ride 100 | Car Ride Video
Kiri Engine No Yes
Polycam No No
PostShot No No

7.2.1.3 Forest 360-Degree Dataset (3DGS)

Table 7.13 reports feasibility on the Forest 360-Degree Shot dataset. Only Kiri
Engine produced a feasible 360° reconstruction: the scene is clearly recog-
nizable, albeit with blur and local artifacts across vegetation and ground.
Polycam yielded scattered green blobs amid large empty regions (no recog-
nizable forest), and PostShot aborted during camera tracking.

The official source-code model reproduced only a subset of the rotation
with noticeable artifacts; its metrics (SSIM=0.522, PSNR=18.08, LPIPS=0.300;
Table 7.16) are consistent with limited structural consistency under repetitive,
low-texture conditions.

Key takeaway: among 3DGS variants, only Kiri Engine handled the 360° forest;
repetitive, low-texture content remains failure-prone elsewhere.

Table 7.13: Feasibility results for the Forest 360-Degree dataset (3DGS).

3DGS Tool | Feasibility
Kiri Engine Yes
Polycam No
PostShot No

7.2.1.4 Walkway Dataset (3DGS)

Table 7.14 and Figure 7.15 show that the three tools produced feasible 3DGS
reconstructions for the Walkway dataset. PostShot yielded the most stable

63

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

Source code Car Ride (100 frames) 3DGS model

Figure 7.12: 3DGS reconstructions of the Car Ride (100 frames) variant. From top to
bottom: Kiri Engine, Polycam, and 3DGS source code. Frames were
extracted from a short car ride around Schloss Philippsruhe and are
shown in capture order.

-y

Figure 7.13: 3DGS reconstruction of the Car Ride (video) variant with Kiri Engine. The
video was recorded from the passenger seat at ~30-50km/h. Frames
are shown in chronological order (left to right, top to bottom).

result, but limited navigation to small moves at the place (up / down / left /
right). In contrast, Kiri Engine and Polycam supported zoom-based navigation

64

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

3DGS Source Code Forest 360-Degree Shot Models

Figure 7.14: 3DGS reconstructions of the Forest 360-Degree Shot dataset. Rows: Kiri
Engine (top), Polycam (middle), 3DGS source code (bottom). Within
each row, frames are ordered left to right.

that creates a pseudo-forward motion. All reconstructions exhibit motion
blur from passing vehicles and minor geometric artifacts; the Kiri Engine
model additionally shows translucent/sparse geometry.

The source code model achieved SSIM = 0.877, PSNR = 27.13, and LPIPS =
0.137 (Table 7.16), indicating a comparatively high structural precision among
the edge case datasets, although localized artifacts and incomplete geometry
persist along the walkway.

Key takeaway: all tools were feasible on Walkway,; PostShot prioritized stability,
while Kiri/Polycam offered more navigability, and motion blur remained the main
limiter.

Table 7.14: Feasibility results for the Walkway dataset (3DGS).
3DGS Tool | Feasibility

Kiri Engine Yes

Polycam Yes
PostShot Yes

65

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

3DGS Source Code Walkway Models

Figure 7.15: 3DGS reconstructions of the Walkway dataset. Recordings were taken
while walking with mostly forward-facing camera direction. Rows: Kiri
Engine (top), Polycam, PostShot, 3DGS source code (bottom).

7.2.1.5 Castle Compound (3DGS)

Table 7.15 and Figure 7.16 show that all three 3DGs-based tools produced
feasible reconstructions of the Castle Compound dataset, capturing the main
volumes of the building. However, all models exhibit ghost structures and
spatial inconsistencies. Both Polycam and PostShot show a characteristic du-
plication: front and rear facades appear side by side instead of in oppos-
ing positions. Kiri Engine shows a different ghosting pattern with partially
merged and distorted sections.
The source-code model achieved SSIM = 0.603, PSNR = 17.76, and LPIPS =

0.410 (Table 7.16), consistent with the observed duplication artifacts and lim-
ited perceptual quality.

66

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

Key takeaway: feasible across tools, but multi-segment capture causes facade du-
plication/ghosting and breaks geometric coherence.

Table 7.15: Feasibility results for the Castle Compound dataset (3DGS).

3DGS Tool | Feasibility
Kiri Engine Yes
Polycam Yes
PostShot Yes

Table 7.16: Quantitative evaluation of 3DGS models for Edge-Case datasets.

Dataset Training Duration (min) SSIM PSNR (dB) LPIPS
Owl 17 0.841 20.66 0.376
Car Ride 24 0.656 16.52 0.397
Car Ride 200 27 0.583 16.27 0.376
Forest 360-Degree Shot 32 0.522 18.08 0.300
Walkway 36 0.877 27.13 0.137
Castle Compound 23 0.603 17.76 0.410

Overall, the metrics in Table 7.16 mirror the feasibility findings: 3DGS is
most stable on Walkway (highest SSIM/PSNR, lowest LPIPS) and weakest on
Car Ride and Castle Compound, consistent with motion- and multi-segment
artifacts. In line with the photogrammetry feasibility (Section 7.1.1), both
paradigms struggle with fast motion and repetitive vegetation, but with
method-specific failure modes (ghosting/duplication for 3DGS vs. fragment-
ed/blurred meshes for photogrammetry).

7.2.2 3DGS Models from Everyday Scenarios Datasets

In parallel to the photogrammetry analysis (Section 7.1.2), this section evalu-
ates 3DGS reconstructions on the Everyday Scenarios datasets. Tool-based 3DGS
models (Kiri Engine, Polycam, PostShot) are assessed qualitatively using the
visual rubric from Section 6.3.2 (Table 6.3), while models trained with the
official 3DGS source code are evaluated quantitatively using PSNR, SSIM, and
LPIPS. This mirrors the overall evaluation design and enables direct compar-
ison with photogrammetry.

7.2.2.1 Castle Frontside (3DGS)

Table 7.17 and Figure 7.17 compare 3DGS reconstructions of Schloss Philipp-
sruhe’s front side created with Kiri Engine, Polycam, PostShot and the official
source code. Kiri Engine and Polycam produce the sharpest results with a
clear facade geometry. PostShot shows stronger artifacts and color inconsis-
tencies. Across the tools, minor roof distortions and facade irregularities are

67

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

-

Polycam Castle Compound 3DGS Model

i

3DGS Source Code Castle Compound Model

Figure 7.16: 3DGS reconstructions of the Castle Compound dataset with four tools: Kiri
Engine, Polycam, PostShot, and the 3DGS source code.

visible, e.g., a slight haze in Kiri Engine, a dark spot in Polycam, and green
patches in PostShot, but the overall structure of the building is preserved.
The paired top views in Figure 7.17 (right column of each row) reveal slight
transparency in the Kiri Engine model, while Polycam maintains a more sta-
ble opacity. The source code model achieves SSIM = 0.914, PSNR = 30.46,

68

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS 69

and LPIPS = 0.111 (Table 7.19), indicating high structural precision and per-
ceptual quality with only minor surface artifacts.

Table 7.17: Visual evaluation of Castle Frontside 3DGS reconstructions (Kiri Engine,
Polycam, PostShot).
Castle Frontside
3DGS Model Detail Complete- Distortions Noise Color Reso- Consis- Total

pres. ness fidelity lution tency Points
Kiri Engine 4 3 3 3 4 5 2 24
Polycam 4 4 3 5 5 3 28
PostShot 4 3 2 2 5 5 2 23

3DGS Source Code Cuastle Frontside model and top view (on the right).

Figure 7.17: 3DGS reconstructions of Schloss Philippsruhe (front side) with matching
top views for each tool.

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS 70

7.2.2.2 Bush (3DGS)

As shown in Table 7.18 and Figure 7.18, Polycam delivers the strongest bush
reconstruction, with sharp details, good completeness, and natural color fi-
delity. Kiri Engine performs solidly but shows slightly weaker consistency
and minor geometric gaps in dense foliage. In contrast, PostShot fails to pro-
duce a stable model, exhibiting strong artifacts and fragmentation despite
acceptable color reproduction.

The official 3DGS source code model reaches SSIM = 0.917, PSNR = 26.34
and LPIPS = 0.163 (Table 7.19). It reproduces the overall bush shape with
consistent colors and stable geometry. However, fine leaf structures remain
smoothed, and localized artifacts appear in the densest regions. In general,
the result of the source code closely matches the quality of Polycam and Kiri
Engine.

Table 7.18: Visual evaluation of 3DGS reconstructions of the Bush dataset.
Tool

/ Model Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points
Kiri Engine 4 3 3 3 3 4 3 23
Polycam 5 4 4 4 5 4 4 30
PostShot 1 1 1 1 3 1 1 9

Table 7.19: Quantitative evaluation of 3DGS Source Code models for Everyday Sce-
nario datasets.

Dataset Training Duration (min) SSIM PSNR (dB) LPIPS
Bush 24 0.917 26.34 0.163
Castle Frontside 52 0.914 30.46 0.111

7.2.3 Robustness Tests of 3DGS Citadel Models

This section investigates the robustness of 3DGS on the Citadel dataset by vary-
ing the number of input images (20, 50, 100, 200). Tool-based reconstructions
(Kiri Engine, Polycam, PostShot) are qualitatively assessed using the visual cri-
teria of Section 6.3.2, while models trained with the official source code are
quantitatively evaluated with PSNR, SSIM and LPIPS. The analysis focuses on
how the count of the images affects the completeness, geometric consistency,
and color fidelity.

7.2.3.1 Citadel Dataset (Polycam — 3DGS)

Table 7.20 and Figure 7.19 summarize the Polycam 3DGS reconstructions of
the Citadel dataset. Across all input sizes (20, 50, 100, 200), the models ex-
hibit consistently high visual quality: sharp details, complete geometry, sta-

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

3DGS Source Code Bush Models

Figure 7.18: 3DGS reconstructions of the Bush dataset (top to bottom: Kiri Engine,
Polycam, PostShot, 3DGS Source Code). All methods use the same 360°
capture for direct visual comparison.

ble consistency, and natural color reproduction. No material differences were
observed between the four variants, indicating robustness to the number of
input images.

Table 7.20: Visual evaluation of Polycam 3DGS reconstructions for the Citadel dataset
(20—200 images).

Polycam 3DGS

/ Images Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points

20 images 5 5 5 5 5 5 5 35

50 images 5 5 5 5 5 5 5 35

100 images 5 5 5 5 5 5 5 35

200 images 5 5 5 5 5 5 5 35

71

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

200 images

Figure 7.19: 3DGS reconstructions of the Citadel dataset using the Polycam app. Left:
full model (20, 50, 100, 200 images from top to bottom). Right: cor-
responding detail crop of the electricity pylon in front of the fortress
wall.

7.2.3.2 Citadel Dataset (Kiri Engine — 3DGS)

Table 7.21 and Figure 7.20 present the Kiri Engine 3DGS reconstructions of the
Citadel dataset. Reconstruction quality scales strongly with input size: with
20 images, the model exhibits low opacity during rotation, left-side distor-
tions, and dark veil-like artifacts. At 50-100 images, these artifacts diminish,
geometry stabilizes, and wall edges sharpen; color reproduction becomes
more natural. Using 200 images yields the most complete and consistent re-
sult overall, with improved opacity and well-preserved details. In contrast

72

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

to Polycam (Section 7.2.3.1), Kiri Engine benefits markedly from larger input
sets.

Table 7.21: Visual evaluation of Kiri Engine 3DGS reconstructions for the Citadel
dataset (20—200 images).

Kiri Engine 3DGS

/ Images Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points
20 images 2 2 2 2 2 3 2 15
50 images 3 3 3 3 3 4 3 22
100 images 4 4 3 3 4 4 3 25
200 images 5 5 4 4 5 4 4 31

200 images

Figure 7.20: 3DGS reconstructions of the Citadel dataset using the Kiri Engine app.

From top to bottom: 20, 50, 100, and 200 input images.

73

7.2 3D GAUSSIAN SPLATTING MODELS RESULTS

7.2.3.3 Citadel Dataset (PostShot — 3DGS)

Table 7.22 and Figure 7.21 show the PostShot 3DGS reconstructions of the
Citadel dataset. Across all data sets sizes, PostShot delivers robust and co-
herent models. With only 20 images, the reconstruction is already sharp and
stable, showing only minor artifacts on the left facade and in the sky. Increas-
ing to 50 and 100 images further improves completeness and sharpness. At
200 images, PostShot achieves its best result with high completeness, mini-
mal distortions, and strong texture reproduction. Compared to Kiri Engine
(Section 7.2.3.2), PostShot attains high quality with fewer inputs; relative to
Polycam (Section 7.2.3.1), it trails slightly at very small input sizes, but re-
mains consistently reliable.

Table 7.22: Visual evaluation of PostShot 3DGS reconstructions for the Citadel dataset
(20—200 images).

PostShot

/ Images Detail Complete- Distortions Noise Color Reso- Consis- Total
pres. ness fidelity lution tency Points

20 images 4 4 3 3 5 4 4 27

50 images 5 4 4 4 5 4 5 31

100 images 5 5 4 4 5 5 5 33

200images 5 5 5 5 5 5 5 35

7.2.3.4 Citadel Dataset (Source Code — 3DGS)

Table 7.23 and Figure 7.22 summarize the quantitative evaluation of the of-
ficial 3DGS source-code reconstructions of the Citadel dataset. As the input
size increases from 20 to 100 images, SSIM and PSNR rise markedly while
LPIPS decreases; the best values are reached with 200 images (SSIM = 0.965,
PSNR = 34.09, LPIPS = 0.091), indicating that the implementation scales
well with additional coverage and yields highly consistent, detailed recon-
structions. Across all evaluated datasets, the Citadel series has the highest
metric scores,reflecting not only the capacity of the method, but also favor-
able capture conditions (smooth drone motion, uniform illumination, lim-
ited parallax).

Table 7.23: Quantitative evaluation of 3DGS Source Codemodels for the Citadel ref-
erence series.

Dataset Training Duration (min) SSIM PSNR (dB) LPIPS

Citadel2o 111 0.917 26.34 0.163
Citadelso 130 0.956 31.70 0.129
Citadel1oo 137 0.965 32.87 0.118

Citadel200 54 0.965 34.09 0.091

74

7.3 CROSS-METHOD COMPARISON

200 images

Figure 7.21: 3DGS reconstructions of the Citadel dataset using PostShot. From top to
bottom: 20, 50, 100, and 200 input images.

Key takeaway: Polycam exhibits high robustness for 3DGS even with few input im-
ages; PostShot improves steadily and reaches peak performance at 200 images; Kiri
Engine requires substantially larger input sets to achieve high quality; and the of-
ficial source-code variant scales monotonically, achieving the best metrics at 200
images.

7.3 CROSS-METHOD COMPARISON

This section synthesizes and contrasts photogrammetry and 3DGS across the
evaluated datasets (Everyday Scenarios, Edge Cases, and the Citadel robust-
ness series). We compare feasibility, visual quality, and quantitative metrics
(where pose-calibrated renders are available), and analyze sensitivity to the

75

7.3 CROSS-METHOD COMPARISON

200 images

Figure 7.22: 3DGS reconstructions of the Citadel dataset using the Source Code im-
plementation. From left to right: 20, 50, 100, and 200 input images.

number of input images. The aim is to distill method-specific strengths, fail-
ure modes, and application contexts without restating per-dataset details.

PHOTOGRAMMETRY.

Photogrammetry proved effective for producing metrically consistent, wa-
tertight meshes in structured, static scenes. This is illustrated by the Owl
dataset, where a coherent object reconstruction was obtained under a con-
trolled capture setup, and by the Castle Frontside dataset, which preserved

76

7.3 CROSS-METHOD COMPARISON

the overall architectural geometry (cf. Figure 7.6). Under favorable record-
ing conditions, such as smooth drone flight and stable illumination in the
Citadel series, mobile tools showed robust behavior for moderate to large
inputs. However, performance was not strictly monotonic with the image
count. Polycam tended to peak around 50-100 images, Kiri Engine benefited
from larger sets, and Meshroom degraded at 200 images due to texturing
failure.

Characteristic weaknesses emerged under less ideal conditions (Section 4.3).

In scenes with limited parallax, repetitive textures, or motion—such as Forest
360° and Car Ride—reconstructions fragmented or failed. Lighting /exposure
variations further reduced robustness, producing noise and texture seams
as observed in Walkway and Bush (cf. Figures 7.4, 7.7). In Bush, fine vegeta-
tion (e.g., leaves, twigs) collapsed into dense, clustered surfaces, which is an
expected outcome of classical MVS pipelines (Section 4.1.2), as they imposes
local smoothness in depth and meshing.

For Walkway, the result was essentially an island of objects. The sidewalk
was reconstructed coherently, but the adjacent road and the slope were omit-
ted. This reflects an intrinsic bias of object-centric photogrammetry toward
closed, self-contained meshes rather than open, spatially continuous envi-
ronments. Photogrammetry generally performs well in structured, stable set-
tings, but struggles with unstructured geometry, fine vegetation, motion, and
inconsistent illumination. This is consistent with the scene- and algorithm-
dependent constraints discussed in Section 4.3.

3D GAUSSIAN SPLATTING.

The 3DGS prioritizes perceptual realism and immersive view-dependent
scene representations over strict metric accuracy. It performed particularly
well in continuous environment-level captures, such as Forest 360°, Walkway,
and Car Ride, producing coherent reconstructions with strong depth cues
and illumination continuity. Compared to photogrammetry, the 3DGS results
for the Walkway and Car Ride exhibited a visibly higher visual stability and
completeness. Photogrammetry was often fragmented or failed in these set-
tings.

The quantitative results from the source code models (Section 6.3.1) con-
firm solid, though not perfect, numerical fidelity. For Walkway, we measured
PSNR = 27.13dB, SSIM = 0.877, and LPIPS = 0.137. For Car Ride, the 100-
image variant yielded PSNR = 16.52dB, SSIM = 0.656, LPIPS = 0.397. Den-
sifying to 200 images produced mixed results (PSNR = 16.27 dB, SSIM =
0.583, LPIPS = 0.376), suggesting that additional frames offer no consistent
benefit without parameter tuning. These results highlight 3DGS’s sensitivity
to input coverage and training configuration. Proprietary pipelines (e.g., Kiri
Engine) likely use tuned hyperparameters, which could explain their supe-
rior performance in challenging scenarios such as Forest 360° and Car Ride
Video.

A recurring pattern is that quality peaks near the camera trajectory and
degrades toward the periphery. In Castle Frontside, for instance, the central

77

7.4 TOOL EVALUATION 78

facade is clear, while the outer roof regions blur or distort (cf. Figure 7.17).
Similarly, in Citadel the nearby fortress is detailed, while distant areas are
underrepresented. These observed weaknesses align with the known limi-
tations discussed in (Section 7.5): limited parallax in object-centric setups
(Owl) causes fragmentation, overlapping segments (Castle Compound) induce
ghosting, reflective / low-texture regions can produce incomplete opacity,
and large scenes (e.g., Citadel200) are constrained by GPU memory. Overall,
3DGS excels at producing visually compelling, continuous reconstructions
under well-planned capture, but remains sensitive to parallax, peripheral
coverage, and hardware. With tuned settings and deliberate acquisition, its
quantitative and perceptual performance can approach classical methods,
making it especially suitable for real-time, immersive exploration.

IMPACT OF INPUT DATA QUALITY.

Both pipelines are highly sensitive to image quality, motion stability, par-
allax, and viewpoint coverage. The contrast between the drone sequences
of Citadel and Castle Frontside illustrates this: the Citadel flight followed a
smooth, systematic path with high overlap and uniform illumination, pro-
ducing stable, detailed reconstructions for both photogrammetry and 3DGS.
In contrast, the Castle Frontside recording contained abrupt motion and in-
complete coverage, producing distortions and fragmented geometry across
tools (cf. Sections 7.1.3 and 7.2.3). In short, the capture design and the record-
ing protocol are at least as decisive as the algorithm chosen for the quality
of the reconstruction.

SUMMARY.

Photogrammetry yields metrically accurate, watertight meshes and is there-
fore well suited to documentation, measurement, and downstream uses such
as CAD integration or 3D printing. In contrast, 3D0GS produces dynamic,
view-dependent scene representations that prioritize perceptual realism and
interactive exploration in real time. The methods are thus complementary:
choose photogrammetry when metric fidelity and topology are paramount.
Prefer 3DGS when immersion and visual plausibility are the goal. Across all
datasets, capture quality (overlap, parallax, and exposure stability) was the
dominant determinant of outcome quality, underscoring that careful data
acquisition is a prerequisite for reliable reconstructions.

7-4 TOOL EVALUATION

Beyond reconstruction quality, the evaluated tools were compared with re-
spect to processing speed, usability, scalability, hardware and software re-
quirements, and costs. This comparison includes all photogrammetry- and
3DGS-based tools discussed in this thesis,Meshroom, Kiri Engine, Polycam, Post-
Shot, and the official implementation of the 3DGS source code trained on AWS.

PROCESSING SPEED.

7-4 TOOL EVALUATION

Mobile apps (Polycam, Kiri Engine) had the shortest turnaround time be-
cause they are cloud-based, typically 2-40 min (photogrammetry is generally
faster than 3DGS). Kiri Engine had occasional delays due to queues. Desk-
top tools varied more. Meshroom ranged from ~10min (Citadel2o) to ~2.5h
(Citadel200), and PostShot from ~32min to ~1hs51min. The official 3DGS
source code on AWS typically trained in ~20-120min per run, depending
on dataset size and resolution.

USABILITY AND WORKFLOW.

The mobile apps are highly automated (low barrier to entry) and support
simple post-processing (e.g., removing artifacts) directly in-app. Meshroom
and PostShot provide greater parameter control, but require more technical
knowledge. The 3DGS source-code pipeline demands the most setup (GPU
drivers, CUDA, CLI on AWS) and clearly targets advanced users.

MODEL QUALITY.

Photogrammetry: Polycam and Kiri Engine delivered robust results in Bush
and Castle Frontside. Meshroom showed lower robustness overall, especially
on Citadel200, where texturing failed. However, it often produced accurate,
stable sfM skeletons. 3DGS: Polycam was consistently stable, including Citadel
with 20-200 images. PostShot improved noticeably with larger input sets. Kiri
Engine required more images to reach high quality (see Sections 7.2.3.1-7.2.3.2).
The official 3DGS implementation served as the quantitative reference. Direct
metric comparisons to app/desktop outputs are not possible due to missing
exportable poses.

WHERE MESHROOM TENDS TO FAIL (AND WHY).

Consistent with the pipeline description (Chapter 4), Meshroom’s StM was
generally stable (cf. Section 4.1.1). Most degradations arose in MVS, mesh-
ing, and texturing (Section 4.1.2, Section 4.1.3, Section 4.1.4). In Owl (cf. Fig-
ure 7.1), the sparse SfM structure resembled the expected geometry, while
the final textured mesh showed local artifacts, patterns aligned with Sec-
tion 4.3. Mobile services (Kiri Engine and Polycam) often yielded more robust
dense geometry under similar conditions. Although their internal pipelines
are proprietary (see Section 6.1), this robustness is a plausible, not verified,
interpretation.’

SCALABILITY AND REQUIREMENTS.
Cloud apps scale independently of local hardware (Kiri Engine Pro up to
500 images, Polycam Pro up to 1000 images). Meshroom and PostShot depend
on a local CUDA-enabled GPU and become VRAM-limited on large sets
(e.g., Citadel200 texturing failure). The 3DGS source-code variant requires at
least >24 GB VRAM for stable training and was the only environment that
allowed full quantitative evaluation (PSNR, SSIM, LPIPS).

1 Mobile services do not disclose their internal algorithms; the robustness interpretation is
plausible but not confirmed.

7.5 LIMITATIONS

COSTS.

Meshroom is open source and free. PostShot was free in its beta during
testing. Mobile apps use a freemium model (photogrammetry available with
input limits, and Pro plans lift limits). At the time of testing (July 2025),
Polycam Pro cost approximately USD 30/month and USD 220/year?, and Kiri
Engine Pro USD 17.99/month or USD 79.99/year. The 3DGS source code is
free, but AWS incurs infrastructure costs (e.g., 95.2xlarge ~ USD 1.21/hour,
with typical compute costs ranging 1-2.5 USD per run). Total costs increase
once setup, transfers, and idle time are included.

ACCESSIBILITY AND BROADER CONTEXT.

Mobile apps offer the lowest entry barrier—no local setup, cloud-side pro-
cessing—and add consumer-facing conveniences such as sharing (e.g., web
links/QR codes, GLB/GLTF export) and AR features for on-device place-
ment. Desktop and source-code pipelines provide finer control and repro-
ducibility but require expertise and CUDA-class GPUs. Consequently, apps
are well-suited to quick, low-overhead reconstructions, whereas desktop /source-
code workflows target research and expert use.

7.5 LIMITATIONS

The scope of this study is subject to several limitations. First, quantitative

metrics could only be applied to the 3DGS source-code models (see Sec-
tion 6.3.1) because mobile and desktop tools do not expose calibrated poses.
This mixed evaluation design restricts direct, tool-to-tool comparability. More-
over, PSNR, SSIM, and LPIPS quantify image similarity rather than geometric

accuracy, and thus may not fully reflect metric fidelity or mesh watertight-
ness.

Second, experiments were constrained by available compute (local: 32 GB
RAM, RTX 2070 Ti; cloud: 24 GB VRAM), which affected scalability and re-
quired downscaling for large inputs (e.g., Citadel200). Input quality also mat-
tered substantially: smoother, better-covered drone footage (Citadel) yielded
more stable results than less systematic captures (Castle Frontside).

Third, internal pipelines of the mobile applications (Kiri Engine, Polycam)
are proprietary and undocumented. Details of dense reconstruction, mesh-
ing, or texturing remain unknown, preventing a precise methodological com-
parison with open-source Meshroom or the official 3DGS implementation. Like-
wise, PostShot was evaluated in a beta version; performance may change
after release. Cloud services further introduce version drift and potential
non-determinism (dynamic models, queueing, server-side updates), which
can limit strict reproducibility.

Fourth, feasibility and visual assessments are inherently subjective (see
Section 6.4.2). Ratings were performed by a single rater using a 1-5 rubric,
no inter-rater reliability or blinded pairwise tests were conducted. In addi-

2 Exact German pricing at the time of testing: EUR 26.99/month or EUR 199.99/year. Exchange
rates and regional taxes may vary.

7.5 LIMITATIONS

tion, most tools were run with default or minimally tuned parameters; nei-
ther systematic hyperparameter sweeps nor ablation studies (e.g., iterations,
learning rates, filtering thresholds) were performed, which may bias results
against methods that benefit from tuning.

Finally, this work focuses on reconstruction quality and runtime but does
not include a user study, energy measurements, or a systematic cost analysis
across providers. Consequently, practical usability at scale, long-term cost
efficiency, and cross-cloud portability remain outside the present scope.

81

CONCLUSION

This thesis set out to compare classical photogrammetry and modern differ-
entiable 3D reconstruction methods, particularly 3DGS, under limited hard-
ware and practical conditions. The central goal was to determine how both
approaches perform across different capture scenarios and levels of user ex-
pertise, and whether non-expert users can successfully produce coherent 3D
models using accessible tools.

The results demonstrate that 3D reconstruction is feasible even without
professional equipment or expert knowledge. Mobile applications such as
Kiri Engine and Polycam proved especially effective in lowering the entry
barrier, enabling the creation of high-quality 3D models directly on a smart-
phone. Photogrammetry showed particular strength in producing metrically
accurate, watertight meshes for structured, static scenes, while 3DGS excelled
in immersive scene reconstructions that prioritize visual realism and continu-
ity. Together, these findings confirm that both paradigms complement each
other: photogrammetry is best suited for precise documentation, whereas
3DGS is ideal for realistic visualization and experiential learning environ-
ments.

A key insight from this study is that image quality and recording design
have a greater impact on reconstruction quality than the specific method it-
self. The consistent results of the Citadel datasets underline how stable illumi-
nation, sufficient parallax, and complete coverage enable strong reconstruc-
tions across all tools. Conversely, unstructured or dynamic datasets, such as
Walkway and Car Ride, revealed the current limitations of both approaches.

Overall, the research objectives were achieved: the study provided a sys-
tematic, cross-method comparison, identified hardware-efficient pathways
for 3D reconstruction, and demonstrated that even non-expert users can
achieve convincing results using consumer-grade devices and cloud infras-
tructure.

Future work should address the specific challenges observed in this study.
One direction is the development of methods capable of handling indepen-
dent capture segments, as encountered in the Castle Compound dataset, where
reconstructions from separate viewing angles failed to merge into a coher-
ent model. Improving algorithms for cross-segment alignment and global
consistency could enhance the reconstruction of large or partially overlap-
ping structures such as buildings or monuments. Another important aspect
concerns motion-related degradation: approaches that explicitly compensate
for motion blur or rolling-shutter distortions could substantially increase ro-
bustness in handheld and video-based captures. Addressing these issues
would significantly improve the reliability of 3D reconstruction methods in
real-world, unconstrained scenarios.

Part 11

APPENDIX

APPENDIX

.1 MATHEMATICAL DETAILS OF SPHERICAL HARMONICS IN 3DGS

Spherical Harmonics SH provide a complete orthogonal basis for represent-
ing functions defined over the unit sphere. They offer a compact representa-
tion for functions that vary with direction. Similar to Fourier series, which
decompose periodic signals into frequency components, SH decompose func-
tions on the sphere into components of increasing angular frequency. The
degree | determines the complexity of the represented patterns:

¢ | = 0: constant, isotropic function.

* [= 1: dipole patterns, splitting the sphere into positive and negative
hemispheres.

* | = 2: quadrupole structures with alternating regions.

1.1 Use of SH in Neural Rendering

Modern neural rendering methods adopted SH to efficiently encode view-
dependent effects:

* Plenoxels (2022) store SH coefficients directly per voxel, typically up
to degree L = 2 (9 coefficients per channel). This allows computing
color without a neural network [14].

¢ InstantNGP (2022) uses SH as a compact directional encoding. The
viewing direction is projected onto the first 16 SH coefficients (up to
degree L = 4), which are then concatenated with positional encodings
and fed into a small MLP [47].

1.2 Application in 3D Gaussian Splatting

3DGS extends this principle by associating SH coefficients with each Gaus-
sian. The rendering pipeline for one Gaussian is as follows:

1. Compute the normalized viewing direction d.

2. Evaluate SH basis functions Y/"(d) up to degree L = 3.

3. Combine basis values with learned coefficients kj* to obtain the color:
L I

c(d) =Y Zlk;ﬂ-ylm(d).

I=0m=—

.2 DATASET COLLAGES

4. Repeat per channel (RGB). The final result is mapped into [0, 1] using
a sigmoid activation.”

By default, L = 3 is used in 3DGS, which yields 16 coefficients per channel,
or 48 coefficients per Gaussian. With millions of Gaussians, this becomes the
primary storage and performance bottleneck.

.1.3 Limitations and Advances

The reliance on SH makes color modeling accurate but memory-intensive.
Recent work such as SG-Splatting (2024) introduces spherical Gaussians (SGs)
as a more compact alternative, reducing parameters to 7 per SG while main-
taining visual fidelity [67]. Hybrid models combining low-degree SH with
SGs are also explored.

1.4 Conclusion
SH provide the mathematical foundation for view-dependent appearance in

3DGS. They represent a powerful but resource-demanding tool, motivating
ongoing research into more efficient alternatives such as SG-Splatting.

.2 DATASET COLLAGES
This appendix-section provides an overview of all datasets used in this thesis.
Each collage shows either all frames of the dataset or representative samples

of the captured images. The collages serve as documentation of acquisition
conditions and dataset characteristics.

.2.1 Everyday Scenario Datasets

* Bush (see Figure .1)

¢ Castle Fronstside (see Figure .2)

.22 Edge Case Datasets

Owl (see Figure .3)

Walkway (see Figure .4)

Forest 360-Degree Shot (see Figure .5)

Car Ride (see Figure .6)

¢ Castle Compound (see Figure .7)

1 In the reference implementation this is explicitly realized as torch.sigmoid().

85

Figure

.2 DATASET COLLAGES

.1: All frames of the Bush dataset as a collage (thumbnails).

86

.2 DATASET COLLAGES

Figure .2: Overview of the captures in the Castle Compound dataset.

.2.3 External Datasets

¢ Citadel (see Figure .8)

87

.3 TOOL SPECIFICATIONS

.3 TOOL SPECIFICATIONS

This appendix-section provides detailed technical specifications of the tools
included in the evaluation. While Chapter 6 introduces the tools in brief,
the following tables give a comprehensive overview of supported devices,
hardware and software requirements, input and output formats, and cost

models.

3.1 Mobile Applications

Table .1 summarizes the specifications of the three mobile apps considered

in this thesis: Kiri Engine and Polycam,

Table .1: Comparison of mobile 3D reconstruction apps [27-31, 49-52].

Category

Kiri Engine

Polycam (Pro)

Apple device

Android device

Desktop
Photogrammetry
3DGS

Input

Costs (USD)

Export formats

from iPhone 12 Pro/Pro Max
(LiDAR) or iPad Pro 2020+
(LiDAR)

Android smartphones for
photogrammetry (cloud-
based)

Web application

Yes
Yes (Pro plan only)
20-100 photos (Basic) /

20—300 (Pro); Video: 1 min
(Basic) / 3 min (Pro); For-
mats: JPG, PNG, JPEG /
MP4, MOV

Free (Basic), Pro: $79.99/year
($6.66/month) or
$17.99/month

Photo Scan / Featureless Ob-
ject Scan: OBJ], FBX, STL,
GLB, GLTF, USDZ, PLY, XYZ;
3DGS: PLY (native) or OB],
FBX, GLB, GLTF, USDZ, PLY,
XYZ, LiDAR: OBJ, USDZ

from iPhone 12 Pro/Pro Max
(LiDAR) or iPad Pro 11”
(2nd+), 12.9” (4th+), 13" (M)
Samsung Galaxy Szo+,
Google Pixel 6+; > 3.5GB
RAM, 64-bit; no PowerVR
GE8320

Web application

Yes

Yes (Pro plan only)

Photogrammetry: 202000
photos; Gaussian Splat:
20-1000 photos; Video:

00:15-16 GB; Formats: PNG,
JPG / MP4, MOV, AVI, MgV

Free (Basic), Pro: $17/month

MESH: OBJ, GLIF, FBX,
DAE, STL, USDZ; POINT
CLOUD: Splat PLY, PLY,

LAS, PTS, XYZ, DXF
OTHER: Video, Blueprint,
Images

.3.2 Desktop and Server Solutions

Table .2 provides a comparison of the evaluated desktop/server tools: Mesh-

room, PostShot, and the official 3DGS source code implementation.

88

Table .2: Comparison of selected desktop/server solutions for 3D reconstruction [16,

.4 FEASIBILITY CRITERIA

24, 44].
Category Meshroom PostShot 3DGS (GitHub)
Hardware requirements NVIDIA GPU Windows 8.1+, CUDA-capable
(compute ca- NVIDIA RTX GPU (CC > 7.0),

pability > 2.0), 2060 (CC 7.5+) 24GB VRAM
recommended: for paper-level
16-32 GB RAM quality
Software requirements ~ Windows x64, Windows 8.1 or Conda (rec-
Linux, or ma- newer ommended),
cOS (limited); C++ compiler
AliceVision for PyTorch
framework inte- extensions,
grated CUDA SDK 11
(recommended:
11.8); com-
piler-CUDA
compatibility
required

Costs (USD)

Export formats

Beta, free of
charge

OBJ, PLY -

Open-source see Section 7.4

for EC2 costs

Point cloud

.4 FEASIBILITY CRITERTA

This appendix-section defines Feasibility under which conditions a recon-
struction is considered successful for each edge-case dataset. A model is
regarded as feasible if it produces a coherent and recognizable 3D represen-
tation of the intended object or scene. The following dataset-specific criteria
were applied consistently across all methods.

Owl (Object Capture): Feasible if the owl’s overall body shape and
head are clearly recognizable from multiple viewpoints, even if fine
textures or small details are missing.

Car Ride (Dynamic Scene): Feasible if continuous geometry represent-
ing the roadside environment is reconstructed, allowing the car’s path
and adjacent objects (buildings, trees) to be recognized as part of a
coherent scene rather than isolated fragments.

Forest 360-Degree Shot (Natural Environment): Feasible if a 360° for-
est scene can be identified, with visible vegetation, trees, and ground
structure forming a continuous environment rather than disconnected
or empty regions.

Walkway (Outdoor Motion Scene): Feasible if the walkway and sur-
rounding vegetation are clearly recognizable as a pedestrian path scene,
allowing basic spatial orientation and partial navigability within the re-
constructed model.

89

.4 FEASIBILITY CRITERIA 90

¢ Castle Compound (Large-Scale Combined Capture): Feasible if the
castle structure is reconstructed in a recognizable architectural form,
including identifiable facades and an overall building layout, even if
ghosting or duplicated elements occur.

Feasibility was evaluated qualitatively for photogrammetry- and tool-based
3DGS models (Kiri Engine, Polycam, Meshroom, PostShot) according to these
definitions and rated in binary form (Yes/No).

The feasibility criteria are subjective in nature, as they rely on human judg-
ment of recognizability and structural coherence rather than on quantitative
measures. Moreover, the specific conditions under which a reconstruction is
considered feasible were defined subjectively for this study, reflecting practi-
cal interpretation rather than an established or standardized framework.

.4 FEASIBILITY CRITERIA 91

Figure .3: Sample overview of the captures in the Owl dataset.

.4 FEASIBILITY CRITERIA 92

Figure .4: All frames of the Walkway dataset as a collage (thumbnails).

.4 FEASIBILITY CRITERIA

Figure .5: All frames of the Forest 360-Degree Shot dataset as a collage (thumb-
nails).

93

.4 FEASIBILITY CRITERIA

Figure .6: All frames of the Car Ride dataset as a collage (thumbnails).

94

95

.4 FEASIBILITY CRITERIA

. '
4 v g o Cog Ag=
o e =
I
4

v A

-

Figure .7: All frames of the Castle Compound dataset as a collage (thumbnails).

bl

.4 FEASIBILITY CRITERIA

Figure .8: All frames of the Citadel dataset as a collage (thumbnails).

96

BIBLIOGRAPHY

[1]

[2]

(3]

[9]

[10]

Sameer Agarwal, Noah Snavely, Steven M. Seitz, and Richard Szeliski.
“Bundle Adjustment in the Large.” In: Proceedings of the 11th European
Conference on Computer Vision (ECCV). Springer, 2010, pp. 29—42. DOL:
10.1007/978-3-642-15552-9_3.

Pablo F. Alcantarilla, Jestis Nuevo, and Adrien Bartoli. “Fast Explicit
Diffusion for Accelerated Features in Nonlinear Scale Spaces.” In: Pro-
ceedings of the British Machine Vision Conference (BMVC). BMVA Press,
2013, pp. 1-11. URL: https://bmvc2013.cs.nott.ac.uk/papers/029/
paper029.pdf.

AliceVision. AliceVision — Photogrammetric Computer Vision Framework.
Zuletzt abgerufen am October 15, 2025. 2025. URL: https://alicevision.
org/.

Atalkhan. Herat Citadel. YouTube video, https://www.youtube . com/
watch?v=v0sv8AD4224. Accessed: 2025-08-14. 2024.

Adrian Azzarelli, Nantheera Anantrasirichai, and David R Bull. “Ex-
ploring Dynamic Novel View Synthesis Technologies for Cinematogra-
phy.” In: arXiv preprint arXiv:2412.17532 (2024).

Connelly Barnes, Eli Shechtman, Adam Finrbllstein, and Dan B. Gold-
man. “PatchMatch: A Randomized Correspondence Algorithm for Struc-
tural Image Editing.” In: ACM Transactions on Graphics (2009).

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. “SURF:
Speeded Up Robust Features.” In: Computer Vision and Image Under-
standing 110.3 (2008), pp. 346—359. DOI: 10.1016/j.cviu.2007.09.014.

Michael Bleyer, Christoph Rhemann, and Carsten Rother. “PatchMatch
Stereo — Stereo Matching with Slanted Support Windows.” In: Proceed-
ings of the British Machine Vision Conference (BMVC). 2011.

Frédéric Cazals and Joachim Giesen. Delaunay Triangulation Based Sur-
face Reconstruction: Ideas and Algorithms. Research Report RR-5393. IN-
RIA, 2004.

Zhiqin Chen, Kangxue Yin, and Sanja Fidler. “AUV-Net: Learning
Aligned UV Maps for Texture Transfer and Synthesis.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022, pp. 1455-1464. DOL: 10.1109/CVPR52688.2022.00152.
URL: https://openaccess.thecvf.com/content/CVPR2022/papers/
Chen_AUV-Net_Learning_Aligned_UV_Maps_for_Texture_Transfer_
and_Synthesis_CVPR_2022_paper.pdf.

https://doi.org/10.1007/978-3-642-15552-9_3
https://bmvc2013.cs.nott.ac.uk/papers/029/paper029.pdf
https://bmvc2013.cs.nott.ac.uk/papers/029/paper029.pdf
https://alicevision.org/
https://alicevision.org/
https://www.youtube.com/watch?v=vOsv8AD4224
https://www.youtube.com/watch?v=vOsv8AD4224
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/CVPR52688.2022.00152
https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_AUV-Net_Learning_Aligned_UV_Maps_for_Texture_Transfer_and_Synthesis_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_AUV-Net_Learning_Aligned_UV_Maps_for_Texture_Transfer_and_Synthesis_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_AUV-Net_Learning_Aligned_UV_Maps_for_Texture_Transfer_and_Synthesis_CVPR_2022_paper.pdf

BIBLIOGRAPHY

[11] F Condorelli et al. “A Comparison Between 3D Reconstruction Using
NeRF Neural Networks and MVS Algorithms on Cultural Heritage Im-
ages.” In: The International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences. Vol. XLIII-B2-2021. 2021, pp. 565—
570. DOI: 10.5194/isprs-archives-XLIII-B2-2021-565-2021.

[12] Daniel Duckworth, Jonathon Luiten, Quoc-Huy Pham, Philippe Wein-
zaepfel, Jerome Revaud, Christian Rupprecht, and Bastian Leibe. “SMERF:
Streamable Memory Efficient Radiance Fields for Real-Time Large-
Scene Exploration.” In: arXiv preprint arXiv:2312.07541 (2023). URL: https:
//arxiv.org/abs/2312.07541.

[13] Martin A. Fischler and Robert C. Bolles. “Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image Analy-
sis and Automated Cartography.” In: Communications of the ACM 24.6
(1981), pp. 381-395.

[14] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Ben
Recht, Angjoo Kanazawa, and Ren Ng. “Plenoxels: Radiance Fields
without Neural Networks.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 5501-5510.

[15] Future Learning Space. Homepage. Accessed: 2025-01-21. 2025. URL: https:
//futurelearning.space/.

[16] GRAPHDECO-INRIA. Gaussian-Splatting — GitHub Repository. Zuletzt
abgerufen am October 15, 2025. 2025. URL: https: //github. com/
graphdeco-inria/gaussian-splatting.

[17] X-S Gao, X-R Hou,] Tang, and H-F Cheng. “Complete solution classi-
fication for the perspective-three-point problem.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 25.8 (2003), pp. 930-943.

[18] L. Gomes et al. “3D reconstruction methods for digital preservation
of cultural heritage: A survey.” In: Pattern Recognition Letters 50 (2014),
PpP- 3—14. ISSN: 0167-8655. DOI: 10.1016/j.patrec.2014.03.023.

[19] Carsten Griwodz, Simone Gasparini, Lilian Calvet, Pierre Gurdjos, Fa-
bien Castan, Benoit Maujean, Yann Lanthony, and Gregoire De Lillo.
“AliceVision Meshroom: An open-source 3D reconstruction pipeline.”
In: Proceedings of the 12th ACM Multimedia Systems Conference (MMSys
"21). New York, NY, USA: Association for Computing Machinery, 2021,
PP- 241-247. ISBN: 978-1-4503-8434-6. DOIL: 10.1145/3458305.3478443.
URL: https://doi.org/10.1145/3458305.3478443.

[20] Markus Gross, Hanspeter Pfister, Marc Alexa, Mark Pauly, Marc Stam-
minger, and Matthias Zwicker. Point-Based Computer Graphics. Euro-
graphics 2002 Tutorial T6. Tutorial Notes. 2002.

[21] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-565-2021
https://arxiv.org/abs/2312.07541
https://arxiv.org/abs/2312.07541
https://futurelearning.space/
https://futurelearning.space/
https://github.com/graphdeco-inria/gaussian-splatting
https://github.com/graphdeco-inria/gaussian-splatting
https://doi.org/10.1016/j.patrec.2014.03.023
https://doi.org/10.1145/3458305.3478443
https://doi.org/10.1145/3458305.3478443

BIBLIOGRAPHY 99

Heiko Hirschmidiller. “Stereo Processing by Semiglobal Matching and
Mutual Information.” In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 30.2 (2008), pp. 328-341. poI: 10.1109/TPAMI . 2007 .
1166.

Zhangjin Huang, Yuxin Wen, Zihao Wang, Jinjuan Ren, and Kui Jia.
Surface Reconstruction from Point Clouds: A Survey and a Benchmark. arXiv:2205.02413
[cs.CV], version 1, 5 May 2022. 2022. arXiv: 2205.02413 [cs.CV].

Jawset Visual Computing. Postshot User Guide Release Notes vo.1. Zuletzt
abgerufen am October 15, 2025. 2023. URL: https://www.jawset.com/
docs/d/Postshot+User+Guide/Release+Notes/v0. 1.

Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. “Global Structure-from-
Motion Revisited.” In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 2013, pp. 1748-1755. DOIL: 10.1109/ICCV.2013.
220.

Johannes L. Schonberger and Jan-Michael Frahm and the COLMAP
community. COLMAP. General-purpose Structure-from-Motion and
Multi-View Stereo pipeline with both GUI and CLI. 2025. URL: https:
//colmap.github.io/.

KIRI Engine. Export Formats — KIRI Engine. Zuletzt abgerufen am Oc-
tober 15, 2025. 2025. URL: https://www.kiriengine.app/features/
export-formats.

KIRI Engine. LiDAR Scan — KIRI Engine. Zuletzt abgerufen am October
15, 2025. 2025. URL: https://www.kiriengine.app/features/lidar -
scan.

KIRI Engine. Pricing — KIRI Engine. Zuletzt abgerufen am October 15,
2025. 2025. URL: https://www.kiriengine.app/pricing.

KIRI Innovations. 3D Gaussian Splatting Feature Overview. Accessed:
2025-08-12. 2024. URL: https://www. kiriengine.app/features/3d-
gaussian-splatting.

KIRI Innovations. Photo Scan Feature Overview. Accessed: 2025-08-12.
2024. URL: https://www.kiriengine.app/features/photo-scan.

Onur Keles, M. Akin Yilmaz, A. Murat Tekalp, Cansu Korkmaz, and
Zafer Dogan. “On the Computation of PSNR for a Set of Images or
Video.” In: arXiv preprint arXiv:2104.14868 (2021).

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George
Drettakis. “3D Gaussian Splatting for Real-Time Radiance Field Ren-
dering.” In: ACM Transactions on Graphics 42.4 (2023).

Jason Kottke. Medieval illustrations of what Europeans thought elephants
looked like. Accessed: 2025-01-21. 2018. URL: https://kottke.org/18/
01/medieval-illustrations-ofwhat-europeans-thought-elephants-
looked- like.

https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2007.1166
https://arxiv.org/abs/2205.02413
https://www.jawset.com/docs/d/Postshot+User+Guide/Release+Notes/v0.1
https://www.jawset.com/docs/d/Postshot+User+Guide/Release+Notes/v0.1
https://doi.org/10.1109/ICCV.2013.220
https://doi.org/10.1109/ICCV.2013.220
https://colmap.github.io/
https://colmap.github.io/
https://www.kiriengine.app/features/export-formats
https://www.kiriengine.app/features/export-formats
https://www.kiriengine.app/features/lidar-scan
https://www.kiriengine.app/features/lidar-scan
https://www.kiriengine.app/pricing
https://www.kiriengine.app/features/3d-gaussian-splatting
https://www.kiriengine.app/features/3d-gaussian-splatting
https://www.kiriengine.app/features/photo-scan
https://kottke.org/18/01/medieval-illustrations-ofwhat-europeans-thought-elephants-looked-like
https://kottke.org/18/01/medieval-illustrations-ofwhat-europeans-thought-elephants-looked-like
https://kottke.org/18/01/medieval-illustrations-ofwhat-europeans-thought-elephants-looked-like

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

Joseph]. LaViola. “A discussion of cybersickness in virtual environ-
ments.” In: ACM SIGCHI Bulletin 32.1 (2000), pp. 47-56. DOI: 10.1145/
333329.333344.

LearnOpenCV. 3D Gaussian Splatting: A New Era of Real-Time Radiance
Field Rendering. Accessed: 2025-09-05. 2023. URL: https://learnopencv.
com/3d-gaussian-splatting/#Gaussian-Splatting-Limitations.

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “EPnP: An
accurate O(n) solution to the PnP problem.” In: IEEE Conference on
Computer Vision and Pattern Recognition. IEEE. 2009, pp. 1-8.

Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. “BRISK:
Binary Robust Invariant Scalable Keypoints.” In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV). IEEE, 2011, pp. 2548-
2555. DOL: 10.1109/ICCV.2011.6126542. URL: https://doi.org/10.
1109/ICCV.2011.6126542.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. “Least
Squares Conformal Maps for Automatic Texture Atlas Generation.”
In: Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH). ACM, 2002, pp. 362—371.

Haoang Li. Computer Vision 1I: Multiple View Geometry (IN2228) — Chap-
ter 12: Bundle Adjustment. Lecture slides. Lecture on 6 July 2023. July
2023. URL: https://cvg.cit.tum.de/teaching/ss2023/cv2 (visited
on 10/13/2025).

David G. Lowe. “Distinctive Image Features from Scale-Invariant Key-
points.” In: International Journal of Computer Vision 60.2 (2004), pp. 91—
110. DOL: 10.1023/B:VISI.0000029664.99615.94.

C.-P. Lu, G. D. Hager, and E. Mjolsness. “Fast and globally convergent
pose estimation from video images.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 22.6 (2000), pp. 610-622.

Thomas Luhmann, Stuart Robson, Stephen Kyle, and Ian Harley. Close-
Range Photogrammetry and 3D Imaging. 2nd ed. Berlin, Germany: De
Gruyter, 2014.

Meshroom Documentation. Requirements — Meshroom. Zuletzt abgerufen

am October 15, 2025. 2025. URL: https://meshroom-manual. readthedocs.

io/en/bibtexl/install/requirements/requirements.html.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Bar-
ron, Ravi Ramamoorthi, and Ren Ng. “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.” In: Communications of the
ACM 65.1 (2021), pp. 99—106.

Philipp Mittendorfer and Gordon Cheng. “3D surface reconstruction
for robotic body parts with artificial skins.” In: 2012 IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems. 2012, pp. 4505—4510.
DOI: 10.1109/IR0S.2012.6385559.

100

https://doi.org/10.1145/333329.333344
https://doi.org/10.1145/333329.333344
https://learnopencv.com/3d-gaussian-splatting/#Gaussian-Splatting-Limitations
https://learnopencv.com/3d-gaussian-splatting/#Gaussian-Splatting-Limitations
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICCV.2011.6126542
https://cvg.cit.tum.de/teaching/ss2023/cv2
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://meshroom-manual.readthedocs.io/en/bibtex1/install/requirements/requirements.html
https://meshroom-manual.readthedocs.io/en/bibtex1/install/requirements/requirements.html
https://doi.org/10.1109/IROS.2012.6385559

[47]

[56]

BIBLIOGRAPHY 101

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller.
“Instant Neural Graphics Primitives with a Multiresolution Hash En-
coding.” In: ACM Transactions on Graphics (TOG), Proceedings of SIG-
GRAPH. Vol. 41. 4. 2022, pp. 1-15.

OpenCV Contributors. Camera Calibration and 3D Reconstruction — OpenCV
documentation. Accessed: 2025-07-10. 2024. URL: https://docs.opencv.
org/4.x/d9/d0c/group__calib3d.html.

Polycam. Gaussian Splatting Tool Overview. Accessed: 2025-08-12. 2024.
URL: https://poly.cam/tools/gaussian-splatting.

Polycam. What Are the Different Photogrammetry Processing Types? Ac-
cessed: 2025-08-12. 2024. URL: https://learn.poly.cam/hc/en-us/
articles/30299027821716-What-Are-the-Different-Photogrammetry-
Processing-Types.

Polycam. Pricing — Polycam. Zuletzt abgerufen am October 15, 2025.
2025. URL: https://poly.cam/pricing.

Polycam. Which Devices Are Supported by Polycam. Zuletzt abgerufen
am October 15, 2025. 2025. URL: https://learn.poly.cam/hc/en-
us/articles/34419168797972 - Which - Devices - Are - Supported - by -
Polycam.

Zhihao Que, Yutong Guo, Yuefan Wu, Jingyi Yu, and Lan Xu. “A Sur-
vey on Neural Radiance Fields.” In: arXiv preprint arXiv:2004.03805
(2020). URL: https://arxiv.org/abs/2004.03805.

Fabio Remondino and Sabry El-Hakim. “Image-based 3D modelling: a
review.” In: The Photogrammetric Record 21.115 (2006), pp. 269—291. DOI:
10.1111/3j.1477-9730.2006.00383.x.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. “ORB:
An efficient alternative to SIFT or SURF.” In: Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV). IEEE, 2011, pp. 2564—
2571. DOI: 10.1109/ICCV.2011.6126544.

Johannes L. Schonberger and Jan-Michael Frahm. “Structure-from-Motion
Revisited.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 4104—4113. DOIL: 10.1109/CVPR.
2016 . 445. URL: https://openaccess . thecvf . com/ content_cvpr_
2016 / papers / Schonberger _ Structure - From - Motion _Revisited _
CVPR_2016_paper.pdf.

Thomas Schops, Johannes L. Schonberger, Silvano Galliani, Torsten

Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger. “A

Multi-View Stereo Benchmark With High-Resolution Images and Multi-
Camera Videos.” In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). 2017, pp. 3260-3269. DOI: 10.1109/

CVPR. 2017 .272. URL: https://openaccess . thecvf. com/content_

cvpr_2017/html/Schops_A_Multi-View_Stereo_CVPR_2017_paper.
html.

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://poly.cam/tools/gaussian-splatting
https://learn.poly.cam/hc/en-us/articles/30299027821716-What-Are-the-Different-Photogrammetry-Processing-Types
https://learn.poly.cam/hc/en-us/articles/30299027821716-What-Are-the-Different-Photogrammetry-Processing-Types
https://learn.poly.cam/hc/en-us/articles/30299027821716-What-Are-the-Different-Photogrammetry-Processing-Types
https://poly.cam/pricing
https://learn.poly.cam/hc/en-us/articles/34419168797972-Which-Devices-Are-Supported-by-Polycam
https://learn.poly.cam/hc/en-us/articles/34419168797972-Which-Devices-Are-Supported-by-Polycam
https://learn.poly.cam/hc/en-us/articles/34419168797972-Which-Devices-Are-Supported-by-Polycam
https://arxiv.org/abs/2004.03805
https://doi.org/10.1111/j.1477-9730.2006.00383.x
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2016.445
https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf
https://doi.org/10.1109/CVPR.2017.272
https://doi.org/10.1109/CVPR.2017.272
https://openaccess.thecvf.com/content_cvpr_2017/html/Schops_A_Multi-View_Stereo_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Schops_A_Multi-View_Stereo_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Schops_A_Multi-View_Stereo_CVPR_2017_paper.html

[60]

[61]

[62]

[64]

BIBLIOGRAPHY

Noah Snavely, Steven M. Seitz, and Richard Szeliski. “Photo Tourism:
Exploring Photo Collections in 3D.” In: SIGGRAPH Conference Proceed-
ings. Association for Computing Machinery, 2006, pp. 835-846. por:
10.1145/1141911.1141964.

Noah Snavely, Steven M. Seitz, and Richard Szeliski. “Modeling the
World from Internet Photo Collections.” In: International Journal of Com-
puter Vision 80.2 (2008), pp. 189—210. pOI: 10.1007/511263-007-0107 -
3.

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer,
2010. ISBN: 978-1-84882-934-3. DOI: 10.1007/978-1-84882-935-0. URL:
https://szeliski.org/Book/.

Shaharyar Khan Tareen and Zahra Saleem. “A comparative analysis
of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK.” In: Mar. 2018. por:
10.1109/ICOMET.2018.8346440.

Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W.
Fitzgibbon. “Bundle Adjustment — A Modern Synthesis.” In: Vision
Algorithms: Theory and Practice. Springer, 2000, pp. 298-372.

Jelle Vermandere, Maarten Bassier, and Maarten Vergauwen. Semantic
UV Mapping to Improve Texture Inpainting for Indoor Scenes. Submitted to
EG UK Computer Graphics & Visual Computing (CGVC) 2024. 2024.
arXiv: 2407.09248 [cs.CV].

Fangjinhua Wang, Qingtian Zhu, Di Chang, Quankai Gao, Junlin Han,
Tong Zhang, Richard Hartley, and Marc Pollefeys. Learning-based Multi-
View Stereo: A Survey. PDF. Preprint; categories of learning-based MVS
(depth map-, voxel-, NeRF-, 3D Gaussian Splatting-based, and large
feed-forward methods). n.d.

X. Wang et al. “A 3D Reconstruction Method for Augmented Real-
ity Sandbox Based on Depth Sensor.” In: 2021 IEEE 2nd International
Conference on Information Technology, Big Data and Artificial Intelligence
(ICIBA). Vol. 2. 2021, pp. 844-849. po1: 10 . 1109/ ICIBA52610 . 2021 .
9687867.

X. Wang et al. “Neural Radiance Fields in Medical Imaging: Chal-
lenges and Next Steps.” In: arXiv preprint (2024). arXiv: 2402 . 17797
[eess.IV].

Yiwen Wang, Siyuan Chen, and Ran Yi. “SG-Splatting: Accelerating
3D Gaussian Splatting with Spherical Gaussians.” In: arXiv preprint
arXiv:2501.00342 (2024).

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli.
“Image quality assessment: From error visibility to structural similar-
ity.” In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600-612.
DOI: 10.1109/TIP.2003.819861.

Wikipedia contributors. Spherical harmonics — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/wiki/Spherical_harmonics.
Accessed: 2025-08-27. 2023.

102

https://doi.org/10.1145/1141911.1141964
https://doi.org/10.1007/s11263-007-0107-3
https://doi.org/10.1007/s11263-007-0107-3
https://doi.org/10.1007/978-1-84882-935-0
https://szeliski.org/Book/
https://doi.org/10.1109/ICOMET.2018.8346440
https://arxiv.org/abs/2407.09248
https://doi.org/10.1109/ICIBA52610.2021.9687867
https://doi.org/10.1109/ICIBA52610.2021.9687867
https://arxiv.org/abs/2402.17797
https://arxiv.org/abs/2402.17797
https://doi.org/10.1109/TIP.2003.819861
https://en.wikipedia.org/wiki/Spherical_harmonics

BIBLIOGRAPHY 103

[7o] Wikipedia contributors. Real-time computer graphics. https://en.wikipedia.
org/wiki/Real-time_computer_graphics. Accessed: October 15, 2025.
2025.

[71] Wenhui Xiao, Remi Chierchia, Rodrigo Santa Cruz, Xuesong Li, David
Ahmedt-Aristizabal, Olivier Salvado, Clinton Fookes, and Leo Lebrat.
“Neural Radiance Fields for the Real World: A Survey.” In: arXiv preprint
arXiv:2501.13104 (2025). CC BY 4.0 License. URL: https://arxiv.org/
abs/2501.13104.

[72] Bahia Yahya-Zoubir, Latifa Hamami, Llies Saadaoui, and Rafik Ouared.
“Automatic 3D Mesh-Based Centerline Extraction from a Tubular Ge-
ometry Form.” In: Information Technology and Control 45.2 (2016), p. 12162.
DOI: 10.5755/j01.itc.45.2.12162. URL: http://dx.doi.org/10.
5755/j01.1itc.45.2.12162.

[73] Yao Yao, Zexiang Luo, Shiwei Li, Tian Fang, and Long Quan. “Re-
current MVSNet for High-Resolution Multi-View Stereo Depth Infer-
ence.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2019, pp. 5525-5534. DOL: 10.1109/
CVPR.2019.00567. URL: https://openaccess.thecvf.com/content_
CVPR_2019/html/Yao_Recurrent_MVSNet_ for_High - Resolution_
Multi-View_Stereo_Depth_Inference_CVPR_2019_paper.html.

[74] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. “MVSNet:
Depth Inference for Unstructured Multi-View Stereo.” In: Proceedings
of the European Conference on Computer Vision (ECCV). Springer, 2018,
pp- 767-783. DOI: 10.1007/978-3-030-01234-2_47.

[75] Guofeng Zhang, Jiaya Jia, Lu Yuan, and Hujun Bao. “An Efficient and
Robust Hybrid SfM Method for Large-Scale Scenes.” In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2018, pp. 6558-6567. DOI: 10.1109/CVPR.2018.00685.

[76] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver
Wang. “The Unreasonable Effectiveness of Deep Features as a Percep-
tual Metric.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2018, pp. 586—595. pOI: 10.11609/CVPR.
2018.00068. URL: https://openaccess. thecvf.com/content_cvpr_
2018 /html/ Zhang_The_Unreasonable_Effectiveness_CVPR_2018_
paper.html.

[771 Zhengyou Zhang. “Microsoft Kinect Sensor and Its Effect.” In: IEEE
MultiMedia 19.2 (2012), pp. 4-10. DOL 10.1109/MMUL.2012.24.

[78] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. “Surface Splatting.” In: Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH "o1. New
York, NY, USA: ACM, 2001, pp. 371-378. DOI: 10.1145/383259.383300.

https://en.wikipedia.org/wiki/Real-time_computer_graphics
https://en.wikipedia.org/wiki/Real-time_computer_graphics
https://arxiv.org/abs/2501.13104
https://arxiv.org/abs/2501.13104
https://doi.org/10.5755/j01.itc.45.2.12162
http://dx.doi.org/10.5755/j01.itc.45.2.12162
http://dx.doi.org/10.5755/j01.itc.45.2.12162
https://doi.org/10.1109/CVPR.2019.00567
https://doi.org/10.1109/CVPR.2019.00567
https://openaccess.thecvf.com/content_CVPR_2019/html/Yao_Recurrent_MVSNet_for_High-Resolution_Multi-View_Stereo_Depth_Inference_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Yao_Recurrent_MVSNet_for_High-Resolution_Multi-View_Stereo_Depth_Inference_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Yao_Recurrent_MVSNet_for_High-Resolution_Multi-View_Stereo_Depth_Inference_CVPR_2019_paper.html
https://doi.org/10.1007/978-3-030-01234-2_47
https://doi.org/10.1109/CVPR.2018.00685
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
https://doi.org/10.1109/MMUL.2012.24
https://doi.org/10.1145/383259.383300

	Titelblatt
	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Listings
	List of Abbreviations

	 Thesis
	1 Introduction
	1.1 Relevance of 3D Reconstruction
	1.1.1 Aims of the Thesis
	1.1.2 Contribution

	1.2 Structure of the Thesis

	2 Omitted 3D Reconstruction Methods
	2.1 High-End Neural Rendering Methods
	2.2 Newer Photogrammetry Methods

	3 Fundamentals of 3D Reconstruction: From Pixels to Geometry
	3.1 Flat vs. Spatial: Understanding 3D Data Representations
	3.1.1 2D vs. 3D Representation
	3.1.2 Forms of representation in the 3D reconstruction
	3.1.3 Voxel

	3.2 Decoding the Blackbox: The Math Behind 3D Reconstruction
	3.2.1 The Pinhole Camera Model
	3.2.2 Feature Detection and Description
	3.2.3 Epipolar Geometry
	3.2.4 RANSAC (Random Sample Consensus)
	3.2.5 Triangulation - Estimating 3D Points from Image Pairs
	3.2.6 Perspective-n-Point (PnP)
	3.2.7 Bundle Adjustment (BA)

	4 Photogrammetry
	4.1 Photogrammetry-Pipeline
	4.1.1 Structure-from-Motion (SfM)
	4.1.2 Multi-View Stereo (MVS)
	4.1.3 Meshing
	4.1.4 Texturing

	4.2 Tools and Platforms for Photogrammetry
	4.2.1 Open-source software as a baseline
	4.2.2 Commercial software as high-end solutions
	4.2.3 Mobile applications as a recent trend

	4.3 Photogrammetry Limitations

	5 3D Gaussian Splatting (3DGS)
	5.1 Comparison with NeRF and Photogrammetry
	5.2 Foundations
	5.2.1 Novel View Synthesis (NVS)
	5.2.2 Radiance Fields
	5.2.3 3D Gaussians
	5.2.4 Real-Time Rendering

	5.3 Method: 3D Gaussian Splatting in Detail
	5.3.1 Parametrization of the 3D Gaussians
	5.3.2 Adaptive Density Control
	5.3.3 Differentiable Rasterization
	5.3.4 Rendering Pipeline

	5.4 Practical Implementation and Tools
	5.4.1 Pre-processing with COLMAP
	5.4.2 Training Pipeline (Original Code)
	5.4.3 From Code to Application: User-Oriented Tools and Platforms

	5.5 Technical Limitations

	6 Method Selection and Evaluation Setup
	6.1 Overview of Tested Tools
	6.2 Experimental Setup
	6.2.1 Mobile Applications
	6.2.2 Desktop Software
	6.2.3 Source Code Implementation
	6.2.4 Drone-based Data Acquisition

	6.3 Evaluation Criteria
	6.3.1 Metric Evaluation
	6.3.2 Visual Evaluation
	6.3.3 Tool Evaluation

	6.4 Experimental Design
	6.4.1 Datasets and Evaluation Protocol
	6.4.2 Experimental Procedure

	7 Results and Discussion
	7.1 Photogrammetry Models Results
	7.1.1 Feasibility Tests on Edge-Case Datasets (Photogrammetry)
	7.1.2 Photogrammetry Visual Evaluation of Everyday Scenarios
	7.1.3 Robustness Test for Photogrammetry Citadel Model

	7.2 3D Gaussian Splatting Models Results
	7.2.1 Feasibility Tests on Edge-Case Datasets (3DGS)
	7.2.2 3DGS Models from Everyday Scenarios Datasets
	7.2.3 Robustness Tests of 3DGS Citadel Models

	7.3 Cross-Method Comparison
	7.4 Tool Evaluation
	7.5 Limitations

	8 conclusion

	 Appendix
	A Appendix
	.1 Mathematical Details of Spherical Harmonics in 3DGS
	.1.1 Use of SH in Neural Rendering
	.1.2 Application in 3D Gaussian Splatting
	.1.3 Limitations and Advances
	.1.4 Conclusion

	.2 Dataset Collages
	.2.1 Everyday Scenario Datasets
	.2.2 Edge Case Datasets
	.2.3 External Datasets

	.3 Tool Specifications
	.3.1 Mobile Applications
	.3.2 Desktop and Server Solutions

	.4 Feasibility Criteria

	 Bibliography

